Science.gov

Sample records for adult voxel phantom

  1. Specific absorbed fraction for Korean adult voxel phantom from internal photon source.

    PubMed

    Lee, C; Park, S; Lee, J K

    2007-01-01

    Absorbed fraction (AF) and specific absorbed fraction (SAF) are crucial values for the calculation of radionuclide S-values and consequently for internal dose estimates. The formalism of the Medical Internal Radiation Dose (MIRD) committee of the Society of Nuclear Medicine (SNM) has been utilised as a standard in the calculation of individual organ doses for biologically distributed radionuclides and for different types of radiation. Although those quantities are highly sensitive to individual anatomical difference, the SAF dataset calculated by Caucasian-based stylised phantoms have been applied to Korean population until now. This study was intended to calculate the SAFs by using realistic Korean voxel phantom and Monte Carlo transport technique for the first time and compare the results with those of the existing Caucasian-based data and the Korean stylised phantom published recently. The up-to-date realistic Korean voxel phantom, KTMAN-2, which was developed from computed tomography (CT) images of an average Korean adult male, was employed for Monte Carlo calculation using EGSnrc user-code, developed for the purpose of this study. The SAFs for 32 target organs and tissues from the photon source, uniformly deposited in a total of 37 source organs and tissues, were calculated from KTMAN-2. The results were compared with those for an adult phantom of Oak Ridge National Laboratory (ORNL) and Korean adult stylised phantom. Two major reasons of discrepancy were analysed: (1) racial difference between the Korean and the Caucasian and (2) anatomical difference between stylised and voxel phantoms. When the source organ was identical to the target organ, difference in SAF caused by the difference in target-organ mass between the Korean and the Caucasian phantoms was mainly observed. When the source and target organs were not identical, significant difference in SAF was observed which was mainly attributed to the difference in inter-organ distance and organ shape between

  2. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Loureiro, E. C. M.; Lima, V. J. M.; Lima, F. R. A.; Hoff, G.

    2004-12-01

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  3. Organ doses from environmental exposures calculated using voxel phantoms of adults and children

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Schlattl, H.; Zankl, M.; Endo, A.; Saito, K.

    2012-09-01

    This paper presents effective and organ dose conversion coefficients for members of the public due to environmental external exposures, calculated using the ICRP adult male and female reference computational phantoms as well as voxel phantoms of a baby, two children and four adult individual phantoms--one male and three female, one of them pregnant. Dose conversion coefficients are given for source geometries representing environmental radiation exposures, i.e. whole body irradiations from a volume source in air, representing a radioactive cloud, a plane source in the ground at a depth of 0.5 g cm-2, representing ground contamination by radioactive fall-out, and uniformly distributed natural sources in the ground. The organ dose conversion coefficients were calculated employing the Monte Carlo code EGSnrc simulating the photon transport in the voxel phantoms, and are given as effective and equivalent doses normalized to air kerma free-in-air at height 1 m above the ground in Sv Gy-1. The findings showed that, in general, the smaller the body mass of the phantom, the higher the dose. The difference in effective dose between an adult and an infant is 80-90% at 50 keV and less than 40% above 100 keV. Furthermore, dose equivalent rates for photon exposures of several radionuclides for the above environmental exposures were calculated with the most recent nuclear decay data. Data are shown for effective dose, thyroid, colon and red bone marrow. The results are expected to facilitate regulation of exposure to radiation, relating activities of radionuclides distributed in air and ground to dose of the public due to external radiation as well as the investigation of the radiological effects of major radiation accidents such as the recent one in Fukushima and the decision making of several committees.

  4. CNMAN: a Chinese adult male voxel phantom constructed from color photographs of a visible anatomical data set.

    PubMed

    Zhang, Binquan; Ma, Jizeng; Liu, Liye; Cheng, Jianping

    2007-01-01

    A voxel phantom of Chinese adult male called CNMAN was constructed from color photographs of the first Chinese visible human data set, for radiation protection purpose. This data set was obtained from a 35-y-old Chinese male cadaver by a medical university in China. The man, 170 cm in height and 65 kg in weight, was dead without any pathological changes. The image size for transversal anatomical photographs of the whole body was 3072 x 2048. After the photographs were semi-automatically segmented, the voxel phantom (CNMAN) with a voxel size of 0.16 mm x 0.16 mm x 1 mm, consisting of 29 tissues or organs was constructed. Combined with the MCNP Monte Carlo transport code, preliminary results for radiation protection dosimetry were obtained based on this Chinese voxel phantom. PMID:17526909

  5. The contemporary JAEA Japanese voxel phantoms.

    PubMed

    Sato, Kaoru; Takahashi, Fumiaki

    2012-03-01

    Average adult Japanese male (JM-103 phantom) and female (JF-103 phantom) voxel (volume pixel) phantoms were newly constructed by modifying the JM and JF phantoms previously developed at Japan Atomic Energy Agency. The JM-103 and JF-103 have average characteristics with respect to organ masses and body sizes. Their tissue segmentations were based on International Commission on Radiological Protection (ICRP) Publication 103. The anatomical and dosimetric characteristics of JM-103 and JF-103 were compared with those of ICRP adult reference male (AM phantom) and female (AF phantoms) phantoms. This study discusses their anatomical and dosimetric characteristics, and applications to the dose assessment of the atomic bomb survivors. PMID:22003186

  6. Selected organ dose conversion coefficients for external photons calculated using ICRP adult voxel phantoms and Monte Carlo code FLUKA.

    PubMed

    Patni, H K; Nadar, M Y; Akar, D K; Bhati, S; Sarkar, P K

    2011-11-01

    The adult reference male and female computational voxel phantoms recommended by ICRP are adapted into the Monte Carlo transport code FLUKA. The FLUKA code is then utilised for computation of dose conversion coefficients (DCCs) expressed in absorbed dose per air kerma free-in-air for colon, lungs, stomach wall, breast, gonads, urinary bladder, oesophagus, liver and thyroid due to a broad parallel beam of mono-energetic photons impinging in anterior-posterior and posterior-anterior directions in the energy range of 15 keV-10 MeV. The computed DCCs of colon, lungs, stomach wall and breast are found to be in good agreement with the results published in ICRP publication 110. The present work thus validates the use of FLUKA code in computation of organ DCCs for photons using ICRP adult voxel phantoms. Further, the DCCs for gonads, urinary bladder, oesophagus, liver and thyroid are evaluated and compared with results published in ICRP 74 in the above-mentioned energy range and geometries. Significant differences in DCCs are observed for breast, testis and thyroid above 1 MeV, and for most of the organs at energies below 60 keV in comparison with the results published in ICRP 74. The DCCs of female voxel phantom were found to be higher in comparison with male phantom for almost all organs in both the geometries. PMID:21147784

  7. The GSF family of voxel phantoms

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Zankl, Maria; Fill, Ute; Regulla, Dieter

    2002-01-01

    Voxel phantoms are human models based on computed tomographic or magnetic resonance images obtained from high-resolution scans of a single individual. They consist of a huge number of volume elements (voxels) and are at the moment the most precise representation of the human anatomy. The purpose of this paper is to introduce the GSF voxel phantoms, with emphasis on the new ones and highlight their characteristics and limitations. The GSF voxel family includes at the moment two paediatric and five adult phantoms of both sexes, different ages and stature and several others are under construction. Two phantoms made of physical calibration phantoms are also available to be used for validation purposes. The GSF voxel phantoms tend to cover persons of individual anatomy and were developed to be used for numerical dosimetry of radiation transport but other applications are also possible. Examples of applications in patient dosimetry in diagnostic radiology and in nuclear medicine as well as for whole-body irradiations from idealized external exposures are given and discussed.

  8. The reference phantoms: voxel vs polygon.

    PubMed

    Kim, C H; Yeom, Y S; Nguyen, T T; Wang, Z J; Kim, H S; Han, M C; Lee, J K; Zankl, M; Petoussi-Henss, N; Bolch, W E; Lee, C; Chung, B S

    2016-06-01

    The International Commission on Radiological Protection (ICRP) reference male and female adult phantoms, described in Publication 110, are voxel phantoms based on whole-body computed tomography scans of a male and a female patient, respectively. The voxel in-plane resolution and the slice thickness, of the order of a few millimetres, are insufficient for proper segmentation of smaller tissues such as the lens of the eye, the skin, and the walls of some organs. The calculated doses for these tissues therefore present some limitations, particularly for weakly penetrating radiation. Similarly, the Publication 110 phantoms cannot represent 8-40-µm-thick target regions in respiratory or alimentary tract organs. Separate stylised models have been used to represent these tissues for calculation of the ICRP reference dose coefficients (DCs). ICRP Committee 2 recently initiated a research project, the ultimate goal of which is to convert the Publication 110 phantoms to a high-quality polygon-mesh (PM) format, including all source and target regions, even those of the 8-40-µm-thick alimentary and respiratory tract organs. It is expected that the converted phantoms would lead to the same or very similar DCs as the Publication 110 reference phantoms for penetrating radiation and, at the same time, provide more accurate DCs for weakly penetrating radiation and small tissues. Additionally, the reference phantoms in the PM format would be easily deformable and, as such, could serve as a starting point to create phantoms of various postures for use, for example, in accidental dose calculations. This paper will discuss the current progress of the phantom conversion project and its significance for ICRP DC calculations. PMID:26969297

  9. Tools for creating and manipulating voxel phantoms.

    PubMed

    Kramer, Gary H; Capello, Kevin; Chiang, Albert; Cardenas-Mendez, Erick; Sabourin, Trevor

    2010-03-01

    The National Internal Radiation Assessment Section's Human Monitoring Laboratory (HML) has purchased and developed a number of in-house tools to create and edit voxel phantoms. This paper describes the methodology developed in the HML using those tools to prepare input files for Monte Carlo simulations using voxel phantoms. Three examples are given. The in-house tools described in this paper, and the phantoms that have been created using them, are all publically available upon request from the corresponding author. PMID:20147794

  10. Organ dose conversion coefficients for external photon irradiation using the Chinese voxel phantom (CVP).

    PubMed

    Li, Junli; Qiu, Rui; Zhang, Zhan; Liu, Liye; Zeng, Zhi; Bi, Lei; Li, Wenqian

    2009-07-01

    A set of conversion coefficients from kerma free-in-air to the organ absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on a whole-body, Chinese adult male voxel phantom. This computational phantom, called the Chinese voxel phantom (CVP), including totally 23 organs, was developed from magnetic resonance imaging of a young healthy Chinese man at a resolution of 2 x 2 mm. Compared with the ICRP Reference Man, more than half of the organs or tissues in the CVP show mass differences of more than 20. Monte Carlo simulations with MCNP code were carried out to calculate the organ dose conversion coefficients. Irradiation conditions include anterior-posterior, posterior-anterior (PA), right-lateral, left-lateral, rotational and isotropic geometries. Organ dose conversion coefficients from this study are compared with the data from the Asian voxel phantoms Visible Chinese Human and KORMAN. These data sets agree with each other within 10% for photon energy >5 MeV. However, discrepancies of 34-63% were observed for organs of the alimentary tract, such as the oesophagus and stomach, those of the urinary system, such as the bladder wall and thyroid, especially at low photon energy range and PA geometry. These results suggest that the anatomical variation within the Chinese population, as represented by these adult male voxel phantoms, can lead to uncertainties when a standard phantom is used for the entire population. PMID:19457976

  11. Generation of voxelized breast phantoms from surgical mastectomy specimens

    PubMed Central

    Michael O’Connor, J.; Das, Mini; Dider, Clay S.; Mahd, Mufeed; Glick, Stephen J.

    2013-01-01

    Purpose: In the research and development of dedicated tomographic breast imaging systems, digital breast object models, also known as digital phantoms, are useful tools. While various digital breast phantoms do exist, the purpose of this study was to develop a realistic high-resolution model suitable for simulating three-dimensional (3D) breast imaging modalities. The primary goal was to design a model capable of producing simulations with realistic breast tissue structure. Methods: The methodology for generating an ensemble of digital breast phantoms was based on imaging surgical mastectomy specimens using a benchtop, cone-beam computed tomography system. This approach allowed low-noise, high-resolution projection views of the mastectomy specimens at each angular position. Reconstructions of these projection sets were processed using correction techniques and diffusion filtering prior to segmentation into breast tissue types in order to generate phantoms. Results: Eight compressed digital phantoms and 20 uncompressed phantoms from which an additional 96 pseudocompressed digital phantoms with voxel dimensions of 0.2 mm3 were generated. Two distinct tissue classification models were used in forming breast phantoms. The binary model classified each tissue voxel as either adipose or fibroglandular. A multivalue scaled model classified each tissue voxel as percentage of adipose tissue (range 1%–99%). Power spectral analysis was performed to compare simulated reconstructions using the breast phantoms to the original breast specimen reconstruction, and fits were observed to be similar. Conclusions: The digital breast phantoms developed herein provide a high-resolution anthropomorphic model of the 3D uncompressed and compressed breast that are suitable for use in evaluating and optimizing tomographic breast imaging modalities. The authors believe that other research groups might find the phantoms useful, and therefore they offer to make them available for wider use

  12. Effective dose evaluation for BNCT brain tumor treatment based on voxel phantoms.

    PubMed

    Wang, Jeng-Ning; Lee, Kuo-Wei; Jiang, Shiang-Huei

    2014-06-01

    For BNCT treatments, in addition to tumor target doses, non-negligible doses will result in all the remaining organs of the body. This work aims to evaluate the effective dose as well as the average absorbed doses of each of organs of patients with brain tumor treated in the BNCT epithermal neutron beam at THOR. The effective doses were evaluated according to the definitions of ICRP Publications 60 and 103 for the reference male and female computational phantoms developed in ICRP Publication 110 by using the MCNP5 Monte Carlo code with the THOR-Y09 beam source. The effective dose acquired in this work was compared with the results of our previous work calculated for an adult hermaphrodite mathematical phantom. It was found that the effective dose for the female voxel phantom is larger than that for the male voxel phantom by a factor of 1.2-1.5 and the effective dose for the voxel phantom is larger than that for the mathematical phantom by a factor of 1.3-1.6. For a typical brain tumor BNCT, the effective dose was calculated to be 1.51Sv and the average absorbed dose for eye lenses was 1.07Gy. PMID:24411557

  13. Internal dosimetry estimates using voxelized reference phantoms for thyroid agents

    PubMed Central

    Hoseinian-Azghadi, E.; Rafat-Motavalli, L.; Miri-Hakimabad, H.

    2014-01-01

    This work presents internal dosimetry estimates for diagnostic procedures performed for thyroid disorders by relevant radiopharmaceuticals. The organ doses for 131Iodine, 123Iodine and 99mTc incorporated into the body were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms using the Monte Carlo transport method. A comparison between different thyroid uptakes of iodine in the range of 0–55% was made, and the effect of various techniques for administration of 99mTc on organ doses was studied. To investigate the necessity of calculating organ dose from all source regions, the major source organ and its contribution to total dose were specified for each target organ. Moreover, we compared effective dose in ICRP voxel phantoms with that in stylized phantoms. In our method, we directly calculated the organ dose without using the S values or SAFs, as is commonly done. Hence, a distribution of the absorbed dose to entire tissues was obtained. The chord length distributions (CLDs) were also computed for the selected source–target pairs to make comparison across the genders. The results showed that the S values for radionuclides in the thyroid are not sufficient for calculating the organ doses, especially for 123I and 99mTc. The thyroid and its neighboring organs receive a greater dose as thyroid uptake increases. Our comparisons also revealed an underestimation of organ doses reported for the stylized phantoms compared with the values based on the ICRP voxel phantoms in the uptake range of 5–55%, and an overestimation of absorbed dose by up to 2-fold for Iodine administration using blocking agent and for 99mTc incorporation. PMID:24222311

  14. Monte Carlo based voxel phantoms for in vivo internal dosimetry.

    PubMed

    Ros, J M Gómez; Moraleda, M; López, M A; Navarro, T; Navarro, J F

    2007-01-01

    The purpose of this communication is to describe briefly the computer programs developed to generate the MCNP input file corresponding to any segmented tomographic data and its application to the calibration procedures for in vivo internal dosimetry. The method has been applied to the determination of 241Am in bone by measurement in skull and knee using MCNP voxel models of a real human head and knee based on the tomographic Voxelman and Arms Down phantoms developed by Zubal et al. at Yale University. PMID:17449911

  15. Whole-body voxel phantoms of paediatric patients—UF Series B

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L.; Bolch, Wesley E.

    2006-09-01

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm × 0.86 mm × 3.0 mm, 0.90 mm × 0.90 mm × 5.0 mm, 1.16 mm × 1.16 mm × 6.0 mm, 0.94 mm × 0.94 mm × 6.00 mm and 1.18 mm × 1.18 mm × 6.72 mm, respectively.

  16. Whole-body voxel phantoms of paediatric patients--UF Series B.

    PubMed

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L; Bolch, Wesley E

    2006-09-21

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm x 0.86 mm x 3.0 mm, 0.90 mm x 0.90 mm x 5.0 mm, 1.16 mm x 1.16 mm x 6.0 mm, 0.94 mm x 0.94 mm x 6.00 mm and 1.18 mm x 1.18 mm x 6.72 mm, respectively. PMID:16953048

  17. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    NASA Astrophysics Data System (ADS)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  18. Preliminary studies on neutron conversion coefficients calculated with MCNPX in NORMAN voxel phantom.

    PubMed

    Gualdrini, G; Ferrari, P

    2007-01-01

    Effective dose is the main radiation protection quantity. Progresses in radiation studies brought ICRP to revise ICRP 60 recommendations. A new publication, already circulated in form of draft, is expected to change some aspects of effective dose evaluation method. The organ absorbed doses for neutrons at various energies and incidence angles, necessary to estimate the effective dose, have been published in ICRU 57 and ICRP 74 reports for ADAM and EVA analytical male and female phantoms and similar calculations were also performed, based on the MCNP code, for VIP-MAN voxel phantom. The NORMAN voxel phantom, developed on the basis of magnetic resonance data of an adult male at HPA (formerly NRPB), is an accurate model (with a voxel element of approximately 8 mm(3)), which well approximates the standard man and has been already employed for radiation protection studies with photons. In the present paper, a modified version, called NORMAN-05, including a new organ, the salivary glands (as suggested in the mentioned ICRP draft), and a more detailed skeletal description, especially devoted to red bone marrow dose evaluation, has been employed with the Monte Carlo code MCNPX to calculate neutron conversion coefficients from thermal energies to 20 MeV. Some preliminary results, for antero-posterior and postero-anterior irradiation conditions, are presented and compared with the available published data. PMID:17502319

  19. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    SciTech Connect

    Bolch, Wesley

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  20. Creation of a voxel phantom of the ICRP reference crab.

    PubMed

    Caffrey, E A; Higley, K A

    2013-06-01

    The International Commission on Radiological Protection (ICRP) has modeled twelve reference animal and plant (RAP) species using simple geometric shapes in Monte-Carlo (MCNP) based simulations. The focus has now shifted to creating voxel phantoms of each RAP in order to estimate doses to biota with a higher degree of confidence. This paper describes the creation of a voxel model of a Dungeness crab from CT images with shell, gills, gonads, hepatopancreas, and heart identified and segmented. Absorbed fractions were tabulated for each organ as a source and target at twelve photon and nine electron energies: 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV for photons and 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0 and 4.0 MeV for electrons. AFs whose error exceeded 5% are marked with an underline in the data tables; AFs whose error was higher than 10% were excluded, and are shown in the tabulated data as a dashed line. A representative sample of the data is shown in Figs. 3-8; the entire data set is available as an electronic appendix. The results are consistent with previous small organism studies (Kinase, 2008; Stabin et al., 2006), and suggest that AF values are highly dependent on source organ location and mass. PMID:23410593

  1. Dose conversion coefficients for ICRP110 voxel phantom in the Geant4 Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Martins, M. C.; Cordeiro, T. P. V.; Silva, A. X.; Souza-Santos, D.; Queiroz-Filho, P. P.; Hunt, J. G.

    2014-02-01

    The reference adult male voxel phantom recommended by International Commission on Radiological Protection no. 110 was implemented in the Geant4 Monte Carlo code. Geant4 was used to calculate Dose Conversion Coefficients (DCCs) expressed as dose deposited in organs per air kerma for photons, electrons and neutrons in the Annals of the ICRP. In this work the AP and PA irradiation geometries of the ICRP male phantom were simulated for the purpose of benchmarking the Geant4 code. Monoenergetic photons were simulated between 15 keV and 10 MeV and the results were compared with ICRP 110, the VMC Monte Carlo code and the literature data available, presenting a good agreement.

  2. Comparison of organ dose and dose equivalent using ray tracing of male and female Voxel phantoms to space flight phantom torso data

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  3. Comparison of Organ Dose and Dose Equivalent Using Ray Tracing of Male and Female Voxel Phantoms to Space Flight Phantom Torso Data

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.

    2008-01-01

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  4. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method.

    PubMed

    Abella, V; Miró, R; Juste, B; Verdú, G

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm(2). Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized. PMID:19892556

  5. Application of voxel phantoms in whole-body counting for the validation of calibration phantoms and the assessment of uncertainties.

    PubMed

    de Carlan, L; Roch, P; Blanchardon, E; Franck, D

    2007-01-01

    This article is dedicated to the application of voxel phantoms in whole-body counting calibration. The first study was performed to validate this approach using IGOR, a physical phantom dedicated to fission and activation product (FAP) measurement, and a graphical user interface, developed at the IRSN internal dose assessment laboratory, called OEDIPE (French acronym for the tool for personalised internal dose assessment) associated with the Monte Carlo code MCNP. The method was validated by comparing the results of real measurements and simulations using voxel phantoms obtained from CT scan images of IGOR. To take this application further, two studies were carried out and are presented in this article. First, a comparison was made between the IGOR voxel based phantom (IGOVOX) and a voxel human body (Zubal Phantom) to confirm whether IGOR could be considered as a realistic representation of a human. Second, the errors made when considering sources homogeneously distributed in the body were assessed against real contamination by taking into account the biokinetic behaviour of the radioactive material for two modes of exposure: the ingestion of 137Cs in soluble form and the inhalation of insoluble 60Co several days after acute incorporation. PMID:17018545

  6. Creation of ORNL NURBS-based phantoms: evaluation of the voxel effect on absorbed doses from radiopharmaceuticals.

    PubMed

    Gardumi, Anna; Farah, Jad; Desbrée, Aurélie

    2013-03-01

    Doses from radiopharmaceuticals absorbed by organs can be assessed using Monte Carlo simulations and computational phantoms. Patient-based voxel phantoms improve the realism of organ topology but present unrealistic stair-stepped surfaces. The goal of this research was to study the voxel effect on the basis of creation and voxelisation of a series of non-uniform rational B-spline (NURBS) reference phantoms issued from the publication of the Oak Ridge National Laboratory (ORNL). Absorbed doses from various radiopharmaceuticals were calculated and compared with the values obtained for the corresponding analytical phantoms for models of an adult male and a 5-y-old child. Dose differences lower than 12.5 % were observed when the critical structure of the skin was excluded. Moreover, the highest differences were noted for small organs and walls. Finally, all NURBS phantoms of the ORNL series, their voxelised version and the corresponding Monte Carlo N-Particle eXtended input files were programmed and are available for further simulations. PMID:22719045

  7. SU-E-CAMPUS-I-02: Estimation of the Dosimetric Error Caused by the Voxelization of Hybrid Computational Phantoms Using Triangle Mesh-Based Monte Carlo Transport

    SciTech Connect

    Lee, C; Badal, A

    2014-06-15

    Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. We also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.

