Science.gov

Sample records for adult ventricular myocytes

  1. Trafficking of an endogenous potassium channel in adult ventricular myocytes

    PubMed Central

    Wang, Tiantian; Cheng, Yvonne; Dou, Ying; Goonesekara, Charitha; David, Jens-Peter; Steele, David F.; Huang, Chen

    2012-01-01

    The roles of several small GTPases in the expression of an endogenous potassium current, Ito,f, in adult rat ventricular myocytes have been investigated. The results indicate that forward trafficking of newly synthesized Kv4.2, which underlies Ito,f in these cells, requires both Rab1 and Sar1 function. Expression of a Rab1 dominant negative (DN) reduced Ito,f current density by roughly one-half relative to control, mCherry-transfected myocytes. Similarly, expression of a Sar1DN nearly halved Ito,f current density. Rab11 is not essential to trafficking of Kv4.2, as expression of a Rab11DN had no effect on Ito,f over the time frames investigated here. In a process dependent on intact endoplasmic reticulum (ER)-to-Golgi transport, however, overexpression of wild-type Rab11 resulted in a doubling of Ito,f density; block of ER-to-Golgi traffic by Brefeldin A completely abrogated the effect. Also implicated in the trafficking of Kv4.2 are Rab5 and Rab4. Rab5DN expression increased endogenous Ito,f by two- to threefold, nonadditively with inhibition of dynamin-dependent endocytosis. And, in a phenomenon similar to that previously reported for myoblast-expressed Kv1.5, Rab4DN expression roughly doubled endogenous peak transient currents. Colocalization experiments confirmed the involvement of Rab4 in postinternalization trafficking of Kv4.2. There was little role evident for the lysosome in the degradation of internalized Kv4.2, as overexpression of neither wild-type nor DN isoforms of Rab7 had any effect on Ito,f. Instead, degradation may depend largely on the proteasome; the proteasome inhibitor MG132 significantly increased Ito,f density. PMID:22914645

  2. Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes.

    PubMed

    Shenouda, Sylvia K; Varner, Kurt J; Carvalho, Felix; Lucchesi, Pamela A

    2009-03-01

    Repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy) produces eccentric left ventricular (LV) dilation and diastolic dysfunction. While the mechanism(s) underlying this toxicity are unknown, oxidative stress plays an important role. MDMA is metabolized into redox cycling metabolites that produce superoxide. In this study, we demonstrated that metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Metabolites of MDMA used in this study included alpha-methyl dopamine, N-methyl alpha-methyl dopamine and 2,5-bis(glutathion-S-yl)-alpha-MeDA. Dihydroethidium was used to detect drug-induced increases in reactive oxygen species (ROS) production in ventricular myocytes. Contractile function and changes in intracellular calcium transients were measured in paced (1 Hz), Fura-2 AM loaded, myocytes using the IonOptix system. Production of ROS in ventricular myocytes treated with MDMA was not different from control. In contrast, all three metabolites of MDMA exhibited time- and concentration-dependent increases in ROS that were prevented by N-acetyl-cysteine (NAC). The metabolites of MDMA, but not MDMA alone, significantly decreased contractility and impaired relaxation in myocytes stimulated at 1 Hz. These effects were prevented by NAC. Together, these data suggest that MDMA-induced oxidative stress in the left ventricle can be due, at least in part, to the metabolism of MDMA to redox active metabolites.

  3. Post-translational modifications of tubulin and microtubule stability in adult rat ventricular myocytes and immortalized HL-1 cardiomyocytes.

    PubMed

    Belmadani, Souad; Poüs, Christian; Fischmeister, Rodolphe; Méry, Pierre-François

    2004-03-01

    Little is known about the subcellular distribution and the dynamics of tubulins in adult cardiac myocytes although both are modified during cardiac hypertrophy and heart failure. Using confocal microscopy, we examined post-translational modifications of tubulin in fully differentiated ventricular myocytes isolated from adult rat hearts, as well as in immortalized and dividing HL-1 cardiomyocytes. Detyrosinated Glu-alpha-tubulin was the most abundant post-translationally modified tubulin found in ventricular myocytes, while acetylated- and delta2-alpha-tubulins were found in lower amounts or absent. In contrast, dividing HL-1 cardiomyocytes exhibited high levels of tyrosinated or acetylated alpha-tubulins. A mild nocodazole treatment (0.1 microM, 1 h) disrupted microtubules in HL-1 myocytes, but not in adult ventricular myocytes. A stronger treatment (10 microM, 2 h) was required to disassemble tubulins in adult myocytes. Glu-alpha-tubulin containing microtubules were more resistant to nocodazole treatment in HL-1 cardiomyocytes than in ventricular myocytes. Endogenous activation of the cAMP pathway with the forskolin analog L858051 (20 microM) or the beta-adrenergic agonist isoprenaline (10 microM) disrupted the most labile microtubules in HL-1 cardiomyocytes. In contrast, isoprenaline (10 microM), cholera toxin (200 ng/ml, a G(S)-protein activator), L858051 (20 microM) or forskolin (10 microM) had no effect on the microtubule network in ventricular myocytes. In addition, intracellular Ca2+ accumulation induced either by thapsigargin (2 microM) or caffeine (10 mM) did not modify microtubule stability in ventricular myocytes. Our data demonstrate the unique stability of the microtubule network in adult cardiac myocytes. We speculate that microtubule stability is required to support cellular integrity during cardiac contraction.

  4. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    PubMed Central

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  5. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    PubMed

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure.

  6. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes

    PubMed Central

    Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L.; Vaughan-Jones, Richard D.; Lefkimmiatis, Konstantinos; Swietach, Pawel

    2016-01-01

    Aims 3′,5′-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. Methods and results [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm2/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. Conclusion In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. PMID:27089919

  7. Pacemaker current i(f) in adult canine cardiac ventricular myocytes.

    PubMed Central

    Yu, H; Chang, F; Cohen, I S

    1995-01-01

    1. Single cells enzymatically isolated from canine ventricle and canine Purkinje fibres were studied with the whole-cell patch clamp technique, and the properties of the pacemaker current i(f) compared. 2. Steady-state i(f) activation occurred in canine ventricular myocytes at more negative potentials (-120 to -170 mV) than in canine Purkinje cells (-80 to -130 mV). 3. Reversal potentials were obtained in various extracellular Na+ (140, 79 or 37 mM) and K+ concentrations (25, 9 or 5.4 mM) to determine the ionic selectivity of i(f) in the ventricle. The results suggest that this current was carried by both sodium and potassium ions. 4. The plots of the time constants of i(f) activation against voltage were 'bell shaped' in both canine ventricular and Purkinje myocytes. The curve for the ventricular myocytes was shifted about 30 mV in the negative direction. In both ventricular and Purkinje myocytes, the fully activated I-V relationship exhibited outward rectification in 5.4 mM extracellular K+. 5. Calyculin A (0.5 microM) increased i(f) by shifting its activation to more positive potentials in ventricular myocytes. Protein kinase inhibition by H-7 (200 microM) or H-8 (100 microM) reversed the positive voltage shift of i(f) activation. This effect of calyculin A also occurred when the permeabilized patch was used for whole-cell recording. 6. These results indicate i(f) is present in ventricular myocytes. If shifted to more positive potentials i(f) could play a role in ischaemia-induced ventricular arrhythmias. The negative shift of i(f) in the ventricle might play a role in differentiating non-pacing regions of the heart from those regions that pace. PMID:7545232

  8. Current-Voltage Relationship for Late Na(+) Current in Adult Rat Ventricular Myocytes.

    PubMed

    Clark, R B; Giles, W R

    2016-01-01

    It is now well established that the slowly inactivating component of the Na(+) current (INa-L) in the mammalian heart is a significant regulator of the action potential waveform. This insight has led to detailed studies of the role of INa-L in a number of important and challenging pathophysiological settings. These include genetically based ventricular arrhythmias (LQT 1, 2, and 3), ventricular arrhythmias arising from progressive cardiomyopathies (including diabetic), and proarrhythmic abnormalities that develop during local or global ventricular ischemia. Inhibition of INa-L may also be a useful strategy for management of atrial flutter and fibrillation. Many important biophysical parameters that characterize INa-L have been identified; and INa-L as an antiarrhythmia drug target has been studied extensively. However, relatively little information is available regarding (1) the ion transfer or current-voltage relationship for INa-L or (2) the time course of its reactivation at membrane potentials similar to the resting or diastolic membrane potential in mammalian ventricle. This chapter is based on our preliminary findings concerning these two very important physiological/biophysical descriptors for INa-L. Our results were obtained using whole-cell voltage clamp methods applied to enzymatically isolated rat ventricular myocytes. A chemical agent, BDF 9148, which was once considered to be a drug candidate in the Na(+)-dependent inotropic agent category has been used to markedly enhance INa-L current. BDF acts in a potent, selective, and reversible fashion. These BDF 9148 effects are compared and contrasted with the prototypical activator of INa-L, a sea anemone toxin, ATX II.

  9. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  10. Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte

    PubMed Central

    Dvornikov, Alexey V; Dewan, Sukriti; Alekhina, Olga V; Pickett, F Bryan; de Tombe, Pieter P

    2014-01-01

    The zebrafish (Danio rerio) has been used extensively in cardiovascular biology, but mainly in the study of heart development. The relative ease of its genetic manipulation may indicate the suitability of this species as a cost-effective model system for the study of cardiac contractile biology. However, whether the zebrafish heart is an appropriate model system for investigations pertaining to mammalian cardiac contractile structure–function relationships remains to be resolved. Myocytes were isolated from adult zebrafish hearts by enzymatic digestion, attached to carbon rods, and twitch force and intracellular Ca2+ were measured. We observed the modulation of twitch force, but not of intracellular Ca2+, by both extracellular [Ca2+] and sarcomere length. In permeabilized cells/myofibrils, we found robust myofilament length-dependent activation. Moreover, modulation of myofilament activation–relaxation and force redevelopment kinetics by varied Ca2+ activation levels resembled that found previously in mammalian myofilaments. We conclude that the zebrafish is a valid model system for the study of cardiac contractile structure–function relationships. PMID:24591576

  11. Evolution of ventricular myocyte electrophysiology.

    PubMed

    Rosati, Barbara; Dong, Min; Cheng, Lan; Liou, Shian-Ren; Yan, Qinghong; Park, Ji Young; Shiang, Elaine; Sanguinetti, Michael; Wang, Hong-Sheng; McKinnon, David

    2008-11-12

    The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis-regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved.

  12. Oxidative stress decreases microtubule growth and stability in ventricular myocytes.

    PubMed

    Drum, Benjamin M L; Yuan, Can; Li, Lei; Liu, Qinghang; Wordeman, Linda; Santana, L Fernando

    2016-04-01

    Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06μm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking.

  13. Inhibition of sarcoplasmic reticular function by chronic interleukin-6 exposure via iNOS in adult ventricular myocytes

    PubMed Central

    Yu, Xin-Wen; Chen, Qian; Kennedy, Richard H; Liu, Shi J

    2005-01-01

    Interleukin (IL)-6 has been shown to decrease cardiac contractility via a nitric oxide synthase (NOS)-dependent pathway during acute exposure. We previously reported that IL-6 decreases contractility and increases inducible NOS (iNOS) in adult rat ventricular myocytes (ARVM) after 2 h exposure. The goal of this study was to investigate the cellular mechanism underlying this chronic IL-6-induced negative inotropy and the role of iNOS. Pretreatment for 2 h with 10 ng ml−1 IL-6 decreased the kinetics of cell shortening (CS) and contractile responsiveness to Ca2+o ([Ca2+]o from 0 to 2 mm) in ARVM. We first examined whether IL-6 reduced Ca2+ influx via L-type Ca2+-channel current (ICa,L). Whole-cell ICa,L in ARVM was measured under conditions similar to those used for CS measurements, and it was found to be unaltered by IL-6. The sarcoplasmic reticular (SR) function was then assessed by examining postrest potentiation (PRP) and caffeine responsiveness of CS. Results showed that treatment with IL-6 for 2 h significantly decreased PRP, which was concomitant with a decrease in the phosphorylation of phospholamban. Following removal of IL-6, PRP and responsiveness to 10 mm caffeine were also reduced. Meanwhile, the IL-6-induced increase in nitric oxide (NO) production after 2 h (but not 1 h) was abolished by NG-monomethyl-l-arginine (l-NMMA) and 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT; a selective inhibitor of iNOS). Furthermore, IL-6-elicited suppressions of PRP and responsiveness to caffeine and Ca2+o were abolished by L-NMMA and AMT. Thus, these results suggest that activation of iNOS mediates IL-6-induced inhibition of SR function in ARVM during chronic exposure. PMID:15845578

  14. Caveolin Contributes to the Modulation of Basal and β-Adrenoceptor Stimulated Function of the Adult Rat Ventricular Myocyte by Simvastatin: A Novel Pleiotropic Effect

    PubMed Central

    Agarwal, Shailesh R.; Harvey, Robert D.; Porter, Karen E.; Calaghan, Sarah

    2014-01-01

    The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system (‘pleiotropic effects’). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 µM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2+]i) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16 and troponin I at Ser23/24 was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered β-adrenoceptor signalling. In addition

  15. Integrative modeling of the cardiac ventricular myocyte

    PubMed Central

    Winslow, Raimond L.; Cortassa, Sonia; O'Rourke, Brian; Hashambhoy, Yasmin L.; Rice, John Jeremy; Greenstein, Joseph L.

    2011-01-01

    Cardiac electrophysiology is a discipline with a rich 50-year history of experimental research coupled with integrative modeling which has enabled us to achieve a quantitative understanding of the relationships between molecular function and the integrated behavior of the cardiac myocyte in health and disease. In this paper, we review the development of integrative computational models of the cardiac myocyte. We begin with a historical overview of key cardiac cell models that helped shape the field. We then narrow our focus to models of the cardiac ventricular myocyte and describe these models in the context of their subcellular functional systems including dynamic models of voltage-gated ion channels, mitochondrial energy production, ATP-dependent and electrogenic membrane transporters, intracellular Ca dynamics, mechanical contraction, and regulatory signal transduction pathways. We describe key advances and limitations of the models as well as point to new directions for future modeling research. PMID:20865780

  16. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro.

    PubMed Central

    Kaye, D; Pimental, D; Prasad, S; Mäki, T; Berger, H J; McNeil, P L; Smith, T W; Kelly, R A

    1996-01-01

    One of the trophic factors that has been implicated in initiating or facilitating growth in response to increased mechanical stress in several tissues and cell types is basic fibroblast growth factor (bFGF; FGF-2). Although mammalian cardiac muscle cells express bFGF, it is not known whether it plays a role in mediating cardiac adaptation to increased load, nor how release of the cytosolic 18-kD isoform of bFGF would be regulated in response to increased mechanical stress. To test the hypothesis that increased mechanical activity induces transient alterations in sarcolemmal permeability that allow cytosolic bFGF to be released and subsequently to act as an autocrine and paracrine growth stimulus, we examined primary isolates of adult rat ventricular myocytes maintained in serum-free, defined medium that were continually paced at 3 Hz for up to 5 d. Paced myocytes, but not nonpaced control cells, exhibited a "hypertrophic" response, which was characterized by increases in the rate of phenylalanine incorporation, total cellular protein content, and cell size. These changes could be mimicked in control cells by exogenous recombinant bFGF and could be blocked in continually paced cells by a specific neutralizing anti-bFGF antibody. In addition, medium conditioned by continually paced myocytes contained significantly more bFGF measured by ELISA and more mitogenic activity for 3T3 cells, activity that could be reduced by a neutralizing anti-bFGF antibody. The hypothesis that transient membrane disruptions sufficient to allow release of cytosolic bFGF occur in paced myocytes was examined by monitoring the rate of uptake into myocytes from the medium of 10-kD dextran linked to fluorescein. Paced myocytes exhibited a significantly higher rate of fluoresceinlabeled dextran uptake. These data are consistent with the hypothesis that nonlethal, transient alterations in sarcolemmal membrane permeability with release of cytosolic bFGF is one mechanism by which increased

  17. Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes.

    PubMed Central

    Litwin, S E; Li, J; Bridge, J H

    1998-01-01

    The importance of Na-Ca exchange as a trigger for sarcoplasmic reticulum (SR) Ca release remains controversial. Therefore, we measured whole-cell Ca currents (ICa), Na-Ca exchange currents (INaCa), cellular contractions, and intracellular Ca transients in adult rabbit cardiac myocytes. We found that changing pipette Na concentration markedly affected the relationship between cell shortening (or Ca transients) and voltage, but did not affect the Ca current-voltage relationship. We then inhibited Na-Ca exchange and varied SR content (by changing the number of conditioning pulses before each test pulse). Regardless of SR Ca content, the relationship between contraction and voltage was bell-shaped in the absence of Na-Ca exchange. Next, we rapidly and completely blocked ICa by applying nifedipine to cells. Cellular shortening was variably reduced in the presence of nifedipine. The component of shortening blocked by nifedipine had a bell-shaped relationship with voltage, whereas the "nifedipine-insensitive" component of contraction increased with voltage. With the SR disabled (ryanodine and thapsigargin pretreatment), ICa could initiate late-peaking contractions that were approximately 70% of control amplitude. In contrast, nifedipine-insensitive contractions could not be elicited in the presence of ryanodine and thapsigargin. Finally, we recorded reverse Na-Ca exchange currents that were activated by membrane depolarization. The estimated sarcolemmal Ca flux occurring by Na-Ca exchange (during voltage clamp steps to +30 mV) was approximately 10-fold less than that occurring by ICa. Therefore, Na-Ca exchange alone is unlikely to raise cytosolic Ca concentration enough to directly activate the myofilaments. We conclude that reverse Na-Ca exchange can trigger SR Ca release. Because of the sigmoidal relationship between the open probability of the SR Ca release channel and pCa, the effects of ICa and INaCa may not sum in a linear fashion. Rather, the two triggers may act

  18. Single-channel recordings of a rapid delayed rectifier current in adult mouse ventricular myocytes: basic properties and effects of divalent cations.

    PubMed

    Liu, Gong Xin; Zhou, Jun; Nattel, Stanley; Koren, Gideon

    2004-04-15

    The rapidly delayed rectifier current (I(Kr)) has been described in ventricular myocytes isolated from many species, as well as from neonatal mice. However, whether I(Kr) is present in the adult mouse heart remains controversial. We used cell-attached patch-clamp recording in symmetrical K(+) solutions to assess the presence and behaviour of single I(Kr) channels in adult mouse cardiomyocytes (mI(Kr)). Of 314 patches, 158 (50.1%) demonstrated mI(Kr) currents as compared with 131 (42.3%) for the I(K1) channel. Single mI(Kr) channel activity was rarely observed at potentials positive to -10 mV. The slope conductance at negative potentials was 12 pS. Upon repolarization, ensemble-averaged mI(Kr) showed slow deactivation with a biexponential time course. A selective I(Kr) blocker, E-4031 (1 microm), completely blocked mI(Kr) channel activity. Extracellular Ca(2+) and Mg(2+) at physiological concentrations shifted the activation by approximately 30 mV, accelerated deactivation kinetics, prolonged long-closed time, and reduced open probability without affecting single-channel conductance, suggesting a direct channel-blocking effect in addition to well-recognized voltage shifts. HERG subunits expressed in Chinese hamster ovary cells produced channels with properties similar to those of mI(Kr), except for the more-negative activation of the HERG channels. Despite the abundant expression of mI(Kr), single-channel events were rarely observed during action-potential clamp and 5 microm E-4031 had no detectable effect on the action potential parameters, confirming that mI(Kr) plays at best a minor role in repolarization of adult mouse cardiomyocytes, probably because the modulatory effects of divalent cations prevent significant mI(Kr) opening under physiological conditions.

  19. Allicin inhibits transient outward potassium currents in mouse ventricular myocytes

    PubMed Central

    CAO, HONG; HUANG, CONGXIN; WANG, XIN

    2016-01-01

    Allicin is the active constituent of garlic, a widely used spice and food. The remedial properties of garlic have also been extensively researched and it has been demonstrated that allicin is able to inhibit the transient outward potassium current (Ito) in atrial myocytes. However, the direct effect of allicin on Ito in ventricular myocytes has yet to be elucidated. In the present study, the effects of allicin on Ito in ventricular myocytes isolated from mice were investigated, using the whole-cell patch recording technique. The results revealed that Ito current was not significantly suppressed by allicin in the low-dose group (10 µmol/l; P>0.05). However, Ito was significantly inhibited by higher doses of allicin (30, 100 and 300 µmol/l; P<0.05 vs. control; n=6) in a concentration-dependent manner (IC50=41.6 µmol/l). In addition, a high concentration of allicin (≥100 µmol/l) was able to accelerate the voltage-dependent inactivation of Ito in mouse ventricular myocytes. In conclusion, the present study revealed that allicin inhibited the Ito in mouse ventricular myocytes, which may be the mechanism through which allicin exerts its antiarrhythmic effect. PMID:27168824

  20. Isorhamnetin protects rat ventricular myocytes from ischemia and reperfusion injury.

    PubMed

    Zhang, Najuan; Pei, Fei; Wei, Huaying; Zhang, Tongtong; Yang, Chao; Ma, Gang; Yang, Chunlei

    2011-01-01

    Ischemia/reperfusion (I/R) has been known to cause damages to ventricular myocytes. Isorhamnetin, one member of flavonoid compounds, has cardioprotective effect, the effect that suggests a possible treatment for I/R damages. In the present investigation, we found that isorhamnetin could significantly promote the viability of neonatal rat ventricular myocytes that were exposed to ischemia/reperfusion (I/R) in vitro. Ventricular myocytes were obtained from neonatal SD rats, and then were divided randomly into three groups, namely I/R-/isor-, I/R+/isor- and I/R+/isor+ group. Before the whole experiment, the most appropriate concentration of isorhamnetin (4 μM) was determined by MTT assay. Our results showed that isorhamnetin could alleviate the damages of I/R to ventricular myocytes through inhibiting lactate dehydrogenase (LDH) activity, and repressing apoptosis. Compared with the counterpart of the I/R+/isor- group, LDH activity in the isorhamnetin-treated group weakened, halving from 24.1 ± 2.3 to 11.4 ± 1.2U/L. Additionally, flow cytometry showed the apparently increased apoptosis rate induced by I/R, the result that was further confirmed by transmission electron microscope. Administration of isorhamnetin, however, assuaged the apoptosis induced by I/R. Corresponding to the reduced apoptosis rate in the I/R+/isor+ group, western blotting assay showed increased amount of Bcl-2 and p53, decreased amount of Bax, and nuclear accumulation of NF-κB/p65.

  1. A unified theory of calcium alternans in ventricular myocytes

    NASA Astrophysics Data System (ADS)

    Qu, Zhilin; Liu, Michael B.; Nivala, Michael

    2016-10-01

    Intracellular calcium (Ca2+) alternans is a dynamical phenomenon in ventricular myocytes, which is linked to the genesis of lethal arrhythmias. Iterated map models of intracellular Ca2+ cycling dynamics in ventricular myocytes under periodic pacing have been developed to study the mechanisms of Ca2+ alternans. Two mechanisms of Ca2+ alternans have been demonstrated in these models: one relies mainly on fractional sarcoplasmic reticulum Ca2+ release and uptake, and the other on refractoriness and other properties of Ca2+ sparks. Each of the two mechanisms can partially explain the experimental observations, but both have their inconsistencies with the experimental results. Here we developed an iterated map model that is composed of two coupled iterated maps, which unifies the two mechanisms into a single cohesive mathematical framework. The unified theory can consistently explain the seemingly contradictory experimental observations and shows that the two mechanisms work synergistically to promote Ca2+ alternans. Predictions of the theory were examined in a physiologically-detailed spatial Ca2+ cycling model of ventricular myocytes.

  2. A unified theory of calcium alternans in ventricular myocytes

    PubMed Central

    Qu, Zhilin; Liu, Michael B.; Nivala, Michael

    2016-01-01

    Intracellular calcium (Ca2+) alternans is a dynamical phenomenon in ventricular myocytes, which is linked to the genesis of lethal arrhythmias. Iterated map models of intracellular Ca2+ cycling dynamics in ventricular myocytes under periodic pacing have been developed to study the mechanisms of Ca2+ alternans. Two mechanisms of Ca2+ alternans have been demonstrated in these models: one relies mainly on fractional sarcoplasmic reticulum Ca2+ release and uptake, and the other on refractoriness and other properties of Ca2+ sparks. Each of the two mechanisms can partially explain the experimental observations, but both have their inconsistencies with the experimental results. Here we developed an iterated map model that is composed of two coupled iterated maps, which unifies the two mechanisms into a single cohesive mathematical framework. The unified theory can consistently explain the seemingly contradictory experimental observations and shows that the two mechanisms work synergistically to promote Ca2+ alternans. Predictions of the theory were examined in a physiologically-detailed spatial Ca2+ cycling model of ventricular myocytes. PMID:27762397

  3. Glycolytic oscillations in isolated rabbit ventricular myocytes.

    PubMed

    Yang, Jun-Hai; Yang, Ling; Qu, Zhilin; Weiss, James N

    2008-12-26

    Previous studies have shown that glycolysis can oscillate periodically, driven by feedback loops in regulation of key glycolytic enzymes by free ADP and other metabolites. Here we show both theoretically and experimentally in cardiac myocytes that when the capacity of oxidative phosphorylation and the creatine kinase system to buffer the cellular ATP/ADP ratio is suppressed, glycolysis can cause large scale periodic oscillations in cellular ATP levels (0.02-0.067 Hz), monitored from glibenclamide-sensitive changes in action potential duration or intracellular free Mg2+. Action potential duration oscillations originate primarily from glycolysis, since they 1) occur in the presence of cyanide or rotenone, 2) are suppressed by iodoacetate, 3) are accompanied by at most very small mitochondrial membrane potential oscillations, and 4) exhibit an anti-phase relationship to NADH fluorescence. By uncoupling energy supply-demand balance, glycolytic oscillations may promote injury and electrophysiological heterogeneity during acute metabolic stresses, such as acute myocardial ischemia in which both oxidative phosphorylation and creatine kinase activity are inhibited.

  4. Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes.

    PubMed

    Huang, Jingbo; Hove-Madsen, Leif; Tibbits, Glen F

    2008-02-01

    It is commonly accepted that L-type Ca(2+) channel-mediated Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the adult mammalian heart and that there is no appreciable CICR in neonates. However, we have observed that cell contraction in the neonatal heart was significantly decreased after sarcoplasmic reticulum (SR) Ca(2+) depletion with caffeine. Therefore, the present study investigated the developmental changes of CICR in rabbit ventricular myocytes at 3, 10, 20, and 56 days of age. We found that the inhibitory effect of the L-type Ca(2+) current (I(Ca)) inhibitor nifedipine (Nif; 15 microM) caused an increasingly larger reduction of Ca(2+) transients on depolarization in older age groups [from approximately 15% in 3-day-old (3d) myocytes to approximately 90% in 56-day-old (56d) myocytes]. The remaining Ca(2+) transient in the presence of Nif in younger age groups was eliminated by the inhibition of Na(+)/Ca(2+) exchanger (NCX) with the subsequent addition of 10 microM KB-R7943 (KB-R). Furthermore, Ca(2+) transients were significantly reduced in magnitude after the depletion of SR Ca(2+) with caffeine in all age groups, although the effect was significantly greater in the older age groups (from approximately 40% in 3d myocytes up to approximately 70% in 56d myocytes). This SR Ca(2+)-sensitive Ca(2+) transient in the earliest developmental stage was insensitive to Nif but was sensitive to the subsequent addition of KB-R, indicating the presence of NCX-mediated CICR that decreased significantly with age (from approximately 37% in 3d myocytes to approximately 0.5% in 56d myocytes). In contrast, the I(Ca)-mediated CICR increased significantly with age (from approximately 10% in 3d myocytes to approximately 70% in 56d myocytes). The CICR gain as estimated by the integral of the CICR Ca(2+) transient divided by the integral of its Ca(2+) transient trigger was smaller when mediated by NCX ( approximately 1.0 for 3d

  5. TGF-β1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes.

    PubMed

    Kaur, Kuljeet; Zarzoso, Manuel; Ponce-Balbuena, Daniela; Guerrero-Serna, Guadalupe; Hou, Luqia; Musa, Hassan; Jalife, José

    2013-01-01

    Cardiac injury promotes fibroblasts activation and differentiation into myofibroblasts, which are hypersecretory of multiple cytokines. It is unknown whether any of such cytokines are involved in the electrophysiological remodeling of adult cardiomyocytes. We cultured adult cardiomyocytes for 3 days in cardiac fibroblast conditioned medium (FCM) from adult rats. In whole-cell voltage-clamp experiments, FCM-treated myocytes had 41% more peak inward sodium current (I(Na)) density at -40 mV than myocytes in control medium (p<0.01). In contrast, peak transient outward current (I(to)) was decreased by ∼55% at 60 mV (p<0.001). Protein analysis of FCM demonstrated that the concentration of TGF-β1 was >3 fold greater in FCM than control, which suggested that FCM effects could be mediated by TGF-β1. This was confirmed by pre-treatment with TGF-β1 neutralizing antibody, which abolished the FCM-induced changes in both I(Na) and I(to). In current-clamp experiments TGF-β1 (10 ng/ml) prolonged the action potential duration at 30, 50, and 90 repolarization (p<0.05); at 50 ng/ml it gave rise to early afterdepolarizations. In voltage-clamp experiments, TGF-β1 increased I(Na) density in a dose-dependent manner without affecting voltage dependence of activation or inactivation. I(Na) density was -36.25±2.8 pA/pF in control, -59.17±6.2 pA/pF at 0.1 ng/ml (p<0.01), and -58.22±6.6 pA/pF at 1 ng/ml (p<0.01). In sharp contrast, I(to) density decreased from 22.2±1.2 pA/pF to 12.7±0.98 pA/pF (p<0.001) at 10 ng/ml. At 1 ng/ml TGF-β1 significantly increased SCN5A (Na(V)1.5) (+73%; p<0.01), while reducing KCNIP2 (Kchip2; -77%; p<0.01) and KCND2 (K(V)4.2; -50% p<0.05) mRNA levels. Further, the TGF-β1-induced increase in I(Na) was mediated through activation of the PI3K-AKT pathway via phosphorylation of FOXO1 (a negative regulator of SCN5A). TGF-β1 released by myofibroblasts differentially regulates transcription and function of the main cardiac sodium channel and of the channel

  6. Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation.

    PubMed

    Heredia, María del Puy; Delgado, Carmen; Pereira, Laetitia; Perrier, Romain; Richard, Sylvain; Vassort, Guy; Bénitah, Jean-Pierre; Gómez, Ana María

    2005-01-01

    Neuropeptide Y (NPY) is the most abundant peptide in the mammalian heart, but its cardiac actions are not fully understood. Here we investigate the effect of NPY in intracellular Ca2+ release, using isolated rat cardiac myocytes and confocal microscopy. Cardiac myocytes were field-stimulated at 1 Hz. The evoked [Ca2+]i transient was of higher amplitude and of faster decay in the presence of 100 nM NPY. Cell contraction was also increased by NPY. We analyzed the occurrence of Ca2+ sparks and their characteristics after NPY application. NPY significantly increased Ca2+ sparks frequency in quiescent cells. The Ca2+ spark amplitude was enhanced by NPY but the other characteristics of Ca2+ sparks were not significantly altered. Because cardiac myocytes express both Y1 and Y2 NPY receptors, we repeated the experiments in the presence of the receptor blockers, BIBP3226 and BIIE0246. We found that Y1 NPY receptor blockade completely inhibited NPY effects on [Ca2+]i transient. PTX-sensitive G-proteins and/or phospholypase C (PLC) have been invoked to mediate NPY effects in other cell types. We tested these two hypotheses. In PTX-treated myocytes NPY was still effective, which suggests that the observed NPY actions are not mediated by PTX-sensitive G-proteins. In contrast, the increase in [Ca2+]i transient by NPY was completely inhibited by the PLC inhibitor U73122. In conclusion, we find that NPY has a positive inotropic effect in isolated rat cardiac myocytes, which involves increase in Ca2+ release after activation of Y1 NPY receptor and subsequent stimulation of PLC.

  7. Intracellular calcium handling in ventricular myocytes from mdx mice.

    PubMed

    Williams, Iwan A; Allen, David G

    2007-02-01

    Duchenne muscular dystrophy (DMD) is a lethal degenerative disease of skeletal muscle, characterized by the absence of the cytoskeletal protein dystrophin. Some DMD patients show a dilated cardiomyopathy leading to heart failure. This study explores the possibility that dystrophin is involved in the regulation of a stretch-activated channel (SAC), which in the absence of dystrophin has increased activity and allows greater Ca(2+) into cardiomyocytes. Because cardiac failure only appears late in the progression of DMD, we examined age-related effects in the mdx mouse, an animal model of DMD. Ca(2+) measurements using a fluorescent Ca(2+)-sensitive dye fluo-4 were performed on single ventricular myocytes from mdx and wild-type mice. Immunoblotting and immunohistochemistry were performed on whole hearts to determine expression levels of key proteins involved in excitation-contraction coupling. Old mdx mice had raised resting intracellular Ca(2+) concentration ([Ca(2+)](i)). Isolated ventricular myocytes from young and old mdx mice displayed abnormal Ca(2+) transients, increased protein expression of the ryanodine receptor, and decreased protein expression of serine-16-phosphorylated phospholamban. Caffeine-induced Ca(2+) transients showed that the Na(+)/Ca(2+) exchanger function was increased in old mdx mice. Two SAC inhibitors streptomycin and GsMTx-4 both reduced resting [Ca(2+)](i) in old mdx mice, suggesting that SACs may be involved in the Ca(2+)-handling abnormalities in these animals. This finding was supported by immunoblotting data, which demonstrated that old mdx mice had increased protein expression of canonical transient receptor potential channel 1, a likely candidate protein for SACs. SACs may play a role in the pathogenesis of the heart failure associated with DMD. Early in the disease process and before the onset of clinical symptoms increased, SAC activity may underlie the abnormal Ca(2+) handling in young mdx mice.

  8. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  9. Contribution of I Ks to ventricular repolarization in canine myocytes.

    PubMed

    Horváth, Balázs; Magyar, János; Szentandrássy, Norbert; Birinyi, Péter; Nánási, Péter P; Bányász, Tamás

    2006-09-01

    The role of the slow delayed rectifier K(+) current (I (Ks)) in cardiac repolarization seems to be largely influenced by the experimental conditions including the species and tissue studied. The aim of this study was to determine the contribution of I (Ks) to repolarization in canine ventricular myocytes by measuring the frequency dependent action potential lengthening effect of 10 microM chromanol 293B using sharp microelectrodes. Pretreatment with isoproterenol (2 nM), E-4031 (1 microM), and injection of inward current pulses were applied to modify action potential configuration. Chromanol alone caused moderate but statistically significant lengthening of action potentials at cycle lengths longer than 500 ms. The lengthening effect of chromanol, which was strongly enhanced in the presence of either isoproterenol or E-4031, was proportional to the amplitude of plateau, whereas poor correlation was found with action potential duration. Similar results were obtained when action potential configuration was modified by injection of depolarizing current pulses. Computer simulations revealed that activation of I (Ks) is a sharp function of the plateau amplitude within the physiological range, while elongation of repolarization may enhance I (Ks) only when it is excessive. It was concluded that the effect of I (Ks) on ventricular repolarization critically depends on the level of action potential plateau; however, other factors, like action potential duration, cycle length, or suppression of other K(+) currents can also influence its contribution.

  10. l-Arginine currents in rat cardiac ventricular myocytes

    PubMed Central

    Peluffo, R Daniel

    2007-01-01

    l-Arginine (l-Arg) is a basic amino acid that plays a central role in the biosynthesis of nitric oxide, creatine, agmantine, polyamines, proline and glutamate. Most tissues, including myocardium, must import l-Arg from the circulation to ensure adequate intracellular levels of this amino acid. This study reports novel l-Arg-activated inward currents in whole-cell voltage-clamped rat ventricular cardiomyocytes. Ion-substitution experiments identified extracellular l-Arg as the charge-carrying cationic species responsible for these currents, which, thus, represent l-Arg import into cardiac myocytes. This result was independently confirmed by an increase in myocyte nitric oxide production upon extracellular application of l-Arg. The inward movement of Arg molecules was found to be passive and independent of Na2+, K2+, Ca2+ and Mg2+. The process displayed saturation and membrane potential (Vm)-dependent kinetics, with a K0.5 for l-Arg that increased from 5 mm at hyperpolarizing Vm to 20 mm at +40 mV. l-Lysine and l-ornithine but not d-Arg produced currents with characteristics similar to that activated by l-Arg indicating that the transport process is stereospecific for cationic l-amino acids. l-Arg current was fully blocked after brief incubation with 0.2 mmN-ethylmaleimide. These features suggest that the activity of the low-affinity, high-capacity CAT-2A member of the y2+ family of transporters is responsible for l-Arg currents in acutely isolated cardiomyocytes. Regardless of the mechanism, we hypothesize that a low-affinity arginine transport process in heart, by ensuring substrate availability for sustained NO production, might play a cardio-protective role during catabolic states known to increase Arg plasma levels severalfold. PMID:17303641

  11. Dinitrophenol pretreatment of rat ventricular myocytes protects against damage by metabolic inhibition and reperfusion.

    PubMed

    Rodrigo, G C; Lawrence, C L; Standen, N B

    2002-05-01

    We have investigated the protective effects of pretreatment with the mitochondrial uncoupler 2,4-dinitrophenol on the cellular damage induced by metabolic inhibition (with cyanide and iodoacetic acid) and reperfusion in freshly isolated adult rat ventricular myocytes. Damage was assessed from changes in cell length and morphology measured using video microscopy. Intracellular Ca(2+), mitochondrial membrane potential, and NADH were measured using fura-2, tetramethylrhodamine ethyl ester and autofluorescence, respectively. During metabolic inhibition myocytes developed rigor, and on reperfusion 73.6+/-8.1% hypercontracted and 10.8+/-6.7% recovered contractile function in response to electrical stimulation. Intracellular Ca(2+) increased substantially, indicated by a rise in the fura-2 ratio (340/380 nm) on reperfusion from 0.86+/-0.04 to 1.93+/-0.18. Myocytes pretreated with substrate-free Tyrode containing 50 microm dinitrophenol showed reduced reperfusion injury: 29.0+/-7.4% of cells hypercontracted and 65.3+/-7.3% recovered contractile function (P<0.001 vs control). The fura-2 ratio on reperfusion was also lower at 1.01+/-0.08. Fluorescence measurements showed that dinitrophenol caused mitochondrial depolarisation, and decreased NADH. The presence of the substrates glucose and pyruvate reduced these effects, and abolished the protection against damage by metabolic inhibition and reperfusion. However protection was unaffected by block of ATP-sensitive potassium channels. Thus the protective effects of pretreatment with dinitrophenol may result from a reduction in NADH in response to mitochondrial depolarisation.

  12. Transformation of adult rat cardiac myocytes in primary culture.

    PubMed

    Banyasz, Tamas; Lozinskiy, Ilya; Payne, Charles E; Edelmann, Stephanie; Norton, Byron; Chen, Biyi; Chen-Izu, Ye; Izu, Leighton T; Balke, C William

    2008-03-01

    We characterized the morphological, electrical and mechanical alterations of cardiomyocytes in long-term cell culture. Morphometric parameters, sarcomere length, T-tubule density, cell capacitance, L-type calcium current (I(Ca,L)), inward rectifier potassium current (I(K1)), cytosolic calcium transients, action potential and contractile parameters of adult rat ventricular myocytes were determined on each day of 5 days in culture. We also analysed the health of the myocytes using an apoptotic/necrotic viability assay. The data show that myocytes undergo profound morphological and functional changes during culture. We observed a progressive reduction in the cell area (from 2502 +/- 70 microm(2) on day 0 to 1432 +/- 50 microm(2) on day 5), T-tubule density, systolic shortening (from 0.11 +/- 0.02 to 0.05 +/- 0.01 microm) and amplitude of calcium transients (from 1.54 +/- 0.19 to 0.67 +/- 0.19) over 5 days of culture. The negative force-frequency relationship, characteristic of rat myocardium, was maintained during the first 2 days but diminished thereafter. Cell capacitance (from 156 +/- 8 to 105 +/- 11 pF) and membrane currents were also reduced (I(Ca,L), from 3.98 +/- 0.39 to 2.12 +/- 0.37 pA pF; and I(K1), from 34.34p +/- 2.31 to 18.00 +/- 5.97 pA pF(-1)). We observed progressive depolarization of the resting membrane potential during culture (from 77.3 +/- 2.5 to 34.2 +/- 5.9 mV) and, consequently, action potential morphology was profoundly altered as well. The results of the viability assays indicate that these alterations could not be attributed to either apoptosis or necrosis but are rather an adaptation to the culture conditions over time.

  13. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    PubMed Central

    2010-01-01

    Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics

  14. Effects of troglitazone and pioglitazone on the action potentials and membrane currents of rabbit ventricular myocytes.

    PubMed

    Ikeda, S; Watanabe, T

    1998-09-18

    The effects of the antidiabetic thiazolidinediones troglitazone and pioglitazone on action potentials and membrane currents were studied in rabbit ventricular myocytes. Troglitazone (10 microM) reversibly reduced excitability of the myocytes and modified their action potential configuration. It significantly increased the stimulation threshold required to elicit action potentials and decreased action potential amplitude and the maximum upstroke velocity of the action potentials. The Inhibition of the maximum upstroke velocity by troglitazone was also significant at 1 microM. Voltage-clamp experiments revealed that troglitazone (10 microM) reversibly inhibited both the slow inward Ca2+ current and the steady-state K+ current. In contrast to troglitazone, pioglitazone (1-10 microM) had no significant effect on the excitability, action potential configuration, or membrane currents of myocytes. These results suggest that troglitazone, but not pioglitazone, modulates Na+, Ca2+ and K+ currents, leading to the changes in excitability and action potential configuration of ventricular myocytes.

  15. Alpha 1-adrenergic agonists selectively suppress voltage-dependent K+ current in rat ventricular myocytes.

    PubMed Central

    Apkon, M; Nerbonne, J M

    1988-01-01

    The effects of alpha 1-adrenergic agonists on the waveforms of action potentials and voltage-gated ionic currents were examined in isolated adult rat ventricular myocytes by the whole-cell patch-clamp recording technique. After "puffer" applications of either of two alpha 1 agonists, phenylephrine and methoxamine, action-potential durations were increased. In voltage-clamped cells, phenylephrine (5-20 microM) or methoxamine (5-10 microM) reduced the amplitudes of Ca2+-independent voltage-activated outward K+ currents (Iout); neither the kinetics nor the voltage-dependent properties of Iout were significantly affected. The effects of phenylephrine or methoxamine on Iout were larger and longer-lasting at higher concentrations and after prolonged or repeated exposures; in all experiments, however, Iout recovered completely when puffer applications were discontinued. The suppression of Iout is attributed to the activation of alpha 1-adrenergic receptors, as neither beta- nor alpha 2-adrenergic agonists had measurable effects on Iout; in addition, the effect of phenylephrine was attenuated in the presence of the alpha antagonist phentolamine (10 microM), but not in the presence of the beta antagonist propranolol (10 microM). Voltage-gated Ca2+ currents, in contrast, were not altered measurably by phenylephrine or methoxamine and no currents were activated directly by these agents. Suppression of Iout was also observed during puffer applications of either of two protein kinase C activators, phorbol 12-myristate 13-acetate (10 nM-1 microM) and 1-oleoyl-2-acetylglycerol (60 microM). We conclude that the activation of alpha 1-adrenergic receptors in adult rat ventricular myocytes leads to action-potential prolongation as a result of the specific suppression of Iout and that this effect may be mediated by activation of protein kinase C. PMID:2903506

  16. Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death

    PubMed Central

    Omatsu-Kanbe, Mariko; Nozuchi, Nozomi; Nishino, Yuka; Mukaisho, Ken-ichi; Sugihara, Hiroyuki; Matsuura, Hiroshi

    2017-01-01

    Atypically-shaped cardiomyocytes (ACMs) are beating heart cells identified in the cultures of cardiomyocyte-removed fractions obtained from adult mouse hearts. Since ACMs spontaneously develop into beating cells in the absence of hormones or chemicals, these cells are likely to be a type of cardiac progenitors rather than stem cells. “Native ACMs” are found as small interstitial cells among ventricular myocytes that co-express cellular prion protein (PrP) and cardiac troponin T (cTnT) in mouse and human heart tissues. However, the endogenous behavior of human ACMs is unclear. In the present study, we demonstrate that PrP+ cTnT+ cells are present in the human heart tissue with myocardial infarction (MI). These cells were mainly found in the border of necrotic cardiomyocytes caused by infarcts and also in the hibernating myocardium subjected to the chronic ischemia. The ratio of PrP+ cTnT+ cells to the total cells observed in the normal heart tissue section of mouse and human was estimated to range from 0.3–0.8%. Notably, living human PrP+ cTnT+ cells were identified in the cultures obtained at pathological autopsy despite exposure to lethal ischemic conditions for hours after death. These findings suggest that ACMs could survive in the ischemic human heart and develop into a sub-population of cardiac myocytes. PMID:28120944

  17. Decreased transient outward K+ current in ventricular myocytes from acromegalic rats.

    PubMed

    Xu, X P; Best, P M

    1991-03-01

    Cardiac hypertrophy and heart failure are common to acromegalic patients who have abnormally high serum growth hormone (GH). While the function of cardiac muscle is clearly affected by chronically elevated GH, the electrical activity of myocytes from hearts with GH-dependent hypertrophy has not been studied. We used adult, female Wistar-Furth rats with induced GH-secreting tumors to study the effect of excessive GH on ion channels of cardiac myocytes. GH-secreting tumors were induced by subcutaneous inoculation of GH3 cells. Eight weeks after inoculation, the rats had doubled their body weight and heart size compared with age-matched controls. There were no differences in either action potential amplitude or resting potential of right ventricular myocytes from control and tumor-bearing rats. However, action potential duration increased significantly in tumor-bearing rats; the time to 50% repolarization was 23 +/- 14 ms (n = 10) compared with 6.6 +/- 1.5 ms (n = 14) in controls. The prolongation of the action potential was mainly due to a decrease in density of a transient outward current (It,o) carried by K+. The normalized conductance for It,o decreased from 0.53 +/- 0.10 nS/pF (n = 25) in controls to 0.33 +/- 0.09 nS/pF (n = 26) in tumor-bearing rats. The decrease in It,o) and increase in heart weight occurred with a similar time course. The increased action potential duration prolongs Ca2+ influx through L-type Ca2+ channels in the tumor-bearing animals; this may be important in cardiovascular adaptation.

  18. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes.

    PubMed Central

    Kagaya, Y; Weinberg, E O; Ito, N; Mochizuki, T; Barry, W H; Lorell, B H

    1995-01-01

    We tested the hypothesis that glycolytic inhibition by 2-deoxyglucose causes greater impairment of diastolic relaxation and intracellular calcium handling in well-oxygenated hypertrophied adult rat myocytes compared with control myocytes. We simultaneously measured cell motion and intracellular free calcium concentration ([Ca2+]i) with indo-1 in isolated paced myocytes from aortic-banded rats and sham-operated rats. There was no difference in either the end-diastolic or peak-systolic [Ca2+]i between control and hypertrophied myocytes (97 +/- 18 vs. 105 +/- 15 nM, 467 +/- 92 vs. 556 +/- 67 nM, respectively). Myocytes were first superfused with oxygenated Hepes-buffered solution containing 1.2 mM CaCl2, 5.6 mM glucose, and 5 mM acetate, and paced at 3 Hz at 36 degrees C. Exposure to 20 mM 2-deoxyglucose as substitution of glucose for 15 min caused an upward shift of end-diastolic cell position in both control (n = 5) and hypertrophied myocytes (n = 10) (P < 0.001 vs. baseline), indicating an impaired extent of relaxation. Hypertrophied myocytes, however, showed a greater upward shift in end-diastolic cell position and slowing of relaxation compared with control myocytes (delta 144 +/- 28 vs. 55 +/- 15% of baseline diastolic position, P < 0.02). Exposure to 2-deoxyglucose increased end-diastolic [Ca2+]i in both groups (P < 0.001 vs. baseline), but there was no difference between hypertrophied and control myocytes (218 +/- 38 vs. 183 +/- 29 nM, respectively). The effects of 2-deoxyglucose were corroborated in isolated oxygenated perfused hearts in which glycolytic inhibition which caused severe elevation of isovolumic diastolic pressure and prolongation of relaxation in the hypertrophied hearts compared with controls. In summary, the inhibition of the glycolytic pathway impairs diastolic relaxation to a greater extent in hypertrophied myocytes than in control myocytes even in well-oxygenated conditions. The severe impairment of diastolic relaxation induced by 2

  19. Oxidative metabolism in guinea pig ventricular myocytes protected from proteolytic enzyme activity.

    PubMed

    Bailey, L E; Carlos, H; Amian, A; Moon, K E

    1987-07-01

    Surface structures on guinea pig ventricular myocytes were protected from proteolytic enzyme activity with 100 KIU.ml-2 aprotinin during mechanical disaggregation. Intact myocytes, approximately 7.5 X 10(6) cells.g-1 ventricular wet weight, were separated from debris and damaged cells using Cytodex I tissue culture supports. Cellular ultrastructure did not differ from that observed in intact tissue. Neither spontaneous contractions nor contracture were ever observed in these myocytes in calcium concentrations of 10 mmol.litre-1. Dinitrophenol (0.2 mmol. litre-1) uncoupled respiration in the myocytes but only after the sarcolemma had been disrupted with Triton X100. The adenosine diphosphate to oxygen ratio of mitochondria isolated from the myocytes was 2.4(0.2) and the respiratory control index 2.6(0.3). Calcium (1.8 mmol.litre-1) increased oxygen uptake in the presence of 10 mmol.litre-1 pyruvate or 11 mmol.litre-1 glucose but not 17 mmol. litre-1 succinate. Succinate dependent oxygen consumption was greater than pyruvate dependent oxygen consumption (1090.0(190.0) and 40.1(0.8) nl.min-1.mg-1 protein respectively). The Crabtree effect was present. Oxidative metabolism was normal in cells stored at 10 degrees C for seven days but deteriorated rapidly thereafter. The results indicate that myocytes disaggregated by this procedure retain many of the morphological and metabolic characteristics of intact cardiac muscle cells and are relatively homogeneous with respect to calcium tolerance and metabolic function.

  20. Myocyte cellular hypertrophy and hyperplasia contribute to ventricular wall remodeling in anemia-induced cardiac hypertrophy in rats.

    PubMed Central

    Olivetti, G.; Quaini, F.; Lagrasta, C.; Ricci, R.; Tiberti, G.; Capasso, J. M.; Anversa, P.

    1992-01-01

    To determine the effects of chronic anemia on the functional and structural characteristics of the heart, 1-month-old male rats were fed a diet deficient in iron and copper, which led to a hemoglobin concentration of 4.63 g/dl, for 8 weeks. At sacrifice, under fentanyl citrate and droperidol anesthesia, systolic, diastolic, and mean arterial blood pressures were decreased, whereas differential pressure was increased. Left ventricular systolic pressure and the ventricular rate of pressure rise (mmHg/s) were reduced by 9% and 14%, respectively. Moreover, developed peak systolic ventricular pressure and maximal dP/dt diminished 14% and 12%. After perfusion fixation of the coronary vasculature and the myocardium, at a left ventricular intracavitary pressure equal to the in vivo measured end diastolic pressure, a 10% thickening of the left ventricular wall was measured in association with a 13% increase in the equatorial cavitary diameter and a 44% augmentation in ventricular mass. The 52% hypertrophy of the right ventricle was characterized by an 11% thicker wall and a 37% larger ventricular area. The 33% expansion in the aggregate myocyte volume of the left ventricle was found to be due to a 14% myocyte cellular hypertrophy and a 17% myocyte cellular hyperplasia. These cellular parameters were calculated from the estimation of the number of myocyte nuclei per unit volume of myocardium in situ and the evaluation of the distribution of nuclei per cell in enzymatically dissociated myocytes. Myocyte cellular hyperplasia provoked a 9% increase in the absolute number of cells across the left ventricular wall. In contrast, myocyte cellular hypertrophy (42%) was responsible for the increase in myocyte volume of the right ventricle. The proliferative response of left ventricular myocytes was not capable of restoring diastolic cell stress, which was enhanced by the changes in ventricular anatomy with anemia. In conclusion, chronic anemia induced an unbalanced load on the left

  1. Regional differences in action potential characteristics and membrane currents of guinea-pig left ventricular myocytes.

    PubMed

    Main, M C; Bryant, S M; Hart, G

    1998-11-01

    Regional differences in action potential characteristics and membrane currents were investigated in subendocardial, midmyocardial and subepicardial myocytes isolated from the left ventricular free wall of guinea-pig hearts. Action potential duration (APD) was dependent on the region of origin of the myocytes (P < 0.01, ANOVA). Mean action potential duration at 90 % repolarization (APD90) was 237 +/- 8 ms in subendocardial (n = 30 myocytes), 251 +/- 7 ms in midmyocardial (n = 30) and 204 +/- 7 ms in subepicardial myocytes (n = 36). L-type calcium current (ICa) density and background potassium current (IK1) density were similar in the three regions studied. Delayed rectifier current (IK) was measured as deactivating tail current, elicited on repolarization back to -45 mV after 2 s step depolarizations to test potentials ranging from -10 to +80 mV. Mean IK density (after a step to +80 mV) was larger in subepicardial myocytes (1.59 +/- 0.16 pA pF-1, n = 16) than in either subendocardial (1.16 +/- 0.12 pA pF-1, n = 17) or midmyocardial (1. 13 +/- 0.11 pA pF-1, n = 21) myocytes (P < 0.05, ANOVA). The La3+-insensitive current (IKs) elicited on repolarization back to -45 mV after a 250 ms step depolarization to +60 mV was similar in the three regions studied. The La3+-sensitive tail current, (IKr) was greater in subepicardial (0.50 +/- 0.04 pA pF-1, n = 11) than in subendocardial (0.25 +/- 0.05 pA pF-1, n = 9) or in midmyocardial myocytes (0.38 +/- 0.05 pA pF-1, n = 11, P < 0.05, ANOVA). The contribution of a Na+ background current to regional differences in APD was assessed by application of 0.1 microM tetrodotoxin (TTX). TTX-induced shortening of APD90 was greater in subendocardial myocytes (35.7 +/- 7.1 %, n = 11) than in midmyocardial (15.7 +/- 3. 8 %, n = 10) and subepicardial (20.2 +/- 4.3 %, n = 11) myocytes (P < 0.05, ANOVA). Regional differences in action potential characteristics between subendocardial, midmyocardial, and subepicardial myocytes isolated from

  2. A computational model of the human left-ventricular epicardial myocyte.

    PubMed

    Iyer, Vivek; Mazhari, Reza; Winslow, Raimond L

    2004-09-01

    A computational model of the human left-ventricular epicardial myocyte is presented. Models of each of the major ionic currents present in these cells are formulated and validated using experimental data obtained from studies of recombinant human ion channels and/or whole-cell recording from single myocytes isolated from human left-ventricular subepicardium. Continuous-time Markov chain models for the gating of the fast Na(+) current, transient outward current, rapid component of the delayed rectifier current, and the L-type calcium current are modified to represent human data at physiological temperature. A new model for the gating of the slow component of the delayed rectifier current is formulated and validated against experimental data. Properties of calcium handling and exchanger currents are altered to appropriately represent the dynamics of intracellular ion concentrations. The model is able to both reproduce and predict a wide range of behaviors observed experimentally including action potential morphology, ionic currents, intracellular calcium transients, frequency dependence of action-potential duration, Ca(2+)-frequency relations, and extrasystolic restitution/post-extrasystolic potentiation. The model therefore serves as a useful tool for investigating mechanisms of arrhythmia and consequences of drug-channel interactions in the human left-ventricular myocyte.

  3. Influence of Thromboxane A2 on the Regulation of Adenosine Triphosphate-Sensitive Potassium Channels in Mouse Ventricular Myocytes

    PubMed Central

    Jeong, In Seok; Cho, Hwa Jin; Cho, Jeong Gwan; Kim, Sang Hyung; Na, Kook Joo

    2016-01-01

    Background and Objectives Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels play an important role in myocardial protection. We examined the effects of thromboxane A2 on the regulation of KATP channel activity in single ventricular myocytes. Subjects and Methods Single ventricular myocytes were isolated from the hearts of adult Institute of Cancer Research (ICR) mice by enzymatic digestion. Single channel activity was recorded by excised inside-out and cell-attached patch clamp configurations at −60 mV holding potential during the perfusion of an ATP-free K-5 solution. Results In the excised inside-out patches, the thromboxane A2 analog, U46619, decreased the KATP channel activity in a dose-dependent manner; however, the thromboxane A2 receptor antagonist, SQ29548, did not significantly attenuate the inhibitory effect of U46619. In the cell-attached patches, U46619 inhibited dinitrophenol (DNP)-induced KATP channel activity in a dose-dependent manner, and SQ29548 attenuated the inhibitory effects of U46619 on DNP-induced KATP channel activity. Conclusion Thromboxane A2 may inhibit KATP channel activity, and may have a harmful effect on ischemic myocardium. PMID:27482267

  4. An Experimental Model Using Cultured Cardiac Myocytes for a Study of the Generation of Premature Ventricular Contractions Under Ultrasound Exposure

    NASA Astrophysics Data System (ADS)

    Kudo, Nobuki; Yamamoto, Masaya

    2011-09-01

    It is known that use of a contrast agents in echocardiography increases the probability of generation of premature ventricular contractions (PVCs). As a basic study to elucidate the mechanisms and to reduce adverse effects, the generation of PVCs was investigated using cultured cardiac myocytes instead of the intact heart in vivo. Cardiac myocytes were isolated from neonatal rats and cultured on a cover slip. The myocyte sample was exposed to pulsed ultrasound with microbubbles adjacent to the myocytes, and generation of PVCs was examined with ultrasound exposure at various delay times after onset of myocyte contraction. The experimental results showed that generation of PVCs had a stable threshold delay time and that PVCs were generated only when myocytes were exposed to ultrasound with delay times longer than the threshold. The results indicate that the model used in this study is useful for revealing the mechanisms by which PVCs are induced by ultrasound exposure.

  5. Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes.

    PubMed

    Ali, Ramez M; Al Kury, Lina T; Yang, Keun-Hang Susan; Qureshi, Anwar; Rajesh, Mohanraj; Galadari, Sehamuddin; Shuba, Yaroslav M; Howarth, Frank Christopher; Oz, Murat

    2015-04-01

    Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca(2+) currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca(2+) transients. However, the amplitudes of caffeine-evoked Ca(2+) transients and the rate of recovery of electrically evoked Ca(2+) transients following caffeine application were not altered. CBD (1μM) significantly decreased the duration of APs. Further studies on L-type Ca(2+) channels indicated that CBD inhibits these channels with IC50 of 0.1μM in a voltage-independent manner. Radioligand studies indicated that the specific binding of [(3)H]Isradipine, was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca(2+) channels at a site different than dihydropyridine binding site and inhibits excitation-contraction coupling in cardiomyocytes.

  6. Mathematical Models of Atrial and Ventricular Myocytes from the Rabbit Heart

    NASA Astrophysics Data System (ADS)

    Murphey, Carey Richard

    Mathematical models of rabbit atrial and ventricular myocytes that are based on quantitative voltage clamp data from emzymatically isolated cardiac myocytes have been developed. These models are capable of accurately simulating the transmembrane ionic currents recorded in response to a step change in membrane potential (whole-cell voltage clamp response), the nonpropagated membrane action potential (MAP), and the frequency-dependent action potential waveshape changes occurring in response to variations in rate of stimulation. Rectangular pulse, ramp and action potential voltage -clamp measurements of the transmembrane ionic currents have allowed us to model a number of processes thought to be important during repolarization. These computations provide important biophysical insights into the electrophysiological activity of atrial and ventricular cells and their associated intra- and extracellular ionic concentration changes. The present model also has useful predictive capabilities. We have used the model to: (1) estimate the intracellular Ca^{2+} transient in these myocytes and to compare the relative occupancy of the Ca^{2+} binding sites in the contractile proteins with known cellular mechanical activity, and (2) predict the response of the atrial cell to potassium current blockade via BaCl_2 to the bathing medium.

  7. Effects of mitoxantrone on excitation-contraction coupling in guinea pig ventricular myocytes.

    PubMed

    Wang, G X; Zhou, X B; Korth, M

    2000-05-01

    The mechanisms of the inotropic effect of mitoxantrone (MTO), a synthetic dihydroxyanthracenedione derivative with antineoplastic activity, was investigated in guinea pig ventricular myocytes using whole-cell patch-clamp methods combined with fura-2 fluorescence and cell-edge tracking techniques. In right ventricular papillary muscles, 30 microM MTO increased isometric force of contraction as well as action potential duration (APD) in a time-dependent manner. The force of contraction was increased approximately 3-fold within 4 h. This positive inotropic effect was accompanied by a prolongation of time to peak force and relaxation time. In current-clamped single myocytes treated with 30 microM MTO for 30 min, an increase of cell shortening by 77% and a prolongation of APD by 19% was observed. Peak amplitude of the intracellular Ca(2+) transients was also increased by 10%. The contribution of APD prolongation to the enhancement of cell shortening induced by MTO was assessed by clamping control myocytes with action potentials of various duration. Prolongation of APD(90) (ADP measured at 90% of repolarization) by 24% led to an increase of cell shortening by 13%. When the cells were clamped by an action potential with constant APD, MTO still caused an increase of cell shortening by 59% within 30 min. No increase of the peak intracellular Ca(2+) transients, however, was observed under this condition. We conclude that both the APD prolongation and a direct interaction with the contractile proteins contributed to the positive inotropic effect of MTO.

  8. LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport

    NASA Technical Reports Server (NTRS)

    Puglisi, J. L.; Bers, D. M.

    2001-01-01

    An interactive computer program, LabHEART, was developed to simulate the action potential (AP), ionic currents, and Ca handling mechanisms in a rabbit ventricular myocyte. User-oriented, its design allows switching between voltage and current clamp and easy on-line manipulation of key parameters to change the original formulation. The model reproduces normal rabbit ventricular myocyte currents, Ca transients, and APs. We also changed parameters to simulate data from heart failure (HF) myocytes, including reduced transient outward (I(to)) and inward rectifying K currents (I(K1)), enhanced Na/Ca exchange expression, and reduced sarcoplasmic reticulum Ca-ATPase function, but unaltered Ca current density. These changes caused reduced Ca transient amplitude and increased AP duration (especially at lower frequency) as observed experimentally. The model shows that the increased Na/Ca exchange current (I(NaCa)) in HF lowers the intracellular [Ca] threshold for a triggered AP from 800 to 540 nM. Similarly, the decrease in I(K1) reduces the threshold to 600 nM. Changes in I(to) have no effect. Combining enhanced Na/Ca exchange with reduced I(K1) (as in HF) lowers the threshold to trigger an AP to 380 nM. These changes reproduce experimental results in HF, where the contributions of different factors are not readily distinguishable. We conclude that the triggered APs that contribute to nonreentrant ventricular tachycardia in HF are due approximately equally (and nearly additively) to alterations in I(NaCa) and I(K1). A free copy of this software can be obtained at http://www.meddean.luc.edu/lumen/DeptWebs/physio/bers.html.

  9. Apoptosis of ventricular myocytes: a means to an end.

    PubMed

    Regula, Kelly M; Kirshenbaum, Lorrie A

    2005-01-01

    One of the most compelling issues to impact on contemporary cardiology is arguably the phenomenon of programmed cell death or apoptosis. Studies in the nematode Caenorhabditis elegans provided the first indication that determinants of cell fate crucial for normal worm development were under genetic influences of the ced-3 and ced-9 genes, which promote or prevent cell death, respectively. Extrapolation of these seminal findings led to the discovery of the mammalian ced-3 and ced-9 homologs, which broadly encompass a family of cellular cysteine proteases known collectively as caspases and the Bcl-2 proteins. In quiescent cells, caspases exist as inactive zymogens that are readily activated by autocatalytic processes or by other caspases following a death signal. The caspase-dependent cleavage of intracellular substrates results in the biochemical dismantling of the cell and morphological features characteristic of apoptosis. Recently, a mitochondrial death pathway for apoptosis has been proposed. Perturbations to mitochondria resulting in the loss of mitochondrial membrane potential, DeltaPsim, permeability transition pore (PTP) opening and the release of pro-apoptotic factors by mitochondria including cytochrome c, second mitochondrial activator of caspases/direct IAP binding protein with low pI (Smac/DIABLO), AIF, and others are considered terminal events in the apoptotic pathway. Bcl-2 and related family members are characterized by their ability to promote or prevent cell death. These proteins exert their pro- or anti-apoptosis function by impinging on components of the cell death pathway that underlie caspase activation, mitochondrial dysfunction or both. The limited regenerative potential of the adult cardiac muscle itself, together with the heightened and exciting possibility of regenerating cardiac muscle with cardiac progenitor cells, acknowledges the need for new strategies to suppress and/or prevent inappropriate cardiac cell death in patients with

  10. Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes.

    PubMed Central

    Yuan, W; Ginsburg, K S; Bers, D M

    1996-01-01

    1. Fundamental properties of Ca2+ channel currents in rat and rabbit ventricular myocytes were measured using whole cell voltage clamp. 2. In rat, as compared with rabbit myocytes, Ca2+ channel current (ICa) was half-activated at about 10 mV more negative potential, decayed slower, was half-inactivated (in steady state) at about 5 mV more positive potential, and recovered faster from inactivation. 3. These features result in a larger steady-state window current in rat, and also suggest that under comparable voltage clamp conditions, including action potential (AP) clamp, more Ca2+ influx would be expected in rat myocytes. 4. Ca2+ channel current carried by Na+ and Cs+ in the absence of divalent ions (Ins) also activated at more negative potential and decayed more slowly in rat. 5. The reversal potential for Ins was 6 mV more positive in rabbit, consistent with a larger permeability ratio (PNa/PCs) in rabbit than in rat. ICa also reversed at slightly more positive potentials in rabbit (such that PCa/PCs might also be higher). 6. Ca2+ influx was calculated by integration of ICa evoked by voltage clamp pulses (either square pulses or pulses based on recorded rabbit or rat APs). For a given clamp waveform, the Ca2+ influx was up to 25% greater in rat, as predicted from the fundamental properties of ICa and Ins. 7. However, the longer duration of the AP in rabbit myocytes compensated for the difference in influx, such that the integrated Ca2+ influx via ICa in response to the species-appropriate waveform was about twice as large as that seen in rat. PMID:8799895

  11. A chloride current component induced by hypertrophy in rat ventricular myocytes.

    PubMed

    Bénitah, J P; Gómez, A M; Delgado, C; Lorente, P; Lederer, W J

    1997-05-01

    The effect of hypertrophy on membrane currents of rat left ventricular myocytes was studied with the whole cell voltage-clamp method. We found that the slope of the total time-independent current density-voltage relationship was increased in hypertrophied cells. No change in the zero-current potential was observed. Surprisingly, the dominant time-independent current, the inward rectifier K+ current (measured as the Ba(2+)-sensitive current density) was unchanged. We therefore investigated the identity of the outwardly rectifying Ba(2+)-resistant current seen in the hypertrophied rat ventricular myocytes but not present in control cells. We found that this current 1) was not carried by monovalent cations, 2) was partially blocked by anthracene-9-carboxylic acid (9-AC), and 3) was sensitive to variations in extracellular Cl concentration. These findings are consistent with the current being carried at least partially by Cl-. The presence of an additional Cl(-)-dependent component in hypertrophied cells is supported by the actions of 9-AC on the measured action potentials (APs). 9-AC had no effect on control cells APs but prolonged hypertrophied cell APs. We conclude that a Cl- current component develops in hypertrophied rat heart cells. This component appears to shorten the AP duration and might thus provide protection from cardiac arrhythmias.

  12. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish

    PubMed Central

    Saera-Vila, Alfonso; Kasprick, Daniel S.; Junttila, Tyler L.; Grzegorski, Steven J.; Louie, Ke'ale W.; Chiari, Estelle F.; Kish, Phillip E.; Kahana, Alon

    2015-01-01

    Purpose The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. Methods Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. Results Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2′-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. Conclusions EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular

  13. -Adrenergic receptors on rat ventricular myocytes: characteristics and linkage to cAMP metabolism

    SciTech Connect

    Buxton, I.L.O.; Brunton, L.L.

    1986-08-01

    When incubated with purified cardiomyocytes from adult rat ventricle, the 1-antagonist (TH)prazosin binds to a single class of sites with high affinity. Competition for (TH)prazosin binding by the 2-selective antagonist yohimbine and the nonselective -antagonist phentolamine demonstrates that these receptors are of the 1-subtype. In addition, incubation of myocyte membranes with (TH)yohimbine results in no measurable specific binding. Agonist competition for (TH)prazosin binding to membranes prepared from purified myocytes demonstrates the presence of two components of binding: 28% of 1-receptors interact with norepinephrine with high affinity (K/sub D/ = 36 nM), whereas the majority of receptors (72%) have a low affinity for agonist (K/sub D/ = 2.2 M). After addition of 10 M GTP, norepinephrine competes for (TH)prazosin binding to a single class of sites with lower affinity (K/sub D/ = 2.2 M). Incubation of intact myocytes for 2 min with 1 M norepinephrine leads to significantly less cyclic AMP (cAMP) accumulation than stimulation with either norepinephrine plus prazosin or isoproterenol. Likewise, incubation of intact myocytes with 10 W M norepinephrine leads to significantly less activation of cAMP-dependent protein kinase than when myocytes are stimulated by both norepinephrine and the 1-adrenergic antagonist, prazosin or the US -adrenergic agonist, isoproterenol. They conclude that the cardiomyocyte 1 receptor is coupled to a guanine nucleotide-binding protein, that 1-receptors are functionally linked to decreased intracellular cAMP content, and that this change in cellular cAMP is expressed as described activation of cAMP-dependent protein kinase.

  14. Effects of acetylcholine on the Na(+)-K+ pump current in guinea-pig ventricular myocytes.

    PubMed Central

    Gao, J; Mathias, R T; Cohen, I S; Baldo, G J

    1997-01-01

    1. The whole-cell patch clamp technique was used to study the effects of acetylcholine (ACh) on Na(+)-K+ pump current (Ip) in acutely isolated guinea-pig ventricular myocytes. Studies were performed in the absence and presence of the beta-agonist isoprenaline (Iso). 2. ACh had no effect on Ip at low or high [Ca2+]i at any voltage in the absence of Iso. Iso alone inhibited Ip at low [Ca2+]i and shifted the Ip-V relationship at high [Ca2+]i in a negative direction. Addition of 1 microM ACh reversed these effects of Iso. K0.5 for the effects of ACh was about 16 nM, regardless of [Ca2+]i. 3. The actions of ACh on the heart are usually mediated via muscarinic receptors. Atropine, a muscarinic antagonist, blocked the effects of ACh on Ip in the presence of Iso, suggesting that these effects are also mediated by muscarinic receptors. 4. Muscarinic receptors are usually coupled to a Gi protein, leading to inhibition of adenylyl cyclase and a reduction of cAMP levels. We have shown previously that basal levels of cAMP are very low in guinea-pig ventricular myocytes, and that a membrane-permeant cAMP analogue, chlorophenylthio-cAMP (CPTcAMP), mimics the effects of Iso. ACh did not reverse the effects of CPTcAMP, supporting the hypothesis that the effects of ACh on Ip are also mediated via inhibition of adenylyl cyclase. 5. The present results suggest that a high level of parasympathetic tone alone does not affect the activity of ventricular Na(+)-K+ pumps. However, if sympathetic tone is high, then muscarinic stimulation can reciprocally modulate Na(+)-K+ pump activity. PMID:9218213

  15. Validation of an in vitro contractility assay using canine ventricular myocytes

    SciTech Connect

    Harmer, A.R. Abi-Gerges, N.; Morton, M.J.; Pullen, G.F.; Valentin, J.P.; Pollard, C.E.

    2012-04-15

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  16. Phorbol ester activation of chloride current in guinea-pig ventricular myocytes.

    PubMed Central

    Shuba, L. M.; Asai, T.; McDonald, T. F.