  8. Comparison between voxelized, volumized and analytical phantoms applied to radiotherapy simulation with Monte Carlo.

    PubMed

    Abella, V; Miro, R; Juste, B; Verdu, G

    2009-01-01

    The purpose of this paper is to provide a comparison between the different methods utilized for building up anthropomorphic phantoms in Radiotherapy Treatment Plans. A simplified model of the Snyder Head Phantom was used in order to construct an analytical, voxelized and volumized phantom, throughout a segmentation program and different algorithms programmed in Matlab code. The irradiation of the resulting phantoms was simulated with the MCNP5 (Monte Carlo N-Particle) transport code, version 5, and the calculations presented in particle flux maps inside the phantoms by utilizing the FMESH tool, superimposed mesh tally. The different variables involved in the simulation were analyzed, like particle flux, MCNP standard deviation and real simulation CPU time cost. In the end the volumized model resulted to have the largest computer time cost and bigger discrepancies in the particle flux distribution. PMID:19964509

  9. Influence of exposure factors on the variability of CBCT voxel values: a phantom study

    PubMed Central

    Freitas, D Q; Ambrosano, G M B; Haiter-Neto, F

    2014-01-01

    Objectives: To assess the influence of milliamperage and kilovolt peak (kVp) on the variability of cone beam CT (CBCT) voxel values. Methods: CBCT scans were obtained from radiographic phantoms in varying concentrations of dipotassium hydrogen phosphate solutions (200–1200 mg ml−1) under different protocols of milliamperage and kVp. In addition, scans were performed with and without a dental implant and exo-mass. The variability of CBCT voxel values was measured on each scan, and factorial analysis of variance and the post hoc Tukey test were performed (α = 0.05). Linear regression was performed to assess the relationship between voxel value variability and dipotassium hydrogen phosphate concentration. Results: milliamperage and the presence of a dental implant did not produce significant interference (p = 0.28 and 0.87, respectively) in voxel value variability. Scans at the highest kVp value presented a significant reduction (p ≤ 0.0001) in voxel value variability when only exo-mass was not present. Voxel value variability was not influenced by exo-mass in scans at the highest levels of milliamperage and kVp. The presence of exo-mass produced a significant reduction (p ≤ 0.0001) in voxel value variability in most of the scans. Higher concentrations yielded greater variations in voxel values in all scans, except for those operating at the highest levels of mAs and kVp. Conclusions: mAs did not influence the variability of CBCT voxel values; higher kVp reduced such variability when only the object was smaller than the field of view. PMID:24869906

  10. An Eye Model for Computational Dosimetry Using A Multi-Scale Voxel Phantom

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-06-01

    The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  11. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  12. Efficient simulation of voxelized phantom in GATE with embedded SimSET multiple photon history generator

    NASA Astrophysics Data System (ADS)

    Lin, Hsin-Hon; Chuang, Keh-Shih; Lin, Yi-Hsing; Ni, Yu-Ching; Wu, Jay; Jan, Meei-Ling

    2014-10-01

    GEANT4 Application for Tomographic Emission (GATE) is a powerful Monte Carlo simulator that combines the advantages of the general-purpose GEANT4 simulation code and the specific software tool implementations dedicated to emission tomography. However, the detailed physical modelling of GEANT4 is highly computationally demanding, especially when tracking particles through voxelized phantoms. To circumvent the relatively slow simulation of voxelized phantoms in GATE, another efficient Monte Carlo code can be used to simulate photon interactions and transport inside a voxelized phantom. The simulation system for emission tomography (SimSET), a dedicated Monte Carlo code for PET/SPECT systems, is well-known for its efficiency in simulation of voxel-based objects. An efficient Monte Carlo workflow integrating GATE and SimSET for simulating pinhole SPECT has been proposed to improve voxelized phantom simulation. Although the workflow achieves a desirable increase in speed, it sacrifices the ability to simulate decaying radioactive sources such as non-pure positron emitters or multiple emission isotopes with complex decay schemes and lacks the modelling of time-dependent processes due to the inherent limitations of the SimSET photon history generator (PHG). Moreover, a large volume of disk storage is needed to store the huge temporal photon history file produced by SimSET that must be transported to GATE. In this work, we developed a multiple photon emission history generator (MPHG) based on SimSET/PHG to support a majority of the medically important positron emitters. We incorporated the new generator codes inside GATE to improve the simulation efficiency of voxelized phantoms in GATE, while eliminating the need for the temporal photon history file. The validation of this new code based on a MicroPET R4 system was conducted for 124I and 18F with mouse-like and rat-like phantoms. Comparison of GATE/MPHG with GATE/GEANT4 indicated there is a slight difference in energy

  13. Efficient simulation of voxelized phantom in GATE with embedded SimSET multiple photon history generator.

    PubMed

    Lin, Hsin-Hon; Chuang, Keh-Shih; Lin, Yi-Hsing; Ni, Yu-Ching; Wu, Jay; Jan, Meei-Ling

    2014-10-21

    GEANT4 Application for Tomographic Emission (GATE) is a powerful Monte Carlo simulator that combines the advantages of the general-purpose GEANT4 simulation code and the specific software tool implementations dedicated to emission tomography. However, the detailed physical modelling of GEANT4 is highly computationally demanding, especially when tracking particles through voxelized phantoms. To circumvent the relatively slow simulation of voxelized phantoms in GATE, another efficient Monte Carlo code can be used to simulate photon interactions and transport inside a voxelized phantom. The simulation system for emission tomography (SimSET), a dedicated Monte Carlo code for PET/SPECT systems, is well-known for its efficiency in simulation of voxel-based objects. An efficient Monte Carlo workflow integrating GATE and SimSET for simulating pinhole SPECT has been proposed to improve voxelized phantom simulation. Although the workflow achieves a desirable increase in speed, it sacrifices the ability to simulate decaying radioactive sources such as non-pure positron emitters or multiple emission isotopes with complex decay schemes and lacks the modelling of time-dependent processes due to the inherent limitations of the SimSET photon history generator (PHG). Moreover, a large volume of disk storage is needed to store the huge temporal photon history file produced by SimSET that must be transported to GATE. In this work, we developed a multiple photon emission history generator (MPHG) based on SimSET/PHG to support a majority of the medically important positron emitters. We incorporated the new generator codes inside GATE to improve the simulation efficiency of voxelized phantoms in GATE, while eliminating the need for the temporal photon history file. The validation of this new code based on a MicroPET R4 system was conducted for (124)I and (18)F with mouse-like and rat-like phantoms. Comparison of GATE/MPHG with GATE/GEANT4 indicated there is a slight difference in energy

  14. Hybrid Computational Phantoms Representing the Reference Adult Male and Adult Female: Construction and Applications for Retrospective Dosimetry

    PubMed Central

    Hurtado, Jorge L.; Lee, Choonsik; Lodwick, Daniel; Goede, Timothy; Williams, Jonathan L.; Bolch, Wesley E.

    2013-01-01

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Mathematical surface equations in stylized phantoms are flexible but the resulting anatomy is not as realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms - takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing the adult male and female reference anatomy and anthropometry are presented. These phantoms serve as the starting framework for creating patient or worker sculpted whole-body phantoms for retrospective dose reconstruction. Contours of major organs and tissues were converted or segmented from computed tomography images of a 36-year Korean volunteer and a 25-year U.S. female patient, respectively, with supplemental high-resolution CT images for the cranium. Polygon mesh models for the major organs and tissues were reconstructed and imported into Rhinoceros™ for non-uniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by Centers for Disease Control and Prevention (CDC) and International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid adult male and female phantoms were completed where a total of 8 anthropometric data categories were matched to standard values within 4% and organ volumes matched to ICRP data within 1% with the exception of total skin. The hybrid phantoms were voxelized from

  15. Hybrid computational phantoms representing the reference adult male and adult female: construction and applications for retrospective dosimetry.

    PubMed

    Hurtado, Jorge L; Lee, Choonsik; Lodwick, Daniel; Goede, Timothy; Williams, Jonathan L; Bolch, Wesley E

    2012-03-01

    Currently, two classes of computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Mathematical surface equations in stylized phantoms are flexible, but the resulting anatomy is not as realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms called hybrid phantoms takes advantage of the best features of stylized and voxel phantoms-flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing the adult male and female reference anatomy and anthropometry are presented. These phantoms serve as the starting framework for creating patient or worker sculpted whole-body phantoms for retrospective dose reconstruction. Contours of major organs and tissues were converted or segmented from computed tomography images of a 36-y-old Korean volunteer and a 25-y-old U.S. female patient, respectively, with supplemental high-resolution CT images of the cranium. Polygon mesh models for the major organs and tissues were reconstructed and imported into Rhinoceros™ for non-uniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by Centers for Disease Control and Prevention and International Commission on Radiation Protection, respectively. Finally, two hybrid adult male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ volumes matched to ICRP data within 1% with the exception of total skin. The hybrid phantoms were voxelized from the NURBS phantoms

  16. Effects of CT based Voxel Phantoms on Dose Distribution Calculated with Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Chen, Chaobin; Huang, Qunying; Wu, Yican

    2005-04-01

    A few CT-based voxel phantoms were produced to investigate the sensitivity of Monte Carlo simulations of x-ray beam and electron beam to the proportions of elements and the mass densities of the materials used to express the patient's anatomical structure. The human body can be well outlined by air, lung, adipose, muscle, soft bone and hard bone to calculate the dose distribution with Monte Carlo method. The effects of the calibration curves established by using various CT scanners are not clinically significant based on our investigation. The deviation from the values of cumulative dose volume histogram derived from CT-based voxel phantoms is less than 1% for the given target.

  17. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies

    NASA Astrophysics Data System (ADS)

    Ferrari, P.; Gualdrini, G.

    2005-09-01

    In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.

  18. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.

    PubMed

    Ferrari, P; Gualdrini, G

    2005-09-21

    In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report. PMID:16148395

  19. New method of voxel phantom creation: application for whole-body counting calibration and perspectives in individual internal dose assessment.

    PubMed

    de Carlan, L; Roch, P; Blanchardon, E; Franck, D

    2005-01-01

    The purpose of this work is to present an innovative approach for the creation and application of voxel phantoms associated with the Monte Carlo calculation (MCNP) for the calibration of whole-body counting systems dedicated to the measurement of fission and activation products. The new method is based on a graphical user interface called 'OEDIPE' that allows to simulate a whole measurement process using all measurement parameters, the final goal being to approach a numerical calibration of the facilities. The creation of voxel phantoms and validation of the method are presented in this paper using the IGOR phantom. Finally, the efficiency of the method is discussed, in particular, with the perspective of validating IGOR as a suitable human-equivalent phantom and for the assessment of uncertainties in dose estimation due to the inhomogeneous distribution of activity in the body, correlated to the bio-kinetic behaviour of the radionuclides. PMID:16604619

  20. The calculation of SAR from limb current in the female voxel phantom, NAOMI.

    PubMed

    Dimbylow, P J

    2006-01-01

    Calculations of localised SAR in the legs and arms have been performed in a female voxel phantom, NAOMI. A finite difference method was used to solve the quasistatic potential equation from 0.1 to 80 MHz for a unit current injected into a limb. The relationship between limb current and SAR has been investigated. The values of localised SAR in the leg as a function of applied plane wave electric field are also predicted from the knowledge of limb currents calculated by the finite-difference time-domain (FDTD) method for whole-body exposure. Comparisons are made with the results of previous work for the normalised male model, NORMAN, and the implications for electromagnetic guidelines are discussed. PMID:16565198

  1. Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation.

    PubMed

    Boia, L S; Menezes, A F; Cardoso, M A C; da Rosa, L A R; Batista, D V S; Cardoso, S C; Silva, A X; Facure, A

    2012-01-01

    This paper presents the application of a computational methodology for optimizing the conversion of medical tomographic images in voxel anthropomorphic models for simulation of radiation transport using the MCNP code. A computational system was developed for digital image processing that compresses the information from the DICOM medical image before it is converted to the Scan2MCNP software input file for optimization of the image data. In order to validate the computational methodology, a radiosurgery treatment simulation was performed using the Alderson Rando phantom and the acquisition of DICOM images was performed. The simulation results were compared with data obtained with the BrainLab planning system. The comparison showed good agreement for three orthogonal treatment beams of (60)Co gamma radiation. The percentage differences were 3.07%, 0.77% and 6.15% for axial, coronal and sagital projections, respectively. PMID:21945017

  2. MATSIM -The Development and Validation of a Numerical Voxel Model based on the MATROSHKA Phantom

    NASA Astrophysics Data System (ADS)

    Beck, Peter; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Latocha, Marcin; Vana, Norbert; Zechner, Andrea; Reitz, Guenther

    The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center. The aim of the project is to develop a voxel-based model of the MATROSHKA anthro-pomorphic torso used at the International Space Station (ISS) as foundation to perform Monte Carlo high-energy particle transport simulations for different irradiation conditions. Funded by the Austrian Space Applications Programme (ASAP), MATSIM is a co-investigation with the European Space Agency (ESA) ELIPS project MATROSHKA, an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. The MATROSHKA facility is designed to determine the radiation exposure of an astronaut onboard ISS and especially during an ex-travehicular activity. The numerical model developed in the frame of MATSIM is validated by reference measurements. In this report we give on overview of the model development and compare photon and neutron irradiations of the detector-equipped phantom torso with Monte Carlo simulations using FLUKA. Exposure to Co-60 photons was realized in the standard ir-radiation laboratory at Seibersdorf, while investigations with neutrons were performed at the thermal column of the Vienna TRIGA Mark-II reactor. The phantom was loaded with passive thermoluminescence dosimeters. In addition, first results of the calculated dose distribution within the torso are presented for a simulated exposure in low-Earth orbit.

  3. Assessment of the chest wall thickness of the lawrence livermore torso phantom using a voxel image.

    PubMed

    Ahmed, A S M Sabbir; Capello, Kevin; Kramer, Gary H

    2011-06-01

    This paper describes the methodology of measuring the chest wall thickness using the voxel image of the Lawrence Livermore National Lab (LLNL) torso phantom. The LLNL phantom is used as a standard to calibrate a lung counter consisting of a 2 × 2 array of germanium detectors. In general, an average thickness estimated from four counting positions is used as the chest wall thickness for a given overlay plate. For a given overlay, the outer chest surface differs from that of inner one, and the chest wall thickness varies from one position to other. The LLNL phantom with chest plate and C4 overlay plate installed was scanned with a CT (computed tomography) scanner. The image data, collected in DICOM (Digital Imaging and Communication) format, were converted to the MCNP input file by using the Scan2Mcnp program. The MCNP file was visualized and analyzed with the Moritz visual editor. An analytic expression was formulated and solved to calculate the chest wall thickness by using the point detector responses (F 5 tally of MCNP). To map the chest thickness, the entire chest wall was meshed into virtual grids of 1 cm width. A source and detector pair was moved along the inner and outer surface of the chest wall from right to left at different heights from neck to abdomen. For each height (z(k)), (x(i), y(j)) coordinates for the detector source pair were calculated from the visual editor and were scaled on-screen. For each (x(i), y(j), z(k)) position, a mesh thickness was measured from on-screen measurement and by solving the detector responses. The chest wall thicknesses at different positions on the outer surface of the chest were compared and verified using two methods. PMID:22004927

  4. An EGS4 based Monte Carlo code for the calculation of organ equivalent dose to a modified Yale voxel phantom.

    PubMed

    Kramer, R; Vieira, J W; Lima, F R A; Fuelle, D

    2002-07-01

    Organ or tissue equivalent dose, the most important quantity in radiation protection, cannot be measured directly. Therefore it became common practice to calculate the quantity of interest with Monte Carlo methods applied to so-called human phantoms, which are virtual representations of the human body. The Monte Carlo computer code determines conversion coefficients, which are ratios between organ or tissue equivalent dose and measurable quantities. Conversion coefficients have been published by the ICRP (Report No. 74) for various types of radiation, energies and fields, which have been calculated, among others, with the mathematical phantoms ADAM and EVA. Since then progress of image processing, and of clock speed and memory capacity of computers made it possible to create so-called voxel phantoms, which are a far more realistic representation of the human body. Voxel (Volume pixel) phantoms are built from segmented CT and/or MRI images of real persons. A complete set of such images can be joined to a 3-dimensional representation of the human body, which can be linked to a Monte Carlo code allowing for particle transport calculations. A modified version of the VOX_TISS8 human voxel phantom (Yale University) has been connected to the EGS4 Monte Carlo code. The paper explains the modifications, which have been made, the method of coupling the voxel phantom with the code, and presents results as conversion coefficients between organ equivalent dose and kerma in air for external photon radiation. A comparison of the results with published data shows good agreement. PMID:12146699

  5. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.

    PubMed

    Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S

    2015-12-01

    Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV. PMID:25468992

  6. Medical staff extremity dosimetry in CT fluoroscopy: an anthropomorphic hand voxel phantom study.

    PubMed

    Figueira, C; Becker, F; Blunck, C; DiMaria, S; Baptista, M; Esteves, B; Paulo, G; Santos, J; Teles, P; Vaz, P

    2013-08-21

    This work aims to contribute to the study of the radiation dose distribution delivered to the hands of medical staff members during a general computed tomographic (CT) fluoroscopic guided procedure. In this study, both Monte Carlo simulations and measurements were performed. For free-in-air and computed tomography dose index (CTDI) body phantom measurements, a standard pencil ionization chamber (IC) 100 mm long was used. The CT scanner model was implemented using MCNPX (Monte Carlo N-Particle eXtended) and was successfully validated by comparing the simulated results with measurements. Subsequently, CT images of a hand, together with an anthropomorphic phantom, were voxelized and used with the MCNPX code for dose calculations. The hand dose distribution study was performed both by using thermo-luminescent detector measurements and Monte Carlo simulations. The validated simulation tool provides a new perspective for detailed investigations of CT-irradiation scenarios. Simulations show that there is a strong dose gradient, namely the even zones of the hand that are in precise vicinity to the x-ray beam only receive about 4% of the maximum dose delivered to adjacent areas which are directly exposed to the primary x-ray beam. Finally, the scatter contribution of the patient was also studied through MC simulations. The results show that for directly exposed parts of the hand surface, the dose is reduced by the body of the patient (due to the shielding), whereas the dose is increased by scattered radiation from the patient for parts of the skin that receive scattered radiation only. PMID:23877320

  7. Medical staff extremity dosimetry in CT fluoroscopy: an anthropomorphic hand voxel phantom study

    NASA Astrophysics Data System (ADS)

    Figueira, C.; Becker, F.; Blunck, C.; DiMaria, S.; Baptista, M.; Esteves, B.; Paulo, G.; Santos, J.; Teles, P.; Vaz, P.

    2013-08-01

    This work aims to contribute to the study of the radiation dose distribution delivered to the hands of medical staff members during a general computed tomographic (CT) fluoroscopic guided procedure. In this study, both Monte Carlo simulations and measurements were performed. For free-in-air and computed tomography dose index (CTDI) body phantom measurements, a standard pencil ionization chamber (IC) 100 mm long was used. The CT scanner model was implemented using MCNPX (Monte Carlo N-Particle eXtended) and was successfully validated by comparing the simulated results with measurements. Subsequently, CT images of a hand, together with an anthropomorphic phantom, were voxelized and used with the MCNPX code for dose calculations. The hand dose distribution study was performed both by using thermo-luminescent detector measurements and Monte Carlo simulations. The validated simulation tool provides a new perspective for detailed investigations of CT-irradiation scenarios. Simulations show that there is a strong dose gradient, namely the even zones of the hand that are in precise vicinity to the x-ray beam only receive about 4% of the maximum dose delivered to adjacent areas which are directly exposed to the primary x-ray beam. Finally, the scatter contribution of the patient was also studied through MC simulations. The results show that for directly exposed parts of the hand surface, the dose is reduced by the body of the patient (due to the shielding), whereas the dose is increased by scattered radiation from the patient for parts of the skin that receive scattered radiation only.

  8. Cancer risk estimation in Digital Breast Tomosynthesis using GEANT4 Monte Carlo simulations and voxel phantoms.

    PubMed

    Ferreira, P; Baptista, M; Di Maria, S; Vaz, P

    2016-05-01

    The aim of this work was to estimate the risk of radiation induced cancer following the Portuguese breast screening recommendations for Digital Mammography (DM) when applied to Digital Breast Tomosynthesis (DBT) and to evaluate how the risk to induce cancer could influence the energy used in breast diagnostic exams. The organ doses were calculated by Monte Carlo simulations using a female voxel phantom and considering the acquisition of 25 projection images. Single organ cancer incidence risks were calculated in order to assess the total effective radiation induced cancer risk. The screening strategy techniques considered were: DBT in Cranio-Caudal (CC) view and two-view DM (CC and Mediolateral Oblique (MLO)). The risk of cancer incidence following the Portuguese screening guidelines (screening every two years in the age range of 50-80years) was calculated by assuming a single CC DBT acquisition view as standalone screening strategy and compared with two-view DM. The difference in the total effective risk between DBT and DM is quite low. Nevertheless in DBT an increase of risk for the lung is observed with respect to DM. The lung is also the organ that is mainly affected when non-optimal beam energy (in terms of image quality and absorbed dose) is used instead of an optimal one. The use of non-optimal energies could increase the risk of lung cancer incidence by a factor of about 2. PMID:27133140

  9. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons

    SciTech Connect

    Xie Tianwu; Han Dao; Liu Yang; Sun Wenjuan; Liu Qian

    2010-05-15

    Purpose: The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Methods: Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bone sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Results: Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, ''Voxel-based mouse and rat models for internal dose calculations,'' J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides {sup 169}Er, {sup 143}Pr, {sup 89}Sr, {sup 32}P, and {sup 90}Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. Conclusions: For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary photons emitted from the

  10. A software to digital image processing to be used in the voxel phantom development.

    PubMed

    Vieira, J W; Lima, F R A

    2009-01-01

    Anthropomorphic models used in computational dosimetry, also denominated phantoms, are based on digital images recorded from scanning of real people by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel phantom construction requests computational processing for transformations of image formats, to compact two-dimensional (2-D) images forming of three-dimensional (3-D) matrices, image sampling and quantization, image enhancement, restoration and segmentation, among others. Hardly the researcher of computational dosimetry will find all these available abilities in single software, and almost always this difficulty presents as a result the decrease of the rhythm of his researches or the use, sometimes inadequate, of alternative tools. The need to integrate the several tasks mentioned above to obtain an image that can be used in an exposure computational model motivated the development of the Digital Image Processing (DIP) software, mainly to solve particular problems in Dissertations and Thesis developed by members of the Grupo de Pesquisa em Dosimetria Numérica (GDN/CNPq). Because of this particular objective, the software uses the Portuguese idiom in their implementations and interfaces. This paper presents the second version of the DIP, whose main changes are the more formal organization on menus and menu items, and menu for digital image segmentation. Currently, the DIP contains the menus Fundamentos, Visualizações, Domínio Espacial, Domínio de Frequências, Segmentações and Estudos. Each menu contains items and sub-items with functionalities that, usually, request an image as input and produce an image or an attribute in the output. The DIP reads edits and writes binary files containing the 3-D matrix corresponding to a stack of axial images from a given geometry that can be a human body or other volume of interest. It also can read any type of computational image and to make conversions. When the task involves only an output image

  11. Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool.

    PubMed

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model. PMID:20371912

  12. Experimental validation of Monte Carlo calculations with a voxelized Rando-Alderson phantom: a study on influence parameters.

    PubMed

    Struelens, Lara; Vanhavere, Filip; Smans, Kristien

    2008-10-21

    The development and improvement of techniques for an accurate dose assessment in medical physics is an important task. In this study, we focus on the validation of Monte Carlo calculations, by comparing organ doses assessed experimentally with thermoluminescent detectors in the Rando-Alderson phantom with doses calculated for a voxelized model of the same phantom for some typical x-ray procedures. A detailed study has been performed to identify the key parameters that affect the determination of organ doses. Initially, TLD measurements were up to 65% higher than the calculated values. After the corrections made on TLD energy dependence, TLD angular dependence, material composition and field size and position, most differences between measurements and calculations are within 15%. For organs far away from the field the difference is about 30%. PMID:18827320

  13. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement.