    1996-01-01

    1. Although earlier studies with phorbol esters indicate that protein kinase C (PKC) may be an important regulator of Cl- current (Icl) in cardiac cells, there is a need for additional quantitative data and investigation of conflicting findings. Our objectives were to measure the magnitude, time course, and concentration-dependence of Icl activated in guinea-pig ventricular myocytes by phorbol 12-myristate 13-acetate (PMA), evaluate its PKC dependence, and examine its modification by external and internal ions. 2. The whole-cell patch clamp technique was used to apply short depolarizing and hyperpolarizing pulses to myocytes superfused with Na(+)-, K(+)-, Ca(2+)-free solution (36 degrees C) and dialysed with Cs+ solution. Stimulation of membrane currents by PMA (threshold < or = 1nM, EC50 approximately equal to 14 nM, maximal 40% increase with > or = 100 nM) plateaued within 6-10 min. 3. PMA-activated current was time-independent, and suppressed by l mM 9-anthracenecarboxylic acid (9-AC). Its reversal potential (Erev) was sensitive to changes in the Cl- gradient, and outward rectification of the current-voltage (I-V) relationship was more pronounced with 30 mM than 140 mM Cl- dialysate. 4. The relative permeability of PMA-activated channels estimated from Erev measurements was I- > Cl- > > aspartate. Channel activation was independent of external Na+. 5. PMA failed to activate Icl in myocytes pretreated with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or dialysed with pCa 10.5 solution. Lack of response to 4 alpha-phorbol 12, 13-didecanoate (alpha PDD) was a further indication of mediation by PKC. 6. Icl induced by 2 microM forskolin was far larger than that induced by PMA, suggesting that endogenous protein kinase A is a much stronger Cl- channel activator than endogenous PKC in these myocytes. 7. The macroscopic properties of PMA-induced Icl appear to be indistinguishable from those of PKA-activated Icl. We discount stimulation of PKA by PMA as an

  17. A novel anionic conductance affects action potential duration in isolated rat ventricular myocytes.

    PubMed

    Spencer, C I; Uchida, W; Kozlowski, R Z

    2000-01-01

    Effects of extracellular anions were studied in electrophysiological experiments on freshly isolated rat ventricular myocytes. Under current-clamp, action potential duration (APD) was prolonged by reducing the extracellular Cl(-) concentration and shortened by replacement of extracellular Cl(-) with I(-). Under voltage-clamp, membrane potential steps or ramps evoked an anionic background current (I(AB)) carried by either Cl(-), Br(-), I(-) or NO(3)(-). Activation of I(AB) was Ca(2+)- and cyclic AMP-independent, and was unaffected by cell shrinkage. I(AB) was insensitive to stilbene and fenamate anion transport blockers at concentrations that inhibit Ca(2+)-, cyclic AMP- and swelling-activated Cl(-) currents in ventricular cells of other mammals. These results suggest that I(AB) may be carried by a novel class of Cl(-) channel. Correlation of anion substitution experiments on membrane current and action potentials revealed that I(AB) could play a major role in controlling rat ventricular APD. These findings have important implications for those studying cardiac Cl(-) channels as potential targets for novel antiarrythmic agents.

  18. Restoration of β -Adrenergic Signaling in Failing Cardiac Ventricular Myocytes via Adenoviral-Mediated Gene Transfer

    NASA Astrophysics Data System (ADS)

    Akhter, Shahab A.; Skaer, Christine A.; Kypson, Alan P.; McDonald, Patricia H.; Peppel, Karsten C.; Glower, Donald D.; Lefkowitz, Robert J.; Koch, Walter J.

    1997-10-01

    Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β -adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β -adrenergic signaling defects including down-regulation of myocardial β -adrenergic receptors (β -ARs), functional β -AR uncoupling, and an upregulation of the β -AR kinase (β ARK1). Adenoviral-mediated gene transfer of the human β 2-AR or an inhibitor of β ARK1 to these failing myocytes led to the restoration of β -AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of β ARK1 activity in the heart.

  19. A Computational Model of Cytosolic and Mitochondrial [Ca2+] in Paced Rat Ventricular Myocytes

    PubMed Central

    Choi, Seong Woo; Jang, Chang Han; Kim, Hyoung Kyu; Leem, Chae Hun; Kim, Nari; Han, Jin

    2011-01-01

    We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial Ca2+ transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [Ca2+] bigger in mitochondria as well as in cytosol. As L-type Ca2+ channel has key influence on the amplitude of Ca2+-induced Ca2+ release, the relation between stimulus frequency and the amplitude of Ca2+ transients was examined under the low density (1/10 of control) of L-type Ca2+ channel in model simulation, where the relation was reversed. In experiment, block of Ca2+ uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial Ca2+ transients, while it failed to affect the cytosolic Ca2+ transients. In computer simulation, the amplitude of cytosolic Ca2+ transients was not affected by removal of Ca2+ uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [Ca2+] in cytosol and eventually abolished the Ca2+ transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type Ca2+ channel to total transsarcolemmal Ca2+ flux could determine whether the cytosolic Ca2+ transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic Ca2+ affects mitochondrial Ca2+ in a beat-to-beat manner, however, removal of Ca2+ influx mechanism into mitochondria does not affect the amplitude of cytosolic Ca2+ transients. PMID:21994480

  20. The cellular force-frequency response in ventricular myocytes from the varanid lizard, Varanus exanthematicus

    PubMed Central

    Galli, Gina L. J.; Patrick, Simon M.; Shiels, Holly A.

    2010-01-01

    To investigate the cellular mechanisms underlying the negative force-frequency relationship (FFR) in the ventricle of the varanid lizard, Varanus exanthematicus, we measured sarcomere and cell shortening, intracellular Ca2+ ([Ca2+]i), action potentials (APs), and K+ currents in isolated ventricular myocytes. Experiments were conducted between 0.2 and 1.0 Hz, which spans the physiological range of in vivo heart rates at 20–22°C for this species. As stimulation frequency increased, diastolic length, percent change in sarcomere length, and relaxation time all decreased significantly. Shortening velocity was unaffected. These changes corresponded to a faster rate of rise of [Ca2+]i, a decrease in [Ca2+]i transient amplitude, and a seven-fold increase in diastolic [Ca2+]i. The time constant for the decay of the Ca2+ transient (τ) decreased at higher frequencies, indicating a frequency-dependent acceleration of relaxation (FDAR) but then reached a plateau at moderate frequencies and did not change above 0.5 Hz. The rate of rise of the AP was unaffected, but the AP duration (APD) decreased with increasing frequency. Peak depolarization tended to decrease, but it was only significant at 1.0 Hz. The decrease in APD was not due to frequency-dependent changes in the delayed inward rectifier (IKr) or the transient outward (Ito) current, as neither appeared to be present in varanid ventricular myocytes. Our results suggest that a negative FFR relationship in varanid lizard ventricle is caused by decreased amplitude of the Ca2+ transient coupled with an increase in diastolic Ca2+, which leads to incomplete relaxation between beats at high frequencies. This coincides with shortened APD at higher frequencies. PMID:20053961

  1. T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling.

    PubMed

    Nivala, Michael; Song, Zhen; Weiss, James N; Qu, Zhilin

    2015-02-01

    In heart failure (HF), T-tubule (TT) disruption contributes to dyssynchronous calcium (Ca) release and impaired contraction, but its role in arrhythmogenesis remains unclear. In this study, we investigate the effects of TT disruption and other HF remodeling factors on Ca alternans in ventricular myocytes using computer modeling. A ventricular myocyte model with detailed spatiotemporal Ca cycling modeled by a coupled Ca release unit (CRU) network was used, in which the L-type Ca channels and the ryanodine receptor (RyR) channels were simulated by random Markov transitions. TT disruption, which removes the L-type Ca channels from the associated CRUs, results in "orphaned" RyR clusters and thus provides increased opportunity for spark-induced Ca sparks to occur. This effect combined with other HF remodeling factors promoted alternans by two distinct mechanisms: 1) for normal sarco-endoplasmic reticulum Ca ATPase (SERCA) activity, alternans was caused by both CRU refractoriness and coupling. The increased opportunity for spark-induced sparks by TT disruption combined with the enhanced CRU coupling by Ca elevation in the presence or absence of increased RyR leakiness facilitated spark synchronization on alternate beats to promote Ca alternans; 2) for down-regulated SERCA, alternans was caused by the sarcoplasmic reticulum (SR) Ca load-dependent mechanism, independent of CRU refractoriness. TT disruption and increased RyR leakiness shifted and steepened the SR Ca release-load relationship, which combines with down-regulated SERCA to promote Ca alternans. In conclusion, the mechanisms of Ca alternans for normal and down-regulated SERCA are different, and TT disruption promotes Ca alternans by both mechanisms, which may contribute to alternans at different stages of HF.

  2. SKF-96365 strongly inhibits voltage-gated sodium current in rat ventricular myocytes.

    PubMed

    Chen, Kui-Hao; Liu, Hui; Yang, Lei; Jin, Man-Wen; Li, Gui-Rong

    2015-06-01

    SKF-96365 (1-(beta-[3-(4-methoxy-phenyl) propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride) is a general TRPC channel antagonist commonly used to characterize the potential functions of TRPC channels in cardiovascular system. Recent reports showed that SKF-96365 induced a reduction in cardiac conduction. The present study investigates whether the reduced cardiac conduction caused by SKF-96365 is related to the blockade of voltage-gated sodium current (I Na) in rat ventricular myocytes using the whole-cell patch voltage-clamp technique. It was found that SKF-96365 inhibited I Na in rat ventricular myocytes in a concentration-dependent manner. The compound (1 μM) negatively shifted the potential of I Na availability by 9.5 mV, increased the closed-state inactivation of I Na, and slowed the recovery of I Na from inactivation. The inhibition of cardiac I Na by SKF-96365 was use-dependent and frequency-dependent, and the IC₅₀ was decreased from 1.36 μM at 0.5 Hz to 1.03, 0.81, 0.61, 0.56 μM at 1, 2, 5, 10 Hz, respectively. However, the selective TRPC3 antagonist Pyr3 decreased cardiac I Na by 8.5% at 10 μM with a weak use and frequency dependence. These results demonstrate that the TRPC channel antagonist SKF-96365 strongly blocks cardiac I Na in use-dependent and frequency-dependent manners. Caution should be taken for interpreting the alteration of cardiac electrical activity when SKF-96365 is used in native cells as a TRPC antagonist.

  3. Phosphatidic acid stimulates inositol 1,4,5-trisphosphate production in adult cardiac myocytes.

    PubMed

    Kurz, T; Wolf, R A; Corr, P B

    1993-03-01

    The cellular content of phosphatidic acid can increase in response to several agonists either by phosphorylation of diacylglycerol after phospholipase C-catalyzed hydrolysis of phospholipids or directly through activation of phospholipase D. Although previous findings indicated that the generation of phosphatidic acid was exclusively a means of regulation of the cellular concentration of diacylglycerol, more recent studies have indicated that phosphatidic acid may also directly regulate several cellular functions. Accordingly, the present study was performed to assess whether phosphatidic acid could stimulate cardiac phospholipase C in intact adult rabbit ventricular myocytes. The mass of inositol 1,4,5-trisphosphate [Ins (1,4,5)P3] was determined by a specific and sensitive binding protein assay and by direct mass measurement using anion exchange chromatography for separation of selected inositol phosphates and gas chromatography and mass spectrometry for quantification of inositol monophosphate (IP1), inositol bisphosphate (IP2), inositol trisphosphate (IP3), and inositol tetrakisphosphate (IP4). Phosphatidic acid (10(-9)-10(-6) M) elicited a rapid concentration-dependent increase in Ins (1,4,5)P3 accumulation, with the peak fourfold to fivefold increase at 30 seconds of stimulation; the concentration required for 50% of maximal stimulation was 4.4 x 10(-8) M. The time course of individual inositol phosphates indicated a successive increase in the mass of IP3, IP4, IP2, and IP1 in response to stimulation with phosphatidic acid. The production of Ins (1,4,5)P3 in response to phosphatidic acid was not altered in the absence of extracellular calcium or in the presence of extracellular EGTA (10(-3) M). Thus, these findings indicate that phosphatidic acid is a potent activator of inositol phosphate production in adult ventricular myocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The Effects of Puerarin on Rat Ventricular Myocytes and the Potential Mechanism

    PubMed Central

    Xu, Hao; Zhao, Manxi; Liang, Shenghui; Huang, Quanshu; Xiao, Yunchuan; Ye, Liang; Wang, Qinyi; He, Longmei; Ma, Lanxiang; Zhang, Hua; Zhang, Li; Jiang, Hui; Ke, Xiao; Gu, Yuchun

    2016-01-01

    Puerarin, a known isoflavone, is commonly found as a Chinese herb medicine. It is widely used in China to treat cardiac diseases such as angina, cardiac infarction and arrhythmia. However, its cardioprotective mechanism remains unclear. In this study, puerarin significantly prolonged ventricular action potential duration (APD) with a dosage dependent manner in the micromolar range on isolated rat ventricular myocytes. However, submicromolar puerarin had no effect on resting membrane potential (RMP), action potential amplitude (APA) and maximal velocity of depolarization (Vmax) of action potential. Only above the concentration of 10 mM, puerarin exhibited more aggressive effect on action potential, and shifted RMP to the positive direction. Millimolar concentrations of puerarin significantly inhibited inward rectified K+ channels in a dosage dependent manner, and exhibited bigger effects upon Kir2.1 vs Kir2.3 in transfected HEK293 cells. As low as micromolar range concentrations of puerarin significantly inhibited Kv7.1 and IKs. These inhibitory effects may due to the direct inhibition of puerarin upon channels not via the PKA-dependent pathway. These results provided direct preclinical evidence that puerarin prolonged APD via its inhibitory effect upon Kv7.1 and IKs, contributing to a better understanding the mechanism of puerarin cardioprotection in the treatment of cardiovascular diseases. PMID:27762288

  5. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes

    PubMed Central

    Al Kury, Lina T; Voitychuk, Oleg I; Yang, Keun-Hang Susan; Thayyullathil, Faisal T; Doroshenko, Petro; Ramez, Ali M; Shuba, Yaroslav M; Galadari, Sehamuddin; Howarth, Frank Christopher; Oz, Murat

    2014-01-01

    BACKGROUND AND PURPOSE The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes. EXPERIMENTAL APPROACH Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes. KEY RESULTS In the presence of 1–10 μM AEA, suppression of both Na+ and L-type Ca2+ channels was observed. Inhibition of Na+ channels was voltage and Pertussis toxin (PTX) – independent. Radioligand-binding studies indicated that specific binding of [3H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd. Further studies on L-type Ca2+ channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba2+ currents. MetAEA also inhibited Na+ and L-type Ca2+ currents. Radioligand studies indicated that specific binding of [3H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd. CONCLUSION AND IMPLICATIONS Results indicate that AEA inhibited the function of voltage-dependent Na+ and L-type Ca2+ channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation. PMID:24758718

  6. Effects of Sleep Deprivation on Action Potential and Transient Outward Potassium Current in Ventricular Myocytes in Rats

    PubMed Central

    Fang, Zhou; Ren, Yi-Peng; Lu, Cai-Yi; Li, Yang; Xu, Qiang; Peng, Li; Fan, Yong-Yan

    2015-01-01

    Background Sleep deprivation contributes to the development and recurrence of ventricular arrhythmias. However, the electrophysiological changes in ventricular myocytes in sleep deprivation are still unknown. Material/Methods Sleep deprivation was induced by modified multiple platform technique. Fifty rats were assigned to control and sleep deprivation 1, 3, 5, and 7 days groups, and single ventricular myocytes were enzymatically dissociated from rat hearts. Action potential duration (APD) and transient outward current (Ito) were recorded using whole-cell patch clamp technique. Results Compared with the control group, the phases of APD of ventricular myocytes in 3, 5, and 7 days groups were prolonged and APD at 20% and 50% level of repolarization (APD20 and APD50) was significantly elongated (The APD20 values of control, 1, 3, 5, and 7 days groups: 5.66±0.16 ms, 5.77±0.20 ms, 8.28±0.30 ms, 11.56±0.32 ms, 13.24±0.56 ms. The APD50 values: 50.66±2.16 ms, 52.77±3.20 ms, 65.28±5.30 ms, 83.56±7.32 ms, 89.24±5.56 ms. P<0.01, n=18). The current densities of Ito significantly decreased. The current density-voltage (I–V) curve of Ito was vitally suppressed downward. The steady-state inactivation curve and steady-state activation curve of Ito were shifted to left and right, respectively, in sleep deprivation rats. The inactivation recovery time of Ito was markedly retarded and the time of closed-state inactivation was markedly accelerated in 3, 5, and 7 days groups. Conclusions APD of ventricular myocytes in sleep deprivation rats was significantly prolonged, which could be attributed to decreased activation and accelerated inactivation of Ito. PMID:25694200

  7. The sodium pump modulates the influence of I(Na) on [Ca2+]i transients in mouse ventricular myocytes.

    PubMed Central

    Su, Z; Sugishita, K; Ritter, M; Li, F; Spitzer, K W; Barry, W H

    2001-01-01

    To investigate whether activity of the sarcolemmal Na pump modulates the influence of sodium current on excitation-contraction (E-C) coupling, we measured [Ca(2+)](i) transients (fluo-3) in single voltage-clamped mouse ventricular myocytes ([Na+](pip) = 15 or 0 mM) when the Na pump was activated (4.4 mM K(+)(o)) and during abrupt inhibition of the pump by exposure to 0 K with a rapid solution-switcher device. After induction of steady state [Ca2+](i) transients by conditioning voltage pulses (0.25 Hz), inhibition of the Na pump for 1.5 s immediately before and continuing during a voltage pulse (200 ms, -80 to 0 mV) caused a significant increase (15 +/- 2%; n = 16; p < 0.01) in peak systolic [Ca2+](i) when [Na+](pip) was 15 mM. In the absence of sodium current (I(Na), which was blocked by 60 microM tetrodotoxin (TTX)), inhibition of the Na pump immediately before and during a voltage pulse did not result in an increase in peak systolic [Ca2+](i). Abrupt blockade of I(Na) during a single test pulse with TTX caused a slight decrease in peak [Ca2+](i), whether the pump was active (9%) or inhibited (10%). With the reverse-mode Na/Ca exchange inhibited by KB-R 7943, inhibition of the Na pump failed to increase the magnitude of the peak systolic [Ca2+](i) (4 +/- 1%; p = NS) when [Na+](pip) was 15 mM. When [Na+](pip) was 0 mM, the amplitude of the peak systolic [Ca2+](i) was not altered by abrupt inhibition of the Na pump immediately before and during a voltage pulse. These findings in adult mouse ventricular myocytes indicate the Na pump can modulate the influence of I(Na) on E-C coupling in a single beat and provide additional evidence for the existence of Na fuzzy space, where [Na+] can significantly modulate Ca2+ influx via reverse Na/Ca exchange. PMID:11222287

  8. Xanthohumol Modulates Calcium Signaling in Rat Ventricular Myocytes: Possible Antiarrhythmic Properties.

    PubMed

    Arnaiz-Cot, Juan Jose; Cleemann, Lars; Morad, Martin

    2017-01-01

    Cardiac arrhythmia is a major cause of mortality in cardiovascular pathologies. A host of drugs targeted to sarcolemmal Na(+), Ca(2+), and K(+) channels has had limited success clinically. Recently, Ca(2+) signaling has been target of pharmacotherapy based on finding that leaky ryanodine receptors elevate local Ca(2+) concentrations causing membrane depolarizations that trigger arrhythmias. In this study, we report that xanthohumol, an antioxidant extracted from hops showing therapeutic effects in other pathologies, suppresses aberrant ryanodine receptor Ca(2+) release. The effects of xanthohumol (5-1000 nM) on Ca(2+) signaling pathways were probed in isolated rat ventricular myocytes incubated with Fluo-4 AM using the perforated patch-clamp technique. We found that 5-50 nM xanthohumol reduced the frequency of spontaneously occurring Ca(2+) sparks (>threefold) and Ca(2+) waves in control myocytes and in cells subjected to Ca(2+) overload caused by the following: 1) exposure to low K(+) solutions, 2) periods of high frequency electrical stimulation, 3) exposures to isoproterenol, or 4) caffeine. At room temperatures, 50-100 nM xanthohumol reduced the rate of relaxation of electrically- or caffeine-triggered Ca(2+)transients, without suppressing ICa, but this effect was small and reversed by isoproterenol at physiologic temperatures. Xanthohumol also suppressed the Ca(2+) content of the SR and its rate of recirculation. The stabilizing effects of xanthohumol on the frequency of spontaneously triggered Ca(2+) sparks and waves combined with its antioxidant properties, and lack of significant effects on Na(+) and Ca(2+) channels, may provide this compound with clinically desirable antiarrhythmic properties.

  9. Metabolic stress in isolated mouse ventricular myocytes leads to remodeling of t tubules.

    PubMed

    Cheng, Lu-Feng; Wang, Fuzhen; Lopatin, Anatoli N

    2011-11-01

    Cardiac ventricular myocytes possess an extensive t-tubular system that facilitates the propagation of membrane potential across the cell body. It is well established that ionic currents at the restricted t-tubular space may lead to significant changes in ion concentrations, which, in turn, may affect t-tubular membrane potential. In this study, we used the whole cell patch-clamp technique to study accumulation and depletion of t-tubular potassium by measuring inward rectifier potassium tail currents (I(K1,tail)), and inward rectifier potassium current (I(K1)) "inactivation". At room temperatures and in the absence of Mg(2+) ions in pipette solution, the amplitude of I(K1,tail) measured ~10 min after the establishment of whole cell configuration was reduced by ~18%, but declined nearly twofold in the presence of 1 mM cyanide. At ~35°C I(K1,tail) was essentially preserved in intact cells, but its amplitude declined by ~85% within 5 min of cell dialysis, even in the absence of cyanide. Intracellular Mg(2+) ions played protective role at all temperatures. Decline of I(K1,tail) was accompanied by characteristic changes in its kinetics, as well as by changes in the kinetics of I(K1) inactivation, a marker of depletion of t-tubular K(+). The data point to remodeling of t tubules as the primary reason for the observed effects. Consistent with this, detubulation of myocytes using formamide-induced osmotic stress significantly reduced I(K1,tail), as well as the inactivation of inward I(K1). Overall, the data provide strong evidence that changes in t tubule volume/structure may occur on a short time scale in response to various types of stress.

  10. Action potential duration determines sarcoplasmic reticulum Ca2+ reloading in mammalian ventricular myocytes

    PubMed Central

    Bassani, Rosana A; Altamirano, Julio; Puglisi, José L; Bers, Donald M

    2004-01-01

    After sarcoplasmic reticulum (SR) Ca2+ depletion in intact ventricular myocytes, electrical activity promotes SR Ca2+ reloading and recovery of twitch amplitude. In ferret, recovery of twitch and caffeine-induced contracture required fewer twitches than in rabbit or rat. In rat, there was no difference in action potential duration at 90% repolarization (APD90) at steady state (SS) versus at the first post-depletion (PD) twitch. The SS APD90 was similar in ferret and rabbit (but longer than in rat). However, compared to SS, the PD APD90 was lengthened in ferret, but shortened in rabbit. When rabbit myocytes were subjected to AP-clamp patterns during SR Ca2+ reloading (ferret- or rabbit-type APs), reloading was much faster using the ferret AP templates. We conclude that the faster SR Ca2+ refilling in ferret is due to the increased Ca2+ influx during the longer PD AP. The PD versus SS APD90 difference was suppressed by thapsigargin in ferret (indicating Ca2+ dependence). In rabbit, the PD AP shortening depended on the preceding diastolic interval (rather than Ca2+), because rest produced the same AP shortening, and SS APD90 increased as a function of frequency (in contrast to ferret). Transient outward current (Ito) was larger and recovered from inactivation much faster in ferret than in rabbit. Moreover, slow Ito recovery (τ ∼ 3 s) in rabbit was a much larger fraction of Ito. Our data and a computational model (including two Ito components) suggest that in rabbit the slowly recovering Ito is responsible for short post-rest and PD APs, for the unusual frequency dependence of APD90, and ultimately for the slower post-depletion SR Ca2+ reloading. PMID:15243136

  11. On the mechanism of cesium-induced voltage and current tails in single ventricular myocytes.

    PubMed

    Shen, J B; Vassalle, M

    1999-01-01

    The mechanisms by which different concentrations of cesium modify membrane potentials and currents were investigated in guinea pig single ventricular myocytes. In a dose-dependent manner, cesium reversibly decreases the resting potential and action potential amplitude and duration, and induces a diastolic decaying voltage tail (Vex), which increases at more negative and reverses at less negative potentials. In voltage-clamped myocytes, Cs+ increases the holding current, increases the outward current at plateau levels while decreasing it at potentials closer to resting potential, induces an inward tail current (Iex) on return to resting potential and causes a negative shift of the threshold for the inward current. During depolarizing ramps, Cs+ decreases the outward current negative to inward rectification range, whereas it increases the current past that range. During repolarizing ramps, Cs+ shifts the threshold for removal of inward rectification negative slope to less negative values. Cs+-induced voltage and current tails are increased by repetitive activity, caffeine (5 mM) and high [Ca2+]O (8.1 mM), and are reduced by low Ca2+ (0.45 mM), Cd2+ (0.2 mM) and Ni2+ (2 mM). Ni2+ also abolishes the tail current that follows steps more positive than ECa. We conclude that Cs+ (1) decreases the resting potential by decreasing the outward current at more negative potentials, (2) shortens the action potential by increasing the outward current at potentials positive to the negative slope of inward rectification, and (3) induces diastolic tails through a Ca2+-dependent mechanism, which apparently is an enhanced electrogenic Na-Ca exchange.

  12. A Human Ventricular Myocyte Model with a Refined Representation of Excitation-Contraction Coupling

    PubMed Central

    Himeno, Yukiko; Asakura, Keiichi; Cha, Chae Young; Memida, Hiraku; Powell, Trevor; Amano, Akira; Noma, Akinori

    2015-01-01

    Cardiac Ca2+-induced Ca2+ release (CICR) occurs by a regenerative activation of ryanodine receptors (RyRs) within each Ca2+-releasing unit, triggered by the activation of L-type Ca2+ channels (LCCs). CICR is then terminated, most probably by depletion of Ca2+ in the junctional sarcoplasmic reticulum (SR). Hinch et al. previously developed a tightly coupled LCC-RyR mathematical model, known as the Hinch model, that enables simulations to deal with a variety of functional states of whole-cell populations of a Ca2+-releasing unit using a personal computer. In this study, we developed a membrane excitation-contraction model of the human ventricular myocyte, which we call the human ventricular cell (HuVEC) model. This model is a hybrid of the most recent HuVEC models and the Hinch model. We modified the Hinch model to reproduce the regenerative activation and termination of CICR. In particular, we removed the inactivated RyR state and separated the single step of RyR activation by LCCs into triggering and regenerative steps. More importantly, we included the experimental measurement of a transient rise in Ca2+ concentrations ([Ca2+], 10–15 μM) during CICR in the vicinity of Ca2+-releasing sites, and thereby calculated the effects of the local Ca2+ gradient on CICR as well as membrane excitation. This HuVEC model successfully reconstructed both membrane excitation and key properties of CICR. The time course of CICR evoked by an action potential was accounted for by autonomous changes in an instantaneous equilibrium open probability of couplons. This autonomous time course was driven by a core feedback loop including the pivotal local [Ca2+], influenced by a time-dependent decay in the SR Ca2+ content during CICR. PMID:26200878

  13. A Na+-activated K+ current (IK,Na) is present in guinea-pig but not rat ventricular myocytes.

    PubMed

    Lawrence, C; Rodrigo, G C

    1999-05-01

    The effects of removing extracellular Ca2+ and Mg2+ on the membrane potential, membrane current and intracellular Na+ activity (aiNa) were investigated in guinea-pig and rat ventricular myocytes. Membrane potential was recorded with a patch pipette and whole-cell membrane currents using a single-electrode voltage clamp. Both guinea-pig and rat cells depolarize when the bathing Ca2+ and Mg2+ are removed and the steady-state aiNa increases rapidly from a resting value of 6.4+/- 0.6 mM to 33+/-3.8 mM in guinea-pig (n=9) and from 8.9+/-0.8 mM to 29.3+/-3.0 mM (n=5) in rat ventricular myocytes. Guinea-pig myocytes partially repolarized when, in addition to removal of the bathing Ca2+ and Mg2+, K+ was also removed, however rat cells remained depolarized. A large diltiazem-sensitive inward current was recorded in guinea-pig and rat myocytes, voltage-clamped at -20 mV, when the bathing divalent cations were removed. When the bathing K+ was removed after Ca2+ and Mg2+ depletion, a large outward K+ current developed in guinea-pig, but not in rat myocytes. This current had a reversal potential of -80+/-0.7 mV and was not inhibited by high Mg2+ or glybenclamide indicating that it is not due to activation of non-selective cation or adenosine triphosphate (ATP)-sensitive K channels. The current was not activated when Li+ replaced the bathing Na+ and was blocked by R-56865, suggesting that it was due to the activation of KNa channels.

  14. Effects of oleic acid on the high threshold barium current in seabass Dicentrarchus labrax ventricular myocytes.

    PubMed

    Chatelier, A; Imbert, N; Infante, J L Zambonino; McKenzie, D J; Bois, P

    2006-10-01

    The present study employed a patch clamp technique in isolated seabass ventricular myocytes to investigate the hypothesis that oleic acid (OA), a mono-unsaturated fatty acid, can exert direct effects upon whole-cell barium currents. Acute application of free OA caused a dose-dependent depression of the whole-cell barium current that was evoked by a voltage step to 0 mV from a holding potential of -80 mV. The derived 50% inhibitory concentration (IC50) was 12.49+/-0.27 micromol l(-1). At a concentration of 30 micromol l(-1), OA significantly reduced the current density to about 45% of control values, but did not modify either the shape of the current-density voltage relationship or the apparent reversal potential. In addition, OA did not modify the voltage dependence of either steady state inactivation or activation curves. Taken together, these results indicate that physiological concentrations of free OA decrease the conductance of the L-type inward current, without altering its properties of selectivity and its voltage dependence. The inhibitory effect of OA upon the L-type calcium channel may translate, in vivo, into a protective effect against arrhythmias induced by Ca2+ overload.

  15. Endogenous protein phosphatase 1 runs down gap junctional communication of rat ventricular myocytes.

    PubMed

    Duthe, F; Plaisance, I; Sarrouilhe, D; Hervé, J C

    2001-11-01

    Gap junctional channels are essential for normal cardiac impulse propagation. In ventricular myocytes of newborn rats, channel opening requires the presence of ATP to allow protein kinase activities; otherwise, channels are rapidly deactivated by the action of endogenous protein phosphatases (PPs). The lack of influence of Mg(2+) and of selective PP2B inhibition is not in favor of the involvements of Mg(2+)-dependent PP2C and PP2B, respectively, in the loss of channel activity. Okadaic acid (1 microM) and calyculin A (100 nM), both inhibitors of PP1 and PP2A activities, significantly retarded the loss of channel activity. However, a better preservation was obtained in the presence of selective PP1 inhibitors heparin (100 microg/ml) or protein phosphatase inhibitor 2 (I2; 100 nM). Conversely, the stimulation of endogenous PP1 activity by p-nitrophenyl phosphate, in the presence of ATP, led to a progressive fading of junctional currents unless I2 was simultaneously added. Together, these results suggest that a basal phosphorylation-dephosphorylation turnover regulates gap junctional communication which is rapidly deactivated by PP1 activity when the phosphorylation pathway is hindered.

  16. Exploration of Pharmacophore in Chrysosplenol C as Activator in Ventricular Myocyte Contraction

    PubMed Central

    2015-01-01

    Chrysosplenol C (4′,5,6-trihydroxy-3,3′,7-trimethoxyflavone) isolated from Miliusa balansae has unique structural features as a reversible inotropic agent independent of β-adrenergic signaling and with selective activation of cardiac myosin ATPase. Hence, a series of chrysosplenol analogues were synthesized and explored for identification of pharmacophore that is essential for the increasing contractility in rat ventricular myocytes. Analogue 7-chloro-2-(3-hydroxyphenyl)-3-methoxy-4H-chromen-4-one showed highly potent contractility (54.8% at 10 μM) through activating cardiac myosin ATPase (38.7% at 10 μM). Our systematic structure–activity relationship study revealed that flavonoid nucleus of chrososplenol C appears to be an essential basic skeleton and hydrophobic substituent at position 7 of chromenone such as methoxy or chloro enhances the activity. Additionally, our ATPase study suggested that these chrysosplenol analogues have selectivity toward cardiac myosin activation. Thus, the novel flavonone with 3-/7-hydrophobic substituent and 3′-hydrogen bonding donor function is a novel scaffold for discovery of a new positive inotropic agent. PMID:26191362

  17. Global Intracoronary Infusion of Allogeneic Cardiosphere-Derived Cells Improves Ventricular Function and Stimulates Endogenous Myocyte Regeneration throughout the Heart in Swine with Hibernating Myocardium

    PubMed Central

    Suzuki, Gen; Weil, Brian R.; Leiker, Merced M.; Ribbeck, Amanda E.; Young, Rebeccah F.; Cimato, Thomas R.; Canty, John M.

    2014-01-01

    Background Cardiosphere-derived cells (CDCs) improve ventricular function and reduce fibrotic volume when administered via an infarct-related artery using the “stop-flow” technique. Unfortunately, myocyte loss and dysfunction occur globally in many patients with ischemic and non-ischemic cardiomyopathy, necessitating an approach to distribute CDCs throughout the entire heart. We therefore determined whether global intracoronary infusion of CDCs under continuous flow improves contractile function and stimulates new myocyte formation. Methods and Results Swine with hibernating myocardium from a chronic LAD occlusion were studied 3-months after instrumentation (n = 25). CDCs isolated from myocardial biopsies were infused into each major coronary artery (∼33×106 icCDCs). Global icCDC infusion was safe and while ∼3% of injected CDCs were retained, they did not affect ventricular function or myocyte proliferation in normal animals. In contrast, four-weeks after icCDCs were administered to animals with hibernating myocardium, %LADWT increased from 23±6 to 51±5% (p<0.01). In diseased hearts, myocyte proliferation (phospho-histone-H3) increased in hibernating and remote regions with a concomitant increase in myocyte nuclear density. These effects were accompanied by reductions in myocyte diameter consistent with new myocyte formation. Only rare myocytes arose from sex-mismatched donor CDCs. Conclusions Global icCDC infusion under continuous flow is feasible and improves contractile function, regresses myocyte cellular hypertrophy and increases myocyte proliferation in diseased but not normal hearts. New myocytes arising via differentiation of injected cells are rare, implicating stimulation of endogenous myocyte regeneration as the primary mechanism of repair. PMID:25402428

  18. Intracellular Ca2+ transients during rapid cooling contractures in guinea-pig ventricular myocytes.

    PubMed Central

    Bers, D M; Bridge, J H; Spitzer, K W

    1989-01-01

    1. We measured intracellular Ca2+ transients during rapid cooling contractures (RCCs) in guinea-pig ventricular myocytes using the fluorescent Ca2+ indicator, Indo-1. 2. Rapid cooling of myocytes from 22 to 0-1 degrees C induced a rapid increase in [Ca2+]i which preceded the peak of the contraction and was sometimes large enough to saturate Indo-1. This indicates that [Ca2+]i may reach greater than 10 microM during an RCC. 3. The [Ca2+]i during the RCC slowly declined from its peak value and most of this decline in [Ca2+]i can be attributed to slow reaccumulation of Ca2+ by the sarcoplasmic reticulum (SR) in the cold. RCCs induced in the absence of Cao2+, were not different from control, supporting previous conclusions that RCCs depend exclusively on intracellular Ca2+ stores. 4. RCCs are depressed by long rest periods (rest decay) or by exposure to ryanodine or caffeine, which supports conclusions that RCCs are due to Ca2+ release from the SR. The rest decay of RCCs can be almost completely prevented by applying Nao(+)-free solution during the rest period. This implies that the loss of SR Ca2+ during rest depends on the sarcolemmal Na(+)-Ca2+ exchange (and not the sarcolemmal Ca2(+)-ATPase pump). 5. Rapid rewarming during an RCC normally leads to an additional transient contraction (or rewarming spike), without any increase in [Ca2+]i. Thus, the rewarming spike might be attributable to an increase in myofilament Ca2+ sensitivity induced by rewarming. 6. A second RCC is used to assess the fraction of Ca2+ which is re-sequestered by the SR during relaxation from the first RCC. In control solution progressive RCCs decline in amplitude, but in Na(+)-free, Ca2(+)-free solution they are of constant amplitude. We conclude that the SR Ca2+ pump and Na(+)-Ca2+ exchange are responsible for relaxation and that the latter may account for 20-50% of relaxation. 7. These results support the use of RCCs as a useful means of assessing SR Ca2+ content in intact cardiac muscle cells

  19. Enhanced effect of VEGF165 on L-type calcium currents in guinea-pig cardiac ventricular myocytes.

    PubMed

    Xing, Wenlu; Gao, Chuanyu; Qi, Datun; Zhang, You; Hao, Peiyuan; Dai, Guoyou; Yan, Ganxin

    2017-01-01

    The mechanisms of vascular endothelial growth factor 165 (VEGF165) on electrical properties of cardiomyocytes have not been fully elucidated. The aim of this study is to test the hypothesis that VEGF165, an angiogenesis-initiating factor, affects L-type calcium currents (ICa,L) and cell membrane potential in cardiac myocytes by acting on VEGF type-2 receptors (VEGFR2). ICa,L and action potentials (AP) were recorded by the whole-cell patch clamp method in isolated guinea-pig ventricular myocytes treated with different concentrations of VEGF165 proteins. Using a VEGFR2 inhibitor, we also tested the receptor of VEGF165 in cardiomyocytes. We found that VEGF165 increased ICa,L in a concentration-dependent manner. SU5416, a VEGFR2 inhibitor, almost completely eliminated VEGF165-induced ICa,L increase. VEGF165 had no significant influence on action potential 90 (APD90) and other properties of AP. We conclude that in guinea-pig ventricular myocytes, ICa,L can be increased by VEGF165 in a concentration-dependent manner through binding to VEGFR2 without causing any significant alteration to action potential duration. Results of this study may further expound the safety of VEGF165 when used in the intervention of heart diseases.

  20. Neutrophil adherence to isolated adult canine myocytes. Evidence for a CD18-dependent mechanism.

    PubMed Central

    Entman, M L; Youker, K; Shappell, S B; Siegel, C; Rothlein, R; Dreyer, W J; Schmalstieg, F C; Smith, C W

    1990-01-01

    Cardiac myocytes were isolated from adult dogs and incubated with isolated canine neutrophils (PMN). Intercellular adhesion was low and unchanged by stimulation of the PMN with zymosan activated serum or platelet activating factor (PAF) at concentrations that significantly enhance PMN adhesion to protein-coated glass and canine endothelial cell monolayers. Intercellular adhesion was significantly increased only when both myocytes and PMN were stimulated (e.g., myocytes incubated with IL-1, tumor necrosis factor, or phorbol myristate acetate, and PMN were chemotactically stimulated). Inhibitors of protein synthesis diminished the IL-1 beta-induced effect by greater than 80%. The IL-1 beta, PAF-stimulated PMN-myocyte adhesion was associated with substantial H2O2 production. Under conditions with low PMN-myocyte adhesion (i.e., IL-1 beta alone, PAF alone, or no stimulus) H2O2 production was generally less than 5% of that occurring with high adhesion. An anti-CD18 monoclonal antibody (R15.7) inhibited stimulated PMN-myocyte adhesion by greater than 95% and reduced H2O2 production by greater than 90%. Control isotype-matched, binding, and nonbinding antibodies were without effect on adherence or H2O2 production. The results indicate that cytokine stimulation of adult myocytes induces expression of a ligand involved in CD18-dependent adherence of canine neutrophils. Images PMID:1970581

  1. Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes

    PubMed Central

    1996-01-01

    In the experiments here, the developmental expression of the functional Ca(2+)-independent, depolarization-activated K+ channel currents, Ito and IK, and of the voltage-gated K+ channel (Kv) alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2 in rat ventricular myocytes were examined quantitatively. Using the whole-cell patch clamp recording method, the properties and the densities of Ito and IK in ventricular myocytes isolated from postnatal day 5 (P5), 10 (P10), 15 (P15), 20 (P20), 25 (P25), 30 (P30), and adult (8-12 wk) rats were characterized and compared. These experiments revealed that mean Ito densities increase fourfold between birth and P30, whereas IK densities vary only slightly. Neither the time- nor the voltage-dependent properties of the currents vary measurably, suggesting that the subunits underlying functional Ito and IK channels are the same throughout postnatal development. In parallel experiments, the developmental expression of each of the voltage-gated K+ channel alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2, was examined quantitatively at the mRNA and protein levels using subunit-specific probes. RNase protection assays revealed that Kv1.4 message levels are high at birth, increase between P0 and P10, and subsequently decrease to very low levels in adult rat ventricles. The decrease in message is accompanied by a marked reduction in Kv1.4 protein, consistent with our previous suggestion that Kv1.4 does not contribute to the formation of functional K+ channels in adult rat ventricular myocytes. In contrast to Kv1.4, the mRNA levels of Kv1.2, Kv1.5, Kv2.1, and Kv4.2 increase (three- to five- fold) between birth and adult. Western analyses, however, revealed that the expression patterns of these subunits proteins vary in distinct ways: Kv1.2 and Kv4.2, for example, increase between P5 and adult, whereas Kv1.5 remains constant and Kv2.1 decreases. Throughout development, therefore, there is a mismatch between the numbers of Kv alpha

  2. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes isolated from hypertensive rats.

    PubMed Central

    Cerbai, E; Barbieri, M; Mugelli, A

    1994-01-01

    1. Left ventricular myocytes isolated from the heart of young (2-month-old) and old (18- to 20-month-old) spontaneously hypertensive rats (SHRs) were studied in the whole-cell configuration. Since multicellular preparations from old SHRs show a diastolic depolarization phase, we performed experiments to test whether it was associated with the presence of a hyperpolarization-activated If-like current. 2. In control Tyrode solution, a time-dependent increasing inward current activated by hyperpolarization was recorded in myocytes from old SHRs showing a diastolic depolarization phase. A barium-insensitive, caesium-sensitive, time-dependent inward current was recorded in a minority (4 of 33) of cells from young SHRs (membrane capacitance, 160 +/- 7 pF) but in 93% (25 of 27, P < 0.01) of myocytes from old SHRs (membrane capacitance, 355 +/- 19 pF, P < 0.01). 3. The current was fully activated at -120 mV and voltage of half-maximal activation was -88.1 +/- 1.5 mV; it was blocked by extracellular CsCl (4 mM) in a voltage-dependent manner. Reducing [K+]o from 25 to 5.4 mM caused a shift of the reversal potential from -17.3 +/- 3.8 to -25.7 +/- 2.7 mV and a 60% decrease of current conductance. 4. These findings suggest that an If-like current is present in rat ventricular myocytes from old SHRs, where it might favour the occurrence of spontaneous action potentials. PMID:7707227

  3. Kinetic evidence distinguishing volume-sensitive chloride current from other types in guinea-pig ventricular myocytes.

    PubMed Central

    Shuba, L M; Ogura, T; McDonald, T F

    1996-01-01

    1. Kinase-mediated chloride currents (ICl) in guinea-pig ventricular myocytes were activated by application of phorbol ester or forskolin, and compared with currents induced by hyposmotic swelling. Swelling-activated current was identified as ICl from changes in reversal potential, outward rectification and conductance when the Cl-gradient was modified. 2. Kinase-stimulated currents were relatively time and voltage independent, whereas hyposmotic swelling-stimulated (hyposmotic-stimulated) currents inactivated during 100 ms pulses to positive potentials. Forskolin stimulated time-independent ICl in myocytes with current unresponsive to hyposmotic superfusion, and superimposed a similar pedestal on time-dependent ICl in swollen myocytes. 3. Less negative holding potentials depressed hyposmotic-stimulated ICl tested at +80 mV; inhibition was half-maximal at -25 mV. Pulses from -80 to +80 mV inactivated up to 75% of ICl along a multi-exponential time course; repolarization elicited inwardly developing tail currents whose time courses suggest complex gating. 4. Hyperpolarizations, after strongly-inactivating depolarizations, triggered reactivating tail currents whose amplitude and configuration were dependent on voltage and Cl-gradients; tails were large and inwardly developing at potentials negative to the calculated Cl-equilibrium potential (ECl), small and outwardly developing at potentials positive to ECl, and time independent near ECl. 5. These results suggest that the volume-sensitive Cl- channels investigated here are distinct from other Cl- channels in guinea-pig ventricular myocytes. However, their voltage-dependent properties strongly resemble those of volume-sensitive Cl- channels in certain epithelial cells. PMID:9011623

  4. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model

    PubMed Central

    Negroni, Jorge A.; Morotti, Stefano; Lascano, Elena C.; Gomes, Aldrin V.; Grandi, Eleonora; Puglisi, José L; Bers, Donald M.

    2015-01-01

    A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca2+ transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca2+ handling, Ca2+, K+ and Cl− currents, and Na+/K+-ATPase properties were included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca2+ sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca2+ transient amplitude and kinetics. It also replicated the behavior of force-Ca2+, release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca2+ channels or phospholamban limited Ca2+ transients and contractile responses in parallel, while blocking phospholemman and K+ channel (IKs) effects enhanced Ca2+ and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca2+ (due to greater Ca2+ buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca2+ transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa vs. XBcy have greater impact on isometric

  5. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model.

    PubMed

    Negroni, Jorge A; Morotti, Stefano; Lascano, Elena C; Gomes, Aldrin V; Grandi, Eleonora; Puglisi, José L; Bers, Donald M

    2015-04-01

    A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca(2+) transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca(2+) handling, Ca(2+), K(+) and Cl(-) currents, and Na(+)/K(+)-ATPase properties was included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca(2+) sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca(2+) transient amplitude and kinetics. It also replicated the behavior of force-Ca(2+), release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca(2+) channels or phospholamban limited Ca(2+) transients and contractile responses in parallel, while blocking phospholemman and K(+) channel (IKs) effects enhanced Ca(2+) and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca(2+) (due to greater Ca(2+) buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca(2+) transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa and XBcy

  6. Activation of the ATP-sensitive K+ channel by decavanadate in guinea-pig ventricular myocytes.

    PubMed

    Nakashima, H; Kakei, M; Tanaka, H

    1993-03-23

    To evaluate the effects of decavanadate on the ATP-sensitive K+ (KATP) channel, we applied the inside-out membrane patch-clamp technique to ventricular myocytes isolated from guinea-pig hearts. Decavanadate increased the probability of the KATP channel being open in a dose-dependent manner over the range of 0.1 to 5 mM in the presence of 0.3 mM ATP. Half-maximal activation occurred at 540 microM decavanadate and a Hill coefficient of 1.3 was obtained when the Hill equation was used to fit the dose-dependent activation for the channel by decavanadate. The half-maximum inhibition for the channel by ATP (K1/2) in the presence of 2 mM Mg2+ was 19 and 74 microM in its absence. In the presence of decavanadate, both curves shifted toward the higher concentration of ATP without a change in steepness of the slope (Hill coefficient = 2). The effect of decavanadate could be expressed by a model in which its binding prevents ATP binding from closing the channel. The estimated dissociation constant of decavanadate was 1.5 microM in the presence and 22.8 microM in the absence of Mg2+. Decavanadate reactivated the rundown channel in the absence of Mg2+ and ATP. Neither the single channel slope conductance nor the mean open and closed lifetime within the bursts of channel openings were affected by decavanadate. We conclude that internal Mg2+ is not required for the modulation produced by decavanadate, but this ion influences the channel and changes the dissociation constant of both ATP and decavanadate to the channel.

  7. Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species.

    PubMed

    O'Hara, Thomas; Rudy, Yoram

    2012-03-01

    Explanations for arrhythmia mechanisms at the cellular level are usually based on experiments in nonhuman myocytes. However, subtle electrophysiological differences between species may lead to different rhythmic or arrhythmic cellular behaviors and drug response given the nonlinear and highly interactive cellular system. Using detailed and quantitatively accurate mathematical models for human, dog, and guinea pig ventricular action potentials (APs), we simulated and compared cell electrophysiology mechanisms and response to drugs. Under basal conditions (absence of β-adrenergic stimulation), Na(+)/K(+)-ATPase changes secondary to Na(+) accumulation determined AP rate dependence for human and dog but not for guinea pig where slow delayed rectifier current (I(Ks)) was the major rate-dependent current. AP prolongation with reduction of rapid delayed rectifier current (I(Kr)) and I(Ks) (due to mutations or drugs) showed strong species dependence in simulations, as in experiments. For humans, AP prolongation was 80% following I(Kr) block. It was 30% for dog and 20% for guinea pig. Under basal conditions, I(Ks) block was of no consequence for human and dog, but for guinea pig, AP prolongation after I(Ks) block was severe. However, with β-adrenergic stimulation, I(Ks) played an important role in all species, particularly in AP shortening at fast rate. Quantitative comparison of AP repolarization, rate-dependence mechanisms, and drug response in human, dog, and guinea pig revealed major species differences (e.g., susceptibility to arrhythmogenic early afterdepolarizations). Extrapolation from animal to human electrophysiology and drug response requires great caution.

  8. ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation.

    PubMed

    Verrecchia, F; Duthe, F; Duval, S; Duchatelle, I; Sarrouilhe, D; Herve, J C

    1999-04-15

    1. The degree of cell-to-cell coupling between ventricular myocytes of neonatal rats appeared well preserved when studied in the perforated version of the patch clamp technique or, in double whole-cell conditions, when ATP was present in the patch pipette solution. In contrast, when ATP was omitted, the amplitude of junctional current rapidly declined (rundown). 2. To examine the mechanism(s) of ATP action, an 'internal perfusion technique' was adapted to dual patch clamp conditions, and reintroduction of ATP partially reversed the rundown of junctional channels. 3. Cell-to-cell communication was not preserved by a non-hydrolysable ATP analogue (5'-adenylimidodiphosphate, AMP-PNP), indicating that the effect most probably did not involve direct interaction of ATP with the channel-forming proteins. 4. An ATP analogue supporting protein phosphorylation but not active transport processes (adenosine 5'-O-(3-thiotriphosphate), ATPgammaS) maintained normal intercellular communication, suggesting that the effect was due to kinase activity rather than to altered intracellular Ca2+. 5. A broad spectrum inhibitor of endogenous serine/threonine protein kinases (H7) reversibly reduced the intercellular coupling. A non-specific exogenous protein phosphatase (alkaline phosphatase) mimicked the effects of ATP deprivation. The non-specific inhibition of endogenous protein phosphatases resulted in the preservation of substantial cell-to-cell communication in ATP-free conditions. 6. The activity of gap junctional channels appears to require both the presence of ATP and protein kinase activity to counteract the tonic activity of endogenous phosphatase(s).

  9. Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes.

    PubMed

    Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P

    2013-06-15

    Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations.

  10. Evaluation of remodeling in left and right ventricular myocytes from heterozygous (mRen2)27 transgenic rats.

    PubMed

    Chouabe, Christophe; Ricci, Estelle; Kurdi, Mazen; Legrand, Claude; Bricca, Giampiero; Bonvallet, Robert

    2009-03-01

    Cardiac remodeling was assessed both in the pressure-overloaded left ventricle and in the normotensive right ventricle of hypertensive transgenic rats (mRen2)27 (TGR27). The present study combined histology, electrophysiology, molecular biology and biochemistry techniques. A significant increase in action potential (AP) duration was recorded both in right and left ventricular myocytes wheareas only in the latter ones were hypertrophic. The increase in AP duration is mainly supported by the reduction of the transient outward K current (I(to)) density since no significant modification was observed for the L-type calcium current (I(Ca,L)), the sodium-calcium exchange current (I(NCX)), the delayed rectifier current (I(K)) and the inward rectifier current (I(K1)). The lower amplitude of I(to) current was associated with a lower Kv4.3 protein expression both in right and left ventricles while Kv4.3 mRNA levels was decreased only in left ventricle. Thus, a differential ventricular remodeling takes place in the TGR27 model. The possible cause of electrical remodeling in right ventricular myocytes of TGR27 is discussed.

  11. Hyperoxia Induces Inflammation and Cytotoxicity in Human Adult Cardiac Myocytes.

    PubMed

    Hafner, Christina; Wu, Jing; Tiboldi, Akos; Hess, Moritz; Mitulovic, Goran; Kaun, Christoph; Krychtiuk, Konstantin Alexander; Wojta, Johann; Ullrich, Roman; Tretter, Eva Verena; Markstaller, Klaus; Klein, Klaus Ulrich

    2017-04-01

    Supplemental oxygen (O2) is used as adjunct therapy in anesthesia, emergency, and intensive care medicine. We hypothesized that excessive O2 levels (hyperoxia) can directly injure human adult cardiac myocytes (HACMs). HACMs obtained from the explanted hearts of transplantation patients were exposed to constant hyperoxia (95% O2), intermittent hyperoxia (alternating 10 min exposures to 5% and 95% O2), constant normoxia (21% O2), or constant mild hypoxia (5% O2) using a bioreactor. Changes in cell morphology, viability as assessed by lactate dehydrogenase (LDH) release and trypan blue (TB) staining, and secretion of vascular endothelial growth factor (VEGF), macrophage migration inhibitory factor (MIF), and various pro-inflammatory cytokines (interleukin, IL; chemokine C-X-C motif ligand, CXC; granulocyte-colony stimulating factor, G-CSF; intercellular adhesion molecule, ICAM; chemokine C-C motif ligand, CCL) were compared among treatment groups at baseline (0 h) and after 8, 24, and 72 h of treatment. Changes in HACM protein expression were determined by quantitative proteomic analysis after 48 h of exposure. Compared with constant normoxia and mild hypoxia, constant hyperoxia resulted in a higher TB-positive cell count, greater release of LDH, and elevated secretion of VEGF, MIF, IL-1β, IL-6, IL-8, CXCL-1, CXCL-10, G-CSF, ICAM-1, CCL-3, and CCL-5. Cellular inflammation and cytotoxicity gradually increased and was highest after 72 h of constant and intermittent hyperoxia. Quantitative proteomic analysis revealed that hypoxic and hyperoxic O2 exposure differently altered the expression levels of proteins involved in cell-cycle regulation, energy metabolism, and cell signaling. In conclusion, constant and intermittent hyperoxia induced inflammation and cytotoxicity in HACMs. Cell injury occurred earliest and was greatest after constant hyperoxia, but even relatively brief repeating hyperoxic episodes induced a substantial inflammatory response.

  12. Phospholemman Overexpression Inhibits Na+-K+-ATPase in Adult Rat Cardiac Myocytes: Relevance to Decreased Na+ pump Activity in Post-Infarction Myocytes

    PubMed Central

    Zhang, Xue-Qian; Moorman, J. Randall; Ahlers, Belinda A.; Carl, Lois L.; Lake, Douglas E.; Song, Jianliang; Mounsey, J. Paul; Tucker, Amy L.; Chan, Yiu-mo; Rothblum, Lawrence I.; Stahl, Richard C.; Carey, David J.; Cheung, Joseph Y.

    2005-01-01

    Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postinfarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by 2- and 4-fold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared to control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P<0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ concentrations ([K+]o). From −70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased Vmax without appreciable changes in Km for Na+ and K+ in PLM overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression since there were no changes in either protein or messenger RNA levels of either α1 or α2 isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM co-immunoprecipitated with α-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered Vmax but not Km of Na+-K+-ATPase in postinfarction rat myocytes. PMID:16195392

  13. Right ventricular outflow obstruction with intact ventricular septum in adults.

    PubMed Central

    Werner, A M; Darrell, J C; Pallegrini, R V; Woelfel, G F; Grant, K; Marrangoni, A G

    1997-01-01

    Cardiothoracic surgeons whose practice is limited to adults rarely see patients with right ventricular outflow obstruction and an intact ventricular septum. Of more than 10,000 open-heart procedures performed at our institution from 1983 to 1993 (in patients 18 to 75 years old), only 5 procedures were for correction of this problem. Both the pulmonary valve and the subvalvular area were abnormal in these 5 patients, and 4 of the 5 had subvalvular stenosis. The gradient across the right ventricular outflow tract was measured by cardiac catheterization before repair in all patients and averaged 118 mmHg. Various surgical approaches were used for repair. In the 2 patients whose pressures were measured postoperatively, the gradients were 25 mmHg and 45 mmHg, respectively. There were no operative deaths. At follow-up (range, 2 months to 5 years after surgery), all patients were in New York Heart Association functional class I and all had murmurs. Those who underwent echocardiography were found to have minimal gradients across the right ventricular outflow tract. Images PMID:9205983

  14. Isoprenaline, Ca2+ and the Na(+)-K+ pump in guinea-pig ventricular myocytes.

    PubMed Central

    Gao, J; Mathias, R T; Cohen, I S; Baldo, G J

    1992-01-01

    1. The whole-cell patch clamp technique was employed to study the effects of the beta-agonist isoprenaline (ISO) on the Na(+)=K+ pump current, Ip, in acutely isolated ventricular myocytes from guinea-pig hearts. Propranolol, a beta-adrenergic antagonist, was used to demonstrate that all of the effects of ISO, stimulatory or inhibitory, are mediated by beta-receptors. 2. Below about 150 nM [Ca2+]i, we find that ISO reduces Ip, while above this [Ca2+]i ISO increases Ip. The stimulatory and inhibitory effects of ISO on Ip are independent of either intracellular sodium ([Na+]i) or extracellular potassium ([K+]o). These results suggest that the end-effect of ISO is directly on the maximum pump turnover rate (Vmax) rather than indirectly through changes in [Na+]i or [K+]o or modulatory effects on Na+ or K+ affinity. 3. The maximum effect of ISO increases Ip by 25% when [Ca2+] is buffered at 1.4 microM. A half-maximal effect is reached at roughly 10 nM-ISO and a near-maximal effect by 0.5 microM. 4. The permeabilized patch technique, using amphotericin B (Horn & Marty, 1988; Rae, Cooper, Gates & Watsky, 1991), was employed to minimize changes in the normal second messenger systems and calcium buffers. In these experiments, we used a high intracellular sodium solution (pipette sodium was 50 mM), thus sodium-calcium exchange was depressed and we expected [Ca2+]i to be above 150 nM. ISO increases Ip in these conditions as in the dialysed cells. 5. Our results suggest that beta-stimulation can increase Ip, but only if [Ca2+]i is above about 150 nM. In the beating heart [Ca2+]i rises well above this value during systole and the average [Ca2+]i, which depends on heart rate, is expected to normally be above this level. During beta-stimulation, the increase in Ip along with a concomitant increase in IK (Giles, Nakajima, Ono & Shibata, 1989; Duchatelle-Gourdon, Hartzell & Lagrutta, 1989) helps prevent action potential lengthening and allows an increase in heart rate even in the

  15. Measuring and Modeling Chloride-Hydroxyl Exchange in the Guinea-Pig Ventricular Myocyte

    PubMed Central

    Niederer, S. A.; Swietach, P.; Wilson, D. A.; Smith, N. P.; Vaughan-Jones, R. D.

    2008-01-01

    Protons are powerful modulators of cardiac function. Their intracellular concentration is regulated by sarcolemmal ion transporters that export or import H+-ions (or their ionic equivalent: \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{HCO}}_{3}^{-},\\hspace{.167em}{\\mathrm{OH}}^{-}\\end{equation*}\\end{document}). One such transporter, which imports H+-equivalents, is a putative Cl−/OH− exchanger (CHE). A strong candidate for CHE is SLC26A6 protein, a product of the SLC26A gene family of anion transporters, which has been detected in murine heart. SLC26A6 protein is suggested to be an electrogenic \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}1{\\mathrm{Cl}}^{-}/2{\\mathrm{OH}}^{-}(2{\\mathrm{HCO}}_{3}^{-}\\end{equation*}\\end{document}) exchanger. Unfortunately, there is insufficient characterization of cardiac CHE against which the properties of heterologously expressed SLC26A6 can be matched. We therefore investigated the proton, Cl−, and voltage dependence of CHE activity in guinea-pig ventricular myocytes, using voltage-clamp, intracellular pH fluorescence, and mathematical modeling techniques. We find that CHE activity is tightly regulated by intracellular and extracellular pH, is voltage-insensitive over a wide range (±80 mV), and displays substrate dependence suggestive of electroneutral 1Cl−/1OH− exchange. These properties exclude electrogenic SLC26A6 as sole contributor to CHE. Either the SLC26A6 product in heart is electroneutral, or CHE comprises at

  16. Length-tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts.

    PubMed

    Cazorla, O; Le Guennec, J Y; White, E

    2000-05-01

    In vivo the sub-epicardial myocardium (EPI) and sub-endocardial myocardium (ENDO) operate over different ranges of sarcomere length (SL). However, it has not been previously shown whether EPI and ENDO work upon different ranges of the same or differing length-tension curves. We have compared the SL-tension relationship of intact, single ventricular EPI and ENDO myocytes from rat and ferret hearts. Cells were attached to carbon fibres of known compliance in order to stretch them and to record force at rest (passive tension) and during contractions (active tension). In both species, ENDO cells were significantly stiffer (i.e. had steeper SL-passive tension relationships) than EPI cells. Ferret ENDO cells had significantly steeper SL-active tension relationships than EPI cells; rat cells tended to behave similarly but no significant regional differences in active properties were observed. There were no inter-species differences in the active and passive properties of EPI cells, but ferret ENDO cells displayed significantly steeper passive and active SL-tension relationships than rat ENDO. We conclude that in vivo, ferret EPI and ENDO myocytes will function over different ranges of different SL-tension curves. There is a close relationship between SL and active tension (the Frank-Starling law of the heart), and our observations suggest that regional differences in the response to ventricular dilation will depend on both the change in SL and differing regional slopes of the SL-active tension curves.

  17. Altered ventricular torsion and transmural patterns of myocyte relaxation precede heart failure in aging F344 rats.

    PubMed

    Campbell, Stuart G; Haynes, Premi; Kelsey Snapp, W; Nava, Kristofer E; Campbell, Kenneth S

    2013-09-01

    The purpose of this study was to identify and explain changes in ventricular and cellular function that contribute to aging-associated cardiovascular disease in aging F344 rats. Three groups of female F344 rats, aged 6, 18, and 22 mo, were studied. Echocardiographic measurements in isoflurane-anesthetized animals showed an increase in peak left ventricular torsion between the 6- and the 18-mo-old groups that was partially reversed in the 22-mo-old animals (P < 0.05). Epicardial, midmyocardial, and endocardial myocytes were subsequently isolated from the left ventricles of each group of rats. Unloaded sarcomere shortening and Ca(2+) transients were then measured in these cells (n = >75 cells for each of the nine age-region groups). The decay time of the Ca(2+) transient and the time required for 50% length relaxation both increased with age but not uniformly across the three regions (P < 0.02). Further analysis revealed a significant shift in the transmural distribution of these properties between 18 and 22 mo of age, with the largest changes occurring in epicardial myocytes. Computational modeling suggested that these changes were due in part to slower Ca(2+) dissociation from troponin in aging epicardial myocytes. Subsequent biochemical assays revealed a >50% reduction in troponin I phosphoprotein content in 22-mo-old epicardium relative to the other regions. These data suggest that between 18 and 22 mo of age (before the onset of heart failure), F344 rats display epicardial-specific myofilament-level modifications that 1) break from the progression observed between 6 and 18 mo and 2) coincide with aberrant patterns of cardiac torsion.

  18. Altered ventricular torsion and transmural patterns of myocyte relaxation precede heart failure in aging F344 rats

    PubMed Central

    Campbell, Stuart G.; Haynes, Premi; Kelsey Snapp, W.; Nava, Kristofer E.

    2013-01-01

    The purpose of this study was to identify and explain changes in ventricular and cellular function that contribute to aging-associated cardiovascular disease in aging F344 rats. Three groups of female F344 rats, aged 6, 18, and 22 mo, were studied. Echocardiographic measurements in isoflurane-anesthetized animals showed an increase in peak left ventricular torsion between the 6- and the 18-mo-old groups that was partially reversed in the 22-mo-old animals (P < 0.05). Epicardial, midmyocardial, and endocardial myocytes were subsequently isolated from the left ventricles of each group of rats. Unloaded sarcomere shortening and Ca2+ transients were then measured in these cells (n = >75 cells for each of the nine age-region groups). The decay time of the Ca2+ transient and the time required for 50% length relaxation both increased with age but not uniformly across the three regions (P < 0.02). Further analysis revealed a significant shift in the transmural distribution of these properties between 18 and 22 mo of age, with the largest changes occurring in epicardial myocytes. Computational modeling suggested that these changes were due in part to slower Ca2+ dissociation from troponin in aging epicardial myocytes. Subsequent biochemical assays revealed a >50% reduction in troponin I phosphoprotein content in 22-mo-old epicardium relative to the other regions. These data suggest that between 18 and 22 mo of age (before the onset of heart failure), F344 rats display epicardial-specific myofilament-level modifications that 1) break from the progression observed between 6 and 18 mo and 2) coincide with aberrant patterns of cardiac torsion. PMID:23792678

  19. Local control of β-adrenergic stimulation: Effects on ventricular myocyte electrophysiology and Ca2+-transient1

    PubMed Central

    Heijman, Jordi; Volders, Paul G.A.; Westra, Ronald L.; Rudy, Yoram

    2011-01-01

    Local signaling domains and numerous interacting molecular pathways and substrates contribute to the whole-cell response of myocytes during β-adrenergic stimulation (βARS). We aimed to elucidate the quantitative contribution of substrates and their local signaling environments during βARS to the canine epicardial ventricular myocyte electrophysiology and calcium transient (CaT). We present a computational compartmental model of βARS and its electrophysiological effects. Novel aspects of the model include localized signaling domains, incorporation of β1 and β2 receptor isoforms, a detailed population-based approach to integrate the βAR and Ca2+/Calmodulin kinase (CaMKII) signaling pathways and their effects on a wide range of substrates that affect whole-cell electrophysiology and CaT. The model identifies major roles for phosphodiesterases, adenylyl cyclases, PKA and restricted diffusion in the control of local cAMP levels and shows that activation of specific cAMP domains by different receptor isoforms allows for specific control of action potential and CaT properties. In addition, the model predicts increased CaMKII activity during βARS due to rate-dependent accumulation and increased Ca2+ cycling. CaMKII inhibition, reduced compartmentation, and selective blockade of β1AR are predicted to reduce the occurrence of delayed afterdepolarizations during βARS. Finally, the relative contribution of each PKA substrate to whole-cell electrophysiology is quantified by comparing simulations with and without phosphorylation of each target. In conclusion, this model enhances our understanding of localized βAR signaling and its whole-cell effects in ventricular myocytes by incorporating receptor isoforms, multiple pathways and a detailed representation of multiple-target phosphorylation; it provides a basis for further studies of βARS under pathological conditions. PMID:21345340

  20. Simultaneous orientation and cellular force measurements in adult cardiac myocytes using three-dimensional polymeric microstructures.

    PubMed

    Zhao, Yi; Lim, Chee Chew; Sawyer, Douglas Brian; Liao, Ronglih; Zhang, Xin

    2007-09-01

    A number of techniques have been developed to monitor contractile function in isolated cardiac myocytes. While invaluable observations have been gained from these methodologies in understanding the contractile processes of the heart, they are invariably limited by their in vitro conditions. The present challenge is to develop innovative assays to mimic the in vivo milieu so as to allow a more physiological assessment of cardiac myocyte contractile forces. Here we demonstrate the use of a silicone elastomer, poly(dimethylsiloxane) (PDMS), to simultaneously orient adult cardiac myocytes in primary culture and measure the cellular forces in a three-dimensional substrate. The realignment of adult cardiac myocytes in long-term culture (7 days) was achieved due to directional reassembly of the myofibrils along the parallel polymeric sidewalls. The cellular mechanical forces were recorded in situ by observing the deformation of the micropillars embedded in the substrate. By coupling the cellular mechanical force measurements with on-chip cell orientation, this novel assay is expected to provide a means of a more physiological assessment of single cardiac myocyte contractile function and may facilitate the future development of in vitro assembled functional cardiac tissue.

  1. Two classes of gating current from L-type Ca channels in guinea pig ventricular myocytes

    PubMed Central

    1992-01-01

    Intramembrane charge movement was recorded in guinea pig ventricular myocytes at 19-22 degrees C using the whole-cell patch clamp technique. From a holding potential of -110 mV, the dependence of intramembrane charge moved on test voltage (Q(V)) followed the sum of two Boltzmann components. One component had a transition voltage (V) of -48 mV and a total charge (Qmax) of congruent to 3 nC/microF. The other had a V of - 18 mV and a Qmax of 11 nC/microF. Ba2+ currents through Ca channels began to activate at -45 mV and peaked at congruent to -15 mV. Na+ current peaked at -35 to -30 mV. Availability of charge (in pulses from -70 to +10 mV) depended on the voltage of conditioning depolarizations as two Boltzmann terms plus a constant. One term had a V of -88 mV and a Qmax of 2.5 nC/microF; the other had a V of -29 mV and a Qmax of 6.3 nC/microF. From the Q(V) dependence, the voltage dependence of the ionic currents, and the voltage dependence of the availability of charge, the low voltage term of Q(V) and availability was identified as Na gating charge, at a total of 3.5 nC/microF. The remainder, 11 nC/microF, was attributed to Ca channels. After pulses to -40 mV and above, the OFF charge movement had a slow exponentially decaying component. Its time constant had a bell-shaped dependence on OFF voltage peaking at 11 ms near -100 mV. Conditioning depolarizations above -40 mV increased the slow component exponentially with the conditioning duration (tau approximately equal to 480 ms). Its magnitude was reduced as the separation between conditioning and test pulses increased (tau approximately equal to 160 ms). The voltage distribution of the slow component of charge was measured after long (5 s) depolarizations. Its V was -100 mV, a shift of -80 mV from the value in normally polarized cells. This voltage was the same at which the time constant of the slow component peaked. Qmax and the steepness of the voltage distribution were unchanged by depolarization. This indicates

  2. Metabolic inhibition strongly inhibits Na+-dependent Mg2+ efflux in rat ventricular myocytes.

    PubMed

    Tashiro, Michiko; Inoue, Hana; Konishi, Masato

    2009-06-17

    We measured intracellular Mg2+ concentration ([Mg2+]i) in rat ventricular myocytes using the fluorescent indicator furaptra (25 degrees C). In normally energized cells loaded with Mg2+, the introduction of extracellular Na+ induced a rapid decrease in [Mg2+]i: the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) is thought to represent the rate of Na+-dependent Mg2+ efflux (putative Na+/Mg2+ exchange). To determine whether Mg2+ efflux depends directly on energy derived from cellular metabolism, in addition to the transmembrane Na+ gradient, we estimated the initial Delta[Mg2+]i/Deltat after metabolic inhibition. In the absence of extracellular Na+ and Ca2+, treatment of the cells with 1 microM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, an uncoupler of mitochondria, caused a large increase in [Mg2+]i from approximately 0.9 mM to approximately 2.5 mM in a period of 5-8 min (probably because of breakdown of MgATP and release of Mg2+) and cell shortening to approximately 50% of the initial length (probably because of formation of rigor cross-bridges). Similar increases in [Mg2+]i and cell shortening were observed after application of 5 mM potassium cyanide (KCN) (an inhibitor of respiration) for > or = 90 min. The initial Delta[Mg2+]i/Deltat was diminished, on average, by 90% in carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone-treated cells and 92% in KCN-treated cells. When the cells were treated with 5 mM KCN for shorter times (59-85 min), a significant decrease in the initial Delta[Mg2+]i/Deltat (on average by 59%) was observed with only a slight shortening of the cell length. Intracellular Na+ concentration ([Na+]i) estimated with a Na+ indicator sodium-binding benzofuran isophthalate was, on average, 5.0-10.5 mM during the time required for the initial Delta[Mg2+]i/Deltat measurements, which is well below the [Na+]i level for half inhibition of the Mg2+ efflux (approximately 40 mM). Normalization of intracellular pH using 10 micro

  3. Comparative effects of clarithromycin on action potential and ionic currents from rabbit isolated atrial and ventricular myocytes.