    PubMed

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-03-01

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAM_S phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom. PMID:26894453

  14. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement

    NASA Astrophysics Data System (ADS)

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-03-01

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAMS phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.

  15. Development of the two Korean adult tomographic computational phantoms for organ dosimetry

    SciTech Connect

    Lee, Choonsik; Lee, Choonik; Park, Sang-Hyun; Lee, Jai-Ki

    2006-02-15

    Following the previously developed Korean tomographic phantom, KORMAN, two additional whole-body tomographic phantoms of Korean adult males were developed from magnetic resonance (MR) and computed tomography (CT) images, respectively. Two healthy male volunteers, whose body dimensions were fairly representative of the average Korean adult male, were recruited and scanned for phantom development. Contiguous whole body MR images were obtained from one subject exclusive of the arms, while whole-body CT images were acquired from the second individual. A total of 29 organs and tissues and 19 skeletal sites were segmented via image manipulation techniques such as gray-level thresholding, region growing, and manual drawing, in which each of segmented image slice was subsequently reviewed by an experienced radiologist for anatomical accuracy. The resulting phantoms, the MR-based KTMAN-1 (Korean Typical MAN-1) and the CT-based KTMAN-2 (Korean Typical MAN-2), consist of 300x150x344 voxels with a voxel resolution of 2x2x5 mm{sup 3} for both phantoms. Masses of segmented organs and tissues were calculated as the product of a nominal reference density, the prevoxel volume, and the cumulative number of voxels defining each organs or tissue. These organs masses were then compared with those of both the Asian and the ICRP reference adult male. Organ masses within both KTMAN-1 and KTMAN-2 showed differences within 40% of Asian and ICRP reference values, with the exception of the skin, gall bladder, and pancreas which displayed larger differences. The resulting three-dimensional binary file was ported to the Monte Carlo code MCNPX2.4 to calculate organ doses following external irradiation for illustrative purposes. Colon, lung, liver, and stomach absorbed doses, as well as the effective dose, for idealized photon irradiation geometries (anterior-posterior and right lateral) were determined, and then compared with data from two other tomographic phantoms (Asian and Caucasian), and

  16. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms.

    PubMed

    Na, Yong Hum; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F; Xu, X George

    2010-07-01

    Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms--modeled entirely in mesh surfaces--of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte Carlo

  17. Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.

    2013-03-01

    We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in six lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for

  18. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms

    PubMed Central

    Na, Yong Hum; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F; Xu, X George

    2012-01-01

    Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999–2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals’ size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte

  19. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms

    NASA Astrophysics Data System (ADS)

    Hum Na, Yong; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F.; Xu, X. George

    2010-07-01

    Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte

  20. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations.

    PubMed

    Kramer, R; Cassola, V F; Khoury, H J; Vieira, J W; Lima, V J de Melo; Brown, K Robson

    2010-01-01

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  1. SU-E-I-02: A Framework to Perform Batch Simulations of Computational Voxel Phantoms to Study Organ Doses in Computed Tomography Using a Commercial Monte Carlo Software Package

    SciTech Connect

    Bujila, R; Nowik, P; Poludniowski, G

    2014-06-01

    Purpose: ImpactMC (CT Imaging, Erlangen, Germany) is a Monte Carlo (MC) software package that offers a GPU enabled, user definable and validated method for 3D dose distribution calculations for radiography and Computed Tomography (CT). ImpactMC, in and of itself, offers limited capabilities to perform batch simulations. The aim of this work was to develop a framework for the batch simulation of absorbed organ dose distributions from CT scans of computational voxel phantoms. Methods: The ICRP 110 adult Reference Male and Reference Female computational voxel phantoms were formatted into compatible input volumes for MC simulations. A Matlab (The MathWorks Inc., Natick, MA) script was written to loop through a user defined set of simulation parameters and 1) generate input files required for the simulation, 2) start the MC simulation, 3) segment the absorbed dose for organs in the simulated dose volume and 4) transfer the organ doses to a database. A demonstration of the framework is made where the glandular breast dose to the adult Reference Female phantom, for a typical Chest CT examination, is investigated. Results: A batch of 48 contiguous simulations was performed with variations in the total collimation and spiral pitch. The demonstration of the framework showed that the glandular dose to the right and left breast will vary depending on the start angle of rotation, total collimation and spiral pitch. Conclusion: The developed framework provides a robust and efficient approach to performing a large number of user defined MC simulations with computational voxel phantoms in CT (minimal user interaction). The resulting organ doses from each simulation can be accessed through a database which greatly increases the ease of analyzing the resulting organ doses. The framework developed in this work provides a valuable resource when investigating different dose optimization strategies in CT.

  2. SU-E-T-169: Evaluation of Oncentra TPS for Nasopharynx Brachy Using Patient Specific Voxel Phantom and EGSnrc

    SciTech Connect

    Hadad, K; Zoherhvand, M; Faghihi, R

    2014-06-01

    Purpose: Nasopharnx carcinoma (NPC) treatment is being carried out using Ir-192 HDR seeds in Mehdieh Hospital in Hamadan, Iran. The Oncentra™ TPS is based on optimized TG-43 formalism which disregards heterogeneity in the treatment area. Due to abundant heterogeneity in head and neck, comparison of the Oncentra™ TPS dose evaluation and an accurate dose calculation method in NPC brachytherapy is the objective of this study. Methods: CT DICOMs of a patient with NPC obtained from Mehdieh Hospital used to create 3D voxel phantom with CTCREATE utility of EGSnrc code package. The voxel phantom together with Ir-192 HDR brachytherapy source were the input to DOSXYZnrc to calculate the 3D dose distribution. The sources were incorporate with type 6 source in DOSXYZnrc and their dwell times were taken into account in final dose calculations. Results: The direct comparison between isodoses as well as DVHs for the GTV, PTV and CTV obtained by Oncentra™ and EGSnrc Monte Carlo code are made. EGSnrc results are obtained using 5×10{sup 9} histories to reduce the statistical error below 1% in GTV and 5% in 5% dose areas. The standard ICRP700 cross section library is employed in DOSXYZnrc dose calculation. Conclusion: A direct relationship between increased dose differences and increased material density (hence heterogeneity) is observed when isodoses contours of the TPS and DOSXYZnrc are compared. Regarding the point dose calculations, the differences range from 1.2% in PTV to 5.6% for cavity region and 7.8% for bone regions. While Oncentra™ TPS overestimates the dose in cavities, it tends to underestimate dose depositions within bones.

  3. Construction of Taiwanese Adult Reference Phantoms for Internal Dose Evaluation.

    PubMed

    Chang, Shu-Jun; Hung, Shih-Yen; Liu, Yan-Lin; Jiang, Shiang-Huei

    2016-01-01

    In the internal dose evaluation, the specific absorbed fraction (SAF) and S-value are calculated from the reference phantom based on Caucasian data. The differences in height and weight between Caucasian and Asian may lead to inaccurate dose estimation. In this study, we developed the Taiwanese reference phantoms. 40 volunteers were recruited. Magnetic resonance images (MRI) were obtained, and the contours of 15 organs were drawn. The Taiwanese reference man (TRM) and Taiwanese reference woman (TRW) were constructed. For the SAF calculation, the differences in the self-absorption SAF (self-SAF) between the TRM, TRW, and Oak Ridge National Laboratory (ORNL) adult phantom were less than 10% when the difference in organ mass was less than 20%. The average SAF from liver to pancreas of TRM was 38% larger than that of the ORNL adult phantom, and the result of TRW was 2.02 times higher than that of the ORNL adult phantom. For the S-value calculation, the ratios of TRW and ORNL adult phantom ranged from 0.91 to 1.57, and the ratios of TRM and ORNL adult phantom ranged from 1.04 to 2.29. The SAF and S-value results were dominantly affected by the height, weight, organ mass, and geometric relationship between organs. By using the TRM and TRW, the accuracy of internal dose evaluation can be increased for radiation protection and nuclear medicine. PMID:27618708

  4. NOTE: SAR in a child voxel phantom from exposure to wireless computer networks (Wi-Fi)

    NASA Astrophysics Data System (ADS)

    Findlay, R. P.; Dimbylow, P. J.

    2010-08-01

    Specific energy absorption rate (SAR) values have been calculated in a 10 year old sitting voxel model from exposure to electromagnetic fields at 2.4 and 5 GHz, frequencies commonly used by Wi-Fi devices. Both plane-wave exposure of the model and irradiation from antennas in the near field were investigated for a variety of exposure conditions. In all situations studied, the SAR values calculated were considerably below basic restrictions. For a typical Wi-Fi exposure scenario using an inverted F antenna operating at 100 mW, a duty factor of 0.1 and an antenna-body separation of 34 cm, the maximum peak localized SAR was found to be 3.99 mW kg-1 in the torso region. At 2.4 GHz, using a power of 100 mW and a duty factor of 1, the highest localized SAR value in the head was calculated as 5.7 mW kg-1. This represents less than 1% of the SAR previously calculated in the head for a typical mobile phone exposure condition.

  5. SAR in a child voxel phantom from exposure to wireless computer networks (Wi-Fi).

    PubMed

    Findlay, R P; Dimbylow, P J

    2010-08-01

    Specific energy absorption rate (SAR) values have been calculated in a 10 year old sitting voxel model from exposure to electromagnetic fields at 2.4 and 5 GHz, frequencies commonly used by Wi-Fi devices. Both plane-wave exposure of the model and irradiation from antennas in the near field were investigated for a variety of exposure conditions. In all situations studied, the SAR values calculated were considerably below basic restrictions. For a typical Wi-Fi exposure scenario using an inverted F antenna operating at 100 mW, a duty factor of 0.1 and an antenna-body separation of 34 cm, the maximum peak localized SAR was found to be 3.99 mW kg(-1) in the torso region. At 2.4 GHz, using a power of 100 mW and a duty factor of 1, the highest localized SAR value in the head was calculated as 5.7 mW kg(-1). This represents less than 1% of the SAR previously calculated in the head for a typical mobile phone exposure condition. PMID:20647607

  6. Intercomparison of whole-body averaged SAR in European and Japanese voxel phantoms

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter J.; Hirata, Akimasa; Nagaoka, Tomoaki

    2008-10-01

    This paper provides an intercomparison of the HPA male and female models, NORMAN and NAOMI with the National Institute of Information and Communications Technology (NICT) male and female models, TARO and HANAKO. The calculations of the whole-body SAR in these four phantoms were performed at the HPA, at NICT and at the Nagoya Institute of Technology (NIT). These were for a plane wave with a vertically aligned electric field incident upon the front of the body from 30 MHz to 3 GHz for isolated conditions. As well as investigating the general differences through this frequency range, particular emphasis was placed on the assumptions of how dielectric properties are assigned to tissues (particularly skin and fat) and the consequence of using different algorithms for calculating SAR at the higher frequencies.

  7. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid

    NASA Astrophysics Data System (ADS)

    Lamart, Stephanie; Bouville, Andre; Simon, Steven L.; Eckerman, Keith F.; Melo, Dunstana; Lee, Choonsik

    2011-11-01

    The S values for 11 major target organs for I-131 in the thyroid were compared for three classes of adult computational human phantoms: stylized, voxel and hybrid phantoms. In addition, we compared specific absorbed fractions (SAFs) with the thyroid as a source region over a broader photon energy range than the x- and gamma-rays of I-131. The S and SAF values were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms and the University of Florida (UF) hybrid phantoms by using the Monte Carlo transport method, while the S and SAF values for the Oak Ridge National Laboratory (ORNL) stylized phantoms were obtained from earlier publications. Phantoms in our calculations were for adults of both genders. The 11 target organs and tissues that were selected for the comparison of S values are brain, breast, stomach wall, small intestine wall, colon wall, heart wall, pancreas, salivary glands, thyroid, lungs and active marrow for I-131 and thyroid as a source region. The comparisons showed, in general, an underestimation of S values reported for the stylized phantoms compared to the values based on the ICRP voxel and UF hybrid phantoms and relatively good agreement between the S values obtained for the ICRP and UF phantoms. Substantial differences were observed for some organs between the three types of phantoms. For example, the small intestine wall of ICRP male phantom and heart wall of ICRP female phantom showed up to eightfold and fourfold greater S values, respectively, compared to the reported values for the ORNL phantoms. UF male and female phantoms also showed significant differences compared to the ORNL phantom, 4.0-fold greater for the small intestine wall and 3.3-fold greater for the heart wall. In our method, we directly calculated the S values without using the SAFs as commonly done. Hence, we sought to confirm the differences observed in our S values by comparing the SAFs among the phantoms with the thyroid as a

  8. COMPARISON OF INTERNAL DOSIMETRY FACTORS FOR THREE CLASSES OF ADULT COMPUTATIONAL PHANTOMS WITH EMPHASIS ON I-131 IN THE THYROID

    PubMed Central

    Lamart, Stephanie; Bouville, Andre; Simon, Steven L.; Eckerman, Keith F.; Melo, Dunstana; Lee, Choonsik

    2012-01-01

    S values for 11 major target organs for I-131 in the thyroid were compared for three classes of adult computational human phantoms: stylized, voxel and hybrid phantoms. In addition, we compared Specific Absorbed Fractions (SAFs) with the thyroid as a source region over a broader photon energy range than the x- and gamma-rays of I-131. S and SAF values were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms and the University of Florida (UF) hybrid phantoms by using Monte Carlo transport method, while the S and SAF values for the Oak Ridge National Laboratory (ORNL) stylized phantoms were obtained from earlier publications. Phantoms in our calculations were for adults of both genders. The 11 target organs and tissues that were selected for the comparison of S values are: brain, breast, stomach wall, small intestine wall, colon wall, heart wall, pancreas, salivary glands, thyroid, lungs, and active marrow for I-131 and thyroid as a source region. The comparisons showed, in general, an underestimation of S values reported for the stylized phantoms compared to the values based on the ICRP voxel and UF hybrid phantoms and a relatively good agreement between the S values obtained for the ICRP and UF phantoms. Substantial differences were observed for some organs between the 3 types of phantoms. For example, the small intestine wall of ICRP male phantom and heart wall of ICRP female phantom showed up to 8-fold and 4-fold greater S values, respectively, compared to the reported values for the ORNL phantoms. UF male and female phantoms also showed significant differences compared to the ORNL phantom, 4.0-fold greater for small intestine wall and 3.3-fold greater for heart wall. In our method, we directly calculated the S values without using the SAFs as commonly done. Hence, we sought to confirm the differences observed in our S values by comparing SAFs among the phantoms with the thyroid as a source region for selected

  9. Design, fabrication, and implementation of voxel-based 3D printed textured phantoms for task-based image quality assessment in CT

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Ba, Alexandre; Diao, Andrew; Lo, Joseph; Bier, Elianna; Bochud, François; Gehm, Michael; Samei, Ehsan

    2016-03-01

    In x-ray computed tomography (CT), task-based image quality studies are typically performed using uniform background phantoms with low-contrast signals. Such studies may have limited clinical relevancy for modern non-linear CT systems due to possible influence of background texture on image quality. The purpose of this study was to design and implement anatomically informed textured phantoms for task-based assessment of low-contrast detection. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find the CLB parameters that were most reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, a cylinder phantom (165 mm in diameter and 30 mm height) was designed, containing 20 low-contrast spherical signals (6 mm in diameter at targeted contrast levels of ~3.2, 5.2, 7.2, 10, and 14 HU, 4 repeats per signal). The phantom was voxelized and input into a commercial multi-material 3D printer (Object Connex 350), with custom software for voxel-based printing. Using principles of digital half-toning and dithering, the 3D printer was programmed to distribute two base materials (VeroWhite and TangoPlus, nominal voxel size of 42x84x30 microns) to achieve the targeted spatial distribution of x-ray attenuation properties. The phantom was used for task-based image quality assessment of a clinically available iterative reconstruction algorithm (Sinogram Affirmed Iterative Reconstruction, SAFIRE) using a channelized Hotelling observer paradigm. Images of the textured phantom and a corresponding uniform phantom were acquired at six dose levels and observer model performance was estimated for each condition (5 contrasts x 6 doses x 2 reconstructions x 2

  10. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    SciTech Connect

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher; Fisher, Ryan; Hoerner, Matthew R.; Hintenlang, David; Bolch, Wesley E.

    2013-01-15

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and a 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT

  11. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    PubMed Central

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher; Fisher, Ryan; Hoerner, Matthew R.; Hintenlang, David; Bolch, Wesley E.

    2013-01-01

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and a 9-month-old. The adult male is a physical replica of the University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of the University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at the University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or

  12. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms

    SciTech Connect

    Baptista, Mariana Di Maria, Salvatore; Barros, Sílvia; Vaz, Pedro; Figueira, Catarina; Sarmento, Marta; Orvalho, Lurdes

    2015-07-15

    Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to study the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode

  13. Organ dose calculations by Monte Carlo modeling of the updated VCH adult male phantom against idealized external proton exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Guozhi; Liu, Qian; Zeng, Shaoqun; Luo, Qingming

    2008-07-01

    The voxel-based visible Chinese human (VCH) adult male phantom has offered a high-quality test bed for realistic Monte Carlo modeling in radiological dosimetry simulations. The phantom has been updated in recent effort by adding newly segmented organs, revising walled and smaller structures as well as recalibrating skeletal marrow distributions. The organ absorbed dose against external proton exposure was calculated at a voxel resolution of 2 × 2 × 2 mm3 using the MCNPX code for incident energies from 20 MeV to 10 GeV and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO), respectively. The effective dose on the VCH phantom was derived in compliance with the evaluation scheme for the reference male proposed in the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Algorithm transitions from the revised radiation and tissue weighting factors are accountable for approximately 90% and 10% of effective dose discrepancies in proton dosimetry, respectively. Results are tabulated in terms of fluence-to-dose conversion coefficients for practical use and are compared with data from other models available in the literature. Anatomical variations between various computational phantoms lead to dose discrepancies ranging from a negligible level to 100% or more at proton energies below 200 MeV, corresponding to the spatial geometric locations of individual organs within the body. Doses show better agreement at higher energies and the deviations are mostly within 20%, to which the organ volume and mass differences should be of primary responsibility. The impact of body size on dose distributions was assessed by dosimetry of a scaled-up VCH phantom that was resized in accordance with the height and total mass of the ICRP reference man. The organ dose decreases with the directionally uniform enlargement of voxels. Potential

  14. NOTE: Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool

    NASA Astrophysics Data System (ADS)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  15. Second generation anthropomorphic physical phantom for mammography and DBT: Incorporating voxelized 3D printing and inkjet printing of iodinated lesion inserts

    NASA Astrophysics Data System (ADS)

    Sikaria, Dhiraj; Musinsky, Stephanie; Sturgeon, Gregory M.; Solomon, Justin; Diao, Andrew; Gehm, Michael E.; Samei, Ehsan; Glick, Stephen J.; Lo, Joseph Y.

    2016-03-01

    Physical phantoms are needed for the evaluation and optimization of new digital breast tomosynthesis (DBT) systems. Previously, we developed an anthropomorphic phantom based on human subject breast CT data and fabricated using commercial 3D printing. We now present three key advancements: voxelized 3D printing, photopolymer material doping, and 2D inkjet printing of lesion inserts. First, we bypassed the printer's control software in order to print in voxelized form instead of conventional STL surfaces, thus improving resolution and allowing dithering to mix the two photopolymer materials into arbitrary proportions. We demonstrated ability to print details as small as 150μm, and dithering to combine VeroWhitePlus and TangoPlus in 10% increments. Second, to address the limited attenuation difference among commercial photopolymers, we evaluated a beta sample from Stratasys with increased TiO2 doping concentration up to 2.5%, which corresponded to 98% breast density. By spanning 36% to 98% breast density, this doubles our previous contrast. Third, using inkjet printers modified to print with iopamidol, we created 2D lesion patterns on paper that can be sandwiched into the phantom. Inkjet printing has advantages of being inexpensive and easy, and more contrast can be delivered through overprinting. Printing resolution was maintained at 210 μm horizontally and 330 μm vertically even after 10 overprints. Contrast increased linearly with overprinting at 0.7% per overprint. Together, these three new features provide the basis for creating a new anthropomorphic physical breast phantom with improved resolution and contrast, as well as the ability to insert 2D lesions for task-based assessment of performance.

  16. Assessment of neutron fluence to organ dose conversion coefficients in the ORNL analytical adult phantom.

    PubMed

    Miri Hakimabad, H; Rafat Motavalli, L; Karimi Shahri, K

    2009-03-01

    Neutron fluence to absorbed dose conversion coefficients have been evaluated for the analytical ORNL modified adult phantom in 21 body organs using MCNP4C Monte Carlo code. The calculation used 20 monodirectional monoenergetic neutron beams in the energy range 10(-9)-20 MeV, under four irradiation conditions: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT) and right-lateral (RLAT). Then the conversion coefficients are compared with the data reported in ICRP publication 74 for mathematical MIRD type phantoms and by Bozkurt et al for the VIPMAN voxel model. Although the ORNL results show fewer differences with the ICRP results than the Bozkurt et al data, one can deduce neither complete agreement nor disparity between this study and other data sets. This comparison shows that in some cases any differences in applied Monte Carlo codes or simulated body models could significantly change the organ dose conversion factors. This sensitivity should be considered for radiological protection programmes. For certain organs, the results of two models with major differences can be in a satisfactory agreement because of the similarity in those organ models. PMID:19225185

  17. Use of the CT images for BNCT calculation: development of BNCT treatment planning system and its applications to dose calculation for voxel phantoms.

    PubMed

    Park, Sung Ho; Han, Chi Young; Kim, Soon Young; Kim, Jong Kyung

    2004-01-01

    A BNCT (Boron Neutron Capture Therapy) treatment planning system (BTPS) was developed for BNCT study and treatment planning. Three kinds of CT images, VHP, PINNACLE and DICOM images, were employed to make voxel phantoms for BNCT patient treatment using the BTPS. The thermal neutron, fast neutron, gamma and boron doses are calculated and background, tissue, and tumour doses for idealised standard reactor neutron field (ISRNF) neutron beam were calculated by using BTPS and MCNP code. It was noted that the total computing times needed for BNCT analysis could be greatly reduced since the BTPS system provides a dose analysis tool and a lengthy MCNP input in a short time. It is, thus, expected that the BTPS can significantly contribute the BNCT study for the treatment of patients. PMID:15353727

  18. Measuring absorbed dose for i-CAT CBCT examinations in child, adolescent and adult phantoms

    PubMed Central

    Choi, E

    2015-01-01

    Objectives: Design and construct child and adolescent head phantoms to measure the absorbed doses imparted during dental CBCT and compare with the absorbed dose measured in an adult phantom. Methods: A child phantom was developed to represent the smallest patients receiving CBCT, usually for craniofacial developmental concerns, and an adolescent phantom was developed to represent healthy orthodontic patients. Absorbed doses were measured using a thimble ionization chamber for the custom-built child and adolescent phantoms and compared with measurements using a commercially available adult phantom. Imaging was performed with an i-CAT Next Generation (Imaging Sciences International, Hatfield, PA) CBCT using two different fields of view covering the craniofacial complex (130 mm high) or maxilla/mandible (60 mm high). Results: Measured absorbed doses varied depending on the location of the ionization chamber within the phantoms. For CBCT images obtained using the same protocol for all phantoms, the highest absorbed dose was measured in all locations of the small child phantom. The lowest absorbed dose was measured in the adult phantom. Conclusions: Images were obtained with the same protocol for the adult, adolescent and child phantoms. A consistent trend was observed with the highest absorbed dose being measured in the smallest phantom (child), while the lowest absorbed dose was measured in the largest phantom (adult). This study demonstrates the importance of child-sizing the dose by using dedicated paediatric protocols optimized for the imaging task, which is critical as children are more sensitive to harmful effects of radiation and have a longer life-span post-irradiation for radiation-induced symptoms to develop than do adults. PMID:25785822

  19. A dosimetric study of prostate brachytherapy using Monte Carlo simulations with a voxel phantom, measurements and a comparison with a treatment planning procedure.

    PubMed

    Teles, P; Barros, S; Cardoso, S; Facure, A; da Rosa, L A R; Santos, M; Pereira, P; Vaz, P; Zankl, M

    2015-07-01

    In prostate brachytherapy treatments, there is an initial swelling of the prostate of the patient due to an oedema related to the insertion of the seeds. The variation of the prostate volume can lead to variations in the final prescribed dose in treatment planning procedures. As such, it is important to understand their influence for dose optimisation purposes. This work reports on a dosimetric study of the swelling of the prostate in prostate brachytherapy using Monte Carlo simulations. Dosimetric measurements performed on a physical anthropomorphic tissue-equivalent prostate phantom and thermoluminescent dosimeters (TLDs) were used to validate the MC model. Finally the MC model was also used to simulate prostate swelling in a real treatment planning procedure. The obtained results indicate that the parameters mentioned above represent a source of uncertainty in dose assessment in prostate brachytherapy, and can be detrimental to a correct dose evaluation in treatment plannings, and that these parameters can be accurately determined by means of MC simulations with a voxel phantom. PMID:25870437

  20. A MCNP-based calibration method and a voxel phantom for in vivo monitoring of 241Am in skull

    NASA Astrophysics Data System (ADS)

    Moraleda, M.; Gómez-Ros, J. M.; López, M. A.; Navarro, T.; Navarro, J. F.

    2004-07-01

    Whole body counter (WBC) facilities are currently used for assessment of internal radionuclide body burdens by directly measuring the radiation emitted from the body. Previous calibration of the detection devices requires the use of specific anthropomorphic phantoms. This paper describes the MCNP-based Monte Carlo technique developed for calibration of the germanium detectors (Canberra LE Ge) used in the CIEMAT WBC for in vivo measurements of 241Am in skull. The proposed method can also be applied for in vivo counting of different radionuclides distributed in other anatomical regions as well as for other detectors. A computer software was developed to automatically generate the input files for the MCNP code starting from any segmented human anatomy data. A specific model of a human head for the assessment of 241Am was built based on the tomographic phantom VOXELMAN of Yale University. The germanium detectors were carefully modelled from data provided by the manufacturer. This numerical technique has been applied to investigate the best counting geometry and the uncertainty due to improper positioning of the detectors.

  1. Effect of external shielding for neutrons during radiotherapy for prostate cancer, considering the 2300 CD linear accelerator and voxel phantom

    NASA Astrophysics Data System (ADS)

    Thalhofer, J. L.; Roque, H. S.; Rebello, W. F.; Correa, S. A.; Silva, A. X.; Souza, E. M.; Batita, D. V. S.; Sandrini, E. S.

    2014-02-01

    Photoneutron production occurs when high energy photons, greater than 6.7 MeV, interact with linear accelerator head structures. In Brazil, the National Cancer Institute, one of the centers of reference in cancer treatment, uses radiation at 4 angles (0°, 90°, 180° and 270°) as treatment protocol for prostate cancer. With the objective of minimizing the dose deposited in the patient due to photoneutrons, this study simulated radiotherapy treatment using MCNPX, considering the most realistic environment; simulating the radiotherapy room, the Linac 2300 head, the MAX phantom and the treatment protocol with the accelerator operating at 18 MV. In an attempt to reduce the dose deposited by photoneutrons, an external shielding was added to the Linac 2300. Results show that the equivalent dose due to photoneutrons deposited in the patient diminished. The biggest reduction was seen in bone structures, such as the tibia and fibula, and mandible, at approximately 75%. Besides that, organs such as the brain, pancreas, small intestine, lungs and thyroid revealed a reduction of approximately 60%. It can be concluded that the shielding developed by our research group is efficient in neutron shielding, reducing the dose for the patient, and thus, the risk of secondary cancer, and increasing patient survival rates.

  2. A Voxel-Based Morphometric MRI Study in Young Adults with Borderline Personality Disorder

    PubMed Central

    Jin, Xinhu; Zhong, Mingtian; Yao, Shuqiao; Cao, Xiyu; Tan, Changlian; Gan, Jun; Zhu, Xiongzhao; Yi, Jinyao

    2016-01-01

    Background Increasing evidence has documented subtle changes in brain morphology and function in patients with borderline personality disorder (BPD). However, results of magnetic resonance imaging volumetry in patients with BPD are inconsistent. In addition, few researchers using voxel-based morphometry (VBM) have focused on attachment and childhood trauma in BPD. This preliminary study was performed to investigate structural brain changes and their relationships to attachment and childhood trauma in a homogenous sample of young adults with BPD. Method We examined 34 young adults with BPD and 34 healthy controls (HCs) to assess regionally specific differences in gray matter volume (GMV) and gray matter concentration (GMC). Multiple regressions between brain volumes measured by VBM and attachment style questionnaire (ASQ) and childhood trauma questionnaire (CTQ) scores were performed. Results Compared with HCs, subjects with BPD showed significant bilateral increases in GMV in the middle cingulate cortex (MCC)/posterior cingulate cortex (PCC)/precuneus. GMC did not differ significantly between groups. In multiple regression models, ASQ insecure attachment scores were correlated negatively with GMV in the precuneus/MCC and middle occipital gyrus in HCs, HCs with more severe insecure attachment showed smaller volumes in precuneus/MCC and middle occipital gyrus, whereas no negative correlations between insecure attachment and GMV in any region were found in BPD group. In addition, CTQ total scores were not correlated with GMV in any region in the two groups respectively. Conclusions Our findings fit with those of previous reports of larger precuneus GMV in patients with BPD, and suggest that GMV in the precuneus/MCC and middle occipital gyrus is associated inversely with insecure attachment style in HCs. Our finding of increased GMV in the MCC and PCC in patients with BPD compared with HCs has not been reported in previous VBM studies. PMID:26808504

  3. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    SciTech Connect

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E.; Williams, Cameron H.; Frush, D.; Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve

  4. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    PubMed Central

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Williams, Cameron H.; Feng, Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.; Frush, D.; Samei, E.

    2013-01-01

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest–abdomen–pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore

  5. Association between lesion location and language function in adult glioma using voxel-based lesion-symptom mapping

    PubMed Central

    Banerjee, Pia; Leu, Kevin; Harris, Robert J.; Cloughesy, Timothy F.; Lai, Albert; Nghiemphu, Phioanh L.; Pope, Whitney B.; Bookheimer, Susan Y.; Ellingson, Benjamin M.

    2015-01-01

    Background Management of language difficulties is an important aspect of clinical care for glioma patients, and accurately identifying the possible language deficits in patients based on lesion location would be beneficial to clinicians. To that end, we examined the relationship between lesion presence and language performance on tests of receptive language and expressive language using a highly specific voxel-based lesion–symptom mapping (VLSM) approach in glioma patients. Methods 98 adults with primary glioma, who were pre-surgical candidates, were administered seven neurocognitive tests within the domains of receptive language and expressive language. The association between language performance and lesion presence was examined using VLSM. Statistical parametric maps were created for each test, and composite maps for both receptive language and expressive language were created to display the significant voxels common to all tests within these language domains. Results We identified clusters of voxels with a significant relationship between lesion presence and language performance. All tasks were associated with several white matter pathways. The receptive language tasks were additionally all associated with regions primarily within the lateral temporal lobe and medial temporal lobe. In contrast, the expressive language tasks shared little overlap, despite each task being independently associated with large anatomic areas. Conclusions Our findings identify the key anatomic structures involved in language functioning in adult glioma patients using an innovative lesion analysis technique and suggest that expressive language abilities may be more task-dependent and distributed than receptive language abilities. PMID:26740915

  6. An ICRP-based Chinese adult male voxel model and its absorbed dose for idealized photon exposures--the skeleton.

    PubMed

    Liu, Liye; Zeng, Zhi; Li, Junli; Zhang, Binquan; Qiu, Rui; Ma, Jizeng

    2009-11-01

    A site-specific skeleton voxel model for a Chinese adult male was constructed in this paper upon a previous Chinese individual voxel model. The whole skeleton was divided into 19 site-specific bones and bone groups; the mass of various skeleton tissues at each bone site, e.g. red bone marrow, was specified according to Asian reference data and the distribution data from ICRP Publication 70. The resultant voxel model (called CAM) has a resolution of 1.741 mm x 1.741 mm in plane, and the total bone mass is 8397.8 g which is almost equal to the Asian reference value. Dose coefficients for the red bone marrow and bone surface in CAM were calculated, and then compared with those from Rex, CMP and ICRP 74. It shows that the dose to RBM in Rex is generally 12% lower than that to CAM in low-energy range (30-150 keV) for AP, LAT, ROT and ISO geometries. It is also found that the RBM dose from mathematical models, i.e. CMP and ICRP 74, is underestimated by -30% in AP geometry and overestimated by 30% in PA geometry for low-energy photons. Meanwhile, the bone surface dose in the low-energy range is overestimated by 150% and 75% in CMP and ICRP 74, respectively, if compared with that from CAM. PMID:19841519

  7. Organ dose conversion coefficients on an ICRP-based Chinese adult male voxel model from idealized external photons exposures

    NASA Astrophysics Data System (ADS)

    Liu, Liye; Zeng, Zhi; Li, Junli; Qiu, Rui; Zhang, Binquan; Ma, Jizeng; Li, Ren; Li, Wenqian; Bi, Lei

    2009-11-01

    A high-resolution whole-body voxel model called CAM representing the Chinese adult male was constructed in this paper based on a previous individual voxel model. There are more than 80 tissues and organs in CAM, including almost all organs required in the ICRP new recommendation. The mass of individual organs has been adjusted to the Chinese reference data. Special considerations were given to representing the gross spatial distribution of various bone constituents as realistically as possible during the construction of the site-specific skeleton. Organ dose conversion coefficients were calculated for six idealized external photon exposures from 10 keV to 10 MeV by using Monte Carlo simulation. The resulting dose coefficients were then compared with those from other models, e.g. CMP, ICRP 74, Rex, HDRK-man and VIP-man. Old and new effective male doses of CAM were calculated by using the tissue weighting factors from ICRP 60 and 103 Publications, respectively. Dosimetric differences between mathematical and voxel models, and the differences between Asian and Caucasian models are also discussed in this paper.

  8. Organ dose conversion coefficients on an ICRP-based Chinese adult male voxel model from idealized external photons exposures.

    PubMed

    Liu, Liye; Zeng, Zhi; Li, Junli; Qiu, Rui; Zhang, Binquan; Ma, Jizeng; Li, Ren; Li, Wenqian; Bi, Lei

    2009-11-01

    A high-resolution whole-body voxel model called CAM representing the Chinese adult male was constructed in this paper based on a previous individual voxel model. There are more than 80 tissues and organs in CAM, including almost all organs required in the ICRP new recommendation. The mass of individual organs has been adjusted to the Chinese reference data. Special considerations were given to representing the gross spatial distribution of various bone constituents as realistically as possible during the construction of the site-specific skeleton. Organ dose conversion coefficients were calculated for six idealized external photon exposures from 10 keV to 10 MeV by using Monte Carlo simulation. The resulting dose coefficients were then compared with those from other models, e.g. CMP, ICRP 74, Rex, HDRK-man and VIP-man. Old and new effective male doses of CAM were calculated by using the tissue weighting factors from ICRP 60 and 103 Publications, respectively. Dosimetric differences between mathematical and voxel models, and the differences between Asian and Caucasian models are also discussed in this paper. PMID:19841518

  9. An ICRP-based Chinese adult male voxel model and its absorbed dose for idealized photon exposures—the skeleton

    NASA Astrophysics Data System (ADS)

    Liu, Liye; Zeng, Zhi; Li, Junli; Zhang, Binquan; Qiu, Rui; Ma, Jizeng

    2009-11-01

    A site-specific skeleton voxel model for a Chinese adult male was constructed in this paper upon a previous Chinese individual voxel model. The whole skeleton was divided into 19 site-specific bones and bone groups; the mass of various skeleton tissues at each bone site, e.g. red bone marrow, was specified according to Asian reference data and the distribution data from ICRP Publication 70. The resultant voxel model (called CAM) has a resolution of 1.741 mm × 1.741 mm in plane, and the total bone mass is 8397.8 g which is almost equal to the Asian reference value. Dose coefficients for the red bone marrow and bone surface in CAM were calculated, and then compared with those from Rex, CMP and ICRP 74. It shows that the dose to RBM in Rex is generally 12% lower than that to CAM in low-energy range (30-150 keV) for AP, LAT, ROT and ISO geometries. It is also found that the RBM dose from mathematical models, i.e. CMP and ICRP 74, is underestimated by -30% in AP geometry and overestimated by 30% in PA geometry for low-energy photons. Meanwhile, the bone surface dose in the low-energy range is overestimated by 150% and 75% in CMP and ICRP 74, respectively, if compared with that from CAM.

  10. Radiation dose evaluation of dental cone beam computed tomography using an anthropomorphic adult head phantom

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Shih, Cheng-Ting; Ho, Chang-hung; Liu, Yan-Lin; Chang, Yuan-Jen; Min Chao, Max; Hsu, Jui-Ting

    2014-11-01

    Dental cone beam computed tomography (CBCT) provides high-resolution tomographic images and has been gradually used in clinical practice. Thus, it is important to examine the amount of radiation dose resulting from dental CBCT examinations. In this study, we developed an in-house anthropomorphic adult head phantom to evaluate the level of effective dose. The anthropomorphic phantom was made of acrylic and filled with plaster to replace the bony tissue. The contour of the head was extracted from a set of adult computed tomography (CT) images. Different combinations of the scanning parameters of CBCT were applied. Thermoluminescent dosimeters (TLDs) were used to measure the absorbed doses at 19 locations in the head and neck regions. The effective doses measured using the proposed phantom at 65, 75, and 85 kVp in the D-mode were 72.23, 100.31, and 134.29 μSv, respectively. In the I-mode, the effective doses were 108.24, 190.99, and 246.48 μSv, respectively. The maximum percent error between the doses measured by the proposed phantom and the Rando phantom was l4.90%. Therefore, the proposed anthropomorphic adult head phantom is applicable for assessing the radiation dose resulting from clinical dental CBCT.

  11. Construction of hybrid Chinese reference adult phantoms and estimation of dose conversion coefficients for muons.

    PubMed

    Dong, Liang; Li, Taosheng; Liu, Chunyu

    2015-04-01

    A set of fluence-to-effective dose conversion coefficients of external exposure to muons were investigated for Chinese hybrid phantom references, which include both male and female. Both polygon meshes and Non-Uniform Rational B-Spline (NURBS) surfaces were used to descried the boundary of the organs and tissues in these phantoms. The 3D-DOCTOR and Rhinoceros software were used to polygonise the colour slice images and generate the NURBS surfaces, respectively. The voxelisation is completed using the BINVOX software and the assembly finished by using MATLAB codes. The voxel resolutions were selected to be 0.22 × 0.22 × 0.22 cm(3) and 0.2 × 0.2 × 0.2 cm(3) for male and female phantoms, respectively. All parts of the final phantoms were matched to their reference organ masses within a tolerance of ±5%. The conversion coefficients for negative and positive muons were calculated with the FLUKA transport code. There were 21 external monoenergetic beams ranging from 0.01 GeV to 100 TeV in 5 different geometrical conditions of irradiation. PMID:25313173

  12. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-01

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  13. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose

    PubMed Central

    Ding, Aiping; Mille, Matthew M; Liu, Tianyu; Caracappa, Peter F; Xu, X George

    2012-01-01

    Although it is known that obesity has a profound effect on x-ray computed tomography (CT) image quality and patient organ dose, quantitative data describing this relationship are not currently available. This study examines the effect of obesity on the calculated radiation dose to organs and tissues from CT using newly developed phantoms representing overweight and obese patients. These phantoms were derived from the previously developed RPI-adult male and female computational phantoms. The result was a set of ten phantoms (five males, five females) with body mass indexes ranging from 23.5 (normal body weight) to 46.4 kg m−2 (morbidly obese). The phantoms were modeled using triangular mesh geometry and include specified amounts of the subcutaneous adipose tissue and visceral adipose tissue. The mesh-based phantoms were then voxelized and defined in the Monte Carlo N-Particle Extended code to calculate organ doses from CT imaging. Chest–abdomen–pelvis scanning protocols for a GE LightSpeed 16 scanner operating at 120 and 140 kVp were considered. It was found that for the same scanner operating parameters, radiation doses to organs deep in the abdomen (e.g., colon) can be up to 59% smaller for obese individuals compared to those of normal body weight. This effect was found to be less significant for shallow organs. On the other hand, increasing the tube potential from 120 to 140 kVp for the same obese individual resulted in increased organ doses by as much as 56% for organs within the scan field (e.g., stomach) and 62% for those out of the scan field (e.g., thyroid), respectively. As higher tube currents are often used for larger patients to maintain image quality, it was of interest to quantify the associated effective dose. It was found from this study that when the mAs was doubled for the obese level-I, obese level-II and morbidly-obese phantoms, the effective dose relative to that of the normal weight phantom increased by 57%, 42% and 23%, respectively

  14. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose

    NASA Astrophysics Data System (ADS)

    Ding, Aiping; Mille, Matthew M.; Liu, Tianyu; Caracappa, Peter F.; Xu, X. George

    2012-05-01

    Although it is known that obesity has a profound effect on x-ray computed tomography (CT) image quality and patient organ dose, quantitative data describing this relationship are not currently available. This study examines the effect of obesity on the calculated radiation dose to organs and tissues from CT using newly developed phantoms representing overweight and obese patients. These phantoms were derived from the previously developed RPI-adult male and female computational phantoms. The result was a set of ten phantoms (five males, five females) with body mass indexes ranging from 23.5 (normal body weight) to 46.4 kg m-2 (morbidly obese). The phantoms were modeled using triangular mesh geometry and include specified amounts of the subcutaneous adipose tissue and visceral adipose tissue. The mesh-based phantoms were then voxelized and defined in the Monte Carlo N-Particle Extended code to calculate organ doses from CT imaging. Chest-abdomen-pelvis scanning protocols for a GE LightSpeed 16 scanner operating at 120 and 140 kVp were considered. It was found that for the same scanner operating parameters, radiation doses to organs deep in the abdomen (e.g., colon) can be up to 59% smaller for obese individuals compared to those of normal body weight. This effect was found to be less significant for shallow organs. On the other hand, increasing the tube potential from 120 to 140 kVp for the same obese individual resulted in increased organ doses by as much as 56% for organs within the scan field (e.g., stomach) and 62% for those out of the scan field (e.g., thyroid), respectively. As higher tube currents are often used for larger patients to maintain image quality, it was of interest to quantify the associated effective dose. It was found from this study that when the mAs was doubled for the obese level-I, obese level-II and morbidly-obese phantoms, the effective dose relative to that of the normal weight phantom increased by 57%, 42% and 23%, respectively. This set

  15. THE UF FAMILY OF REFERENCE HYBRID PHANTOMS FOR COMPUTATIONAL RADIATION DOSIMETRY

    PubMed Central

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2009-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in-vivo whole-body counters. Two classes of the computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms, that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15-year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms – those of the reference 1-year, 5-year, and 10-year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2

  16. The UF family of reference hybrid phantoms for computational radiation dosimetry.

    PubMed

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L; Bolch, Wesley E

    2010-01-21

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference organ

  17. The UF family of reference hybrid phantoms for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  18. Brain Gray Matter Changes Associated with Mindfulness Meditation in Older Adults: An Exploratory Pilot Study using Voxel-based Morphometry

    PubMed Central

    Kurth, Florian; Luders, Eileen; Wu, Brian; Black, David S.

    2015-01-01

    Background Mindfulness-based interventions (MBIs) have previously been associated with structural gray matter changes in normal healthy adults. However, it remains unknown if standardized MBIs can induce similar changes in older adults and those with health complaints as well. The objective of this investigation was to examine the effect of a standardized MBI on the gray matter tissue of older adults with sleep disturbances. Methods This exploratory single-group pilot longitudinal study examined local gray matter changes over a six-week MBI period. Participants included six older adult community volunteers (M=66.5 years of age, SD=5.5, range=58–75; 66% female) with sleep disturbances recruited through advertisement in local newspapers/flyers posted at a university medical center and affiliated clinics in Los Angeles, CA. The MBI was delivered as a weekly, two-hour, six-session, group-based course in mindfulness meditation. Gray matter was measured voxel-wise pre- and post-intervention. Results A significant gray matter increase was identified within the precuneus, possibly implicating meditation-induced changes of the default mode network. In contrast, observed significant gray matter decreases may have been driven by MBI-related remediation of brain architecture subserving sleep complaints. Conclusions Exploratory findings suggest that mindfulness meditation practice is associated with a detectable alteration of cerebral gray matter in older adults. PMID:25632405

  19. Radiation dose evaluation in 64-slice CT examinations with adult and paediatric anthropomorphic phantoms

    PubMed Central

    Fujii, K; Aoyama, T; Yamauchi-Kawaura, C; Koyama, S; Yamauchi, M; Ko, S; Akahane, K; Nishizawa, K

    2009-01-01

    The objective of this study was to evaluate the organ dose and effective dose to patients undergoing routine adult and paediatric CT examinations with 64-slice CT scanners and to compare the doses with those from 4-, 8- and 16-multislice CT scanners. Patient doses were measured with small (<7 mm wide) silicon photodiode dosemeters (34 in total), which were implanted at various tissue and organ positions within adult and 6-year-old child anthropomorphic phantoms. Output signals from photodiode dosemeters were read on a personal computer, from which organ and effective doses were computed. For the adult phantom, organ doses (for organs within the scan range) and effective doses were 8–35 mGy and 7–18 mSv, respectively, for chest CT, and 12–33 mGy and 10–21 mSv, respectively, for abdominopelvic CT. For the paediatric phantom, organ and effective doses were 4–17 mGy and 3–7 mSv, respectively, for chest CT, and 5–14 mGy and 3–9 mSv, respectively, for abdominopelvic CT. Doses to organs at the boundaries of the scan length were higher for 64-slice CT scanners using large beam widths and/or a large pitch because of the larger extent of over-ranging. The CT dose index (CTDIvol), dose–length product (DLP) and the effective dose values using 64-slice CT for the adult and paediatric phantoms were the same as those obtained using 4-, 8- and 16-slice CT. Conversion factors of DLP to the effective dose by International Commission on Radiological Protection 103 were 0.024 mSv⋅mGy−1⋅cm−1 and 0.019 mSv⋅mGy−1⋅cm−1 for adult chest and abdominopelvic CT scans, respectively. PMID:19934069

  20. Radiation dose evaluation in 64-slice CT examinations with adult and paediatric anthropomorphic phantoms.

    PubMed

    Fujii, K; Aoyama, T; Yamauchi-Kawaura, C; Koyama, S; Yamauchi, M; Ko, S; Akahane, K; Nishizawa, K

    2009-12-01

    The objective of this study was to evaluate the organ dose and effective dose to patients undergoing routine adult and paediatric CT examinations with 64-slice CT scanners and to compare the doses with those from 4-, 8- and 16-multislice CT scanners. Patient doses were measured with small (<7 mm wide) silicon photodiode dosemeters (34 in total), which were implanted at various tissue and organ positions within adult and 6-year-old child anthropomorphic phantoms. Output signals from photodiode dosemeters were read on a personal computer, from which organ and effective doses were computed. For the adult phantom, organ doses (for organs within the scan range) and effective doses were 8-35 mGy and 7-18 mSv, respectively, for chest CT, and 12-33 mGy and 10-21 mSv, respectively, for abdominopelvic CT. For the paediatric phantom, organ and effective doses were 4-17 mGy and 3-7 mSv, respectively, for chest CT, and 5-14 mGy and 3-9 mSv, respectively, for abdominopelvic CT. Doses to organs at the boundaries of the scan length were higher for 64-slice CT scanners using large beam widths and/or a large pitch because of the larger extent of over-ranging. The CT dose index (CTDI(vol)), dose-length product (DLP) and the effective dose values using 64-slice CT for the adult and paediatric phantoms were the same as those obtained using 4-, 8- and 16-slice CT. Conversion factors of DLP to the effective dose by International Commission on Radiological Protection 103 were 0.024 mSvmGy(-1)cm(-1) and 0.019 mSvmGy(-1)cm(-1) for adult chest and abdominopelvic CT scans, respectively. PMID:19934069

  1. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: A voxel-based morphometry study.