    PubMed

    Gluais, Pascale; Bastide, Michìle; Caron, Jacques; Adamantidis, Monique

    2003-04-01

    Prolongation of QT interval by several antibacterial drugs is an unwanted side effect that may be associated with development of ventricular arrhythmias. The macrolide antibacterial agent clarithromycin has been shown to cause QT prolongation. To determine the electrophysiologic basis for this arrhythmogenic potential, we investigated clarithromycin effects on (i). action potentials recorded from rabbit Purkinje fibers and atrial and ventricular myocardium using conventional microelectrodes and (ii). potassium and calcium currents recorded from rabbit atrial and ventricular isolated myocytes using whole-cell patch clamp recordings. We found that (i). clarithromycin (3-100 microM) exerted concentration-dependent lengthening effects on action potential duration in all tissues, with higher efficacy and reverse frequency-dependence in Purkinje fibers. However, clarithromycin did not cause development of early afterdepolarizations, and the parameters other than action potential duration were almost unaffected; (ii). clarithromycin (10-100 microM) reduced the delayed rectifier current. Significant blockade (approximately 30%) was found at the concentration of 30 microM. At 100 microM, it decreased significantly the maximum peak of the calcium current amplitude but failed to alter the transient outward and inwardly rectifier currents. It was concluded that these effects might be an explanation for the QT prolongation observed in some patients treated with clarithromycin.

  4. Acetaldehyde at clinically relevant concentrations inhibits inward rectifier potassium current I(K1) in rat ventricular myocytes.

    PubMed

    Bébarová, M; Matejovič, P; Šimurdová, M; Šimurda, J

    2015-01-01

    Considering the effects of alcohol on cardiac electrical behavior as well as the important role of the inward rectifier potassium current I(K1) in arrhythmogenesis, this study was aimed at the effect of acetaldehyde, the primary metabolite of ethanol, on I(K1) in rat ventricular myocytes. Acetaldehyde induced a reversible inhibition of I(K1) with IC(50) = 53.7+/-7.7 microM at -110 mV; a significant inhibition was documented even at clinically-relevant concentrations (at 3 microM by 13.1+/-3.0 %). The inhibition was voltage-independent at physiological voltages above -90 mV. The I(K1) changes under acetaldehyde may contribute to alcohol-induced alterations of cardiac electrophysiology, especially in individuals with a genetic defect of aldehyde dehydrogenase where the acetaldehyde level may be elevated.

  5. Azimilide causes reverse rate-dependent block while reducing both components of delayed-rectifier current in canine ventricular myocytes.

    PubMed

    Gintant, G A

    1998-06-01

    Most class III antiarrhythmic drugs reduce the rapidly activating component of delayed-rectifier current (IKr) without affecting the slowly activating component (IKs). Recently the novel antiarrhythmic agent azimilide (NE-10064) was reported to enhance IKs at low (nanomolar) concentrations and to block both IKr and IKs at higher (micromolar) concentrations. Further to understand the electrophysiologic effects of azimilide, we compared its effects on IKr and IKs (by using whole cell clamp techniques) and action potentials (microelectrode and perforated-patch techniques) on canine ventricular myocytes. A lower azimilide concentration (50 nM) did not enhance IKs. In contrast, a therapeutic azimilide concentration (2 microM) was equieffective in reducing IKr (300-ms isochrones) and IKs (3-s isochrones) by approximately 40% during depolarizing test pulses, as well as reducing IKr (38% decrease) and IKs (33% decrease) tail currents on repolarization. Block of IKs was independent of voltage at positive test potentials. In action-potential studies, 50 nM azimilide had no effect on the action-potential duration (APD), whereas 2 microM azimilide delayed repolarization and caused reverse rate-dependent effects on the APD. Whereas the extent of APD prolongation by azimilide was not correlated with the drug-free APD, azimilide preferentially exaggerated the APD-rate relationship of myocytes displaying the steepest APD-rate relationship under drug-free conditions. In conclusion, therapeutic concentrations of azimilide that cause comparable reduction of canine ventricular IKr and IKs exert reverse rate-dependent effects, which are dependent on the steepness of the APD-rate relationship.

  6. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure.

    PubMed

    Lu, Luyao; Xia, Ling; Ye, Xuesong; Cheng, Heping

    2010-05-26

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion-reaction equations presented by Izu et al (2001 Biophys. J. 80 103-20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca(2+) pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca(2+) leak in the form of Ca(2+) quarks, increase the probability of occurrence of spontaneous Ca(2+) waves even with smaller SR Ca(2+) stores, accelerate Ca(2+) wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca(2+) wave model under HF conditions provides a new view of Ca(2+) dynamics that could not be mimicked by adjusting traditional parameters involved in Ca(2+) release units and other ion channels, and contributes to understanding the underlying mechanism of HF.

  7. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure

    NASA Astrophysics Data System (ADS)

    Lu, Luyao; Xia, Ling; Ye, Xuesong; Cheng, Heping

    2010-06-01

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion-reaction equations presented by Izu et al (2001 Biophys. J. 80 103-20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca2+ pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca2+ leak in the form of Ca2+ quarks, increase the probability of occurrence of spontaneous Ca2+ waves even with smaller SR Ca2+ stores, accelerate Ca2+ wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca2+ wave model under HF conditions provides a new view of Ca2+ dynamics that could not be mimicked by adjusting traditional parameters involved in Ca2+ release units and other ion channels, and contributes to understanding the underlying mechanism of HF.

  8. beta-Adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to beta-adrenergic stimulation in failing human hearts.

    PubMed Central

    Koumi, S; Backer, C L; Arentzen, C E; Sato, R

    1995-01-01

    The beta-adrenergic modulation of the inwardly-rectifying K+ channel (IK1) was examined in isolated human ventricular myocytes using patch-clamp techniques. Isoproterenol (ISO) reversibly depolarized the resting membrane potential and prolonged the action potential duration. Under the whole-cell C1- -free condition, ISO applied via the bath solution reversibly inhibited macroscopic IdK1. The reversal potential of the ISO-sensitive current was shifted by approximately 60 mV per 10-fold change in the external K+ concentration and was sensitive to Ba2+. The ISO-induced inhibition of IK1 was mimicked by forskolin and dibutyrl cAMP, and was prevented by including a cAMP-dependent protein kinase (PKA) inhibitor (PKI) in the pipette solution. In single-channel recordings from cell-attached patches, bath applied ISO could suppress IK1 channels by decreasing open state probability. Bath application of the purified catalytic sub-unit of PKA to inside-out patches also inhibited IK1 and the inhibition could be antagonized by alkaline phosphatase. When beta-adrenergic modulation of IK1 was compared between ventricular myocytes isolated from the failing and the nonfailing heart, channel response to ISO and PKA was significantly reduced in myocytes from the failing heart. Although ISO inhibited IK1 in a concentration-dependent fashion in both groups, a half-maximal concentration was greater in failing (0.12 microM) than in nonfailing hearts (0.023 microM). These results suggest that IK1 in human ventricular myocytes can be inhibited by a PKA-mediated phosphorylation and the modulation is significantly reduced in ventricular myocytes from the failing heart compared to the nonfailing heart. Images PMID:8675658

  9. Effects of phorbol ester on contraction, intracellular pH and intracellular Ca2+ in isolated mammalian ventricular myocytes.

    PubMed Central

    MacLeod, K T; Harding, S E

    1991-01-01

    + then it is suggested that, like pHi regulation in sheep heart Purkinje fibres, pHi recovery in rat cardiac ventricular myocytes is mainly through sarcolemmal Na(+)-H+ exchange. We suggest that in the presence of TPA the Na(+)-H+ exchange is stimulated. 6. The relationship between pHi and cell shortening is non-linear as has been observed by others in whole tissue preparations. The presence of TPA shifts the relationship upwards such that at any one pHi, cell shortening is greater.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1822559

  10. Block of the delayed rectifier current (IK) by the 5-HT3 antagonists ondansetron and granisetron in feline ventricular myocytes.

    PubMed

    de Lorenzi, F G; Bridal, T R; Spinelli, W

    1994-10-01

    1. We investigated the effects of two 5-HT3 antagonists, ondansetron and granisetron, on the action potential duration (APD) and the delayed rectifier current (IK) of feline isolated ventricular myocytes. Whole-cell current and action potential recordings were performed at 37 degrees C with the patch clamp technique. 2. Ondansetron and granisetron blocked IK with a KD of 1.7 +/- 1.0 and 4.3 +/- 1.7 microM, respectively. At a higher concentration (30 microM), both drugs blocked the inward rectifier (IKl). 3. The block of IK was dependent on channel activation. Both drugs slowed the decay of IK tail currents and produced a crossover with the pre-drug current trace. These results are consistent with block and unblock from the open state of the channel. 4. Granisetron showed an intrinsic voltage-dependence as the block increased with depolarization. The equivalent voltage-dependency of block (delta) was 0.10 +/- 0.04, suggesting that granisetron blocks from the intracellular side at a binding site located 10% across the transmembrane electrical field. 5. Ondansetron (1 microM) and granisetron (3 microM) prolonged APD by about 30% at 0.5 Hz. The prolongation of APD by ondansetron was abolished at faster frequencies (3 Hz) showing reverse rate dependence. 6. In conclusion, the 5-HT3 antagonists, ondansetron and granisetron, are open state blockers of the ventricular delayed rectifier and show a clear class III action.

  11. Changes in intracellular calcium concentration influence beat-to-beat variability of action potential duration in canine ventricular myocytes.

    PubMed

    Kistamas, K; Szentandrassy, N; Hegyi, B; Vaczi, K; Ruzsnavszky, F; Horvath, B; Banyasz, T; Nanasi, P P; Magyar, J

    2015-02-01

    The aim of the present work was to study the influence of changes in intracellular calcium concentration ([Ca(2+)]i) on beat-to-beat variability (short term variability, SV) of action potential duration (APD) in isolated canine ventricular cardiomyocytes. Series of action potentials were recorded from enzymatically isolated canine ventricular cells using conventional microelectrode technique. Drug effects on SV were evaluated as relative SV changes determined by plotting the drug-induced changes in SV against corresponding changes in APD and comparing these data to the exponential SV-APD function obtained with inward and outward current injections. Exposure of myocytes to the Ca(2+) chelator BAPTA-AM (5 μM) decreased, while Ca(2+) ionophore A23187 (1 μM) increased the magnitude of relative SV. Both effects were primarily due to the concomitant changes in APD. Relative SV was reduced by BAPTA-AM under various experimental conditions including pretreatment with veratridine, BAY K8644, dofetilide or E-4031. Contribution of transient changes of [Ca(2+)]i due to Ca(2+) released from the sarcoplasmic reticulum (SR) was studied using 10 μM ryanodine and 1 μM cyclopiazonic acid: relative SV was reduced by both agents. Inhibition of the Na(+)-Ca(2+) exchanger by 1 μM SEA0400 increased relative SV. It is concluded that elevation of [Ca(2+)]i increases relative SV significantly. More importantly, Ca(2+) released from the SR is an important component of this effect.

  12. Frequency-dependent effects of 4-aminopyridine and almokalant on action-potential duration of adult and neonatal rabbit ventricular muscle.

    PubMed

    Elizalde, A; Barajas, H; Navarro-Polanco, R; Sánchez-Chapula, J

    1999-03-01

    The effects of 4-aminopyridine (1 mM) and almokalant (1 microM) on action-potential duration of neonatal and adult rabbit ventricular multicellular preparations and plateau membrane currents of single ventricular myocytes were studied. In adult ventricular preparations, 4-aminopyridine increased action-potential duration in a frequency-dependent manner, with a greater effect at low stimulation frequencies ("reverse" use dependence). In neonatal preparations, the increase in action-potential duration by 4-aminopyridine was significantly smaller than in adults, and the effect was frequency independent. Almokalant increased the action-potential duration more in neonatal than in adult myocytes. The effect of almokalant was frequency independent between 0.5 and 2 Hz. The block of transient outward current and delayed rectifier current in single myocytes was quantitatively similar. We propose that differences in the kinetic behavior of the transient outward current between adult and neonatal ventricular preparations, slower inactivation, and recovery from inactivation in adults determine differences in the frequency-dependent changes induced by 4-aminopyridine and almokalant on action-potential duration.

  13. A Computational Model Integrating Electrophysiology, Contraction, and Mitochondrial Bioenergetics in the Ventricular Myocyte

    PubMed Central

    Cortassa, Sonia; Aon, Miguel A.; O'Rourke, Brian; Jacques, Robert; Tseng, Hsiang-Jer; Marbán, Eduardo; Winslow, Raimond L.

    2006-01-01

    An intricate network of reactions is involved in matching energy supply with demand in the heart. This complexity arises because energy production both modulates and is modulated by the electrophysiological and contractile activity of the cardiac myocyte. Here, we present an integrated mathematical model of the cardiac cell that links excitation-contraction coupling with mitochondrial energy generation. The dynamics of the model are described by a system of 50 ordinary differential equations. The formulation explicitly incorporates cytoplasmic ATP-consuming processes associated with force generation and ion transport, as well as the creatine kinase reaction. Changes in the electrical and contractile activity of the myocyte are coupled to mitochondrial energetics through the ATP, Ca2+, and Na+ concentrations in the myoplasmic and mitochondrial matrix compartments. The pseudo steady-state relationship between force and oxygen consumption at various stimulus frequencies and external Ca2+ concentrations is reproduced in both model simulations and direct experiments in cardiac trabeculae under normoxic conditions, recapitulating the linearity between cardiac work and respiration in the heart. Importantly, the model can also reproduce the rapid time-dependent changes in mitochondrial NADH and Ca2+ in response to abrupt changes in workload. The steady-state and dynamic responses of the model were conferred by ADP-dependent stimulation of mitochondrial oxidative phosphorylation and Ca2+-dependent regulation of Krebs cycle dehydrogenases, illustrating how the model can be used as a tool for investigating mechanisms underlying metabolic control in the heart. PMID:16679365

  14. AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K(+) currents in ventricular myocytes following myocardial infarction.

    PubMed

    Nieves-Cintrón, Madeline; Hirenallur-Shanthappa, Dinesh; Nygren, Patrick J; Hinke, Simon A; Dell'Acqua, Mark L; Langeberg, Lorene K; Navedo, Manuel; Santana, Luis F; Scott, John D

    2016-07-01

    The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias. Although recent studies infer that calcineurin is activated by local and transient Ca(2+) signals the molecular mechanism that underlies the process is unclear in ventricular myocytes. Here we test the hypothesis that sequestering of calcineurin to the sarcolemma of ventricular myocytes by the anchoring protein AKAP150 is required for acute activation of NFATc3 and the concomitant down-regulation of Kv channels following MI. Biochemical and cell based measurements resolve that approximately 0.2% of the total calcineurin activity in cardiomyocytes is associated with AKAP150. Electrophysiological analyses establish that formation of this AKAP150-calcineurin signaling dyad is essential for the activation of the phosphatase and the subsequent down-regulation of Kv channel currents following MI. Thus AKAP150-mediated targeting of calcineurin to sarcolemmal micro-domains in ventricular myocytes contributes to the local and acute gene remodeling events that lead to the down-regulation of Kv currents.

  15. Hypertension-induced remodeling of cardiac excitation-contraction coupling in ventricular myocytes occurs prior to hypertrophy development.

    PubMed

    Chen-Izu, Ye; Chen, Ling; Bányász, Tamás; McCulle, Stacey L; Norton, Byron; Scharf, Steven M; Agarwal, Anuj; Patwardhan, Abhijit; Izu, Leighton T; Balke, C William

    2007-12-01

    Hypertension is a major risk factor for developing cardiac hypertrophy and heart failure. Previous studies show that hypertrophied and failing hearts display alterations in excitation-contraction (E-C) coupling. However, it is unclear whether remodeling of the E-C coupling system occurs before or after heart disease development. We hypothesized that hypertension might cause changes in the E-C coupling system that, in turn, induce hypertrophy. Here we tested this hypothesis by utilizing the progressive development of hypertensive heart disease in the spontaneously hypertensive rat (SHR) to identify a window period when SHR had just developed hypertension but had not yet developed hypertrophy. We found the following major changes in cardiac E-C coupling during this window period. 1) Using echocardiography and hemodynamics measurements, we found a decrease of left ventricular ejection fraction and cardiac output after the onset of hypertension. 2) Studies in isolated ventricular myocytes showed that myocardial contraction was also enhanced at the same time. 3) The action potential became prolonged. 4) The E-C coupling gain was increased. 5) The systolic Ca(2+) transient was augmented. These data show that profound changes in E-C coupling already occur at the onset of hypertension and precede hypertrophy development. Prolonged action potential and increased E-C coupling gain synergistically increase the Ca(2+) transient. Functionally, augmented Ca(2+) transient causes enhancement of myocardial contraction that can partially compensate for the greater workload to maintain cardiac output. The increased Ca(2+) signaling cascade as a molecular mechanism linking hypertension to cardiac hypertrophy development is also discussed.

  16. Activation of ATP-sensitive K+ channels by epoxyeicosatrienoic acids in rat cardiac ventricular myocytes

    PubMed Central

    Lu, Tong; Hoshi, Toshinori; Weintraub, Neal L; Spector, Arthur A; Lee, Hon-Chi

    2001-01-01

    We examined the effects of epoxyeicosatrienoic acids (EETs), which are cytochrome P450 metabolites of arachidonic acid (AA), on the activities of the ATP-sensitive K+ (KATP) channels of rat cardiac myocytes, using the inside-out patch-clamp technique. In the presence of 100 μm cytoplasmic ATP, the KATP channel open probability (Po) was increased by 240 ± 60% with 0.1 μm 11,12-EET and by 400 ± 54% with 5 μm 11,12-EET (n = 5 –10, P < 0.05 vs. control), whereas neither 5 μm AA nor 5 μm 11,12-dihydroxyeicosatrienoic acid (DHET), which is the epoxide hydrolysis product of 11,12-EET, had any effect on Po. The half-maximal activating concentration (EC50) was 18.9 ± 2.6 nm for 11,12-EET (n = 5) and 19.1 ± 4.8 nm for 8,9-EET (n = 5), P = n.s. vs. 11,12-EET). Furthermore, 11,12-EET failed to alter the inhibition of KATP channels by glyburide. Application of 11,12-EET markedly decreased the channel sensitivity to cytoplasmic ATP. The half-maximal inhibitory concentration of ATP (IC50) was increased from 21.2 ± 2.0 μm at baseline to 240 ± 60 μm with 0.1 μm 11,12-EET (n = 5, P < 0.05 vs. control) and to 780 ± 30 μm with 5 μm 11,12-EET (n = 11, P < 0.05vs. control). Increasing the ATP concentration increased the number of kinetically distinguishable closed states, promoting prolonged closure durations. 11,12-EET antagonized the effects of ATP on the kinetics of the KATP channels in a dose and voltage-dependent manner. 11,12-EET (1 μm) reduced the apparent association rate constant of ATP to the channel by 135-fold. Application of 5 μm 11,12-EET resulted in hyperpolarization of the resting membrane potential in isolated cardiac myocytes, which could be blocked by glyburide. These results suggest that EETs are potent activators of the cardiac KATP channels, modulating channel behaviour by reducing the channel sensitivity to ATP. Thus, EETs could be important endogenous regulators of cardiac electrical excitability. PMID:11744757

  17. Effects of divalent cations on the E-4031-sensitive repolarization current, I(Kr), in rabbit ventricular myocytes.

    PubMed Central

    Paquette, T; Clay, J R; Ogbaghebriel, A; Shrier, A

    1998-01-01

    The effects of divalent cations on the E-4031-sensitive repolarization current (I(Kr)) were studied in single ventricular myocytes isolated from rabbit hearts. One group of divalent cations (Cd2+, Ni2+, Co2+, and Mn2+) produced a rightward shift of the I(Kr) activation curve along the voltage axis, increased the maximum I(Kr) amplitude (i.e., relieved the apparent inward rectification of the channel), and accelerated I(Kr) tail current kinetics. Another group (Ca2+, Mg2+ and Sr2+) had relatively little effect on I(Kr). The only divalent cation that blocked I(Kr) was Zn2+ (0.1-1 mM). Under steady-state conditions, Ba2+ caused a substantial block of I(K1) as previously reported. However, block by Ba2+ was time dependent, which precluded a study of Ba2+ effects on I(Kr). We conclude that the various effects of the divalent cations can be attributed to interactions with distinct sites associated with the rectification and/or inactivation mechanism of the channel. PMID:9512025

  18. [Inhibition of guan-fu base A on delayed rectifier current (Ik) in guinea pig ventricular myocytes].

    PubMed

    Wang, Y P; Chen, W Z; Wang, X L; Hua, Z

    1996-01-01

    Guan-fu base A (GFA) is a terpenoid alkaloid isolated from the tuber of Aconitum coreanum, which has been shown to prolong cardiac repolarization in vivo and in vitro. In the present study, the effects of GFA on the delayed rectifier current (Ik) were investigated using the whole cell patch-clamp technique in isolated guinea pig ventricular myocytes. In the presence of CdCl2 100 mumol.L-1, Ik was observed upon depolarizing pulses to +50 mV from a holding potential -40 mV for variable duration (550, 1100, 1650, 2200, 2750, 3300, 3850 ms). The magnitude of Ik after a 2200 ms pulse was 293 +/- 90 pA prior to drug and 227 +/- 59 pA in the presence of GFA 100 mumol.L-1. In a 3850 ms pulse, the magnitude of Ik decreased from 290 +/- 90 to 231 +/- 66 pA after exposure to GFA. The inhibitory effects of GFA on Ik was not dependent on the duration of depolarization. The inward rectifier current (Ik1) was not affected by GFA 100 mumol.L-1. It is concluded that GFA has inhibitory effects on Ik, which may contribute to its prolongation of cardiac repolarization.

  19. Alteration of the L-type calcium current in guinea-pig single ventricular myocytes by heptaminol hydrochloride.

    PubMed Central

    Peineau, N.; Mongo, K. G.; Le Guennec, J. Y.; Garnier, D.; Argibay, J. A.

    1992-01-01

    1. The effects of heptaminol on calcium current amplitude and characteristics were studied in single ventricular myocytes of guinea-pig by use of the whole cell configuration of the patch clamp technique. 2. A concentration-dependent decrease in ICa amplitude was observed. At heptaminol concentration as low as 10(-6) M, this effect was observed in only two cells (n = 6). At 10(-5) M the reduction of ICa was of 30 +/- 15% (n = 11). 3. The current recovery from inactivation at -40 mV holding potential (HP) seemed less sensitive to perfusion with heptaminol (greater than 10(-6) M). However, at -80 mV HP the overshoot of the recovery curve was decreased by heptaminol. 4. Both at -40 mV and -80 mV HP, heptaminol (10(-5) M) significantly increased the steady state inactivation of ICa. 5. As previously proposed by others to explain the effects of membrane active substances, the effects of heptaminol may result from alterations in cell membrane properties and possibly from an increase in intracellular free calcium ion concentration. PMID:1422567

  20. H2 and H3 relaxin inhibit high glucose-induced apoptosis in neonatal rat ventricular myocytes.

    PubMed

    Zhang, Xiaohui; Ma, Xiao; Zhao, Meng; Zhang, Bo; Chi, Jinyu; Liu, Wenxiu; Chen, Wenjia; Fu, Yu; Liu, Yue; Yin, Xinhua

    2015-01-01

    High concentrations of glucose induce cardiomyocyte apoptosis, and contribute to diabetic cardiomyopathy. Relaxin-2 and relaxin-3 are two members of the relaxin peptide family that are cardioprotective. However, it remains unknown whether relaxin-2 or relaxin-3 can regulate apoptosis in high glucose treated-neonatal rat ventricular myocytes (NRVMs). In cultured NRVMs, 33 mmol/l high glucose (HG) increased apoptosis in a time-dependent manner. HG-increased the protein expression of cleaved caspase-8 and -9, two initiators of the extrinsic and intrinsic pathways of apoptosis, Caspase-3 was attenuated by human recombinant relaxin-2 (H2 relaxin) or relaxin-3 (H3 relaxin), indicating that H2 and H3 relaxin inhibited HG-induced apoptosis. Furthermore, endoplasmic reticulum stress (ERS) markers CHOP and caspase-12 were markedly increased in HG-treated NRVMs, leading to apoptosis; this effect was also effectively attenuated by H2 relaxin or H3 relaxin. Treatment of NRVMs with HG reduced autophagy which cannot be adjusted by H2 relaxin or H3 relaxin. In conclusion, HG-induced apoptosis in NRVMs was mediated, in part, by the activation of the extrinsic and intrinsic pathways of apoptosis and ERS, all inhibited by H2 relaxin or H3 relaxin.

  1. Constitutive Intracellular Na+ Excess in Purkinje Cells Promotes Arrhythmogenesis at Lower Levels of Stress Than Ventricular Myocytes From Mice With Catecholaminergic Polymorphic Ventricular Tachycardia

    PubMed Central

    Willis, B. Cicero; Pandit, Sandeep V.; Ponce-Balbuena, Daniela; Zarzoso, Manuel; Guerrero-Serna, Guadalupe; Limbu, Bijay; Deo, Makarand; Camors, Emmanuel; Ramirez, Rafael J.; Mironov, Sergey; Herron, Todd J.; Valdivia, Héctor H.

    2016-01-01

    Background— In catecholaminergic polymorphic ventricular tachycardia (CPVT), cardiac Purkinje cells (PCs) appear more susceptible to Ca2+ dysfunction than ventricular myocytes (VMs). The underlying mechanisms remain unknown. Using a CPVT mouse (RyR2R4496C+/Cx40eGFP), we tested whether PC intracellular Ca2+ ([Ca2+]i) dysregulation results from a constitutive [Na+]i surplus relative to VMs. Methods and Results— Simultaneous optical mapping of voltage and [Ca2+]i in CPVT hearts showed that spontaneous Ca2+ release preceded pacing-induced triggered activity at subendocardial PCs. On simultaneous current-clamp and Ca2+ imaging, early and delayed afterdepolarizations trailed spontaneous Ca2+ release and were more frequent in CPVT PCs than CPVT VMs. As a result of increased activity of mutant ryanodine receptor type 2 channels, sarcoplasmic reticulum Ca2+ load, measured by caffeine-induced Ca2+ transients, was lower in CPVT VMs and PCs than respective controls, and sarcoplasmic reticulum fractional release was greater in both CPVT PCs and VMs than respective controls. [Na+]i was higher in both control and CPVT PCs than VMs, whereas the density of the Na+/Ca2+ exchanger current was not different between PCs and VMs. Computer simulations using a PC model predicted that the elevated [Na+]i of PCs promoted delayed afterdepolarizations, which were always preceded by spontaneous Ca2+ release events from hyperactive ryanodine receptor type 2 channels. Increasing [Na+]i monotonically increased delayed afterdepolarization frequency. Confocal imaging experiments showed that postpacing Ca2+ spark frequency was highest in intact CPVT PCs, but such differences were reversed on saponin-induced membrane permeabilization, indicating that differences in [Na+]i played a central role. Conclusions— In CPVT mice, the constitutive [Na+]i excess of PCs promotes triggered activity and arrhythmogenesis at lower levels of stress than VMs. PMID:27169737

  2. Underlying mechanisms of symmetric calcium wave propagation in rat ventricular myocytes.

    PubMed Central

    Subramanian, S; Viatchenko-Karpinski, S; Lukyanenko, V; Györke, S; Wiesner, T F

    2001-01-01

    Calcium waves in heart cells are mediated by diffusion-coupled calcium-induced calcium release. The waves propagate in circular fashion. This is counterintuitive in view of the accepted ultrastructure of the cardiac myocyte. The density of calcium release sites in the transverse direction is four times higher than in the longitudinal direction. Simulations with release sites localized along Z-lines and isotropic diffusion yielded highly elliptical, nonphysiological waves. We hypothesized that subcellular organelles counteracted the higher release site density along the Z-lines by acting as transverse diffusion barriers and sites of active calcium uptake. We quantified the reduction of transverse diffusion by microinjecting cells with the nonreactive dye fluorescein. The ratio of the radial diffusion coefficient to the longitudinal coefficient was 0.39. Inhibition of mitochondrial uptake by rotenone accelerated the wave in the transverse direction. Simulations with release sites clustered at the Z-lines and a transverse diffusion coefficient 50% of the longitudinal coefficient generated waves of ellipticity 2/1 (major axis along the Z-line). Introducing additional release sites between the Z-lines at a density 20% of that on the Z-lines produced circular waves. The experiments and simulations support the presence of transverse diffusion barriers, additional uptake sites, and possibly intermediate release sites as well. PMID:11159379

  3. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes.

    PubMed

    Cardona, Karen; Trenor, Beatriz; Giles, Wayne R

    2016-01-01

    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase.

  4. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes

    PubMed Central

    Giles, Wayne R.

    2016-01-01

    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O’Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase. PMID:27875582

  5. Optimal range for parvalbumin as relaxing agent in adult cardiac myocytes: gene transfer and mathematical modeling.

    PubMed Central

    Coutu, Pierre; Metzger, Joseph M

    2002-01-01

    Parvalbumin (PV) has recently been shown to increase the relaxation rate when expressed in intact isolated cardiac myocytes via adenovirus gene transfer. We report here a combined experimental and mathematical modeling approach to determine the dose-response and the sarcomere length (SL) shortening-frequency relationship of PV in adult rat cardiac myocytes in primary culture. The dose-response was obtained experimentally by observing the PV-transduced myocytes at different time points after gene transfer. Calcium transients and unloaded mechanical contractions were measured. The results were as follows. At low estimated [PV] (approximately 0.01 mM), contractile parameters were unchanged; at intermediate [PV], relaxation rate of the mechanical contraction and the decay rate of the calcium transient increased with little effects on amplitude; and at high [PV] (approximately 0.1 mM), relaxation rate was further increased, but the amplitudes of the mechanical contraction and the calcium transient were diminished when compared with control myocytes. The SL shortening-frequency relationship exhibited a biphasic response to increasing stimulus frequency in controls (decrease in amplitude and re-lengthening time from 0.2 to 1.0 Hz followed by an increase in these parameters from 2.0 to 4.0 Hz). The effect of PV was to flatten this frequency response. This flattening effect was partly explained by a reduction in the variation in fractional binding of PV to calcium during beats at high frequency. In conclusion, experimental results and mathematical modeling indicate that there is an optimal PV range for which relaxation rate is increased with little effect on contractile amplitude and that PV effectiveness decreases as the stimulus frequency increases. PMID:11964244

  6. Long-Chain Fatty Acids Activate Calcium Channels in Ventricular Myocytes

    NASA Astrophysics Data System (ADS)

    Huang, James Min-Che; Xian, Hu; Bacaner, Marvin

    1992-07-01

    Nonesterified fatty acids accumulate at sites of tissue injury and necrosis. In cardiac tissue the concentrations of oleic acid, arachidonic acid, leukotrienes, and other fatty acids increase greatly during ischemia due to receptor or nonreceptor-mediated activation of phospholipases and/or diminished reacylation. In ischemic myocardium, the time course of increase in fatty acids and tissue calcium closely parallels irreversible cardiac damage. We postulated that fatty acids released from membrane phospholipids may be involved in the increase of intracellular calcium. We report here that low concentrations (3-30 μM) of each long-chain unsaturated (oleic, linoleic, linolenic, and arachidonic) and saturated (palmitic, stearic, and arachidic) fatty acid tested induced multifold increases in voltage-dependent calcium currents (ICa) in cardiac myocytes. In contrast, neither short-chain fatty acids (<12 carbons) or fatty acid esters (oleic and palmitic methyl esters) had any effect on ICa, indicating that activation of calcium channels depended on chain length and required a free carboxyl group. Inhibition of protein kinases C and A, G proteins, eicosanoid production, or nonenzymatic oxidation did not block the fatty acid-induced increase in ICa. Thus, long-chain fatty acids appear to directly activate ICa, possibly by acting at some lipid sites near the channels or directly on the channel protein itself. We suggest that the combined effects of fatty acids released during ischemia on ICa may contribute to ischemia-induced pathogenic events on the heart that involve calcium, such as arrhythmias, conduction disturbances, and myocardial damage due to cytotoxic calcium overload.

  7. Nongenomic steroid action: Inhibiting effects on cell-to-cell communication between rat ventricular myocytes.

    PubMed

    Verrecchia, F; Sarrouilhe, D; Hervé, J C

    2001-01-01

    Numerous steroids are now believed to possess rapid membrane effects independent of the classical gene activation pathways and are potent modulators of membrane proteins, including voltage-and ligand-operated channels. The effects of steroids on the functional state of the intercellular channels clustered in gap junctions were compared by estimation of either the permeability for a fluorescent dye or the electrical conductance in cardiac myocytes of newborn rat. At 25 muM, the esters of 17beta-estradiol, testosterone and two other androgen hormones rapidly abolished cell-to-cell communication, whereas none of the longer chain steroids, belonging to pregnane (17alpha-hydroxypregnenolone, hydrocortisone), sterol (cholesterol, 25-hydroxycholesterol), bile acid (cholic and lithocholic acids) and vitamin (D3) families, lowered the junctional permeability. Altogether, no correlation with the presence or position of double bonds nor with the trans- or cis-fusion of the A and B rings was recognized. Esterification was a prerequisite for the activity of extracellularly applied steroids but the number, nature and position of ester chain(s) had no influence. 17beta-estradiol or testosterone effects were not prevented when cells were prein-cubated with blockers of the estrogen or androgen nuclear receptors (tamoxifen and cyproterone acetate, respectively). This, together with the rapid time course of the steroid effect (complete within a few minutes), in a rather high active concentration range, suggests a nongenomic mechanism of action. The reversible uncoupling effect of steroids appears to be independent of the shape of the molecules and more probably related to their size and lipo-solubility, which condition their insertion into the lipid bilayer and their subsequent disturbing effects.

  8. Effects of total flavones from Acanthopanax senticosus on L-type calcium channels, calcium transient and contractility in rat ventricular myocytes.

    PubMed

    Guan, Shengjiang; Ma, Juanjuan; Chu, Xi; Gao, Yonggang; Zhang, Ying; Zhang, Xuan; Zhang, Fenghua; Liu, Zhenyi; Zhang, Jianping; Chu, Li

    2015-04-01

    Acanthopanax senticosus (Rupr. et Maxim.) Harms (AS), a traditional herbal medicine, has been widely used to treat ischemic heart disease. However, the underlying cellular mechanisms of its benefits to cardiac function remain unclear. The present study examined the effects of total flavones from AS (TFAS) on L-type Ca(2+) channel currents (ICa-L ) using the whole cell patch-clamp technique and on intracellular calcium ([Ca(2+) ]i ) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge-detection system. Exposure to TFAS resulted in a concentration- and voltage-dependent blockade of ICa-L , with the half-maximal inhibitory concentration (IC50 ) of 283.12 µg/mL and the maximal inhibitory effect of 36.49 ± 1.95%. Moreover, TFAS not only increased the maximum current in the current-voltage relationship but also shifted the activation and inactivation curves of ICa-L toward the hyperpolarizing direction. Meanwhile, TFAS significantly reduced amplitudes of myocyte shortening and [Ca(2+) ]i with an increase in the time to 10% of the peak (Tp) and a decrease in the time to 10% of the baseline (Tr). Thus, the cardioprotective effects of TFAS may be attributed mainly to the attenuation of [Ca(2+) ]i through the direct inhibition of ICa-L in rat ventricular myocytes and consequent negative effect on myocardial contractility.

  9. Trypsin and alpha-chymotrypsin treatment abolishes glibenclamide sensitivity of KATP channels in rat ventricular myocytes.

    PubMed

    Nichols, C G; Lopatin, A N

    1993-03-01

    Cytoplasmic trypsin-treatment of voltage-sensitive potassium channels has been shown to cleave domains of the channel responsible for inactivation of the channel. Trypsin has also been reported to remove slow, irreversible inactivation, or run-down in ATP-sensitive potassium (KATP) channels. Cytoplasmic treatment of rat ventricular KATP channels with either crude, or pure trypsin (1-2 mg/ml) failed to prevent a slow run-down of channel activity. However, trypsin (porcine pancreatic type IX, or type II (Sigma Chem. Co.), or alpha-chymotrypsin (Sigma Chem. Co.) rapidly and irreversibly removed, or substantiallly decreased glibenclamide and tolbutamide-sensitivity of the channels without removing sensitivity to ATP. We conclude that glibenclamide must bind to either a separate protein, or to a separate domain on the channel in order to effect channel inhibition, and this domain is functionally disconnected from the channel by trypsin-, or alpha-chymotrypsin treatment.

  10. Asynchronous activation of calcium and potassium currents by isoproterenol in canine ventricular myocytes.

    PubMed

    Ruzsnavszky, Ferenc; Hegyi, Bence; Kistamás, Kornél; Váczi, Krisztina; Horváth, Balázs; Szentandrássy, Norbert; Bányász, Tamás; Nánási, Péter P; Magyar, János

    2014-05-01

    Adrenergic activation of L-type Ca(2+) and various K(+) currents is a crucial mechanism of cardiac adaptation; however, it may carry a substantial proarrhythmic risk as well. The aim of the present work was to study the timing of activation of Ca(2+) and K(+) currents in isolated canine ventricular cells in response to exposure to isoproterenol (ISO). Whole cell configuration of the patch-clamp technique in either conventional voltage clamp or action potential voltage clamp modes were used to monitor I(Ca), I(Ks), and I(Kr), while action potentials were recorded using sharp microelectrodes. ISO (10 nM) elevated the plateau potential and shortened action potential duration (APD) in subepicardial and mid-myocardial cells, which effects were associated with multifold enhancement of I(Ca) and I(Ks) and moderate stimulation of I(Kr). The ISO-induced plateau shift and I(Ca) increase developed faster than the shortening of APD and stimulation of I(Ks) and I(Kr). Blockade of β1-adrenoceptors (using 300 nM CGP-20712A) converted the ISO-induced shortening of APD to lengthening, decreased its latency, and reduced the plateau shift. In contrast, blockade of β2-adrenoceptors (by 50 nM ICI 118,551) augmented the APD-shortening effect and increased the latency of plateau shift without altering its magnitude. All effects of ISO were prevented by simultaneous blockade of both receptor types. Inhibition of phosphodiesterases decreased the differences observed in the turn on of the ISO-induced plateau shift and APD shortening. ISO-induced activation of I(Ca) is turned on faster than the stimulation of I(Ks) and I(Kr) in canine ventricular cells due to the involvement of different adrenergic pathways and compartmentalization.

  11. Acute Reversal of Phospholamban Inhibition Facilitates the Rhythmic Whole-cell Propagating Calcium Waves in Isolated Ventricular Myocytes

    PubMed Central

    Chan, Yi-Hsin; Tsai, Wei-Chung; Song, Zhen; Ko, Christopher Y.; Qu, Zhilin; Weiss, James N.; Lin, Shien-Fong; Chen, Peng-Sheng; Jones, Larry R.; Chen, Zhenhui

    2015-01-01

    Phospholamban (PLB) inhibits the activity of cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a). Phosphorylation of PLB during sympathetic activation reverses SERCA2a inhibition, increasing SR Ca2+ uptake. However, sympathetic activation also modulates multiple other intracellular targets in ventricular myocytes (VMs), making it impossible to determine the specific effects of reversal of PLB inhibition on the spontaneous SR Ca2+ release. Therefore, it remains unclear how PLB regulates rhythmic activity in VMs. Here we used the Fab fragment of 2D12, a monoclonal anti-PLB antibody, to test how acute reversal of PLB inhibition affects the spontaneous SR Ca2+ release in normal VMs. Ca2+ sparks and spontaneous Ca2+ waves (SCWs) were recorded in the line-scan mode of confocal microscopy using the Ca2+ fluorescent dye Fluo-4 in isolated permeabilized mouse VMs. Fab, which reverses PLB inhibition, significantly increased the frequency, amplitude, and spatial/temporal spread of Ca2+ sparks in VMs exposed to 50 nM free [Ca2+]. At physiological diastolic free [Ca2+] (100–200 nM), Fab facilitated the formation of whole-cell propagating SCWs. At higher free [Ca2+], Fab increased the frequency and velocity, but decreased the decay time of the SCWs. cAMP had little additional effect on the frequency or morphology of Ca2+ sparks or SCWs after Fab addition. These findings were complemented by computer simulations. In conclusion, acute reversal of PLB inhibition alone significantly increased the spontaneous SR Ca2+ release, leading to the facilitation and organization of whole-cell propagating SCWs in normal VMs. PLB thus plays a key role in subcellular Ca2+ dynamics and rhythmic activity of VMs. PMID:25596331

  12. Effects of acidosis and NO on nicorandil-activated KATP channels in guinea-pig ventricular myocytes

    PubMed Central

    Moncada, Gustavo A; Kishi, Yukio; Numano, Fujio; Hiraoka, Masayasu; Sawanobori, Tohru

    2000-01-01

    Nicorandil is a hybrid compound of K+ channel opener and nitrate. We investigated a possible interaction of acidosis and nitric oxide (NO)-donors on the nicorandil-activated ATP-sensitive K+ channel (KATP) in guinea-pig ventricular myocytes using the patch-clamp technique.In whole-cell recordings, external application of 300 μM nicorandil activated KATP in the presence of 2 mM intracellular ATP concentration ([ATP]i) at external pH (pHo) 7.4, but the activated current was decreased by reducing pHo to 6.5–6.0.Single-channel recordings of inside-out patches revealed decreased open-state probability (Po) of KATP activated by nicorandil with reducing internal pH (pHi) from 7.2 to 6.0, whilst the channel activity increased at low pHi in the absence of nicorandil.Application of NO donors, 1 mM-sodium nitroprusside (SNP) or -NOR-3 to the membrane cytoplasmic side at pHi 7.2 increased the channel activity but decreased it at pHi 6.5–6.0. Neither removal of the drugs nor application of NO-scavengers reversed depression of channel activity induced by NO-donors.We conclude that an increase in pHo and pHi depresses rather than stimulates the nicorandil-activated KATP. Since NO-donors at low pHi exhibited a similar trend, involvement of H+ and NO interaction can be considered as a mechanism of decreased KATP activated by nicorandil. PMID:11082116

  13. p21-activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes

    PubMed Central

    DeSantiago, Jaime; Bare, Dan J; Xiao, Lei; Ke, Yunbo; Solaro, R. John; Banach, Kathrin

    2014-01-01

    Ischemic conditions reduce the activity of the p21-activated kinase (Pak1) resulting in increased arrhythmic activity. Triggered arrhythmic activity during ischemia is based on changes in cellular ionic balance and the cells Ca2+ handling properties. In the current study we used isolated mouse ventricular myocytes (VMs) deficient for the expression of Pak1 (Pak1-/-) to determine the mechanism by which Pak1 influences the generation of arrhythmic activity during simulated ischemia. The Ca2+ transient amplitude and kinetics did not significantly change in wild type (WT) and Pak1-/- VMs during 15 min of simulated ischemia. However, Pak1-/- VMs exhibited an exaggerated increase in [Ca2+]i, which resulted in spontaneous Ca2+ release events and waves. The Ca2+ overload in Pak1-/- VMs could be suppressed with a reverse mode blocker (KB-R7943) of the sodium calcium exchanger (NCX), a cytoplasmic scavenger of reactive oxygen species (ROS; TEMPOL) or a RAC1 inhibitor (NSC23766). Measurements of the cytoplasmic ROS levels revealed that decreased Pak1 activity in Pak1-/- VMs or VMs treated with the Pak1 inhibitor (IPA3) enhanced cellular ROS production. The Pak1 dependent increase in ROS was attenuated in VMs deficient for NADPH oxidase 2 (NOX2; p47phox-/-) or in VMs where NOX2 was inhibited (gp91ds-tat). Voltage clamp recordings showed increased NCX activity in Pak1-/- VMs that depended on enhanced NOX2 induced ROS production. The exaggerated Ca2+ overload in Pak1-/- VMs could be mimicked by low concentrations of ouabain. Overall our data show that Pak1 is a critical negative regulator of NOX2 dependent ROS production and that a latent ROS dependent stimulation of NCX activity can predispose VMs to Ca2+ overload under conditions where no significant changes in excitation-contraction coupling are yet evident. PMID:24380729

  14. On the role of sodium ions in the regulation of the inward-rectifying potassium conductance in cat ventricular myocytes

    PubMed Central

    1989-01-01

    The conductance of the inward-rectifying K+ current (IK1) in isolated cat ventricular myocytes is decreased by reducing the extracellular Na+ concentration. Using a whole-cell patch-clamp technique, possible mechanisms underlying this Na+ dependence were investigated. These included (a) block of inward K+ current by the Na+ substitute, (b) changes in membrane surface charge associated with removal of extracellular Na+, (c) increases of intracellular Ca2+ due to suppression of Na-Ca exchange, (d) reduction of a Na+-dependent K+ conductance due to a subsequent decrease of intracellular Na+, (e) reduction of IK1 conductance (gK1) associated with reduction of intracellular pH due to suppression of Na-proton exchange. The findings support the hypothesis that the effect of removing Na+ is mediated through a decrease in intracellular pH. These include observations that: (a) reducing internal pH by reducing external pH caused a decrease in gK1, and the conductance changes caused by reducing extracellular pH and removing extracellular Na+ were not additive: (b) the effect of reducing pHo was attenuated by dialyzing with a low pH internal solution; (c) gK1 was reduced by exposure to the Na-proton exchange inhibitor dimethylamiloride, and this effect was absent in the absence of Na+. These findings imply that physiological or pathological processes such as ischemia and metabolic or respiratory acidosis which can produce intracellular acidosis should be expected to affect K+ permeation through the IK1 channel. PMID:2794968

  15. Chronic treatment with Carvedilol improves ventricular function and reduces myocyte apoptosis in an animal model of heart failure

    PubMed Central

    Okafor, Chukwuka C; Perreault-Micale, Cynthia; Hajjar, Roger J; Lebeche, Djamel; Skiroman, Klara; Jabbour, George; Doye, Angelia A; Lee, Michael X; Laste, Nancy; Gwathmey, Judith K

    2003-01-01

    Background β-blocker treatment has emerged as an effective treatment modality for heart failure. Interestingly, β-blockers can activate both pro-apoptotic and anti-apoptotic pathways. Nevertheless, the mechanism for improved cardiac function seen with β-blocker treatment remains largely unknown. Carvedilol is a non-selective β-blocker with α-receptor blockade and antioxidant properties. We therefore studied the impact of the effects of carvedilol in an animal model of end-stage heart failure. Results To test whether chronic treatment with β-blockade decreases apoptosis, we treated myopathic turkeys with two dosages of carvedilol, 1 mg/kg (DCM1) and 20 mg/kg (DCM20), for four weeks and compared them to non-treated DCM animals (DCM0) and to control turkeys (CON). Echocardiographic measurements showed that non-treated DCM animals had a significantly lower fractional shortening (FS) when compared to CON (68.73 ± 1.37 vs. 18.76 ± 0.59%, p < 0.001). Both doses of carvedilol significantly improved FS (33.83 ± 10.11 and 27.73 ± 6.18% vs. 18.76 ± 0.59 % for untreated DCM, p < 0.001). DCM left ventricles were characterized by a higher percentage of apoptotic nuclei when compared to CON (5.64 ± 0.49 vs. 1.72 ± 0.12%, respectively p < 0.001). Both doses of carvedilol significantly reduced the number of apoptotic nuclei (2.32 ± 0.23% and 2.36 ± 0.26% 1 mg and 20 mg/kg respectively). Conclusions Carvedilol improves ventricular function. Furthermore, treatment with carvedilol decreased the incidence of apoptosis in cardiac myocytes from failing hearts at both doses. These data suggest that the inhibition of apoptosis with carvedilol may lead to improvement in ventricular function and may underlie a beneficial effect of β-blockade independent of heart rate lowering effects. PMID:12873352

  16. Ventricular myocyte injury by high-intensity electric field: Effect of pulse duration.

    PubMed

    Prado, Luiza Ns; Goulart, Jair T; Zoccoler, Marcelo; Oliveira, Pedro X

    2016-04-01

    Although high-intensity electric fields (HEF) application is currently the only effective therapy available to terminate ventricular fibrillation, it may cause injury to cardiac cells. In this study we determined the relation between HEF pulse length and cardiomyocyte lethal injury. We obtained lethality curves by survival analysis, which were used to determine the value of HEF necessary to kill 50% of cells (E50) and plotted a strength-duration (SxD) curve for lethality with 10 different durations: 0.1, 0.2, 0.5, 1, 3, 5, 10, 20, 35 and 70 ms. For the same durations we also obtained an SxD curve for excitation and established an indicator for stimulatory safeness (stimulation safety factor - SSF) as the ratio between the SxD curve for lethality and one for excitation. We found that the lower the pulse duration, the higher the HEF intensity required to cell death. Contrary to expectations, the highest SSF value does not correspond to the lowest pulse duration but to the one of 0.5 ms. As defibrillation threshold has been described as duration-dependent, our results imply that the use of shorter stimulus duration - instead of the one typically used in the clinic (10 ms) - might increase defibrillation safeness.

  17. Effects of ropinirole on action potential characteristics and the underlying ion currents in canine ventricular myocytes.

    PubMed

    Simkó, József; Szentandrássy, Norbert; Harmati, Gábor; Bárándi, László; Horváth, Balázs; Magyar, János; Bányász, Tamás; Lorincz, István; Nánási, Péter P

    2010-09-01

    In spite of its widespread clinical application, there is little information on the cellular cardiac effects of the dopamine receptor agonist ropinirole. In the present study, therefore, the concentration-dependent effects of ropinirole on action potential morphology and the underlying ion currents were studied in enzymatically dispersed canine ventricular cardiomyocytes using standard microelectrode, conventional whole-cell patch clamp, and action potential voltage clamp techniques. At concentrations > or = 1 microM, ropinirole increased action potential duration (APD(90)) and suppressed the rapid delayed rectifier K(+) current (I (Kr)) with an IC(50) value of 2.7 +/- 0.25 microM and Hill coefficient of 0.92 +/- 0.09. The block increased with increasing depolarizations to more positive voltages, but paradoxically, the activation of I (Kr) was accelerated by 3 muM ropinirole (time constant decreased from 34 +/- 4 to 14 +/- 1 ms). No significant changes in the fast and slow deactivation time constants were observed with ropinirole. At higher concentrations, ropinirole decreased the amplitude of early repolarization (at concentrations > or = 10 microM), reduced the maximum rate of depolarization and caused depression of the plateau (at concentrations > or = 30 microM), and shortened APD measured at 50% repolarization (at 300 microM) indicating a concentration-dependent inhibition of I (to), I (Na), and I (Ca). Suppression of I (Kr), I (to), and I (Ca) has been confirmed under conventional patch clamp and action potential voltage clamp conditions. I (Ks) and I (K1) were not influenced significantly by ropinirole at concentrations less than 300 microM. All these effects of ropinirole were fully reversible upon washout. The results indicate that ropinirole treatment may carry proarrhythmic risk for patients with inherited or acquired long QT syndrome due to inhibition of I (Kr)-especially in cases of accidental overdose or intoxication.

  18. Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular myocytes.

    PubMed

    Horváth, Balázs; Hegyi, Bence; Kistamás, Kornél; Váczi, Krisztina; Bányász, Tamás; Magyar, János; Szentandrássy, Norbert; Nánási, Péter P

    2015-07-01

    This study was designed to investigate the influence of cytosolic Ca(2+) levels ([Ca(2+)]i) on action potential duration (APD) and on the incidence of early afterdepolarizations (EADs) in canine ventricular cardiomyocytes. Action potentials (AP) of isolated cells were recorded using conventional sharp microelectrodes, and the concomitant [Ca(2+)]i was monitored with the fluorescent dye Fura-2. EADs were evoked at a 0.2 Hz pacing rate by inhibiting the rapid delayed rectifier K(+) current with dofetilide, by activating the late sodium current with veratridine, or by activating the L-type calcium current with BAY K8644. These interventions progressively prolonged the AP and resulted in initiation of EADs. Reducing [Ca(2+)]i by application of the cell-permeant Ca(2+) chelator BAPTA-AM lengthened the AP at 1.0 Hz if it was applied alone, in the presence of veratridine, or in the presence of BAY K8644. However, BAPTA-AM shortened the AP if the cells were pretreated with dofetilide. The incidence of the evoked EADs was strongly reduced by BAPTA-AM in dofetilide, moderately reduced in veratridine, whereas EAD incidence was increased by BAPTA-AM in the presence of BAY K8644. Based on these experimental data, changes in [Ca(2+)]i have marked effects on APD as well as on the incidence of EADs; however, the underlying mechanisms may be different, depending on the mechanism of EAD generation. As a consequence, reduction of [Ca(2+)]i may eliminate EADs under some, but not all, experimental conditions.

  19. An increased TREK-1-like potassium current in ventricular myocytes during rat cardiac hypertrophy.

    PubMed

    Wang, Weiping; Zhang, Man; Li, Pingping; Yuan, Hui; Feng, Nan; Peng, Ying; Wang, Ling; Wang, Xiaoliang

    2013-04-01

    To elucidate the expression and identify the functional changes of 2 pore domain potassium channel TREK-1 during cardiac hypertrophy in rats, left ventricular hypertrophy was induced by subcutaneous injection with isoproterenol. Western blot was used to detect the expression of TREK-1 channel protein, and inside-out and whole-cell recordings were used to record TREK-1 currents. The results showed that TREK-1 protein expression in endocardium was slightly higher than that in epicardium in control left ventricles. However, it was obviously upregulated by 89.8% during hypertrophy, 2.3-fold higher than in epicardium. Mechanical stretch, intracellular acidification, and arachidonic acid could activate a TREK-1-like current in cardiomyocytes. The slope conductances of cardiac TREK-1 and CHO/TREK-1 channels were 123 ± 7 and 113 ± 17 pS, respectively. The TREK-1 inhibitor L-3-n-butylphthalide (10 μM) reduced the currents in CHO/TREK-1 cells, normal cardiomyocytes, and hypertrophic cardiomyocytes by 48.5%, 54.3%, and 55.5%, respectively. The percentage of L-3-n-butylphthalide-inhibited outward whole-cell current in hypertrophic cardiomyocytes (23.7%) was larger than that in normal cardiomyocytes (14.2%). The percentage of chloroform-activated outward whole-cell current in hypertrophic cardiomyocytes (58.3%) was also larger than normal control (40.2%). Our results demonstrated that in hypertrophic rats, TREK-1 protein expression in endocardium was specifically increased and the ratio of TREK-1 channel current in cardiac outward currents was also enhanced. TREK-1 might balance potassium ion flow during hypertrophy and might be a potential drug target for heart protection.

  20. Blocking effect of methylflavonolamine on human NaV1.5 channels expressed in Xenopus laevis oocytes and on sodium currents in rabbit ventricular myocytes

    PubMed Central

    Fan, Xin-rong; Ma, Ji-hua; Zhang, Pei-hua; Xing, Jun-lian

    2010-01-01

    Aim: To investigate the blocking effects of methylflavonolamine (MFA) on human NaV1.5 channels expressed in Xenopus laevis oocytes and on sodium currents (INa) in rabbit ventricular myocytes. Methods: Human NaV1.5 channels were expressed in Xenopus oocytes and studied using the two-electrode voltage-clamp technique. INa and action potentials in rabbit ventricular myocytes were studied using the whole-cell recording. Results: MFA and lidocaine inhibited human NaV1.5 channels expressed in Xenopus oocytes in a positive rate-dependent and concentration-dependent manner, with IC50 values of 72.61 μmol/L and 145.62 μmol/L, respectively. Both of them markedly shifted the steady-state activation curve of INa toward more positive potentials, shifted the steady-state inactivation curve of INa toward more negative potentials and postponed the recovery of the INa inactivation state. In rabbit ventricular myocytes, MFA inhibited INa with a shift in the steady-state inactivation curve toward more negative potentials, thereby postponing the recovery of the INa inactivation state. This shift was in a positive rate-dependent manner. Under current-clamp mode, MAF significantly decreased action potential amplitude (APA) and maximal depolarization velocity (Vmax) and shortened action potential duration (APD), but did not alter the resting membrane potential (RMP). The demonstrated that the kinetics of sodium channel blockage by MFA resemble those of class I antiarrhythmic agents such as lidocaine. Conclusion: MFA protects the heart against arrhythmias by its blocking effect on sodium channels. PMID:20173760

  1. beta-adrenergic and cholinergic modulation of the inwardly rectifying K+ current in guinea-pig ventricular myocytes.

    PubMed Central

    Koumi, S; Wasserstrom, J A; Ten Eick, R E

    1995-01-01

    1. Whole-cell patch-clamp technique was used to study the beta-adrenergic and cholinergic regulation of the inwardly rectifying K+ conductance (gK1) in isolated guinea-pig ventricular myocytes. 2. In Cl(-)-free solutions or in the presence of 9-anthracenecarboxylic acid or Co2+, bath-applied isoprenaline (Iso) partially inhibited the steady-state whole-cell conductance (gss) calculated from the steady-state current (Iss)-voltage (Iss-V) curve at membrane voltages (Vm) negative to the equilibrium potential for potassium (EK). Iss was also inhibited at Vm positive to EK when the extracellular [K+] was 20 mM. The Iso-sensitive component of gss exhibited the characteristics of the inwardly rectifying K+ conductance (gK1). 3. The Iso-induced inhibition of gK1 was reversible, concentration dependent, blocked by propranolol, mimicked by both forskolin and dibutyryl cAMP, and prevented by including a cAMP-dependent protein kinase (PKA) inhibitor in the pipette solution. These findings suggest that PKA mediates the Iso-induced inhibition of gK1. 4. The apparent dissociation constant (KD) for the concentration dependence of Iso-induced inhibition was 0.035 microM and the Hill coefficient was approximately 1.0. A maximal Iso concentration (1 microM) inhibited gK1 by 40 +/- 4.1% (mean +/- S.E.M.; n = 13). 5. Bath application of acetylcholine (ACh, 0.1 microM or more) antagonized the Iso-induced (1 microM) inhibition of gK1; [ACh] > 1.0 microM antagonized 88 +/- 2.1% (n = 10) of the inhibition. ACh increased the KD for Iso to inhibit Iso-sensitive gK1 and also reduced the maximal Iso-induced inhibition. 6. ACh-induced antagonism could be abolished by pre-incubating myocytes with pertussis toxin (PTX), suggesting that a muscarinic receptor-coupled, PTX-sensitive G protein, Gi, is involved. 7. ACh (10 microM) also antagonized approximately 70% of the dibutyryl cyclic AMP (1 mM)-induced inhibition of gK1 (n = 3), suggesting that the ACh-induced antagonism involves more than simply

  2. The effect of internal sodium and caesium on phasic contraction of patch-clamped rabbit ventricular myocytes.

    PubMed

    Levi, A J; Mitcheson, J S; Hancox, J C

    1996-04-01

    1. The voltage dependence of phasic contraction was assessed in rabbit ventricular myocytes. Phasic contraction at all potentials was abolished by exposure to ryanodine-thapsigargin, showing that it was due primarily to Ca2+ release from the sarcoplasmic reticulum (SR). Experiments were performed at 35 degrees C, cells were whole-cell patch clamped and contraction was measured optically as unloaded shortening. Cells were held at -40 mV to inactivate the Na+ current (INa) and T-type Ca2+ current. A standard cellular Ca2+ load was established by applying a train of conditioning pulses at 0.5 Hz before each test pulse. The effect of replacing K+ with Cs+ in the dialysing pipette solution, and the effect of altering dialysing [Na+] between 0 and 20 mM, was assessed on contraction. 2. Cells dialysed with a K(+)-based, Na(+)-free solution exhibited a 'bell-shaped' voltage dependence of the L-type Ca2+ channel current (ICa,L), with a maximum ICa,L at +10 mV. Replacing internal K+ with Cs+, or altering pipette [Na+], did not affect the voltage dependence of ICa,L. 3. The voltage dependence of phasic contraction in cells dialysed with a K(+)-based solution was modulated by pipette [Na+]. The voltage dependence of phasic contraction was bell-shaped with 0 Na+, became much loss bell-shaped with 10 mM Na+ and with 20 mM Na+ the phasic contraction elicited at +100 mV was 1.6-fold larger than that at +10 mV. 4. Replacing 80% of K+ with Cs+ in the pipette dialysis solution led to a significant reduction in contraction amplitude and a more rapid decline in contraction amplitude after beginning the dialysis of the cell. 5. Cells dialysed with a Cs(+)-based solution displayed a voltage dependence of phasic contraction which was more bell-shaped (i.e. more similar to that of ICa,L) than that obtained with the corresponding K(+)-based dialysis solution. The level of pipette [Na+] still modulated the voltage dependence of phasic contraction in cells dialysed with a Cs(+)-based solution

  3. [Proliferation of adult mammalian ventricular cardiomyocytes: a sporadic but feasible phenomenon].

    PubMed

    Vargas-González, Alvaro

    2014-01-01

    Proliferation of adult mammalian ventricular cardiomyocytes has been ruled out by some researchers, who have argued that these cells are terminally differentiated; however, this dogma has been rejected because other researchers have reported that these cells can present the processes necessary to proliferate, that is, DNA synthesis, mitosis and cytokinesis when the heart is damaged experimentally through pharmacological and surgical strategies or due to pathological conditions concerning the cardiovascular system. This review integrates some of the available works in the literature evaluating the DNA synthesis, mitosis and cytokinesis in these myocytes, when the myocardium is damaged, with the purpose of knowing if their proliferation can be considered as a feasible phenomenon. The review is concluded with a reflection about the perspectives of the knowledge generated in this area.

  4. Sarcolemmal Ca(2+)-entry through L-type Ca(2+) channels controls the profile of Ca(2+)-activated Cl(-) current in canine ventricular myocytes.

    PubMed

    Horváth, Balázs; Váczi, Krisztina; Hegyi, Bence; Gönczi, Mónika; Dienes, Beatrix; Kistamás, Kornél; Bányász, Tamás; Magyar, János; Baczkó, István; Varró, András; Seprényi, György; Csernoch, László; Nánási, Péter P; Szentandrássy, Norbert

    2016-08-01

    Ca(2+)-activated Cl(-) current (ICl(Ca)) mediated by TMEM16A and/or Bestrophin-3 may contribute to cardiac arrhythmias. The true profile of ICl(Ca) during an actual ventricular action potential (AP), however, is poorly understood. We aimed to study the profile of ICl(Ca) systematically under physiological conditions (normal Ca(2+) cycling and AP voltage-clamp) as well as in conditions designed to change [Ca(2+)]i. The expression of TMEM16A and/or Bestrophin-3 in canine and human left ventricular myocytes was examined. The possible spatial distribution of these proteins and their co-localization with Cav1.2 was also studied. The profile of ICl(Ca), identified as a 9-anthracene carboxylic acid-sensitive current under AP voltage-clamp conditions, contained an early fast outward and a late inward component, overlapping early and terminal repolarizations, respectively. Both components were moderately reduced by ryanodine, while fully abolished by BAPTA, but not EGTA. [Ca(2+)]i was monitored using Fura-2-AM. Setting [Ca(2+)]i to the systolic level measured in the bulk cytoplasm (1.1μM) decreased ICl(Ca), while application of Bay K8644, isoproterenol, and faster stimulation rates increased the amplitude of ICl(Ca). Ca(2+)-entry through L-type Ca(2+) channels was essential for activation of ICl(Ca). TMEM16A and Bestrophin-3 showed strong co-localization with one another and also with Cav1.2 channels, when assessed using immunolabeling and confocal microscopy in both canine myocytes and human ventricular myocardium. Activation of ICl(Ca) in canine ventricular cells requires Ca(2+)-entry through neighboring L-type Ca(2+) channels and is only augmented by SR Ca(2+)-release. Substantial activation of ICl(Ca) requires high Ca(2+) concentration in the dyadic clefts which can be effectively buffered by BAPTA, but not EGTA.

  5. A model of the L-type Ca2+ channel in rat ventricular myocytes: ion selectivity and inactivation mechanisms

    PubMed Central

    Sun, Liang; Fan, Jing-Song; Clark, John W; Palade, Philip T

    2000-01-01

    We have developed a mathematical model of the L-type Ca2+ current, which is based on data from whole-cell voltage clamp experiments on rat ventricular myocytes. Ion substitution methods were employed to investigate the ionic selectivity of the channel. Experiments were configured with Na+, Ca2+ or Ba2+ as the majority current carrier. The amplitude of current through the channel is attenuated in the presence of extracellular Ca2+ or Ba2+. Our model accounts for channel selectivity by using a modified Goldman-Hodgkin-Katz (GHK) configuration that employs voltage-dependent channel binding functions for external divalent ions. Stronger binding functions were used for Ca2+ than for Ba2+. Decay of the ionic current during maintained depolarization was characterized by means of voltage- and Ca2+-dependent inactivation pathways embedded in a five-state dynamic channel model. Particularly, Ca2+ first binds to calmodulin and the Ca2+-calmodulin complex is the mediator of Ca2+ inactivation. Ba2+-dependent inactivation was characterized using the same scheme, but with a decreased binding to calmodulin. A reduced amount of steady-state inactivation, as evidenced by a U-shaped curve at higher depolarization levels (>40 mV) in the presence of [Ca2+]o, was observed in double-pulse protocols used to study channel inactivation. To characterize this phenomenon, a mechanism was incorporated into the model whereby Ca2+ or Ba2+ also inhibits the voltage-dependent inactivation pathway. The five-state dynamic channel model was also used to simulate single channel activity. Calculations of the open probability of the channel model are generally consistent with experimental data. A sixth state can be used to simulate modal activity by way of introducing long silent intervals. Our model has been tested extensively using experimental data from a wide variety of voltage clamp protocols and bathing solution manipulations. It provides: (a) biophysically based explanations of putative mechanisms

  6. Culture and adenoviral infection of sinoatrial node myocytes from adult mice

    PubMed Central

    St. Clair, Joshua R.; Sharpe, Emily J.

    2015-01-01

    Pacemaker myocytes in the sinoatrial node of the heart initiate each heartbeat by firing spontaneous action potentials. However, the molecular processes that underlie pacemaking are incompletely understood, in part because of our limited ability to manipulate protein expression within the native cellular context of sinoatrial node myocytes (SAMs). Here we describe a new method for the culture of fully differentiated SAMs from adult mice, and we demonstrate that robust expression of introduced proteins can be achieved within 24–48 h in vitro via adenoviral gene transfer. Comparison of morphological and electrophysiological characteristics of 48 h-cultured versus acutely isolated SAMs revealed only minor changes in vitro. Specifically, we found that cells tended to flatten in culture but retained an overall normal morphology, with no significant changes in cellular dimensions or membrane capacitance. Cultured cells beat spontaneously and, in patch-clamp recordings, the spontaneous action potential firing rate did not differ between cultured and acutely isolated cells, despite modest changes in a subset of action potential waveform parameters. The biophysical properties of two membrane currents that are critical for pacemaker activity in SAMs, the “funny current” (If) and voltage-gated Ca2+ currents (ICa), were also indistinguishable between cultured and acutely isolated cells. This new method for culture and adenoviral infection of fully-differentiated SAMs from the adult mouse heart expands the range of experimental techniques that can be applied to study the molecular physiology of cardiac pacemaking because it will enable studies in which protein expression levels can be modified or genetically encoded reporter molecules expressed within SAMs. PMID:26001410

  7. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes

    PubMed Central

    1989-01-01

    Na/K pump current was determined between -140 and +60 mV as steady- state, strophanthidin-sensitive, whole-cell current in guinea pig ventricular myocytes, voltage-clamped and internally dialyzed via wide- tipped pipettes. Solutions were designed to minimize all other components of membrane current. A device for exchanging the solution inside the pipette permitted investigation of Na/K pump current-voltage (I-V) relationships at several levels of pipette [Na] [( Na]pip) in a single cell; the effects of changes in external [Na] [( Na]o) or external [K] [( K]o) were also studied. At 50 mM [Na]pip, 5.4 mM [K]o, and approximately 150 mM [Na]o, Na/K pump current was steeply voltage dependent at negative potentials but was approximately constant at positive potentials. Under those conditions, reduction of [Na]o enhanced pump current at negative potentials but had little effect at positive potentials: at zero [Na]o, pump current was only weakly voltage dependent. At 5.4 mM [K]o and approximately 150 mM [Na]o, reduction of [Na]pip from 50 mM scaled down the sigmoid pump I-V relationship and shifted it slightly to the right (toward more positive potentials). Pump current at 0 mV was activated by [Na]pip according to the Hill equation with best-fit K0.5 approximately equal to 11 mM and Hill coefficient nH approximately equal to 1.4. At zero [Na]o, reduction of [Na]pip seemed to simply scale down the relatively flat pump I-V relationship: Hill fit parameters for pump activation by [Na]pip at 0 mV were K0.5 approximately equal to 10 mM, nH approximately equal to 1.4. At 50 mM [Na]pip and high [Na]o, reduction of [K]o from 5.4 mM scaled down the sigmoid I-V relationship and shifted it slightly to the right: at 0 mV, K0.5 approximately equal to 1.5 mM and nH approximately equal to 1.0. At zero [Na]o, lowering [K]o simply scaled down the flat pump I-V relationships yielding, at 0 mV, K0.5 approximately equal to 0.2 mM, nH approximately equal to 1.1. The voltage

  8. Shortening and intracellular Ca2+ in ventricular myocytes and expression of genes encoding cardiac muscle proteins in early onset type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Salem, K A; Adrian, T E; Qureshi, M A; Parekh, K; Oz, M; Howarth, F C

    2012-12-01

    There has been a spectacular rise in the global prevalence of type 2 diabetes mellitus. Cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. Contractile dysfunction, associated with disturbances in excitation-contraction coupling, has been widely demonstrated in the diabetic heart. The aim of this study was to investigate the pattern of cardiac muscle genes that are involved in the process of excitation-contraction coupling in the hearts of early onset (8-10 weeks of age) type 2 diabetic Goto-Kakizaki (GK) rats. Gene expression was assessed in ventricular muscle with real-time RT-PCR; shortening and intracellular Ca(2+) were measured in ventricular myocytes with video edge detection and fluorescence photometry, respectively. The general characteristics of the GK rats included elevated fasting and non-fasting blood glucose and blood glucose at 120 min following a glucose challenge. Expression of genes encoding cardiac muscle proteins (Myh6/7, Mybpc3, Myl1/3, Actc1, Tnni3, Tnn2, Tpm1/2/4 and Dbi) and intercellular proteins (Gja1/4/5/7, Dsp and Cav1/3) were unaltered in GK ventricle compared with control ventricle. The expression of genes encoding some membrane pumps and exchange proteins was unaltered (Atp1a1/2, Atp1b1 and Slc8a1), whilst others were either upregulated (Atp1a3, relative expression 2.61 ± 0.69 versus 0.84 ± 0.23) or downregulated (Slc9a1, 0.62 ± 0.07 versus 1.08 ± 0.08) in GK ventricle compared with control ventricle. The expression of genes encoding some calcium (Cacna1c/1g, Cacna2d1/2d2 and Cacnb1/b2), sodium (Scn5a) and potassium channels (Kcna3/5, Kcnj3/5/8/11/12, Kchip2, Kcnab1, Kcnb1, Kcnd1/2/3, Kcne1/4, Kcnq1, Kcng2, Kcnh2, Kcnk3 and Kcnn2) were unaltered, whilst others were either upregulated (Cacna1h, 0.95 ± 0.16 versus 0.47 ± 0.09; Scn1b, 1.84 ± 0.16 versus 1.11 ± 0.11; and Hcn2, 1.55 ± 0.15 versus 1.03 ± 0.08) or downregulated (Hcn4, 0.16 ± 0.03 versus 0.37 ± 0.08; Kcna2, 0.35 ± 0

  9. Methods for the Isolation, Culture, and Functional Characterization of Sinoatrial Node Myocytes from Adult Mice

    PubMed Central

    Sharpe, Emily J.; St Clair, Joshua R.; Proenza, Catherine

    2016-01-01

    Sinoatrial node myocytes (SAMs) act as the natural pacemakers of the heart, initiating each heart beat by generating spontaneous action potentials (APs). These pacemaker APs reflect the coordinated activity of numerous membrane currents and intracellular calcium cycling. However the precise mechanisms that drive spontaneous pacemaker activity in SAMs remain elusive. Acutely isolated SAMs are an essential preparation for experiments to dissect the molecular basis of cardiac pacemaking. However, the indistinct anatomy, complex microdissection, and finicky enzymatic digestion conditions have prevented widespread use of acutely isolated SAMs. In addition, methods were not available until recently to permit longer-term culture of SAMs for protein expression studies. Here we provide a step-by-step protocol and video demonstration for the isolation of SAMs from adult mice. A method is also demonstrated for maintaining adult mouse SAMs in vitro and for expression of exogenous proteins via adenoviral infection. Acutely isolated and cultured SAMs prepared via these methods are suitable for a variety of electrophysiological and imaging studies. PMID:27805586

  10. New Findings on the Effects of Tannic Acid: Inhibition of L-Type Calcium Channels, Calcium Transient and Contractility in Rat Ventricular Myocytes.