    PubMed

    Whiteman, Andrew S; Young, Daniel E; Budson, Andrew E; Stern, Chantal E; Schon, Karin

    2016-02-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; ·VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N=33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system. PMID:26631814

  2. Applicability of dose conversion coefficients of ICRP 74 to Asian adult males: Monte Carlo simulation study.

    PubMed

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2007-05-01

    International Commission on Radiological Protection (ICRP) reported comprehensive dose conversion coefficients for adult population, which is exposed to external photon sources in the Publication 74. However, those quantities were calculated from so-called stylized (or mathematical) phantoms composed of simplified mathematical surface equations so that the discrepancy between the phantoms and real human anatomy has been investigated by several authors using Caucasian-based voxel phantoms. To address anatomical and racial limitations of the stylized phantoms, several Asian-based voxel phantoms have been developed by Korean and Japanese investigators, independently. In the current study, photon dose conversion coefficients of ICRP 74 were compared with those from a total of five Asian-based male voxel phantoms, whose body dimensions were almost identical. Those of representative radio-sensitive organs (testes, red bone marrow, colon, lungs, and stomach), and effective dose conversion coefficients were obtained for comparison. Even though organ doses for testes, colon and lungs, and effective doses from ICRP 74 agreed well with those from Asian voxel phantoms within 10%, absorbed doses for red bone marrow and stomach showed significant discrepancies up to 30% which was mainly attributed to difference of phantom description between stylized and voxel phantoms. This study showed that the ICRP 74 dosimetry data, which have been reported to be unrealistic compared to those from Caucasian-based voxel phantoms, are also not appropriate for Asian population. PMID:17337194

  3. SAR calculations from 20 MHz to 6 GHz in the University of Florida newborn voxel phantom and their implications for dosimetry.

    PubMed

    Dimbylow, Peter; Bolch, Wesley; Lee, Choonsik

    2010-03-01

    This paper presents finite-difference time-domain (FDTD) calculations of SAR in the University of Florida newborn female model. The newborn model is based upon a surface representation of the organs of the body, using non-uniform rational B-spline surfaces (NURBS). The surface model can then be converted into voxels at any resolution required. This flexibility allows the preparation of voxel models at 2, 1 and 0.5 mm to investigate the effect of resolution on dispersion and the choice of algorithms to calculate SAR in the Yee cell as the frequency increases up to 6 GHz. The added advantage of the newborn model is that it is relatively small and so FDTD calculations can be made tractable at a very fine resolution of 0.5 mm. A comparison is made between the calculated external electric fields required to produce the basic restriction on whole-body-averaged SAR and the ICNIRP reference levels for public exposure. At 250 MHz, the whole body resonance, the ICNIRP reference level does not provide a conservative estimate of the whole-body-averaged SAR restriction. The reference level is also breached in the range 700-2450 MHz by all of the irradiation geometries considered. PMID:20157229

  4. SAR calculations from 20 MHz to 6 GHz in the University of Florida newborn voxel phantom and their implications for dosimetry

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter; Bolch, Wesley; Lee, Choonsik

    2010-03-01

    This paper presents finite-difference time-domain (FDTD) calculations of SAR in the University of Florida newborn female model. The newborn model is based upon a surface representation of the organs of the body, using non-uniform rational B-spline surfaces (NURBS). The surface model can then be converted into voxels at any resolution required. This flexibility allows the preparation of voxel models at 2, 1 and 0.5 mm to investigate the effect of resolution on dispersion and the choice of algorithms to calculate SAR in the Yee cell as the frequency increases up to 6 GHz. The added advantage of the newborn model is that it is relatively small and so FDTD calculations can be made tractable at a very fine resolution of 0.5 mm. A comparison is made between the calculated external electric fields required to produce the basic restriction on whole-body-averaged SAR and the ICNIRP reference levels for public exposure. At 250 MHz, the whole body resonance, the ICNIRP reference level does not provide a conservative estimate of the whole-body-averaged SAR restriction. The reference level is also breached in the range 700-2450 MHz by all of the irradiation geometries considered.

  5. RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams

    NASA Astrophysics Data System (ADS)

    Zhang, Juying; Hum Na, Yong; Caracappa, Peter F.; Xu, X. George

    2009-10-01

    This paper describes the development of a pair of adult male and adult female computational phantoms that are compatible with anatomical parameters for the 50th percentile population as specified by the International Commission on Radiological Protection (ICRP). The phantoms were designed entirely using polygonal mesh surfaces—a Boundary REPresentation (BREP) geometry that affords the ability to efficiently deform the shape and size of individual organs, as well as the body posture. A set of surface mesh models, from Anatomium™ 3D P1 V2.0, including 140 organs (out of 500 available) was adopted to supply the basic anatomical representation at the organ level. The organ masses were carefully adjusted to agree within 0.5% relative error with the reference values provided in the ICRP Publication 89. The finalized phantoms have been designated the RPI adult male (RPI-AM) and adult female (RPI-AF) phantoms. For the purposes of organ dose calculations using the MCNPX Monte Carlo code, these phantoms were subsequently converted to voxel formats. Monoenergetic photons between 10 keV and 10 MeV in six standard external photon source geometries were considered in this study: four parallel beams (anterior-posterior, posterior-anterior, left lateral and right lateral), one rotational and one isotropic. The results are tabulated as fluence-to-organ-absorbed-dose conversion coefficients and fluence-to-effective-dose conversion coefficients and compared against those derived from the ICRP computational phantoms, REX and REGINA. A general agreement was found for the effective dose from these two sets of phantoms for photon energies greater than about 300 keV. However, for low-energy photons and certain individual organs, the absorbed doses exhibit profound differences due to specific anatomical features. For example, the position of the arms affects the dose to the lung by more than 20% below 300 keV in the lateral source directions, and the vertical position of the testes

  6. RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams

    PubMed Central

    Zhang, Juying; Na, Yong Hum; Caracappa, Peter F; Xu, X George

    2010-01-01

    This paper describes the development of a pair of adult male and adult female computational phantoms that are compatible with anatomical parameters for the 50th percentile population as specified by the International Commission on Radiological Protection (ICRP). The phantoms were designed entirely using polygonal mesh surfaces—a Boundary REPresentation (BREP) geometry that affords the ability to efficiently deform the shape and size of individual organs, as well as the body posture. A set of surface mesh models, from Anatomium™ 3D P1 V2.0, including 140 organs (out of 500 available) was adopted to supply the basic anatomical representation at the organ level. The organ masses were carefully adjusted to agree within 0.5% relative error with the reference values provided in the ICRP Publication 89. The finalized phantoms have been designated the RPI adult male (RPI-AM) and adult female (RPI-AF) phantoms. For the purposes of organ dose calculations using the MCNPX Monte Carlo code, these phantoms were subsequently converted to voxel formats. Monoenergetic photons between 10 keV and 10 MeV in six standard external photon source geometries were considered in this study: four parallel beams (anterior–posterior, posterior–anterior, left lateral and right lateral), one rotational and one isotropic. The results are tabulated as fluence-to-organ-absorbed-dose conversion coefficients and fluence-to-effective-dose conversion coefficients and compared against those derived from the ICRP computational phantoms, REX and REGINA. A general agreement was found for the effective dose from these two sets of phantoms for photon energies greater than about 300 keV. However, for low-energy photons and certain individual organs, the absorbed doses exhibit profound differences due to specific anatomical features. For example, the position of the arms affects the dose to the lung by more than 20% below 300 keV in the lateral source directions, and the vertical position of the testes

  7. Calculated SAR distributions in a human voxel phantom due to the reflection of electromagnetic fields from a ground plane between 65 MHz and 2 GHz

    NASA Astrophysics Data System (ADS)

    Findlay, R. P.; Dimbylow, P. J.

    2008-05-01

    If an electromagnetic field is incident normally onto a perfectly conducting ground plane, the field is reflected back into the domain. This produces a standing wave above the ground plane. If a person is present within the domain, absorption of the field in the body may cause problems regarding compliance with electromagnetic guidelines. To investigate this, the whole-body averaged specific energy absorption rate (SAR), localised SAR and ankle currents in the voxel model NORMAN have been calculated for a variety of these exposures under grounded conditions. The results were normalised to the spatially averaged field, a technique used to determine a mean value for comparison with guidelines when the field varies along the height of the body. Additionally, the external field values required to produce basic restrictions for whole-body averaged SAR have been calculated. It was found that in all configurations studied, the ICNIRP reference levels and IEEE MPEs provided a conservative estimate of these restrictions.

  8. Comparison of internal doses calculated using the specific absorbed fractions of the average adult Japanese male phantom with those of the reference computational phantom-adult male of ICRP publication 110

    NASA Astrophysics Data System (ADS)

    Manabe, Kentaro; Sato, Kaoru; Endo, Akira

    2014-03-01

    In order to study the effects of body sizes and masses of organs and tissues on internal dose assessment, the values corresponding to effective dose coefficients for intakes of radionuclides were calculated using the specific absorbed fractions (SAFs) of two phantoms: the average adult Japanese male phantom (JM-103) and the reference computational phantom-adult male (RCP-AM) of the International Commission on Radiological Protection. SAFs were evaluated using the phantoms and Monte Carlo radiation transport code MCNPX or were taken from published data. As a result of a comparison for 2894 cases of 923 radionuclides, the maximum discrepancy in the effective dose coefficients between the JM-103 and RCP-AM was about 40%. However, the discrepancies were smaller than 10% in 97% of all cases.

  9. Dosimetry of a cone beam CT device for oral and maxillofacial radiology using Monte Carlo techniques and ICRP adult reference computational phantoms

    PubMed Central

    Morant, JJ; Salvadó, M; Hernández-Girón, I; Casanovas, R; Ortega, R; Calzado, A

    2013-01-01

    Objectives: The aim of this study was to calculate organ and effective doses for a range of available protocols in a particular cone beam CT (CBCT) scanner dedicated to dentistry and to derive effective dose conversion factors. Methods: Monte Carlo simulations were used to calculate organ and effective doses using the International Commission on Radiological Protection voxel adult male and female reference phantoms (AM and AF) in an i-CAT CBCT. Nine different fields of view (FOVs) were simulated considering full- and half-rotation modes, and also a high-resolution acquisition for a particular protocol. Dose–area product (DAP) was measured. Results: Dose to organs varied for the different FOVs, usually being higher in the AF phantom. For 360°, effective doses were in the range of 25–66 μSv, and 46 μSv for full head. Higher contributions to the effective dose corresponded to the remainder (31%; 27–36 range), salivary glands (23%; 20–29%), thyroid (13%; 8–17%), red bone marrow (10%; 9–11%) and oesophagus (7%; 4–10%). The high-resolution protocol doubled the standard resolution doses. DAP values were between 181 mGy cm2 and 556 mGy cm2 for 360°. For 180° protocols, dose to organs, effective dose and DAP were approximately 40% lower. A conversion factor (DAP to effective dose) of 0.130 ± 0.006 μSv mGy−1 cm−2 was derived for all the protocols, excluding full head. A wide variation in dose to eye lens and thyroid was found when shifting the FOV in the AF phantom. Conclusions: Organ and effective doses varied according to field size, acquisition angle and positioning of the beam relative to radiosensitive organs. Good positive correlation between calculated effective dose and measured DAP was found. PMID:22933532

  10. Influence of dentures on SAR in the visible Chinese human head voxel phantom exposed to a mobile phone at 900 and 1800 MHz.

    PubMed

    Yu, Dong; Zhang, Ruoyu; Liu, Qian

    2012-09-01

    To investigate the influence of dentures on electromagnetic energy absorption during the daily use of a mobile phone, a high-resolution head phantom based on the Visible Chinese Human dataset was reconstructed. Simulations on phantoms with various dentures were performed by using the finite-difference time-domain method with a 0.47 wavelength dipole antenna and a mobile phone model as radiation sources at 900 and 1800 MHz. The Specific energy Absorption Rate (SAR) values including 1 and 10 g average SAR values were assessed. When the metallic dental crowns with resonance lengths of approximately one-third to one-half wavelength in the tissue nearby are parallel to the radiation source, up to 121.6% relative enhancement for 1 g average SAR and 17.1% relative enhancement for 10 g average SAR are observed due to the resonance effect in energy absorption. When the radiation sources operate in the normal configuration, the 10 g average SAR values are still in compliance with the basic restrictions established by the Institute of Electrical and Electronic Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP), indicating that the safety limits will not be challenged by the usage of dentures. PMID:22388567

  11. A Monte Carlo approach to assessing 147Pm in the liver of the adult phantom.

    PubMed

    Bhati, S

    1993-06-01

    A low-background phoswich detector is used to detect small amounts of 147Pm--a pure beta-emitting nuclide--present in the liver of an occupational worker. The assessment was based on the measurement of bremsstrahlung radiation produced by the beta particles in the tissue. Computer programs based on Monte Carlo techniques for photon transport have been developed to calculate the response of an external phoswich detector to 1) a 147Pm point source embedded in tissue-equivalent slabs of various thicknesses; and 2) various source distributions of 147Pm in the liver of an adult phantom. The goal is to theoretically calibrate the phoswich detector for each source distribution and to study the variation of maxima of the spectra with the depth of the source in the adult phantom liver and tissue-equivalent slabs. The initial bremsstrahlung photon distribution of 147Pm in water has been computed using Wyard's and Pratt's methods. These calculations have been compared with experimental measurements using Perspex acrylic sheet slabs. Good agreements have been noted when the initial bremsstrahlung spectrum is obtained by using Wyard's method. These results find applications in monitoring the liver burdens in occupational workers handling 147Pm-based radioluminous paints. PMID:8491620

  12. Evaluation of organ doses in adult and paediatric CT examinations based on Monte Carlo simulations and in-phantom dosimetry.

    PubMed

    Fujii, K; Nomura, K; Muramatsu, Y; Takahashi, K; Obara, S; Akahane, K; Satake, M

    2015-07-01

    The aim of this study was to validate the computed tomography dose index (CTDI) and organ doses evaluated by Monte Carlo simulations through comparisons with doses evaluated by in-phantom dosimetry. Organ doses were measured with radio-photoluminescence glass dosemeter (RGD) set at various organ positions within adult and 1-y-old anthropomorphic phantoms. For the dose simulations, the X-ray spectrum and bow-tie filter shape of a CT scanner were estimated and 3D voxelised data of the CTDI and anthropomorphic phantoms from the acquired CT images were derived. Organ dose simulations and measurements were performed with chest and abdomen-pelvis CT examination scan parameters. Relative differences between the simulated and measured doses were within 5 % for the volume CTDI and 13 % for organ doses for organs within the scan range in adult and paediatric CT examinations. The simulation results were considered to be in good agreement with the measured doses. PMID:25848103

  13. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry

    NASA Astrophysics Data System (ADS)

    Nagaoka, Tomoaki; Watanabe, Soichi; Sakurai, Kiyoko; Kunieda, Etsuo; Watanabe, Satoshi; Taki, Masao; Yamanaka, Yukio

    2004-01-01

    With advances in computer performance, the use of high-resolution voxel models of the entire human body has become more frequent in numerical dosimetries of electromagnetic waves. Using magnetic resonance imaging, we have developed realistic high-resolution whole-body voxel models for Japanese adult males and females of average height and weight. The developed models consist of cubic voxels of 2 mm on each side; the models are segmented into 51 anatomic regions. The adult female model is the first of its kind in the world and both are the first Asian voxel models (representing average Japanese) that enable numerical evaluation of electromagnetic dosimetry at high frequencies of up to 3 GHz. In this paper, we will also describe the basic SAR characteristics of the developed models for the VHF/UHF bands, calculated using the finite-difference time-domain method.

  14. Food source provisioning and susceptibility of immature and adult Tribolium castaneum on concrete partially treated with chlorfenapyr (Phantom®)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted in which adults, pupae, and 4-week-old larvae of Tribolium castaneum (Herbst), the red flour beetle, were exposed separately on concrete arenas partially treated (14.4 % of the total area) with the insecticide chlorfenapyr (Phantom®) at 1.1 g active ingredient/...

  15. The influence of patient size on dose conversion coefficients: a hybrid phantom study for adult cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Johnson, Perry; Lee, Choonsik; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2009-06-01

    In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure—cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.

  16. Overview of the ICRP/ICRU adult reference computational phantoms and dose conversion coefficients for external idealised exposures.

    PubMed

    Endo, Akira; Petoussi-Henss, Nina; Zankl, Maria; Bolch, Wesley E; Eckerman, Keith F; Hertel, Nolan E; Hunt, John G; Pelliccioni, Maurizio; Schlattl, Helmut; Menzel, Hans-Georg

    2014-10-01

    This paper reviews the ICRP Publications 110 and 116 describing the reference computational phantoms and dose conversion coefficients for external exposures. The International Commission on Radiological Protection (ICRP) in its 2007 Recommendations made several revisions to the methods of calculation of the protection quantities. In order to implement these recommendations, the DOCAL task group of the ICRP developed computational phantoms representing the reference adult male and female and then calculated a set of dose conversion coefficients for various types of idealised external exposures. This paper focuses on the dose conversion coefficients for neutrons and investigates their relationship with the conversion coefficients of the protection and operational quantities of ICRP Publication 74. Contributing factors to the differences between these sets of conversion coefficients are discussed in terms of the changes in phantoms employed and the radiation and tissue weighting factors. PMID:24285286

  17. HYBRID COMPUTATIONAL PHANTOMS FOR MEDICAL DOSE RECONSTRUCTION

    PubMed Central

    Bolch, Wesley; Lee, Choonsik; Wayson, Michael; Johnson, Perry

    2010-01-01

    As outlined in NCRP Report No. 160, the average value of the effective dose to exposed individual in the United States has increased by a factor of 1.7 over the time period 1982 to 2006, with the contribution of medical exposures correspondingly increasing by a factor of 5.7. at present, medical contributors to the effective dose include computed tomography (50% of total medical exposure), nuclear medicine (25%), interventional fluoroscopy (15%), and conventional radiography and diagnostic fluoroscopy (10%). This increased awareness of medical exposures has led to a graduate shift in the focus of radiation epidemiological studies from traditional occupational and environmental exposures to those focusing on cohorts of medical patients exposed to both diagnostic and therapeutic sources. The assignment of organ doses to patients in either a retrospective or prospective study has increasingly relied on the use of computational anatomical phantoms. In this paper, we review the various methods and approaches used to construction patient phantom models to include anthropometric databases, cadaver imaging, prospective volunteer imaging studies, and retrospective image reviews. Phantom format types – stylized, voxel, and hybrid – as well as phantom morphometric categories – reference, patient-dependent, and patient-specific – are next defined and discussed. Specific emphasis is given to hybrid phantoms – those defined through the use of combinations of polygon mesh and NURBS surfaces. The concept of a patient-dependent phantom is reviewed in which phantoms of non-50th percentile heights and weights are designed from population-based morphometric databases and provided as a larger library of phantoms for patient matching and lookup of refined values of organ dose coefficients and/or radionuclide S values. We close with two brief examples of the use of hybrid phantoms in medical dose reconstruction – diagnostic nuclear medicine for pediatric subjects and

  18. Fluence-to-dose conversion coefficients based on the posture modification of Adult Male (AM) and Adult Female (AF) reference phantoms of ICRP 110

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Santos, W. S.; Alves, M. C.; Souza, D. N.; Carvalho, A. B.

    2016-04-01

    The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010-10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario.

  19. Hybrid computational phantoms for medical dose reconstruction.

    PubMed

    Bolch, Wesley; Lee, Choonsik; Wayson, Michael; Johnson, Perry

    2010-05-01

    As outlined in NCRP Report No. 160 of the US National Council on Radiation Protection and Measurements (NCRP), the average value of the effective dose to exposed individuals in the United States has increased by a factor of 1.7 over the time period 1982-2006, with the contribution of medical exposures correspondingly increasing by a factor of 5.7. At present, medical contributors to effective dose include computed tomography (50% of total medical exposure), nuclear medicine (25%), interventional fluoroscopy (15%), and conventional radiography and diagnostic fluoroscopy (10%). An increased awareness of medical exposures has led to a gradual shift in the focus of radiation epidemiological studies from traditional occupational and environmental exposures to those focusing on cohorts of medical patients exposed to both diagnostic and therapeutic sources. The assignment of organ doses to patients in either a retrospective or a prospective study has increasingly relied on the use of computational anatomic phantoms. In this paper, we review the various methods and approaches used to construct patient models to include anthropometric databases, cadaver imaging, prospective volunteer imaging studies, and retrospective image reviews. Phantom format types--stylized, voxel, and hybrid--as well as phantom morphometric categories--reference, patient-dependent, and patient-specific--are next defined and discussed. Specific emphasis is given to hybrid phantoms-those defined through the use of combinations of polygon mesh and non-uniform rational B-spline (NURBS) surfaces. The concept of a patient-dependent phantom is reviewed, in which phantoms of non-50th percentile heights and weights are designed from population-based morphometric databases and provided as a larger library of phantoms for patient matching and lookup of refined values of organ dose coefficients and/or radionuclide S values. We close with two brief examples of the use of hybrid phantoms in medical dose

  20. Transcutaneous electrical nerve stimulation for phantom pain and stump pain in adult amputees.

    PubMed

    Mulvey, Matthew R; Radford, Helen E; Fawkner, Helen J; Hirst, Lynn; Neumann, Vera; Johnson, Mark I

    2013-04-01

    Following amputation, 50% to 90% of individuals experience phantom and/or stump pain. Transcutaneous electrical nerve stimulation (TENS) may prove to be a useful adjunct analgesic intervention, although a recent systematic review was unable to judge effectiveness owing to lack of quality evidence. The aim of this pilot study was to gather data on the effect of TENS on phantom pain and stump pain at rest and on movement. Ten individuals with a transtibial amputation and persistent moderate-to-severe phantom and/or stump pain were recruited. Inclusion criteria was a baseline pain score of ≥3 using 0 to 10 numerical rating scale (NRS). TENS was applied for 60 minutes to generate a strong but comfortable TENS sensation at the site of stump pain or projected into the site of phantom pain. Outcomes at rest and on movement before and during TENS at 30 minutes and 60 minutes were changes in the intensities of pain, nonpainful phantom sensation, and prosthesis embodiment. Mean (SD) pain intensity scores were reduced by 1.8 (1.6) at rest (P < 0.05) and 3.9 (1.9) on movement (P < 0.05) after 60 minutes of TENS. For five participants, it was possible to project TENS sensation into the phantom limb by placing the electrodes over transected afferent nerves. Nonpainful phantom sensations and prosthesis embodiment remained unchanged. This study has demonstrated that TENS has potential for reducing phantom pain and stump pain at rest and on movement. Projecting TENS sensation into the phantom limb might facilitate perceptual embodiment of prosthetic limbs. The findings support the delivery of a feasibility trial. PMID:22935086

  1. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    SciTech Connect

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.; Lallena, A. M.

    2012-05-15

    AP, and breasts and red marrow, in RLAT. Equivalent and effective doses obtained for MAX06/FAX06 were smaller (between 2 and 20 times) than those quoted for the mathematical phantoms ADAM/EVA in ICRP-74. Conclusions: The new calculations of conversion coefficients for neutron irradiation in AP and RLAT irradiation geometries show a reduction in the values of effective dose by factors 7 (AP) and 6 (RLAT) with respect to the old data obtained with mathematical phantoms. The existence of tissues or anatomical regions with maximum absorbed doses, such as penis, lens of eyes, fascia (part of connective tissue), etc., organs/tissues that classic mathematical phantoms did not include because they were not considered for the study of stochastic effects, has been revealed. Absorbed doses due to photons, obtained following the same simulation methodology, are larger than those due to neutrons, reaching values 100 times larger as the primary beam is approached. However, for organs far from the treated volume, absorbed photon doses can be up to three times smaller than neutron ones. Calculations using voxel phantoms permitted to know the organ dose conversion coefficients per MU due to secondary neutrons in the complete anatomy of a patient.

  2. Posture-specific phantoms representing female and male adults in Monte Carlo-based simulations for radiological protection

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Kramer, R.; Brayner, C.; Khoury, H. J.

    2010-08-01

    Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.

  3. Intra voxel analysis in MRI

    NASA Astrophysics Data System (ADS)

    Ambrosanio, Michele; Baselice, Fabio; Ferraioli, Giampaolo; Pascazio, Vito

    2014-03-01

    A new application of Compressive Sensing (CS) in Magnetic Resonance Imaging (MRI) field is presented. In particular, first results of the Intra Voxel Analysis (IVA) technique are reported. The idea is to exploit CS peculiarities in order to distinguish different contributions inside the same resolution cell, instead of reconstructing images from not fully sampled k-space acquisition. Applied to MRI field, this means the possibility of estimating the presence of different tissues inside the same voxel, i.e. in one pixel of the obtained image. In other words, the method is the first attempt, as far as we know, of achieving Spectroscopy-like results starting from each pixel of MR images. In particular, tissues are distinguished each others by evaluating their spin-spin relaxation times. Within this manuscript, first results on clinical dataset, in particular a phantom made by aqueous solution and oil and an occipital brain lesion corresponding to a metastatic breast cancer nodule, are reported. Considering the phantom dataset, in particular focusing on the slice where the separation between water and oil occurs, the methodology is able to distinguish the two components with different spin-spin relaxation times. With respect to clinical dataset,focusing on a voxel of the lesion area, the approach is able to detect the presence of two tissues, namely the healthy and the cancer related ones, while in other location outside the lesion only the healthy tissue is detected. Of course, these are the first results of the proposed methodology, further studies on different types of clinical datasets are required in order to widely validate the approach. Although few datasets have been considered, results seem both interesting and promising.

  4. VIDA: A Voxel-Based Dosimetry Method for Targeted Radionuclide Therapy Using Geant4

    PubMed Central

    Dewaraja, Yuni K.; Abramson, Richard G.; Stabin, Michael G.

    2015-01-01

    Abstract We have developed the Voxel-Based Internal Dosimetry Application (VIDA) to provide patient-specific dosimetry in targeted radionuclide therapy performing Monte Carlo simulations of radiation transport with the Geant4 toolkit. The code generates voxel-level dose rate maps using anatomical and physiological data taken from individual patients. Voxel level dose rate curves are then fit and integrated to yield a spatial map of radiation absorbed dose. In this article, we present validation studies using established dosimetry results, including self-dose factors (DFs) from the OLINDA/EXM program for uniform activity in unit density spheres and organ self- and cross-organ DFs in the Radiation Dose Assessment Resource (RADAR) reference adult phantom. The comparison with reference data demonstrated agreement within 5% for self-DFs to spheres and reference phantom source organs for four common radionuclides used in targeted therapy (131I, 90Y, 111In, 177Lu). Agreement within 9% was achieved for cross-organ DFs. We also present dose estimates to normal tissues and tumors from studies of two non-Hodgkin Lymphoma patients treated by 131I radioimmunotherapy, with comparison to results generated independently with another dosimetry code. A relative difference of 12% or less was found between methods for mean absorbed tumor doses accounting for tumor regression. PMID:25594357

  5. VIDA: a voxel-based dosimetry method for targeted radionuclide therapy using Geant4.

    PubMed

    Kost, Susan D; Dewaraja, Yuni K; Abramson, Richard G; Stabin, Michael G

    2015-02-01

    We have developed the Voxel-Based Internal Dosimetry Application (VIDA) to provide patient-specific dosimetry in targeted radionuclide therapy performing Monte Carlo simulations of radiation transport with the Geant4 toolkit. The code generates voxel-level dose rate maps using anatomical and physiological data taken from individual patients. Voxel level dose rate curves are then fit and integrated to yield a spatial map of radiation absorbed dose. In this article, we present validation studies using established dosimetry results, including self-dose factors (DFs) from the OLINDA/EXM program for uniform activity in unit density spheres and organ self- and cross-organ DFs in the Radiation Dose Assessment Resource (RADAR) reference adult phantom. The comparison with reference data demonstrated agreement within 5% for self-DFs to spheres and reference phantom source organs for four common radionuclides used in targeted therapy ((131)I, (90)Y, (111)In, (177)Lu). Agreement within 9% was achieved for cross-organ DFs. We also present dose estimates to normal tissues and tumors from studies of two non-Hodgkin Lymphoma patients treated by (131)I radioimmunotherapy, with comparison to results generated independently with another dosimetry code. A relative difference of 12% or less was found between methods for mean absorbed tumor doses accounting for tumor regression. PMID:25594357

  6. No significant brain volume decreases or increases in adults with high-functioning autism spectrum disorder and above average intelligence: a voxel-based morphometric study.

    PubMed

    Riedel, Andreas; Maier, Simon; Ulbrich, Melanie; Biscaldi, Monica; Ebert, Dieter; Fangmeier, Thomas; Perlov, Evgeniy; Tebartz van Elst, Ludger

    2014-08-30

    Autism spectrum disorder (ASD) is increasingly being recognized as an important issue in adult psychiatry and psychotherapy. High intelligence indicates overall good brain functioning and might thus present a particularly good opportunity to study possible cerebral correlates of core autistic features in terms of impaired social cognition, communication skills, the need for routines, and circumscribed interests. Anatomical MRI data sets for 30 highly intelligent patients with high-functioning autism and 30 pairwise-matched control subjects were acquired and analyzed with voxel-based morphometry. The gray matter volume of the pairwise-matched patients and the controls did not differ significantly. When correcting for total brain volume influences, the patients with ASD exhibited smaller left superior frontal volumes on a trend level. Heterogeneous volumetric findings in earlier studies might partly be explained by study samples biased by a high inclusion rate of secondary forms of ASD, which often go along with neuronal abnormalities. Including only patients with high IQ scores might have decreased the influence of secondary forms of ASD and might explain the absence of significant volumetric differences between the patients and the controls in this study. PMID:24953998

  7. A Monte Carlo study of lung counting efficiency for female workers of different breast sizes using deformable phantoms

    PubMed Central

    Hegenbart, L; Na, Y H; Zhang, J Y; Urban, M; Xu, X George

    2009-01-01

    There are currently no physical phantoms available for calibrating in vivo counting devices that represent women with different breast sizes because such phantoms are difficult, time consuming and expensive to fabricate. In this work, a feasible alternative involving computational phantoms was explored. A series of new female voxel phantoms with different breast sizes were developed and ported into a Monte Carlo radiation transport code for performing virtual lung counting efficiency calibrations. The phantoms are based on the RPI adult female phantom, a boundary representation (BREP) model. They were created with novel deformation techniques and then voxelized for the Monte Carlo simulations. Eight models have been selected with cup sizes ranging from AA to G according to brassiere industry standards. Monte Carlo simulations of a lung counting system were performed with these phantoms to study the effect of breast size on lung counting efficiencies, which are needed to determine the activity of a radionuclide deposited in the lung and hence to estimate the resulting dose to the worker. Contamination scenarios involving three different radionuclides, namely Am-241, Cs-137 and Co-60, were considered. The results show that detector efficiencies considerably decrease with increasing breast size, especially for low energy photon emitting radionuclides. When the counting efficiencies of models with cup size AA were compared to those with cup size G, a difference of up to 50% was observed. The detector efficiencies for each radionuclide can be approximated by curve fitting in the total breast mass (polynomial of second order) or the cup size (power). PMID:18780959

  8. Numerical Analysis of Organ Doses Delivered During Computed Tomography Examinations Using Japanese Adult Phantoms with the WAZA-ARI Dosimetry System.

    PubMed

    Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji; Ban, Nobuhiko; Hasegawa, Takayuki; Katsunuma, Yasushi; Yoshitake, Takayasu; Kai, Michiaki

    2015-08-01

    A dosimetry system for computed tomography (CT) examinations, named WAZA-ARI, is being developed to accurately assess radiation doses to patients in Japan. For dose calculations in WAZA-ARI, organ doses were numerically analyzed using average adult Japanese male (JM) and female (JF) phantoms with the Particle and Heavy Ion Transport code System (PHITS). Experimental studies clarified the photon energy distribution of emitted photons and dose profiles on the table for some multi-detector row CT (MDCT) devices. Numerical analyses using a source model in PHITS could specifically take into account emissions of x rays from the tube to the table with attenuation of photons through a beam-shaping filter for each MDCT device based on the experiment results. The source model was validated by measuring the CT dose index (CTDI). Numerical analyses with PHITS revealed a concordance of organ doses with body sizes of the JM and JF phantoms. The organ doses in the JM phantoms were compared with data obtained using previously developed systems. In addition, the dose calculations in WAZA-ARI were verified with previously reported results by realistic NUBAS phantoms and radiation dose measurement using a physical Japanese model (THRA1 phantom). The results imply that numerical analyses using the Japanese phantoms and specified source models can give reasonable estimates of dose for MDCT devices for typical Japanese adults. PMID:26107430

  9. Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry

    SciTech Connect

    Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.; Bolch, Wesley E.

    2008-06-15

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms - takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and

  10. The UF series of tomographic computational phantoms of pediatric patients

    SciTech Connect

    Lee, Choonik; Williams, Jonathan L.; Lee, Choonsik; Bolch, Wesley E.

    2005-12-15

    Two classes of anthropomorphic computational phantoms exist for use in Monte Carlo radiation transport simulations: tomographic voxel phantoms based upon three-dimensional (3D) medical images, and stylized mathematical phantoms based upon 3D surface equations for internal organ definition. Tomographic phantoms have shown distinct advantages over the stylized phantoms regarding their similarity to real human anatomy. However, while a number of adult tomographic phantoms have been developed since the early 1990s, very few pediatric tomographic phantoms are presently available to support dosimetry in pediatric diagnostic and therapy examinations. As part of a larger effort to construct a series of tomographic phantoms of pediatric patients, five phantoms of different ages (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) have been constructed from computed tomography (CT) image data of live patients using an IDL-based image segmentation tool. Lungs, bones, and adipose tissue were automatically segmented through use of window leveling of the original CT numbers. Additional organs were segmented either semiautomatically or manually with the aid of both anatomical knowledge and available image-processing techniques. Layers of skin were created by adding voxels along the exterior contour of the bodies. The phantoms were created from fused images taken from head and chest-abdomen-pelvis CT exams of the same individuals (9-month and 4-year phantoms) or of two different individuals of the same sex and similar age (8-year, 11-year, and 14-year phantoms). For each model, the resolution and slice positions of the image sets were adjusted based upon their anatomical coverage and then fused to a single head-torso image set. The resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year, and 14-year are 0.43x0.43x3.0 mm, 0.45x0.45x5.0 mm, 0.58x0.58x6.0 mm, 0.47x0.47x6.00 mm, and 0.625x0.625x6.0 mm, respectively. While organ masses can be

  11. Monte Carlo estimation of radiation dose in organs of female and male adult phantoms due to FDG-F18 absorbed in the lungs

    NASA Astrophysics Data System (ADS)

    Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.

    2014-03-01

    The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.

  12. ICRP Publication 116--the first ICRP/ICRU application of the male and female adult reference computational phantoms.

    PubMed

    Petoussi-Henss, Nina; Bolch, Wesley E; Eckerman, Keith F; Endo, Akira; Hertel, Nolan; Hunt, John; Menzel, Hans G; Pelliccioni, Maurizio; Schlattl, Helmut; Zankl, Maria

    2014-09-21

    ICRP Publication 116 on 'Conversion coefficients for radiological protection quantities for external radiation exposures', provides fluence-to-dose conversion coefficients for organ-absorbed doses and effective dose for various types of external exposures (ICRP 2010 ICRP Publication 116). The publication supersedes the ICRP Publication 74 (ICRP 1996 ICRP Publication 74, ICRU 1998 ICRU Report 57), including new particle types and expanding the energy ranges considered. The coefficients were calculated using the ICRP/ICRU computational phantoms (ICRP 2009 ICRP Publication 110) representing the reference adult male and reference adult female (ICRP 2002 ICRP Publication 89), together with a variety of Monte Carlo codes simulating the radiation transport in the body. Idealized whole-body irradiation from unidirectional and rotational parallel beams as well as isotropic irradiation was considered for a large variety of incident radiations and energy ranges. Comparison of the effective doses with operational quantities revealed that the latter quantities continue to provide a good approximation of effective dose for photons, neutrons and electrons for the 'conventional' energy ranges considered previously (ICRP 1996, ICRU 1998), but not at the higher energies of ICRP Publication 116. PMID:25144220

  13. ICRP Publication 116—the first ICRP/ICRU application of the male and female adult reference computational phantoms

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Bolch, Wesley E.; Eckerman, Keith F.; Endo, Akira; Hertel, Nolan; Hunt, John; Menzel, Hans G.; Pelliccioni, Maurizio; Schlattl, Helmut; Zankl, Maria

    2014-09-01

    ICRP Publication 116 on ‘Conversion coefficients for radiological protection quantities for external radiation exposures’, provides fluence-to-dose conversion coefficients for organ-absorbed doses and effective dose for various types of external exposures (ICRP 2010 ICRP Publication 116). The publication supersedes the ICRP Publication 74 (ICRP 1996 ICRP Publication 74, ICRU 1998 ICRU Report 57), including new particle types and expanding the energy ranges considered. The coefficients were calculated using the ICRP/ICRU computational phantoms (ICRP 2009 ICRP Publication 110) representing the reference adult male and reference adult female (ICRP 2002 ICRP Publication 89), together with a variety of Monte Carlo codes simulating the radiation transport in the body. Idealized whole-body irradiation from unidirectional and rotational parallel beams as well as isotropic irradiation was considered for a large variety of incident radiations and energy ranges. Comparison of the effective doses with operational quantities revealed that the latter quantities continue to provide a good approximation of effective dose for photons, neutrons and electrons for the ‘conventional’ energy ranges considered previously (ICRP 1996, ICRU 1998), but not at the higher energies of ICRP Publication 116.

  14. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.

    2007-07-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images—the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid

  15. Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry

    PubMed Central

    Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.; Bolch, Wesley E.

    2008-01-01

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms—called hybrid phantoms—takes advantage of the best features of stylized and voxel phantoms—flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS∕polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and

  16. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research

    PubMed Central

    Paul Segars, W.; Tsui, Benjamin M. W.

    2012-01-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal “hybrid” models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be

  17. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter

    2005-09-01

    Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.

  18. Development of a 9-months pregnant hybrid phantom and its internal dosimetry for thyroid agents.

    PubMed

    Hoseinian-Azghadi, E; Rafat-Motavalli, L; Miri-Hakimabad, H

    2014-07-01

    As a consequence of fetal radiosensitivity, the estimation of internal dose received by a fetus from radiopharmaceuticals applied to the mother is often important in nuclear medicine. A new 9-months pregnant phantom based on magnetic resonance (MR) images tied to the International Commission on Radiological Protection (ICRP) reference voxel phantom has been developed. Maternal and fetal organs were segmented from a set of pelvic MR images of a 9-months pregnant subject using 3D-DOCTOR(TM) and then imported into the 3D modeling software package Rhinoceros(TM) for combining with the adult female ICRP voxel phantom and further modeling. Next, the phantom organs were rescaled to match with reference masses described in ICRP Publications. The internal anatomy of previous pregnant phantom models had been limited to the fetal brain and skeleton only, but the fetus model developed in this study incorporates 20 different organs. The current reference phantom has been developed for application in comprehensive dosimetric study in nuclear medicine. The internal dosimetry calculations were performed for thyroid agents using the Monte Carlo transport method. Biokinetic data for these radiopharmaceuticals were used to estimate cumulated activity during pregnancy and maternal and fetal organ doses at seven different maximum thyroid uptake levels. Calculating the dose distribution was also presented in a sagittal view of the pregnant model utilizing the mesh tally function. The comparisons showed, in general, an overestimation of the absorbed dose to the fetus and an underestimation of the fetal thyroid dose in previous studies compared with the values based on the current hybrid phantom. PMID:24515254

  19. Development of a 9-months pregnant hybrid phantom and its internal dosimetry for thyroid agents

    PubMed Central

    Hoseinian-Azghadi, E.; Rafat-Motavalli, L.; Miri-Hakimabad, H.

    2014-01-01

    As a consequence of fetal radiosensitivity, the estimation of internal dose received by a fetus from radiopharmaceuticals applied to the mother is often important in nuclear medicine. A new 9-months pregnant phantom based on magnetic resonance (MR) images tied to the International Commission on Radiological Protection (ICRP) reference voxel phantom has been developed. Maternal and fetal organs were segmented from a set of pelvic MR images of a 9-months pregnant subject using 3D-DOCTORTM and then imported into the 3D modeling software package RhinocerosTM for combining with the adult female ICRP voxel phantom and further modeling. Next, the phantom organs were rescaled to match with reference masses described in ICRP Publications. The internal anatomy of previous pregnant phantom models had been limited to the fetal brain and skeleton only, but the fetus model developed in this study incorporates 20 different organs. The current reference phantom has been developed for application in comprehensive dosimetric study in nuclear medicine. The internal dosimetry calculations were performed for thyroid agents using the Monte Carlo transport method. Biokinetic data for these radiopharmaceuticals were used to estimate cumulated activity during pregnancy and maternal and fetal organ doses at seven different maximum thyroid uptake levels. Calculating the dose distribution was also presented in a sagittal view of the pregnant model utilizing the mesh tally function. The comparisons showed, in general, an overestimation of the absorbed dose to the fetus and an underestimation of the fetal thyroid dose in previous studies compared with the values based on the current hybrid phantom. PMID:24515254

  20. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    NASA Astrophysics Data System (ADS)

    Jeon, P.-H.; Lee, C.-L.; Kim, D.-H.; Lee, Y.-J.; Jeon, S.-S.; Kim, H.-J.

    2014-03-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose

  1. Voxel model in BNCT treatment planning: performance analysis and improvements

    NASA Astrophysics Data System (ADS)

    González, Sara J.; Carando, Daniel G.; Santa Cruz, Gustavo A.; Zamenhof, Robert G.

    2005-02-01

    In recent years, many efforts have been made to study the performance of treatment planning systems in deriving an accurate dosimetry of the complex radiation fields involved in boron neutron capture therapy (BNCT). The computational model of the patient's anatomy is one of the main factors involved in this subject. This work presents a detailed analysis of the performance of the 1 cm based voxel reconstruction approach. First, a new and improved material assignment algorithm implemented in NCTPlan treatment planning system for BNCT is described. Based on previous works, the performances of the 1 cm based voxel methods used in the MacNCTPlan and NCTPlan treatment planning systems are compared by standard simulation tests. In addition, the NCTPlan voxel model is benchmarked against in-phantom physical dosimetry of the RA-6 reactor of Argentina. This investigation shows the 1 cm resolution to be accurate enough for all reported tests, even in the extreme cases such as a parallelepiped phantom irradiated through one of its sharp edges. This accuracy can be degraded at very shallow depths in which, to improve the estimates, the anatomy images need to be positioned in a suitable way. Rules for this positioning are presented. The skin is considered one of the organs at risk in all BNCT treatments and, in the particular case of cutaneous melanoma of extremities, limits the delivered dose to the patient. Therefore, the performance of the voxel technique is deeply analysed in these shallow regions. A theoretical analysis is carried out to assess the distortion caused by homogenization and material percentage rounding processes. Then, a new strategy for the treatment of surface voxels is proposed and tested using two different irradiation problems. For a parallelepiped phantom perpendicularly irradiated with a 5 keV neutron source, the large thermal neutron fluence deviation present at shallow depths (from 54% at 0 mm depth to 5% at 4 mm depth) is reduced to 2% on average

  2. SU-E-I-81: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Adult Anthropomorphic and ACR Phantoms

    SciTech Connect

    Mahmood, U; Erdi, Y; Wang, W

    2014-06-01

    Purpose: To assess the impact of General Electrics (GE) automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of an adult anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, Auto mA (180 to 380 mA), noise index (NI) = 14, adaptive iterative statistical reconstruction (ASiR) of 20%, 0.8s rotation time. Image quality was evaluated by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: The CNR for the adult male was found to decrease from CNR = 0.912 ± 0.045 for the baseline protocol without kVa to a CNR = 0.756 ± 0.049 with kVa activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.903 ± 0.023. The difference in the central liver dose with and without kVa was found to be 0.07%. Conclusion: Dose reduction was insignificant in the adult phantom. As determined by NPS analysis, ASiR of 40% produced images with similar noise texture to the baseline protocol. However, the CNR at ASiR of 40% with kVa fails to meet the current ACR CNR passing requirement of 1.0.

  3. High resolution, MRI-based, segmented, computerized head phantom

    SciTech Connect

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  4. A polygon-surface reference Korean male phantom (PSRK-Man) and its direct implementation in Geant4 Monte Carlo simulation.

    PubMed

    Kim, Chan Hyeong; Jeong, Jong Hwi; Bolch, Wesley E; Cho, Kun-Woo; Hwang, Sung Bae

    2011-05-21

    Even though the hybrid phantom embodies both the anatomic reality of voxel phantoms and the deformability of stylized phantoms, it must be voxelized to be used in a Monte Carlo code for dose calculation or some imaging simulation, which incurs the inherent limitations of voxel phantoms. In the present study, a voxel phantom named VKH-Man (Visible Korean Human-Man), was converted to a polygon-surface phantom (PSRK-Man, Polygon-Surface Reference Korean-Man), which was then adjusted to the Reference Korean data. Subsequently, the PSRK-Man polygon phantom was directly, without any voxelization process, implemented in the Geant4 Monte Carlo code for dose calculations. The calculated dose values and computation time were then compared with those of HDRK-Man (High Definition Reference Korean-Man), a corresponding voxel phantom adjusted to the same Reference Korean data from the same VKH-Man voxel phantom. Our results showed that the calculated dose values of the PSRK-Man surface phantom agreed well with those of the HDRK-Man voxel phantom. The calculation speed for the PSRK-Man polygon phantom though was 70-150 times slower than that of the HDRK-Man voxel phantom; that speed, however, could be acceptable in some applications, in that direct use of the surface phantom PSRK-Man in Geant4 does not require a separate voxelization process. Computing speed can be enhanced, in future, either by optimizing the Monte Carlo transport kernel for the polygon surfaces or by using modern computing technologies such as grid computing and general-purpose computing on graphics processing units programming. PMID:21521906

  5. Comparison of organ dose and dose equivalent for human phantoms of CAM vs. MAX

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Slaba, Tony C.; Cucinotta, Francis A.