    PubMed

    Zhu, Fengli; Chu, Xi; Wang, Hua; Zhang, Xuan; Zhang, Yuanyuan; Liu, Zhenyi; Guo, Hui; Liu, Hongying; Liu, Yang; Chu, Li; Zhang, Jianping

    2016-03-01

    Tannic acid (TA) is a group of water-soluble polyphenolic compounds that occur mainly in plant-derived feeds, food grains and fruits. Many studies have explored its biomedical properties, such as anticancer, antibacterial, antimutagenic, antioxidant, antidiabetic, antiinflammatory and antihypertensive activities. However, the effects of TA on the L-type Ca(2+) current (ICa-L) of cardiomyocytes remain undefined. The present study examined the effects of TA on ICa-L using the whole-cell patch-clamp technique and on intracellular Ca(2+) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge detection system. Exposure to TA resulted in a concentration- and voltage-dependent blockade of ICa-L, with the half maximal inhibitory concentration of 1.69 μM and the maximal inhibitory effect of 46.15%. Moreover, TA significantly inhibited the amplitude of myocyte shortening and peak value of Ca(2+) transient and increased the time to 10% of the peak. These findings provide new experimental evidence for the cellular mechanism of action of TA and may help to expand clinical treatments for cardiovascular disease.

  11. Effects of 2,4-dinitrophenol or low [ATP]i on cell excitability and action potential propagation in guinea pig ventricular myocytes.

    PubMed

    Morley, G E; Anumonwo, J M; Delmar, M

    1992-10-01

    Inhibition of aerobic metabolism leads to a major disruption of cardiac cell homeostasis. The purpose of the present study was twofold: 1) We determined the relative importance of junctional and nonjunctional membrane resistance (Rj and Rm, respectively) in the development of propagation failure during inhibition of aerobic metabolism in guinea pig ventricular cell pairs. 2) We used the patch-action potential clamp technique in single ventricular myocytes to study some of the properties of the membrane channels that are responsible for shortening of action potential duration and eventual failure of cell excitation after metabolic blockade. In most experiments, whole-cell patch pipettes were filled with a solution containing 1 mM EGTA, 5 mM HEPES, and 5 mM ATP. Our results in cell pairs showed that pharmacological inhibition of aerobic metabolism with the mitochondrial uncoupler 2,4-dinitrophenol (DNP) led to a drop in Rm followed by an increase in Rj. The increase in Rj was not sufficient to cause a measurable delay in cell-to-cell propagation, whereas the drop in Rm consistently led to failure of cell excitation. Similar results were obtained in additional experiments in which the EGTA concentration in the pipette was reduced to 50 microM. Similar results were also obtained by loading the recording patch pipettes with a solution containing only 0.1 mM ATP. Our patch-action potential clamp experiments, on the other hand, revealed that DNP induced the opening of time- and voltage-independent membrane channels, with a unitary conductance of 23 pS. The channels allowed for the passage of outward current in the voltage range of the action potential, and the increase in membrane patch conductance correlated with the observed shortening of action potential duration during DNP superfusion. Our experiments provide the first simultaneous recordings of action potentials and DNP-induced channel currents in guinea pig ventricular myocytes. Overall, the data provide new

  12. Identification of caveolar resident proteins in ventricular myocytes using a quantitative proteomic approach: dynamic changes in caveolar composition following adrenoceptor activation.

    PubMed

    Wypijewski, Krzysztof J; Tinti, Michele; Chen, Wenzhang; Lamont, Douglas; Ashford, Michael L J; Calaghan, Sarah C; Fuller, William

    2015-03-01

    The lipid raft concept proposes that membrane environments enriched in cholesterol and sphingolipids cluster certain proteins and form platforms to integrate cell signaling. In cardiac muscle, caveolae concentrate signaling molecules and ion transporters, and play a vital role in adrenergic regulation of excitation-contraction coupling, and consequently cardiac contractility. Proteomic analysis of cardiac caveolae is hampered by the presence of contaminants that have sometimes, erroneously, been proposed to be resident in these domains. Here we present the first unbiased analysis of the proteome of cardiac caveolae, and investigate dynamic changes in their protein constituents following adrenoreceptor (AR) stimulation. Rat ventricular myocytes were treated with methyl-β-cyclodextrin (MβCD) to deplete cholesterol and disrupt caveolae. Buoyant caveolin-enriched microdomains (BCEMs) were prepared from MβCD-treated and control cell lysates using a standard discontinuous sucrose gradient. BCEMs were harvested, pelleted, and resolubilized, then alkylated, digested, and labeled with iTRAQ reagents, and proteins identified by LC-MS/MS on a LTQ Orbitrap Velos Pro. Proteins were defined as BCEM resident if they were consistently depleted from the BCEM fraction following MβCD treatment. Selective activation of α-, β1-, and β2-AR prior to preparation of BCEMs was achieved by application of agonist/antagonist pairs for 10 min in populations of field-stimulated myocytes. We typically identified 600-850 proteins per experiment, of which, 249 were defined as high-confidence BCEM residents. Functional annotation clustering indicates cardiac BCEMs are enriched in integrin signaling, guanine nucleotide binding, ion transport, and insulin signaling clusters. Proteins possessing a caveolin binding motif were poorly enriched in BCEMs, suggesting this is not the only mechanism that targets proteins to caveolae. With the notable exception of the cavin family, very few proteins show

  13. H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH.

    PubMed

    Garciarena, Carolina D; Youm, Jae Boum; Swietach, Pawel; Vaughan-Jones, Richard D

    2013-08-01

    Acid extrusion on Na(+)-coupled pH-regulatory proteins (pH-transporters), Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC), drives Na(+) influx into the ventricular myocyte. This H(+)-activated Na(+)-influx is acutely up-regulated at pHi<7.2, greatly exceeding Na(+)-efflux on the Na(+)/K(+) ATPase. It is spatially heterogeneous, due to the co-localisation of NHE1 protein (the dominant pH-transporter) with gap-junctions at intercalated discs. Overall Na(+)-influx via NBC is considerably lower, but much is co-localised with L-type Ca(2+)-channels in transverse-tubules. Through a functional coupling with Na(+)/Ca(2+) exchange (NCX), H(+)-activated Na(+)-influx increases sarcoplasmic-reticular Ca(2+)-loading and release during intracellular acidosis. This raises Ca(2+)-transient amplitude, rescuing it from direct H(+)-inhibition. Functional coupling is biochemically regulated and linked to membrane receptors, through effects on NHE1 and NBC. It requires adequate cytoplasmic Na(+)-mobility, as NHE1 and NCX are spatially separated (up to 60μm). The relevant functional NCX activity must be close to dyads, as it exerts no effect on bulk diastolic Ca(2+). H(+)-activated Na(+)-influx is up-regulated during ischaemia-reperfusion and some forms of maladaptive hypertrophy and heart failure. It is thus an attractive system for therapeutic manipulation. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".

  14. [Acute cerebral ischemia: an unusual clinical presentation of isolated left ventricular noncompaction in an adult patient].

    PubMed

    Fiorencis, Andrea; Quadretti, Laura; Bacich, Daniela; Chiodi, Elisabetta; Mele, Donato; Fiorencis, Roberto

    2013-01-01

    Isolated left ventricular noncompaction in adults is uncommon. The most frequent clinical manifestations are heart failure due to left ventricular systolic dysfunction and supraventricular and ventricular arrhythmias, which may be sustained and associated with sudden death. Thromboembolic complications are also possible. We report the case of an adult patient with isolated left ventricular noncompaction who came to our observation because of acute cerebral ischemia, an initial presentation of the disease only rarely described.

  15. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    SciTech Connect

    Sun, Yi-hua; Li, Yong-quan; Feng, Shan-li; Li, Bao-xin; Pan, Zhen-wei; Xu, Chang-qing; Li, Ting-ting; Yang, Bao-feng

    2010-04-16

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca{sup 2+} stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca{sup 2+} imaging, we found that the depletion of ER/SR Ca{sup 2+} stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca{sup 2+} ([Ca{sup 2+}]{sub i}), followed by sustained increase depending on extracellular Ca{sup 2+}. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na{sup +}/Ca{sup 2+} exchanger inhibitors, inhibited [Ca{sup 2+}]{sub i} relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl{sub 3}) or by an increased extracellular Ca{sup 2+}([Ca{sup 2+}]{sub o}) increased the concentration of intracelluar Ca{sup 2+}, whereas, the sustained elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of SKF96365. Similarly, the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of extracellular Ca{sup 2+}. Western blot analysis showed that GdCl{sub 3} increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl{sub 3}. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca{sup 2+}-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  16. Model study of ATP and ADP buffering, transport of Ca(2+) and Mg(2+), and regulation of ion pumps in ventricular myocyte

    NASA Technical Reports Server (NTRS)

    Michailova, A.; McCulloch, A.

    2001-01-01

    We extended the model of the ventricular myocyte by Winslow et al. (Circ. Res 1999, 84:571-586) by incorporating equations for Ca(2+) and Mg(2+) buffering and transport by ATP and ADP and equations for MgATP regulation of ion transporters (Na(+)-K(+) pump, sarcolemmal and sarcoplasmic Ca(2+) pumps). The results indicate that, under normal conditions, Ca(2+) binding by low-affinity ATP and diffusion of CaATP may affect the amplitude and time course of intracellular Ca(2+) signals. The model also suggests that a fall in ATP/ADP ratio significantly reduces sarcoplasmic Ca(2+) content, increases diastolic Ca(2+), lowers systolic Ca(2+), increases Ca(2+) influx through L-type channels, and decreases the efficiency of the Na(+)/Ca(2+) exchanger in extruding Ca(2+) during periodic voltage-clamp stimulation. The analysis suggests that the most important reason for these changes during metabolic inhibition is the down-regulation of the sarcoplasmic Ca(2+)-ATPase pump by reduced diastolic MgATP levels. High Ca(2+) concentrations developed near the membrane might have a greater influence on Mg(2+), ATP, and ADP concentrations than that of the lower Ca(2+) concentrations in the bulk myoplasm. The model predictions are in general agreement with experimental observations measured under normal and pathological conditions.

  17. Genistein directly induces cardiac CFTR chloride current by a tyrosine kinase-independent and protein kinase A-independent pathway in guinea pig ventricular myocytes.

    PubMed

    Chiang, C E; Chen, S A; Chang, M S; Lin, C I; Luk, H N

    1997-06-09

    With one-suction electrode voltage-clamp technique, we demonstrated that genistein, a tyrosine kinase (TK) inhibitor, could directly activate cystic fibrosis transmembrane regulator (CFTR) chloride current in guinea pig ventricular myocytes. The activation showed concentration-dependent effect with the estimated IC50 of 39.7 microM. Tyrphostin 51, another TK inhibitor, had no effect, suggesting that genistein's effect might be unrelated to TK inhibition. After the chloride current had been activated by the maximally elevated intracellular cAMP content by saturating concentration of isoproterenol, forskolin and IBMX, genistein could further enhance the current. Pre-treatment with saturating concentration of a specific protein kinase A (PKA) inhibitor, H-89, or other protein kinase inhibitors H-8 and H-9 in the perfusate or intracellularly could not prevent the activation of the current by genistein, suggesting a PKA-independent activity. Furthermore, saturating concentration of calyculin A, a specific inhibitor of phosphotase 1 and 2A, in the perfusate or intracellularly could not block genistein's action. It is possible that genistein opens the channels directly or inhibits the dephosphorylation process of CFTR, which is not sensitive calyculin A.

  18. Model study of ATP and ADP buffering, transport of Ca(2+) and Mg(2+), and regulation of ion pumps in ventricular myocyte.

    PubMed Central

    Michailova, A; McCulloch, A

    2001-01-01

    We extended the model of the ventricular myocyte by Winslow et al. (Circ. Res 1999, 84:571-586) by incorporating equations for Ca(2+) and Mg(2+) buffering and transport by ATP and ADP and equations for MgATP regulation of ion transporters (Na(+)-K(+) pump, sarcolemmal and sarcoplasmic Ca(2+) pumps). The results indicate that, under normal conditions, Ca(2+) binding by low-affinity ATP and diffusion of CaATP may affect the amplitude and time course of intracellular Ca(2+) signals. The model also suggests that a fall in ATP/ADP ratio significantly reduces sarcoplasmic Ca(2+) content, increases diastolic Ca(2+), lowers systolic Ca(2+), increases Ca(2+) influx through L-type channels, and decreases the efficiency of the Na(+)/Ca(2+) exchanger in extruding Ca(2+) during periodic voltage-clamp stimulation. The analysis suggests that the most important reason for these changes during metabolic inhibition is the down-regulation of the sarcoplasmic Ca(2+)-ATPase pump by reduced diastolic MgATP levels. High Ca(2+) concentrations developed near the membrane might have a greater influence on Mg(2+), ATP, and ADP concentrations than that of the lower Ca(2+) concentrations in the bulk myoplasm. The model predictions are in general agreement with experimental observations measured under normal and pathological conditions. PMID:11463611

  19. Effect of Ca2+ efflux pathway distribution and exogenous Ca2+ buffers on intracellular Ca2+ dynamics in the rat ventricular myocyte: a simulation study.

    PubMed

    Pásek, Michal; Simurda, Jiří; Orchard, Clive H

    2014-01-01

    We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca(2+) efflux pathways (SERCA, Na(+)/Ca(2+) exchange, and sarcolemmal Ca(2+) ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca(2+) buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca(2+) in the dyad and bulk cytoplasm, on cellular Ca(2+) cycling. Increasing the dyadic fraction of a particular Ca(2+) efflux pathway increases the amount of Ca(2+) removed by that pathway, with corresponding changes in Ca(2+) efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca(2+) removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca(2+)-dependent inactivation of the L-type Ca(2+) current, resulted from the buffers acting as slow and fast "shuttles," respectively, removing Ca(2+) from the dyadic space. The data suggest that complex changes in dyadic Ca(2+) and cellular Ca(2+) cycling occur as a result of changes in the location of Ca(2+) removal pathways or the presence of exogenous Ca(2+) buffers, although changing the distribution of Ca(2+) efflux pathways has relatively small effects on the systolic Ca(2+) transient.

  20. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-06-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE.

  1. Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations

    SciTech Connect

    Yamada, Shigeyuki; Zhang Xiuquan; Kadono, Toshie; Matsuoka, Nobuhiro; Rollins, Douglas; Badger, Troy; Rodesch, Christopher K.; Barry, William H.

    2009-04-01

    Aims: Our goal was to determine if clinically relevant concentrations of aqueous extract of cigarette smoke (CSE) have direct deleterious effects on ventricular myocytes during simulated ischemia, and to investigate the mechanisms involved. Methods: CSE was prepared with a smoking chamber. Ischemia was simulated by metabolic inhibition (MI) with cyanide (CN) and 0 glucose. Adult rabbit and mouse ventricular myocyte [Ca{sup 2+}]{sub i} was measured by flow cytometry using fluo-3. Mitochondrial [Ca{sup 2+}] was measured with confocal microscopy, and Rhod-2 fluorescence. The mitochondrial permeability transition (MPT) was detected by TMRM fluorescence and myocyte contracture. Myocyte oxidative stress was quantified by dichlorofluorescein (DCF) fluorescence with confocal microscopy. Results: CSE 0.1% increased myocyte contracture caused by MI. The nicotine concentration (HPLC) in 0.1% CSE was 15 ng/ml, similar to that in humans after smoking cigarettes. CSE 0.1% increased mitochondrial Ca{sup 2+} uptake, and increased the susceptibility of mitochondria to the MPT. CSE 0.1% increased DCF fluorescence in isolated myocytes, and increased [Ca{sup 2+}]{sub i} in paced myocytes exposed to 2.0 mM CN, 0 glucose (P-MI). These effects were inhibited by the superoxide scavenger Tiron. The effect of CSE on [Ca{sup 2+}]{sub i} during P-MI was also prevented by ranolazine. Conclusions: CSE in clinically relevant concentrations increases myocyte [Ca{sup 2+}]{sub i} during simulated ischemia, and increases myocyte susceptibility to the MPT. These effects appear to be mediated at least in part by oxidative radicals in CSE, and likely contribute to the effects of cigarette smoke to increase myocardial infarct size, and to decrease angina threshold.

  2. Single adult rabbit and rat cardiac myocytes retain the Ca2+- and species-dependent systolic and diastolic contractile properties of intact muscle

    PubMed Central

    1986-01-01

    The systolic and diastolic properties of single myocytes and intact papillary muscles isolated from hearts of adult rats and rabbits were examined at 37 degrees C over a range of stimulation frequencies and bathing [Ca2+]o (Cao). In both rabbit myocytes and intact muscles bathed in 1 mM Cao, increasing the frequency of stimulation from 6 to 120 min-1 resulted in a positive staircase of twitch performance. During stimulation at 2 min-1, twitch performance also increased with increases in Cao up to 20 mM. In the absence of stimulation, both rabbit myocytes and muscles were completely quiescent in less than 15 mM Cao. Further increases in Cao caused the appearance of spontaneous asynchronous contractile waves in myocytes and in intact muscles caused scattered light intensity fluctuations (SLIF), which were previously demonstrated to be caused by Ca2+-dependent spontaneous contractile waves. In contrast to rabbit preparations, intact rat papillary muscles exhibited SLIF in 1.0 mM Cao. Two populations of rat myocytes were observed in 1 mM Cao: approximately 85% of unstimulated cells exhibited low-frequency (3-4 min-1) spontaneous contractile waves, whereas 15%, during a 1-min observation period, were quiescent. In a given Cao, the contractile wave frequency in myocytes and SLIF in intact muscles were constant for long periods of time. In both intact rat muscles and myocytes with spontaneous waves, in 1 mM Cao, increasing the frequency of stimulation from 6 to 120 min-1 resulted, on the average, in a 65% reduction in steady state twitch amplitude. Of the rat myocytes that did not manifest waves, some had a positive, some had a flat, and some had a negative staircase; the average steady state twitch amplitude of these cells during stimulation at 120 min-1 was 30% greater than that at 6 min-1. In contrast to rabbit preparations, twitch performance during stimulation at 2 min-1 saturated at 1.5 mM Cao in both intact rat muscles and in the myocytes with spontaneous waves. We

  3. Implementation of Contraction to Electrophysiological Ventricular Myocyte Models, and Their Quantitative Characterization via Post-Extrasystolic Potentiation

    PubMed Central

    Ji, Yanyan Claire; Gray, Richard A.; Fenton, Flavio H.

    2015-01-01

    Heart failure (HF) affects over 5 million Americans and is characterized by impairment of cellular cardiac contractile function resulting in reduced ejection fraction in patients. Electrical stimulation such as cardiac resynchronization therapy (CRT) and cardiac contractility modulation (CCM) have shown some success in treating patients with HF. Computer simulations have the potential to help improve such therapy (e.g. suggest optimal lead placement) as well as provide insight into the underlying mechanisms which could be beneficial. However, these myocyte models require a quantitatively accurate excitation-contraction coupling such that the electrical and contraction predictions are correct. While currently there are close to a hundred models describing the detailed electrophysiology of cardiac cells, the majority of cell models do not include the equations to reproduce contractile force or they have been added ad hoc. Here we present a systematic methodology to couple first generation contraction models into electrophysiological models via intracellular calcium and then compare the resulting model predictions to experimental data. This is done by using a post-extrasystolic pacing protocol, which captures essential dynamics of contractile forces. We found that modeling the dynamic intracellular calcium buffers is necessary in order to reproduce the experimental data. Furthermore, we demonstrate that in models the mechanism of the post-extrasystolic potentiation is highly dependent on the calcium released from the Sarcoplasmic Reticulum. Overall this study provides new insights into both specific and general determinants of cellular contractile force and provides a framework for incorporating contraction into electrophysiological models, both of which will be necessary to develop reliable simulations to optimize electrical therapies for HF. PMID:26317204

  4. Implementation of Contraction to Electrophysiological Ventricular Myocyte Models, and Their Quantitative Characterization via Post-Extrasystolic Potentiation.

    PubMed

    Ji, Yanyan Claire; Gray, Richard A; Fenton, Flavio H

    2015-01-01

    Heart failure (HF) affects over 5 million Americans and is characterized by impairment of cellular cardiac contractile function resulting in reduced ejection fraction in patients. Electrical stimulation such as cardiac resynchronization therapy (CRT) and cardiac contractility modulation (CCM) have shown some success in treating patients with HF. Computer simulations have the potential to help improve such therapy (e.g. suggest optimal lead placement) as well as provide insight into the underlying mechanisms which could be beneficial. However, these myocyte models require a quantitatively accurate excitation-contraction coupling such that the electrical and contraction predictions are correct. While currently there are close to a hundred models describing the detailed electrophysiology of cardiac cells, the majority of cell models do not include the equations to reproduce contractile force or they have been added ad hoc. Here we present a systematic methodology to couple first generation contraction models into electrophysiological models via intracellular calcium and then compare the resulting model predictions to experimental data. This is done by using a post-extrasystolic pacing protocol, which captures essential dynamics of contractile forces. We found that modeling the dynamic intracellular calcium buffers is necessary in order to reproduce the experimental data. Furthermore, we demonstrate that in models the mechanism of the post-extrasystolic potentiation is highly dependent on the calcium released from the Sarcoplasmic Reticulum. Overall this study provides new insights into both specific and general determinants of cellular contractile force and provides a framework for incorporating contraction into electrophysiological models, both of which will be necessary to develop reliable simulations to optimize electrical therapies for HF.

  5. The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. I. Basic characterization and kinetic analysis

    PubMed Central

    1993-01-01

    Enzymatically isolated myocytes from ferret right ventricles (12-16 wk, male) were studied using the whole cell patch clamp technique. The macroscopic properties of a transient outward K+ current I(to) were quantified. I(to) is selective for K+, with a PNa/PK of 0.082. Activation of I(to) is a voltage-dependent process, with both activation and inactivation being independent of Na+ or Ca2+ influx. Steady-state inactivation is well described by a single Boltzmann relationship (V1/2 = -13.5 mV; k = 5.6 mV). Substantial inactivation can occur during a subthreshold depolarization without any measurable macroscopic current. Both development of and recovery from inactivation are well described by single exponential processes. Ensemble averages of single I(to) channel currents recorded in cell-attached patches reproduce macroscopic I(to) and indicate that inactivation is complete at depolarized potentials. The overall inactivation/recovery time constant curve has a bell-shaped potential dependence that peaks between -10 and -20 mV, with time constants (22 degrees C) ranging from 23 ms (-90 mV) to 304 ms (-10 mV). Steady-state activation displays a sigmoidal dependence on membrane potential, with a net aggregate half- activation potential of +22.5 mV. Activation kinetics (0 to +70 mV, 22 degrees C) are rapid, with I(to) peaking in approximately 5-15 ms at +50 mV. Experiments conducted at reduced temperatures (12 degrees C) demonstrate that activation occurs with a time delay. A nonlinear least- squares analysis indicates that three closed kinetic states are necessary and sufficient to model activation. Derived time constants of activation (22 degrees C) ranged from 10 ms (+10 mV) to 2 ms (+70 mV). Within the framework of Hodgkin-Huxley formalism, Ito gating can be described using an a3i formulation. PMID:8505627

  6. Regulation of the beta-stimulation of the Na(+)-K+ pump current in guinea-pig ventricular myocytes by a cAMP-dependent PKA pathway.

    PubMed Central

    Gao, J; Cohen, I S; Mathias, R T; Baldo, G J

    1994-01-01

    1. The whole-cell patch-clamp technique was employed with the free intracellular [Ca2+] fixed at 1.4 microM in order to study the isoprenaline (Iso)-induced increase in the Na(+)-K+ pump current (Ip) in acutely isolated guinea-pig ventricular myocytes. 2. The non-specific protein kinase inhibitor, H-7, eliminated the stimulatory effect of Iso, suggesting a phosphorylation step is involved in the beta-agonist stimulation of Ip. 3. H-7 or the phosphatase inhibitor calyculin A individually had no effect on basal Ip; however, when Ip was first increased by Iso, H-7 inhibited and calyculin A further increased Ip. This suggests phosphorylation is not important to the basal regulation of Ip, but does have an effect during beta-stimulation. 4. The Iso-induced increase in Ip could be mimicked by adding the membrane-permanent cAMP analogue chlorophenylthio-cAMP, blocking cAMP degradation with IBMX or stimulating cAMP production with forskolin. Alternatively the protein kinase A inhibitor PKI blocked the stimulatory effect of Iso. This suggests the Iso-induced phosphorylation responsible for increasing Ip is mediated by cAMP, which then activates protein kinase A (PKA). 5. We conclude that the beta-agonist-induced increase in Ip in the presence of high intracellular [Ca2+] is mediated by a phosphorylation step via the cAMP-dependent PKA pathway. During beta-stimulation, this increase in active Na(+)-K+ transport can serve to offset the effects of increases in passive membrane conductances. PMID:7932227

  7. Bepridil differentially inhibits two delayed rectifier K(+) currents, I(Kr) and I(Ks), in guinea-pig ventricular myocytes.

    PubMed

    Wang, J C; Kiyosue, T; Kiriyama, K; Arita, M

    1999-12-01

    1. We investigated the effects of bepridil on the two components of the delayed rectifier K(+) current, i.e., the rapidly activating (I(Kr)) and the slowly activating (I(Ks)) currents using tight-seal whole-cell patch-clamp techniques in guinea-pig ventricular myocytes, under blockade of L-type Ca(2+) current with nitrendipine (5 microM) or D600 (1 microM). 2. Bepridil decreased I(Ks) under blockade of I(Kr) with E4031 (5 microM), in a concentration-dependent manner. The concentration-dependent inhibition of I(Ks) by bepridil was fitted by a curve, assuming one-to-one interactions between the channel and the drug molecule. The concentration of half-maximal inhibition (IC(50)) was found to be 6.2 microM. 3. The effect of bepridil on I(Kr) was assessed using an envelope-of-tails test. In the control condition, a ratio of the tail current to the time-dependent current measured during depolarization was large (>1) at shorter pulses (<200 ms), and it decreased to a steady state value of approximately 0.4 with increases in the pulse duration. Bepridil at a concentration of 2 microM did not decrease this ratio at shorter pulses. 4. In a short-pulse (duration=50 ms) experiment that largely activates I(Kr), the drug was found to block I(Kr) in a cooperative manner (Hill coefficient=3.03) and the IC(50) was 13.2 microM. 5. These results suggest that bepridil at a clinical therapeutic concentration ( approximately 2 microM) selectively blocks I(Ks) but does not inhibit I(Kr). This may relate to the characteristic frequency-dependent effects of bepridil on the action potential duration (APD), e.g., the non-reverse use-dependent prolongation of APD.

  8. Inhibitory effect of YM-244769, a novel Na(+)/Ca(2+) exchanger inhibitor on Na(+)/Ca(2+) exchange current in guinea pig cardiac ventricular myocytes.

    PubMed

    Yamashita, Kanna; Watanabe, Yasuhide; Kita, Satomi; Iwamoto, Takahiro; Kimura, Junko

    2016-11-01

    Recently, YM-244769 (N-(3-aminobenzyl)-6-{4-[(3-fluorobenzyl)oxy]phenoxy} nicotinamide) has been reported as a new potent and selective Na(+)/Ca(2+) exchange (NCX) inhibitor by using various cells transfected with NCX using the (45)Ca(2+) fluorescent technique. However, the electrophysiological study of YM-244769 on NCX had not been performed in the mammalian heart. We examined the effects of YM-244769 on NCX current (INCX) in single cardiac ventricular myocytes of guinea pigs by using the whole-cell voltage clamp technique. YM-244769 suppressed the bidirectional INCX in a concentration-dependent manner. The IC50 values of YM-244769 for the bidirectional outward and inward INCX were both about 0.1 μM. YM-244769 suppressed the unidirectional outward INCX (Ca(2+) entry mode) with an IC50 value of 0.05 μM. The effect on the unidirectional inward INCX (Ca(2+) exit mode) was less potent, with 10 μM of YM-244769 resulting in the inhibition of only about 50 %. At 5 mM intracellular Na(+) concentration, YM-244769 suppressed INCX more potently than it did at 0 mM [Na(+)]i. Intracellular application of trypsin via the pipette solution did not change the blocking effect of YM-244769. In conclusion, YM-244769 inhibits the Ca(2+) entry mode of NCX more potently than the Ca(2+) exit mode, and inhibition by YM-244769 is [Na(+)]i-dependent and trypsin-insensitive. These characteristics are similar to those of other benzyloxyphenyl derivative NCX inhibitors such as KB-R7943, SEA0400, and SN-6. The potency of YM-244769 as an NCX1 inhibitor is higher than those of KB-R7943 and SN-6 and is similar to that of SEA0400.

  9. Profile of L-type Ca2+ current and Na+/Ca2+ exchange current during cardiac action potential in ventricular myocytes

    PubMed Central

    Banyasz, Tamas; Horvath, Balazs; Jian, Zhong; Izu, Leighton T.; Chen-Izu, Ye

    2011-01-01

    Objective The L-type Ca2+ current (ICa,L) and the Na+/Ca2+ exchange current (INCX) are major inward currents that shape the cardiac action potential (AP). Previously, the profile of these currents during AP was determined from voltage-clamp experiments that used Ca2+ buffer. In this study, we aimed to obtain direct experimental measurement of these currents during cardiac AP with Ca2+ cycling. Method A newly developed AP-clamp sequential dissection method was used to record ionic currents in guinea pig ventricular myocytes under a triad of conditions: using the cell’s own AP as the voltage command, using internal and external solutions that mimic the cell’s ionic composition and, importantly, no exogenous Ca2+ buffer was used. Results The nifedipine-sensitive current (INIFE), which is composed of ICa,L and INCX, revealed hitherto unreported features during AP with Ca2+ cycling in the cell. We identified two peaks in the current profile followed by a long residual current extending beyond the AP, coinciding with a residual depolarization. The second peak and the residual current become apparent only when Ca2+ is not buffered. Pharmacological dissection of INIFE using SEA0400 shows that ICa,L is dominant during phase-1&2 whereas INCX contributes significantly to the inward current at phase-3&4 of AP. Conclusion These data provide the first direct experimental visualization of ICa,L and INCX during cardiac AP and Ca2+ cycle. The residual current reported here can serve as a potential substrate for afterdepolarizations when increased under pathologic conditions. PMID:21884673

  10. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers

    NASA Astrophysics Data System (ADS)

    Nayak, Alok Ranjan; Panfilov, A. V.; Pandit, Rahul

    2017-02-01

    We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.

  11. The H{sub 1}–H{sub 2} domain of the α{sub 1} isoform of Na{sup +}–K{sup +}–ATPase is involved in ouabain toxicity in rat ventricular myocytes

    SciTech Connect

    Xiong, Chen; Li, Jun-xia; Guo, Hui-cai; Zhang, Li-nan; Guo, Wei; Meng, Jing; Wang, Yong-li

    2012-07-01

    The composition of different isoforms of Na{sup +}-K{sup +}-ATPase (NKA, Na/K pump) in ventricular myocytes is an important factor in determining the therapeutic effect and toxicity of cardiac glycosides (CGs) on heart failure. The mechanism whereby CGs cause these effects is still not completely clear. In the present study, we prepared two site-specific antibodies (SSA78 and WJS) against the H{sub 1}–H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA in rat heart, respectively, and compared their influences on the effect of ouabain (OUA) in isolated rat ventricular myocytes. SSA78 or WJS, which can specifically bind with the α{sub 1} or α{sub 2} isoform, were assessed with enzyme linked immunosorbent assay (ELISA), Western blot and immunofluorescent staining methods. Preincubation of myocytes with SSA78 inhibited low OUA affinity pump current but not high OUA affinity pump current, reduced the rise in cytosolic calcium concentration ([Ca{sup 2+}]{sub i}), attenuated mitochondrial Ca{sup 2+} overload, restored mitochondrial membrane potential reduction, and delayed the decrease of the myocardial contractile force as well as the occurrence of arrhythmic contraction induced by high concentrations (1 mM) but not low concentrations (1 μM) of OUA. Similarly, preincubation of myocytes with WJS inhibited high OUA affinity pump current, reduced the increase of [Ca{sup 2+}]{sub i} and the contractility induced by 1 μM but not that induced by 1 mM OUA. These results indicate that the H{sub 1}–H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity in rat ventricular myocytes, and inhibitors for this binding site may be used as an adjunct to CGs treatment for cardiovascular disease. -- Highlights: ► We prepared two antibodies against the H{sub 1}-H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA. ► The H{sub 1}-H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity. ► The H{sub 1}-H{sub 2

  12. Convergence of models of human ventricular myocyte electrophysiology after global optimization to recapitulate clinical long QT phenotypes.

    PubMed

    Mann, Stefan A; Imtiaz, Mohammad; Winbo, Annika; Rydberg, Annika; Perry, Matthew D; Couderc, Jean-Philippe; Polonsky, Bronislava; McNitt, Scott; Zareba, Wojciech; Hill, Adam P; Vandenberg, Jamie I

    2016-11-01

    In-silico models of human cardiac electrophysiology are now being considered for prediction of cardiotoxicity as part of the preclinical assessment phase of all new drugs. We ask the question whether any of the available models are actually fit for this purpose. We tested three models of the human ventricular action potential, the O'hara-Rudy (ORD11), the Grandi-Bers (GB10) and the Ten Tusscher (TT06) models. We extracted clinical QT data for LQTS1 and LQTS2 patients with nonsense mutations that would be predicted to cause 50% loss of function in IKs and IKr respectively. We also obtained clinical QT data for LQTS3 patients. We then used a global optimization approach to improve the existing in silico models so that they reproduced all three clinical data sets more closely. We also examined the effects of adrenergic stimulation in the different LQTS subsets. All models, in their original form, produce markedly different and unrealistic predictions of QT prolongation for LQTS1, 2 and 3. After global optimization of the maximum conductances for membrane channels, all models have similar current densities during the action potential, despite differences in kinetic properties of the channels in the different models, and more closely reproduce the prolongation of repolarization seen in all LQTS subtypes. In-silico models of cardiac electrophysiology have the potential to be tremendously useful in complementing traditional preclinical drug testing studies. However, our results demonstrate they should be carefully validated and optimized to clinical data before they can be used for this purpose.

  13. Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes.

    PubMed

    Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Horváth, Balázs; Ruzsnavszky, Ferenc; Váczi, Krisztina; Magyar, János; Bányász, Tamás; Varró, András; Nánási, Péter P

    2015-07-01

    Although beat-to-beat variability (short-term variability, SV) of action potential duration (APD) is considered as a predictor of imminent cardiac arrhythmias, the underlying mechanisms are still not clear. In the present study, therefore, we aimed to determine the role of the major cardiac ion currents, APD, stimulation frequency, and changes in the intracellular Ca(2+) concentration ([Ca(2+)]i) on the magnitude of SV. Action potentials were recorded from isolated canine ventricular cardiomyocytes using conventional microelectrode techniques. SV was an exponential function of APD, when APD was modified by current injections. Drug effects were characterized as relative SV changes by comparing the drug-induced changes in SV to those in APD according to the exponential function obtained with current pulses. Relative SV was increased by dofetilide, HMR 1556, nisoldipine, and veratridine, while it was reduced by BAY K8644, tetrodotoxin, lidocaine, and isoproterenol. Relative SV was also increased by increasing the stimulation frequency and [Ca(2+)]i. In summary, relative SV is decreased by ion currents involved in the negative feedback regulation of APD (I Ca, I Ks, and I Kr), while it is increased by I Na and I to. We conclude that drug-induced effects on SV should be evaluated in relation with the concomitant changes in APD. Since relative SV was decreased by ion currents playing critical role in the negative feedback regulation of APD, blockade of these currents, or the beta-adrenergic pathway, may carry also some additional proarrhythmic risk in addition to their well-known antiarrhythmic action.

  14. Rat cardiac myocyte adenosine transport and metabolism

    SciTech Connect

    Ford, D.A.; Rovetto, M.J.

    1987-01-01

    Based on the importance of myocardial adenosine and adenine nucleotide metabolism, the adenosine salvage pathway in ventricular myocytes was studied. Accurate estimates of transport rates, separate from metabolic fllux, were determined. Adenosine influx was constant between 3 and 60 s. Adenosine metabolism maintained intracellular adenosine concentrations < 10% of the extracellular adenosine concentrations and thus unidirectional influx could be measured. Myocytes transported adenosine via saturable and nonsaturable processes. A minimum estimate of the V/sub max/ of myocytic adenosine kinase indicated the saturable component of adenosine influx was independent of adenosine kinase activity. Saturable transport was inhibited by nitrobenzylthioinosine and verapamil. Extracellular adenosine taken up myocytes was rapidly phosphorylated to adenine taken up by myocytes was rapidly phosphorylated to adenine nucleotides. Not all extracellular adenosine, though, was phosphorylated on entering myocytes, since free, as opposed to protein-bound, intracellular adenosine was detected after digitonin extraction of cells in the presence of 1 mM ethylene-diaminetetraacetic acid.

  15. Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion.

    PubMed

    Kim, Jae-Sung; Jin, Yingai; Lemasters, John J

    2006-05-01

    We investigated the role of pH, reactive oxygen species (ROS), Ca2+, and the mitochondrial permeability transition (MPT) in pH-dependent ischemia-reperfusion injury to adult rat myocytes. Myocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 3 h to simulate ischemia. To simulate reperfusion, myocytes were reoxygenated at pH 6.2 or 7.4 for 2 h. Some myocytes were treated with MPT blockers (cyclosporin A and N-methyl-4-isoleucine cyclosporin) and antioxidants (desferal, diphenylphenylene diamine, and 2-mercaptopropionyl glycine). Mitochondrial membrane potential, inner membrane permeabilization, and ROS formation were imaged with tetramethylrhodamine methyl ester, calcein, and chloromethyldichlorofluorescein diacetate, respectively. For Ca2+ imaging, myocytes were coloaded with rhod-2 and fluo-4 to evaluate mitochondrial and cytosolic Ca2+, respectively. After 10 min of reperfusion at pH 7.4, calcein redistributed across the mitochondrial inner membrane, an event preceded by mitochondrial ROS formation and accompanied by hypercontracture, mitochondrial depolarization, and then cell death. Acidotic reperfusion, antioxidants, and MPT blockers each prevented the MPT, depolarization, hypercontraction, and cell killing. Antioxidants, but neither MPT blockers nor acidotic reperfusion, inhibited ROS formation after reperfusion. Furthermore, anoxic reperfusion at pH 7.4 prevented cell death. Both mitochondrial and cytosolic Ca2+ increased during ischemia but recovered in the first minutes of reperfusion. Mitochondrial and cytosolic Ca2+ overloading again occurred late after reperfusion. This late Ca2+ overloading was blocked by MPT inhibition. Intramitochondrial Ca2+ chelation by cold loading/warm incubation of BAPTA did not prevent cell death after reperfusion. In conclusion, mitochondrial ROS, together with normalization of pH, promote MPT onset and subsequent myocyte death after reperfusion. In contrast, Ca2+ overloading appears to be the consequence

  16. Different pharmacological properties of the optical isomers of MN9202, a novel 1,4-dihydropyridine Ca+ channel modulator, in rat ventricular myocytes.

    PubMed

    Li, Xiao-Qiang; Cao, Wei; Zeng, Ai-Guo; Yang, Zhi-Fu; Xing, Bin; Dong, Ling; Zhang, Hai-Feng; Mei, Qi-Bing

    2010-08-01

    1. We have shown previously that 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylic acid pentyl methyl ester (MN9202), a new 1,4-dihydropyridine Ca(2+) channel modulator, has significant hypotensive effects and favourable pharmacokinetic characteristics. As a chiral molecule, MN9202 has two optical isomers. The aim of the present study was to evaluate the pharmacological properties of the two enantiomers. 2. The two enantiomers, S-(-)- and R-(+)-MN9202, were obtained by HPLC. At 1 micromol/L, both racemic MN9202 and S-(-)-MN9202 decreased the contractility of rat ventricular myocytes by 54.0 and 64.4%, respectively, compared with control, whereas R-(+)-MN9202 enhanced cell shortening by 10.1%. At 1 micromol/L, racemic MN9202 markedly reduced calcium transient (CaT) and L-type Ca(2+) channel current (I(Ca,L)) by 60.0 and 50.7%, respectively, whereas the reductions in CaT and I(Ca,L) produced by 1 micromol/L S-(-)-MN9202 were greater still (62.2 and 65.7%, respectively). In contrast, 1 micromol/L R-(+)-MN9202 increased CaT and I(Ca,L) by 11.4 and 10.6%, respectively. Furthermore, findings from kinetics studies of I(Ca,L) revealed that the steady state inactivation curve of I(Ca,L) was shifted towards a hyperpolarizing potential by S-(-)-MN9202, but towards a depolarizing potential by R-(+)-MN9202. These results demonstrate different effects of R-(+)-MN9202 and S-(-)-MN9202. 3. In conclusion, the findings of the present study suggest that the chirality of MN9202 results in opposing pharmacological properties of its two enantiomers: S-(-)-MN9202 may be responsible for the therapeutic effects of racemic MN9202, whereas R-(+)-MN9202 contributes to it unwanted effects. The findings of the present study also indicate that MN9202 may be used as a new probe with which to investigate the structure-function relationships of Ca(2+) channels.

  17. Rest and exercise ventricular function in adults with congenital ventricular septal defects

    SciTech Connect

    Jablonsky, G.; Hilton, J.D.; Liu, P.P.; Morch, J.E.; Druck, M.N.; Bar-Shlomo, B.Z.; McLaughlin, P.R.

    1983-01-15

    Rest and exercise right and left ventricular function were compared using equilibrium gated radionuclide angiography in 19 normal sedentary control subjects and 34 patients with hemodynamically documented congenital ventricular septal defect (VSD). Gated radionuclide angiography was performed at rest and during each level of graded supine bicycle exercise to fatigue. Heart rate, blood pressure, maximal work load achieved, and right and left ventricular ejection fractions were assessed. The control subjects demonstrated an increase in both the left and right ventricular ejection fractions with exercise. All study groups failed to demonstrate an increase in ejection fraction in either ventricle with exercise. Furthermore, resting left ventricular ejection fraction in Groups 2 and 3 was lower than that in the control subjects and resting right ventricular ejection fraction was lower in Group 3 versus control subjects. Thus left and right ventricular function on exercise were abnormal in patients with residual VSD as compared with control subjects; rest and exercise left ventricular ejection fractions remained abnormal despite surgical closure of VSD in the remote past; resting left and right ventricular function was abnormal in patients with Eisenmenger's complex; lifelong volume overload may be detrimental to myocardial function.

  18. ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response

    SciTech Connect

    Icli, Basak; Bharti, Ajit; Pentassuglia, Laura; Peng, Xuyang; Sawyer, Douglas B.

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer ErbB4 localizes to cardiac myocyte nuclei as a full-length receptor. Black-Right-Pointing-Pointer Cardiac myocytes express predominantly JM-a/CYT-1 ErbB4. Black-Right-Pointing-Pointer Myocyte p53 activation in response to doxorubicin requires ErbB4 activity. -- Abstract: The intracellular domain of ErbB4 receptor tyrosine kinase is known to translocate to the nucleus of cells where it can regulate p53 transcriptional activity. The purpose of this study was to examine whether ErbB4 can localize to the nucleus of adult rat ventricular myocytes (ARVM), and regulate p53 in these cells. We demonstrate that ErbB4 does locate to the nucleus of cardiac myocytes as a full-length protein, although nuclear location occurs as a full-length protein that does not require Protein Kinase C or {gamma}-secretase activity. Consistent with this we found that only the non-cleavable JM-b isoform of ErbB4 is expressed in ARVM. Doxorubicin was used to examine ErbB4 role in regulation of a DNA damage response in ARVM. Doxorubicin induced p53 and p21 was suppressed by treatment with AG1478, an EGFR and ErbB4 kinase inhibitor, or suppression of ErbB4 expression with small interfering RNA. Thus ErbB4 localizes to the nucleus as a full-length protein, and plays a role in the DNA damage response induced by doxorubicin in cardiac myocytes.

  19. Stimulation of phosphatidylinositol hydrolysis, protein kinase C translocation, and mitogen-activated protein kinase activity by bradykinin in rat ventricular myocytes: dissociation from the hypertrophic response.

    PubMed Central

    Clerk, A; Gillespie-Brown, J; Fuller, S J; Sugden, P H

    1996-01-01

    In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1-8) [(Des-Arg9)BK] stimulated PtdinsP2 hydrolysis by 3-4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 microM [BK(1-8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-delta and nPKC-epsilon from the soluble to the particulate fraction. EC50 values for nPKC-delta translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-epsilon translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-delta and nPKC-epsilon by BK(1-8) were more than 5 microM. The classical PKC, cPKC-alpha, and the atypical PKC, nPKC-zeta, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3-5 min, 30-35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1-8) were more than 10 microM. The order of potency [BK approximately equal to kallidin >> BK (1-8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-delta and nPKC-epsilon translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1-8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-delta, and nPKC-epsilon, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology

  20. Pulmonary atresia and ventricular septal defect with aortopulmonary collaterals in an adult dog.

    PubMed

    Tou, Sandra P; Keene, Bruce W; Barker, Piers C A

    2011-12-01

    Pulmonary atresia and ventricular septal defect (PA-VSD) was diagnosed in a 2-year-old castrated male Terrier mix. Transthoracic echocardiography identified a large ventricular septal defect, overriding aorta and severe right ventricular hypertrophy. A main pulmonary artery could not be identified, consistent with pulmonary atresia or persistent truncus arteriosus. Transesophageal echocardiography and angiography confirmed PA-VSD with aortopulmonary collateral circulation arising from the descending thoracic aorta. This case report describes the antemortem diagnosis of the rare congenital defect PA-VSD in an adult dog.

  1. Localization of Kv4.2 and KChIP2 in lipid rafts and modulation of outward K+ currents by membrane cholesterol content in rat left ventricular myocytes.

    PubMed

    Rudakova, Elena; Wagner, Michael; Frank, Magdalena; Volk, Tilmann

    2015-02-01

    Lipid rafts are cholesterol-enriched microdomains of the cell membrane. Here we investigate the localization of the pore forming K(+)-channel α-subunit Kv4.2 and the β-subunit KChIP2, underlying the transient outward K(+) current (I to), in lipid rafts in left ventricular myocytes. Furthermore, we explored the impact of membrane cholesterol depletion (using 20 mM methyl-beta-cyclodextrin (MBCD)) on K(+) outward currents. Cholesterol-saturated MBCD (20 mM) served as control. Myocytes were isolated from the left ventricular free wall of Wistar rats. The Triton X-100 (4 °C) insoluble fraction of whole cell protein was analyzed by sucrose density gradient centrifugation followed by Western blot. Kv4.2 and KChIP2 were partially detected in low-density fractions (lipid rafts). MBCD treatment (5 min) resulted in a shift of Kv4.2 and KChIP2 towards high-density fractions. K(+) currents were assessed by whole-cell patch-clamp. MBCD treatment resulted in a 29 ± 3 % decrease in I to (20.0 ± 1.6pApF(-1) vs. 28.5 ± 2.0pApF(-1), n = 15, p < 0.001, V Pip = 40 mV) within 5 min. Control solution resulted in a significantly smaller reduction in I to (17 ± 3 %, p < 0.001, p < 0.01 compared with MBCD). MBCD induced a 38 ± 9 % increase in the non-inactivating current component (I sus) (10.1 ± 0.6pApF(-1) vs. 7.6 ± 0.4pApF(-1), n = 15, p < 0.001). This effect was absent in control solution. The increase in I sus was not sensitive to 100 μM 4-aminopyridine or 20 mM tetraethylammonium, making a contribution of Kv1.5 or Kv2.1 unlikely. In conclusion, in rat ventricular cardiomyocytes, a fraction of Kv4.2 and KChIP2 is localized in lipid rafts. Membrane cholesterol depletion results in ~12 % net reduction of I to, a redistribution of the channel proteins Kv4.2 and KChIP2 and an increased delayed rectifier current.

  2. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell.

    PubMed

    Liu, D W; Antzelevitch, C

    1995-03-01

    Recent studies have described regional differences in the electrophysiology and pharmacology of ventricular myocardium in canine, feline, rat, guinea pig, and human hearts. In this study, we use standard microelectrode and whole-cell patch-clamp techniques to examine the characteristics of the action potential and the delayed rectifier K+ current (IK) in epicardial, M region (deep subepicardial to midmyocardial), and endocardial cells isolated from the canine left ventricle. Cells from the M region displayed much longer action potential durations (APDs) at slow rates. At a basic cycle length of 4 s, APD measured at 90% repolarization was 358 +/- 16 (mean +/- SEM), 262 +/- 12, and 287 +/- 11 ms in cells from the M region, epicardium, and endocardium, respectively. Steady state APD-rate relations were steeper in cells from the M region. In complete Tyrode's solution, IK was smaller in myocytes from the M region when compared with those isolated from the epicardium or endocardium. Further characterization of IK was conducted in a Na(+)-, K(+)-, and Ca(2+)-free bath solution to isolate the slowly activating component of the delayed rectifier (IKs) from the rapidly activating component (IKr). IKs was significantly smaller in M cells than in epicardial and endocardial cells. With repolarization to -20 mV, IKs tail current density was 1.99 +/- 0.30 pA/pF (mean +/- SEM) in epicardial cells, 1.83 +/- 0.18 pA/pF in endocardial cells, and 0.92 +/- 0.14 pA/pF in M cells. Voltage dependence and time course of activation and deactivation of IKs were similar in the three cell types. The relative contribution of IKr and IKs among the three cell types was examined by using 6 mmol/L [K+]o Tyrode's solution with and without E-4031, a highly selective blocker of IKr. An E-4031-sensitive current was observed in the presence but not in the absence of extracellular K+. This rapidly activating component showed characteristics similar to those of IKr as described in rabbit and cat

  3. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    SciTech Connect

    Samaras, Susan E.; Chen, Billy; Koch, Stephen R.; Sawyer, Douglas B.; Lim, Chee Chew; Davidson, Jeffrey M.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. Black-Right-Pointing-Pointer Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. Black-Right-Pointing-Pointer Differential degradation appears related to nuclear vs. sarcolemmal localization. Black-Right-Pointing-Pointer Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  4. Bilateral outflow obstructions without ventricular septal defect in an adult: Illustrated by real-time 3D echocardiography

    PubMed Central

    Mohan, Jagdish C.; Mohan, Vishwas

    2015-01-01

    Double-chambered right ventricle with discrete subaortic stenosis without ventricular septal defect is rare in adults. This report shows incremental value of 3D echocardiography in delineating the pathoanatomy of these lesions. PMID:26304572

  5. Maternal Nutrient Restriction Predisposes Ventricular Remodeling in Adult Sheep Offspring

    PubMed Central

    Ge, Wei; Hu, Nan; George, Lindsey A.; Ford, Stephen P.; Nathanielsz, Peter W.; Wang, Xiaoming; Ren, Jun

    2012-01-01

    Maternal nutrient restriction during pregnancy is associated with the development of a “thrifty phenotype” in offspring, conferring increased prevalence of metabolic diseases in adulthood. To explore the possible mechanisms behind heart diseases in adulthood following maternal nutrient restriction, dams were fed a nutrient restricted (NR: 50%) or control (100%) diet from 28 to 78 d of gestation. Both groups were then fed 100% of requirements to lambing. At 6 yrs of age, female offspring of NR and control ewes of similar weight and body condition were subject to ad libitum feeding of a highly palatable diet for 12 wks. Cardiac geometry, post-insulin receptor signaling, autophagy and pro-inflammatory cytokines were evaluated in hearts from adult offspring. Our results indicated that maternal nutrient restriction overtly increased body weight gain and triggered cardiac remodeling in offspring following the 12-week ad libitum feeding. Phosphorylation of IRS1 was increased in left but not right ventricles from NR offspring. Levels of STAT3 were upregulated in left ventricles whereas expression of TNFα and TLR4 was enhanced in right ventricles in adult offspring of maternal nutrition restricted ewes. No significant differences were found in pan IRS-1, pan AMPK, pan Akt, pAMPK, pAkt, GLUT4, phosphorylated mTOR, Beclin-1 and LC3 II proteins in left and right ventricle between the control and NR offspring. These data revealed that maternal nutrient restriction during early to mid gestation may predispose adult offspring to cardiac remodeling possibly associated with phosphorylation of IRS1 as well as proinflammatory cytokines but not autophagy. PMID:23333094

  6. Ventricular remodeling in global ischemia.

    PubMed

    Anversa, P; Zhang, X; Li, P; Olivetti, G; Cheng, W; Reiss, K; Sonnenblick, E H; Kajstura, J

    1995-06-01

    To determine the effects of chronic constriction of the left coronary artery on the function and structure of the heart, coronary artery narrowing was surgically induced in rats and ventricular pump performance, extent and distribution of myocardial damage, and the hypertrophic and hyperplastic response of myocytes were examined. Alterations in cardiac hemodynamics were found in all rats, but the characteristics of the physiological properties of the heart allowed a separation of the animals into two groups which exhibited left ventricular dysfunction and failure, respectively. Left ventricular hypertrophy occurred in both groups and was characterized by ventricular dilatation and wall thinning which were more severe in the failing animals. Multiple foci of myocardial damage across the wall were seen in all animals but tissue injury was more prominent in the endomyocardium and in failing rats. The anatomical and hemodynamic changes resulted in a significant increase in diastolic wall stress which paralleled the depression in ventricular performance. Myocyte cell loss and myocyte cellular hypertrophy were more severe with ventricular failure than with dysfunction. Finally, diastolic overload appeared to be coupled with activation of the DNA synthetic machinery of myocytes and nuclear mitotic division. In conclusion, a fixed lesion of the left coronary artery leads to abnormalities in cardiac dynamics with marked increases in diastolic wall stress and extensive ventricular remodeling in spite of compensatory myocyte cellular hypertrophy and hyperplasia in the remaining viable tissue.

  7. Stem Cell Stimulation of Endogenous Myocyte Regeneration

    PubMed Central

    Weil, Brian R.; Canty, John M.

    2015-01-01

    Cell-based therapy has emerged as a promising approach to combat the myocyte loss and cardiac remodeling that characterize the progression of left ventricular dysfunction to heart failure. Several clinical trials conducted during the past decade have shown that a variety of autologous bone marrow- and peripheral blood-derived stem and progenitor cell populations can be safely administered to patients with ischemic heart disease and yield modest improvements in cardiac function. Concurrently, rapid progress has been made at the preclinical level to identify novel therapeutic cell populations, delineate the mechanisms underlying cell-mediated cardiac repair, and optimize cell-based approaches for clinical use. The following review summarizes the progress that has been made in this rapidly evolving field over the past decade and examines how our current understanding of the mechanisms involved in successful cardiac regeneration should direct future investigation in this area. Particular emphasis is placed on discussion of the general hypothesis that the benefits of cell therapy primarily result from stimulation of endogenous cardiac repair processes that have only recently been identified in the adult mammalian heart, rather than direct differentiation of exogenous cells. Continued scientific investigation in this area will guide the optimization of cell-based approaches for myocardial regeneration, with the ultimate goal of clinical implementation and substantial improvement in our ability to restore cardiac function in ischemic heart disease patients. PMID:23577634

  8. Stem cell stimulation of endogenous myocyte regeneration.

    PubMed

    Weil, Brian R; Canty, John M

    2013-08-01

    Cell-based therapy has emerged as a promising approach to combat the myocyte loss and cardiac remodelling that characterize the progression of left ventricular dysfunction to heart failure. Several clinical trials conducted over the past decade have shown that a variety of autologous bone-marrow- and peripheral-blood-derived stem and progenitor cell populations can be safely administered to patients with ischaemic heart disease and yield modest improvements in cardiac function. Concurrently, rapid progress has been made at the pre-clinical level to identify novel therapeutic cell populations, delineate the mechanisms underlying cell-mediated cardiac repair and optimize cell-based approaches for clinical use. The following review summarizes the progress that has been made in this rapidly evolving field over the past decade and examines how our current understanding of the mechanisms involved in successful cardiac regeneration should direct future investigation in this area. Particular emphasis is placed on discussion of the general hypothesis that the benefits of cell therapy primarily result from stimulation of endogenous cardiac repair processes that have only recently been identified in the adult mammalian heart, rather than direct differentiation of exogenous cells. Continued scientific investigation in this area will guide the optimization of cell-based approaches for myocardial regeneration, with the ultimate goal of clinical implementation and substantial improvement in our ability to restore cardiac function in ischaemic heart disease patients.

  9. Real-time measurement of the length of a single sarcomere in rat ventricular myocytes: a novel analysis with quantum dots.

    PubMed

    Serizawa, Takahiro; Terui, Takako; Kagemoto, Tatsuya; Mizuno, Akari; Shimozawa, Togo; Kobirumaki, Fuyu; Ishiwata, Shin'ichi; Kurihara, Satoshi; Fukuda, Norio

    2011-11-01

    As the dynamic properties of cardiac sarcomeres are markedly changed in response to a length change of even ∼0.1 μm, it is imperative to quantitatively measure sarcomere length (SL). Here we show a novel system using quantum dots (QDs) that enables a real-time measurement of the length of a single sarcomere in cardiomyocytes. First, QDs were conjugated with anti-α-actinin antibody and applied to the sarcomeric Z disks in isolated skinned cardiomyocytes of the rat. At partial activation, spontaneous sarcomeric oscillations (SPOC) occurred, and QDs provided a quantitative measurement of the length of a single sarcomere over the broad range (i.e., from ∼1.7 to ∼2.3 μm). It was found that the SPOC amplitude was inversely related to SL, but the period showed no correlation with SL. We then treated intact cardiomyocytes with the mixture of the antibody-QDs and FuGENE HD, and visualized the movement of the Z lines/T tubules. At a low frequency of 1 Hz, the cycle of the motion of a single sarcomere consisted of fast shortening followed by slow relengthening. However, an increase in stimulation frequency to 3-5 Hz caused a phase shift of shortening and relengthening due to acceleration of relengthening, and the waveform became similar to that observed during SPOC. Finally, the anti-α-actinin antibody-QDs were transfected from the surface of the beating heart in vivo. The striated patterns with ∼1.96-μm intervals were observed after perfusion under fluorescence microscopy, and an electron microscopic observation confirmed the presence of QDs in and around the T tubules and Z disks, but primarily in the T tubules, within the first layer of cardiomyocytes of the left ventricular wall. Therefore, QDs are a useful tool to quantitatively analyze the movement of single sarcomeres in cardiomyocytes, under various experimental settings.

  10. Quality Metrics for Stem Cell-Derived Cardiac Myocytes

    PubMed Central

    Sheehy, Sean P.; Pasqualini, Francesco; Grosberg, Anna; Park, Sung Jin; Aratyn-Schaus, Yvonne; Parker, Kevin Kit

    2014-01-01

    Summary Advances in stem cell manufacturing methods have made it possible to produce stem cell-derived cardiac myocytes at industrial scales for in vitro muscle physiology research purposes. Although FDA-mandated quality assurance metrics address safety issues in the manufacture of stem cell-based products, no standardized guidelines currently exist for the evaluation of stem cell-derived myocyte functionality. As a result, it is unclear whether the various stem cell-derived myocyte cell lines on the market perform similarly, or whether any of them accurately recapitulate the characteristics of native cardiac myocytes. We propose a multiparametric quality assessment rubric in which genetic, structural, electrophysiological, and contractile measurements are coupled with comparison against values for these measurements that are representative of the ventricular myocyte phenotype. We demonstrated this procedure using commercially available, mass-produced murine embryonic stem cell- and induced pluripotent stem cell-derived myocytes compared with a neonatal mouse ventricular myocyte target phenotype in coupled in vitro assays. PMID:24672752

  11. A call for guidance in the use of left ventricular assist devices in older adults.

    PubMed

    Vitale, Caroline A; Chandekar, Rashmi; Rodgers, Phillip E; Pagani, Francis D; Malani, Preeti N

    2012-01-01

    Left ventricular assist devices (LVADs) are approved as "destination therapy" (permanent use without plans for transplantation) in individuals with advanced heart failure who are not candidates for a cardiac transplant; as such, these devices are increasingly being used in older adults. Although LVADs have been shown to increase quality of life and survival, the associated treatment burdens and complications deserve careful consideration. The current study illustrates myriad clinical challenges that can arise during long-term mechanical support using an older adult case history. Current data on LVAD use in older adults is reviewed, and a discussion of relevant points to consider before LVAD implantation in older adults, including advance care planning, assessment of gait and cognition, and the potential for substantial caregiver burden, is undertaken.

  12. Evaluation of left ventricular systolic function in young adults with mitral valve prolapse

    PubMed Central

    Malev, Eduard; Zemtsovsky, Eduard; Pshepiy, Asiyet; Timofeev, Eugeny; Reeva, Svetlana; Prokudina, Maria

    2012-01-01

    OBJECTIVE: To evaluate left ventricular function in young adults with mitral valve prolapse (MVP) without significant mitral regurgitation using two-dimensional strain imaging. METHODS AND RESULTS: A total of 58 asymptomatic young subjects (mean [± SD] age 19.7±1.6 years; 72% male) with MVP were compared with 60 sex- and age-matched healthy subjects. MVP was diagnosed by billowing one or both mitral leaflets >2 mm above the mitral annulus in the long-axis parasternal view. Longitudinal, radial and circumferential strain and strain rate were determined using speckle tracking with a grey-scale frame rate of 50 fps to 85 fps. There were no significant differences in the global systolic left ventricular function of the subjects with MVP compared with the control group. In the MVP group, most of the global myocardial systolic deformation indexes were not reduced. Only the global circumferential strain showed a decrease in the prolapse subjects. Regional, longitudinal, circumferential and radial strain and strain rate were decreased only in septal segments. A decrease in the rotation of the same septal segments at the basal level was also observed. CONCLUSION: Regional septal myocardial deformation indexes decrease in subjects with MVP. These changes may be the first sign indicating the deterioration of left ventricular systolic function as well as the existence of primary cardiomyopathy in asymptomatic young subjects with MVP. PMID:23592928

  13. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca(2+)-indicating fluorophores.

    PubMed Central

    Trollinger, D R; Cascio, W E; Lemasters, J J

    2000-01-01

    A cold/warm loading protocol was used to ester-load Rhod 2 into mitochondria and other organelles and Fluo 3 into the cytosol of adult rabbit cardiac myocytes for confocal fluorescence imaging. Transient increases in both cytosolic Fluo 3 and mitochondrial Rhod 2 fluorescence occurred after electrical stimulation. Ruthenium red, a blocker of the mitochondrial Ca(2+) uniporter, inhibited mitochondrial Rhod 2 fluorescence transients but not cytosolic Fluo 3 transients. Thus the ruthenium red-sensitive mitochondrial Ca(2+) uniporter catalyzes Ca(2+) uptake during beat-to-beat transients of mitochondrial free Ca(2+), which in turn may help match mitochondrial ATP production to myocardial ATP demand. After ester loading, substantial amounts of Ca(2+)-indicating fluorophores localized into an acidic lysosomal/endosomal compartment. This lysosomal fluorescence did not respond to electrical stimulation. Because fluorescence arose predominantly from lysosomes after the cold loading/warm incubation procedure, total cellular fluorescence failed to track beat-to-beat changes of mitochondrial fluorescence. Only three-dimensionally resolved confocal imaging distinguished the relatively weak mitochondrial signal from the bright lysosomal fluorescence. PMID:10866936

  14. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion.

    PubMed

    Brunetti, Tonya M; Fremin, Brayon J; Cripps, Richard M

    2015-05-15

    In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles.

  15. Genetics Home Reference: catecholaminergic polymorphic ventricular tachycardia

    MedlinePlus

    ... myocytes. During exercise or emotional stress, impaired calcium regulation in the heart can lead to ventricular tachycardia ... mechanisms of arrhythmias associated to impaired Ca(2+) regulation. Heart Rhythm. 2009 Nov;6(11):1652-9. ...

  16. Effects of angiotensin II on intracellular Ca2+ and pH in isolated beating rabbit hearts and myocytes loaded with the indicator indo-1.

    PubMed Central

    Ikenouchi, H; Barry, W H; Bridge, J H; Weinberg, E O; Apstein, C S; Lorell, B H

    1994-01-01

    1. Angiotensin II increases myocardial contractility in several species, including the rabbit and man. However, it is controversial whether the predominant mechanism is an increase in free cytosolic [Ca2+]i or a change in myofilament Ca2+ sensitivity. To address this question, we infused angiotensin II in isolated perfused rabbit hearts loaded with the Ca2+ indicator indo-1 AM and measured changes in beat-to-beat surface transients of the Ca2+i-sensitive 400:500 nm ratio and left ventricular contractility. The effects of angiotensin II were compared with the response to a Ca(2+)-dependent increase in the inotropic state produced by a change in the perfusate [Ca2+] from 0.9 to 3.6 nM. 2. In the isolated beating heart, an increase in perfusate [Ca2+] caused an increase in left ventricular pressure +dP/dt in association with an increase in peak systolic [Ca2+]i. Angiotensin II perfusion caused a similar increase in left ventricular +dP/dt in the absence of any increase in peak systolic [Ca2+]i. 3. To exclude any contribution of non-myocyte sources of Ca(2+)-sensitive fluorescence which may be present in the intact heart, we also compared the effects of angiotensin II and a change in superfusate [Ca2+] in collagenase-dissociated paced adult rabbit ventricular myocytes loaded with indo-1 AM. In the isolated rabbit myocytes a change in perfusate [Ca2+] from 0.9 to 3.6 mM caused an increase in peak systolic cell shortening coincident with an increase in peak systolic [Ca2+]i. In contrast, angiotensin II caused a similar increase in peak systolic cell shortening whereas there was no increase in peak systolic [Ca2+]i. There was also no change in inward Ca2+ current (ICa) in response to angiotensin II. 4. To investigate further the mechanism of the positive inotropic action of angiotensin II, its effects on intracellular pH were studied in isolated rabbit myocytes loaded with the fluorescent H+ probe SNARF 1. These experiments demonstrated that angiotensin II induced a 0.2 p

  17. Asymptomatic right ventricular dysfunction in surgically repaired adult tetralogy of fallot patients

    PubMed Central

    Nair, Krishna Kumar Mohanan; Ganapathi, Sanjay; Sasidharan, Bijulal; Thajudeen, Anees; Pillai, Harikrishnan Sivadasan; Tharakan, Jaganmohan; Titus, Thomas; Kumaran, Ajitkumar Valaparambil; Sivasubramonian, Sivasankaran; Krishnamoorthy, Kavassery Mahadevan

    2013-01-01

    Background: Right ventricular (RV) dysfunction after surgical repair of Tetralogy of Fallot (TOF) is often asymptomatic and may be detected by tissue Doppler imaging (TDI). The severity of RV dysfunction is more after intracardiac repair with transannular patch (TAP). Methods: One hundred seventy-three adult patients who have undergone surgical repair for TOF were prospectively analyzed for RV function using 2D echocardiography and TDI. RV function was compared between patients who have undergone intracardiac repair with and without TAP. Results: In both the patient sub-groups, TDI derived myocardial performance index (MPI) and myocardial velocities were abnormal even when 2D echocardiography derived RV functional area change was normal. TDI derived MPI was significantly higher (0.5 ± 0.1 vs. 0.4 ± 0 P < 0.001) and Systolic tricuspid annular velocity (Sa) (9.2 ± 1.3 vs. 10.8 ± 1.6 P < 0.001) was significantly lower in the TAP group. Older age at surgery and severity of pulmonary regurgitation on follow-up were among the significant predictors of TDI derived MPI. Conclusions: Asymptomatic RV dysfunction in surgically repaired adult TOF atients can be detected by TDI. Extent of RV dysfunction was significantly greater with patients requiring TAP, in those operated at older age, and in patients with severe pulmonary regurgitation. PMID:23626431

  18. Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease

    PubMed Central

    Larsen, Hege E.; Lefkimmiatis, Konstantinos; Paterson, David J.

    2016-01-01

    Many therapeutic interventions in disease states of heightened cardiac sympathetic activity are targeted to the myocytes. However, emerging clinical data highlights a dominant role in disease progression by the neurons themselves. Here we describe a novel experimental model of the peripheral neuro-cardiac axis to study the neuron’s ability to drive a myocyte cAMP phenotype. We employed a co-culture of neonatal ventricular myocytes and sympathetic stellate neurons from normal (WKY) and pro-hypertensive (SHR) rats that are sympathetically hyper-responsive and measured nicotine evoked cAMP responses in the myocytes using a fourth generation FRET cAMP sensor. We demonstrated the dominant role of neurons in driving the myocyte ß-adrenergic phenotype, where SHR cultures elicited heightened myocyte cAMP responses during neural activation. Moreover, cross-culturing healthy neurons onto diseased myocytes rescued the diseased cAMP response of the myocyte. Conversely, healthy myocytes developed a diseased cAMP response if diseased neurons were introduced. Our results provide evidence for a dominant role played by the neuron in driving the adrenergic phenotype seen in cardiovascular disease. We also highlight the potential of using healthy neurons to turn down the gain of neurotransmission, akin to a smart pre-synaptic ß-blocker. PMID:27966588

  19. Physiological changes induced in cardiac myocytes by cytotoxic T lymphocytes

    SciTech Connect

    Hassin, D.; Fixler, R.; Shimoni, Y.; Rubinstein, E.; Raz, S.; Gotsman, M.S.; Hasin, Y.

    1987-01-01

    The lethal hit induced by viral specific, sensitized, cytotoxic T lymphocytes (CTL) attacking virus-infected heart cells is important in the pathogenesis of viral myocarditis and reflects the key role of CTL in this immune response. The mechanisms involved are incompletely understood. Studies of the physiological changes induced in mengovirus-infected, cultured, neonatal, rat heart cells by CTL that had been previously sensitized by the same virus are presented. The CTL were obtained from spleens of mengovirus-infected, major histocompatibility complex (MHC) matched adult rats. Cell wall motion was measured by an optical method, action potentials with intracellular microelectrodes, and total exchangeable calcium content by /sup 45/Ca tracer measurements after loading the myocytes with /sup 45/Ca and then exposing them to CTL. After 50 min (mean time) of exposing mengovirus-infected myocytes to the CTL, the mechanical relaxation of the myocyte was slowed, with a subsequent slowing of beating rate and a reduced amplitude of contraction. Impaired relaxation progressed, and prolonged oscillatory contractions lasting up to several seconds appeared, with accompanying oscillations in the prolonged plateau phase of the action potentials. Arrest of the myocyte contractions appeared 98 min (mean time) after exposure to CTL. It is concluded that infection of cultured myocytes with mengovirus predisposes them to attack by mengovirus specific CTL, and that persistent dysfunction of the myocyte is preceded by reversible changes in membrane potential and contraction. This is suggestive of an altered calcium handling by the myocytes possibly resulting in the cytotoxic effect.

  20. Glioblastoma Multiforme and Adult Neurogenesis in the Ventricular-Subventricular Zone: A Review.

    PubMed

    Capdevila, Claudia; Rodríguez Vázquez, Lucía; Martí, Joaquín

    2017-07-01

    Brain cancers account for <1,5% of all new cancer cases reported in the United States each year. Due to their invasive and heterogeneous nature, in addition to their resistance to multimodal treatments, these tumors are usually fatal. Gliomas, and in particular high-grade astrocytomas such as glioblastoma multiforme (GBM), are the most common and lethal primary tumors of the central nervous system. The median survival of most patients is less than 1 year after application of multimodal therapies. The question is why are these cancers so injurious? And above all, how is it possible for a so carefully orchestrated area like the brain to develop such tumors? This brings us to the study of glioma stem cells, their specialized niches (perivascular and hypoxic), and the neurogenic phenomena that takes place within the adult ventricular-subventricular zone: a structure that lies at the intersection between brain development and gliomagenesis. J. Cell. Physiol. 232: 1596-1601, 2017. © 2016 Wiley Periodicals, Inc.