    2010-04-01

    For the evaluation of organ dose and dose equivalent of astronauts on space shuttle and the International Space Station (ISS) missions, the CAMERA models of CAM (Computerized Anatomical Male) and CAF (Computerized Anatomical Female) of human tissue shielding have been implemented and used in radiation transport model calculations at NASA. One of new human geometry models to meet the “reference person” of International Commission on Radiological Protection (ICRP) is based on detailed Voxel (volumetric and pixel) phantom models denoted for male and female as MAX (Male Adult voXel) and FAX (Female Adult voXel), respectively. We compared the CAM model predictions of organ doses to those of MAX model, since the MAX model represents the male adult body with much higher fidelity than the CAM model currently used at NASA. Directional body-shielding mass was evaluated for over 1500 target points of MAX for specified organs considered to be sensitive to the induction of stochastic effects. Radiation exposures to solar particle event (SPE), trapped protons, and galactic cosmic ray (GCR) were assessed at the specific sites in the MAX phantom by coupling space radiation transport models with the relevant body-shielding mass. The development of multiple-point body-shielding distributions at each organ made it possible to estimate the mean and variance of organ doses at the specific organ. For the estimate of doses to the blood forming organs (BFOs), data on active marrow distributions in adult were used to weight the bone marrow sites over the human body. The discrete number of target points of MAX organs resulted in a reduced organ dose and dose equivalent compared to the results of CAM organs especially for SPE, and should be further investigated. Differences of effective doses between the two approaches were found to be small (<5%) for GCR.

  6. Tetrahedral-mesh-based computational human phantom for fast Monte Carlo dose calculations

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Jeong, Jong Hwi; Han, Min Cheol; Kim, Chan Hyeong

    2014-06-01

    Although polygonal-surface computational human phantoms can address several critical limitations of conventional voxel phantoms, their Monte Carlo simulation speeds are much slower than those of voxel phantoms. In this study, we sought to overcome this problem by developing a new type of computational human phantom, a tetrahedral mesh phantom, by converting a polygonal surface phantom to a tetrahedral mesh geometry. The constructed phantom was implemented in the Geant4 Monte Carlo code to calculate organ doses as well as to measure computation speed, the values were then compared with those for the original polygonal surface phantom. It was found that using the tetrahedral mesh phantom significantly improved the computation speed by factors of between 150 and 832 considering all of the particles and simulated energies other than the low-energy neutrons (0.01 and 1 MeV), for which the improvement was less significant (17.2 and 8.8 times, respectively).

  7. Large scale study on the variation of RF energy absorption in the head & brain regions of adults and children and evaluation of the SAM phantom conservativeness

    NASA Astrophysics Data System (ADS)

    Keshvari, J.; Kivento, M.; Christ, A.; Bit-Babik, G.

    2016-04-01

    This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.

  8. VOXMAT: Hybrid Computational Phantom for Dose Assessment

    SciTech Connect

    Akkurt, Hatice; Eckerman, Keith F

    2007-01-01

    The Oak Ridge National Laboratory (ORNL) computational phantoms have been the standard for assessing the radiation dose due to internal and external exposure over the past three decades. In these phantoms, the body surface and each organ are approximated by mathematical equations; hence, some of the organs are not necessarily realistic in their shape. Over the past two decades, these phantoms have been revised and updated: some of the missing internal organs have been added and the locations of the existing organs have been revised (e.g., thyroid). In the original phantom, only three elemental compositions were used to describe all body tissues. Recently, the compositions of the organs have been updated based on ICRP-89 standards. During the past decade, phantoms based on CT scans were developed for use in dose assessment. Although their shapes are realistic, some computational challenges are noted; including increased computational times and increased memory requirements. For good spatial resolution, more than several million voxels are used to represent the human body. Moreover, when CT scans are obtained, the subject is in a supine position with arms at the side. In some occupational exposure cases, it is necessary to evaluate the dose with the arms and legs in different positions. It will be very difficult and inefficient to reposition the voxels defining the arms and legs to simulate these exposure geometries. In this paper, a new approach for computational phantom development is presented. This approach utilizes the combination of a mathematical phantom and a voxelized phantom for the representation of the anatomy.

  9. Specific absorbed fractions of electrons and photons for Rad-HUMAN phantom using Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Cheng, Meng-Yun; Long, Peng-Cheng; Hu, Li-Qin

    2015-07-01

    The specific absorbed fractions (SAF) for self- and cross-irradiation are effective tools for the internal dose estimation of inhalation and ingestion intakes of radionuclides. A set of SAFs of photons and electrons were calculated using the Rad-HUMAN phantom, which is a computational voxel phantom of a Chinese adult female that was created using the color photographic image of the Chinese Visible Human (CVH) data set by the FDS Team. The model can represent most Chinese adult female anatomical characteristics and can be taken as an individual phantom to investigate the difference of internal dose with Caucasians. In this study, the emission of mono-energetic photons and electrons of 10 keV to 4 MeV energy were calculated using the Monte Carlo particle transport calculation code MCNP. Results were compared with the values from ICRP reference and ORNL models. The results showed that SAF from the Rad-HUMAN have similar trends but are larger than those from the other two models. The differences were due to the racial and anatomical differences in organ mass and inter-organ distance. The SAFs based on the Rad-HUMAN phantom provide an accurate and reliable data for internal radiation dose calculations for Chinese females. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03040000), National Natural Science Foundation of China (910266004, 11305205, 11305203) and National Special Program for ITER (2014GB112001)

  10. Twenty new digital brain phantoms for creation of validation image data bases.

    PubMed

    Aubert-Broche, Berengère; Griffin, Mark; Pike, G Bruce; Evans, Alan C; Collins, D Louis

    2006-11-01

    Simulations provide a way of generating data where ground truth is known, enabling quantitative testing of image processing methods. In this paper, we present the construction of 20 realistic digital brain phantoms that can be used to simulate medical imaging data. The phantoms are made from 20 normal adults to take into account intersubject anatomical variabilities. Each digital brain phantom was created by registering and averaging four T1, T2, and proton density (PD)-weighted magnetic resonance imaging (MRI) scans from each subject. A fuzzy minimum distance classification was used to classify voxel intensities from T1, T2, and PD average volumes into grey-matter, white matter, cerebro-spinal fluid, and fat. Automatically generated mask volumes were required to separate brain from nonbrain structures and ten fuzzy tissue volumes were created: grey matter, white matter, cerebro-spinal fluid, skull, marrow within the bone, dura, fat, tissue around the fat, muscles, and skin/muscles. A fuzzy vessel class was also obtained from the segmentation of the magnetic resonance angiography scan of the subject. These eleven fuzzy volumes that describe the spatial distribution of anatomical tissues define the digital phantom, where voxel intensity is proportional to the fraction of tissue within the voxel. These fuzzy volumes can be used to drive simulators for different modalities including MRI, PET, or SPECT. These phantoms were used to construct 20 simulated T1-weighted MR scans. To evaluate the realism of these simulations, we propose two approaches to compare them to real data acquired with the same acquisition parameters. The first approach consists of comparing the intensities within the segmented classes in both real and simulated data. In the second approach, a whole brain voxel-wise comparison between simulations and real T1-weighted data is performed. The first comparison underlines that segmented classes appear to properly represent the anatomy on average, and that

  11. Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female Caucasian populations

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Milian, F. M.; Kramer, R.; de Oliveira Lira, C. A. B.; Khoury, H. J.

    2011-07-01

    Computational anthropomorphic human phantoms are useful tools developed for the calculation of absorbed or equivalent dose to radiosensitive organs and tissues of the human body. The problem is, however, that, strictly speaking, the results can be applied only to a person who has the same anatomy as the phantom, while for a person with different body mass and/or standing height the data could be wrong. In order to improve this situation for many areas in radiological protection, this study developed 18 anthropometric standing adult human phantoms, nine models per gender, as a function of the 10th, 50th and 90th mass and height percentiles of Caucasian populations. The anthropometric target parameters for body mass, standing height and other body measures were extracted from PeopleSize, a well-known software package used in the area of ergonomics. The phantoms were developed based on the assumption of a constant body-mass index for a given mass percentile and for different heights. For a given height, increase or decrease of body mass was considered to reflect mainly the change of subcutaneous adipose tissue mass, i.e. that organ masses were not changed. Organ mass scaling as a function of height was based on information extracted from autopsy data. The methods used here were compared with those used in other studies, anatomically as well as dosimetrically. For external exposure, the results show that equivalent dose decreases with increasing body mass for organs and tissues located below the subcutaneous adipose tissue layer, such as liver, colon, stomach, etc, while for organs located at the surface, such as breasts, testes and skin, the equivalent dose increases or remains constant with increasing body mass due to weak attenuation and more scatter radiation caused by the increasing adipose tissue mass. Changes of standing height have little influence on the equivalent dose to organs and tissues from external exposure. Specific absorbed fractions (SAFs) have also

  12. Red bone marrow dose calculations in radiotherapy of prostate cancer based on the updated VCH adult male phantom

    NASA Astrophysics Data System (ADS)

    Ai, Jinqin; Xie, Tianwu; Sun, Wenjuan; Liu, Qian

    2014-04-01

    Red bone marrow (RBM) is an important dose-limiting tissue that has high radiosensitivity but is difficult to identify on clinical medical images. In this study, we investigated dose distribution in RBM for prostate cancer radiotherapy. Four suborgans were identified in the skeleton of the visible Chinese human phantom: cortical bone (CB), trabecular bone (TB), RBM, and yellow bone marrow (YBM). Dose distributions in the phantom were evaluated by the Monte Carlo method. When the left os coxae was taken as the organ-at-risk (OAR), the difference in absorbed dose between RBM and each CB and TB was up to 20%, but was much less (≤3.1%) between RBM and YBM. When the left os coxae and entire bone were both taken as OARs, RBM dose also increased with increasing planning target volume size. The results indicate the validity of using dose to homogeneous bone marrow mixture for estimating dose to RBM when RBM is not available in computational phantoms. In addition, the human skeletal system developed in this study provides a model for considering RBM dose in radiotherapy planning.

  13. Voxelated liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.; McConney, Michael E.; Wie, Jeong Jae; Tondiglia, Vincent P.; White, Timothy J.

    2015-02-01

    Dynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers. The direction of molecular order, known as the director, is written within local volume elements (voxels) as small as 0.0005 cubic millimeters. Locally, the director controls the inherent mechanical response (55% strain) within the material. In monoliths with spatially patterned director, thermal or chemical stimuli transform flat sheets into three-dimensional objects through controlled bending and stretching. The programmable mechanical response of these materials could yield monolithic multifunctional devices or serve as reconfigurable substrates for flexible devices in aerospace, medicine, or consumer goods.

  14. Effect of voxel size when calculating patient specific radionuclide dosimetry estimates using direct Monte Carlo simulation.

    PubMed

    Hickson, Kevin J; O'Keefe, Graeme J

    2014-09-01

    The scalable XCAT voxelised phantom was used with the GATE Monte Carlo toolkit to investigate the effect of voxel size on dosimetry estimates of internally distributed radionuclide calculated using direct Monte Carlo simulation. A uniformly distributed Fluorine-18 source was simulated in the Kidneys of the XCAT phantom with the organ self dose (kidney ← kidney) and organ cross dose (liver ← kidney) being calculated for a number of organ and voxel sizes. Patient specific dose factors (DF) from a clinically acquired FDG PET/CT study have also been calculated for kidney self dose and liver ← kidney cross dose. Using the XCAT phantom it was found that significantly small voxel sizes are required to achieve accurate calculation of organ self dose. It has also been used to show that a voxel size of 2 mm or less is suitable for accurate calculations of organ cross dose. To compensate for insufficient voxel sampling a correction factor is proposed. This correction factor is applied to the patient specific dose factors calculated with the native voxel size of the PET/CT study. PMID:24859803

  15. Conversion of ICRP male reference phantom to polygon-surface phantom

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  16. Conversion of ICRP male reference phantom to polygon-surface phantom.

    PubMed

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  17. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Sabarudin, A.; Chin, A. W.; Saripan, M. I.; Bradley, D. A.

    2016-09-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, ~8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose.

  18. Evaluation of absorbed and effective doses to patients from radiopharmaceuticals using the ICRP 110 reference computational phantoms and ICRP 103 formulation.

    PubMed

    Hadid, Lama; Gardumi, Anna; Desbrée, Aurélie

    2013-09-01

    In diagnostic nuclear medicine, mean absorbed doses to patients' organs and effective doses are published for standard stylised anatomic models. To provide more realistic and detailed geometries of the human morphology, the International Commission on Radiological Protection (ICRP) has recently adopted male and female voxel phantoms to represent the reference adult. This work investigates the impact of the use of these new computational phantoms. The absorbed doses were calculated for 11 different radiopharmaceuticals currently used in diagnostic nuclear medicine. They were calculated for the ICRP 110 reference computational phantoms using the OEDIPE software and the MCNP extended Monte Carlo code. The biokinetic models were issued from ICRP Publications 53, 80 and 106. The results were then compared with published values given in these ICRP Publications. To discriminate the effect of anatomical differences on organ doses from the effect of the calculation method, the Monte Carlo calculations were repeated for the reference adult stylised phantom. The voxel effect, the influence of the use of different densities and nuclear decay data were also investigated. Effective doses were determined for the ICRP 110 adult reference computational phantom with the tissue weighting factor of ICRP Publication 60 and the tissue weighting factors of ICRP Publication 103. The calculation method and, in particular, the simulation of the electron transport have a significant influence on the calculated doses, especially, for small and walled organs. Overestimates of >200 % were observed for the urinary bladder wall of the stylised phantom compared with the computational phantoms. The unrealistic organ topology of the stylised phantom leads to important dose differences, sometimes by an order of magnitude. The effective doses calculated using the new computational phantoms and the new tissue weighting factors are globally lower than the published ones, except for some

  19. Octree indexing of DICOM images for voxel number reduction and improvement of Monte Carlo simulation computing efficiency

    SciTech Connect

    Hubert-Tremblay, Vincent; Archambault, Louis; Tubic, Dragan; Roy, Rene; Beaulieu, Luc

    2006-08-15

    The purpose of the present study is to introduce a compression algorithm for the CT (computed tomography) data used in Monte Carlo simulations. Performing simulations on the CT data implies large computational costs as well as large memory requirements since the number of voxels in such data reaches typically into hundreds of millions voxels. CT data, however, contain homogeneous regions which could be regrouped to form larger voxels without affecting the simulation's accuracy. Based on this property we propose a compression algorithm based on octrees: in homogeneous regions the algorithm replaces groups of voxels with a smaller number of larger voxels. This reduces the number of voxels while keeping the critical high-density gradient area. Results obtained using the present algorithm on both phantom and clinical data show that compression rates up to 75% are possible without losing the dosimetric accuracy of the simulation.

  20. SU-E-T-117: Dose to Organs Outside of CT Scan Range- Monte Carlo and Hybrid Phantom Approach

    SciTech Connect

    Pelletier, C; Jung, J; Lee, C; Kim, J; Lee, C

    2014-06-01

    Purpose: Epidemiological study of second cancer risk for cancer survivors often requires the dose to normal tissues located outside the anatomy covered by radiological imaging, which is usually limited to tumor and organs at risk. We have investigated the feasibility of using whole body computational human phantoms for estimating out-of-field organ doses for patients treated by Intensity Modulated Radiation Therapy (IMRT). Methods: Identical 7-field IMRT prostate plans were performed using X-ray Voxel Monte Carlo (XVMC), a radiotherapy-specific Monte Carlo transport code, on the computed tomography (CT) images of the torso of an adult male patient (175 cm height, 66 kg weight) and an adult male hybrid computational phantom with the equivalent body size. Dose to the liver, right lung, and left lung were calculated and compared. Results: Considerable differences are seen between the doses calculated by XVMC for the patient CT and the hybrid phantom. One major contributing factor is the treatment method, deep inspiration breath hold (DIBH), used for this patient. This leads to significant differences in the organ position relative to the treatment isocenter. The transverse distances from the treatment isocenter to the inferior border of the liver, left lung, and right lung are 19.5cm, 29.5cm, and 30.0cm, respectively for the patient CT, compared with 24.3cm, 36.6cm, and 39.1cm, respectively, for the hybrid phantom. When corrected for the distance, the mean doses calculated using the hybrid phantom are within 28% of those calculated using the patient CT. Conclusion: This study showed that mean dose to the organs located in the missing CT coverage can be reconstructed by using whole body computational human phantoms within reasonable dosimetric uncertainty, however appropriate corrections may be necessary if the patient is treated with a technique that will significantly deform the size or location of the organs relative to the hybrid phantom.

  1. Phantom limbs and neural plasticity.

    PubMed

    Ramachandran, V S; Rogers-Ramachandran, D

    2000-03-01

    The study of phantom limbs has received tremendous impetus from recent studies linking changes in cortical topography with perceptual experience. Systematic psychophysical testing and functional imaging studies on patients with phantom limbs provide 2 unique opportunities. First, they allow us to demonstrate neural plasticity in the adult human brain. Second, by tracking perceptual changes (such as referred sensations) and changes in cortical topography in individual patients, we can begin to explore how the activity of sensory maps gives rise to conscious experience. Finally, phantom limbs also allow us to explore intersensory effects and the manner in which the brain constructs and updates a "body image" throughout life. PMID:10714655

  2. Development of a physical 3D anthropomorphic breast phantom

    SciTech Connect

    Carton, Ann-Katherine; Bakic, Predrag; Ullberg, Christer; Derand, Helen; Maidment, Andrew D. A.

    2011-02-15

    Purpose: Develop a technique to fabricate a 3D anthropomorphic breast phantom with known ground truth for image quality assessment of 2D and 3D breast x-ray imaging systems. Methods: The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying composition, size, and shape. The physical phantom is produced in two steps. First, the portion of the voxel phantom consisting of the glandular tissue, skin, and Cooper's ligaments is separated into sections. These sections are then fabricated by high-resolution rapid prototyping using a single material with 50% glandular equivalence. The remaining adipose compartments are then filled using an epoxy-based resin (EBR) with 100% adipose equivalence. The phantom sections are stacked to form the physical anthropomorphic phantom. Results: The authors fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue, deformed to a 5 cm compressed thickness. Both the rapid prototype (RP) and EBR phantom materials are radiographically uniform. The coefficient of variation (CoV) of the relative attenuation between RP and EBR phantom samples was <1% and the CoV of the signal intensity within RP and EBR phantom samples was <1.5% on average. Digital mammography and reconstructed digital breast tomosynthesis images of the authors' phantom were reviewed by two radiologists; they reported that the images are similar in appearance to clinical images, noting there are still artifacts from air bubbles in the EBR. Conclusions: The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.

  3. Development of Chinese reference man deformable surface phantom and its application to the influence of physique on electromagnetic dosimetry.

    PubMed

    Yu, D; Wang, M; Liu, Q

    2015-09-01

    A reference man is a theoretical individual that represents the average anatomical structure and physiological and metabolic features of a specific group of people and has been widely used in radiation safety research. With the help of an advantage in deformation, the present work proposed a Chinese reference man adult-male polygon-mesh surface phantom based on the Visible Chinese Human segment image dataset by surface rendering and deforming. To investigate the influence of physique on electromagnetic dosimetry in humans, a series of human phantoms with 10th, 50th and 90th body mass index and body circumference percentile physiques for Chinese adult males were further constructed by deforming the Chinese reference man surface phantom. All the surface phantoms were then voxelized to perform electromagnetic field simulation in a frequency range of 20 MHz to 3 GHz using the finite-difference time-domain method and evaluate the whole-body average and organ average specific absorption rate and the ratios of absorbed energy in skin, fat and muscle to the whole body. The results indicate thinner physique leads to higher WBSAR and the volume of subcutaneous fat, the penetration depth of the electromagnetic field in tissues and standing-wave occurrence may be the influence factors of physique on electromagnetic dosimetry. PMID:26301501

  4. Development of Chinese reference man deformable surface phantom and its application to the influence of physique on electromagnetic dosimetry

    NASA Astrophysics Data System (ADS)

    Yu, D.; Wang, M.; Liu, Q.

    2015-09-01

    A reference man is a theoretical individual that represents the average anatomical structure and physiological and metabolic features of a specific group of people and has been widely used in radiation safety research. With the help of an advantage in deformation, the present work proposed a Chinese reference man adult-male polygon-mesh surface phantom based on the Visible Chinese Human segment image dataset by surface rendering and deforming. To investigate the influence of physique on electromagnetic dosimetry in humans, a series of human phantoms with 10th, 50th and 90th body mass index and body circumference percentile physiques for Chinese adult males were further constructed by deforming the Chinese reference man surface phantom. All the surface phantoms were then voxelized to perform electromagnetic field simulation in a frequency range of 20 MHz to 3 GHz using the finite-difference time-domain method and evaluate the whole-body average and organ average specific absorption rate and the ratios of absorbed energy in skin, fat and muscle to the whole body. The results indicate thinner physique leads to higher WBSAR and the volume of subcutaneous fat, the penetration depth of the electromagnetic field in tissues and standing-wave occurrence may be the influence factors of physique on electromagnetic dosimetry.

  5. Comparison of conversion coefficients for equivalent dose in terms of air kerma for photons using a male adult voxel simulator in sitting and standing posture with geometry of irradiation antero-posterior

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.

    2014-02-01

    The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.

  6. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation.

    PubMed

    Sun, Wenjuan; Jia, Xianghong; Xie, Tianwu; Xu, Feng; Liu, Qian

    2013-03-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm(3)for radioactive particle transport simulations from isotropic protons with energies of 5000-10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158

  7. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    PubMed Central

    Sun, Wenjuan; JIA, Xianghong; XIE, Tianwu; XU, Feng; LIU, Qian

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm3for radioactive particle transport simulations from isotropic protons with energies of 5000–10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158

  8. A methodology to develop computational phantoms with adjustable posture for WBC calibration.

    PubMed

    Fonseca, T C Ferreira; Bogaerts, R; Hunt, John; Vanhavere, F

    2014-11-21

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium. PMID:25332309

  9. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    NASA Astrophysics Data System (ADS)

    Ferreira Fonseca, T. C.; Bogaerts, R.; Hunt, John; Vanhavere, F.

    2014-11-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  10. Monte Carlo simulations for external neutron dosimetry based on the visible Chinese human phantom.