  1. Severe Left Ventricular Endomyocardial Fibrosis Presenting as Biventricular Failure in a Young Adult: A Case Report

    PubMed Central

    Mahendrakar, Sampathkumar Mahadevappa; Pethani, Rajebali Ramzanali; Khan, Azizullah Hafizullah; Loya, Yunus Shafi

    2016-01-01

    Endomyocardial Fibrosis (EMF) is a form of progressive restrictive cardiomyopathy of unclear aetiology prevalent in areas within 150 of equator including coastal areas of Kerala a few decades back. It inflicts young adults and carries a poor prognosis due to limited options for treatment. Fortunately, the incidence of cases is now declining due to improvement in health and hygiene standards. Here, we review the aetiology and pathogenesis of EMF and report a case of a young male from Mumbai (non-endemic area) presenting with progressively worsening breathlessness and signs of heart failure unresponsive to conventional medical treatment. To delineate the extent of the disease transthoracic echocardiography and cardiac Magnetic Resonance Imaging (MRI) was done which revealed infiltrative lesions in left ventricular apex with grade 2/3 mitral regurgitation. Due to progressive and severe nature of the disease the patient was managed conservatively. Through this report we would like to rekindle the interest of reader in a forgotten tropical disease which is considered rare in this geographical area but should not be missed as a cause heart failure considering its significant mortality. PMID:28050425

  2. Regulation of L-type calcium channel by phospholemman in cardiac myocytes.

    PubMed

    Zhang, Xue-Qian; Wang, JuFang; Song, Jianliang; Rabinowitz, Joseph; Chen, Xiongwen; Houser, Steven R; Peterson, Blaise Z; Tucker, Amy L; Feldman, Arthur M; Cheung, Joseph Y

    2015-07-01

    We evaluated whether phospholemman (PLM) regulates L-type Ca(2+) current (ICa) in mouse ventricular myocytes. Expression of α1-subunit of L-type Ca(2+) channels between wild-type (WT) and PLM knockout (KO) hearts was similar. Compared to WT myocytes, peak ICa (at -10 mV) from KO myocytes was ~41% larger, the inactivation time constant (τ(inact)) of ICa was ~39% longer, but deactivation time constant (τ(deact)) was similar. In the presence of isoproterenol (1 μM), peak ICa was ~48% larger and τ(inact) was ~144% higher in KO myocytes. With Ba(2+) as the permeant ion, PLM enhanced voltage-dependent inactivation but had no effect on τ(deact). To dissect the molecular determinants by which PLM regulated ICa, we expressed PLM mutants by adenovirus-mediated gene transfer in cultured KO myocytes. After 24h in culture, KO myocytes expressing green fluorescent protein (GFP) had significantly larger peak ICa and longer τ(inact) than KO myocytes expressing WT PLM; thereby independently confirming the observations in freshly isolated myocytes. Compared to KO myocytes expressing GFP, KO myocytes expressing the cytoplasmic domain truncation mutant (TM43), the non-phosphorylatable S68A mutant, the phosphomimetic S68E mutant, and the signature PFXYD to alanine (ALL5) mutant all resulted in lower peak ICa. Expressing PLM mutants did not alter expression of α1-subunit of L-type Ca(2+) channels in cultured KO myocytes. Our results suggested that both the extracellular PFXYD motif and the transmembrane domain of PLM but not the cytoplasmic tail were necessary for regulation of peak ICa amplitude. We conclude that PLM limits Ca(2+) influx in cardiac myocytes by reducing maximal ICa and accelerating voltage-dependent inactivation.

  3. Unusual association of multiple congenital left ventricular diverticulum and cerebrovascular events in an adult.

    PubMed

    Alkan, Mustafa Beyazıt; Bilgin, Murat; Zihni, Burcu; Nalbantgil, Sanem

    2015-04-01

    Congenital ventricular diverticulum is a rare and usually asymptomatic cardiac malformation which can cause major complications such as systemic thromboembolism, infective endocarditis, cardiac rupture, heart failure, arrhythmia and sudden death. We present a case with multiple congenital left ventricular diverticulum admitted to hospital with sudden onset right-sided hemiplegia and dysarthria.

  4. Myocyte renewal and therapeutic myocardial regeneration using various progenitor cells.

    PubMed

    Hayashi, Emiko; Hosoda, Toru

    2014-11-01

    Whereas the demand on effective treatment options for chronic heart failure is dramatically increasing, the recent recognition of physiological and pathological myocyte turnover in the adult human heart provided a fundamental basis for the therapeutic regeneration. Divergent modalities were experimentally introduced to this field, and selected ones have been applied clinically; the history began with skeletal myoblasts and bone-marrow-derived cells, and lately mesenchymal stem/stromal cells and resident cardiac cells joined the repertoire. Among them, autologous transplantation of c-kit-positive cardiac stem cells in patients with chronic ventricular dysfunction resulted in an outstanding outcome with long-lasting effects without increasing major adverse events. To further optimize currently available approaches, we have to consider multiple factors, such as the targeting disease, the cell population and number to be administered, and the timing and the route of cell delivery. Exploration of the consequence of the previous clinical trials would allow us to envision an ideal cellular therapy for various cardiovascular disorders.

  5. Nuclear morphology and deformation in engineered cardiac myocytes and tissues.

    PubMed

    Bray, Mark-Anthony P; Adams, William J; Geisse, Nicholas A; Feinberg, Adam W; Sheehy, Sean P; Parker, Kevin K

    2010-07-01

    Cardiac tissue engineering requires finely-tuned manipulation of the extracellular matrix (ECM) microenvironment to optimize internal myocardial organization. The myocyte nucleus is mechanically connected to the cell membrane via cytoskeletal elements, making it a target for the cellular response to perturbation of the ECM. However, the role of ECM spatial configuration and myocyte shape on nuclear location and morphology is unknown. In this study, printed ECM proteins were used to configure the geometry of cultured neonatal rat ventricular myocytes. Engineered one- and two-dimensional tissue constructs and single myocyte islands were assayed using live fluorescence imaging to examine nuclear position, morphology and motion as a function of the imposed ECM geometry during diastolic relaxation and systolic contraction. Image analysis showed that anisotropic tissue constructs cultured on microfabricated ECM lines possessed a high degree of nuclear alignment similar to that found in vivo; nuclei in isotropic tissues were polymorphic in shape with an apparently random orientation. Nuclear eccentricity was also increased for the anisotropic tissues, suggesting that intracellular forces deform the nucleus as the cell is spatially confined. During systole, nuclei experienced increasing spatial confinement in magnitude and direction of displacement as tissue anisotropy increased, yielding anisotropic deformation. Thus, the nature of nuclear displacement and deformation during systole appears to rely on a combination of the passive myofibril spatial organization and the active stress fields induced by contraction. Such findings have implications in understanding the genomic consequences and functional response of cardiac myocytes to their ECM surroundings under conditions of disease.

  6. Three-dimensional alignment of the aggregated myocytes in the normal and hypertrophic murine heart.

    PubMed

    Schmitt, Boris; Fedarava, Katsiaryna; Falkenberg, Jan; Rothaus, Kai; Bodhey, Narendra K; Reischauer, Carolin; Kozerke, Sebastian; Schnackenburg, Bernhard; Westermann, Dirk; Lunkenheimer, Paul P; Anderson, Robert H; Berger, Felix; Kuehne, Titus

    2009-09-01

    Several observations suggest that the transmission of myocardial forces is influenced in part by the spatial arrangement of the myocytes aggregated together within ventricular mass. Our aim was to assess, using diffusion tensor magnetic resonance imaging (DT-MRI), any differences in the three-dimensional arrangement of these myocytes in the normal heart compared with the hypertrophic murine myocardium. We induced ventricular hypertrophy in seven mice by infusion of angiotensin II through a subcutaneous pump, with seven other mice serving as controls. DT-MRI of explanted hearts was performed at 3.0 Tesla. We used the primary eigenvector in each voxel to determine the three-dimensional orientation of aggregated myocytes in respect to their helical angles and their transmural courses (intruding angles). Compared with controls, the hypertrophic hearts showed significant increases in myocardial mass and the outer radius of the left ventricular chamber (P < 0.05). In both groups, a significant change was noted from positive intruding angles at the base to negative angles at the ventricular apex (P < 0.01). Compared with controls, the hypertrophied hearts had significantly larger intruding angles of the aggregated myocytes, notably in the apical and basal slices (P < 0.001). In both groups, the helical angles were greatest in midventricular sections, albeit with significantly smaller angles in the mice with hypertrophied myocardium (P < 0.01). The use of DT-MRI revealed significant differences in helix and intruding angles of the myocytes in the mice with hypertrophied myocardium.

  7. Vagal control of cardiac electrical activity and wall motion during ventricular fibrillation in large animals.

    PubMed

    Naggar, Isaac; Nakase, Ko; Lazar, Jason; Salciccioli, Louis; Selesnick, Ivan; Stewart, Mark

    2014-07-01

    Vagal inputs control pacemaking and conduction systems in the heart. Anatomical evidence suggests a direct ventricular action, but functional evidence that separates direct and indirect (via the conduction system) vagal actions is less well established. We studied vagus nerve stimulation (VNS) during sinus rhythm and ventricular fibrillation (VF) in pigs and sheep to determine: 1) the range of unilateral and bilateral actions (inotropic and chronotropic) and 2) whether VNS alters left ventricular motion and/or electrical activity during VF, a model of abnormal electrical conduction of the left ventricle that excludes sinus and atrioventricular nodal function. Adult pigs (N=8) and sheep (N=10) were anesthetized with urethane and mechanically ventilated. VNS was performed in animals at 1, 2, 5, 10, 20, 50, and 100Hz for 20s. VF was induced with direct current to the ventricles or occlusion of the left anterior descending coronary artery. In 4 pigs and 3 sheep, left ventricular wall motion was assessed from endocardial excursion in epicardial echocardiography. In sheep and pigs, the best frequency among those tested for VNS during sinus rhythm to produce sustained electrical and mechanical ventricular standstill was 50Hz for unilateral or bilateral stimulation. When applied during VF, bilateral VNS increased the variability of the dominant VF frequency, indicating a direct impact on the excitability of ventricular myocytes, and decreased endocardial excursion by more than 50% during VF. We conclude that the vagus nerve directly modulates left ventricular function independently from its effects on the conduction system.

  8. 3D Printing to Guide Ventricular Assist Device Placement in Adults With Congenital Heart Disease and Heart Failure.

    PubMed

    Farooqi, Kanwal M; Saeed, Omar; Zaidi, Ali; Sanz, Javier; Nielsen, James C; Hsu, Daphne T; Jorde, Ulrich P

    2016-04-01

    As the population of adults with congenital heart disease continues to grow, so does the number of these patients with heart failure. Ventricular assist devices are underutilized in adults with congenital heart disease due to their complex anatomic arrangements and physiology. Advanced imaging techniques that may increase the utilization of mechanical circulatory support in this population must be explored. Three-dimensional printing offers individualized structural models that would enable pre-surgical planning of cannula and device placement in adults with congenital cardiac disease and heart failure who are candidates for such therapies. We present a review of relevant cardiac anomalies, cases in which such models could be utilized, and some background on the cost and procedure associated with this process.

  9. Myocyte repolarization modulates myocardial function in aging dogs.

    PubMed

    Sorrentino, Andrea; Signore, Sergio; Qanud, Khaled; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A; Wunimenghe, Oriyanhan; Michler, Robert E; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G; Anversa, Piero; Hintze, Thomas H; Rota, Marcello

    2016-04-01

    Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions.

  10. Right ventricular myocardial responses to progressive exercise in young adult males.

    PubMed

    Rowland, T; Wharton, M; Masters, T; Mozer, M; Santiago, M; Smith, D L

    2014-11-01

    Recent attention has been focused on possible unique features of the right ventricular response to exercise. This study investigated a) the responses of right ventricular cardiac dynamics and myocardial function to a standard bout of progressive cycle exercise in healthy young males, and b) the effect of level of aerobic fitness on these responses. 14 athletically-trained males (20.4±1.5 years) and 11 normally-active males (21.1±1.3 years) underwent a progressive upright cycle test to exhaustion with measurement of gas exchange variables and assessment of right ventricular stroke volume, systolic and diastolic myocardial velocities, and tricuspid inflow velocities by standard Doppler echocardiographic techniques at rest, submaximal and peak exercise. Stroke volume rose initially by approximately 27% in each group, followed by stable values to exhaustion. Values of maximal stroke index and maximal oxygen uptake were significantly greater in the trained group than the normally-active males (62±10 ml m(-2), 54.3±4.0 ml kg(-1) min(-1); 49±7 ml m(-2), 40.3±5.6 ml kg(-1) min(-1), respectively). No significant differences were observed in increases in systolic or diastolic myocardial velocities, peak pulmonary outflow velocity, systolic ejection rate, or tricuspid inflow velocity between the 2 groups. The magnitude of change of these variables was similar to those previously described for left ventricular responses to similar exercise. This study revealed no unique features of right ventricular functional responses to an acute exercise challenge in young males.

  11. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture

    NASA Technical Reports Server (NTRS)

    Clark, W. A.; Decker, M. L.; Behnke-Barclay, M.; Janes, D. M.; Decker, R. S.

    1998-01-01

    Cardiac myocytes maintained in cell culture develop hypertrophy both in response to mechanical loading as well as to receptor-mediated signaling mechanisms. However, it has been shown that the hypertrophic response to these stimuli may be modulated through effects of intercellular contact achieved by maintaining cells at different plating densities. In this study, we show that the myocyte plating density affects not only the hypertrophic response and features of the differentiated phenotype of isolated adult myocytes, but also plays a significant role influencing myocyte survival in vitro. The native rod-shaped phenotype of freshly isolated adult myocytes persists in an environment which minimizes myocyte attachment and spreading on the substratum. However, these conditions are not optimal for long-term maintenance of cultured adult cardiac myocytes. Conditions which promote myocyte attachment and spreading on the substratum, on the other hand, also promote the re-establishment of new intercellular contacts between myocytes. These contacts appear to play a significant role in the development of spontaneous activity, which enhances the redevelopment of highly differentiated contractile, junctional, and sarcoplasmic reticulum structures in the cultured adult cardiomyocyte. Although it has previously been shown that adult cardiac myocytes are typically quiescent in culture, the addition of beta-adrenergic agonists stimulates beating and myocyte hypertrophy, and thereby serves to increase the level of intercellular contact as well. However, in densely-plated cultures with intrinsically high levels of intercellular contact, spontaneous contractile activity develops without the addition of beta-adrenergic agonists. In this study, we compare the function, morphology, and natural history of adult feline cardiomyocytes which have been maintained in cultures with different levels of intercellular contact, with and without the addition of beta-adrenergic agonists

  12. The Heart: Mostly Postmitotic or Mostly Premitotic? Myocyte Cell Cycle, Senescence and Quiescence

    PubMed Central

    Siddiqi, Sailay; Sussman, Mark A

    2014-01-01

    The concept of myocyte division and myocyte-mediated regeneration has re-emerged in the past five years through development of sophisticated transgenic mice and carbon-dating of cells. Although, recently, a couple of studies have been conducted as an attempt to intervene in myocyte division, the efficiency in adult animals remains discouragingly low. Re-enforcing myocyte division is a vision that has been desired for decades, leading to years of experience in myocytes resistance to pro-proliferative stimuli. Previous attempts have indeed provided a platform for basic knowledge on molecular players and signaling in myocytes. However, natural biological processes such as hypertrophy and binucleation provide layers of complexity in interpretation of previous and current findings. A major hurdle in mediating myocyte division is a lack of insight in the myocyte cell cycle. To date, no knowledge is gained on myoycte cell cycle progression and/or duration. The current review will provide an overview of previous and current literature on myocytes cell cycle and division. Furthermore, this overview will point-out the limitations of current approaches and focus on re-igniting basic questions that may be essential in understand myocardial resistance to division. PMID:25442430

  13. The Frank-Starling mechanism in vertebrate cardiac myocytes.

    PubMed

    Shiels, Holly A; White, Ed

    2008-07-01

    The Frank-Starling law of the heart applies to all classes of vertebrates. It describes how stretch of cardiac muscle, up to an optimum length, increases contractility thereby linking cardiac ejection to cardiac filling. The cellular mechanisms underlying the Frank-Starling response include an increase in myofilament sensitivity for Ca2+, decreased myofilament lattice spacing and increased thin filament cooperativity. Stretching of mammalian, amphibian and fish cardiac myocytes reveal that the functional peak of the sarcomere length (SL)-tension relationship occurs at longer SL in the non-mammalian classes. These findings correlate with in vivo cardiac function as non-mammalian vertebrates, such as fish, vary stroke volume to a relatively larger extent than mammals. Thus, it seems the length-dependent properties of individual myocytes are modified to accommodate differences in organ function, and the high extensibility of certain hearts is matched by the extensibility of their myocytes. Reasons for the differences between classes are still to be elucidated, however, the structure of mammalian ventricular myocytes, with larger widths and higher levels of passive stiffness than those from other vertebrate classes may be implicated.

  14. Nanoscale three-dimensional imaging of the human myocyte.

    PubMed

    Sulkin, Matthew S; Yang, Fei; Holzem, Katherine M; Van Leer, Brandon; Bugge, Cliff; Laughner, Jacob I; Green, Karen; Efimov, Igor R

    2014-10-01

    The ventricular human myocyte is spatially organized for optimal ATP and Ca(2+) delivery to sarcomeric myosin and ionic pumps during every excitation-contraction cycle. Comprehension of three-dimensional geometry of the tightly packed ultrastructure has been derived from discontinuous two-dimensional images, but has never been precisely reconstructed or analyzed in human myocardium. Using a focused ion beam scanning electron microscope, we created nanoscale resolution serial images to quantify the three-dimensional ultrastructure of a human left ventricular myocyte. Transverse tubules (t-tubule), lipid droplets, A-bands, and mitochondria occupy 1.8, 1.9, 10.8, and 27.9% of the myocyte volume, respectively. The complex t-tubule system has a small tortuosity (1.04±0.01), and is composed of long transverse segments with diameters of 317±24nm and short branches. Our data indicates that lipid droplets located well beneath the sarcolemma are proximal to t-tubules, where 59% (13 of 22) of lipid droplet centroids are within 0.50μm of a t-tubule. This spatial association could have an important implication in the development and treatment of heart failure because it connects two independently known pathophysiological alterations, a substrate switch from fatty acids to glucose and t-tubular derangement.

  15. Nanoscale Three-Dimensional Imaging of the Human Myocyte

    PubMed Central

    Sulkin, Matthew S.; Yang, Fei; Holzem, Katherine M.; Van Leer, Brandon; Bugge, Cliff; Laughner, Jacob I.; Green, Karen; Efimov, Igor R.

    2014-01-01

    The ventricular human myocyte is spatially organized for optimal ATP and Ca2+ delivery to sarcomeric myosin and ionic pumps during every excitation-contraction cycle. Comprehension of three-dimensional geometry of the tightly packed ultrastructure has been derived from discontinuous two-dimensional images, but has never been precisely reconstructed or analyzed in human myocardium. Using a focused ion beam scanning electron microscope, we created nanoscale resolution serial images to quantify the three-dimensional ultrastructure of a human left ventricular myocyte. Transverse tubules (t-tubule), lipid droplets, A-bands, and mitochondria occupy 1.8, 1.9, 10.8, and 27.9% of the myocyte volume, respectively. The complex t-tubule system has a small tortuosity (1.04 ± 0.01), and is composed of long transverse segments with diameters of 317 ± 24 nm and short branches. Our data indicates that lipid droplets located well beneath the sarcolemma are proximal to t-tubules, where 59% (13 of 22) of lipid droplet centroids are within 0.50 μm of a t-tubule. This spatial association could have an important implication in the development and treatment of heart failure because it connects two independently known pathophysiological alterations, a substrate switch from fatty acids to glucose and t-tubular derangement. PMID:25160725

  16. Electrical properties of individual cells isolated from adult rat ventricular myocardium.

    PubMed

    Powell, T; Terrar, D A; Twist, V W

    1980-05-01

    1. Individual cells were isolated from adult rats ventricular myocardium by a collagenase digestion procedure. 2. Steady membrane potentials recorded with conventional intracellular glass micro-electrodes from cells in a modified Krebs solution containing 3 . 8 mM-KCl and 0 . 5 mM-CaCl2 were less negative than -40 mV in most cells (-25 . 3 +/- 10 . 9 mV, mean +/- S.D., 211 cells). 3. After addition of the potassium selective ionophore valinomycin (60 nM) to the bathing solution all recorded membrane potentials were more negative than -60 mV (-74 . 8 +/- 7 . 0 mV, sixty-three cells). 4. The internal concentration of potassium in the cells was determined as 120 . 8 +/- 1 . 7 mM (+/- S.E., n = 24) by flame emission spectrometry after centrifugation through silicone oil, using tritiated water and D-[1-14C] mannitol to estimate total and extracellular water in the pellet. 5. In the majority of cells in the standard solution the membrane potential recorded within a few msec of penetration was more negative than -70 mV (-78 . 4 +/- 9 . 7 mV, seventy-three cells). In sixty-six cells penetration initiated an action potential which overshot zero by 31 . 3 +/- 7 . 1 mV. This overshoot was abolished by reducing the external sodium to 0 . 1 of the normal value, and reduced or abolished by addition of tetrodotoxin (30 microM). 6. Modifications of the standard bathing solution which increased the number of cells with steady recorded membrane potentials more negative than -60 mV were: isosmotic substitution of sucrose for NaCl; replacement of NaCl and KCl by sodium isethionate and potassium methyl sulphate; addition of 5 or 10 mM-CaCl2; addition of 10 mM-MnCl2. 7. For cells in solution containing 2 . 5 or 5 . 5 mM-CaCl2, input resistances estimated from the amplitude of hyperpolarizations evoked by 200 msec current pulses were approximately 40 M omega at a resting potential close to -80 mV and became much greater as cells were depolarized. Time constants measured at the resting

  17. Premorbid determinants of left ventricular dysfunction in a novel model of gradually induced pressure overload in the adult canine

    NASA Technical Reports Server (NTRS)

    Koide, M.; Nagatsu, M.; Zile, M. R.; Hamawaki, M.; Swindle, M. M.; Keech, G.; DeFreyte, G.; Tagawa, H.; Cooper, G. 4th; Carabello, B. A.

    1997-01-01

    BACKGROUND: When a pressure overload is placed on the left ventricle, some patients develop relatively modest hypertrophy whereas others develop extensive hypertrophy. Likewise, the occurrence of contractile dysfunction also is variable. The cause of this heterogeneity is not well understood. METHODS AND RESULTS: We recently developed a model of gradual proximal aortic constriction in the adult canine that mimicked the heterogeneity of the hypertrophic response seen in humans. We hypothesized that differences in outcome were related to differences present before banding. Fifteen animals were studied initially. Ten developed left ventricular dysfunction (dys group). Five dogs maintained normal function (nl group). At baseline, the nl group had a lower mean systolic wall stress (96 +/- 9 kdyne/cm2; dys group, 156 +/- 7 kdyne/cm2; P < .0002) and greater relative left ventricular mass (left ventricular weight [g]/body wt [kg], 5.1 +/- 0.36; dys group, 3.9 +/- 0.26; P < .02). On the basis of differences in mean systolic wall stress at baseline, we predicted outcome in the next 28 dogs by using a cutoff of 115 kdyne/cm2. Eighteen of 20 dogs with baseline mean systolic stress > 115 kdyne/cm2 developed dysfunction whereas 6 of 8 dogs with resting stress < or = 115 kdyne/cm2 maintained normal function. CONCLUSIONS: We conclude that this canine model mimicked the heterogeneous hypertrophic response seen in humans. In the group that eventually developed dysfunction there was less cardiac mass despite 60% higher wall stress at baseline, suggesting a different set point for regulating myocardial growth in the two groups.

  18. Dynamic investigation of Drosophila myocytes with second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Catherine; Stewart, Bryan; Cisek, Richard; Prent, Nicole; Major, Arkady; Barzda, Virginijus

    2006-09-01

    The functional dynamics and structure of both larval and adult Drosophila melanogaster muscle were investigated with a nonlinear multimodal microscope. Imaging was carried out using a home built microscope capable of recording the multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation signals simultaneously at a scanning rate of up to ~12 frames/sec. The sample was excited by a home built femtosecond Ti:Sapphire laser at 840 nm, or by a Yb-ion doped potassium gadolinium tungstate (Yb:KGW) crystal based oscillator at 1042 nm. There was no observable damage detected in the myocyte after prolonged scanning with either of the lasers. Microscopic second harmonic generation (SHG) appears particularly strong in the myocytes. This allows the fast contraction dynamics of the myocytes to be followed. The larger sarcomere size observed in the larvae myocytes is especially well suited for studying the contraction dynamics. Microscopic imaging of muscle contractions showed different relaxation and contraction rates. The SHG intensities were significantly higher in the relaxed state of the myocyte compared to the contracted state. The imaging also revealed disappearance of SHG signal in highly stretched sarcomeres, indicating that SHG diminishes in the disordered structures. The study illustrates that SHG microscopy, combined with other nonlinear contrast mechanisms, can help to elucidate physiological mechanisms of contraction. This study also provides further insight into the mechanisms of harmonic generation in biological tissue and shows that crystalline arrangement of macromolecules has a determining factor for the high efficiency second harmonic generation from the bulk structures.

  19. Left Ventricular Responses to Acute Changes in Late Systolic Pressure Augmentation in Older Adults

    PubMed Central

    2013-01-01

    BACKGROUND Changes in the cardiovascular system with age may predispose older persons to development of heart failure with preserved ejection fraction. Vascular stiffening, aortic pressure augmentation, and ventricular–vascular coupling have been implicated. We explored the potential for acute reductions in late systolic pressure augmentation to impact left ventricular relaxation in older persons without heart failure. METHODS Sixteen older persons free of known cardiovascular disease with the exception of hypertension had noninvasive tonometry and cardiac ultrasound to evaluate central augmentation index (AI) and diastolic function at baseline and after randomized, blinded administration of intravenous B-type natriuretic peptide (BNP) and hydralazine in a crossover design. RESULTS AI was significantly reduced after BNP (11.4±8.9 to −0.2±14.7%; P = 0.02) and nonsignificantly reduced after hydralazine (14.7±8.4% to 11.5±8.8%; P = 0.39). With decreased AI during BNP, a trend toward worsened myocardial relaxation by tissue Doppler imaging occurred (E’ velocity pre- and post-BNP: 10.0±2.5 and 8.8±2.0cm/s, respectively; P = 0.06). There was a significant fall in stroke volume with BNP (68.5±18.3 to 60.9±18.1ml; P = 0.02), suggesting that changes in preload overwhelmed effects of afterload reduction on ventricular performance. With hydralazine, neither relaxation nor stroke volume changed. CONCLUSIONS Acute changes in late systolic aortic pressure augmentation do not necessarily lead to improved systolic or diastolic function in older people. Preload may be a more important determinant of cardiac performance than afterload in older people with compensated ventricular function. The potential for changes in preload to impair rather than enhance left ventricular systolic and diastolic function in older people warrants further study. CLINICAL TRIALS REGISTRATION This study is registered at clinicaltrials.gov as NCT00204984. PMID:23537892

  20. PGC-1{alpha} accelerates cytosolic Ca{sup 2+} clearance without disturbing Ca{sup 2+} homeostasis in cardiac myocytes

    SciTech Connect

    Chen, Min; Wang, Yanru; Qu, Aijuan

    2010-06-11

    Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+} transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.

  1. Increased Apoptosis and Myocyte Enlargement with Decreased Cardiac Mass; Distinctive Features of the Aging Male, but not Female, Monkey Heart

    PubMed Central

    Zhang, Xiao-Ping; Vatner, Stephen F.; Shen, You-Tang; Rossi, Franco; Tian, Yimin; Peppas, Athanasios; Resuello, Ranillo R.G.; Natividad, Filipinas F.; Vatner, Dorothy E.

    2009-01-01

    We studied gender-specific changes in aging cardiomyopathy in a primate model, Macaca fascicularis, free of the major human diseases, complicating the interpretation of data specific to aging in humans. Left ventricular (LV) weight/body weight decreased, p<0.05, in old males, but did not change in old females. However, despite the decrease in LV weight, mean myocyte cross-sectional area in the old males increased by 51%. This increase in myocyte size was not uniform in old males, i.e., it was manifest in only 20–30% of all the myocytes from old males. In old males there was a 4-fold increase in frequency of myocyte apoptosis without any increase in proliferation-capable myocytes assessed by Ki-67 expression. Apoptosis was unchanged in old female monkey hearts, whereas the frequency of myocytes expressing Ki-67 declined 90%. These results, opposite to findings from rodent studies, indicate distinct differences in which male and female monkeys maintain functional heart mass during aging. The old male hearts demonstrated increased apoptosis, which more than offset the myocyte hypertrophy, which interestingly was not uniform, without a significant increase in myocyte proliferation. PMID:17720187

  2. Isolation of cardiac myocytes and fibroblasts from neonatal rat pups.

    PubMed

    Golden, Honey B; Gollapudi, Deepika; Gerilechaogetu, Fnu; Li, Jieli; Cristales, Ricardo J; Peng, Xu; Dostal, David E

    2012-01-01

    Neonatal rat ventricular myocytes (NRVM) and fibroblasts (FBs) serve as in vitro models for studying fundamental mechanisms underlying cardiac pathologies, as well as identifying potential therapeutic targets. Both cell types are relatively easy to culture as monolayers and can be manipulated using molecular and pharmacological tools. Because NRVM cease to proliferate after birth, and FBs undergo phenotypic changes and senescence after a few passages in tissue culture, primary cultures of both cell types are required for experiments. Below we describe methods that provide good cell yield and viability of primary cultures of NRVM and FBs from 0 to 3-day-old neonatal rat pups.

  3. Influence of brain-derived neurotrophic factor and apolipoprotein E genetic variants on hemispheric and lateral ventricular volume of young healthy adults

    PubMed Central

    Sidiropoulos, Christos; Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Mitsias, Panayiotis; Alexopoulos, Panagiotis; Richter-Schmidinger, Tanja; Reichel, Martin; Lewczuk, Piotr; Doerfler, Arnd; Kornhuber, Johannes

    2011-01-01

    Objective Brain-derived neurotrophic factor (BDNF) and apolipoprotein E (ApoE) are thought to be implicated in a variety of neuronal processes, including cell growth, resilience to noxious stimuli and synaptic plasticity. A Val to Met substitution at codon 66 in the BDNF protein has been associated with a variety of neuropsychiatric conditions. The ApoE4 allele is considered a risk factor for late-onset Alzheimer’s disease, but its effects on young adults are less clear. We sought to investigate the effects of those two polymorphisms on hemispheric and lateral ventricular volumes of young healthy adults. Methods Hemispheric and lateral ventricular volumes of 144 healthy individuals, aged 19–35 years, were measured using high resolution magnetic resonance imaging and data were correlated with BDNF and ApoE genotypes. Results There were no correlations between BDNF or ApoE genotype and hemispheric or lateral ventricular volumes. Conclusion These findings indicate that it is unlikely that either the BDNF Val66Met or ApoE polymorphisms exert any significant effect on hemispheric or lateral ventricular volume. However, confounding epistatic genetic effects as well as relative insensitivity of the volumetric methods used cannot be ruled out. Further imaging analyses are warranted to better define any genetic influence of the BDNF Val6Met and ApoE polymorphism on brain structure of young healthy adults. PMID:21701702

  4. Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice

    PubMed Central

    Ponti, Giovanna; Obernier, Kirsten; Guinto, Cristina; Jose, Lingu; Bonfanti, Luca; Alvarez-Buylla, Arturo

    2013-01-01

    Proliferating neural stem cells and intermediate progenitors persist in the ventricular-subventricular zone (V-SVZ) of the adult mammalian brain. This extensive germinal layer in the walls of the lateral ventricles is the site of birth of different types of interneurons destined for the olfactory bulb. The cell cycle dynamics of stem cells (B1 cells), intermediate progenitors (C cells), and neuroblasts (A cells) in the V-SVZ and the number of times these cells divide remain unknown. Using whole mounts of the walls of the lateral ventricles of adult mice and three cell cycle analysis methods using thymidine analogs, we determined the proliferation dynamics of B1, C, and A cells in vivo. Achaete-scute complex homolog (Ascl)1+ C cells were heterogeneous with a cell cycle length (TC) of 18–25 h and a long S phase length (TS) of 14–17 h. After C cells, Doublecortin+ A cells were the second-most common dividing cell type in the V-SVZ and had a TC of 18 h and TS of 9 h. Human glial fibrillary acidic protein (hGFAP)::GFP+ B1 cells had a surprisingly short Tc of 17–18 h and a TS of 4 h. Progenitor population analysis suggests that following the initial division of B1 cells, C cells divide three times and A cells once, possibly twice. These data provide essential information on the dynamics of adult progenitor cell proliferation in the V-SVZ and how large numbers of new neurons continue to be produced in the adult mammalian brain. PMID:23431204

  5. Automated Assessment of Left Ventricular Function and Mass Using Heart Deformation Analysis: Initial Experience in 160 older adults

    PubMed Central

    Lin, Kai; Collins, Jeremy D.; Lloyd-Jones, Donald M.; Jolly, Marie-Pierre; Li, Debiao; Markl, Michael; Carr, James C.

    2016-01-01

    Objective To assess the performance of automated quantification of left ventricular function and mass based on heart deformation analysis (HDA) in asymptomatic older adults Materials and methods This study complied with HIPAA regulations. Following the approval of the institutional review board (IRB), 160 asymptomatic older participants were recruited for cardiac MRI including two-dimensional (2D) cine images covering the entire left ventricle (LV) in short-axis view. Data analysis included the calculation of left ventricular ejection fraction (LVEF), mass (LVM) and cardiac output (CO) using HDA and standard global cardiac function analysis (delineation of end systolic and diastolic LV epi- and endo-cardial borders). The agreement between methods was evaluated using intra-class correlation coefficient (ICC) and coefficient of variation (CoV). Results HDA had a shorter processing time than standard method (1.5 ± 0.3 minute/case vs. 5.8 ± 1.4 minute/case, p < 0.001). There was good agreement for LVEF (ICC = 0.552, CoV = 10.5%), CO (ICC = 0.773, CoV = 13.5%) and LVM (ICC = 0.859, CoV = 14.5%) acquired with standard method and HDA. There was a systemic bias towards lower LVEF (62.8% ± 8.3% vs.69.3% ± 6.7%, p < 0.001) and CO (4.4 ± 1.0 L/minute vs. 4.8 ± 1.3 L/minute, p < 0.001) by HDA compared to the standard technique. Conversely, HDA overestimated LVM (114.8 ± 30.1g vs. 100.2 ± 29.0g, p < 0.001) as compared to the reference method. Conclusion HDA has the potential to measure LVEF, CO, and LVM without the need for user interaction based on standard cardiac 2D Cine images. PMID:26749328

  6. Left ventricular remodelling, and systolic and diastolic function in young adults with β thalassaemia major: a Doppler echocardiographic assessment and correlation with haematological data

    PubMed Central

    Bosi, G; Crepaz, R; Gamberini, M R; Fortini, M; Scarcia, S; Bonsante, E; Pitscheider, W; Vaccari, M

    2003-01-01

    Objective: To evaluate left ventricular morphology and function in a large population of patients with β thalassaemia. Design: Echo Doppler assessment of left ventricular function and correlation of cardiovascular data with haematological data. Setting: Thalassaemia unit in a tertiary referral centre. Patients: 197 young adults with β thalassaemia, following an adequate transfusional and chelation treatment regimen, without clinical signs of cardiopulmonary involvement. The control group consisted of 213 healthy subjects. Results: Left ventricular volumes, mass index, and mass/volume ratio were increased. Diastolic and systolic shapes were different, the left ventricle maintaining an ellipsoidal shape. The ejection fraction was reduced, and was < 50% in 33 patients. Stroke volume and cardiac index were increased, and systemic vascular resistance was decreased. Fractional shortening and mean velocity of circumferential shortening were decreased. Meridional end systolic and peak systolic stress were increased, as was circumferential end systolic stress. The contractile state was reduced while the functional preload index did not differ. Left ventricular diastolic function, evaluated from the mitral inflow, showed a slightly prolonged isovolumic relaxation time, increased flow velocity integrals, and an increased E/A ratio. Among the haematological data, only serum ferritin showed a weak negative correlation with left ventricular ejection fraction. The patients with the highest serum ferritin (> 2500 ng/ml) had the lowest ejection fraction. Conclusions: Patients with β thalassaemia on an adequate transfusion and chelation treatment regimen show abnormal left ventricular remodelling with increased volumes, mass, and mass/volume ratio. Systolic chamber function and contractile state are reduced, with a slightly increased afterload. These findings seem mainly to be related to the increased cardiac output caused by chronic anaemia. Left ventricular performance is

  7. Long-term Excessive Body Weight and Adult Left Ventricular Hypertrophy Are Linked Through Later Life Body Size and Blood Pressure: The Bogalusa Heart Study.

    PubMed

    Zhang, Huijie; Zhang, Tao; Li, Shengxu; Guo, Yajun; Shen, Wei; Fernandez, Camilo; Harville, Emily W; Bazzano, Lydia A; Urbina, Elaine M; He, Jiang; Chen, Wei

    2017-02-23

    Rationale: Childhood adiposity is associated with cardiac structure in later life, but little is known regarding to what extent childhood body weight affects adult left ventricular geometric patterns through adult body size and blood pressure (BP). Objective: Determine quantitatively the mediation effect of adult body weight and BP on the association of childhood BMI with adult left ventricular hypertrophy (LVH). Methods and Results: This longitudinal study consisted of 710 adults, age 26 to 48 years, who had been examined for BMI and BP measured 4 or more times during childhood and 2 or more times during adulthood, with a mean follow-up period of 28.0 years. After adjusting for age, race and sex, adult BMI had a significant mediation effect (76.4%, p<0.01) on the childhood BMI-adult LV mass index (LVMI) association. The mediation effects of adult systolic BP (SBP, 15.2%), long-term burden (12.1%) and increasing trends of SBP (7.9%) were all significant (p<0.01). Furthermore, these mediators also had significant mediation effects on the association of childhood BMI with adult LVH, eccentric and concentric hypertrophy. Importantly, the mediation effects of adult BMI were all significantly stronger than those of adult SBP on LVMI, LVH and LV remodeling patterns (p<0.01). Additionally, the mediation effect of SBP on concentric hypertrophy was significantly stronger than on eccentric hypertrophy (p<0.01). Conclusions: These findings suggest that increased childhood BMI has long-term adverse impact on subclinical changes in adult cardiac structure, and early life excessive body weight and adult LVH are linked through later life excessive body weight and elevated BP.

  8. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase.

    PubMed

    Song, Jianliang; Zhang, Xue-Qian; Wang, JuFang; Cheskis, Ellina; Chan, Tung O; Feldman, Arthur M; Tucker, Amy L; Cheung, Joseph Y

    2008-10-01

    Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct

  9. Association of sodium and potassium intake with left ventricular mass: coronary artery risk development in young adults.

    PubMed

    Rodriguez, Carlos J; Bibbins-Domingo, Kirsten; Jin, Zhezhen; Daviglus, Martha L; Goff, David C; Jacobs, David R

    2011-09-01

    High salt intake may affect left ventricular mass (LVM). We hypothesized that urinary sodium (UNa) and sodium/potassium ratio (UNa/K) are associated with LVM in a predominantly normotensive cohort of young adults. The Coronary Artery Risk Development in Young Adults (CARDIA) Study is a multicenter cohort of black and white men and women aged 30±3.6 years at the time of baseline echocardiographic examination (1990-1991). 2D guided M-mode LVM indexed to body size (grams per meter(2.7)) was calculated, and UNa and potassium excretion assessed (average of three 24-hour urinary samples, n=1042). Linear and logistic regression analysis was used. Participants were 57% women and 55% black. Only 4% were hypertensive. UNa, urinary potassium, and UNa/K ratios were (mean±SD) 175.6±131.0, 56.4±46.3, and 3.4±1.4 mmol/24 h, respectively. Participants in the highest versus the lowest UNa excretion quartile had the greatest LVM (37.5 versus 34.0 g/m(2.7); P<0.001). Adjusted for age, sex, education, and race, LVM averaged 0.945 g/m(2.7) higher per SD of UNa/K (P=0.001). The relationship between UNa/K and LVM persisted among 399 participants with repeat echocardiographic measures 5 years later. In logistic regression analysis adjusted for age, sex, education, and race, each SD higher baseline UNa/K was associated with 23% and 38% greater chances of being in the highest quartile of LVM at baseline (odds ratio: 1.23; P=0.005) and 5 years later (odds ratio: 1.38; P=0.02). A higher sodium/potassium excretion ratio is significantly related to cardiac structure, even among healthy young adults.

  10. Giant aorto-pulmonary collaterals in pulmonary atresia and ventricular septal defect: long-term survival in unoperated adults.

    PubMed

    Spaziani, Gaia; Favilli, Silvia; Fonda, Claudio; Chiappa, Enrico

    2013-08-01

    The association of pulmonary atresia and ventricular septal defect (PA/VSD) can be considered the most severe form of tetralogy of Fallot. The main feature of this congenital heart disease is represented by discontinuity between the right ventricle and pulmonary trunk or its branches; the anatomy of central pulmonary arteries is often abnormal, consequently the type and the amount of sources of pulmonary blood flow are variable. Due to evolution in surgical techniques, definitive correction is now also considered in more complex cases. A small rate of unoperated patients with PA/VSD can survive until adulthood and the arterial blood supply to the lungs, provided by major aorto-pulmonary collateral arteries (MAPCAs), is one of the main determinants of survival. We report two unoperated cases of PA/VSD and MAPCAs with long-term survival. Giant MAPCAs can occasionally be found by chest radiography in adults with unrepaired PA/VSD. Moreover, non-invasive assessment of the pulmonary arterial bed with computer tomography or MRI is helpful in these patients during follow-up. Finally, we discuss the use of oral anticoagulants and/or 5-phosphodiesterase inhibitors in these patients.

  11. Direct contact between sympathetic neurons and rat cardiac myocytes in vitro increases expression of functional calcium channels.

    PubMed Central

    Ogawa, S; Barnett, J V; Sen, L; Galper, J B; Smith, T W; Marsh, J D

    1992-01-01

    To test the hypothesis that direct contact between sympathetic neurons and myocytes regulates expression and function of cardiac Ca channels, we prepared cultures of neonatal rat ventricular myocytes with and without sympathetic ganglia. Contractile properties of myocytes were assessed by an optical-video system. Contractility-pCa curves showed a 60% greater increase in contractility for innervated myocytes compared with control cells at 6.3 mM [Ca]0 (n = 8, P less than 0.05). Cells grown in medium conditioned by growth of ganglia and myocytes were indistinguishable physiologically from control cells. [Bay K 8644]-contractility curves revealed a 60 +/- 10% enhancement of the contractility response at 10(-6) M for innervated cells compared with control cells. The increased response to Bay K 8644 was not blocked by alpha- or beta-adrenergic antagonists. Moreover, increased efficacy of Bay K 8644 was maintained for at least 24 h after denervation produced by removal of ganglia from the culture. Dihydropyridine binding sites were assessed with the L channel-specific radioligand 3[H]PN200-110. PN200-110 binding sites were increased by innervation (51 +/- 5 to 108 +/- 20 fmol/mg protein, P less than 0.01), with no change in KD. Peak current-voltage curves were determined by whole-cell voltage clamp techniques for myocytes contacted by a neuron, control myocytes, and myocytes grown in conditioned medium. Current density of L-type Ca channels was significantly higher in innervated myocytes (10.5 +/- 0.4 pA/pF, n = 5) than in control myocytes (5.9 +/- 0.3 pA/pF, n = 8, P less than 0.01) or myocytes grown in conditioned medium (6.2 +/- 0.2 pA/pF, n = 10, P less than 0.01). Thus, physical contact between a sympathetic neuron and previously uninnervated neonatal rat ventricular myocytes increases expression of functional L-type calcium channels as judged by contractile responses to Ca0 and Bay K 8644, as well as by electrophysiological and radioligand binding properties

  12. Outcomes of Adult Patients with Small Body Size Supported with a Continuous-Flow Left Ventricular Assist Device

    PubMed Central

    Katz, Jason N.; Jorde, Ulrich P.; Moazami, Nader; John, Ranjit; Sundareswaran, Kartik S.; Farrar, David J.; Frazier, O. H.

    2016-01-01

    There is insufficient data on patients with small body size to determine if this should be considered a risk factor for continuous-flow left ventricular assist device (CF-LVAD) support. We sought to evaluate survival outcomes, adverse events, and functional status of CF-LVAD patients with body surface area (BSA) <1.5 m2 in a large national registry. Adults with BSA < 1.5 m2 (n = 128) implanted with a HeartMate II (HMII)-LVAD from the Interagency Registry for Mechanically Assisted Circulatory Support registry from April 2008 to December 2012 formed this cohort. Outcomes were compared with HMII bridge to transplant (BTT) and destination therapy (DT) post approval studies. The majority of patients were female (n = 106, 83%). A total of 64% (n = 82) were implanted for BTT and 36% (n = 46) for DT. The median BSA (range) was 1.44 (1.19–1.49) and 1.45 (1.25–1.49) m2 for BTT and DT, respectively. Overall survival 1 year post implant was 81% ± 5% for BTT and 84% ± 6% for DT. The most common adverse events for BTT and DT patients were bleeding (0.91, 0.88 events/patient year) and driveline infection (16%, 0.28 events/patient year). Six months post implantation, 87% of BTT and 77% of DT patients were New York Heart Association functional class I or II. Post implant survival, functional status improvement, and adverse event profile for adult BTT and DT HMII patients with BSA < 1.5 m2 are favorable and comparable with outcomes published in the overall patient population. PMID:27556150

  13. Cyclic GMP protein kinase activity is reduced in thyroxine-induced hypertrophic cardiac myocytes.

    PubMed

    Yan, Lin; Zhang, Qihang; Scholz, Peter M; Weiss, Harvey R

    2003-12-01

    1. We tested the hypothesis that the cGMP-dependent protein kinase has major negative functional effects in cardiac myocytes and that the importance of this pathway is reduced in thyroxine (T4; 0.5 mg/kg per day for 16 days) hypertrophic myocytes. 2. Using isolated ventricular myocytes from control (n = 7) and T4-treated (n = 9) rabbit hypertrophic hearts, myocyte shortening was studied with a video edge detector. Oxygen consumption was measured using O2 electrodes. Protein phosphorylation was measured autoradiographically. 3. Data were collected following treatment with: (i) 8-(4-chlorophenylthio)guanosine-3',5'-monophosphate (PCPT; 10-7 or 10-5 mol/L); (ii) 8-bromo-cAMP (10-5 mol/L) followed by PCPT; (iii) beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-monophosphorothioate, SP-isomer (SP; 10-7 or 10-5 mol/L); or (iv) 8-bromo-cAMP (10-5 mol/L) followed by SP. 4. There were no significant differences between groups in baseline percentage shortening (Pcs; 4.9 +/- 0.2 vs 5.6 +/- 0.4% for control and T4 groups, respectively) and maximal rate of shortening (Rs; 64.8 +/- 5.9 vs 79.9 +/- 7.1 micro m/ s for control and T4 groups, respectively). Both SP and PCPT decreased Pcs (-43 vs-21% for control and T4 groups, respectively) and Rs (-36 vs-22% for control and T4 groups, respectively), but the effect was significantly reduced in T4 myocytes. 8-Bromo-cAMP similarly increased Pcs (28 vs 23% for control and T4 groups, respectively) and Rs (20 vs 19% for control and T4 groups, respectively). After 8-bromo-cAMP, SP and PCPT decreased Pcs (-34%) and Rs (-29%) less in the control group. However, the effects of these drugs were not altered in T4 myocytes (Pcs -24%; Rs -22%). Both PCPT and cAMP phosphorylated the same five protein bands. In T4 myocytes, these five bands were enhanced less. 5. We conclude that, in control ventricular myocytes, the cGMP-dependent protein kinase exerted major negative functional effects but, in T4-induced hypertrophic myocytes, the importance of

  14. Heterogeneity of Kv2.1 mRNA expression and delayed rectifier current in single isolated myocytes from rat left ventricle.

    PubMed

    Schultz, J H; Volk, T; Ehmke, H

    2001-03-16

    Expression of the voltage-gated K(+) channel Kv2.1, a possible molecular correlate for the cardiac delayed rectifier current (I(K)), has recently been shown to vary between individual ventricular myocytes. The functional consequences of this cell-to-cell heterogeneity in Kv2.1 expression are not known. Using multiplex single-cell reverse transcriptase-polymerase chain reaction (RT-PCR), we detected Kv2.1 mRNA in 47% of isolated midmyocardial myocytes from the rat left ventricular free wall that were positive for alpha-myosin heavy chain mRNA (n=74). Whole-cell patch-clamp recordings demonstrated marked differences in the magnitude of I(K) (200 to 1450 pA at V(Pip)=40 mV) between individual myocytes of the same origin. Furthermore, the tetraethylammonium (TEA)-sensitive outward current (I(TEA)), known to be partly encoded by Kv2.1 in mice, revealed a wide range of current magnitudes between single cells (150 to 1130 pA at V(Pip)=40 mV). Combined patch-clamp recordings and multiplex single-cell RT-PCR analysis of the same myocytes, however, showed no differences in I(K) or I(TEA) magnitude or inactivation kinetics between myocytes expressing Kv2.1 mRNA and those that did not express Kv2.1 mRNA. In contrast, in all midmyocardial myocytes expressing the transient outward potassium current (I(to1)), Kv4 mRNA, which has been shown to underlie I(to1), was detected (n=10). These results indicate that I(K) heterogeneity among individual left ventricular myocytes cannot be explained by the distribution pattern of Kv2.1 mRNA. Other mechanisms besides Kv2.1 mRNA expression appear to determine magnitude and kinetics of I(K) in rat ventricular myocytes.

  15. Evaluation of right ventricular function in adults with congenital heart defects.

    PubMed

    Bussadori, Claudio; Di Salvo, Giovanni; Pluchinotta, Francesca R; Piazza, Luciane; Gaio, Giampiero; Russo, Maria Giovanna; Carminati, Mario

    2015-01-01

    The right ventricle (RV) is of lesser importance in acquired heart disease, but its role is of increasing importance in congenital heart disease (CHD). Despite major progress being made, precise measurements of the RV are challenging because of its peculiar anatomical structure that is not adaptable to any planar geometrical assumption. This is particularly true in adult patients with CHD where the RV shape eludes any standardization, it may assume various morphologies, and its modality of contraction depends on previous surgical treatment and/or pathophysiological conditions. However, reliable and repeatable quantification of RV dimensions and function for these patients are essential to provide appropriate timing for intervention to optimize outcomes. In this population, echocardiographic evaluation should not be limited to an observational and subjective functional assessment of the RV but must provide quantitative values repeatable and clinically reliable to help the decision-making process. The aim of this review was to discuss the echocardiographic approach to the RV in adult patients with CHD in general and in specific cases of pressure or volume overload.

  16. Apoptosis and the systolic dysfunction in congestive heart failure. Story of apoptosis interruptus and zombie myocytes.

    PubMed

    Narula, J; Arbustini, E; Chandrashekhar, Y; Schwaiger, M

    2001-02-01

    Although previously it was believed that apoptosis could not occur in the terminally differentiated tissue, such as adult heart muscle cells, recent studies in endomyocardial biopsies from patients with dilated cardiomyopathy and in explanted hearts from patients with end-stage heart failure undergoing cardiac transplantation have demonstrated histologic evidence of apoptosis. Whereas neurohormonal activation during heart failure leads to compensatory hemodynamic alterations, coupled with ventricular dilatation, it induces transcription factors and myocyte hypertrophy. Persistent growth stimulation in terminally differentiated cells may lead paradoxically to apoptotic cell death. The apoptosis in cardiomyopathic hearts is associated with cytochrome c release from mitochondria to cytoplasm and activation of proteolytic caspase-8 and -3. Although the caspases are duly processed, the fragmentation of the nuclear proteins (including DNA) is completed less frequently, and only a variable degree of fragmentation of cytoplasmic proteins (including contractile proteins) is observed. It is hypothesized that release of cytochrome c from mitochondria should interfere with energy production and lead to functional impairment and variable loss of contractile proteins in a living heart muscle cell should contribute to systolic dysfunction. Because a nuclear blueprint is retained, however, the dysfunctional cell may continue to exist and in favorable conditions, such as with LVAD support, the apoptotic process may subside. Potential feasibility of reversal of heart failure should renew efforts to develop more targeted pharmaceutical intervention within the apoptotic cascade and allow newer paradigm for the management of heart failure.

  17. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  18. Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts

    NASA Technical Reports Server (NTRS)

    Ito, K.; Yan, X.; Tajima, M.; Su, Z.; Barry, W. H.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    Mouse myocyte contractility and the changes induced by pressure overload are not fully understood. We studied contractile reserve in isolated left ventricular myocytes from mice with ascending aortic stenosis (AS) during compensatory hypertrophy (4-week AS) and the later stage of early failure (7-week AS) and from control mice. Myocyte contraction and [Ca(2+)](i) transients with fluo-3 were measured simultaneously. At baseline (0.5 Hz, 1.5 mmol/L [Ca(2+)](o), 25 degrees C), the amplitude of myocyte shortening and peak-systolic [Ca(2+)](i) in 7-week AS were not different from those of controls, whereas contraction, relaxation, and the decline of [Ca(2+)](i) transients were slower. In response to the challenge of high [Ca(2+)](o), fractional cell shortening was severely depressed with reduced peak-systolic [Ca(2+)](i) in 7-week AS compared with controls. In response to rapid pacing stimulation, cell shortening and peak-systolic [Ca(2+)](i) increased in controls, but this response was depressed in 7-week AS. In contrast, the responses to both challenge with high [Ca(2+)](o) and rapid pacing in 4-week AS were similar to those of controls. Although protein levels of Na(+)-Ca(2+) exchanger were increased in both 4-week and 7-week AS, the ratio of SR Ca(2+)-ATPase to phospholamban protein levels was depressed in 7-week AS compared with controls but not in 4-week AS. This was associated with an impaired capacity to increase sarcoplasmic reticulum Ca(2+) load during high work states in 7-week AS myocytes. In hypertrophied failing mouse myocytes, depressed contractile reserve is related to an impaired augmentation of systolic [Ca(2+)](i) and SR Ca(2+) load and simulates findings in human failing myocytes.

  19. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling

    PubMed Central

    Oka, Toru; Xu, Jian; Kaiser, Robert A.; Melendez, Jaime; Hambleton, Michael; Sargent, Michelle A.; Lorts, Angela; Brunskill, Eric W.; Dorn, Gerald W.; Conway, Simon J.; Aronow, Bruce J.; Robbins, Jeffrey; Molkentin, Jeffery D.

    2009-01-01

    The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults the adult heart re-expresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn−/− mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn−/− hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn−/− hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy. PMID:17569887

  20. Ventricular remodeling in heart failure: the role of myocardial collagen.

    PubMed

    Janicki, J S; Brower, G L; Henegar, J R; Wang, L

    1995-01-01

    Collagen which is present in the myocardium in relatively small amounts is the most abundant structural protein of the connective tissue network. Its structural organization consists of a complex weave of collagen fibers that surrounds and interconnects myocytes, groups of myocytes, muscle fibers and muscle bundles. The conformation of interstitial fibrillar collagen makes it highly resistant to degradation by all proteinases other than specific collagenases. In hearts with myocardial damage secondary to myocardial infarction, chronic ischemia, inflammation, or cardiomyopathy, a complex sequence of compensatory events occur that eventually result in an adverse left ventricular remodeling. This continual state of remodeling is characterized by persistent collagenase activity, fibrillar collagen degradation, and progressive myocyte loss. The net effect is a shift in the balance between collagen synthesis and degradation which leads to an inadequate fibrillar collagen matrix, progressive ventricular dilatation and sphericalization with wall thinning and eventual congestive heart failure.

  1. Form follows function: developmental and physiological view on ventricular myocardial architecture.

    PubMed

    Sedmera, David

    2005-10-01

    The arrangement of myocytes within the ventricle is critical for its contractile performance, as evidenced by significant functional impairment seen in cardiomyopathies associated with myofiber disarray or post-infarction remodeling. A review on this topic by Anderson and associates provides anatomical insight gained from a multitude of approaches, and concludes that the best concept is that of syncytial continuum with supporting collagenous matrix. The overall arrangement is in the form of several intertwined helices, and the authors find no support for a recently suggested ventricular myocardial band hypothesis. This commentary aims at providing a developmental and physiological perspective on this purely anatomical concept. Unlike some other organ systems, the developing heart has to function since very early stages to support the oxygen and nutrition demands of the growing embryo, thus putting some constraints on heart development. The ventricular myocardial architecture transforms from a single-layered tube through trabeculated stages into a mature form that relies on a multi-layered compact zone. The first evidence of helical patterns is found in trabeculated hearts during ventricular contraction, and layers with different helix pitch develop during later fetal stages as the compact zone thickens. The second major point determining ventricular contraction is the sequence of its electrical activation. The ventricular activation sequence changes concomitantly with its morphology, from slow peristaltoid through base-to-apex pattern found in looped trabeculated hearts, to mature apex-to-base direction. Thus, adult ventricular myocardial architecture is best understood when one also considers the way it developed together with its electrical activation sequence and contraction pattern.

  2. Giant cell myocarditis mimicking idiopathic fascicular ventricular tachycardia.

    PubMed

    Weidenbach, Michael; Springer, Tina; Daehnert, Ingo; Klingel, Karin; Doll, Susanne; Janousek, Jan

    2008-02-01

    We report an adolescent with giant cell myocarditis (GCM) mimicking tachycardia-induced cardiomyopathy. His electrocardiogram (ECG) was typical for an incessant form of fascicular ventricular tachycardia. The patient rapidly deteriorated and required support using extracorporeal membrane oxygenation (ECMO). Biopsy revealed GCM with massive myocyte necrosis. He was successfully heart transplanted 6 days after admission.

  3. Hypoxic induction of T-type Ca(2+) channels in rat cardiac myocytes: role of HIF-1α and RhoA/ROCK signalling.

    PubMed

    González-Rodríguez, P; Falcón, D; Castro, M J; Ureña, J; López-Barneo, J; Castellano, A

    2015-11-01

    T-type Ca(2+) channels are expressed in the ventricular myocytes of the fetal and perinatal heart, but are normally downregulated as development progresses. Interestingly, however, these channels are re-expressed in adult cardiomyocytes under pathological conditions. We investigated low voltage-activated T-type Ca(2+) channel regulation in hypoxia in rat cardiomyocytes. Molecular studies revealed that hypoxia induces the upregulation of Cav 3.2 mRNA, whereas Cav 3.1 mRNA is not significantly altered. The effect of hypoxia on Cav 3.2 mRNA was time- and dose-dependent, and required hypoxia inducible factor-1α (HIF-1α) stabilization. Patch-clamp recordings confirmed that T-type Ca(2+) channel currents were upregulated in hypoxic conditions, and the addition of 50 μm NiCl2 (a T-type channel blocker) demonstrated that the Cav 3.2 channel is responsible for this upregulation. This increase in current density was not accompanied by significant changes in the Cav 3.2 channel electrophysiological properties. The small monomeric G-protein RhoA and its effector Rho-associated kinase I (ROCKI), which are known to play important roles in cardiovascular physiology, were also upregulated in neonatal rat ventricular myocytes subjected to hypoxia. Pharmacological experiments indicated that both proteins were involved in the observed upregulation of the Cav 3.2 channel and the stabilization of HIF-1α that occurred in response to hypoxia. These results suggest a possible role for Cav 3.2 channels in the increased probability of developing arrhythmias observed in ischaemic situations, and in the pathogenesis of diseases associated with hypoxic Ca(2+) overload.

  4. Phosphoproteomic profiling of the myocyte.

    PubMed

    Edwards, Alistair V G; Cordwell, Stuart J; White, Melanie Y

    2011-10-01

    Protein phosphorylation underpins major cellular processes including energy metabolism, signal transduction, excitation-contraction coupling, apoptosis, and cell survival mechanisms and is thus critical to the myocyte. Targeted approaches, whereby a handful of phosphoproteins are investigated, can suffer from a relatively narrow view of cellular phosphorylation. In contrast, recent technical advances have allowed for the comprehensive documentation of phosphorylation events in complex biological environments, providing a deeper view of the "phosphoproteome." A global, high-throughput characterization of the myocardial phosphoproteome, however, has not yet been achieved. Efficient analysis of phosphorylated proteins and their roles in a dynamic cellular environment requires high-resolution strategies that can identify, localize, and quantify many thousands of phosphorylation sites in a single experiment. Such an approach requires specific enrichment and purification techniques, developed to align with high-end instrumentation for analysis. Cutting-edge phosphoproteomics is no longer restricted to gel-based technology, instead focusing on affinity enrichment prior to liquid chromatography and mass spectrometry. We will describe the best current methods and how they can be applied, as well as the challenges associated with them. We also present current phosphoproteomic investigations in the myocyte and its subcompartments. Although the techniques and instrumentation required to achieve the goal of a myocardial phosphoprotein catalog in physiological and diseased states are highly specialized, the potential biological insight provided by such an approach makes phosphoproteomics an important new avenue of investigation for the cardiovascular researcher.

  5. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes.

    PubMed

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-09-01

    Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes

  6. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes

    PubMed Central

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-01-01

    Abstract The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes. Finally, mathematical modelling combined with quantitative FRET measurements provided novel insights into the kinetics and integration of calcineurin activation in response to myocyte Ca transients. In all, DuoCaN and UniCaN stand as valuable new tools for understanding the role of calcineurin in normal and pathological signalling. Key points Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The

  7. Interactions between endothelin-1 and atrial natriuretic peptide influence cultured chick cardiac myocyte contractility.

    PubMed

    Bézie, Y; Mesnard, L; Longrois, D; Samson, F; Perret, C; Mercadier, J J; Laurent, S

    1996-09-12

    We have previously shown that rat atrial natriuretic peptide (ANP) reduces the contractility of cultured, spontaneously beating chick embryo ventricular cells, an effect opposite to that of endothelin-1. Endothelin-1 has been described as a secretagogue for natriuretic peptides in vitro and in vivo. Natriuretic peptides can inhibit endothelin-1 secretion from cultured endothelial cells, suggesting a negative feedback mechanism between endothelial cells and cardiomyocytes. The aim of this study was to determine whether ANP attenuated the endothelin-1-induced increase in myocyte contractility. Using a video-microscopy system we studied the contractility of isolated cultured chick ventricular myocytes in response to endothelin-1, chicken natriuretic peptide (ChNP), and both. We also used Northern blot analysis to study the time course of ChNP expression in response to endothelin-1. Endothelin-1 (10(-8) M) increased chick cardiomyocyte contractility by 20-25% between 5 and 15 min (P < 0.05). Although ChNP (3 x 10(-7) M) did not significantly change the amplitude of contraction in basal conditions, it prevented the endothelin-1-induced increase in contractility (P < 0.05) when perfused prior to endothelin-1, and reversed it when perfused 5 min after endothelin-1 exposure (P < 0.05). Endothelin-1 significantly increased the accumulation of ChNP mRNA in chick ventricular myocytes as early as the 30 min after exposure (P < 0.05), with a maximal effect after 2 h of stimulation (P < 0.01); no effect was observed after 4 h. These data support an interaction between endothelin-1 and natriuretic peptides as autocrine/paracrine factors regulating the contractile function of chick cardiac myocytes, as well as their antagonistic effects on cardiac cell contractility. The early and transient expression of ChNP mRNA in response to endothelin-1 may be involved in this interaction.

  8. Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles

    PubMed Central

    Kohl, Tobias; Lehnart, Stephan E.

    2014-01-01

    In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied

  9. Cardiac myocyte exosomes: stability, HSP60, and proteomics.

    PubMed

    Malik, Z A; Kott, K S; Poe, A J; Kuo, T; Chen, L; Ferrara, K W; Knowlton, A A

    2013-04-01

    Exosomes, which are 50- to 100-nm-diameter lipid vesicles, have been implicated in intercellular communication, including transmitting malignancy, and as a way for viral particles to evade detection while spreading to new cells. Previously, we demonstrated that adult cardiac myocytes release heat shock protein (HSP)60 in exosomes. Extracellular HSP60, when not in exosomes, causes cardiac myocyte apoptosis via the activation of Toll-like receptor 4. Thus, release of HSP60 from exosomes would be damaging to the surrounding cardiac myocytes. We hypothesized that 1) pathological changes in the environment, such as fever, change in pH, or ethanol consumption, would increase exosome permeability; 2) different exosome inducers would result in different exosomal protein content; 3) ethanol at "physiological" concentrations would cause exosome release; and 4) ROS production is an underlying mechanism of increased exosome production. We found the following: first, exosomes retained their protein cargo under different physiological/pathological conditions, based on Western blot analyses. Second, mass spectrometry demonstrated that the protein content of cardiac exosomes differed significantly from other types of exosomes in the literature and contained cytosolic, sarcomeric, and mitochondrial proteins. Third, ethanol did not affect exosome stability but greatly increased the production of exosomes by cardiac myocytes. Fourth, ethanol- and hypoxia/reoxygenation-derived exosomes had different protein content. Finally, ROS inhibition reduced exosome production but did not completely inhibit it. In conclusion, exosomal protein content is influenced by the cell source and stimulus for exosome formation. ROS stimulate exosome production. The functions of exosomes remain to be fully elucidated.

  10. Ranolazine is an Effective and Safe Treatment of Adults with Symptomatic Premature Ventricular Contractions due to Triggered Ectopy.

    PubMed

    Murray, Gary L

    2016-12-01

    Early and delayed afterdepolarizations (EAD/DAD) cause triggered ventricular ectopy. Because ranolazine (RAN) suppresses EAD/DAD, we postulated that RAN might be effective in reducing premature ventricular contractions (PVCs). To assess the effect of RAN in patients with symptomatic PVCs due to triggered ectopy and its safety and tolerability. A total of 59 patients with symptomatic PVCs were identified from full-disclosure Holters. Doses of 500 and 1,000 mg offlabel RAN, daily, were given to 34 and 66% patients, respectively, and repeat Holters were performed prospectively during mean followup of 3.1 months. The two Holters were retrospectively compared. Congestive heart failure (CHF) was defined as symptoms including dyspnea, orthopnea, paroxysmal nocturnal dyspnea, and fatigue, with a brain natriuretic peptide > 400. Systolic (heart failure with reduced ejection fraction) versus diastolic (heart failure with preserved ejection fraction, HFpEF) CHF depended upon an echocardiographic left ventricular ejection fraction (LVEF) at least 50% by apical two- and four-chamber Simpson's method (HFpEF). The mean age of the patients was 63 years, 60% were males, mean left ventricular ejection fraction was 60%, with 34% having coronary artery disease, 73% were hypertensive, 24% had type 2 diabetic, and 34% were on beta blockers. Upon repeat Holters at a mean of 3.1 months after initiating RAN, 95% (56/59) of the patients had their PVC count reduced as follows: 24% (14/59) had more than 90% decrease, 34% (20/59) had 71 to 90% decrease, and 17% (10/59) had 50 to 70% decrease. In the entire group, RAN reduced PVCs by 71% (mean: 13,329 to 3,837; p < 0.001). Ventricular bigeminy was reduced by 80% (4,168 to 851; p < 0.001), ventricular coupletswere reduced by 78% (374 to 81; p < 0.001), and ventricular tachycardiawas reduced by 91% (56 to 5; p < 0.001). The PVC reduction was dose dependent. Off-label RAN offers an effective and safe pharmacologic treatment for

  11. Persistence of neoangiogenesis and cardiomyocyte divisions in right ventricular myocardium of rats born and raised in hypoxic conditions.

    PubMed

    Moravec, Mireille; Turek, Zdenek; Moravec, Josef

    2002-03-01

    myocyte sprouts may, therefore, reflect amitotic divisions of polyploid cardiomyocytes which contribute to the persistence of hyperplasic growth in right ventricular myocardium in hearts of rats exposed to chronic hypoxia during their early postnatal life. Par analogie with our data, it can be expected that an appropriate stimulation of angiogenesis in hearts of adult animals attenuates some of cytological and functional drawbacks that accompany hypertrophic cardiomyopathies of other etiologies.

  12. Redox signaling in cardiac myocytes

    PubMed Central

    Santos, Celio X.C.; Anilkumar, Narayana; Zhang, Min; Brewer, Alison C.; Shah, Ajay M.

    2011-01-01

    The heart has complex mechanisms that facilitate the maintenance of an oxygen supply–demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation–contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved—where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases. PMID:21236334

  13. A cardiac myocyte-restricted Lin28/let7 regulatory axis promotes hypoxia-mediated apoptosis by inducing the AKT signaling suppressor PIK3IP1

    PubMed Central

    Joshi, Shaurya; Wei, Jianqin; Bishopric, Nanette H.

    2015-01-01

    Rationale The let-7 family of microRNAs (miRs) regulates critical cell functions, including survival signaling, differentiation, metabolic control and glucose utilization. These functions may be important during myocardial ischemia. MiR-let-7 expression is under tight temporal and spatial control through multiple redundant mechanisms that may be stage-, isoform- and tissue-specific. Objective To determine the mechanisms and functional consequences of miR-let-7 regulation by hypoxia in the heart. Methods and Results MiR-let-7a, -7c and -7g were downregulated in the adult mouse heart early after coronary occlusion, and in neonatal rat ventricular myocytes subjected to hypoxia. Let-7 repression did not require glucose depletion, and occurred at a post-transcriptional level. Hypoxia also induced the RNA binding protein Lin28, a negative regulator of let-7. Hypoxia induced neither Lin28 induction nor miR-let-7 repression in cardiac fibroblasts. Both changes were abrogated by treatment with the histone deacetylase inhibitor trichostatin A. Restoration of let-7g to hypoxic myocytes and to ischemia-reperfused mouse hearts in vivo via lentiviral transduction potentiated the hypoxia-induced phosphorylation and activation of Akt, and prevented hypoxia-dependent caspase activation and death. Mechanistically, phosphotidyl inositol 3’kinase interacting protein 1 (PIK3IP1), a negative regulator of PI3K, was identified as a novel target of miR-let-7 by a crosslinking technique showing that miR-let-7g specifically targets PI3KIP1 to the cardiac myocyte Argonaute complex RISC. Finally, in non-failing and failing human myocardium, we found specific inverse relationships between Lin28 and miR-let-7g, and between miR-let-7g and PIK3IP1. Conclusion A conserved hypoxia-responsive Lin28-miR-let-7-PIK3IP1 regulatory axis is specific to cardiac myocytes and promotes apoptosis during myocardial ischemic injury. PMID:26655604

  14. Regulation of intracellular calcium by bupivacaine isomers in cardiac myocytes from Wistar rats.

    PubMed

    Chedid, Núbia G B; Sudo, Roberto T; Aguiar, Marli I S; Trachez, Margarete M; Masuda, Masako O; Zapata-Sudo, Gisele

    2006-03-01

    In this study we investigated the effects of a racemic mixture of bupivacaine (RS(+/-)bupivacaine) and its isomers (S(-)bupivacaine and R(+)bupivacaine) on the Ca2+ handling by ventricular myocytes from Wistar rats. Single ventricular myocytes were enzymatically isolated and loaded with the fluorescent Ca2+ indicator fura 2-am to estimate intracellular Ca2+ concentration during contraction and relaxation cycles. S(-)bupivacaine (10 muM) significantly increased peak amplitude and the rate of increase of Ca2+ transients in 155% +/- 54% (P < 0.05) and 194% +/- 94% (P < 0.01) of control. However, exposure to R(+)bupivacaine had no effect on either peak amplitude or rate of increase at any concentration tested. Saponin-skinned ventricular fibers were used to investigate the effect of bupivacaine on the intracellular Ca2+ regulation by sarcoplasmic reticulum (SR) and on the Ca2+ sensitivity of contractile system. S(-), R(+), and RS(+/-)bupivacaine induced Ca2+ release from SR (P < 0.01). In SR-disrupted skinned ventricular cells, bupivacaine and its isomers (5 mM) increased the sensitivity of contractile system to Ca(2+). S(-), RS(+/-), and R(+)bupivacaine significantly increased pCa50 from 5.8 +/- 0.1, 5.8 +/- 0.1, and 5.8 +/- 0.1, to 6.1 +/- 0.1 (P < 0.05), 6.0 +/- 0.1 (P < 0.05), and 6.1 +/- 0.1 (P < 0.05). Ca2+ release from SR through RyR2 activation could explain the increase of Ca2+ transients in cardiac cells. Increased intracellular Ca2+ in cardiac myocytes display a stereoselectivity to S(-)bupivacaine.

  15. Risperidone prolongs cardiac action potential through reduction of K+ currents in rabbit myocytes.

    PubMed

    Gluais, Pascale; Bastide, Michèle; Caron, Jacques; Adamantidis, Monique

    2002-05-31

    Prolongation of QT interval by antipsychotic drugs is an unwanted side effect that may lead to ventricular arrhythmias. The antipsychotic agent risperidone has been shown to cause QT prolongation, especially in case of overdosage. We investigated risperidone effects on action potentials recorded from rabbit Purkinje fibers and ventricular myocardium and on potassium currents recorded from atrial and ventricular rabbit isolated myocytes. The results showed that (1) risperidone (0.1-3 microM) exerted potent lengthening effects on action potential duration in both tissues with higher potency in Purkinje fibers and caused the development of early afterdepolarizations at low stimulation rate; (2) risperidone (0.03-0.3 microM) reduced significantly the current density of the delayed rectifier current and at 30 microM decreased the transient outward and the inward rectifier currents. This study might explain QT prolongation observed in some patients treated with risperidone and gives enlightenment on the risk of cardiac adverse events.

  16. Left ventricular remodeling after experimental myocardial cryoinjury in rats.

    PubMed

    Ciulla, Michele M; Paliotti, Roberta; Ferrero, Stefano; Braidotti, Paola; Esposito, Arturo; Gianelli, Umberto; Busca, Giuseppe; Cioffi, Ugo; Bulfamante, Gaetano; Magrini, Fabio

    2004-01-01

    The standard coronary ligation, the most studied model of experimental myocardial infarction in rats, is limited by high mortality and produces unpredictable areas of necrosis. To standardize the location and size of the infarct and to elucidate the mechanisms of myocardial remodeling and its progression to heart failure, we studied the functional, structural, and ultrastructural changes of myocardial infarction produced by experimental myocardial cryoinjury. The cryoinjury was successful in 24 (80%) of 30 male adult CD rats. A subepicardial infarct was documented on echocardiograms, with an average size of about 21%. Macroscopic examination reflected closely the stamp of the instrument used, without transition zones to viable myocardium. Histological examination, during the acute setting, revealed an extensive area of coagulation necrosis and hemorrhage in the subepicardium. An inflammatory infiltrate was evident since the 7th hour, whereas the reparative phase started within the first week, with proliferation of fibroblasts, endothelial cells, and myocytes. From the 7th day, deposition of collagen fibers was reported with a reparative scar completed at the 30th day. Ultrastructural study revealed vascular capillary damage and irreversible alterations of the myocytes in the acute setting and confirmed the histological findings of the later phases. The damage was associated with a progressive left ventricular (LV) remodeling, including thinning of the infarcted area, hypertrophy of the noninfarcted myocardium, and significant LV dilation. This process started from the 60th day and progressed over the subsequent 120 days period; at 180 days, a significant increase in LV filling pressure, indicative of heart failure, was found. In conclusion, myocardial cryodamage, although different in respect to ischemic damage, causes a standardized injury reproducing the cellular patterns of coagulation necrosis, early microvascular reperfusion, hemorrhage, inflammation

  17. Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Catherine; Prent, Nicole; Green, Chantal; Cisek, Richard; Major, Arkady; Stewart, Bryan; Barzda, Virginijus

    2007-04-01

    The influence of semicrystalline order on the second-harmonic generation (SHG) efficiency in the anisotropic bands of Drosophila melanogaster sarcomeres from larval and adult muscle has been investigated. Differences in the semicrystalline order were obtained by using wild-type and mutant strains containing different amounts of headless myosin. The reduction in semicrystalline order without altering the chemical composition of myofibrils was achieved by observing highly stretched sarcomeres and by inducing a loss of viability in myocytes. In all cases the reduction of semicrystalline order in anisotropic bands of myocytes resulted in a substantial decrease in SHG. Second-harmonic imaging during periodic contractions of myocytes revealed higher intensities when sarcomeres were in the relaxed state compared with the contracted state. This study demonstrates that an ordered semicrystalline arrangement of anisotropic bands plays a determining role in the efficiency of SHG in myocytes.

  18. Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.

    PubMed

    Kind, Thomas; Issing, Matthias; Arnold, Rüdiger; Müller, Bernt

    2002-12-01

    A novel bipolar transistor for extracellular recording the electrical activity of biological cells is presented, and the electrical behavior compared with the field-effect transistor (FET). Electrical coupling is examined between single cells separated from the heart of adults rats (cardiac myocytes) and both types of transistors. To initiate a local extracellular voltage, the cells are periodically stimulated by a patch pipette in voltage clamp and current clamp mode. The local extracellular voltage is measured by the planar integrated electronic sensors: the bipolar and the FET. The small signal transistor currents correspond to the local extracellular voltage. The two types of sensor transistors used here were developed and manufactured in the laboratory of our institute. The manufacturing process and the interfaces between myocytes and transistors are described. The recordings are interpreted by way of simulation based on the point-contact model and the single cardiac myocyte model.

  19. Ventricular tachycardia

    MedlinePlus

    ... prevented by treating heart problems and avoiding certain medicines. Alternative Names Wide-complex tachycardia; V tach; Tachycardia - ventricular Images Implantable cardioverter-defibrillator ... Ventricular arrhythmias. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap ...

  20. Differential effects of hypoxic and hyperoxic stress-induced hypertrophy in cultured chick fetal cardiac myocytes.

    PubMed

    Greco, Allison A; Gomez, George

    2014-02-01

    The adult heart responds to contraction demands by hypertrophy, or enlargement, of cardiac myocytes. Adaptive hypertrophy can occur in response to hyperoxic conditions such as exercise, while pathological factors that result in hypoxia ultimately result in heart failure. The difference in the outcomes produced by pathologically versus physiologically induced hypertrophy suggests that the cellular signaling pathways or conditions of myocytes may be different at the cellular level. The structural and functional changes in myocytes resulting from hyperoxia (simulated using hydrogen peroxide) and hypoxia (using oxygen deprivation) were tested on fetal chick cardiac myocytes grown in vitro. Structural changes were measured using immunostaining for α-sarcomeric actin or MyoD, while functional changes were assessed using immunostaining for calcium/calmodulin-dependent kinase (CaMKII) and by measuring intracellular calcium fluxes using live cell fluorescence imaging. Both hypoxic and hyperoxic stress resulted in an upregulation of actin and MyoD expression. Similarly, voltage-gated channels governing myocyte depolarization and the regulation of CaMK were unchanged by hyperoxic or hypoxic conditions. However, the dynamic features of calcium fluxes elicited by caffeine or epinephrine were different in cells subjected to hypoxia versus hyperoxia, suggesting that these different conditions differentially affect components of ligand-activated signaling pathways that regulate calcium. Our results suggest that changes in signaling pathways, rather than structural organization, may mediate the different outcomes associated with hyperoxia-induced versus hypoxia-induced hypertrophy, and these changes are likely initiated at the cellular level.

  1. Prevalence and determinants of anemia in adults with complex congenital heart disease and ventricular dysfunction (subaortic right ventricle and single ventricle physiology).

    PubMed

    Collins, Nicholas; Piran, Sanaz; Harrison, Jeanine; Azevedo, Eduardo; Oechslin, Erwin; Silversides, Candice K

    2008-09-01

    Anemia is well recognized as a marker of poor prognosis in patients with acquired heart disease and heart failure. Adults with complex congenital heart disease and ventricular dysfunction (subaortic right ventricle or single-ventricle physiology) represent a different population, because they are typically much younger and have less co-morbidity compared with patients with acquired forms of heart disease. The purpose of this study was to evaluate the prevalence and determinants of anemia in this population. Baseline hemoglobin levels were recorded at the time of the initial clinic visit, and final hemoglobin levels were those recorded before death or transplantation or at study completion. Anemia was defined as hemoglobin <135 g/L in men and <120 g/L in women. One hundred sixty-seven patients (100 men, mean age 34 +/- 8 years, mean ejection fraction 35 +/- 9%) were included, 66 with atrial switch operations, 42 with congenitally corrected transposition of the great arteries, and 59 with Fontan physiology. The mean hemoglobin level at baseline was 149 +/- 22 g/L and at follow-up was 139 +/- 29 g/L. The overall prevalence of anemia was 29% at completion. Hyponatremia, decreased renal function, and the use of warfarin were independent predictors of anemia. In conclusion, anemia is common in patients with complex congenital heart disease and ventricular dysfunction, in particular those with Fontan physiology.

  2. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading

    NASA Technical Reports Server (NTRS)

    Tagawa, H.; Koide, M.; Sato, H.; Zile, M. R.; Carabello, B. A.; Cooper, G. 4th

    1998-01-01

    Increased microtubule density causes cardiocyte contractile dysfunction in right ventricular (RV) pressure-overload hypertrophy, and these linked phenotypic and contractile abnormalities persist and progress during the transition to failure. Although more severe in cells from failing than hypertrophied RVs, the mechanical defects are normalized in each case by microtubule depolymerization. To define the role of increased microtubule density in left ventricular (LV) pressure-overload hypertrophy and failure, in a given LV we examined ventricular mechanics, sarcomere mechanics, and free tubulin and microtubule levels in control dogs and in dogs with aortic stenosis both with LV hypertrophy alone and with initially compensated hypertrophy that had progressed to LV muscle failure. In comparing initial values with those at study 8 weeks later, dogs with hypertrophy alone had a very substantial increase in LV mass but preservation of a normal ejection fraction and mean systolic wall stress. Dogs with hypertrophy and associated failure had a substantial but lesser increase in LV mass and a reduction in ejection fraction, as well as a marked increase in mean systolic wall stress. Cardiocyte contractile function was equivalent, and unaffected by microtubule depolymerization, in cells from control LVs and those with compensated hypertrophy. In contrast, cardiocyte contractile function in cells from failing LVs was quite depressed but was normalized by microtubule depolymerization. Microtubules were increased only in failing LVs. These contractile and cytoskeletal changes, when assayed longitudinally in a given dog by biopsy, appeared in failing ventricles only when wall stress began to increase and function began to decrease. Thus, the microtubule-based cardiocyte contractile dysfunction characteristic of pressure-hypertrophied myocardium, originally described in the RV, obtains equally in the LV but is shown here to have a specific association with increased wall stress.

  3. Relation of left ventricular mass at age 23 to 35 years to global left ventricular systolic function 20 years later (from the Coronary Artery Risk Development in Young Adults study).

    PubMed

    Kishi, Satoru; Armstrong, Anderson C; Gidding, Samuel S; Jacobs, David R; Sidney, Stephen; Lewis, Cora E; Schreiner, Pamela J; Liu, Kiang; Lima, João A C

    2014-01-15

    Left ventricular (LV) mass and the LV ejection fraction (LVEF) are major independent predictors of future cardiovascular disease. The association of LV mass with the future LVEF in younger populations has not been studied. The aim of this study was to investigate the relation of LV mass index (LVMI) at ages 23 to 35 years to LV function after 20 years of follow-up in the Coronary Artery Risk Development in Young Adults (CARDIA) study. CARDIA is a longitudinal study that enrolled young adults in 1985 and 1986. In this study, participants with echocardiographic examinations at years 5 and 25 were included. LVMI and the LVEF were assessed using M-mode echocardiography at year 5 and using M-mode and 2-dimensional imaging at year 25. Statistical analytic models assessed the correlation between LVMI and LV functional parameters cross-sectionally and longitudinally. A total of 2,339 participants were included. The mean LVEF at year 25 was 62%. Although there was no cross-sectional correlation between LVMI and the LVEF at year 5, there was a small but statistically significant negative correlation between LVMI at year 5 and the LVEF 20 years later (r = -0.10, p <0.0001); this inverse association persisted for LVMI in the multivariate model. High LVMI was an independent predictor of systolic dysfunction (LVEF <50%) 20 years later (odds ratio 1.46, p = 0.0018). In conclusion, LVMI in young adulthood in association with chronic risk exposure affects systolic function in middle age; the antecedents of heart failure may occur at younger ages than previously thought.

  4. Mechano-chemo-transduction in cardiac myocytes.

    PubMed

    Chen-Izu, Ye; Izu, Leighton T

    2017-01-18

    The heart has the ability to adjust to changing mechanical loads. The Frank-Starling law and the Anrep effect describe exquisite intrinsic mechanisms the heart has for autoregulating the force of contraction to maintain cardiac output under preload and afterload. Although these mechanisms have been known for more than a century, their cellular and molecular underpinnings are still debated. How does the cardiac myocyte sense a change in preload or afterload? How does the myocyte adjust its response to compensate for such changes? In cardiac myocytes Ca(2+) is a crucial regulator of contractile force and in this review we compare and contrast recent results from different labs that address two important questions. The "dimensionality" of the mechanical milieu under which experiments are carried out provide important clues to the location of the mechanosensors and the kinds of mechanical forces they can sense and respond to. As a first approximation, sensors inside the myocyte appear to modulate reactive oxygen species (ROS) while sensors on the cell surface appear to also modulate nitric oxide (NO) signalling; both signalling pathways affect Ca(2+) handling. Undoubtedly, further studies will add layers to this simplified picture. Clarifying the intimate links from cellular mechanics to ROS and NO signalling and to Ca(2+) handling will deepen our understanding of the Frank-Starling law and the Anrep effect, and also provide a unified view on how arrhythmias may arise in seemingly disparate diseases that have in common altered myocyte mechanics. This article is protected by copyright. All rights reserved.

  5. Criticality in intracellular calcium signaling in cardiac myocytes.

    PubMed

    Nivala, Michael; Ko, Christopher Y; Nivala, Melissa; Weiss, James N; Qu, Zhilin

    2012-06-06

    Calcium (Ca) is a ubiquitous second messenger that regulates many biological functions. The elementary events of local Ca signaling are Ca sparks, which occur randomly in time and space, and integrate to produce global signaling events such as intra- and intercellular Ca waves and whole-cell Ca oscillations. Despite extensive experimental characterization in many systems, the transition from local random to global synchronous events is still poorly understood. Here we show that criticality, a ubiquitous dynamical phenomenon in nature, is responsible for the transition from local to global Ca signaling. We demonstrate this first in a computational model of Ca signaling in a cardiac myocyte and then experimentally in mouse ventricular myocytes, complemented by a theoretical agent-based model to delineate the underlying dynamics. We show that the interaction between the Ca release units via Ca-induced Ca release causes self-organization of Ca spark clusters. When the coupling between Ca release units is weak, the cluster-size distribution is exponential. As the interactions become strong, the cluster-size distribution changes to a power-law distribution, which is characteristic of criticality in thermodynamic and complex nonlinear systems, and facilitates the formation and propagation of Ca waves and whole-cell Ca oscillations. Our findings illustrate how criticality is harnessed by a biological cell to regulate Ca signaling via self-organization of random subcellular events into cellular-scale oscillations, and provide a general theoretical framework for the transition from local Ca signaling to global Ca signaling in biological cells.

  6. Left Ventricular Hypertrophy in Rhesus Macaques (Macaca mulatta) at the California National Primate Research Center (1992–2014)

    PubMed Central

    Reader, J Rachel; Canfield, Don R; Lane, Jennifer F; Kanthaswamy, Sreetharan; Ardeshir, Amir; Allen, A Mark; Tarara, Ross P

    2016-01-01

    Necropsy records and associated clinical histories from the rhesus macaque colony at the California National Primate Research Center were reviewed to identify mortality related to cardiac abnormalities involving left ventricular hypertrophy (LVH). Over a 21-y period, 162 cases (female, 90; male, 72) of idiopathic LVH were identified. Macaques presented to necropsy with prominent concentric hypertrophy of the left ventricle associated with striking reduction of the ventricular lumen. Among all LVH cases, 74 macaques (female, 39; male, 35), mostly young adults, presented for spontaneous (sudden) death; more than 50% of these 74 cases were associated with a recent history of sedation or intraspecific aggression. The risk of sudden death in the 6- to 9-y-old age group was significantly higher in male macaques. Subtle histologic cardiac lesions included karyomegaly and increased cardiac myocyte diameter. Pedigree analyses based on rhesus macaque LVH probands suggested a strong genetic predisposition for the condition. In humans, hypertrophic cardiomyopathy (HCM) is defined by the presence of unexplained left ventricular hypertrophy, associated with diverse clinical outcomes ranging from asymptomatic disease to sudden death. Although the overall risk of disease complications such as sudden death, end-stage heart failure, and stroke is low (1% to 2%) in patients with HCM, the absolute risk can vary dramatically. Prima facie comparison of HCM and LVH suggest that further study may allow the development of spontaneously occurring LVH in rhesus macaques as a useful model of HCM, to better understand the pathogenesis of this remarkably heterogeneous disease. PMID:27053572

  7. Left ventricular morphology of the giraffe heart examined by stereological methods.

    PubMed

    Østergaard, Kristine H; Baandrup, Ulrik T; Wang, Tobias; Bertelsen, Mads F; Andersen, Johnnie B; Smerup, Morten; Nyengaard, Jens R

    2013-04-01

    The giraffe heart has a relative mass similar to other mammals, but generates twice the blood pressure to overcome the gravitational challenge of perfusing the cerebral circulation. To provide insight as to how the giraffe left ventricle (LV) is structurally adapted to tackle such a high afterload, we performed a quantitative structural study of the LV myocardium in young and adult giraffe hearts. Tissue samples were collected from young and adult giraffe LV. Design-based stereology was used to obtain unbiased estimates of numbers and sizes of cardiomyocytes, nuclei and capillaries. The numerical density of myocyte nuclei was 120 × 10(3) mm(-3) in the adult and 504 × 10(3) mm(-3) in the young LV. The total number (N) of myocyte nuclei was 1.3 × 10(11) in the adult LV and 4.9 × 10(10) in the young LV. In the adult LV the volume per myocyte was 39.5 × 10(3) µm(3) and the number of nuclei per myocyte was 4.2. The numerical density of myocytes was 24.1 × 10(6) cm(-3) and the capillary volume fraction of the adult giraffe ventricle was 0.054. The significantly higher total number of myocyte nuclei in the adult LV, the high density of myocyte nuclei in the LV, and the number of nuclei per myocyte (which was unusually high compared to other mammalian, including human data), all suggest the presence of myocyte proliferation during growth of the animal to increase wall thickness and normalize LV wall tension as the neck lengthens and the need for higher blood pressure ensues.

  8. Quantification of Myocyte Chemotaxis: A Role for FAK in Regulating Directional Motility

    PubMed Central

    Zajac, Britni; Hakim, Zeenat S.; Cameron, Morgan V.; Smithies, Oliver; Taylor, Joan M.

    2015-01-01

    Formation of a fully functional four-chambered heart involves an intricate and complex series of events that includes precise spatial–temporal regulation of cell specification, proliferation, and migration. The formation of the ventricular septum during mid-gestation ensures the unidirectional flow of blood, and is necessary for postnatal viability. Notably, a majority of all congenital malformations of the cardiovascular system in humans involve septal abnormalities which afflict 1 out of 100 newborn children in the United States. Thus, a clear understanding of the precise mechanisms involved in this morphogenetic event will undoubtedly reveal important therapeutic targets. The final step in valvuloseptal morphogenesis occurs, in part, by directed movement of flanking myocytes into the cushion mesenchyme. In order to identify the molecular mechanisms that regulate this critical myocyte function, we have developed two in vitro methodologies; a transwell assay to assess population changes in motility and a single-cell tracking assay to identify signals that drive the coordinated movement of these cells. These methods have proven effective to identify focal adhesion kinase (FAK) as an intracellular component that is critical for myocyte chemotaxis. PMID:22222526

  9. Utility of Echocardiography in the Assessment of Left Ventricular Diastolic Function and Restrictive Physiology in Children and Young Adults with Restrictive Cardiomyopathy: A Comparative Echocardiography-Catheterization Study.

    PubMed

    Ryan, Thomas D; Madueme, Peace C; Jefferies, John L; Michelfelder, Erik C; Towbin, Jeffrey A; Woo, Jessica G; Sahay, Rashmi D; King, Eileen C; Brown, Roberta; Moore, Ryan A; Grenier, Michelle A; Goldstein, Bryan H

    2017-02-01

    The aim of the study is to determine the utility of echocardiography in the assessment of diastolic function in children and young adults with restrictive cardiomyopathy (RCM). RCM is a rare disease with high mortality requiring frequent surveillance. Accurate, noninvasive echocardiographic measures of diastolic function may reduce the need for invasive catheterization. Single-center, prospective, observational study of pediatric and young adult RCM patients undergoing assessment of diastolic parameters by simultaneous transthoracic echocardiogram (TTE) and invasive catheterization. Twenty-one studies in 15 subjects [median (IQR) = 13.8 years (7.0-19.2), 60% female] were acquired with median left ventricular end-diastolic pressure (LVEDP) 21 (IQR 18-25) mmHg. TTE parameters of diastolic function, including pulmonary vein A wave duration (r s  = 0.79) and indexed left atrial volume (r s  = 0.49), demonstrated significant positive correlation, while mitral valve A (r s  = -0.44), lateral e' (r s  = -0.61) and lateral a' (r s  = -0.61) velocities showed significant negative correlation with LVEDP. Lateral a' velocity (≤0.042 m/s) and pulmonary vein A wave duration (≥156 m/s) both had sensitivity and specificity ≥80% for LVEDP ≥ 20 mmHg. In pediatric and young adult patients with RCM, lateral a' velocity and pulmonary vein A wave duration predicted elevated LVEDP with high sensitivity and specificity; however, due to technical limitations the latter was reliably measured in 12/21 patients. These noninvasive parameters may have utility in identifying patients that require further assessment with invasive testing. These findings require validation in a multicenter prospective cohort prior to widespread clinical implementation.

  10. Effects of seasonal acclimatization on action potentials and sarcolemmal K(+) currents in roach (Rutilus rutilus) cardiac myocytes.

    PubMed

    Badr, Ahmed; Hassinen, Minna; El-Sayed, Mohamed F; Vornanen, Matti

    2017-03-01

    Temperature sensitivity of electrical excitability is a potential limiting factor for high temperature tolerance of ectotherms. The present study examines whether heat resistance of electrical excitability of cardiac myocytes is modified by seasonal thermal acclimatization in roach (Rutilus rutilus), a eurythermal teleost species. To this end, temperature dependencies of ventricular action potentials (APs), and atrial and ventricular K(+) currents were measured from winter-acclimatized (WiR) and summer-acclimatized (SuR) roach. Under patch-clamp recording conditions, ventricular APs could be triggered over a wide range of temperatures (4-43°C) with prominent changes in resting membrane potential (RMP), AP duration and amplitude. In general, APs of SuR were slightly more tolerant to high temperatures than those of WiR, e.g. the break point temperature (TBP) of RMP was 37.6±0.4°C in WiR and 41±1°C in SuR (p<0.05). Of the two major cardiac K(+) currents, the inward rectifier K(+) current (IK1) was particularly heat resistant in both SuR (TBP 39.4±0.4°C) and WiR (TBP 40.0±0.4°C) ventricular myocytes. The delayed rectifier K(+) current (IKr) was not as heat resistant as IK1. Surprisingly, IKr of WiR tolerated heat better (TBP 31.9±0.8°C) than IKr of SuR (TBP 24.1±0.5°C) (p<0.05). IKr (Erg2) channel transcripts of both atrial and ventricular myocytes were up-regulated in WiR. IK1 (Kir2) channel transcripts were not affected by seasonal acclimatization, although ventricular IK1 current was up-regulated in summer. Collectively, these findings show that thermal tolerance limits of K(+) currents in isolated myocytes between seasonally acclimatized roach are much less pronounced than the heat sensitivity of ECG variables in intact fish.

  11. Ca(2+) release events in cardiac myocytes up close: insights from fast confocal imaging.

    PubMed

    Shkryl, Vyacheslav M; Blatter, Lothar A

    2013-01-01

    The spatio-temporal properties of Ca(2+) transients during excitation-contraction coupling and elementary Ca(2+) release events (Ca(2+) sparks) were studied in atrial and ventricular myocytes with ultra-fast confocal microscopy using a Zeiss LSM 5 LIVE system that allows sampling rates of up to 60 kHz. Ca(2+) sparks which originated from subsarcolemmal junctional sarcoplasmic reticulum (j-SR) release sites in atrial myocytes were anisotropic and elongated in the longitudinal direction of the cell. Ca(2+) sparks in atrial cells originating from non-junctional SR and in ventricular myocytes were symmetrical. Ca(2+) spark recording in line scan mode at 40,000 lines/s uncovered step-like increases of [Ca(2+)]i. 2-D imaging of Ca(2+) transients revealed an asynchronous activation of release sites and allowed the sequential recording of Ca(2+) entry through surface membrane Ca(2+) channels and subsequent activation of Ca(2+)-induced Ca(2+) release. With a latency of 2.5 ms after application of an electrical stimulus, Ca(2+) entry could be detected that was followed by SR Ca(2+) release after an additional 3 ms delay. Maximum Ca(2+) release was observed 4 ms after the beginning of release. The timing of Ca(2+) entry and release was confirmed by simultaneous [Ca(2+)]i and membrane current measurements using the whole cell voltage-clamp technique. In atrial cells activation of discrete individual release sites of the j-SR led to spatially restricted Ca(2+) release events that fused into a peripheral ring of elevated [Ca(2+)]i that subsequently propagated in a wave-like fashion towards the center of the cell. In ventricular myocytes asynchronous Ca(2+) release signals from discrete sites with no preferential subcellular location preceded the whole-cell Ca(2+) transient. In summary, ultra-fast confocal imaging allows investigation of Ca(2+) signals with a time resolution similar to patch clamp technique, however in a less invasive fashion.

  12. In vitro characterization of HCN channel kinetics and frequency dependence in myocytes predicts biological pacemaker functionality

    PubMed Central

    Zhao, Xin; Bucchi, Annalisa; Oren, Ronit V; Kryukova, Yelena; Dun, Wen; Clancy, Colleen E; Robinson, Richard B

    2009-01-01

    The pacemaker current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, contributes to the initiation and regulation of cardiac rhythm. Previous experiments creating HCN-based biological pacemakers in vivo found that an engineered HCN2/HCN1 chimeric channel (HCN212) resulted in significantly faster rates than HCN2, interrupted by 1–5 s pauses. To elucidate the mechanisms underlying the differences in HCN212 and HCN2 in vivo functionality as biological pacemakers, we studied newborn rat ventricular myocytes over-expressing either HCN2 or HCN212 channels. The HCN2- and HCN212-over-expressing myocytes manifest similar voltage dependence, current density and sensitivity to saturating cAMP concentrations, but HCN212 has faster activation/deactivation kinetics. Compared with HCN2, myocytes expressing HCN212 exhibit a faster spontaneous rate and greater incidence of irregular rhythms (i.e. periods of rapid spontaneous rate followed by pauses). To explore these rhythm differences further, we imposed consecutive pacing and found that activation kinetics of the two channels are slower at faster pacing frequencies. As a result, time-dependent HCN current flowing during diastole decreases for both constructs during a train of stimuli at a rapid frequency, with the effect more pronounced for HCN2. In addition, the slower deactivation kinetics of HCN2 contributes to more pronounced instantaneous current at a slower frequency. As a result of the frequency dependence of both instantaneous and time-dependent current, HCN2 exhibits more robust negative feedback than HCN212, contributing to the maintenance of a stable pacing rhythm. These results illustrate the benefit of screening HCN constructs in spontaneously active myocyte cultures and may provide the basis for future optimization of HCN-based biological pacemakers. PMID:19171659

  13. Oxygen radical-mediated injury of myocytes-protection by propranolol.

    PubMed

    Mak, I T; Kramer, J H; Freedman, A M; Tse, S Y; Weglicki, W B

    1990-06-01

    UIe effects of propranolol and atenolol on free radical mediated injury in myocytes were examined. Freshly isolated adult canine myocytes were incubated with a superoxide generating (from dihydroxyfumarate) and Fe-catalyzed free radical system. Exposure of the myocytes to free radicals for 20 min resulted in more than a 5-fold increase in thiobarbituric acid reactant (peroxide) formation and elevated levels of lactate dehydrogenase (LDH) activity released into the media compared to controls. Ultrastructurally, severe sarcolemmal damage, mitochondrial and myofibril derangements were evident. At 40 min, cellular viability (trypan blue exclusion) in the samples exposed to free radicals decreased to about one-third of controls; concomitantly, major losses in total cellular phospholipids occurred. When the cells were pretreated with 200 microM propranolol before the addition of free radicals, both peroxide formation and increased LDH release were inhibited; in agreement, complete ultrastructural preservation was observed. In addition, the subsequent losses in cellular viability and phospholipids were prevented. For comparison, the more water soluble beta-blocker, atenolol at 200 microM was shown ineffective in providing significant protection against the induced injury. The results suggest that propranolol may provide antiperoxidative protection to myocytes when elevated levels of free radicals are present.

  14. Towards computational modeling of excitation-contraction coupling in cardiac myocytes: reconstruction of structures and proteins from confocal imaging.

    PubMed

    Sachse, Frank B; Savio-Galimberti, Eleonora; Goldhaber, Joshua I; Bridge, John H B

    2009-01-01

    Computational models of excitation-contraction (EC) coupling in myocytes are valuable tools for studying the signaling cascade that transduces transmembrane voltage into mechanical responses. A key component of these models is the appropriate description of structures involved in EC coupling, such as the sarcolemma and ion channels. This study aims at developing an approach for spatial reconstruction of these structures. We exemplified our approach by reconstructing clusters of ryanodine receptors (RyRs) together with the sarcolemma of rabbit ventricular myocytes. The reconstructions were based on dual labeling and three-dimensional (3D) confocal imaging of segments of fixed and permeabilized myocytes lying flat or on end. The imaging led to 3D stacks of cross-sections through myocytes. Methods of digital image processing were applied to deconvolve, filter and segment these stacks. Finally, we created point meshes representing RyR distributions together with volume and surface meshes of the sarcolemma. We suggest that these meshes are suitable for computational studies of structure-function relationships in EC coupling. We propose that this approach can be extended to reconstruct other structures and proteins involved in EC coupling.

  15. Electrophysiological Determination of Submembrane Na(+) Concentration in Cardiac Myocytes.

    PubMed

    Hegyi, Bence; Bányász, Tamás; Shannon, Thomas R; Chen-Izu, Ye; Izu, Leighton T

    2016-09-20

    In the heart, Na(+) is a key modulator of the action potential, Ca(2+) homeostasis, energetics, and contractility. Because Na(+) currents and cotransport fluxes depend on the Na(+) concentration in the submembrane region, it is necessary to accurately estimate the submembrane Na(+) concentration ([Na(+)]sm). Current methods using Na(+)-sensitive fluorescent indicators or Na(+) -sensitive electrodes cannot measure [Na(+)]sm. However, electrophysiology methods are ideal for measuring [Na(+)]sm. In this article, we develop patch-clamp protocols and experimental conditions to determine the upper bound of [Na(+)]sm at the peak of action potential and its lower bound at the resting state. During the cardiac cycle, the value of [Na(+)]sm is constrained within these bounds. We conducted experiments in rabbit ventricular myocytes at body temperature and found that 1) at a low pacing frequency of 0.5 Hz, the upper and lower bounds converge at 9 mM, constraining the [Na(+)]sm value to ∼9 mM; 2) at 2 Hz pacing frequency, [Na(+)]sm is bounded between 9 mM at resting state and 11.5 mM; and 3) the cells can maintain [Na(+)]sm to the above values, despite changes in the pipette Na(+) concentration, showing autoregulation of Na(+) in beating cardiomyocytes.

  16. Left Ventricular Mass and Arterial Compliance: Relation to Coronary Heart Disease and its Risk Factors in South Indian Adults

    PubMed Central

    Kumaran, K; Fall, Caroline HD; Martyn, Christopher N; Vijayakumar, M; Stein, Claudia E; Shier, Rosie

    2017-01-01

    Structured Abstract Background Rates of coronary heart disease (CHD) in India are rising, and are now similar to those in Western countries. The prevalence of conventional CHD risk factors such as hypercholesterolaemia, hypertension, smoking and obesity, tend to be lower in Indian than Western populations, and fail to explain these high rates of disease. Increased left ventricular mass (LV mass) and decreased arterial compliance predict a higher risk of CHD in Western populations, but there are no published data from India. We have measured LV mass and arterial compliance, and examined their relation to CHD and other known risk factors, in men and women living in Mysore, South India. Methods We examined 435 men and women born in Mysore during 1934-1953. LV mass was measured by echocardiography and arterial compliance (derived from pulse wave velocity {PWV}) was measured by a non-invasive optical method in three arterial segments. Results The mean LV mass was 149g (SD 37) in men and 125g (SD 32) in women. The mean PWV was 4.14m/s in the aorto-radial, 3.28m/s in the aorto-femoral and 13.59m/s in the femoro-popliteal-posterior tibial segments. LV mass and PWV were positively correlated with each other and with systolic and diastolic blood pressures, non-insulin dependant diabetes mellitus, fasting plasma glucose, insulin, proinsulin concentrations and serum triglyceride concentrations (p<0.05 for all), independently of age, sex and body size. In addition, LV mass correlated negatively with fasting serum HDL-cholesterol (p=0.02). Higher LV mass was associated with an increased risk of CHD (p=0.05). Conclusions The mean LV mass in this Indian population is low compared with Western populations, though as in the West, increased LV mass is associated with an increased risk of CHD. Greater LV mass and reduced arterial compliance are associated with higher levels of many known CHD risk factors especially with those which form the Insulin Resistance Syndrome. PMID:11959376

  17. Changes of intra-mitochondrial Ca2+ in adult ventricular cardiomyocytes examined using a novel fluorescent Ca2+ indicator targeted to mitochondria.

    PubMed

    Kettlewell, S; Cabrero, P; Nicklin, S A; Dow, J A T; Davies, S; Smith, G L

    2009-06-01

    In this study a Ca(2+) sensitive protein was targeted to the mitochondria of adult rabbit ventricular cardiomyocytes using an adenovirus transfection technique. The probe (Mitycam) was a Ca(2+)-sensitive inverse pericam fused to subunit VIII of human cytochrome c oxidase. Mitycam expression pattern and Ca(2+) sensitivity was characterized in HeLa cells and isolated adult rabbit cardiomyocytes. Cardiomyocytes expressing Mitycam were voltage-clamped and depolarized at regular intervals to elicit a Ca(2+) transient. Cytoplasmic (Fura-2) and mitochondrial Ca(2+) (Mitycam) fluorescence were measured simultaneously under a range of cellular Ca(2+) loads. After 48 h post-adenoviral transfection, Mitycam expression showed a characteristic localization pattern in HeLa cells and cardiomyocytes. The Ca(2+) sensitive component of Mitycam fluorescence was 12% of total fluorescence in HeLa cells with a K(d) of approximately 220 nM. In cardiomyocytes, basal and beat-to-beat changes in Mitycam fluorescence were detected on initiation of a train of depolarizations. Time to peak of the mitochondrial Ca(2+) transient was slower, but the rate of decay was faster than the cytoplasmic signal. During spontaneous Ca(2+) release the relative amplitude and the time course of the mitochondrial and cytoplasmic signals were comparable. Inhibition of mitochondrial respiration decreased the mitochondrial transient amplitude by approximately 65% and increased the time to 50% decay, whilst cytosolic Ca(2+) transients were unchanged. The mitochondrial Ca(2+) uniporter (mCU) inhibitor Ru360 prevented both the basal and transient components of the rise in mitochondrial Ca(2+). The mitochondrial-targeted Ca(2+) probe indicates sustained and transient phases of mitochondrial Ca(2+) signal, which are dependent on cytoplasmic Ca(2+) levels and require a functional mCU.

  18. The Effects of Swiprosin-1 on the Formation of Pseudopodia-Like Structures and β-Adrenoceptor Coupling in Cultured Adult Rat Ventricular Cardiomyocytes

    PubMed Central

    Nippert, Franziska; Schreckenberg, Rolf; Hess, Antonia; Weber, Martin; Schlüter, Klaus-Dieter

    2016-01-01

    Background Recent findings suggest that adult terminally differentiated cardiomyocytes adapt to stress by cellular de- and redifferentiation. In the present study we tested the hypothesis that swiprosin-1 is a key player in this process. Furthermore, the relationship between swiprosin-1 and β-adrenoceptor coupling was analyzed. Methods In order to study the function of swiprosin-1 in adult rat ventricular cardiomyocytes (ARVC) they were isolated and cultured in a medium containing 20% fetal calf serum (FCS). Changes in cell morphology of ARVC during cultivation were quantified by light and confocal laser scan microscopy. Small interfering RNA (siRNA) was used to reduce the expression of swiprosin-1. The impact of calcium on swiprosin-1 dependent processes was investigated with Bapta-AM. Immunoblot techniques and qRT-PCR were performed to measure mRNA and protein expression. Results In culture, ARVC first lost their contractile elements, which was followed by a formation of pseudopodia-like structures (spreading). Swiprosin-1 was detected in ARVC at all time points. However, swiprosin-1 expression was increased when ARVC started to spread. Reduction of swiprosin-1 expression with siRNA delayed ARVC spreading. Similarly, Bapta-AM attenuated swiprosin-1 expression and spreading of ARVC. Furthermore, swiprosin-1 expression correlated with the expression of G protein-coupled receptor kinase 2 (GRK2). Moreover, silencing of swiprosin-1 was associated with a down regulation of GRK2 and caused a sensitization of β-adrenergic receptors. Conclusion Swiprosin-1 is required for ARVC to adapt to culture conditions. Additionally, it seems to be involved in the desensitization of β-adrenergic receptors. Assuming that ARVC adapt to cardiac stress in a similar way, swiprosin-1 may play a key role in cardiac remodeling. PMID:27992454

  19. Utility of Global Longitudinal Strain by Echocardiography to Detect Left Ventricular Dysfunction in Long-Term Adult Survivors of Childhood Lymphoma and Acute Lymphoblastic Leukemia.

    PubMed

    Christiansen, Jon R; Massey, Richard; Dalen, Håvard; Kanellopoulos, Adriani; Hamre, Hanne; Fosså, Sophie D; Ruud, Ellen; Kiserud, Cecilie E; Aakhus, Svend

    2016-08-01

    Measuring left ventricular (LV) global longitudinal strain (GLS) is recommended in screening of long-term cancer survivors for cardiotoxicity. However, there are limited data on GLS in this setting, in particular in survivors with apparently normal LV function without risk factors of impaired GLS. In the present study, we measured GLS in 191 adult survivors of childhood lymphoma or acute lymphoblastic leukemia, with normal LV ejection fraction and fractional shortening (FS) and without known hypertension, diabetes mellitus, myocardial infarction, or stroke. We compared GLS in the survivors with 180 controls. Mean GLS was -19.0 ± 2.2% in the survivor group and -21.4 ± 2.0% in the controls (p <0.001). Impaired GLS, defined as mean - 1.96 SDs in the control group, occurred in 53 of 191 survivors (28%). We included survivors with impaired LV ejection fraction and/or FS or traditional risk factors (n = 231 in all) in multiple regression analyses to explore associations with previous cancer treatment. Survivors treated with mediastinal radiotherapy had an odds ratio of impaired GLS of 5.2 (95% confidence interval 2.2 to 12) compared with other survivors. Survivors treated with cumulative anthracycline doses >300 mg/m(2) had an odds ratio of 4.8 (95% confidence interval 1.7 to 14) of impaired GLS. In conclusion, this study demonstrates a high proportion of LV dysfunction assessed by GLS in apparently healthy adult survivors of childhood cancer. Impaired GLS was associated with previous exposure to mediastinal radiotherapy and high doses of anthracyclines. The prognostic role of measuring GLS in this specific patient population should be examined in prospective studies.

  20. Dilated cardiomyopathy mutations in δ-sarcoglycan exert a dominant-negative effect on cardiac myocyte mechanical stability.

    PubMed

    Campbell, Matthew D; Witcher, Marc; Gopal, Anoop; Michele, Daniel E

    2016-05-01

    Delta-sarcoglycan is a component of the sarcoglycan subcomplex within the dystrophin-glycoprotein complex located at the plasma membrane of muscle cells. While recessive mutations in δ-sarcoglycan cause limb girdle muscular dystrophy 2F, dominant mutations in δ-sarcoglycan have been linked to inherited dilated cardiomyopathy (DCM). The purpose of this study was to investigate functional cellular defects present in adult cardiac myocytes expressing mutant δ-sarcoglycans harboring the dominant inherited DCM mutations R71T or R97Q. This study demonstrates that DCM mutant δ-sarcoglycans can be stably expressed in adult rat cardiac myocytes and traffic similarly to wild-type δ-sarcoglycan to the plasma membrane, without perturbing assembly of the dystrophin-glycoprotein complex. However, expression of DCM mutant δ-sarcoglycan in adult rat cardiac myocytes is sufficient to alter cardiac myocyte plasma membrane stability in the presence of mechanical strain. Upon cyclical cell stretching, cardiac myocytes expressing mutant δ-sarcoglycan R97Q or R71T have increased cell-impermeant dye uptake and undergo contractures at greater frequencies than myocytes expressing normal δ-sarcoglycan. Additionally, the R71T mutation creates an ectopic N-linked glycosylation site that results in aberrant glycosylation of the extracellular domain of δ-sarcoglycan. Therefore, appropriate glycosylation of δ-sarcoglycan may also be necessary for proper δ-sarcoglycan function and overall dystrophin-glycoprotein complex function. These studies demonstrate that DCM mutations in δ-sarcoglycan can exert a dominant negative effect on dystrophin-glycoprotein complex function leading to myocardial mechanical instability that may underlie the pathogenesis of δ-sarcoglycan-associated DCM.

  1. Reversible pulmonary trunk banding. IX. G6PD activity of adult goat myocardium submitted to ventricular retraining

    PubMed Central

    Assad, Renato Samy; Miana, Leonardo Augusto; Fonseca-Alaniz, Miriam Helena; Abduch, Maria Cristina Donadio; da Silva, Gustavo José Justo; de Oliveira, Fernanda Santos; Moreira, Luiz Felipe Pinho; Krieger, José Eduardo

    2013-01-01

    Objective Increased glucose 6-phosphate dehydrogenase activity has been demonstrated in heart failure. This study sought to assess myocardial glucose 6-phosphate dehydrogenase activity in retraining of the subpulmonary ventricle of adult goats. Methods Eighteen adult goats were divided into three groups: traditional (fixed banding), sham, and intermittent (adjustable banding, daily 12-hour systolic overload). Systolic overload (70% of systemic pressure) was maintained during a 4-week period. Right ventricle, pulmonary artery and aortic pressures were measured throughout the study. All animals were submitted to echocardiographic and hemodynamic evaluations throughout the protocol. After the study period, the animals were killed for morphological and glucose 6-phosphate dehydrogenase activity assessment. Results A 55.7% and 36.7% increase occurred in the intermittent and traditional right ventricle masses, respectively, when compared with the sham group (P<0.05), despite less exposure of intermittent group to systolic overload. No significant changes were observed in myocardial water content in the 3 groups (P=0.27). A 37.2% increase was found in right ventricle wall thickness of intermittent group, compared to sham and traditional groups (P<0.05). Right ventricle glucose 6-phosphate dehydrogenase activity was elevated in the traditional group, when compared to sham and intermittent groups (P=0.05). Conclusion Both study groups have developed similar right ventricle hypertrophy, regardless less systolic overload exposure of intermittent group. Traditional systolic overload for adult subpulmonary ventricle retraining causes upregulation of myocardial glucose 6-phosphate dehydrogenase activity. It may suggest that the undesirable "pathologic systolic overload" is influenced by activation of penthose pathway and cytosolic Nicotinamide adenine dinucleotide phosphate availability. This altered energy substrate metabolism can elevate levels of free radicals by Nicotinamide

  2. Prevalence, Prospective Risk Markers, and Prognosis Associated With the Presence of Left Ventricular Diastolic Dysfunction in Young Adults

    PubMed Central

    Desai, Chintan S.; Colangelo, Laura A.; Liu, Kiang; Jacobs,, David R.; Cook, Nakela L.; Lloyd-Jones, Donald M.; Ogunyankin, Kofo O.

    2013-01-01

    The authors sought to determine the prevalence, prospective risk markers, and prognosis associated with diastolic dysfunction in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. The CARDIA Study cohort includes approximately equal proportions of white and black men and women. The authors collected data on risk markers at year 0 (1985–1986), and echocardiography was done at year 5 when the participants were 23–35 years of age. Participants were followed for 20 years (through 2010) for a composite endpoint of all-cause mortality, myocardial infarction, heart failure, and stroke. Diastolic function was defined according to a validated hierarchical classification algorithm. In the 2,952 participants included in the primary analysis, severe diastolic dysfunction was present in 1.1% and abnormal relaxation was present in 9.3%. Systolic blood pressure at year 0 was associated with both severe diastolic dysfunction and abnormal relaxation 5 years later, whereas exercise capacity and pulmonary function abnormalities were associated only with abnormal relaxation 5 years later. After multivariate adjustment, the hazard ratios for the composite endpoint in participants with severe diastolic dysfunction and abnormal relaxation were 4.3 (95% confidence interval: 2.0, 9.3) and 1.6 (95% confidence interval: 1.1, 2.5), respectively. Diastolic dysfunction in young adults is associated with increased morbidity and mortality, and the identification of prospective risk markers associated with diastolic dysfunction could allow for targeted primary prevention efforts. PMID:23211639

  3. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes.

    PubMed

    Horie, Takahiro; Ono, Koh; Nishi, Hitoo; Iwanaga, Yoshitaka; Nagao, Kazuya; Kinoshita, Minako; Kuwabara, Yasuhide; Takanabe, Rieko; Hasegawa, Koji; Kita, Toru; Kimura, Takeshi

    2009-11-13

    GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3'UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes.

  4. Relation of electrocardiographic left ventricular hypertrophy to blood pressure, body mass index, serum lipids and blood sugar levels in adult Nigerians.

    PubMed

    Opadijo, O G; Omotoso, A B O; Akande, A A

    2003-12-01

    Left ventricular hypertrophy (LVH) is considered an independent risk factor even in the absence of systemic hypertension. Electrocardiographic (ECG) LVH with repolarisation changes has been found in some countries to carry more coronary risk than LVH alone. How far this observation is true among adult Nigerians is not known. We therefore decided to study adult Nigerians with ECG-LVH with or without ST-T waves changes and compare them with normal age matched controls (without ECG-LVH) in relation with established modifiable risk factors such as systemic hypertension (BP), body mass index (BMI), fasting blood sugar (FBS) and serum lipids such as total cholesterol (Tc), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triglyceride (TG). Adult Nigerians who were consecutively referred to the ECG laboratory were randomly recruited. Three hundred patients were studied. Their blood pressures (BP) as well as body mass indices were recorded after recording their resting 12 read ECG using portable Seward 9953 ECG machine. Their waist-hip ratio (WHR) was also recorded. Blood samples were taken to determine their fasting blood sugar and serum lipids. Their ECG tracings were read by the cardiologists involved in the study while the blood samples were analysed by the chemical pathologist also involved in the study. At the end of the ECG reading, the patients were divided into 3 groups according to whether there was no ECG-LVH (control group A), ECG-LVH alone (group B), and ECG-LVH with ST-T waves changes (group C). One hundred and fifty (50%) patients belonged to group A, 100 (33.3%) patients to group B and 50 (16.7%) group C. Group B patients were found to have higher modifiable risk factors in form of systemic BP. Tc, LDL-C, and WHR compared to group A. However, the group C patients had increased load of these coronary risk factors in terms of BP elevation, higher BMI, FBS, and scrum cholesterol compared to group B. In addition

  5. Genome-wide association identifies a deletion in the 3' untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Meurs, Kathryn M; Mauceli, Evan; Lahmers, Sunshine; Acland, Gregory M; White, Stephen N; Lindblad-Toh, Kerstin

    2010-09-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a familial cardiac disease characterized by ventricular arrhythmias and sudden cardiac death. It is most frequently inherited as an autosomal dominant trait with incomplete and age-related penetrance and variable clinical expression. The human disease is most commonly associated with a causative mutation in one of several genes encoding desmosomal proteins. We have previously described a spontaneous canine model of ARVC in the boxer dog. We phenotyped adult boxer dogs for ARVC by performing physical examination, echocardiogram and ambulatory electrocardiogram. Genome-wide association using the canine 50k SNP array identified several regions of association, of which the strongest resided on chromosome 17. Fine mapping and direct DNA sequencing identified an 8-bp deletion in the 3' untranslated region (UTR) of the Striatin gene on chromosome 17 in association with ARVC in the boxer dog. Evaluation of the secondary structure of the 3' UTR demonstrated that the deletion affects a stem loop structure of the mRNA and expression analysis identified a reduction in Striatin mRNA. Dogs that were homozygous for the deletion had a more severe form of disease based on a significantly higher number of ventricular premature complexes. Immunofluorescence studies localized Striatin to the intercalated disc region of the cardiac myocyte and co-localized it to three desmosomal proteins, Plakophilin-2, Plakoglobin and Desmoplakin, all involved in the pathogenesis of ARVC in human beings. We suggest that Striatin may serve as a novel candidate gene for human ARVC.

  6. Ventricular fibrillation and defibrillation

    PubMed Central

    Jones, P; Lodé, N

    2007-01-01

    Cardiac arrest in children is not often due to a disturbance in rhythm that is amenable to electrical defibrillation, contrary to the situation in adults. When a shockable rhythm is present, defibrillation using an external electric shock applied at an early stage after pre‐oxygenation and chest compressions is of proven efficacy. Success at conversion of ventricular fibrillation is dependent on the delay before delivering the shock and defibrillation efficiency, which is itself a function of thoracic impedance, energy dose and waveform. PMID:17895341

  7. Prevalence, prospective risk markers, and prognosis associated with the presence of left ventricular diastolic dysfunction in young adults: the coronary artery risk development in young adults study.

    PubMed

    Desai, Chintan S; Colangelo, Laura A; Liu, Kiang; Jacobs, David R; Cook, Nakela L; Lloyd-Jones, Donald M; Ogunyankin, Kofo O

    2013-01-01

    The authors sought to determine the prevalence, prospective risk markers, and prognosis associated with diastolic dysfunction in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. The CARDIA Study cohort includes approximately equal proportions of white and black men and women. The authors collected data on risk markers at year 0 (1985-1986), and echocardiography was done at year 5 when the participants were 23-35 years of age. Participants were followed for 20 years (through 2010) for a composite endpoint of all-cause mortality, myocardial infarction, heart failure, and stroke. Diastolic function was defined according to a validated hierarchical classification algorithm. In the 2,952 participants included in the primary analysis, severe diastolic dysfunction was present in 1.1% and abnormal relaxation was present in 9.3%. Systolic blood pressure at year 0 was associated with both severe diastolic dysfunction and abnormal relaxation 5 years later, whereas exercise capacity and pulmonary function abnormalities were associated only with abnormal relaxation 5 years later. After multivariate adjustment, the hazard ratios for the composite endpoint in participants with severe diastolic dysfunction and abnormal relaxation were 4.3 (95% confidence interval: 2.0, 9.3) and 1.6 (95% confidence interval: 1.1, 2.5), respectively. Diastolic dysfunction in young adults is associated with increased morbidity and mortality, and the identification of prospective risk markers associated with diastolic dysfunction could allow for targeted primary prevention efforts.

  8. The lipid peroxidation product 4-hydroxy-trans-2-nonenal causes protein synthesis in cardiac myocytes via activated mTORC1-p70S6K-RPS6 signaling.

    PubMed

    Calamaras, Timothy D; Lee, Charlie; Lan, Fan; Ido, Yasuo; Siwik, Deborah A; Colucci, Wilson S

    2015-05-01

    Reactive oxygen species (ROS) are elevated in the heart in response to hemodynamic and metabolic stress and promote hypertrophic signaling. ROS also mediate the formation of lipid peroxidation-derived aldehydes that may promote myocardial hypertrophy. One lipid peroxidation by-product, 4-hydroxy-trans-2-nonenal (HNE), is a reactive aldehyde that covalently modifies proteins thereby altering their function. HNE adducts directly inhibit the activity of LKB1, a serine/threonine kinase involved in regulating cellular growth in part through its interaction with the AMP-activated protein kinase (AMPK), but whether this drives myocardial growth is unclear. We tested the hypothesis that HNE promotes myocardial protein synthesis and if this effect is associated with impaired LKB1-AMPK signaling. In adult rat ventricular cardiomyocytes, exposure to HNE (10 μM for 1h) caused HNE-LKB1 adduct formation and inhibited LKB1 activity. HNE inhibited the downstream kinase AMPK, increased hypertrophic mTOR-p70S6K-RPS6 signaling, and stimulated protein synthesis by 27.1 ± 3.5%. HNE also stimulated Erk1/2 signaling, which contributed to RPS6 activation but was not required for HNE-stimulated protein synthesis. HNE-stimulated RPS6 phosphorylation was completely blocked using the mTOR inhibitor rapamycin. To evaluate if LKB1 inhibition by itself could promote the hypertrophic signaling changes observed with HNE, LKB1 was depleted in adult rat ventricular myocytes using siRNA. LKB1 knockdown did not replicate the effect of HNE on hypertrophic signaling or affect HNE-stimulated RPS6 phosphorylation. Thus, in adult cardiac myocytes HNE stimulates protein synthesis by activation of mTORC1-p70S6K-RPS6 signaling most likely mediated by direct inhibition of AMPK. Because HNE in the myocardium is commonly increased by stimuli that cause pathologic hypertrophy, these findings suggest that therapies that prevent activation of mTORC1-p70S6K-RPS6 signaling may be of therapeutic value.

  9. Alterations in action potential profile enhance excitation-contraction coupling in rat cardiac myocytes

    PubMed Central

    Sah, Rajan; Ramirez, Rafael J; Kaprielian, Roger; Backx, Peter H

    2001-01-01

    Action potential (AP) prolongation typically occurs in heart disease due to reductions in transient outward potassium currents (Ito), and is associated with increased Ca2+ transients. We investigated the underlying mechanisms responsible for enhanced Ca2+ transients in normal isolated rat ventricular myocytes in response to the AP changes that occur following myocardial infarction. Normal myocytes stimulated with a train of long post-myocardial infarction (MI) APs showed a 2.2-fold elevation of the peak Ca2+ transient and a 2.7-fold augmentation of fractional cell shortening, relative to myocytes stimulated with a short control AP. The steady-state Ca2+ load of the sarcoplasmic reticulum (SR) was increased 2.0-fold when myocytes were stimulated with trains of long post-MI APs (111 ± 21.6 μmol l−1) compared with short control APs (56 ± 7.2 μmol l−1). Under conditions of equal SR Ca2+ load, long post-MI APs still resulted in a 1.7-fold increase in peak [Ca2+]i and a 3.8-fold increase in fractional cell shortening relative to short control APs, establishing that changes in the triggering of SR Ca2+ release are largely responsible for elevated Ca2+ transients following AP prolongation. Fractional SR Ca2+ release calculated from the measured SR Ca2+ load and the integrated SR Ca2+ fluxes was 24 ± 3 and 11 ± 2 % following post-MI and control APs, respectively. The fractional release (FR) of Ca2+ from the SR divided by the integrated L-type Ca2+ flux (FR/∫FCa,L) was increased 1.2-fold by post-MI APs compared with control APs. Similar increases in excitation-contraction (E-C) coupling gains were observed establishing enhanced E-C coupling efficiency. Our findings demonstrate that AP prolongation alone can markedly enhance E-C coupling in normal myocytes through increases in the L-type Ca2+ current (ICa,L) trigger combined with modest enhancements in Ca2+ release efficiency. We propose that such changes in AP profile in diseased myocardium may contribute

  10. Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes.

    PubMed

    Bedada, Fikru B; Wheelwright, Matthew; Metzger, Joseph M

    2016-07-01

    Human heart failure due to myocardial infarction is a major health concern. The paucity of organs for transplantation limits curative approaches for the diseased and failing adult heart. Human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) have the potential to provide a long-term, viable, regenerative-medicine alternative. Significant progress has been made with regard to efficient cardiac myocyte generation from hiPSCs. However, directing hiPSC-CMs to acquire the physiological structure, gene expression profile and function akin to mature cardiac tissue remains a major obstacle. Thus, hiPSC-CMs have several hurdles to overcome before they find their way into translational medicine. In this review, we address the progress that has been made, the void in knowledge and the challenges that remain. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  11. Exercise training and detraining modify the morphological and mechanical properties of single cardiac myocytes obtained from spontaneously hypertensive rats.

    PubMed

    Carneiro-Júnior, M A; Pelúzio, M C G; Silva, C H O; Amorim, P R S; Silva, K A; Souza, M O; Castro, C A; Roman-Campos, D; Prímola-Gomes, T N; Natali, A J

    2010-11-01

    We determined the effects of exercise training and detraining on the morphological and mechanical properties of left ventricular myocytes in 4-month-old spontaneously hypertensive rats (SHR) randomly divided into the following groups: sedentary for 8 weeks (SED-8), sedentary for 12 weeks (SED-12), treadmill-running trained for 8 weeks (TRA, 16 m/min, 60 min/day, 5 days/week), and treadmill-running trained for 8 weeks followed by 4 weeks of detraining (DET). At sacrifice, left ventricular myocytes were isolated enzymatically, and resting cell length, width, and cell shortening after stimulation at a frequency of 1 Hz (~25°C) were measured. Cell length was greater in TRA than in SED-8 (161.30 ± 1.01 vs 156.10 ± 1.02 μm, P < 0.05, 667 vs 618 cells, respectively) and remained larger after detraining. Cell width and volume were unaffected by either exercise training or detraining. Cell length to width ratio was higher in TRA than in SED-8 (8.50 ± 0.08 vs 8.22 ± 0.10, P < 0.05) and was maintained after detraining. Exercise training did not affect cell shortening, which was unchanged with detraining. TRA cells exhibited higher maximum velocity of shortening than SED-8 (102.01 ± 4.50 vs 82.01 ± 5.30 μm/s, P < 0.05, 70 cells per group), with almost complete regression after detraining. The maximum velocity of relengthening was higher in TRA cells than in SED-8 (88.20 ± 4.01 vs70.01 ± 4.80 μm/s, P < 0.05), returning to sedentary values with detraining. Therefore, exercise training affected left ventricle remodeling in SHR towards eccentric hypertrophy, which remained after detraining. It also improved single left ventricular myocyte contractile function, which was reversed by detraining.

  12. EFFICACY AND POTENCY OF CLASS I ANTIARRHYTHMIC DRUGS FOR SUPPRESSION OF Ca2+ WAVES IN PERMEABILIZED MYOCYTES LACKING CALSEQUESTRIN

    PubMed Central

    Galimberti, Eleonora Savio; Knollmann, Bjorn C.

    2011-01-01

    Background Ca2+ waves can trigger ventricular arrhythmias such as catecholaminergic-polymorphic ventricular tachycardia (CPVT). Drugs that prevent Ca2+ waves may have antiarrhythmic properties. Here, we use permeabilized ventricular myocytes from a CPVT mouse model lacking calsequestrin (casq2) to screen all clinically available class I antiarrhythmic drugs and selected other antiarrhythmic agents for activity against Ca2+ waves. Methods and Results Casq2−/− myocytes were imaged in line-scan mode and the following Ca2+ wave parameters analyzed: wave incidence, amplitude, frequency, and propagation speed. IC50 (potency) and maximum inhibition (efficacy) were calculated for each drug. Drugs fell into 3 distinct categories. Category 1 drugs (flecainide, R-propafenone) suppressed wave parameters with the highest potency (IC50 < 10 μM) and efficacy (> 50% maximum wave inhibition). Category 2 drugs (encainide, quinidine, lidocaine, verapamil) had intermediate potency (IC50 20 μ 40 μM) and efficacy (20% - 40% maximum wave inhibition). Category 3 drugs (procainamide, disopyramide, mexilitine, cibenzoline, ranolazine) had no significant effects on Ca2+ waves at the highest concentration tested (100 μM). Propafenone was stereoselective, with R-propafenone suppressing waves more potently than S-propafenone (IC50: R-propafenone 2±0.2 μM vs. S-propafenone 54±18 μM). Both flecainide and R-propafenone decreased Ca2+ spark mass and converted propagated Ca2+ waves into non-propagated wavelets and frequent sparks, suggesting that reduction in spark mass, not spark frequency, was responsible for wave suppression. Conclusions Among all class I antiarrhythmic drugs, flecainide and R-propafenone inhibit Ca2+ waves with the highest potency and efficacy. Permeabilized casq2−/− myocytes are a simple in-vitro assay for finding drugs with activity against Ca2+ waves. PMID:21798265

  13. Usefulness of Left Ventricular Mass and Geometry for Determining 10-Year Prediction of Cardiovascular Disease in Adults Aged >65 Years (from the Cardiovascular Health Study).

    PubMed

    Desai, Chintan S; Bartz, Traci M; Gottdiener, John S; Lloyd-Jones, Donald M; Gardin, Julius M

    2016-09-01

    Left ventricular (LV) mass and geometry are associated with risk of cardiovascular disease (CVD). We sought to determine whether LV mass and geometry contribute to risk prediction for CVD in adults aged ≥65 years of the Cardiovascular Health Study. We indexed LV mass to body size, denoted as LV mass index (echo-LVMI), and we defined LV geometry as normal, concentric remodeling, and eccentric or concentric LV hypertrophy. We added echo-LVMI and LV geometry to separate 10-year risk prediction models containing traditional risk factors and determined the net reclassification improvement (NRI) for incident coronary heart disease (CHD), CVD (CHD, heart failure [HF], and stroke), and HF alone. Over 10 years of follow-up in 2,577 participants (64% women, 15% black, mean age 72 years) for CHD and CVD, the adjusted hazards ratios for a 1-SD higher echo-LVMI were 1.25 (95% CI 1.14 to 1.37), 1.24 (1.15 to 1.33), and 1.51 (1.40 to 1.62), respectively. Addition of echo-LVMI to the standard model for CHD resulted in an event NRI of -0.011 (95% CI -0.037 to 0.028) and nonevent NRI of 0.034 (95% CI 0.008 to 0.076). Addition of echo-LVMI and LV geometry to the standard model for CVD resulted in an event NRI of 0.013 (95% CI -0.0335 to 0.0311) and a nonevent NRI of 0.043 (95% CI 0.011 to 0.09). The nonevent NRI was also significant with addition of echo-LVMI for HF risk prediction (0.10, 95% CI 0.057 to 0.16). In conclusion, in adults aged ≥65 years, echo-LVMI improved risk prediction for CHD, CVD, and HF, driven primarily by improved reclassification of nonevents.

  14. IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart

    PubMed Central

    Banerjee, Indroneal; Fuseler, John W.; Intwala, Arti R.; Baudino, Troy A.

    2009-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine responsible for many different processes including the regulation of cell growth, apoptosis, differentiation, and survival in various cell types and organs, including the heart. Recent studies have indicated that IL-6 is a critical component in the cell-cell communication between myocytes and cardiac fibroblasts. In this study, we examined the effects of IL-6 deficiency on the cardiac cell populations, cardiac function, and interactions between the cells of the heart, specifically cardiac fibroblasts and myocytes. To examine the effects of IL-6 loss on cardiac function, we used the IL-6−/− mouse. IL-6 deficiency caused severe cardiac dilatation, increased accumulation of interstitial collagen, and altered expression of the adhesion protein periostin. In addition, flow cytometric analyses demonstrated dramatic alterations in the cardiac cell populations of IL-6−/− mice compared with wild-type littermates. We observed a marked increase in the cardiac fibroblast population in IL-6−/− mice, whereas a concomitant decrease was observed in the other cardiac cell populations examined. Moreover, we observed increased cell proliferation and apoptosis in the developing IL-6−/− heart. Additionally, we observed a significant decrease in the capillary density of IL-6−/− hearts. To elucidate the role of IL-6 in the interactions between cardiac fibroblasts and myocytes, we performed in vitro studies and demonstrated that IL-6 deficiency attenuated the activation of the STAT3 pathway and VEGF production. Taken together, these data demonstrate that a loss of IL-6 causes cardiac dysfunction by shifting the cardiac cell populations, altering the extracellular matrix, and disrupting critical cell-cell interactions. PMID:19234091

  15. Arrhythmogenic right ventricular cardiomyopathy: new insights into mechanisms of disease.

    PubMed

    Saffitz, Jeffrey E; Asimaki, Angeliki; Huang, Hayden

    2010-01-01

    Arrhythmogenic right ventricular cardiomyopathy is a primary heart muscle disorder characterized by the early occurrence of arrhythmias often out of proportion to the extent of structural remodeling and contractile derangement. Approximately 40% of patients with arrhythmogenic right ventricular cardiomyopathy have one or more mutations in genes encoding proteins in desmosomes, intercellular adhesion junctions which, in cardiac myocytes, reside within intercalated disks. Some desmosomal proteins fulfill roles both as structural proteins in cell-cell adhesion junctions and as signaling molecules in pathways mediated by Wnt ligands. Evidence is increasing that mutations in desmosomal proteins can perturb the normal balance of critical proteins in junctions and the cytosol which, in turn, could alter gene expression by circumventing normal Wnt signaling pathways. This review highlights recent advances in understanding the pathogenesis of arrhythmogenic right ventricular cardiomyopathy and presents evidence suggesting that the disease is caused by a combination of altered cellular biomechanical behavior and altered signaling.

  16. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    PubMed Central

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-01-01

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918

  17. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    PubMed

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-11-28

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  18. Apical left ventricular hypertrophy and mid-ventricular obstruction in fabry disease.

    PubMed

    Cianciulli, Tomás F; Saccheri, María C; Fernández, Segundo P; Fernández, Cinthia C; Rozenfeld, Paula A; Kisinovsky, Isaac

    2015-05-01

    We report the case of a rare cardiac presentation of Fabry disease. Although concentric left ventricular hypertrophy is a major cardiac finding in Fabry disease, there is no case report of dynamic obstruction at mid-left ventricular level. We describe a 59-year-old-woman suffering from a severe form of Fabry disease, mimicking an apical hypertrophic cardiomyopathy with mid-ventricular obstruction. Differentiation of Fabry disease from hypertrophic cardiomyopathy is crucial given the therapeutic and prognostic differences. Fabry disease should always be suspected in an adult, independently of the pattern of left ventricular hypertrophy.

  19. Modeling beta-adrenergic control of cardiac myocyte contractility in silico

    NASA Technical Reports Server (NTRS)

    Saucerman, Jeffrey J.; Brunton, Laurence L.; Michailova, Anushka P.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  20. Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction.

    PubMed

    Kieken, Fabien; Mutsaers, Nancy; Dolmatova, Elena; Virgil, Kelly; Wit, Andrew L; Kellezi, Admir; Hirst-Jensen, Bethany J; Duffy, Heather S; Sorgen, Paul L

    2009-05-08

    Lateralization of the ventricular gap junction protein connexin 43 (Cx43) occurs in epicardial border zone myocytes following myocardial infarction (MI) and is arrhythmogenic. Alterations in Cx43 protein partners have been hypothesized to play a role in lateralization although mechanisms by which this occurs are unknown. To examine potential mechanisms we did nuclear magnetic resonance, yeast 2-hybrid, and surface plasmon resonance studies and found that the SH3 domain of the tyrosine kinase c-Src binds to the Cx43 scaffolding protein zonula occludens-1 (ZO-1) with a higher affinity than does Cx43. This suggests c-Src outcompetes Cx43 for binding to ZO-1, thus acting as a chaperone for ZO-1 and causing unhooking from Cx43. To determine whether c-Src/ZO-1 interactions affect Cx43 lateralization within the epicardial border zone, we performed Western blot, immunoprecipitation, and immunolocalization for active c-Src (p-cSrc) post-MI using a canine model of coronary occlusion. We found that post-MI p-cSrc interacts with ZO-1 as Cx43 begins to decrease its interaction with ZO-1 and undergo initial loss of intercalated disk localization. This indicates that the molecular mechanisms by which Cx43 is lost from the intercalated disk following MI includes an interaction of p-cSrc with ZO-1 and subsequent loss of scaffolding of Cx43 leaving Cx43 free to diffuse in myocyte membranes from areas of high Cx43, as at the intercalated disk, to regions of lower Cx43 content, the lateral myocyte membrane. Therefore shifts in Cx43 protein partners may underlie, in part, arrhythmogenesis in the post-MI heart.

  1. Signaling Pathways in Cardiac Myocyte Apoptosis

    PubMed Central

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  2. Mitogenic cardiomyopathy: a lethal neonatal familial dilated cardiomyopathy characterized by myocyte hyperplasia and proliferation.

    PubMed

    Chang, Kenneth T E; Taylor, Glenn P; Meschino, Wendy S; Kantor, Paul F; Cutz, Ernest

    2010-07-01

    Pediatric cardiomyopathies are a heterogenous group of conditions of which dilated cardiomyopathies are the most common clinicomorphologic subtype. However, the etiology and pathogenesis of many cases of dilated cardiomyopathies remain unknown. We describe a series of 5 cases of a rare but clinically and histologically distinctive dilated cardiomyopathy that was uniformly lethal in early infancy. The 5 cases include 2 pairs of siblings. There was parental consanguinity in 1 of the 2 pairs of siblings. Death occurred in early infancy (range, 22-67 days; mean, 42 days) after a short history of general lethargy, decreased feeding, respiratory distress, or cyanosis. There was no specific birth or early neonatal problems. Autopsy revealed congestive cardiac failure and enlarged, dilated hearts with ventricular dilatation more pronounced than atrial dilatation, and endocardial fibroelastosis. Histology showed prominent hypertrophic nuclear changes of cardiac myofibers and markedly increased myocyte mitotic activity including occasional atypical mitoses. Immunohistochemical staining for Mib1 showed a markedly increased proliferative index of 10% to 20%. Ancillary investigations, including molecular studies, did not reveal a primary cause for the cardiomyopathies. This distinctive dilated cardiomyopathy characterized by unusual histologic features of myocyte nuclear hypertrophy and marked mitotic activity is lethal in early infancy. Its occurrence in 2 pairs of siblings suggests familial inheritance. Although the underlying molecular pathogenesis remains to be elucidated, it is important to recognize this distinctive entity for purposes of genetic counseling.

  3. Characterization and functional consequences of delayed rectifier current transient in ventricular repolarization.

    PubMed

    Gintant, G A

    2000-03-01

    Although inactivation of the rapidly activating delayed rectifier current (I(Kr)) limits outward current on depolarization, the role of I(Kr) (and recovery from inactivation) during repolarization is uncertain. To characterize I(Kr) during ventricular repolarization (and compare with the inward rectifier current, I(K1)), voltage-clamp waveforms simulating the action potential were applied to canine ventricular, atrial, and Purkinje myocytes. In ventricular myocytes, I(Kr) was minimal at plateau potentials but transiently increased during repolarizing ramps. The I(Kr) transient was unaffected by repolarization rate and maximal after 150-ms depolarizations (+25 mV). Action potential clamps revealed the I(Kr) transient terminating the plateau. Although peak I(Kr) transient density was relatively uniform among myocytes, potentials characterizing the peak transients were widely dispersed. In contrast, peak inward rectifier current (I(K1)) density during repolarization was dispersed, whereas potentials characterizing I(K1) defined a narrower (more negative) voltage range. In summary, rapidly activating I(Kr) provides a delayed voltage-dependent (and functionally time-independent) outward transient during ventricular repolarization, consistent with rapid recovery from inactivation. The heterogeneous voltage dependence of I(Kr) provides a novel means for modulating the contribution of this current during repolarization.

  4. Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy

    SciTech Connect

    Busk, Peter K. . E-mail: pkbu@novonordisk.com; Hinrichsen, Rebecca; Bartkova, Jirina; Hansen, Ane H.; Christoffersen, Tue E.H.; Bartek, Jiri; Haunso, Stig

    2005-03-10

    The myocytes of the adult mammalian heart are considered unable to divide. Instead, mitogens induce cardiomyocyte hypertrophy. We have investigated the effect of adenoviral overexpression of cyclin D2 on myocyte proliferation and morphology. Cardiomyocytes in culture were identified by established markers. Cyclin D2 induced DNA synthesis and proliferation of cardiomyocytes and impaired hypertrophy induced by angiotensin II and serum. At the molecular level, cyclin D2 activated CDK4/6 and lead to pRB phosphorylation and downregulation of the cell cycle inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}. Expression of the CDK4/6 inhibitor p16 inhibited proliferation and cyclin D2 overexpressing myocytes became hypertrophic under such conditions. Inhibition of hypertrophy by cyclin D2 correlated with downregulation of p27{sup Kip1}. These data show that hypertrophy and proliferation are highly related processes and suggest that cardiomyocyte hypertrophy is due to low amounts of cell cycle activators unable to overcome the block imposed by cell cycle inhibitors. Cell cycle entry upon hypertrophy may be converted to cell division by increased expression of activators such as cyclin D2.

  5. Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis

    PubMed Central

    Brown, Tashalee R.; Krogh-Madsen, Trine; Christini, David J.

    2015-01-01

    The adult heart is composed of a dense network of cardiomyocytes surrounded by nonmyocytes, the most abundant of which are cardiac fibroblasts. Several cardiac diseases, such as myocardial infarction or dilated cardiomyopathy, are associated with an increased density of fibroblasts, that is, fibrosis. Fibroblasts play a significant role in the development of electrical and mechanical dysfunction of the heart; however the underlying mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce excess extracellular matrix, resulting in collagenous septa. These collagenous septa slow propagation, cause zig-zag conduction paths, and decouple cardiomyocytes resulting in a substrate for arrhythmia. Another emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions with cardiomyocytes via gap junctions. Due to the challenges of investigating fibroblast-myocyte coupling in native cardiac tissue, computational modeling and in vitro experiments have facilitated the investigation into the mechanisms underlying fibroblast-mediated changes in cardiomyocyte action potential morphology, conduction velocity, spontaneous excitability, and vulnerability to reentry. In this paper, we summarize the major findings of the existing computational studies investigating the implications of fibroblast-myocyte interactions in the normal and diseased heart. We then present investigations from our group into the potential role of voltage-dependent gap junctions in fibroblast-myocyte interactions. PMID:26601107

  6. Placement of a continuous-flow ventricular assist device in the failing ventricle of an adult patient with complex cyanotic congenital heart disease.

    PubMed

    Morris, Cullen D; Gregoric, Igor D; Cooley, Denton A; Cohn, William E; Loyalka, Pranav; Frazier, O H

    2008-01-01

    For patients with end-stage heart failure and contraindications to transplantation, insertion of a continuous-flow left ventricular assist device (LVAD) is an effective treatment strategy. We present a case of LVAD insertion in a 46-year-old man with cyanotic complex congenital heart disease and an extensive surgical history who presented with failure of his systemic ventricle. The insertion of an LVAD in our patient restored cardiac output and improved cyanosis and native ventricular function. As the number of patients with congenital heart defects surviving to adulthood increases, destination LVAD therapy may be increasingly considered as an alternative.

  7. Perioperative Management of Adult Patients With External Ventricular and Lumbar Drains: Guidelines From the Society for Neuroscience in Anesthesiology and Critical Care.

    PubMed

    Lele, Abhijit V; Hoefnagel, Amie L; Schloemerkemper, Nina; Wyler, David A; Chaikittisilpa, Nophanan; Vavilala, Monica S; Naik, Bhiken I; Williams, James H; Venkat Raghavan, Lakshmikumar; Koerner, Ines P

    2017-02-06

    External ventricular drains and lumbar drains are commonly used to divert cerebrospinal fluid and to measure cerebrospinal fluid pressure. Although commonly encountered in the perioperative setting and critical for the care of neurosurgical patients, there are no guidelines regarding their management in the perioperative period. To address this gap in the literature, The Society for Neuroscience in Anesthesiology & Critical Care tasked an expert group to generate evidence-based guidelines. The document generated targets clinicians involved in perioperative care of patients with indwelling external ventricular and lumbar drains.

  8. Toward an Integrative Computational Model of the Guinea Pig Cardiac Myocyte

    PubMed Central

    Gauthier, Laura Doyle; Greenstein, Joseph L.; Winslow, Raimond L.

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca2+) release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue level electromechanical function. PMID:22783206

  9. QT-screen: high-throughput cardiac safety pharmacology by extracellular electrophysiology on primary cardiac myocytes.

    PubMed

    Meyer, Thomas; Leisgen, Christine; Gonser, Barbara; Günther, Elke

    2004-10-01

    Cardiac safety pharmacology focuses mostly on the drug-induced prolongation of the QT interval in the electrocardiogram. A prolonged QT interval is an important indicator for an increased risk of severe ventricular arrhythmia. Guidelines demand safety tests addressing QT prolongation in vitro and in vivo before a drug enters clinical trials. If safety risks will be detected not until an advanced stage of preclinical drug development, a considerable sum of money has already been invested into the drug development process. To prevent this, high-throughput systems have been developed to obtain information on the potential toxicity of a substance earlier. We will discuss in this publication that the QT-Screen system, which is based on primary cardiac myocytes, is able to provide a sufficient throughput for secondary screening. With this system, extracellular field potentials can be recorded from spontaneously beating cultures of mammalian or avian ventricular cardiac myocytes simultaneously on 96 channels. The system includes software-controlled and automated eight-channel liquid handling, data acquisition, and analysis. These features allow a user-friendly and unsupervised operation. The throughput is over 100 compounds in six replicates and with full dose-response relationships per day. This equals a maximum of approximately 6,000 data points per day at an average cost for consumables of 0.20 US pennies (U.S.) per data point. The system is intended for a non-good laboratory practice-compliant screening; however, it can be adapted to be used in a good laboratory practice environment.

  10. Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation

    PubMed Central

    Ryall, Karen A.; Bezzerides, Vassilios J.; Rosenzweig, Anthony; Saucerman, Jeffrey J.

    2014-01-01

    Cardiac hypertrophy is controlled by a highly connected signaling network with many effectors of cardiac myocyte size. Quantification of the contribution of individual pathways to specific changes in shape and transcript abundance is needed to better understand hypertrophy signaling and to improve heart failure therapies. We stimulated cardiac myocytes with 15 hypertrophic agonists and quantitatively characterized differential regulation of 5 shape features using high-throughput microscopy and transcript levels of 12 genes using qPCR. Transcripts measured were associated with phenotypes including fibrosis, cell death, contractility, proliferation, angiogenesis, inflammation, and the fetal cardiac gene program. While hypertrophy pathways are highly connected, the agonist screen revealed distinct hypertrophy phenotypic signatures for the 15 receptor agonists. We then used k-means clustering of inputs and outputs to identify a network map linking input modules to output modules. Five modules were identified within inputs and outputs with many maladaptive outputs grouping together in one module: Bax, C/EBPβ, Serca2a, TNFα, and CTGF. Subsequently, we identified mechanisms underlying two correlations revealed in the agonist screen: correlation between regulators of fibrosis and cell death signaling (CTGF and Bax mRNA) caused by AngII; and myocyte proliferation (CITED4 mRNA) and elongation caused by Nrg1. Follow-up experiments revealed positive regulation of Bax mRNA level by CTGF and an incoherent feedforward loop linking Nrg1, CITED4 and elongation. With this agonist screen, we identified the most influential inputs in the cardiac hypertrophy signaling network for a variety of features related to pathological and protective hypertrophy signaling and shared regulation among cardiac myocyte phenotypes. PMID:24613264

  11. Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure

    NASA Technical Reports Server (NTRS)

    Ding, B.; Price, R. L.; Goldsmith, E. C.; Borg, T. K.; Yan, X.; Douglas, P. S.; Weinberg, E. O.; Bartunek, J.; Thielen, T.; Didenko, V. V.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    BACKGROUND: To determine potential mechanisms of the transition from hypertrophy to very early failure, we examined apoptosis in a model of ascending aortic stenosis (AS) in male FVB/n mice. METHODS AND RESULTS: Compared with age-matched controls, 4-week and 7-week AS animals (n=12 to 16 per group) had increased ratios of left ventricular weight to body weight (4.7+/-0.7 versus 3.1+/-0.2 and 5. 7+/-0.4 versus 2.7+/-0.1 mg/g, respectively, P<0.05) with similar body weights. Myocyte width was also increased in 4-week and 7-week AS mice compared with controls (19.0+/-0.8 and 25.2+/-1.8 versus 14. 1+/-0.5 microm, respectively, P<0.01). By 7 weeks, AS myocytes displayed branching with distinct differences in intercalated disk size and staining for beta(1)-integrin on both cell surface and adjacent extracellular matrix. In vivo left ventricular systolic developed pressure per gram as well as endocardial fractional shortening were similar in 4-week AS and controls but depressed in 7-week AS mice. Myocyte apoptosis estimated by in situ nick end-labeling (TUNEL) was extremely rare in 4-week AS and control mice; however, a low prevalence of TUNEL-positive myocytes and DNA laddering were detected in 7-week AS mice. The specificity of TUNEL labeling was confirmed by in situ ligation of hairpin oligonucleotides. CONCLUSIONS: Our findings indicate that myocyte apoptosis develops during the transition from hypertrophy to early failure in mice with chronic biomechanical stress and support the hypothesis that the disruption of normal myocyte anchorage to adjacent extracellular matrix and cells, a process called anoikis, may signal apoptosis.

  12. Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy.

    PubMed

    Trivedi, Chinmay M; Lu, Min Min; Wang, Qiaohong; Epstein, Jonathan A

    2008-09-26

    Class I and II histone deacetylases (HDACs) play vital roles in regulating cardiac development, morphogenesis, and hypertrophic responses. Although the roles of Hdac1 and Hdac2, class I HDACs, in cardiac hyperplasia, growth, and hypertrophic responsiveness have been reported, the role in the heart of Hdac3, another class I HDAC, has been less well explored. Here we report that myocyte-specific overexpression of Hdac3 in mice results in cardiac abnormalities at birth. Hdac3 overexpression produces thickening of ventricular myocardium, especially the interventricular septum, and reduction of both ventricular cavities in newborn hearts. Our data suggest that increased thickness of myocardium in Hdac3-transgenic (Hdac3-Tg) mice is due to increased cardiomyocyte hyperplasia without hypertrophy. Hdac3 overexpression inhibits several cyclin-dependent kinase inhibitors, including Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, and Cdkn2c. Hdac3-Tg mice did not develop cardiac hypertrophy at 3 months of age, unlike previously reported Hdac2-Tg mice. Further, Hdac3 overexpression did not augment isoproterenol-induced cardiac hypertrophy when compared with wild-type littermates. These findings identify Hdac3 as a novel regulator of cardiac myocyte proliferation during cardiac development.

  13. HCM-Linked Δ 160E Cardiac Troponin T Mutation Causes Unique Progressive Structural and Molecular Ventricular Remodeling in Transgenic Mice

    PubMed Central

    Moore, Rachel K.; Grinspan, Lauren Tal; Jimenez, Jesus; Guinto, Pia J.; Ertz-Berger, Briar; Tardiff, Jil C.

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) is a primary disease of cardiac muscle, and one of the most common causes of sudden cardiac death (SCD) in young people. Many mutations in cardiac troponin T (cTnT) lead to a complex form of HCM with varying degrees of ventricular hypertrophy and ~65% of all cTnT mutations occur within or flanking the elongated N-terminal TNT1 domain. Biophysical studies have predicted that distal TNT1 mutations, including Δ160E, cause disease by a novel, yet unknown mechanism as compared to N-terminal mutations. To begin to address the specific effects of this commonly observed cTnT mutation we generated two independent transgenic mouse lines carrying variant doses of the mutant transgene. Hearts from the 30% and 70% cTnT Δ160E lines demonstrated a highly unique, dose-dependent disruption in cellular and sarcomeric architecture and a highly progressive pattern of ventricular remodeling. While adult ventricular myocytes isolated from Δ160E transgenic mice exhibited dosage-independent mechanical impairments, decreased sarcoplasmic reticulum calcium load and SERCA2a calcium uptake activity, the observed decreases in calcium transients were dosage-dependent. The latter findings were concordant with measures of calcium regulatory proteins abundance and phosphorylation state. Finally, studies of whole heart physiology in the isovolumic mode demonstrated dose-dependent differences in the degree of cardiac dysfuction. We conclude that the observed clinical severity of the cTnT Δ160E mutation is caused by a combination of direct sarcomeric disruption coupled to a profound disregulation of Ca2+ homeostasis at the cellular level that results in a unique and highly progressive pattern of ventricular remodeling. PMID:23434821

  14. Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes

    PubMed Central

    Buikema, Jan Willem; Mady, Ahmed S.; Mittal, Nikhil V.; Atmanli, Ayhan; Caron, Leslie; Doevendans, Pieter A.; Sluijter, Joost P. G.; Domian, Ibrahim J.

    2013-01-01

    In mammals, cardiac development proceeds from the formation of the linear heart tube, through complex looping and septation, all the while increasing in mass to provide the oxygen delivery demands of embryonic growth. The developing heart must orchestrate regional differences in cardiomyocyte proliferation to control cardiac morphogenesis. During ventricular wall formation, the compact myocardium proliferates more vigorously than the trabecular myocardium, but the mechanisms controlling such regional differences among cardiomyocyte populations are not understood. Control of definitive cardiomyocyte proliferation is of great importance for application to regenerative cell-based therapies. We have used murine and human pluripotent stem cell systems to demonstrate that, during in vitro cellular differentiation, early ventricular cardiac myocytes display a robust proliferative response to β-catenin-mediated signaling and conversely accelerate differentiation in response to inhibition of this pathway. Using gain- and loss-of-function murine genetic models, we show that β-catenin controls ventricular myocyte proliferation during development and the perinatal period. We further demonstrate that the differential activation of the Wnt/β-catenin signaling pathway accounts for the observed differences in the proliferation rates of the compact versus the trabecular myocardium during normal cardiac development. Collectively, these results provide a mechanistic explanation for the differences in localized proliferation rates of cardiac myocytes and point to a practical method for the generation of the large numbers of stem cell-derived cardiac myocytes necessary for clinical applications. PMID:24026118

  15. Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes.

    PubMed

    Buikema, Jan Willem; Mady, Ahmed S; Mittal, Nikhil V; Atmanli, Ayhan; Caron, Leslie; Doevendans, Pieter A; Sluijter, Joost P G; Domian, Ibrahim J

    2013-10-01

    In mammals, cardiac development proceeds from the formation of the linear heart tube, through complex looping and septation, all the while increasing in mass to provide the oxygen delivery demands of embryonic growth. The developing heart must orchestrate regional differences in cardiomyocyte proliferation to control cardiac morphogenesis. During ventricular wall formation, the compact myocardium proliferates more vigorously than the trabecular myocardium, but the mechanisms controlling such regional differences among cardiomyocyte populations are not understood. Control of definitive cardiomyocyte proliferation is of great importance for application to regenerative cell-based therapies. We have used murine and human pluripotent stem cell systems to demonstrate that, during in vitro cellular differentiation, early ventricular cardiac myocytes display a robust proliferative response to β-catenin-mediated signaling and conversely accelerate differentiation in response to inhibition of this pathway. Using gain- and loss-of-function murine genetic models, we show that β-catenin controls ventricular myocyte proliferation during development and the perinatal period. We further demonstrate that the differential activation of the Wnt/β-catenin signaling pathway accounts for the observed differences in the proliferation rates of the compact versus the trabecular myocardium during normal cardiac development. Collectively, these results provide a mechanistic explanation for the differences in localized proliferation rates of cardiac myocytes and point to a practical method for the generation of the large numbers of stem cell-derived cardiac myocytes necessary for clinical applications.

  16. [Ultrastructural features of femoral artery myocytes during experimental leg lengthening].

    PubMed

    Ir'ianov, Iu M; Migalkin, N S; Kniazeva, L M

    1984-11-01

    Femoral arteries in mature dogs have been studied electron microscopically at various stages of the shin lengthening performed after G. A. Ilizarov method. Certain ultrastructural signs demonstrating biosynthetic and secretory activation of myocytes directed to intensification of elastogenetic processes have been revealed. Immature elastic fibers are forming around myocytes as aggregations of microfibrils, later accumulations of amorphous material appear in them. On the 28th, 42d days of distraction, hyperproduction of intra- and extracellular vesicles is noted, as well as that of intracellular matrix. Cytoplasmic islets of myocytes and intercellular connections increase in number. In the subintimal layer, of the tunica media and at its border with adventitium, longitudinally situating fasciculi of smooth muscle cells are forming. The myocytic ultrastructural peculiarities noted, the new formations of elastic elements depend, at early stages of the experiment, on changes of regional hemodynamics, and at advanced stages - also on the effect of longitudinally acting tension stress.

  17. Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-alpha.

    PubMed

    Petkova-Kirova, Polina S; Gursoy, Erdal; Mehdi, Haider; McTiernan, Charles F; London, Barry; Salama, Guy

    2006-05-01

    Mice that overexpress the inflammatory cytokine tumor necrosis factor-alpha in the heart (TNF mice) develop heart failure characterized by atrial and ventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias, and increased mortality (males > females). Abnormalities in Ca2+ handling, prolonged action potential duration (APD), calcium alternans, and reentrant atrial and ventricular arrhythmias were previously observed with the use of optical mapping of perfused hearts from TNF mice. We therefore tested whether altered voltage-gated outward K+ and/or inward Ca2+ currents contribute to the altered action potential characteristics and the increased vulnerability to arrhythmias. Whole cell voltage-clamp recordings of K+ currents from left ventricular myocytes of TNF mice revealed an approximately 50% decrease in the rapidly activating, rapidly inactivating transient outward K+ current Ito and in the rapidly activating, slowly inactivating delayed rectifier current IK,slow1, an approximately 25% decrease in the rapidly activating, slowly inactivating delayed rectifier current IK,slow2, and no significant change in the steady-state current Iss compared with controls. Peak amplitudes and inactivation kinetics of the L-type Ca2+ current ICa,L were not altered. Western blot analyses revealed a reduction in the proteins underlying Kv4.2, Kv4.3, and Kv1.5. Thus decreased K+ channel expression is largely responsible for the prolonged APD in the TNF mice and may, along with abnormalities in Ca2+ handling, contribute to arrhythmias.

  18. M1 muscarinic receptors increase calcium current and phosphoinositide turnover in guinea-pig ventricular cardiocytes.

    PubMed Central

    Gallo, M P; Alloatti, G; Eva, C; Oberto, A; Levi, R C

    1993-01-01

    1. Physiological and molecular evidence for the presence and functional role of M1 muscarinic cholinergic receptors (mAChRs) in adult guinea-pig ventricular cells is presented. 2. Whole-cell clamp measurements of the L-type calcium current (ICa) in isolated myocytes were performed. Caesium was used to suppress potassium currents. ICa was increased by the muscarinic agonist carbachol in cells pretreated with pertussis toxin which blocked the M2 mAChR-triggered cascade of intracellular signalling, while it was not changed in untreated cells. 3. If the M2-mediated regulation of ICa was blocked by directly saturating the cell with cyclic adenosine monophosphate (cAMP) through the patch pipette, application of carbachol induced a further small increase of the current above the level reached after cAMP perfusion. This increase was more pronounced in cells pretreated with pertussis toxin. 4. The carbachol-induced increase of ICa was blocked by the selective M1 mAChR antagonist pirenzepine. 5. The application of high concentrations of carbachol increased the accumulation of [3H]inositol monophosphate up to 240% above control levels. This increase was reduced by application of pirenzepine. 6. The expression of M1 receptor mRNA in ventricular cardiocytes was shown by reverse transcriptase-polymerase chain reaction. 7. These results suggest that M1 mAChR regulation of ICa can be a component of the paradoxical positive inotropism induced by high concentrations of muscarinic agonists. Images Fig. 11 PMID:8120813

  19. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.

    PubMed Central

    Berlin, J R; Bassani, J W; Bers, D M

    1994-01-01

    Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires

  20. Benchmarking electrophysiological models of human atrial myocytes

    PubMed Central

    Wilhelms, Mathias; Hettmann, Hanne; Maleckar, Mary M.; Koivumäki, Jussi T.; Dössel, Olaf; Seemann, Gunnar

    2013-01-01

    Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits. PMID:23316167

  1. Isolated ventricular noncompaction.

    PubMed

    Okçün Baniş; Tekin, Abdullah; Oz, Büge; Küçükoğlu, M Serdar

    2004-04-01

    Isolated ventricular noncompaction of myocardium is a rare congenital disease due to an arrest of myocardial morphogenesis during foetal development. It is characterized by a thin compacted epicardial and an extremely thickened endocardial layer with prominent trabeculations and deep intertrabecular recesses. The persistence of myocardial noncompaction is usually an associated anomaly in patients with congenital left or right ventricular outflow tract obstruction. However, isolated noncompaction of myocardium is not associated with any factors that would explain it apart from the foetal arrest of compaction of the ventricular myocardium. The disease results in systolic and diastolic ventricular dysfunction, systemic embolism and ventricular arrhythmias. We describe a case of isolated noncompaction of the ventricular myocardium in a 20-year-old man who presented initially with ventricular tachycardia.

  2. Ventricular fiber optimization utilizing the branching structure.

    PubMed

    Washio, Takumi; Yoneda, Kazunori; Okada, Jun-Ichi; Kariya, Taro; Sugiura, Seiryo; Hisada, Toshiaki

    2016-07-01

    In this paper, we propose an algorithm that optimizes the ventricular fiber structure of the human heart. A number of histological studies and diffusion tensor magnetic resonance imaging analyses have revealed that the myocardial fiber forms a right-handed helix at the endocardium. However, the fiber formation changes its orientation as a function of transmural depth, becoming a left-handed helix at the epicardium. To determine how nature can construct such a structure, which obtains surprising pumping performance, we introduce macroscopic modeling of the branching structure of cardiac myocytes in our finite element ventricular model and utilize this in an optimization process. We put a set of multidirectional fibers around a central fiber orientation at each point of the ventricle walls and simulate heartbeats by generating contraction forces along each of these directions. We examine two optimization processes using the workloads or impulses measured in these directions to update the central fiber orientation. Both processes improve the pumping performance towards an optimal value within several tens of heartbeats, starting from an almost-flat fiber orientation. However, compared with the workload optimization, the impulse optimization produces better agreement with experimental studies on transmural changes of fiber helix angle, streamline patterns of characteristic helical structures, and temporal changes in strain. Furthermore, the impulse optimization is robust under geometrical changes of the heart and tends to homogenize various mechanical factors such as the stretch and stretch rate along the fiber orientation, the contraction force, and energy consumption. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    SciTech Connect

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  4. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes

    PubMed Central

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheehy, Sean P; Goss, Josue A

    2015-01-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal–nuclear–chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations. PMID:25908635

  5. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.

    PubMed

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheehy, Sean P; Goss, Josue A; Parker, Kevin Kit

    2015-11-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal-nuclear-chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations.

  6. The evolutionary origin of bilaterian smooth and striated myocytes

    PubMed Central

    Brunet, Thibaut; Fischer, Antje HL; Steinmetz, Patrick RH; Lauri, Antonella; Bertucci, Paola; Arendt, Detlev

    2016-01-01

    The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly – for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution. DOI: http://dx.doi.org/10.7554/eLife.19607.001 PMID:27906129

  7. Induced overexpression of Na+/Ca2+ exchanger transgene: altered myocyte contractility, [Ca2+]i transients, SR Ca2+ contents, and action potential duration.

    PubMed

    Wang, JuFang; Chan, Tung O; Zhang, Xue-Qian; Gao, Erhe; Song, Jianliang; Koch, Walter J; Feldman, Arthur M; Cheung, Joseph Y

    2009-08-01

    We have produced mice in which expression of the rat cardiac Na(+)/Ca(2+) exchanger (NCX1) transgene was switched on when doxycycline was removed from the feed at 5 wk. At 8 to 10 wk, NCX1 expression in induced (Ind) mouse hearts was 2.5-fold higher but protein levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase, alpha(1)- and alpha(2)-subunits of Na(+)-K(+)-ATPase, phospholamban, ryanodine receptor, calsequestrin, and unphosphorylated and phosphorylated phospholemman were unchanged compared with wild-type (WT) or noninduced (non-Ind) hearts. There was no cellular hypertrophy since WT, non-Ind, and Ind myocytes had similar whole cell membrane capacitance. In Ind myocytes, NCX1 current amplitude was approximately 42% higher, L-type Ca(2+) current amplitude was unchanged, and action potential duration was prolonged compared with WT or non-Ind myocytes. Contraction and intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitudes in Ind myocytes were lower at 0.6, not different at 1.8, and higher at 5.0 mM extracellular Ca(2+) concentration ([Ca(2+)](o)) compared with WT or non-Ind myocytes. Despite similar Ca(2+) current amplitude and sarcoplasmic reticulum (SR) Ca(2+) uptake, SR Ca(2+) content at 5.0 mM [Ca(2+)](o) was significantly higher in Ind compared with non-Ind myocytes, indicating that NCX1 directly contributed to SR Ca(2+) loading. Echocardiography demonstrated that heart rate, left ventricular mass, ejection fraction, stroke volume, and cardiac output were similar among the three groups of animals. In vivo close-chest catheterization demonstrated similar contractility and relaxation among the three groups of mice, both at baseline and after stimulation with isoproterenol. We conclude that induced expression of NCX1 transgene resulted in altered [Ca(2+)](i) homeostasis, myocyte contractility, and action potential morphology. In addition, heart failure did not occur 3 to 5 wk after NCX1 transgene was induced to be expressed at levels found in

  8. Stochastic initiation and termination of calcium-mediated triggered activity in cardiac myocytes

    PubMed Central

    Song, Zhen; Qu, Zhilin; Karma, Alain

    2017-01-01

    Cardiac myocytes normally initiate action potentials in response to a current stimulus that depolarizes the membrane above an excitation threshold. Aberrant excitation can also occur due to spontaneous calcium (Ca2+) release (SCR) from intracellular stores after the end of a preceding action potential. SCR drives the Na+/Ca2+ exchange current inducing a “delayed afterdepolarization” that can in turn trigger an action potential if the excitation threshold is reached. This “triggered activity” is known to cause arrhythmias, but how it is initiated and terminated is not understood. Using computer simulations of a ventricular myocyte model, we show that initiation and termination are inherently random events. We determine the probability of those events from statistical measurements of the number of beats before initiation and before termination, respectively, which follow geometric distributions. Moreover, we elucidate the origin of randomness by a statistical analysis of SCR events, which do not follow a Poisson process observed in other eukaryotic cells. Due to synchronization of Ca2+ releases during the action potential upstroke, waiting times of SCR events after the upstroke are narrowly distributed, whereas SCR amplitudes follow a broad normal distribution with a width determined by fluctuations in the number of independent Ca2+ wave foci. This distribution enables us to compute the probabilities of initiation and termination of bursts of triggered activity that are maintained by a positive feedback between the action potential upstroke and SCR. Our results establish a theoretical framework for interpreting complex and varied manifestations of triggered activity relevant to cardiac arrhythmias. PMID:28049836

  9. Effects of intracellular calcium on sodium current density in cultured neonatal rat cardiac myocytes.

    PubMed Central

    Chiamvimonvat, N; Kargacin, M E; Clark, R B; Duff, H J

    1995-01-01

    1. Na+ channel mRNA levels in the heart can be modulated by changes in intracellular Ca2+ ([Ca2+]i). We have investigated whether this regulation of Na+ channel biosynthesis by cytosolic Ca2+ translates into functional Na+ channels that can be detected electrophysiologically. 2. Whole-cell Na+ currents (INa) were recorded using patch-clamp techniques from single ventricular myocytes isolated from neonatal rats and maintained in tissue culture for 24 h. Na+ current density, measured at a membrane potential of -10 mV, was significantly decreased in the cells which were exposed for 24 h to culture medium containing 10 mM of both external Ca2+ and K+ in order to raise [Ca2+]i compared with control cells which were maintained in culture medium containing 2 and 5 mM of Ca2+ and K+, respectively. In contrast, Na+ current density (at -10 mV) was significantly increased in cells exposed for 24 h to 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetraacetoxymethyl ester (BAPTA AM; a cell membrane-permeable Ca2+ chelator) which lowered the average [Ca2+]i compared with control. 3. Changes in current density were not associated with changes in the voltage dependence of activation and inactivation of INa. There were no changes in single-channel conductances. 4. It is concluded that Na+ current density in neonatal rat cardiac myocytes is modulated by [Ca2+]i. The findings suggest that the differences in current density are attributable to a change in Na+ channel numbers rather than to changes in single-channel conductance or gating. These changes are consistent with the previously documented modulation of Na+ channel biosynthesis by cytosolic Ca2+. PMID:7650605

  10. Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes.

    PubMed

    Seidlmayer, Lea K; Gomez-Garcia, Maria R; Blatter, Lothar A; Pavlov, Evgeny; Dedkova, Elena N

    2012-05-01

    Mitochondrial dysfunction caused by excessive Ca2+ accumulation is a major contributor to cardiac cell and tissue damage during myocardial infarction and ischemia-reperfusion injury (IRI). At the molecular level, mitochondrial dysfunction is induced by Ca2+-dependent opening of the mitochondrial permeability transition pore (mPTP) in the inner mitochondrial membrane, which leads to the dissipation of mitochondrial membrane potential (ΔΨm), disruption of adenosine triphosphate production, and ultimately cell death. Although the role of Ca2+ for induction of mPTP opening is established, the exact molecular mechanism of this process is not understood. The aim of the present study was to test the hypothesis that the adverse effect of mitochondrial Ca2+ accumulation is mediated by its interaction with inorganic polyphosphate (polyP), a polymer of orthophosphates linked by phosphoanhydride bonds. We found that cardiac mitochondria contained significant amounts (280±60 pmol/mg of protein) of short-chain polyP with an average length of 25 orthophosphates. To test the role of polyP for mPTP activity, we investigated kinetics of Ca2+ uptake and release, ΔΨm and Ca2+-induced mPTP opening in polyP-depleted mitochondria. polyP depletion was achieved by mitochondria-targeted expression of a polyP-hydrolyzing enzyme. Depletion of polyP in mitochondria of rabbit ventricular myocytes led to significant inhibition of mPTP opening without affecting mitochondrial Ca2+ concentration by itself. This effect was observed when mitochondrial Ca2+ uptake was stimulated by increasing cytosolic [Ca2+] in permeabilized myocytes mimicking mitochondrial Ca2+ overload observed during IRI. Our findings suggest that inorganic polyP is a previously unrecognized major activator of mPTP. We propose that the adverse effect of polyphosphate might be caused by its ability to form stable complexes with Ca2+ and directly contribute to inner mitochondrial membrane permeabilization.

  11. The pacemaker current in cardiac Purkinje myocytes

    PubMed Central

    1995-01-01

    It is generally assumed that in cardiac Purkinje fibers the hyperpolarization activated inward current i(f) underlies the pacemaker potential. Because some findings are at odds with this interpretation, we used the whole cell patch clamp method to study the currents in the voltage range of diastolic depolarization in single canine Purkinje myocytes, a preparation where many confounding limitations can be avoided. In Tyrode solution ([K+]o = 5.4 mM), hyperpolarizing steps from Vh = -50 mV resulted in a time-dependent inwardly increasing current in the voltage range of diastolic depolarization. This time- dependent current (iKdd) appeared around -60 mV and reversed near EK. Small superimposed hyperpolarizing steps (5 mV) applied during the voltage clamp step showed that the slope conductance decreases during the development of this time-dependent current. Decreasing [K+]o from 5.4 to 2.7 mM shifted the reversal potential to a more negative value, near the corresponding EK. Increasing [K+]o to 10.8 mM almost abolished iKdd. Cs+ (2 mM) markedly reduced or blocked the time-dependent current at potentials positive and negative to EK. Ba2+ (4 mM) abolished the time-dependent current in its usual range of potentials and unmasked another time-dependent current (presumably i(f)) with a threshold of approximately -90 mV (> 20 mV negative to that of the time-dependent current in Tyrode solution). During more negative steps, i(f) increased in size and did not reverse. During i(f) the slope conductance measured with small (8-10 mV) superimposed clamp steps increased. High [K+]o (10.8 mM) markedly increased and Cs+ (2 mM) blocked i(f). We conclude that: (a) in the absence of Ba2+, a time-dependent current does reverse near EK and its reversal is unrelated to K+ depletion; (b) the slope conductance of that time-dependent current decreases in the absence of K+ depletion at potentials positive to EK where inactivation of iK1 is unlikely to occur. (c) Ba2+ blocks this time

  12. Testosterone induces an intracellular calcium increase by a nongenomic mechanism in cultured rat cardiac myocytes.

    PubMed

    Vicencio, Jose Miguel; Ibarra, Cristian; Estrada, Manuel; Chiong, Mario; Soto, Dagoberto; Parra, Valentina; Diaz-Araya, Guillermo; Jaimovich, Enrique; Lavandero, Sergio

    2006-03-01

    Androgens are associated with important effects on the heart, such as hypertrophy or apoptosis. These responses involve the intracellular androgen receptor. However, the mechanisms of how androgens activate several membrane signaling pathways are not fully elucidated. We have investigated the effect of testosterone on intracellular calcium in cultured rat cardiac myocytes. Using fluo3-AM and epifluorescence microscopy, we found that exposure to testosterone rapidly (1-7 min) led to an increase of intracellular Ca2+, an effect that persisted in the absence of external Ca2+. Immunocytochemical analysis showed that these effects occurred before translocation of the intracellular androgen receptor to the perinuclear zone. Pretreatment of the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethylester and thapsigargin blocked this response, suggesting the involvement of internal Ca2+ stores. U-73122, an inhibitor of phospholipase C, and xestospongin C, an inhibitor of inositol 1,4,5-trisphosphate receptor, abolished the Ca2+ signal. The rise in intracellular Ca2+ was not inhibited by cyproterone, an antagonist of intracellular androgen receptor. Moreover, the cell impermeant testosterone-BSA complex also produced the Ca2+ signal, indicating its origin in the plasma membrane. This effect was observed in cultured neonatal and adult rat cardiac myocytes. Pertussis toxin and the adenoviral transduction of beta- adrenergic receptor kinase carboxy terminal peptide, a peptide inhibitor of betagamma-subunits of G protein, abolished the testosterone-induced Ca2+ release. In summary, this is the first study of rapid, nongenomic intracellular Ca2+ signaling of testosterone in cardiac myocytes. Using various inhibitors and testosterone-BSA complex, the mechanism for the rapid, testosterone-induced increase in intracellular Ca2+ is through activation of a plasma membrane receptor associated with a Pertussis toxin-sensitive G protein-phospholipase C

  13. Nitric oxide regulates the calcium current in isolated human atrial myocytes.

    PubMed Central

    Kirstein, M; Rivet-Bastide, M; Hatem, S; Bénardeau, A; Mercadier, J J; Fischmeister, R

    1995-01-01

    Cardiac Ca2+ current (ICa) was shown to be regulated by cGMP in a number of different species. Recently, we found that the NO-donor SIN-1 (3-morpholino-sydnonimine) exerts a dual regulation of ICa in frog ventricular myocytes via an accumulation of cGMP. To examine whether NO also regulates Ca2+ channels in human heart, we investigated the effects of SIN-1 on ICa in isolated human atrial myocytes. An extracellular application of SIN-1 produced a profound stimulatory effect on basal ICa at concentrations > 1 pM. Indeed, 10 pM SIN-1 induced a approximately 35% increase in ICa. The stimulatory effect of SIN-1 was maximal at 1 nM (approximately 2-fold increase in ICa) and was comparable with the effect of a saturating concentration (1 microM) of isoprenaline, a beta-adrenergic agonist. Increasing the concentration of SIN-1 to 1-100 microM reduced the stimulatory effect in two thirds of the cells. The stimulatory effect of SIN-1 was not mimicked by SIN-1C, the cleavage product of SIN-1 produced after liberation of NO. This suggests that NO mediates the effects of SIN-1 on ICa. Because, in frog heart, the stimulatory effect of SIN-1 on ICa was found to be due to cGMP-induced inhibition of cGMP-inhibited phosphodiesterase (cGI-PDE), we compared the effects of SIN-1 and milrinone, a cGI-PDE selective inhibitor, on ICa in human. Milrinone (10 microM) induced a strong stimulation of ICa (approximately 150%), demonstrating that cGI-PDE controls the amplitude of basal ICa in this tissue. In the presence of milrinone, SIN-1 (0.1-1 nM) had no stimulatory effect on ICa, suggesting that the effects of SIN-1 and MIL were not additive. We conclude that NO may stimulate ICa in human atrial myocytes via inhibition of the cGI-PDE. Images PMID:7860763

  14. Myomaker mediates fusion of fast myocytes in zebrafish embryos.

    PubMed

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles

    2014-09-05

    Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  15. Myocyte-specific M-CAT and MEF-1 elements regulate G-protein gamma 3 gene (gamma3) expression in cardiac myocytes.

    PubMed

    McWhinney, Charlene; Robishaw, Janet D

    2008-07-01

    Little is known regarding the mechanisms that control the expression of G-protein alpha, beta, and gamma subtypes. We have previously shown that the G-protein gamma(3) gene is expressed in the heart, brain, lung, spleen, kidney, muscle, and testis in mice. We have also reported that the G-protein gamma(3) subunit is expressed in rat cardiac myocytes, but not in cardiac fibroblasts. Other studies have shown that the gamma(3) subunit couples to the angiotensin A1A receptor in portal vein myocytes, and has been shown to mediate beta-adrenergic desensitization in cardiac myocytes treated with atorvastatin. In the present study, we evaluated G-protein gamma(3) promoter-luciferase reporter constructs in primary myocytes to identify key regulatory promoter regions. We identified two important regions of the promoter (upstream promoter region [UPR] and downstream promoter region [DPR]), which are required for expression in cardiac myocytes. We observed that removal of 48 bp in the UPR diminished gene transcription by 75%, and that the UPR contains consensus elements for myocyte-specific M-CAT and myocyte enhancer factor 1 (MEF-1) elements. The UPR and DPR share transcription factor elements for myocyte-specific M-CAT element. We observed that cardiac myocyte proteins bind to gamma(3) oligonucleotides containing transcription factor elements for myocyte-specific M-CAT and MEF-1. Myocyte-specific M-CAT proteins were supershifted with transcriptional enhancer factor-1 (TEF-1) antibodies binding to the gamma(3) M-CAT element, which is in agreement with reports showing that the M-CAT element binds the TEF-1 family of transcription factors. The 150 bp DPR contains three M-CAT elements, an INR element, an upstream stimulatory factor 1 element, and the transcription start site. We have shown that myocyte gamma(3) gene expression is regulated by myocyte-specific M-CAT and MEF-1 elements.

  16. Genome-wide association identifies a deletion in the 3’ untranslated region of Striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy

    PubMed Central

    Meurs, Kathryn M.; Mauceli, Evan; Lahmers, Sunshine; Acland, Gregory M.; White, Stephen N.; Lindblad-Toh, Kerstin

    2010-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a familial cardiac disease characterized by ventricular arrhythmias and sudden cardiac death. It is most frequently inherited as an autosomal dominant trait with incomplete and age-related penetrance and variable clinical expression. The human disease is most commonly associated with a causative mutation in one of several genes encoding desmosomal proteins. We have previously described a spontaneous canine model of ARVC in the boxer dog. We phenotyped adult boxer dogs for ARVC by performing physical examination, echocardiogram and ambulatory electrocardiogram. Genome-wide association using the canine 50k SNP array identified several regions of association, of which the strongest resided on chromosome 17. Fine-mapping and direct DNA sequencing identified an eight base pair deletion in the 3’ untranslated region (UTR) of the striatin (STRN) gene on chromosome 17 in association with ARVC in the boxer dog. Evaluation of the secondary structure of the 3’ UTR demonstrated that the deletion affects a stem loop structure of the mRNA and expression analysis identified a reduction in striatin mRNA. Dogs that were homozygous for the deletion had a more severe form of disease based on a significantly higher number of ventricular premature complexes. Immunofluorescence studies localized striatin to the intercalated disc region of the cardiac myocyte and co-localized it to three desmosomal proteins, plakophilin- 2, plakoglobin and desmoplakin, all involved in the pathogenesis of ARVC in human beings. We suggest that striatin may serve as a novel candidate gene for human ARVC. PMID:20596727

  17. Left ventricular hypertrophy: an initial response to myocardial injury.

    PubMed

    Francis, G S; McDonald, K M

    1992-06-04

    The prevailing wisdom generally has been that the failing heart hypertrophies in response to increased wall stress. The increase in myocardial mass observed in heart failure is therefore a relatively late compensatory event geared to normalize wall stress. Although this is undoubtedly true, especially for heart failure resulting from a large anterior myocardial infarction accompanied by rapid left ventricular expansion, it is possible that an important form of hypertrophy occurs much earlier as an initial response to myocardial injury. One can hypothesize that the initial response to injury is a nonspecific phenotypic alteration of the cardiac myocyte to one of growth and development. Such changes may be driven by both trophic and mechanical forces and may be important in altering the architecture of the myocardial cell and surrounding cardiac interstitium. Preliminary data from a variety of models support the concept that neuroendocrine activity is an important component in the ventricular remodeling process, and that pharmacologic interventions designed to block systemic and tissue neuroendocrine activity may prevent excessive cardiac enlargement and its ultimate consequences. Because this concept has important implications for preventive cardiology, the results of several prevention trials, including the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS), Studies of Left Ventricular Dysfunction (SOLVD), and Survival and Ventricular Enlargement (SAVE) are awaited eagerly.

  18. Right and left ventricular function and myocardial scarring in adult patients with sickle cell disease: a comprehensive magnetic resonance assessment of hepatic and myocardial iron overload

    PubMed Central

    2013-01-01

    Background Patients with Sickle cell disease (SCD) who receive regular transfusions are at risk for developing cardiac toxicity from iron overload. The aim of this study was to assess right and left cardiac volumes and function, late gadolinium enhancement (LGE) and iron deposits in patients with SCD using CMR, correlating these values with transfusion burden, ferritin and hemoglobin levels. Methods Thirty patients with SCD older than 20 years of age were studied in a 1.5 T scanner and compared to age- and sex-matched normal controls. Patients underwent analysis of biventricular volumes and function, LGE and T2* assessment of the liver and heart. Results When compared to controls, patients with SCD presented higher left ventricular (LV) volumes with decreased ejection fraction (EF) with an increase in stroke volume (SV) and LV hypertrophy. The right ventricle (RV) also presented with a decreased EF and hypertrophy, with an increased end-systolic volume. Although twenty-six patients had increased liver iron concentrations (median liver iron concentration value was 11.83 ± 9.66 mg/g), only one patient demonstrated an abnormal heart T2* < 20 msec. Only four patients (13%) LGE, with only one patient with an ischemic pattern. Conclusions Abnormal heart iron levels and myocardial scars are not a common finding in SCD despite increased liver iron overload. The significantly different ventricular function seen in SCD compared to normal suggests the changes in RV and LV function may not be due to the anemia alone. Future studies are necessary to confirm this association. PMID:24050721

  19. Photoelectric recording of mechanical responses of cardiac myocytes.

    PubMed

    Meyer, R; Wiemer, J; Dembski, J; Haas, H G

    1987-04-01

    A method to monitor contraction of isolated myocytes by transmicroscopic photometry is illustrated. Two photodiodes are mounted inside an inverse microscope used for visual control of a cell. Illumination of one diode varies in proportion to changes in cell length. The contraction signal is amplified in a comparator circuit. Spatial resolution of the device is in the order of 1 micron which corresponds to about 5% of cell shortening in the fully activated state of contraction. The method was tested on isolated myocytes from guinea-pig ventricle. Optical records of contraction in response to action potentials or during voltage clamp compare well with the contractile behavior of multicellular preparations.

  20. Statistical Metamodeling and Sequential Design of Computer Experiments to Model Glyco-Altered Gating of Sodium Channels in Cardiac Myocytes.

    PubMed

    Du, Dongping; Yang, Hui; Ednie, Andrew R; Bennett, Eric S

    2016-09-01

    Glycan structures account for up to 35% of the mass of cardiac sodium ( Nav ) channels. To question whether and how reduced sialylation affects Nav activity and cardiac electrical signaling, we conducted a series of in vitro experiments on ventricular apex myocytes under two different glycosylation conditions, reduced protein sialylation (ST3Gal4(-/-)) and full glycosylation (control). Although aberrant electrical signaling is observed in reduced sialylation, realizing a better understanding of mechanistic details of pathological variations in INa and AP is difficult without performing in silico studies. However, computer model of Nav channels and cardiac myocytes involves greater levels of complexity, e.g., high-dimensional parameter space, nonlinear and nonconvex equations. Traditional linear and nonlinear optimization methods have encountered many difficulties for model calibration. This paper presents a new statistical metamodeling approach for efficient computer experiments and optimization of Nav models. First, we utilize a fractional factorial design to identify control variables from the large set of model parameters, thereby reducing the dimensionality of parametric space. Further, we develop the Gaussian process model as a surrogate of expensive and time-consuming computer models and then identify the next best design point that yields the maximal probability of improvement. This process iterates until convergence, and the performance is evaluated and validated with real-world experimental data. Experimental results show the proposed algorithm achieves superior performance in modeling the kinetics of Nav channels under a variety of glycosylation conditions. As a result, in silico models provide a better understanding of glyco-altered mechanistic details in state transitions and distributions of Nav channels. Notably, ST3Gal4(-/-) myocytes are shown to have higher probabilities accumulated in intermediate inactivation during the repolarization and yield a

  1. Electrophysiology of Heart Failure Using a Rabbit Model: From the Failing Myocyte to Ventricular Fibrillation

    PubMed Central

    Liu, Michael; Qu, Zhilin; Weiss, James N.; Ennis, Daniel B.; Klug, William S.; Garfinkel, Alan

    2016-01-01

    Heart failure is a leading cause of death, yet its underlying electrophysiological (EP) mechanisms are not well understood. In this study, we use a multiscale approach to analyze a model of heart failure and connect its results to features of the electrocardiogram (ECG). The heart failure model is derived by modifying a previously validated electrophysiology model for a healthy rabbit heart. Specifically, in accordance with the heart failure literature, we modified the cell EP by changing both membrane currents and calcium handling. At the tissue level, we modeled the increased gap junction lateralization and lower conduction velocity due to downregulation of Connexin 43. At the biventricular level, we reduced the apex-to-base and transmural gradients of action potential duration (APD). The failing cell model was first validated by reproducing the longer action potential, slower and lower calcium transient, and earlier alternans characteristic of heart failure EP. Subsequently, we compared the electrical wave propagation in one dimensional cables of healthy and failing cells. The validated cell model was then used to simulate the EP of heart failure in an anatomically accurate biventricular rabbit model. As pacing cycle length decreases, both the normal and failing heart develop T-wave alternans, but only the failing heart shows QRS alternans (although moderate) at rapid pacing. Moreover, T-wave alternans is significantly more pronounced in the failing heart. At rapid pacing, APD maps show areas of conduction block in the failing heart. Finally, accelerated pacing initiated wave reentry and breakup in the failing heart. Further, the onset of VF was not observed with an upregulation of SERCA, a potential drug therapy, using the same protocol. The changes introduced at the cell and tissue level have increased the failing heart’s susceptibility to dynamic instabilities and arrhythmias under rapid pacing. However, the observed increase in arrhythmogenic potential is not due to a steepening of the restitution curve (not present in our model), but rather to a novel blocking mechanism. PMID:27336310

  2. H-89 inhibits transient outward and inward rectifier potassium currents in isolated rat ventricular myocytes

    PubMed Central

    Pearman, Charles; Kent, William; Bracken, Nicolas; Hussain, Munir

    2006-01-01

    Voltage clamp was used to investigate the effects of N-[2-p-bromo-cinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), a potent inhibitor of PKA, on transient outward K+ current (Ito) and inward rectifying K+ current (IK1) in rat cardiac muscle. Initial experiments, performed using descending voltage ramps, showed that H-89 inhibited both the outward and inward ramp currents in a concentration-dependent manner at concentrations between 5 and 60 μmol l−1. A similar degree of inhibition was observed when Ito and IK1 were recorded using square wave depolarising and hyperpolarising voltage steps, respectively. The IC50 was 35.8 μmol l−1 for Ito and 27.8 μmol l−1 for IK1 compared to 5.4 μmol l−1 for L-type Ca2+ current (ICa). The Hill coefficients for Ito, IK1 and ICa were −1.97, −1.60 and −1.21, respectively. In addition to inhibiting Ito amplitude, H-89 also accelerated the time to peak and the rate of voltage-dependent inactivation so that the time course of Ito was abbreviated. Paired-pulse protocols were performed to study the effects of H-89 on steady-state activation and inactivation as well as recovery from voltage-dependent inactivation. H-89 produced a concentration-dependent rightward shift in voltage-dependent activation but had no significant effect on steady-state inactivation. Recovery from voltage-dependent inactivation was delayed, although this was only visible at the highest concentration (60 μmol l−1) used. In experiments investigating the effects of elevated cyclic AMP, the β-adrenergic agonist isoprenaline and the phosphatase inhibitor calyculin A had no major effects on Ito or IK1. Data suggest that the effects of H-89 on K+ currents are more complex than simple inhibition of PKA-mediated phosphorylation. PMID:16799649

  3. Quantitative Decomposition of Dynamics of Mathematical Cell Models: Method and Application to Ventricular Myocyte Models.

    PubMed

    Shimayoshi, Takao; Cha, Chae Young; Amano, Akira

    2015-01-01

    Mathematical cell models are effective tools to understand cellular physiological functions precisely. For detailed analysis of model dynamics in order to investigate how much each component affects cellular behaviour, mathematical approaches are essential. This article presents a numerical analysis technique, which is applicable to any complicated cell model formulated as a system of ordinary differential equations, to quantitatively evaluate contributions of respective model components to the model dynamics in the intact situation. The present technique employs a novel mathematical index for decomposed dynamics with respect to each differential variable, along with a concept named instantaneous equilibrium point, which represents the trend of a model variable at some instant. This article also illustrates applications of the method to comprehensive myocardial cell models for analysing insights into the mechanisms of action potential generation and calcium transient. The analysis results exhibit quantitative contributions of individual channel gating mechanisms and ion exchanger activities to membrane repolarization and of calcium fluxes and buffers to raising and descending of the cytosolic calcium level. These analyses quantitatively explicate principle of the model, which leads to a better understanding of cellular dynamics.

  4. Nanomaterials for Cardiac Myocyte Tissue Engineering

    PubMed Central

    Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A.

    2016-01-01

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials. PMID:28335261

  5. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family

    PubMed Central

    Porrello, Enzo R.; Mahmoud, Ahmed I.; Simpson, Emma; Johnson, Brett A.; Grinsfelder, David; Canseco, Diana; Mammen, Pradeep P.; Rothermel, Beverly A.; Olson, Eric N.; Sadek, Hesham A.

    2013-01-01

    We recently identified a brief time period during postnatal development when the mammalian heart retains significant regenerative potential after amputation of the ventricular apex. However, one major unresolved question is whether the neonatal mouse heart can also regenerate in response to myocardial ischemia, the most common antecedent of heart failure in humans. Here, we induced ischemic myocardial infarction (MI) in 1-d-old mice and found that this results in extensive myocardial necrosis and systolic dysfunction. Remarkably, the neonatal heart mounted a robust regenerative response, through proliferation of preexisting cardiomyocytes, resulting in full functional recovery within 21 d. Moreover, we show that the miR-15 family of microRNAs modulates neonatal heart regeneration through inhibition of postnatal cardiomyocyte proliferation. Finally, we demonstrate that inhibition of the miR-15 family from an early postnatal age until adulthood increases myocyte proliferation in the adult heart and improves left ventricular systolic function after adult MI. We conclude that the neonatal mammalian heart can regenerate after myocardial infarction through proliferation of preexisting cardiomyocytes and that the miR-15 family contributes to postnatal loss of cardiac regenerative capacity. PMID:23248315

  6. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart

    PubMed Central

    Cardona, Maria; López, Juan Antonio; Serafín, Anna; Rongvaux, Anthony; Inserte, Javier; García-Dorado, David; Flavell, Richard; Llovera, Marta; Cañas, Xavier; Vázquez, Jesús; Sanchis, Daniel

    2015-01-01

    Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development. PMID:26121671

  7. Localization and mobility of the delayed-rectifer K+ channel Kv2.1 in adult cardiomyocytes.

    PubMed

    O'Connell, Kristen M S; Whitesell, Jennifer D; Tamkun, Michael M

    2008-01-01

    The delayed-rectifier voltage-gated K(+) channel (Kv) 2.1 underlies the cardiac slow K(+) current in the rodent heart and is particularly interesting in that both its function and localization are regulated by many stimuli in neuronal systems. However, standard immunolocalization approaches do not detect cardiac Kv2.1; therefore, little is known regarding its localization in the heart. In the present study, we used recombinant adenovirus to determine the subcellular localization and lateral mobility of green fluorescent protein (GFP)-Kv2.1 and yellow fluorescent protein-Kv1.4 in atrial and ventricular myocytes. In atrial myocytes, Kv2.1 formed large clusters on the cell surface similar to those observed in hippocampal neurons, whereas Kv1.4 was evenly distributed over both the peripheral sarcolemma and the transverse tubules. However, fluorescence recovery after photobleach (FRAP) experiments indicate that atrial Kv2.1 was immobile, whereas Kv1.4 was mobile (tau = 252 +/- 42 s). In ventricular myocytes, Kv2.1 did not form clusters and was localized primarily in the transverse-axial tubules and sarcolemma. In contrast, Kv1.4 was found only in transverse tubules and sarcolemma. FRAP studies revealed that Kv2.1 has a higher mobility in ventricular myocytes (tau = 479 +/- 178 s), although its mobility is slower than Kv1.4 (tau(1) = 18.9 +/- 2.3 s; tau(2) = 305 +/- 55 s). We also observed the movement of small, intracellular transport vesicles containing GFP-Kv2.1 within ventricular myocytes. These data are the first evidence of Kv2.1 localization in living myocytes and indicate that Kv2.1 may have distinct physiological roles in atrial and ventricular myocytes.

  8. Physiological and ultrastructural features of human induced pluripotent and embryonic stem cell-derived skeletal myocytes in vitro.

    PubMed

    Skoglund, Gunnar; Lainé, Jeanne; Darabi, Radbod; Fournier, Emmanuel; Perlingeiro, Rita; Tabti, Nacira

    2014-06-03

    Progress has recently been made toward the production of human skeletal muscle cells from induced pluripotent stem (iPS) cells. However, the functional and ultrastructural characterization, which is crucial for disease modeling and drug discovery, remains to be documented. We show, for the first time to our knowledge, that the electrophysiological properties of human iPS-derived skeletal myocytes are strictly similar to those of their embryonic stem (ES) cell counterparts, and both are typical of aneural mammalian skeletal muscle. In both cell types, intracellular calcium signaling that links membrane depolarization to contraction occurs in the absence of extracellular Ca(2+), a unique feature of skeletal muscle. Detailed analysis of the Ca(2+) signal revealed diverse kinetics of the rising phase, and hence various rates in the release of Ca(2+) from the sarcoplasmic reticulum. This was mirrored by ultrastructural evidence of Ca(2+) release units, which varied in location, shape, and size. Thus, the excitation-contraction coupling machinery of both iPS- and ES-derived skeletal myocytes was functional and specific, but did not reach full maturity in culture. This is in contrast with the myofibrillar network, which displayed the same organization as in adult skeletal muscle. Overall, the present study validates the human iPS-based skeletal myocyte model in comparison with the embryonic system, and provides the functional and ultrastructural basis for its application to human skeletal muscle diseases.

  9. Pediatric ventricular assist devices

    PubMed Central

    Burki, Sarah; Zafar, Farhan; Morales, David Luis Simon

    2015-01-01

    The domain of pediatric ventricular assist device (VAD) has recently gained considerable attention. Despite the fact that, historically, the practice of pediatric mechanical circulatory support (MCS) has lagged behind that of adult patients, this gap between the two groups is narrowing. Currently, the Berlin EXCOR VAD is the only pediatric-specific durable VAD approved by the U.S Food and Drug Administration (FDA). The prospective Berlin Heart trial demonstrated a successful outcome, either bridge to transplantation (BTT), or in rare instances, bridge to recovery, in approximately 90% of children. Also noted during the trial was, however, a high incidence of adverse events such as embolic stroke, bleeding and infection. This has incentivized some pediatric centers to utilize adult implantable continuous-flow devices, for instance the HeartMate II and HeartWare HVAD, in children. As a result of this paradigm shift, the outlook of pediatric VAD support has dramatically changed: Treatment options previously unavailable to children, including outpatient management and even destination therapy, have now been becoming a reality. The sustained demand for continued device miniaturization and technological refinements is anticipated to extend the range of options available to children—HeartMate 3 and HeartWare MVAD are two examples of next generation VADs with potential pediatric application, both of which are presently undergoing clinical trials. A pediatric-specific continuous-flow device is also on the horizon: the redesigned Infant Jarvik VAD (Jarvik 2015) is undergoing pre-clinical testing, with a randomized clinical trial anticipated to follow thereafter. The era of pediatric VADs has begun. In this article, we discuss several important aspects of contemporary VAD therapy, with a particular focus on challenges unique to the pediatric population. PMID:26793341

  10. Measurement of isolated myocyte volume using the Coulter models Z2 and ZM/C256: a comparison of instrument function.

    PubMed

    Said, S; Tamura, T; Gerdes, A M

    1998-09-01

    Changes in cardiac structure that depart from normal have generally been termed "remodeling". Assessment of ventricular remodeling at the cellular level should include measurement of myocyte dimensions. A well-established and reliable method to assess myocyte remodeling uses isolated cells and the Coulter Counter/Channelyzer system. The new Coulter Model Z2 has numerous modifications and improvements from the Model Z predecessor(s) interfaced to a pulse-height analyzer (e.g., channelyzer). Improvements of the Model Z2 over older instruments include: (i) elimination of the mercury manometer with accompanying oil-displacement pump; (ii) reduced size and weight; (iii) a higher degree of mechanization and automation; (iv) inclusion of an advanced comprehensive statistical package and (v) a substantial reduction in cost. The purpose of this study was to determine if the newly modified instrument produces the same results as the previous instrument combinations, which were shown to produce reliable cell volume data from irregularly shaped cells such as cardiac myocytes.

  11. P2X4 receptor–eNOS signaling pathway in cardiac myocytes as a novel protective mechanism in heart failure

    PubMed Central

    Yang, Ronghua; Beqiri, Dardan; Shen, Jian-Bing; Redden, John M.; Dodge-Kafka, Kimberly; Jacobson, Kenneth A.; Liang, Bruce T.

    2014-01-01

    We have demonstrated using immunoprecipitation and immunostaining a novel physical association of the P2X4 receptor (P2X4R), a ligand-gated ion channel, with the cardioprotective, calcium-dependent enzyme endothelial nitric oxide synthase (eNOS). Treatment of murine ventricular myocytes with the P2XR agonist 2-methylthioATP (2-meSATP) to induce a current (mainly Na+) increased the formation of nitric oxide (NO), as measured using a fluorescent probe. Possible candidates for downstream effectors mediating eNOS activity include cyclic GMP and PKG or cellular protein nitrosylation. A cardiac-specific P2X4R overexpressing mouse line was protected from heart failure (HF) with improved cardiac function and survival in post-infarct, pressure overload, and calsequestrin (CSQ) overexpression models of HF. Although the role of the P2X4R in other tissues such as the endothelium and monocytes awaits characterization in tissue-specific KO, cardiac-specific activation of eNOS may be more cardioprotective than an increased activity of global systemic eNOS. The intra-myocyte formation of NO may be more advantageous over NO derived externally from a donor. A small molecule drug stimulating this sarcolemmal pathway or gene therapy-mediated overexpression of the P2X4R in cardiac myocytes may represent a new therapy for both ischemic and pressure overloaded HF. PMID:25750695

  12. Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes

    PubMed Central

    Werneck-de-Castro, Joao P.; Fonseca, Tatiana L.; Ignacio, Daniele L.; Fernandes, Gustavo W.; Andrade-Feraud, Cristina M.; Lartey, Lattoya J.; Ribeiro, Marcelo B.; Ribeiro, Miriam O.; Gereben, Balazs

    2015-01-01

    The type 2 deiodinase (D2) activates the prohormone T4 to T3. D2 is expressed in skeletal muscle (SKM), and its global inactivation (GLOB-D2KO mice) reportedly leads to skeletal muscle hypothyroidism and impaired differentiation. Here floxed Dio2 mice were crossed with mice expressing Cre-recombinase under the myosin light chain 1f (cre-MLC) to disrupt D2 expression in the late developmental stages of skeletal myocytes (SKM-D2KO). This led to a loss of approximately 50% in D2 activity in neonatal and adult SKM-D2KO skeletal muscle and about 75% in isolated SKM-D2KO myocytes. To test the impact of Dio2 disruption, we measured soleus T3 content and found it to be normal. We also looked at the expression of T3-responsive genes in skeletal muscle, ie, myosin heavy chain I, α-actin, myosin light chain, tropomyosin, and serca 1 and 2, which was preserved in neonatal SKM-D2KO hindlimb muscles, at a time that coincides with a peak of D2 activity in control animals. In adult soleus the baseline level of D2 activity was about 6-fold lower, and in the SKM-D2KO soleus, the expression of only one of five T3-responsive genes was reduced. Despite this, adult SKM-D2KO animals performed indistinguishably from controls on a treadmill test, running for approximately 16 minutes and reached a speed of about 23 m/min; muscle strength was about 0.3 mN/m·g body weight in SKM-D2KO and control ankle muscles. In conclusion, there are multiple sources of D2 in the mouse SKM, and its role is limited in postnatal skeletal muscle fibers. PMID:26214036

  13. Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes.

    PubMed

    Werneck-de-Castro, Joao P; Fonseca, Tatiana L; Ignacio, Daniele L; Fernandes, Gustavo W; Andrade-Feraud, Cristina M; Lartey, Lattoya J; Ribeiro, Marcelo B; Ribeiro, Miriam O; Gereben, Balazs; Bianco, Antonio C

    2015-10-01

    The type 2 deiodinase (D2) activates the prohormone T4 to T3. D2 is expressed in skeletal muscle (SKM), and its global inactivation (GLOB-D2KO mice) reportedly leads to skeletal muscle hypothyroidism and impaired differentiation. Here floxed Dio2 mice were crossed with mice expressing Cre-recombinase under the myosin light chain 1f (cre-MLC) to disrupt D2 expression in the late developmental stages of skeletal myocytes (SKM-D2KO). This led to a loss of approximately 50% in D2 activity in neonatal and adult SKM-D2KO skeletal muscle and about 75% in isolated SKM-D2KO myocytes. To test the impact of Dio2 disruption, we measured soleus T3 content and found it to be normal. We also looked at the expression of T3-responsive genes in skeletal muscle, ie, myosin heavy chain I, α-actin, myosin light chain, tropomyosin, and serca 1 and 2, which was preserved in neonatal SKM-D2KO hindlimb muscles, at a time that coincides with a peak of D2 activity in control animals. In adult soleus the baseline level of D2 activity was about 6-fold lower, and in the SKM-D2KO soleus, the expression of only one of five T3-responsive genes was reduced. Despite this, adult SKM-D2KO animals performed indistinguishably from controls on a treadmill test, running for approximately 16 minutes and reached a speed of about 23 m/min; muscle strength was about 0.3 mN/m·g body weight in SKM-D2KO and control ankle muscles. In conclusion, there are multiple sources of D2 in the mouse SKM, and its role is limited in postnatal skeletal muscle fibers.

  14. Automaticity in acute ischemia: Bifurcation analysis of a human ventricular model

    NASA Astrophysics Data System (ADS)

    Bouchard, Sylvain; Jacquemet, Vincent; Vinet, Alain

    2011-01-01

    Acute ischemia (restriction in blood supply to part of the heart as a result of myocardial infarction) induces major changes in the electrophysiological properties of the ventricular tissue. Extracellular potassium concentration ([Ko+]) increases in the ischemic zone, leading to an elevation of the resting membrane potential that creates an “injury current” (IS) between the infarcted and the healthy zone. In addition, the lack of oxygen impairs the metabolic activity of the myocytes and decreases ATP production, thereby affecting ATP-sensitive potassium channels (IKatp). Frequent complications of myocardial infarction are tachycardia, fibrillation, and sudden cardiac death, but the mechanisms underlying their initiation are still debated. One hypothesis is that these arrhythmias may be triggered by abnormal automaticity. We investigated the effect of ischemia on myocyte automaticity by performing a comprehensive bifurcation analysis (fixed points, cycles, and their stability) of a human ventricular myocyte model [K. H. W. J. ten Tusscher and A. V. Panfilov, Am. J. Physiol. Heart Circ. Physiol.AJPHAP0363-613510.1152/ajpheart.00109.2006 291, H1088 (2006)] as a function of three ischemia-relevant parameters [Ko+], IS, and IKatp. In this single-cell model, we found that automatic activity was possible only in the presence of an injury current. Changes in [Ko+] and IKatp significantly altered the bifurcation structure of IS, including the occurrence of early-after depolarization. The results provide a sound basis for studying higher-dimensional tissue structures representing an ischemic heart.

  15. Myocardial size and fibrosis changes during left ventricular assist device support.

    PubMed

    Yamada, Yukiko; Saito, Satoshi; Nishinaka, Tomohiro; Yamazaki, Kenji

    2012-01-01

    Previous studies have demonstrated that left ventricular assist device (LVAD) implantation significantly decreases myocyte size and reduces fibrosis of the left ventricle (LV). The objectives of the present study were to evaluate LV functional recovery after LVAD implantation and to assess its predictive factors, including histological findings of LV. Six patients with idiopathic cardiomyopathy underwent LVAD support with an EVAHEART implantable centrifugal pump (Sun Medical Technology Research, Nagano, Japan) for an average support duration of 2.91 years. Histologic samples were obtained from their LV apexes at the time of implantation. At 1 month and at 24 months after implantation, brain natriuretic peptide (BNP) and echocardiographic parameters were evaluated. Brain natriuretic peptide values, LV end-diastolic dimension, LV end-systolic dimension, functional shortening, and right ventricular systolic pressure (RVSP) were improved after LVAD implantation. Patients with developing fibrosis had longer durations of heart-failure history and higher pulmonary artery pressures. Patients with hypertrophic myocytes had smaller FS preoperatively. There was a correlation between the amount of fibrosis and the rate of BNP value change after LVAD implantation. In patients with less fibrosis and smaller myocytes preoperatively, improvement in LV function was observed during LVAD support.

  16. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    PubMed Central

    Han, Xiao; Liu, Jian-xun; Li, Xin-zhi

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes. Methods: Cardiac myocytes were incubated under starvation conditions (GD) for 0, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sal B (50 μmol/L) in the presence or absence of chloroquine (3 μmol/L) under GD 3 h, the amount of LC3-II, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. Moreover, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis. Results: Immunoblot analysis showed that the amount of LC3-II in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-II, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present. Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy. PMID:21113177

  17. Nkx genes are essential for maintenance of ventricular identity.

    PubMed

    Targoff, Kimara L; Colombo, Sophie; George, Vanessa; Schell, Thomas; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Yelon, Deborah

    2013-10-01

    Establishment of specific characteristics of each embryonic cardiac chamber is crucial for development of a fully functional adult heart. Despite the importance of defining and maintaining unique features in ventricular and atrial cardiomyocytes, the regulatory mechanisms guiding these processes are poorly understood. Here, we show that the homeodomain transcription factors Nkx2.5 and Nkx2.7 are necessary to sustain ventricular chamber attributes through repression of atrial chamber identity. Mutation of nkx2.5 in zebrafish yields embryos with diminutive ventricular and bulbous atrial chambers. These chamber deformities emerge gradually during development, with a severe collapse in the number of ventricular cardiomyocytes and an accumulation of excess atrial cardiomyocytes as the heart matures. Removal of nkx2.7 function from nkx2.5 mutants exacerbates the loss of ventricular cells and the gain of atrial cells. Moreover, in these Nkx-deficient embryos, expression of vmhc, a ventricular gene, fades, whereas expression of amhc, an atrial gene, expands. Cell-labeling experiments suggest that ventricular cardiomyocytes can transform into atrial cardiomyocytes in the absence of Nkx gene function. Through suggestion of transdifferentiation from ventricular to atrial fate, our data reveal a pivotal role for Nkx genes in maintaining ventricular identity and highlight remarkable plasticity in differentiated myocardium. Thus, our results are relevant to the etiologies of fetal and neonatal cardiac pathology and could direct future innovations in cardiac regenerative medicine.

  18. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction.

    PubMed

    Beaumont, Eric; Southerland, Elizabeth M; Hardwick, Jean C; Wright, Gary L; Ryan, Shannon; Li, Ying; KenKnight, Bruce H; Armour, J Andrew; Ardell, Jeffrey L

    2015-10-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions.

  19. P2Y purinergic receptor regulation of CFTR chloride channels in mouse cardiac myocytes.

    PubMed

    Yamamoto-Mizuma, Shintaro; Wang, Ge-Xin; Hume, Joseph R

    2004-05-01

    The intracellular signalling pathways and molecular mechanisms responsible for P2-purinoceptor-mediated chloride (Cl(-)) currents (I(Cl,ATP)) were studied in mouse ventricular myocytes. In standard NaCl-containing extracellular solutions, extracellular ATP (100 microm) activated two different currents, I(Cl,ATP) with a linear I-V relationship in symmetrical Cl(-) solutions, and an inwardly rectifying cation conductance (cationic I(ATP)). Cationic I(ATP) was selectively inhibited by Gd(3+) and Zn(2+), or by replacement of extracellular NaCl by NMDG; I(Cl,ATP) was Cl(-) selective, and inhibited by replacement of extracellular Cl(-) by Asp(-); both currents were prevented by suramin or DIDS pretreatment. In GTPgammaS-loaded cells, I(Cl,ATP) was irreversibly activated by ATP, but cationic I(ATP) was still regulated reversibly. GDPbetaS prevented activation of the I(Cl,ATP,) even though pertussis toxin pretreatment did not modulate I(Cl,ATP). These results suggest that activation of I(Cl,ATP) occurs via a G-protein coupled P2Y purinergic receptor. The I(Cl,ATP) persistently activated by GTPgammaS, was inhibited by glibenclamide but not by DIDS, thus exhibiting known pharmacological properties of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels. In ventricular cells of cftr(-/-) mice, extracellular ATP activated cationic I(ATP), but failed to activate any detectable I(Cl,ATP). These results provide compelling evidence that activation of CFTR Cl(-) channels in mouse heart are coupled to G-protein coupled P2Y purinergic receptors.

  20. [Role of calcineurin in down-regulation of left ventricular transmural voltage- dependent K(+) currents in mice with heart failure].

    PubMed

    Shi, Chen-Xia; Dong, Fang; Chang, Yan-Chao; Wang, Xiao-Feng; Xu, Yan-Fang

    2015-08-25

    The aim of the present study was to investigate the role of calcineurin in the down-regulation of left ventricular transmural voltage-dependent K(+) currents in heart failure. Transverse aorta was banded by using microsurgical techniques to create mouse heart failure model. Sham-operated (Sham) or aorta banded (Band) mice were randomized to receive calcineurin inhibitor cyclosporine A (CsA) or vehicle. The densities and kinetic properties of voltage-dependent K(+) currents, as well as action potential (AP), of left ventricular subendocardial (Endo) and subepicardial (Epi) myocytes were determined by using whole-cell patch-clamp technique. The results showed that calcineurin activity was significant higher in Endo myocytes than that in Epi ones in all the groups. Compared with Sham group, Band mice showed significantly increased calcineurin activity both in Endo and Epi myocytes. CsA significantly reduced calcineurin activity in Band mice. CsA treatment in Band mice partially reversed the down-regulation of Ito density, completely reversed the down-regulation of IK,slow density both in Endo and Epi myocytes, and Iss density in Endo myocytes. In addition, CsA treatment in Band mice partially antagonized the prolongation of action potential duration (APD), and APD at 50% (APD50) and 90% repolarization (APD90) were significantly reduced. Because of non-parallel shortening of APD in Endo and Epi myocytes, the ratio of Endo/Epi APD90 was reduced from 4.8:1 in Band mice to 2.6:1 in CsA-treated mice, which was close to that in Sham mice. The results suggest that non-parallel activation of calcineurin in Endo and Epi myocytes contributes to the down-regulation of transmural voltage-dependent K(+) currents and the amplification of transmural dispersion of repolarization (TDR) in left ventricular failure hearts. Inhibition of calcineurin may be a potential new therapeutic strategy to prevent and cure arrhythmias and sudden death in heart failure.

  1. MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart.

    PubMed

    Glass, Carley; Singla, Dinender K

    2011-11-01

    microRNAs (miRs) have emerged as critical modulators of various physiological processes including stem cell differentiation. Indeed, miR-1 has been reported to play an integral role in the regulation of cardiac muscle progenitor cell differentiation. However, whether overexpression of miR-1 in embryonic stem (ES) cells (miR-1-ES cells) will enhance cardiac myocyte differentiation following transplantation into the infarcted myocardium is unknown. In the present study, myocardial infarction (MI) was produced in C57BL/6 mice by left anterior descending artery ligation. miR-1-ES cells, ES cells, or culture medium (control) was transplanted into the border zone of the infarcted heart, and 2 wk post-MI, cardiac myocyte differentiation, adverse ventricular remodeling, and cardiac function were assessed. We provide evidence demonstrating enhanced cardiac myocyte commitment of transplanted miR-1-ES cells in the mouse infarcted heart as compared with ES cells. Assessment of apoptosis revealed that overexpression of miR-1 in transplanted ES cells protected host myocardium from MI-induced apoptosis through activation of p-AKT and inhibition of caspase-3, phosphatase and tensin homolog, and superoxide production. A significant reduction in interstitial and vascular fibrosis was quantified in miR-1-ES cell and ES cell transplanted groups compared with control MI. However, no statistical significance between miR-1-ES cell and ES cell groups was observed. Finally, mice receiving miR-1-ES cell transplantation post-MI had significantly improved heart function compared with respective controls (P < 0.05). Our data suggest miR-1 drives cardiac myocyte differentiation from transplanted ES cells and inhibits apoptosis post-MI, ultimately giving rise to enhanced cardiac repair, regeneration, and function.

  2. Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy.

    PubMed

    Lafontant, Pascal J; Behzad, Ali R; Brown, Evelyn; Landry, Paul; Hu, Norman; Burns, Alan R

    2013-01-01

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.

  3. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents.

    PubMed

    Livshitz, Leonid M; Rudy, Yoram

    2007-06-01

    Alternans of cardiac repolarization is associated with arrhythmias and sudden death. At the cellular level, alternans involves beat-to-beat oscillation of the action potential (AP) and possibly Ca(2+) transient (CaT). Because of experimental difficulty in independently controlling the Ca(2+) and electrical subsystems, mathematical modeling provides additional insights into mechanisms and causality. Pacing protocols were conducted in a canine ventricular myocyte model with the following results: 1) CaT alternans results from refractoriness of the sarcoplasmic reticulum Ca(2+) release system; alternation of the L-type calcium current has a negligible effect; 2) CaT-AP coupling during late AP occurs through the sodium-calcium exchanger and underlies AP duration (APD) alternans; 3) increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity extends the range of CaT and APD alternans to slower frequencies and increases alternans magnitude; its decrease suppresses CaT and APD alternans, exerting an antiarrhythmic effect; and 4) increase of the rapid delayed rectifier current (I(Kr)) also suppresses APD alternans but without suppressing CaT alternans. Thus CaMKII inhibition eliminates APD alternans by eliminating its cause (CaT alternans) while I(Kr) enhancement does so by weakening CaT-APD coupling. The simulations identify combined CaMKII inhibition and I(Kr) enhancement as a possible antiarrhythmic intervention.

  4. Rem-GTPase regulates cardiac myocyte L-type calcium current

    PubMed Central

    Magyar, Janos; Kiper, Carmen E.; Sievert, Gail; Cai, Weikang; Shi, Geng-Xian; Crump, Shawn M.; Li, Liren; Niederer, Steven; Smith, Nic; Andres, Douglas A.; Satin, Jonathan

    2012-01-01

    Rationale: The L-type calcium channels (LTCC) are critical for maintaining Ca2+-homeostasis. In heterologous expression studies, the RGK-class of Ras-related G-proteins regulates LTCC function; however, the physiological relevance of RGK–LTCC interactions is untested. Objective: In this report we test the hypothesis that the RGK protein, Rem, modulates native Ca2+ current (ICa,L) via LTCC in murine cardiomyocytes. Methods and Results: Rem knockout mice (Rem−/−) were engineered, and ICa,L and Ca2+-handling properties were assessed. Rem−/− ventricular cardiomyocytes displayed increased ICa,L density. ICa,L activation was shifted positive on the voltage axis, and β-adrenergic stimulation normalized this shift compared with wild-type ICa,L. Current kinetics, steady-state inactivation, and facilitation was unaffected by Rem−/−. Cell shortening was not significantly different. Increased ICa,L density in the absence of frank phenotypic differences motivated us to explore putative compensatory mechanisms. Despite the larger ICa,L density, Rem−/− cardiomyocyte Ca2+ twitch transient amplitude was significantly less than that compared with wild type. Computer simulations and immunoblot analysis suggests that relative dephosphorylation of Rem−/− LTCC can account for the paradoxical decrease of Ca2+ transients. Conclusions: This is the first demonstration that loss of an RGK protein influences ICa,L in vivo in cardiac myocytes. PMID:22854599

  5. Ventricular Septal Defect (VSD)

    MedlinePlus

    ... specially sized mesh device to close the hole. Hybrid procedure. A hybrid procedure uses surgical and catheter-based techniques. Access ... clinicalkey.com. Accessed Sept. 15, 2014. Konetti NR. Hybrid muscular ventricular defect closure: Surgeon or physician. Indian ...

  6. Premature Ventricular Contractions (PVCs)

    MedlinePlus

    ... in the body that may be caused by caffeine, tobacco, exercise or anxiety Injury to the heart ... may increase your risk of premature ventricular contractions: Caffeine, tobacco and alcohol Exercise High blood pressure (hypertension) ...

  7. Left Ventricular Hypertrophy

    MedlinePlus

    ... at the time of their diagnosis with hypertension. Aortic valve stenosis. This disease is a narrowing of the tissue ... muscle and disease. In addition to hypertension and aortic valve stenosis, factors that increase your risk for left ventricular ...

  8. Volumetric analysis of the African elephant ventricular system.

    PubMed

    Maskeo, Busisiwe C; Spocter, Muhammed A; Haagensen, Mark; Manger, Paul R

    2011-08-01

    This study used magnetic resonance imaging (MRI) to determine the volume of the ventricular system in the brain of three adult male African elephants (Loxodonta africana). The ventricular system of the elephant has a volume of ∼240 mL, an order of magnitude larger than that seen in the adult human. Despite this large size, allometric analysis indicates that the volume of the ventricles in the elephant is what one would expect for a mammal with an ∼5 kg brain. Interestingly, our comparison with other mammals revealed that primates appear to have small relative ventricular volumes, and that megachiropterans and microchiropterans follow different scaling rules when comparing ventricular volume to brain mass indicating separate phylogenetic histories. The current study provides context for one aspect of the elephant brain in the broader picture of mammalian brain evolution.

  9. Integrins and Integrin-Associated Proteins in the Cardiac Myocyte

    PubMed Central

    Ross, Robert S.

    2014-01-01

    Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. While it is likely that cardiovascular clinicians and scientists have highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. Following a general introduction to integrin biology, the manuscript will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study. PMID:24481847

  10. Ventricular expression of atrial natriuretic polypeptide and its relations with hemodynamics and histology in dilated human hearts. Immunohistochemical study of the endomyocardial biopsy specimens.

    PubMed

    Takemura, G; Fujiwara, H; Horike, K; Mukoyama, M; Saito, Y; Nakao, K; Matsuda, M; Kawamura, A; Ishida, M; Kida, M

    1989-11-01

    To investigate the mechanism of expression of atrial natriuretic polypeptide (ANP) in human ventricles, we conducted an immunohistochemical study of ANP in biventricular endomyocardial biopsy specimens obtained from a total of 49 patients with cardiac dilatation due to dilated cardiomyopathy (21 patients), postmyocarditis (18 patients), or volume overload (five patients) and subjects with no dilatation as controls (five patients). Four-micron thick sections were stained by an indirect immunoperoxidase method using monoclonal antibody to alpha-human ANP as the primary antibody. The frequency of ANP-present myocytes was calculated in each specimen and compared with clinical, echocardiographic, hemodynamic, angiographic, and histologic parameters. ANP-present myocytes were noted in all of the 21 patients with dilated cardiomyopathy, in 11 of the 18 patients with postmyocarditis, in four of the five patients with volume overload, and in zero of the five controls. The mean percentage of ANP-present myocytes was significantly greater in the left-side specimens (35 +/- 37%) than in the right-side ones (2 +/- 4%). The percentage of ANP-present myocytes in the left-side specimens significantly correlated with peak systolic or end-diastolic wall stress (r = 0.67 and 0.58), left ventricular end-systolic or end-diastolic volume index (r = 0.75 and 0.69), or left ventricular end-diastolic pressure (r = 0.42) and inversely correlated with ejection fraction (r = -0.73), systolic left ventricular wall thickness (r = -0.58), or cardiac index (r = -0.30). Expression of ANP was rarely seen in the cases with normal wall stresses, normal ejection fraction, normal volume, or normal myocyte size. However, it was seen frequently even in hearts with normal levels of left ventricular end-diastolic pressure and cardiac index (compensated hearts). The percent of ANP-present myocytes in both sides significantly correlated with size of myocytes (r = 0.48 at right and r = 0.57 at left side) or

  11. Ca sup 2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes

    SciTech Connect

    Mery, P-F.; Fischmeister, R. ); Lohmann, S.M.; Walter, U. )

    1991-02-15

    Regulation of cardiac contraction by neurotransmitters and hormones is often correlated with regulation of the L-type Ca{sup 2+}-channel current (I{sub Ca}) through the opposite actions for two second messengers, cyclic AMP and cyclic GMP. While cyclic AMP stimulation of I{sub Ca} is mediated by the activation of cyclic AMP-dependent protein kinase, inhibition of I{sub Ca} by cyclic GMP in frog heart is largely mediated by activation of cyclic AMP phosphodiesterase. The present patch-clamp study reveals that, in rat ventricular cells, cyclic GMP can also regulate I{sub Ca} via activation of endogenous cyclic GMP-dependent protein kinase (cGMP-PK). Indeed, the effect of cyclic GMP on I{sub Ca} was mimicked by intracellular perfusion with the proteolytic active fragment of purified cGMP-PK. Moreover, cGMP-PK immunoreactivity was detected in pure rat ventricular myocytes by using a specific polyclonal antibody. These results demonstrate a dual mechanism for the inhibitory action of cyclic GMP in heart, as well as a physiological role for cGMP-PK in the control of mammalian heart function.

  12. Acetylcholine inhibits Ca2+ current by acting exclusively at a site proximal to adenylyl cyclase in frog cardiac myocytes.

    PubMed

    Jurevicius, J; Fischmeister, R

    1996-03-15

    1. The effects of acetylcholine (ACh) on the L-type Ca2+ current (ICa) stimulated by isoprenaline (Iso) or forskolin (Fsk) were examined in frog ventricular myocytes using the whole-cell patch-clamp technique and a double capillary for extracellular microperfusion. 2. The exposure of one half of the cell to 1 microM Iso produced a half-maximal increase in ICa since a subsequent application of Iso to the other half induced an additional effect of nearly the same amplitude. Similarly, addition of 1 microM ACh to only one half of a cell exposed to Iso on both halves reduced the effect of Iso by only approximately 50%. 3. When 10 microM Iso or 30 microM Fsk were applied to a Ca(2+)-free solution on one half of the cell, ICa was increased in the remote part of the cell where adenylyl cyclase activity was not stimulated. However, addition of ACh (3-10 microM) to the remote part had no effect on ICa, while addition of ACh to the part of the cell exposed to Iso or Fsk strongly antagonized the stimulatory effects of these drugs. 4. Our data demonstrate that ACh regulates ICa by acting at a site proximal to adenylyl cyclase in frog ventricular cells. We conclude that the muscarinic regulation of ICa does not involve any additional cAMP-independent mechanisms occurring downstream from cAMP generation.

  13. Clarithromycin reduces Isus and Ito currents in human atrial myocytes with minor repercussions on action potential duration.

    PubMed

    Gluais, Pascale; Bastide, Michèle; Grandmougin, Daniel; Fayad, Georges; Adamantidis, Monique

    2003-12-01

    The macrolide antibacterial agent clarithromycin has been shown to cause QT interval prolongation on the electrocardiogram. In rabbit heart preparations clarithromycin (concentration dependently) lengthened the action potential duration and blocked the delayed rectifier current. The aim of the present study was to investigate the clarithromycin effects: (i) on the Ca2+ L-type and the main K+ repolarizing currents on human atrial myocytes, using whole-cell patch clamp recordings and (ii) on action potentials recorded from human atrial and ventricular myocardium using conventional microelectrodes. It has been found that (i) 10-30 microM clarithromycin reduced the sustained current Isus significantly and that a 100 microM concentration was needed to cause a significant reduction in the transient outward current Ito, whereas clarithomycin did not affect the calcium current and (ii) clarithromycin (10-100 microM) prolonged the action potential duration in atrial preparations but did not alter the different parameters of the ventricular action potential. It is concluded that clarithromycin exerts direct cardiac electrophysiological effects that may contribute to pro-arrythmic potential.

  14. Modulation of ventricular transient outward K+ current by acidosis and its effects on excitation-contraction coupling

    PubMed Central

    Saegusa, Noriko; Garg, Vivek

    2013-01-01

    The contribution of transient outward current (Ito) to changes in ventricular action potential (AP) repolarization induced by acidosis is unresolved, as is the indirect effect of these changes on calcium handling. To address this issue we measured intracellular pH (pHi), Ito, L-type calcium current (ICa,L), and calcium transients (CaTs) in rabbit ventricular myocytes. Intracellular acidosis [pHi 6.75 with extracellular pH (pHo) 7.4] reduced Ito by ∼50% in myocytes with both high (epicardial) and low (papillary muscle) Ito densities, with little effect on steady-state inactivation and activation. Of the two candidate α-subunits underlying Ito, human (h)Kv4.3 and hKv1.4, only hKv4.3 current was reduced by intracellular acidosis. Extracellular acidosis (pHo 6.5) shifted Ito inactivation toward less negative potentials but had negligible effect on peak current at +60 mV when initiated from −80 mV. The effects of low pHi-induced inhibition of Ito on AP repolarization were much greater in epicardial than papillary muscle myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. Low pHi increased AP duration in both cell types, with the greatest lengthening occurring in epicardial myocytes. The changes in epicardial AP repolarization induced by intracellular acidosis reduced peak ICa,L, increased net calcium influx via ICa,L, and increased CaT amplitude. In summary, in contrast to low pHo, intracellular acidosis has a marked inhibitory effect on ventricular Ito, perhaps mediated by Kv4.3. By altering the trajectory of the AP repolarization, low pHi has a significant indirect effect on calcium handling, especially evident in epicardial cells. PMID:23585132

  15. Atorvastatin Improves Ventricular Remodeling after Myocardial Infarction by Interfering with Collagen Metabolism

    PubMed Central

    Reichert, Karla; Pereira do Carmo, Helison Rafael; Galluce Torina, Anali; Diógenes de Carvalho, Daniela; Carvalho Sposito, Andrei; de Souza Vilarinho, Karlos Alexandre; da Mota Silveira-Filho, Lindemberg; Martins de Oliveira, Pedro Paulo

    2016-01-01

    Purpose Therapeutic strategies that modulate ventricular remodeling can be useful after acute myocardial infarction (MI). In particular, statins may exert effects on molecular pathways involved in collagen metabolism. The aim of this study was to determine whether treatment with atorvastatin for 4 weeks would lead to changes in collagen metabolism and ventricular remodeling in a rat model of MI. Methods Male Wistar rats were used in this study. MI was induced in rats by ligation of the left anterior descending coronary artery (LAD). Animals were randomized into three groups, according to treatment: sham surgery without LAD ligation (sham group, n = 14), LAD ligation followed by 10mg atorvastatin/kg/day for 4 weeks (atorvastatin group, n = 24), or LAD ligation followed by saline solution for 4 weeks (control group, n = 27). After 4 weeks, hemodynamic characteristics were obtained by a pressure-volume catheter. Hearts were removed, and the left ventricles were subjected to histologic analysis of the extents of fibrosis and collagen deposition, as well as the myocyte cross-sectional area. Expression levels of mediators involved in collagen metabolism and inflammation were also assessed. Results End-diastolic volume, fibrotic content, and myocyte cross-sectional area were significantly reduced in the atorvastatin compared to the control group. Atorvastatin modulated expression levels of proteins related to collagen metabolism, including MMP1, TIMP1, COL I, PCPE, and SPARC, in remote infarct regions. Atorvastatin had anti-inflammatory effects, as indicated by lower expression levels of TLR4, IL-1, and NF-kB p50. Conclusion Treatment with atorvastatin for 4 weeks was able to attenuate ventricular dysfunction, fibrosis, and left ventricular hypertrophy after MI in rats, perhaps in part through effects on collagen metabolism and inflammation. Atorvastatin may be useful for limiting ventricular remodeling after myocardial ischemic events. PMID:27880844

  16. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H; Hull, Robert; Davis, Mary; Yu, Han-Gang

    2015-11-15

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias.

  17. Dysregulation of catalase activity in newborn myocytes during hypoxia is mediated by c-Abl tyrosine kinase.

    PubMed

    Cabigas, E Bernadette; Liu, Jie; Boopathy, Archana V; Che, Pao Lin; Crawford, Brian H; Baroi, Gitangali; Bhutani, Srishti; Shen, Ming; Wagner, Mary B; Davis, Michael E

    2015-01-01

    In the adult heart, catalase (CAT) activity increases appropriately with increasing levels of hydrogen peroxide, conferring cardioprotection. This mechanism is absent in the newborn for unknown reasons. In the present study, we examined how the posttranslational modification of CAT contributes to its activation during hypoxia/ischemia and the role of c-Abl tyrosine kinase in this process. Hypoxia studies were carried out using primary cardiomyocytes from adult (>8 weeks) and newborn rats. Following hypoxia, the ratio of phosphorylated to total CAT and c-Abl in isolated newborn rat myocytes did not increase and were significantly lower (1.3- and 4.2-fold, respectively; P < .05) than their adult counterparts. Similarly, there was a significant association (P < .0005) between c-Abl and CAT in adult cells following hypoxia (30.9 ± 8.2 to 70.7 ± 13.1 au) that was absent in newborn myocytes. Although ubiquitination of CAT was higher in newborns compared to adults following hypoxia, inhibition of this did not improve CAT activity. When a c-Abl activator (5-(1,3-diaryl-1H-pyrazol-4-yl)hydantoin [DPH], 200 µmol/L) was administered prior to hypoxia, not only CAT activity was significantly increased (P < .05) but also phosphorylation levels were also significantly improved (P < .01) in these newborn myocytes. Additionally, ischemia-reperfusion (IR) studies were performed using newborn (4-5 days) rabbit hearts perfused in a Langendorff method. The DPH given as an intracardiac injection into the right ventricle of newborn rabbit resulted in a significant improvement (P < .002) in the recovery of developed pressure after IR, a key indicator of cardiac function (from 74.6% ± 6.6% to 118.7% ± 10.9%). In addition, CAT activity was increased 3.92-fold (P < .02) in the same DPH-treated hearts. Addition of DPH to adult rabbits in contrast had no significant effect (from 71.3% ± 10.7% to 59.4% ± 12.1%). Therefore, in the newborn, decreased phosphorylation of CAT by c

  18. Vulnerability to ventricular fibrillation

    NASA Astrophysics Data System (ADS)

    Janse, Michiel J.

    1998-03-01

    One of the factors that favors the development of ventricular fibrillation is an increase in the dispersion of refractoriness. Experiments will be described in which an increase in dispersion in the recovery of excitability was determined during brief episodes of enhanced sympathetic nerve activity, known to increase the risk of fibrillation. Whereas in the normal heart ventricular fibrillation can be induced by a strong electrical shock, a premature stimulus of moderate intensity only induces fibrillation in the presence of regional ischemia, which greatly increases the dispersion of refractoriness. One factor that is of importance for the transition of reentrant ventricular tachycardia to ventricular fibrillation during acute regional ischemia is the subendocardial Purkinje system. After selective destruction of the Purkinje network by lugol, reentrant tachycardias still develop in the ischemic region, but they do not degenerate into fibrillation. Finally, attempts were made to determine the minimal mass of thin ventricular myocardium required to sustain fibrillation induced by burst pacing. This was done by freezing of subendocardial and midmural layers. The rim of surviving epicardial muscle had to be larger than 20 g. Extracellular electrograms during fibrillation in both the intact and the "frozen" left ventricle were indistinguishable, but activation patterns were markedly different. In the intact ventricle epicardial activation was compatible with multiple wavelet reentry, in the "frozen" heart a single, or at most two wandering reentrant waves were seen.

  19. Echocardiographic Markers of Elevated Pulmonary Pressure and Left Ventricular Diastolic Dysfunction are Associated with Exercise Intolerance in Adults and Adolescents with Homozygous Sickle Cell Anemia in the US and UK

    PubMed Central

    Sachdev, Vandana; Kato, Gregory J.; Gibbs, J. Simon R.; Barst, Robyn J.; Machado, Roberto F.; Nouraie, Mehdi; Hassell, Kathryn L.; Little, Jane A.; Schraufnagel, Dean E.; Krishnamurti, Lakshmanan; Girgis, Reda E.; Morris, Claudia R.; Rosenzweig, Erika Berman; Badesch, David B.; Lanzkron, Sophie; Castro, Oswaldo L.; Taylor, James G.; Hannoush, Hwaida; Goldsmith, Jonathan C.; Gladwin, Mark T.; Gordeuk, Victor R.

    2011-01-01

    Background Non-invasively assessed pulmonary pressure elevations and left ventricular diastolic dysfunction (LVDD) are associated with increased mortality in adults with sickle cell disease (SCD), but their relationship to exercise intolerance has not been evaluated prospectively. Methods and Results Echocardiography, six-minute walk distance, hemolytic rate, and serum concentrations of ferritin and erythropoietin were evaluated in a cohort of 483 subjects with homozygous hemoglobin S in the US and UK Walk-PHaSST study. Tricuspid regurgitation velocity (TRV), which reflects systolic pulmonary artery pressure, was 2.7 to <3.0 m/sec (mean±SD 2.8±0.1) in 26% of the subjects and ≥3.0 m/sec (3.4±0.4) in 11%. LV lateral E/e′ ratio, which has been shown to reflect LV filling pressure in other conditions but has not been studied in SCD, was significantly higher in the groups with TRV ≥2.7 m/sec. Increased hemolysis (P<0.0001), LV lateral E/e′ ratio (P=0.0001), BUN (P=0.0002) and erythropoietin (P=0.002) were independently associated with an increased TRV. Further, female gender (P<0.0001), older age (P<0.0001), LV lateral E/e′ ratio (P=0.014), and TRV (P=0.019) were independent predictors of a shorter six-minute walk distance. Conclusions Echocardiography-estimated elevated pulmonary artery systolic pressure and LV lateral E/e′ ratio were independently associated with poor exercise capacity in a large cohort of patients with sickle cell anemia. Controlled trials investigating whether strategies to prevent or delay pulmonary hypertension and/or LVDD will improve exercise capacity and long-term outcomes in sickle cell anemia should be considered. PMID:21900080

  20. Possible Mechanisms Underlying Aging-Related Changes in Early Diastolic Filling and Long Axis Motion—Left Ventricular Length and Blood Pressure

    PubMed Central

    Peverill, Roger E.; Chou, Bon; Donelan, Lesley; Mottram, Philip M.; Gelman, John S.

    2016-01-01

    Background The transmitral E wave and the peak velocity of early diastolic mitral annular motion (e`) both decrease with age, but the mechanisms underlying these age-related changes are incompletely understood. This study investigated the possible contributions of blood pressure (BP) and left ventricular end-diastolic length (LVEDL) to age-related reductions in E and e`. Methods The study group were 82 healthy adult subjects <55 years of age who were not obese or hypertensive. Transmitral flow and mitral annular motion were recorded using pulsed-wave Doppler. LVEDL was measured from the mitral annular plane to the apical endocardium. Results Age was positively correlated with diastolic BP and septal wall thickness (SWT), inversely correlated with LVEDL (β = -0.25) after adjustment for sex and body surface area, but was not related to left ventricular end-diastolic diameter (LVEDD). Age was also inversely correlated with E (r = -0.36), septal e`(r = -0.53) and lateral e`(r = -0.53). On multivariable analysis, E was inversely correlated with diastolic BP and LVEDD, septal e`was inversely correlated with diastolic BP and positively correlated with SWT and LVEDL, after adjusting for body mass index, whilst lateral e`was inversely correlated with diastolic BP and positively correlated with LVEDL. Conclusion The above findings are consistent with higher BP being a contributor to age-related reductions in both E and e`and shortening of LVEDL with age being a contributor to the age-related reduction in e`. An implication of these findings is that slowing of myocyte relaxation is unlikely to be the sole, and may not be the main, mechanism underlying age-related decreases in E and e`. PMID:27351745

  1. [Ventricular pump function under ectopic excitation of the frog heart].

    PubMed

    Kibler, N A; Belogolova, A S; Vaĭkshnoraĭte, M A; Azarov, Ia E; Shmakov, D N

    2008-02-01

    The ventricular pump function under ectopic excitation of the heart was studied in decapitated and pithed adult frogs Rana temporaria (n = 21) at 18-19 degrees C. The intraventricular pressure was recorded with a catheter via ventricular wall. During pacing of the ventricular base and apex, the systolic pressure decreased (6.1 +/- 4.5 mm Hg and 8.9 +/- 5.0 mm Hg, respectively) as compared to the supraventricular rhythm (8.9 +/- 5.0 mm Hg, p < 0.05). The end-diastolic pressure decreased insignificantly both under basal and apical pacing. The systolic rate of pressure rise during dP/dtmax decreased under ventricular pacing, especially during pacing of the ventricular apex, as compared to the supraventricular rhythm (14.4 +/- 6/9 mm Hg/s and 22.1 +/- 11.2 mm Hg/s, respectively, p < 0.003). The isovolumetric relaxation (dP/dtmin) slowed during apical pacing as compared to the supraventricular rhythm (-25.1 +/- 13.6 and -35.6 +/- 18.3 mm Hg/s, respectively, p < 0.03). Ectopic excitation of the ventricular base and apex resulted in increase of the QRS duration (93 +/- 33 ms and 81 +/- 30 ms, respectively) as compared to the supraventricular rhythm (63 +/- 13 ms, p < 0.05). Thus, pacing of different ventricular areas ventricular myocardium with the ventricular pump function being reduced more obviously during the apical pacing compared to the pacing of ventricular base.

  2. Left ventricular apical diseases.

    PubMed

    Cisneros, Silvia; Duarte, Ricardo; Fernandez-Perez, Gabriel C; Castellon, Daniel; Calatayud, Julia; Lecumberri, Iñigo; Larrazabal, Eneritz; Ruiz, Berta Irene

    2011-08-01

    There are many disorders that may involve the left ventricular (LV) apex; however, they are sometimes difficult to differentiate. In this setting cardiac imaging methods can provide the clue to obtaining the diagnosis. The purpose of this review is to illustrate the spectrum of diseases that most frequently affect the apex of the LV including Tako-Tsubo cardiomyopathy, LV aneurysms and pseudoaneurysms, apical diverticula, apical ventricular remodelling, apical hypertrophic cardiomyopathy, LV non-compaction, arrhythmogenic right ventricular dysplasia with LV involvement and LV false tendons, with an emphasis on the diagnostic criteria and imaging features. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13244-011-0091-6) contains supplementary material, which is available to authorized users.

  3. Ventricular Septal Defect (For Parents)

    MedlinePlus

    ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System ECG (Electrocardiogram) Anesthesia - What to Expect Tetralogy of ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System Contact Us Print Resources Send to a friend ...

  4. Ventricular Septal Defect (For Parents)

    MedlinePlus

    ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System ECG (Electrocardiogram) Anesthesia - What to Expect Tetralogy of ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System Contact Us Print Resources Send to a Friend ...

  5. Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo.

    PubMed

    Zhang, Weibin; Roy, Sudipto

    2017-03-01

    During skeletal muscle development, myocytes aggregate and fuse to form multinucleated muscle fibers. Inhibition of myocyte fusion is thought to significantly derail the differentiation of functional muscle fibers. Despite the purported importance of fusion in myogenesis, in vivo studies of this process in vertebrates are rather limited. Myomaker, a multipass transmembrane protein, has been shown to be the first muscle-specific fusion protein essential for myocyte fusion in the mouse. We have generated loss-of-function alleles in zebrafish myomaker, and found that fusion of myocytes into syncytial fast-twitch muscles was significantly compromised. However, mutant myocytes could be recruited to fuse with wild-type myocytes in chimeric embryos, albeit rather inefficiently. Conversely, overexpression of Myomaker was sufficient to induce hyperfusion among fast-twitch myocytes, and it also induced fusion among slow-twitch myocytes that are normally fusion-incompetent. In line with this, Myomaker overexpression also triggered fusion in another myocyte fusion mutant compromised in the function of the junctional cell adhesion molecule, Jam2a. We also provide evidence that Rac, a regulator of actin cytoskeleton, requires Myomaker activity to induce fusion, and that an approximately 3kb of myomaker promoter sequence, with multiple E-box motifs, is sufficient to direct expression within the fast-twitch muscle lineage. Taken together, our findings underscore a conserved role for Myomaker in vertebrate myocyte fusion. Strikingly, and in contrast to the mouse, homozygous myomaker mutants are viable and do not exhibit discernible locomotory defects. Thus, in the zebrafish, myocyte fusion is not an absolute requirement for skeletal muscle morphogenesis and function.

  6. The induction of an ATP-sensitive K(+) current in cardiac myocytes of air- and water-breathing vertebrates.

    PubMed

    Paajanen, Vesa; Vornanen, Matti

    2002-09-01

    Opening of ATP-sensitive potassium channels (K(ATP)) is an effective cardioprotective mechanism in mammals. The amplitude of the ATP-sensitive K(+) current (I(K,ATP)) and the opening sensitivity of K(ATP) channels are, however, poorly known in ectotherms. As O(2)-sensing mechanisms and reactions to O(2) deficiency differ in aquatic and terrestrial animals, we hypothesised that the response of K(ATP) channels to metabolic inhibition would be different between air- and water-breathers. We therefore compared I(K,ATP) in ventricular myocytes of an anoxia-sensitive (Oncorhynchus mykiss) and an anoxia-tolerant fish (Carassius carassius), two amphibians (Xenopus laevis and Rana temporaria) and a terrestrial reptile (Lacerta vivipara) using the whole-cell patch-clamp method. I(K,ATP) was induced by preventing mitochondrial and/or glycolytic ATP production and perfusing myocytes with an ATP-free pipette solution. All species had a glibenclamide-sensitive I(K,ATP), but the current amplitude was much greater in air-breathers than in water-breathers. Furthermore, the I(K,ATP) in air-breathers was more sensitive to intracellular ATP depletion than in water-breathing animals. These findings indicate that I(K,ATP) is larger and more easily induced in air- than water-breathers. In all ectotherms, the first response to complete metabolic inhibition was the induction of a large inward current, the amplitude of which exceeded that of I(K,ATP). Thus, the protective effect of the I(K,ATP) may be physiologically significant only during partial metabolic blockade.

  7. Effects of delayed rectifier current blockade by E-4031 on impulse generation in single sinoatrial nodal myocytes of the rabbit.

    PubMed

    Verheijck, E E; van Ginneken, A C; Bourier, J; Bouman, L N

    1995-04-01

    The role of the delayed rectifier current (IK) in impulse generation was studied in single sinoatrial nodal myocytes of the rabbit. We used the class III antiarrhythmic drug E-4031, which blocks IK in rabbit ventricular myocytes. In single sinoatrial nodal cells, E-4031 (0.1 mumol/L) significantly prolonged cycle length and action potential duration, depolarized maximum diastolic potential, and reduced both the upstroke velocity of the action potential and the diastolic depolarization rate. Half of the cells were arrested completely. At higher concentrations (1 and 10 mumol/L), spontaneous activity ceased in all cells. Three ionic currents fundamental for pacemaking, ie, IK, the long-lasting inward calcium current (ICa,L), and the hyperpolarization-activated current (I(f)), were studied by using the whole-cell and amphotericin-perforated patch technique. E-4031 blocked part of the outward current during depolarizing steps as well as the tail current upon subsequent repolarization (ITD) in a dose-dependent manner. E-4031 (10 mumol/L) depressed ITD (88 +/- 4%) (n = 6), reduced peak ICa,L at 0 mV (29 +/- 15%) (n = 4), but did not affect I(f). Lower concentrations did not affect ICa,L. Additional use of 5 mumol/L nifedipine demonstrated that ITD is carried in part by a calcium-sensitive current. Interestingly, complete blockade of IK and ICa,L unmasked the presence of a background current component with a reversal potential of -32 +/- 5.4 mV (n = 8) and a conductance of 39.5 +/- 5.6 pS/pF, which therefore can contribute both to the initial part of repolarization and to full diastolic depolarization.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. ATP and PIP2 dependence of the magnesium-inhibited, TRPM7-like cation channel in cardiac myocytes.

    PubMed

    Gwanyanya, Asfree; Sipido, Karin R; Vereecke, Johan; Mubagwa, Kanigula

    2006-10-01

    The Mg(2+)-inhibited cation (MIC) current (I(MIC)) in cardiac myocytes biophysically resembles currents of heterologously expressed transient receptor potential (TRP) channels, particularly TRPM6 and TRPM7, known to be important in Mg(2+) homeostasis. To understand the regulation of MIC channels in cardiac cells, we used the whole cell voltage-clamp technique to investigate the role of intracellular ATP in pig, rat, and guinea pig isolated ventricular myocytes. I(MIC), studied in the presence or absence of extracellular divalent cations, was sustained for >or=50 min after patch rupture in ATP-dialyzed cells, whereas in ATP-depleted cells I(MIC) exhibited complete rundown. Equimolar substitution of internal ATP by its nonhydrolyzable analog adenosine 5'-(beta,gamma-imido)triphosphate failed to prevent rundown. In ATP-depleted cells, inhibition of lipid phosphatases by fluoride + vanadate + pyrophosphate prevented I(MIC) rundown. In contrast, under similar conditions neither the inhibition of protein phosphatases 1, 2A, 2B or of protein tyrosine phosphatase nor the activation of protein kinase A (forskolin, 20 microM) or protein kinase C (phorbol myristate acetate, 100 nM) could prevent rundown. In ATP-loaded cells, depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)) by prevention of its resynthesis (10 microM wortmannin or 15 microM phenylarsine oxide) induced rundown of I(MIC). Finally, loading ATP-depleted cells with exogenous PIP(2) (10 microM) prevented rundown. These results suggest that PIP(2), likely generated by ATP-utilizing lipid kinases, is necessary for maintaining cardiac MIC channel activity.

  9. Large right ventricular thrombus.

    PubMed

    Sousa, Carla; Almeida, Pedro; Gonçalves, Alexandra; Rodrigues, João; Rangel, Inês; Macedo, Filipe; Maciel, M Júlia

    2014-01-01

    Right ventricular thrombosis is a rare yet potentially fatal condition. It has been described in association with hypercoagulability states, autoimmune diseases and dilated cardiomyopathy. Echocardiography constitutes the election tool for diagnosis and characterization of these entities, allowing for the differentiation between the various types of thrombi. We present a case of a patient with alcoholic dilated cardiomyopathy admitted for congestive heart failure and lower respiratory infection. In the diagnostic approach, a routine echocardiography revealed a large mural right ventricular thrombus in association with severe biventricular dysfunction. The patient was proposed for anticoagulation strategy, which he refused.

  10. Metabolic coupling of glutathione between mouse and quail cardiac myocytes and its protective role against oxidative stress.

    PubMed

    Nakamura, T Y; Yamamoto, I; Kanno, Y; Shiba, Y; Goshima, K

    1994-05-01

    Cultured quail myocytes were much more resistant to H2O2 toxicity than cultured mouse myocytes. The intracellular concentration of glutathione ([GSH]i) and the activity of gamma-glutamylcysteine synthetase (gamma-GCS) in quail heart cells were about five and three times higher, respectively, than in mouse heart cells, although catalase and glutathione peroxidase (GSHpx) activity was similar in both. Preloading of gamma-glutamylcysteine monoethyl ester (gamma-GCE), a membrane-permeating GSH precursor, increased the H2O2 resistance of cultured mouse myocytes. These observations suggest that the high [GSH]i and the high activity of gamma-GCS in quail myocytes are responsible for their high resistance to H2O2. Both H2O2 sensitivity and [GSH]i of mosaic sheets composed of equal amounts of mouse and quail myocytes approximated those of sheets composed entirely of quail myocytes. From these observations, it is hypothesized that GSH was transferred from quail myocytes to mouse myocytes, probably through gap junctions between them, and that quail myocytes resynthesized GSH by a feedback mechanism, thus maintaining their intracellular GSH levels. When the fluorescent dye lucifer yellow was injected into a beating quail myocyte in a mosaic sheet, it spread to neighboring mouse myocytes but not to neighboring L cells (a cell line derived from mouse connective tissue). These observations indicate that existence of gap junctions in the region of cell contact between mouse and quail myocytes but not between quail myocytes and L cells. When quail myocytes preloaded with [3H]gamma-GCE were cocultured with mouse myocytes and L cells, the radioactivity was transmitted to neighboring mouse myocytes but not L cells. These observations show that GSH and/or its precursors can be transmitted from quail myocytes to mouse myocytes through gap junctions and that this can protect mouse myocytes from H2O2 toxicity. Mouse myocyte sheets composed of 10(4) cells or more showed higher resistance

  11. Arrhythmogenic right ventricular cardiomyopathy: contribution of different electrocardiographic techniques.

    PubMed

    Moreira, Davide; Delgado, Anne; Marmelo, Bruno; Correia, Emanuel; Gama, Pedro; Pipa, João; Nunes, Luís; Santos, Oliveira

    2014-04-01

    Arrhythmogenic right ventricular cardiomyopathy, also known as arrhythmogenic right ventricular dysplasia, is a condition in which myocardium is replaced by fibrous or fibrofatty tissue, predominantly in the right ventricle. It is clinically characterized by potentially lethal ventricular arrhythmias, and is a leading cause of sudden cardiac death. Its prevalence is not known exactly but is estimated at approximately 1:5000 in the adult population. Diagnosis can be on the basis of structural and functional alterations of the right ventricle, electrocardiographic abnormalities (including depolarization and repolarization alterations and ventricular arrhythmias) and family history. Diagnostic criteria facilitate the recognition and interpretation of non-specific clinical features of this disease. The authors present a case in which the diagnosis of arrhythmogenic right ventricular cardiomyopathy was prompted by the suspicion of right ventricular disease on transthoracic echocardiography. This was confirmed by detection of epsilon waves on analysis of the ECG, which generally go unnoticed but in this case were the key to the diagnosis. Their presence was also shown by non-conventional ECG techniques such as modified Fontaine ECG. The course of the disease culminated in the occurrence of ventricular tachycardia, which prompted placement of an implantable cardioverter-defibrillator.

  12. Cyclic mechanical strain of myocytes modifies CapZβ1 post translationally via PKCε.

    PubMed

    Lin, Ying-Hsi; Swanson, Erik R; Li, Jieli; Mkrtschjan, Michael A; Russell, Brenda

    2015-10-01

    The heart is exquisitely sensitive to mechanical stimuli and adapts to increased demands for work by enlarging the cardiomyocytes. In order to determine links between mechano-transduction mechanisms and hypertrophy, neonatal rat ventricular myocytes (NRVM) were subjected to physiologic strain for analysis of the dynamics of the actin capping protein, CapZ, and its post-translational modifications (PTM). CapZ binding rates were assessed after strain by fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) expressed by a GFP-CapZβ1 adenovirus. To assess the role of the protein kinase C epsilon isoform (PKCε), rest or cyclic strain were combined with specific PKCε activation by constitutively active PKCε, or by inhibition with dominant negative PKCε (dnPKCε) expression. Significant increases of CapZ FRAP kinetics with strain were blunted by dnPKCε, suggesting that PKCε is involved in mechano-transduction signaling. Similar combinations of strain and PKC regulation in NRVMs were studied by PTM profiles of CapZβ1 using quantitative two-dimensional gel electrophoresis. The significantly increased charge on CapZ seen with mechanical strain was reversed by the addition of dnPKCε. Potential clinical relevance was confirmed in vivo by PTMs of CapZ in the failing heart of one-year old transgenic mice over-expressing PKCε. Furthermore, with strain there was significant PKCε translocation to the Z-disc and co-localization with CapZβ1 or α-actinin, which was quantified on confocal images. A hypothetical model is presented proposing that one destination of the mechanotransduction signaling pathways might be for PTMs of CapZ thereby regulating actin capping and filament assembly.

  13. HIV protease inhibitors elicit volume-sensitive Cl− current in cardiac myocytes via mitochondrial ROS

    PubMed Central

    Deng, Wu; Baki, Lia; Yin, Jun; Zhou, Huiping; Baumgarten, Clive M.

    2010-01-01

    HIV protease inhibitors (HIV PI) reduce morbidity and mortality of HIV infection but cause multiple untoward effects. Because certain HIV PI evoke production of reactive oxygen species (ROS) and volume-sensitive Cl− current (ICl,swell) is activated by ROS, we tested whether HIV PI stimulate ICl,swell in ventricular myocytes. Ritonavir and lopinavir elicited outwardly-rectifying Cl− currents under isosmotic conditions that were abolished by the selective ICl,swell-blocker DCPIB. In contrast, amprenavir, nelfinavir, and raltegravir, an integrase inhibitor, did not modulate ICl,swell acutely. Ritonavir also reduced action potential duration, but amprenavir did not. ICl,swell activation was attributed to ROS because ebselen, an H2O2, scavenger, suppressed ritonavir- and lopinavir-induced ICl,swell. Major ROS sources in cardiomyocytes are sarcolemmal NADPH oxidase and mitochondria. The specific NADPH oxidase inhibitor apocynin failed to block ritonavir- or lopinavir-induced currents, although it blocks ICl,swell elicited by osmotic swelling or stretch. In contrast, rotenone, a mitochondrial e− transport inhibitor, suppressed both ritonavir- and lopinavir-induced ICl,swell. ROS production was measured in HL-1 cardiomyocytes with C-H2DCFDA-AM and mitochondrial membrane potential (ΔΨm) with JC-1. Flow cytometry confirmed that ritonavir and lopinavir but not amprenavir, nelfinavir, or raltegravir augmented ROS production, and HIV PI-induced ROS production was suppressed by rotenone but not NADPH oxidase blockade. Moreover, ritonavir, but not amprenavir, depolarized ΔΨm. These data suggest ritonavir and lopinavir activated ICl,swell via mitochondrial ROS production that was independent of NADPH oxidase. ROS-dependent modulation of ICl,swell and other ion channels by HIV PI may contribute to some of their actions in heart and perhaps other tissues. PMID:20736017

  14. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes.

    PubMed

    Martinelli, Valentina; Cellot, Giada; Toma, Francesca Maria; Long, Carlin S; Caldwell, John H; Zentilin, Lorena; Giacca, Mauro; Turco, Antonio; Prato, Maurizio; Ballerini, Laura; Mestroni, Luisa

    2013-07-23

    Myocardial tissue engineering currently represents one of the most realistic strategies for cardiac repair. We have recently discovered the ability of carbon nanotube scaffolds to promote cell division and maturation in cardiomyocytes. Here, we test the hypothesis that carbon nanotube scaffolds promote cardiomyocyte growth and maturation by altering the gene expression program, implementing the cell electrophysiological properties and improving networking and maturation of functional syncytia. In our study, we combine microscopy, biological and electrophysiological methodologies, and calcium imaging, to verify whether neonatal rat ventricular myocytes cultured on substrates of multiwall carbon nanotubes acquire a physiologically more mature phenotype compared to control (gelatin). We show that the carbon nanotube substrate stimulates the induction of a gene expression profile characteristic of terminal differentiation and physiological growth, with a 2-fold increase of α-myosin heavy chain (P < 0.001) and upregulation of sarcoplasmic reticulum Ca(2+) ATPase 2a. In contrast, markers of pathological hypertrophy remain unchanged (β-myosin heavy chain, skeletal α-actin, atrial natriuretic peptide). These modifications are paralleled by an increase of connexin-43 gene expression, gap junctions and functional syncytia. Moreover, carbon nanotubes appear to exert a protective effect against the pathologic stimulus of phenylephrine. Finally, cardiomyocytes on carbon nanotubes demonstrate a more mature electrophysiological phenotype of syncytia and intracellular calcium signaling. Thus, carbon nanotubes interacting with cardiomyocytes have the ability to promote physiological growth and functional maturation. These properties are unique in the current vexing field of tissue engineering, and offer unprecedented perspectives in the development of innovative therapies for cardiac repair.

  15. Effects of Na+ Current and Mechanogated Channels in Myofibroblasts on Myocyte Excitability and Repolarization

    PubMed Central

    Zhang, Jingtao; Lin, Jialun; Han, Guilai

    2016-01-01

    Fibrotic remodeling, characterized by fibroblast phenotype switching, is often associated with atrial fibrillation and heart failure. This study aimed to investigate the effects on electrotonic myofibroblast-myocyte (Mfb-M) coupling on cardiac myocytes excitability and repolarization of the voltage-gated sodium channels (VGSCs) and single mechanogated channels (MGCs) in human atrial Mfbs. Mathematical modeling was developed from a combination of (1) models of the human atrial myocyte (including the stretch activated ion channel current, ISAC) and Mfb and (2) our formulation of currents through VGSCs (INa_Mfb) and MGCs (IMGC_Mfb) based upon experimental findings. The effects of changes in the intercellular coupling conductance, the number of coupled Mfbs, and the basic cycle length on the myocyte action potential were simulated. The results demonstrated that the integration of ISAC, INa_Mfb, and IMGC_Mfb reduced the amplitude of the myocyte membrane potential (Vmax) and the action potential duration (APD), increased the depolarization of the resting myocyte membrane potential (Vrest), and made it easy to trigger spontaneous excitement in myocytes. For Mfbs, significant electrotonic depolarizations were exhibited with the addition of INa_Mfb and IMGC_Mfb. Our results indicated that ISAC, INa_Mfb, and IMGC_Mfb significantly influenced myocytes and Mfbs properties and should be considered in future cardiac pathological mathematical modeling. PMID:27980607

  16. Morphometry of right ventricular hypertrophy induced by myocardial infarction in the rat.

    PubMed Central

    Anversa, P.; Beghi, C.; McDonald, S. L.; Levicky, V.; Kikkawa, Y.; Olivetti, G.

    1984-01-01

    The growth response of the right ventricle was studied in rats following ligation of the left coronary artery, which produced infarcts comprising approximately 40% of the left ventricle. A month after surgery the weight of the right ventricle was increased 30%, and this hypertrophic change was characterized by a 17% wall thickening, consistent with the 13% greater diameter of myocytes. Myocardial hypertrophy was accompanied by an inadequate growth of the microvasculature that supports tissue oxygenation. This was seen by relative decreases in capillary luminal volume density (-27%) and capillary luminal surface density (-21%) and by an increase in the average maximum distance from the capillary wall to the mitochondria of myocytes (19%). In contrast, measurements of the mean myocyte volume per nucleus showed a proportional enlargement of these cells (32%), from 16,300 cu mu in control animals to 21,500 cu mu in experimental rats. Quantitative analysis of the right coronary artery revealed a 33% increase in its luminal area, commensurate with the magnitude of ventricular hypertrophy. PMID:6236695

  17. Decrease of left ventricular mass is a clinically valuable intermediate end-point of antihypertensive treatment.

    PubMed

    Agabiti-Rosei, E

    1997-01-01

    The presence of left ventricular hypertrophy (LVH) in hypertensive patients, recognized clinically by electrocardiography or echocardiography, is an adverse prognostic sign and a powerful predictor of cardiovascular morbidity and mortality, independent of blood pressure and other cardiovascular risk factors. Several pathophysiological changes accompany the myocytic growth and fibrosis that characterize hypertensive LVH and have been invoked to explain the association of LVH with increased cardiovascular risk. These include: impairment of diastolic function, and probably also of systolic performance, at least during exercise; reduced coronary blood flow reserve; predisposition to ventricular arrhythmias; alteration in cardiac autonomic nervous system activity. All these data have led to the opinion that regression of LVH should be a major goal in the treatment of hypertensive patients and might predict an improvement in prognosis.

  18. Purkinje fiber dysplasia (histiocytoid cardiomyopathy) with ventricular noncompaction in a savannah kitten.

    PubMed

    Gelberg, H B

    2009-07-01

    In a 2-month-old female savannah kitten that died unexpectedly, the pathologic findings of significance were restricted to the heart and included abnormal Purkinje fibers and biventricular myocardial trabeculation or noncompaction. The Purkinje fibers were large, angular, and tightly packed. They contained few disorganized myofibrils among a rarified cytoplasm. The fibers were distinct from adjacent myocytes and were immunohistochemically positive for desmin, muscle actin, myoglobin, sarcomeric actin, and chromogranin A. These findings are identical to those that occur in children with histiocytoid cardiomyopathy, a fatal genetic mitochondrial disorder of Purkinje fibers. Ventricular noncompaction likely has a multifactoral cause that results from fetal arrest of ventricular organizational development that might occur in conjunction with, or independent of, histiocytoid cardiomyopathy.

  19. Left ventricular bronchogenic cyst.

    PubMed

    Wei, Xiang; Omo, Alfred; Pan, Tiecheng; Li, Jun; Liu, Ligang; Hu, Min

    2006-04-01

    Bronchogenic cysts occurring in the left ventricle are a medical rarity. One successfully operated case is reported herein. The location of the cyst was just between the epicardium and myocardium of the inferior left ventricular wall, adjacent to the apex of the heart. Complete excision was achieved through a left anterolateral thoracotomy without extracorporeal circulation.

  20. Bidirectional ventricular tachycardia?

    PubMed

    Serra, José L; Caresani, Julian A; Bono, Julio O

    2014-01-01

    A 65-year-old woman was admitted to the hospital because of a syncopal episode with documented transient complete atrioventricular block. A DDD pacemaker was implanted. Post implantation, the patient was diagnosed with bidirectional ventricular tachycardia. Analysis of the arrhythmia and differential diagnosis is performed.

  1. R4496C RyR2 mutation impairs atrial and ventricular contractility

    PubMed Central

    Coppini, Raffaele; Scellini, Beatrice; Ferrara, Claudia; Pioner, Josè Manuel; Mazzoni, Luca; Priori, Silvia; Cerbai, Elisabetta; Tesi, Chiara; Poggesi, Corrado

    2016-01-01

    Ryanodine receptor (RyR2) is the major Ca2+ channel of the cardiac sarcoplasmic reticulum (SR) and plays a crucial role in the generation of myocardial force. Changes in RyR2 gating properties and resulting increases in its open probability (Po) are associated with Ca2+ leakage from the SR and arrhythmias; however, the effects of RyR2 dysfunction on myocardial contractility are unknown. Here, we investigated the possibility that a RyR2 mutation associated with catecholaminergic polymorphic ventricular tachycardia, R4496C, affects the contractile function of atrial and ventricular myocardium. We measured isometric twitch tension in left ventricular and atrial trabeculae from wild-type mice and heterozygous transgenic mice carrying the R4496C RyR2 mutation and found that twitch force was comparable under baseline conditions (30°C, 2 mM [Ca2+]o, 1 Hz). However, the positive inotropic responses to high stimulation frequency, 0.1 µM isoproterenol, and 5 mM [Ca2+]o were decreased in R4496C trabeculae, as was post-rest potentiation. We investigated the mechanisms underlying inotropic insufficiency in R4496C muscles in single ventricular myocytes. Under baseline conditions, the amplitude of the Ca2+ transient was normal, despite the reduced SR Ca2+ content. Under inotropic challenge, however, R4496C myocytes were unable to boost the amplitude of Ca2+ transients because they are incapable of properly increasing the amount of Ca2+ stored in the SR because of a larger SR Ca2+ leakage. Recovery of force in response to premature stimuli was faster in R4496C myocardium, despite the unchanged rates of recovery of L-type Ca2+ channel current (ICa-L) and SR Ca2+ content in single myocytes. A faster recovery from inactivation of the mutant R4496C channels could explain this behavior. In conclusion, changes in RyR2 channel gating associated with the R4496C mutation could be directly responsible for the alterations in both ventricular and atrial contractility. The increased RyR2 Po

  2. Emergency cardiac resynchronisation in a 4kg infant post surgical closure of ventricular septal defect.

    PubMed

    Yeong, Michael; Rumball, Elizabeth; Sinclair, Susan; Skinner, Jonathan R

    2013-04-01

    Cardiac resynchronisation therapy (CRT) is an established treatment for adult patients with cardiac failure due to mechanical and electrical dyssynchrony. Data on CRT in infants are scarce. We report the remarkable success of emergent CRT by epicardial pacing of the left ventricular apex in a 4kg infant with left ventricular failure due to LV dyssynchrony from left bundle branch block.

  3. Aorto-ventricular tunnel

    PubMed Central

    McKay, Roxane

    2007-01-01

    Aorto-ventricular tunnel is a congenital, extracardiac channel which connects the ascending aorta above the sinutubular junction to the cavity of the left, or (less commonly) right ventricle. The exact incidence is unknown, estimates ranging from 0.5% of fetal cardiac malformations to less than 0.1% of congenitally malformed hearts in clinico-pathological series. Approximately 130 cases have been reported in the literature, about twice as many cases in males as in females. Associated defects, usually involving the proximal coronary arteries, or the aortic or pulmonary valves, are present in nearly half the cases. Occasional patients present with an asymptomatic heart murmur and cardiac enlargement, but most suffer heart failure in the first year of life. The etiology of aorto-ventricular tunnel is uncertain. It appears to result from a combination of maldevelopment of the cushions which give rise to the pulmonary and aortic roots, and abnormal separation of these structures. Echocardiography is the diagnostic investigation of choice. Antenatal diagnosis by fetal echocardiography is reliable after 18 weeks gestation. Aorto-ventricular tunnel must be distinguished from other lesions which cause rapid run-off of blood from the aorta and produce cardiac failure. Optimal management of symptomatic aorto-ventricular tunnel consists of diagnosis by echocardiography, complimented with cardiac catheterization as needed to elucidate coronary arterial origins or associated defects, and prompt surgical repair. Observation of the exceedingly rare, asymptomatic patient with a small tunnel may be justified by occasional spontaneous closure. All patients require life-long follow-up for recurrence of the tunnel, aortic valve incompetence, left ventricular function, and aneurysmal enlargement of the ascending aorta. PMID:17922908

  4. Pure right ventricular infarction.

    PubMed

    Inoue, Katsuji; Matsuoka, Hiroshi; Kawakami, Hideo; Koyama, Yasushi; Nishimura, Kazuhisa; Ito, Taketoshi

    2002-02-01

    A 76-year-old man with chest pain was admitted to hospital where electrocardiography (ECG) showed ST-segment elevation in leads V1-4, indicative of acute anterior myocardial infarction. ST-segment elevation was also present in the right precordial leads V4R-6R. Emergency coronary angiography revealed that the left coronary artery was dominant and did not have significant stenosis. Aortography showed ostial occlusion of the right coronary artery (RCA). Left ventriculography showed normal function and right ventriculography showed a dilated right ventricle and severe hypokinesis of the right ventricular free wall. Conservative treatment was selected because the patient's symptoms soon ameliorated and his hemodynamics was stable. 99mTc-pyrophosphate and 201Tl dual single-photon emission computed tomography showed uptake of 99mTc-pyrophosphate in only the right ventricular free wall, but no uptake of 99mTc-pyrophosphate and no perfusion defect of 201Tl in the left ventricle. The peak creatine kinase (CK) and CK-MB were 1,381 IU/L and 127 IU/L, respectively. His natural course was favorable and the chest pain disappeared under medication. Two months after the onset, the ECG showed poor R progression in leads V1-4 indicating an old anterior infarction. Coronary angiography confirmed the ostial stenosis of the hypoplastic RCA. This was a case of pure right ventricular free wall infarction because of the occlusion of the ostium of the hypoplastic RCA, but not of the right ventricular branch. Because the electrocardiographic findings resemble those of an acute anterior infarction, it is important to consider pure right ventricular infarction in the differential diagnosis.

  5. Aorto-ventricular tunnel.

    PubMed

    McKay, Roxane

    2007-10-08

    Aorto-ventricular tunnel is a congenital, extracardiac channel which connects the ascending aorta above the sinutubular junction to the cavity of the left, or (less commonly) right ventricle. The exact incidence is unknown, estimates ranging from 0.5% of fetal cardiac malformations to less than 0.1% of congenitally malformed hearts in clinico-pathological series. Approximately 130 cases have been reported in the literature, about twice as many cases in males as in females. Associated defects, usually involving the proximal coronary arteries, or the aortic or pulmonary valves, are present in nearly half the cases. Occasional patients present with an asymptomatic heart murmur and cardiac enlargement, but most suffer heart failure in the first year of life. The etiology of aorto-ventricular tunnel is uncertain. It appears to result from a combination of maldevelopment of the cushions which give rise to the pulmonary and aortic roots, and abnormal separation of these structures. Echocardiography is the diagnostic investigation of choice. Antenatal diagnosis by fetal echocardiography is reliable after 18 weeks gestation. Aorto-ventricular tunnel must be distinguished from other lesions which cause rapid run-off of blood from the aorta and produce cardiac failure. Optimal management of symptomatic aorto-ventricular tunnel consists of diagnosis by echocardiography, complimented with cardiac catheterization as needed to elucidate coronary arterial origins or associated defects, and prompt surgical repair. Observation of the exceedingly rare, asymptomatic patient with a small tunnel may be justified by occasional spontaneous closure. All patients require life-long follow-up for recurrence of the tunnel, aortic valve incompetence, left ventricular function, and aneurysmal enlargement of the ascending aorta.

  6. Modulation of stretch-induced myocyte remodeling and gene expression by nitric oxide: a novel role for lipoma preferred partner in myofibrillogenesis.

    PubMed

    Hooper, Charlotte L; Paudyal, Anju; Dash, Philip R; Boateng, Samuel Y

    2013-05-15

    Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signaling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors that convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain at 1 Hz for 48 h to mimic in vivo mechanical stress. Cells were also treated with and without nitro-L-arginine methyl ester (L-NAME), a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres that were rescued by L-NAME (P < 0.05; n ≥ 5 cultures). We hypothesized that the mechanism was through NO-induced alteration of myocyte gene expression. L-NAME upregulated the mechanosensing proteins muscle LIM protein (MLP; by 100%; P < 0.05; n = 5 cultures) and lipoma preferred partner (LPP), a novel cardiac protein (by 80%; P < 0.05; n = 4 cultures). L-NAME also significantly altered the subcellular localization of LPP and MLP in a manner that favored growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between inducible NOS and neuronal NOS isoforms regulate gene expression. LPP knockdown by small intefering RNA led to formation of α-actinin aggregates and Z bodies showing that myofibrillogenesis was impaired. There was an upregulation of E3 ubiquitin ligase (MUL1) by 75% (P < 0.05; n = 5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated with mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure.

  7. [Ventricular "remodeling" after myocardial infarction].

    PubMed

    Cohen-Solal, A; Himbert, D; Guéret, P; Gourgon, R

    1991-06-01

    Cardiac failure is the principal medium-term complication of myocardial infarction. Changes in left ventricular geometry are observed after infarction, called ventricular remodeling, which, though compensatory initially, cause ventricular failure in the long-term. Experimental and clinical studies suggest that early treatment by coronary recanalisation, trinitrin and angiotensin converting enzyme inhibitors may prevent or limit the expansion and left ventricular dilatation after infarction, so improving ventricular function, and, at least in the animal, reduce mortality. Large scale trials with converting enzyme inhibitors are currently under way to determine the effects of this new therapeutic option. It would seem possible at present, independently of any reduction in the size of the infarction, to reduce or delay left ventricular dysfunction by interfering with the natural process of dilatation and ventricular modeling after infarction.

  8. Nitrate-containing beetroot enhances myocyte metabolism and mitochondrial content.

    PubMed

    Vaughan, Roger A; Gannon, Nicholas P; Carriker, Colin R

    2016-01-01

    Beetroot ( tián cài) juice consumption is of current interest for improving aerobic performance by acting as a vasodilator and possibly through alterations in skeletal muscle metabolism and physiology. This work explored the effects of a commercially available beetroot supplement on metabolism, gene expression, and mitochondrial content in cultured myocytes. C2C12 myocytes were treated with various concentrations of the beetroot supplement for various durations. Glycolytic metabolism and oxidative metabolism were quantified via measurement of extracellular acidification and oxygen consumption, respectively. Metabolic gene expression was measured using quantitative reverse transcription-polymerase chain reaction, and mitochondrial content was assessed with flow cytometry and confocal microscopy. Cells treated with beetroot exhibited significantly increased oxidative metabolism, concurrently with elevated metabolic gene expression including peroxisome proliferator-activated receptor gamma coactivator-1 alpha, nuclear respiratory factor 1, mitochondrial transcription factor A, and glucose transporter 4, leading to increased mitochondrial biogenesis. Our data show that treatment with a beetroot supplement increases basal oxidative metabolism. Our observations are also among the first to demonstrate that beetroot extract is an inducer of metabolic gene expression and mitochondrial biogenesis. These observations support the need for further investigation into the therapeutic and pharmacological effects of nitrate-containing supplements for health and athletic benefits.

  9. Erythromycin contracts rabbit colon myocytes via occupation of motilin receptors.

    PubMed

    Hasler, W L; Heldsinger, A; Chung, O Y

    1992-01-01

    Erythromycin stimulates gastroduodenal motility via action on motilin receptors. We evaluated erythromycin as a colonic muscle motilin agonist using in vitro rabbit colon studies. Isolated myocytes contracted to erythromycin with a half-maximal effective concentration of 2 pM and peak shortening of 22.4 +/- 2.5% at 1 nM, which was superimposable with the response to motilin. 125I-labeled motilin binding to colon muscle homogenates was saturable and specific with a dissociation constant (Kd) of 0.39 nM and maximal binding (Bmax) of 41 +/- 3 fmol/mg protein. Motilin displaced specifically bound 125I-motilin, with a Kd of 0.31 nM. Erythromycin displaced 125I-motilin but was less potent, with an inhibitory constant of 84.0 nM. Bmax values from displacement studies were similar to the Scatchard data. Motilin receptor protection from alkylation by N-ethylmaleimide preserved contraction to motilin and erythromycin but not acetylcholine or cholecystokinin, whereas protection with erythromycin preserved contraction to motilin but not other agonists. In conclusion, erythromycin binds to colon muscle motilin receptors present in densities similar to reported values for the upper gut. Furthermore, erythromycin contracts colonic myocytes via specific action on motilin receptors. Thus erythromycin may have colonic motor-stimulating properties by action on motilin receptors.

  10. Microfluidic partitioning of the extracellular space around single cardiac myocytes.

    PubMed

    Klauke, Norbert; Smith, Godfrey L; Cooper, Jonathan M

    2007-02-01

    This paper describes the partitioning of the extracellular space around an electrically activated single cardiac myocyte, constrained within a microfluidic device. Central to this new method is the production of a hydrophobic gap-structure, which divides the extracellular space into two distinct microfluidic pools. The content of these pools was controlled using a pair of concentric automated pipets (subsequently called "dual superfusion pipet"), each providing the ability to dispense (i.e., the source, inner pipet) and aspirate (the sink, outer pipet) a buffer solution (perfusate) into each of the two pools. For rapid solution switching around the cell, additional dual superfusion pipets were inserted into the microchannel for defined time periods using a piezostepper, enabling us to add a test solution, such as a drug. Three distinct areas of the cell were manipulated, namely, the microfluidic environment, the cellular membrane, and the intracellular space. Planar integrated microelectrodes enabled the electrical stimulation of the cardiomyocyte and the recording of the evoked action potential. The device was mounted on an inverted microscope to allow simultaneous sarcomere length and epifluorescence measurements during evoked electrical activity, including, for example, the response of the stimulated end of the cardiac myocyte in comparison with the untreated cell end.

  11. Unresponsive ventricular tachycardia associated with aluminum phosphide poisoning.

    PubMed

    Jadhav, Amar P; Nusair, Maein B; Ingole, Apekshe; Alpert, Martin A

    2012-05-01

    Inhalation or ingestion of aluminum phosphide (AP) generates phosphine gas on exposure to moisture, which, in turn, produces widespread organ toxicity primarily involving the lungs, heart, liver, and kidneys. Cardiac manifestations of AP poisoning include toxic myocarditis, refractory heart failure, bradyarrhythmias, and tachyarrhythmias including ventricular tachycardia (VT). A 19-year-old depressed male farm worker ingested ten 500-mg tablets of Celphos in a suicide attempt. Each Celphos tablet contains 56% AP. Over the course of 10 hours, the patient developed heart failure and respiratory failure associated with a rise in serum troponin level to 12.7 ng/mL. Serum electrolytes (including magnesium) and serum creatinine levels were normal throughout. His course was further complicated by acidemia and hypotension. These hemodynamic and metabolic abnormalities were initially corrected by assisted ventilation and continuous veno-venous hemofiltration. However, he developed hemodynamically stable sustained monomorphic VT, which proved unresponsive to treatment with intravenous magnesium sulfate and intravenous amiodarone therapy. After a decline in blood pressure, 6 attempts at electrocardioversion failed to restore sinus rhythm, and he died. Postmortem histologic examination of myocardium showed contraction band necrosis, early coagulation necrosis, edema, hemorrhage, and pyknosis of cardiac myocyte nuclei. Ventricular tachycardia associated with AP poisoning has been successfully treated with magnesium sulfate, amiodarone, and electrocardioversion. This case report documents failure of all 3 of these therapeutic modalities.

  12. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    PubMed Central

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K.; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  13. Steady-state solutions of cell volume in a cardiac myocyte model elaborated for membrane excitation, ion homeostasis and Ca2+ dynamics.

    PubMed

    Cha, Chae Young; Noma, Akinori

    2012-08-21

    The cell volume continuously changes in response to varying physiological conditions, and mechanisms underlying volume regulation have been investigated in both experimental and theoretical studies. Here, general formulations concerning cell volume change are presented in the context of developing a comprehensive cell model which takes Ca(2+) dynamics into account. Explicit formulas for charge conservation and steady-state volumes of the cytosol and endoplasmic reticulum (ER) are derived in terms of membrane potential, amount of ions, Ca(2+)-bound buffer molecules, and initial cellular conditions. The formulations were applied to a ventricular myocyte model which has plasma-membrane Ca(2+) currents with dynamic gating mechanisms, Ca(2+)-buffering reactions with diffusive and non-diffusive buffer proteins, and Ca(2+) uptake into or release from the sarcoplasmic reticulum (SR) accompanied by compensatory cationic or anionic currents through the SR membrane. Time-dependent volume changes in cardiac myocytes induced by varying extracellular osmolarity or by action potential generation were successfully simulated by the novel formulations. Through application of bifurcation analysis, the existence and uniqueness of steady-state solutions of the cell volume were validated, and contributions of individual ion channels and transporters to the steady-state volume were systematically analyzed. The new formulas are consistent with previous fundamental theory derived from simple models of minimum compositions. The new formulations may be useful for examination of the relationship between cell function and volume change in other cell types.

  14. Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells.

    PubMed

    Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P

    2013-03-01

    Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.

  15. Development of Left Ventricular Diastolic Dysfunction with Preservation of Ejection Fraction during Progression of Infant Right Ventricular Hypertrophy

    PubMed Central

    Kitahori, Kazuo; He, Huamei; Kawata, Mitsuhiro; Cowan, Douglas B.; Friehs, Ingeborg; del Nido, Pedro J.; McGowan, Francis X.

    2011-01-01

    Background Progressive left ventricular (LV) dysfunction can be a major late complication in patients with chronic right ventricular (RV) pressure overload (e.g., tetralogy of Fallot). We therefore examined LV function (serial echocardiography and ex vivo Langendorff) and histology in a model of infant pressure-load RV hypertrophy (RVH). Methods and Results Ten-day-old rabbits (N=6 per time point, total = 48) that underwent pulmonary artery banding (PAB) were sacrificed at 2–8 weeks after PAB, and comparisons were made with age-matched sham controls. LV performance (myocardial performance index, MPI) decreased during the progression of RVH although the LV ejection fraction (EF) was maintained. In addition, RVH caused significant septal displacement, reduced septal contractility, and decreased LV end-systolic (LVDs) and diastolic (LVDd) dimensions, resulting in LV diastolic dysfunction with the appearance of preserved EF. Significant septal and LV free wall apoptosis (myocyte-specific TUNEL and activated caspase-3), fibrosis (Masson’s trichrome stain), and reduced capillary density (CD31 immunostaining) occurred in the PAB group after 6–8 wks (all p<0.05). Conclusion This is the first study showing that pressure overload of the RV resulting in RVH causes LV diastolic dysfunction while preserving EF through mechanical and molecular effects upon the septum and LV myocardium. In particular, the development of RVH is associated with septal and LV apoptosis and reduced LV capillary density. PMID:19919985

  16. Dynamic Phosphorylation of the Myocyte Enhancer Factor 2Cα1 Splice Variant Promotes Skeletal Muscle Regeneration and Hypertrophy.

    PubMed

    Baruffaldi, Fiorenza; Montarras, Didier; Basile, Valentina; De Feo, Luca; Badodi, Sara; Ganassi, Massimo; Battini, Renata; Nicoletti, Carmine; Imbriano, Carol; Musarò, Antonio; Molinari, Susanna

    2017-03-01

    The transcription factor MEF2C (Myocyte Enhancer Factor 2C) plays an established role in the early steps of myogenic differentiation. However, the involvement of MEF2C in adult myogenesis and in muscle regeneration has not yet been systematically investigated. Alternative splicing of mammalian MEF2C transcripts gives rise to two mutually exclusive protein variants: MEF2Cα2 which exerts a positive control of myogenic differentiation, and MEF2Cα1, in which the α1 domain acts as trans-repressor of the MEF2C pro-differentiation activity itself. However, MEF2Cα1 variants are persistently expressed in differentiating cultured myocytes, suggesting a role in adult myogenesis. We found that overexpression of both MEF2Cα1/α2 proteins in a mouse model of muscle injury promotes muscle regeneration and hypertrophy, with each isoform promoting different stages of myogenesis. Besides the ability of MEF2Cα2 to increase differentiation, we found that overexpressed MEF2Cα1 enhances both proliferation and differentiation of primary myoblasts, and activates the AKT/mTOR/S6K anabolic signaling pathway in newly formed myofibers. The multiple activities of MEF2Cα1 are modulated by phosphorylation of Ser98 and Ser110, two amino acid residues located in the α1 domain of MEF2Cα1. These specific phosphorylations allow the interaction of MEF2Cα1 with the peptidyl-prolyl isomerase PIN1, a regulator of MEF2C functions. Overall, in this study we established a novel regulatory mechanism in which the expression and the phosphorylation of MEF2Cα1 are critically required to sustain the adult myogenesis. The described molecular mechanism will represent a new potential target for the development of therapeutical strategies to treat muscle-wasting diseases. Stem Cells 2017;35:725-738.

  17. Imaging for the Diagnosis of an Unusual Case of Left Ventricular Aneurysm

    SciTech Connect

    Russo, G. Sarais, C.; Corbetti, F.; Ramondo, A.; Daliento, L.

    2005-04-15

    An isolated ventricular diverticulum in an adult patient investigated for chest pain is reported. An exhaustive diagnosis was obtained by different means and complementary imaging techniques such as echocardiography, cardiovascular magnetic resonance imaging and cineangiography.

  18. Idiopathic fascicular ventricular tachycardia.

    PubMed

    Francis, Johnson; Venugopal, K; Khadar, S A; Sudhayakumar, N; Gupta, Anoop K

    2004-07-01

    Idiopathic fascicular ventricular tachycardia is an important cardiac arrhythmia with specific electrocardiographic features and therapeutic options. It is characterized by relatively narrow QRS complex and right bundle branch block pattern. The QRS axis depends on which fascicle is involved in the re-entry. Left axis deviation is noted with left posterior fascicular tachycardia and right axis deviation with left anterior fascicular tachycardia. A left septal fascicular tachycardia with normal axis has also been described. Fascicular tachycardia is usually seen in individuals without structural heart disease. Response to verapamil is an important feature of fascicular tachycardia. Rare instances of termination with intravenous adenosine have also been noted. A presystolic or diastolic potential preceding the QRS, presumed to originate from the Purkinje fibers can be recorded during sinus rhythm and ventricular tachy