    PubMed

    Zhang, Guozhi; Liu, Qian; Luo, Qingming

    2007-12-21

    A group of Monte Carlo simulations has been performed for external neutron dosimetry calculation based on a whole-body anatomical model, the visible Chinese human (VCH) phantom, which was newly developed from high-resolution cryosectional color photographic images of a healthy Chinese adult male cadaver. Physical characteristics of the VCH computational phantom that consists of 230 x 120 x 892 voxels corresponding to an element volume of 2 x 2 x 2 mm(3) are evaluated through comparison against a variety of other anthropomorphic models. Organ-absorbed doses and the effective doses for monoenergic neutron beams ranging from 10(-9) MeV to 10 GeV under six idealized irradiation geometries (AP, PA, LLAT, RLAT, ROT and ISO) were calculated using the Monte Carlo code MCNPX2.5. Absorbed dose results for selected organs and the effective doses are presented in the form of tables. Dose results are also compared with currently available neutron data form ICRP Publication 74 and those of VIP-Man. Anatomical variations between different models, as well as their influence on dose distributions, are explored. Detailed information derived from the VCH phantom is able to lend quantitative references to the widespread application of human computational models in radiology. PMID:18065844

  11. Monte Carlo simulations for external neutron dosimetry based on the visible Chinese human phantom

    NASA Astrophysics Data System (ADS)

    Zhang, Guozhi; Liu, Qian; Luo, Qingming

    2007-12-01

    A group of Monte Carlo simulations has been performed for external neutron dosimetry calculation based on a whole-body anatomical model, the visible Chinese human (VCH) phantom, which was newly developed from high-resolution cryosectional color photographic images of a healthy Chinese adult male cadaver. Physical characteristics of the VCH computational phantom that consists of 230 × 120 × 892 voxels corresponding to an element volume of 2 × 2 × 2 mm3 are evaluated through comparison against a variety of other anthropomorphic models. Organ-absorbed doses and the effective doses for monoenergic neutron beams ranging from 10-9 MeV to 10 GeV under six idealized irradiation geometries (AP, PA, LLAT, RLAT, ROT and ISO) were calculated using the Monte Carlo code MCNPX2.5. Absorbed dose results for selected organs and the effective doses are presented in the form of tables. Dose results are also compared with currently available neutron data form ICRP Publication 74 and those of VIP-Man. Anatomical variations between different models, as well as their influence on dose distributions, are explored. Detailed information derived from the VCH phantom is able to lend quantitative references to the widespread application of human computational models in radiology.

  12. Optimized generation of high resolution breast anthropomorphic software phantoms

    PubMed Central

    Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-01-01

    Purpose: The authors present an efficient method for generating anthropomorphic software breast phantoms with high spatial resolution. Employing the same region growing principles as in their previous algorithm for breast anatomy simulation, the present method has been optimized for computational complexity to allow for fast generation of the large number of phantoms required in virtual clinical trials of breast imaging. Methods: The new breast anatomy simulation method performs a direct calculation of the Cooper’s ligaments (i.e., the borders between simulated adipose compartments). The calculation corresponds to quadratic decision boundaries of a maximum a posteriori classifier. The method is multiscale due to the use of octree-based recursive partitioning of the phantom volume. The method also provides user-control of the thickness of the simulated Cooper’s ligaments and skin. Results: Using the proposed method, the authors have generated phantoms with voxel size in the range of (25–1000 μm)3/voxel. The power regression of the simulation time as a function of the reciprocal voxel size yielded a log-log slope of 1.95 (compared to a slope of 4.53 of our previous region growing algorithm). Conclusions: A new algorithm for computer simulation of breast anatomy has been proposed that allows for fast generation of high resolution anthropomorphic software phantoms. PMID:22482649

  13. Optimized generation of high resolution breast anthropomorphic software phantoms

    SciTech Connect

    Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-04-15

    Purpose: The authors present an efficient method for generating anthropomorphic software breast phantoms with high spatial resolution. Employing the same region growing principles as in their previous algorithm for breast anatomy simulation, the present method has been optimized for computational complexity to allow for fast generation of the large number of phantoms required in virtual clinical trials of breast imaging. Methods: The new breast anatomy simulation method performs a direct calculation of the Cooper's ligaments (i.e., the borders between simulated adipose compartments). The calculation corresponds to quadratic decision boundaries of a maximum a posteriori classifier. The method is multiscale due to the use of octree-based recursive partitioning of the phantom volume. The method also provides user-control of the thickness of the simulated Cooper's ligaments and skin. Results: Using the proposed method, the authors have generated phantoms with voxel size in the range of (25-1000 {mu}m){sup 3}/voxel. The power regression of the simulation time as a function of the reciprocal voxel size yielded a log-log slope of 1.95 (compared to a slope of 4.53 of our previous region growing algorithm). Conclusions: A new algorithm for computer simulation of breast anatomy has been proposed that allows for fast generation of high resolution anthropomorphic software phantoms.

  14. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    SciTech Connect

    Zhang Yakun; Li Xiang; Paul Segars, W.; Samei, Ehsan

    2012-06-15

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representative CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated

  15. Postured voxel-based human models for electromagnetic dosimetry

    NASA Astrophysics Data System (ADS)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2008-12-01

    High-resolution anatomically realistic whole-body voxel models have recently been developed for electromagnetic dosimetry. However, the posture of most models is similar to the standing one, which strongly limits electromagnetic dosimetry when simulating a realistic exposure scenario. In this paper, we present the development of postured models based on anatomically realistic voxel models with standing posture. Voxel models of the Japanese adult male and female were used as the original upright standing models. The Japanese models were composed of 2 mm cubic voxels, each of which was segmented into 51 different tissue types. We developed several different types of posture models using a novel posture transformation method. These posture models were smoothly transformed, while the continuity of the internal tissues and organs was maintained. In this paper, we also present our calculations of the whole-body averaged specific absorption rates (SARs) of sitting male and female models exposed to electromagnetic plane waves at very high (VHF) and ultra high frequency (UHF) bands.

  16. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications.

    PubMed

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes. PMID:27032813

  17. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    NASA Astrophysics Data System (ADS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  18. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

    NASA Astrophysics Data System (ADS)

    Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2012-06-01

    A key task within all Monte Carlo particle transport codes is ‘navigation’, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4

  19. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4.

    PubMed

    Schümann, J; Paganetti, H; Shin, J; Faddegon, B; Perl, J

    2012-06-01

    A key task within all Monte Carlo particle transport codes is 'navigation', the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4Phantom

  20. Computed organ doses to an Indian reference adult during brachytherapy treatment of esophagus, breast, and neck cancers

    PubMed Central

    Keshavkumar, Biju

    2012-01-01

    This study aims to generate the normalized mean organ dose factors (mGy min-1 GBq-1) to healthy organs during brachytherapy treatment of esophagus, breast, and neck cancers specific to the patient population in India. This study is in continuation to the earlier published studies on the estimation of organ doses during uterus brachytherapy treatments. The results are obtained by Monte Carlo simulation of radiation transport through MIRD type anthropomorphic mathematical phantom representing reference Indian adult with 192Ir and 60Co high dose rate sources in the esophagus, breast, and neck of the phantom. The result of this study is compared with a published computational study using voxel-based phantom model. The variation in the organ dose of this study to the published values is within 50%. PMID:22973082

  1. Synaesthesia in phantom limbs induced with mirrors.

    PubMed

    Ramachandran, V S; Rogers-Ramachandran, D

    1996-04-22

    Although there is a vast clinical literature on phantom limbs, there have been no experimental studies on the effects of visual input on phantom sensations. We introduce an inexpensive new device--a 'virtual reality box'--to resurrect the phantom visually to study inter-sensory effects. A mirror is placed vertically on the table so that the mirror reflection of the patient's intact had is 'superimposed' on the felt position of the phantom. We used this procedure on ten patients and found the following results. 1. In six patients, when the normal hand was moved, so that the phantom was perceived to move in the mirror, it was also felt to move; i.e. kinesthetic sensations emerged in the phantom. In D.S. this effect occurred even though he had never experienced any movements in the phantom for ten years before we tested him. He found the return of sensations very enjoyable. 2. Repeated practice led to a permanent 'disappearance' of the phantom arm in patient D.S. and the hand became telescoped into the stump near the shoulder. 3. Using an optical trick, impossible postures--e.g. extreme hyperextension of the fingers--could be induced visually in the phantom. In one case this was felt as a transient 'painful tug' in the phantom. 4. Five patients experienced involuntary painful 'clenching spasms' in the phantom hand and in four of them the spasms were relieved when the mirror was used to facilitate 'opening' of the phantom hand; opening was not possible without the mirror. 5. In three patients, touching the normal hand evoked precisely localized touch sensations in the phantom. Interestingly, the referral was especially pronounced when the patients actually 'saw' their phantom being touched in the mirror. Indeed, in a fourth patient (R.L.) the referral occurred only if he saw his phantom being touched: a curious form of synaesthesia. These experiments lend themselves readily to imaging studies using PET and fMRI. Taken collectively, they suggest that there is a

  2. Development of a 3D high-resolution physical anthropomorphic breast phantom

    NASA Astrophysics Data System (ADS)

    Carton, Ann-Katherine; Bakic, Predrag; Ullberg, Christer; Maidment, Andrew D. A.

    2010-04-01

    Analysis of complex imaging tasks requires a phantom that simulates the patient anatomy. We have developed a technique to fabricate 3D physical anthropomorphic breast phantoms for image quality assessment of 2D and 3D breast x-ray imaging systems. The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying size, shape, glandularity, and internal composition. The physical phantom is produced in two steps. First, the computer model of the glandular tissue, skin and Coopers' ligaments is separated into sections. These sections are fabricated by high-resolution rapid prototype printing using a single tissue equivalent material. The adipose tissue regions in the sections are filled using an epoxy-based resin combined with phenolic microspheres. The phantom sections are then stacked. The phantom is provided with an extra section modified to include iodine-enhanced masses. We fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue deformed to represent a 5 cm compressed thickness. The rapid prototype and epoxy based resin phantom materials attenuate x rays similar to 50% glandular tissue and 100% adipose tissue, respectively. The iodinated masses are between 4.0 and 9.6 mm thick and contain 2.5 mg/ml and 5 mg/ml iodine. Digital mammography and digital breast tomosynthesis images of the phantom are qualitatively similar in appearance to clinical images. In summary, a method to fabricate a 3D physical anthropomorphic breast phantom has been developed with known ground truth in the form of a companion voxel phantom. This combined system of physical and computational phantoms allows for both qualitative and quantitative image quality assessment.

  3. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis

    PubMed Central

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A.; Benedet, Andrea L.; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S.; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab® and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  4. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  5. Managing phantom pain.

    PubMed

    Manchikanti, Laxmaiah; Singh, Vijay

    2004-07-01

    Since the first medical description of post-amputation phenomena reported by Ambrose Paré, persistent phantom pain syndromes have been well recognized. However, they continue to be difficult to manage. The three most commonly utilized terms include phantom sensation, phantom pain, and stump pain. Phantom limb sensation is an almost universal occurrence at some time during the first month following surgery. However, most phantom sensations generally resolve after two to three years without treatment, except in the cases where phantom pain develops. The incidence of phantom limb pain has been reported to vary from 0% to 88%. The incidence of phantom limb pain increases with more proximal amputations. Even though phantom pain may diminish with time and eventually fade away, it has been shown that even two years after amputation, the incidence is almost the same as at onset. Consequently, almost 60% of patients continue to have phantom limb pain after one year. In addition, phantom limb pain may also be associated with multiple pain problems in other areas of the body. The third symptom, stump pain, is located in the stump itself. The etiology and pathophysiological mechanisms of phantom pain are not clearly defined. However, both peripheral and central neural mechanisms have been described, along with superimposed psychological mechanisms. Literature describing the management of phantom limb pain or stump pain is in its infancy. While numerous treatments have been described, there is little clinical evidence supporting drug therapy, psychological therapy, interventional techniques or surgery. This review will describe epidemiology, etiology and pathophysiological mechanisms, risk factors, and treatment modalities. The review also examines the effectiveness of various described modalities for prevention, as well as management of established phantom pain syndromes. PMID:16858476

  6. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    SciTech Connect

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.

    2013-02-15

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT

  7. An investigation of voxel geometries for MCNP-based radiation dose calculations.

    PubMed

    Zhang, Juying; Bednarz, Bryan; Xu, X George

    2006-11-01

    Voxelized geometry such as those obtained from medical images is increasingly used in Monte Carlo calculations of absorbed doses. One useful application of calculated absorbed dose is the determination of fluence-to-dose conversion factors for different organs. However, confusion still exists about how such a geometry is defined and how the energy deposition is best computed, especially involving a popular code, MCNP5. This study investigated two different types of geometries in the MCNP5 code, cell and lattice definitions. A 10 cm x 10 cm x 10 cm test phantom, which contained an embedded 2 cm x 2 cm x 2 cm target at its center, was considered. A planar source emitting parallel photons was also considered in the study. The results revealed that MCNP5 does not calculate total target volume for multi-voxel geometries. Therefore, tallies which involve total target volume must be divided by the user by the total number of voxels to obtain a correct dose result. Also, using planar source areas greater than the phantom size results in the same fluence-to-dose conversion factor. PMID:17023800

  8. Monte Carlo simulations in multi-detector CT (MDCT) for two PET/CT scanner models using MASH and FASH adult phantoms

    NASA Astrophysics Data System (ADS)

    Belinato, W.; Santos, W. S.; Paschoal, C. M. M.; Souza, D. N.

    2015-06-01

    The combination of positron emission tomography (PET) and computed tomography (CT) has been extensively used in oncology for diagnosis and staging of tumors, radiotherapy planning and follow-up of patients with cancer, as well as in cardiology and neurology. This study determines by the Monte Carlo method the internal organ dose deposition for computational phantoms created by multidetector CT (MDCT) beams of two PET/CT devices operating with different parameters. The different MDCT beam parameters were largely related to the total filtration that provides a beam energetic change inside the gantry. This parameter was determined experimentally with the Accu-Gold Radcal measurement system. The experimental values of the total filtration were included in the simulations of two MCNPX code scenarios. The absorbed organ doses obtained in MASH and FASH phantoms indicate that bowtie filter geometry and the energy of the X-ray beam have significant influence on the results, although this influence can be compensated by adjusting other variables such as the tube current-time product (mAs) and pitch during PET/CT procedures.

  9. New small-intestine modeling method for surface-based computational human phantoms.

    PubMed

    Yeom, Yeon Soo; Kim, Han Sung; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E; Lee, Choonsik; Chung, Beom Sun

    2016-06-01

    When converting voxel phantoms to a surface format, the small intestine (SI), which is usually not accurately represented in a voxel phantom due to its complex and irregular shape on one hand and the limited voxel resolutions on the other, cannot be directly converted to a high-quality surface model. Currently, stylized pipe models are used instead, but they are strongly influenced by developer's subjectivity, resulting in unacceptable geometric and dosimetric inconsistencies. In this paper, we propose a new method for the construction of SI models based on the Monte Carlo approach. In the present study, the proposed method was tested by constructing the SI model for the polygon-mesh version of the ICRP reference male phantom currently under development. We believe that the new SI model is anatomically more realistic than the stylized SI models. Furthermore, our simulation results show that the new SI model, for both external and internal photon exposures, leads to dose values that are more similar to those of the original ICRP male voxel phantom than does the previously constructed stylized SI model. PMID:27007802

  10. Voxel-Based Approach for Estimating Urban Tree Volume from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Vonderach, C.; Voegtle, T.; Adler, P.

    2012-07-01

    The importance of single trees and the determination of related parameters has been recognized in recent years, e.g. for forest inventories or management. For urban areas an increasing interest in the data acquisition of trees can be observed concerning aspects like urban climate, CO2 balance, and environmental protection. Urban trees differ significantly from natural systems with regard to the site conditions (e.g. technogenic soils, contaminants, lower groundwater level, regular disturbance), climate (increased temperature, reduced humidity) and species composition and arrangement (habitus and health status) and therefore allometric relations cannot be transferred from natural sites to urban areas. To overcome this problem an extended approach was developed for a fast and non-destructive extraction of branch volume, DBH (diameter at breast height) and height of single trees from point clouds of terrestrial laser scanning (TLS). For data acquisition, the trees were scanned with highest scan resolution from several (up to five) positions located around the tree. The resulting point clouds (20 to 60 million points) are analysed with an algorithm based on voxel (volume elements) structure, leading to an appropriate data reduction. In a first step, two kinds of noise reduction are carried out: the elimination of isolated voxels as well as voxels with marginal point density. To obtain correct volume estimates, the voxels inside the stem and branches (interior voxels) where voxels contain no laser points must be regarded. For this filling process, an easy and robust approach was developed based on a layer-wise (horizontal layers of the voxel structure) intersection of four orthogonal viewing directions. However, this procedure also generates several erroneous "phantom" voxels, which have to be eliminated. For this purpose the previous approach was extended by a special region growing algorithm. In a final step the volume is determined layer-wise based on the extracted

  11. Comparison between effective doses for voxel-based and stylized exposure models from photon and electron irradiation

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.

    2005-11-01

    For the last two decades, the organ and tissue equivalent dose as well as effective dose conversion coefficients recommended by the International Commission on Radiological Protection (ICRP) have been determined with exposure models based on stylized MIRD5-type phantoms representing the human body with its radiosensitive organs and tissues according to the ICRP Reference Man released in Publication No. 23, on Monte Carlo codes sometimes simulating rather simplified radiation physics and on tissue compositions from different sources. Meanwhile the International Commission on Radiation Units and Measurements (ICRU) has published reference data for human tissue compositions in Publication No. 44, and the ICRP has released a new report on anatomical reference data in Publication No. 89. As a consequence many of the components of the traditional stylized exposure models used to determine the effective dose in the past have to be replaced: Monte Carlo codes, human phantoms and tissue compositions. This paper presents results of comprehensive investigations on the dosimetric consequences to be expected from the replacement of the traditional stylized exposure models by the voxel-based exposure models. Calculations have been performed with the EGS4 Monte Carlo code for external and internal exposures to photons and electrons with the stylized, gender-specific MIRD5-type phantoms ADAM and EVA on the one hand and with the recently developed tomographic or voxel-based phantoms MAX and FAX on the other hand for a variety of exposure conditions. Ratios of effective doses for the voxel-based and the stylized exposure models will be presented for external and internal exposures to photons and electrons as a function of the energy and the geometry of the radiation field. The data indicate that for the exposure conditions considered in these investigations the effective dose may change between +60% and -50% after the replacement of the traditional exposure models by the voxel

  12. Comparison between effective doses for voxel-based and stylized exposure models from photon and electron irradiation.

    PubMed

    Kramer, R; Khoury, H J; Vieira, J W

    2005-11-01

    For the last two decades, the organ and tissue equivalent dose as well as effective dose conversion coefficients recommended by the International Commission on Radiological Protection (ICRP) have been determined with exposure models based on stylized MIRD5-type phantoms representing the human body with its radiosensitive organs and tissues according to the ICRP Reference Man released in Publication No. 23, on Monte Carlo codes sometimes simulating rather simplified radiation physics and on tissue compositions from different sources. Meanwhile the International Commission on Radiation Units and Measurements (ICRU) has published reference data for human tissue compositions in Publication No. 44, and the ICRP has released a new report on anatomical reference data in Publication No. 89. As a consequence many of the components of the traditional stylized exposure models used to determine the effective dose in the past have to be replaced: Monte Carlo codes, human phantoms and tissue compositions. This paper presents results of comprehensive investigations on the dosimetric consequences to be expected from the replacement of the traditional stylized exposure models by the voxel-based exposure models. Calculations have been performed with the EGS4 Monte Carlo code for external and internal exposures to photons and electrons with the stylized, gender-specific MIRD5-type phantoms ADAM and EVA on the one hand and with the recently developed tomographic or voxel-based phantoms MAX and FAX on the other hand for a variety of exposure conditions. Ratios of effective doses for the voxel-based and the stylized exposure models will be presented for external and internal exposures to photons and electrons as a function of the energy and the geometry of the radiation field. The data indicate that for the exposure conditions considered in these investigations the effective dose may change between +60% and -50% after the replacement of the traditional exposure models by the voxel

  13. VOXEL-WISE GROUP ANALYSIS OF DTI

    PubMed Central

    Liu, Zhexing; Zhu, Hongtu; Marks, Bonita L.; Katz, Laurence M.; Goodlett, Casey B.; Gerig, Guido; Styner, Martin

    2013-01-01

    Diffusion tensor MRI (DTI) is now a widely used modality to investigate the fiber tissues in vivo, especially the white matter in brain. An automatic pipeline is described in this paper to conduct a localized voxel-wise multiple-subject group comparison study of DTI. The pipeline consists of 3 steps: 1) Preprocessing, including image format converting, image quality check, eddy-current and motion artifact correction, skull stripping and tensor image estimation, 2) study-specific unbiased DTI atlas computation via affine followed by fluid nonlinear registration and warping of all individual DTI images into the common atlas space to achieve voxel-wise correspondence, 3) voxelwise statistical analysis via heterogeneous linear regression and wild bootstrap technique for correcting for multiple comparisons. This pipeline was applied to process data from a fitness and aging study and preliminary results are presented. The results show that this fully automatic pipeline is suitable for voxel-wise group DTI analysis. PMID:23703686

  14. VOXEL-WISE GROUP ANALYSIS OF DTI.

    PubMed

    Liu, Zhexing; Zhu, Hongtu; Marks, Bonita L; Katz, Laurence M; Goodlett, Casey B; Gerig, Guido; Styner, Martin

    2009-01-01

    Diffusion tensor MRI (DTI) is now a widely used modality to investigate the fiber tissues in vivo, especially the white matter in brain. An automatic pipeline is described in this paper to conduct a localized voxel-wise multiple-subject group comparison study of DTI. The pipeline consists of 3 steps: 1) Preprocessing, including image format converting, image quality check, eddy-current and motion artifact correction, skull stripping and tensor image estimation, 2) study-specific unbiased DTI atlas computation via affine followed by fluid nonlinear registration and warping of all individual DTI images into the common atlas space to achieve voxel-wise correspondence, 3) voxelwise statistical analysis via heterogeneous linear regression and wild bootstrap technique for correcting for multiple comparisons. This pipeline was applied to process data from a fitness and aging study and preliminary results are presented. The results show that this fully automatic pipeline is suitable for voxel-wise group DTI analysis. PMID:23703686

  15. Voxel-Based LIDAR Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  16. Voxel2MCNP: software for handling voxel models for Monte Carlo radiation transport calculations.

    PubMed

    Hegenbart, Lars; Pölz, Stefan; Benzler, Andreas; Urban, Manfred

    2012-02-01

    Voxel2MCNP is a program that sets up radiation protection scenarios with voxel models and generates corresponding input files for the Monte Carlo code MCNPX. Its technology is based on object-oriented programming, and the development is platform-independent. It has a user-friendly graphical interface including a two- and three-dimensional viewer. A row of equipment models is implemented in the program. Various voxel model file formats are supported. Applications include calculation of counting efficiency of in vivo measurement scenarios and calculation of dose coefficients for internal and external radiation scenarios. Moreover, anthropometric parameters of voxel models, for instance chest wall thickness, can be determined. Voxel2MCNP offers several methods for voxel model manipulations including image registration techniques. The authors demonstrate the validity of the program results and provide references for previous successful implementations. The authors illustrate the reliability of calculated dose conversion factors and specific absorbed fractions. Voxel2MCNP is used on a regular basis to generate virtual radiation protection scenarios at Karlsruhe Institute of Technology while further improvements and developments are ongoing. PMID:22217596

  17. SU-E-P-59: A Graphical Interface for XCAT Phantom Configuration, Generation and Processing

    SciTech Connect

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J; Hurwitz, M

    2015-06-15

    Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing, our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc.

  18. Calculation of images from an anthropomorphic chest phantom using Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Ullman, Gustaf; Malusek, Alexandr; Sandborg, Michael; Dance, David R.; Alm Carlsson, Gudrun

    2006-03-01

    Monte Carlo (MC) computer simulation of chest x-ray imaging systems has hitherto been performed using anthropomorphic phantoms with too large (3 mm) voxel sizes. The aim for this work was to develop and use a Monte Carlo computer program to compute projection x-ray images of a high-resolution anthropomorphic voxel phantom for visual clinical image quality evaluation and dose-optimization. An Alderson anthropomorphic chest phantom was imaged in a CT-scanner and reconstructed with isotropic voxels of 0.7 mm. The phantom was segmented and included in a Monte Carlo computer program using the collision density estimator to derive the energies imparted to the detector per unit area of each pixel by scattered photons. The image due to primary photons was calculated analytically including a pre-calculated detector response function. Attenuation and scatter of x-rays in the phantom, grid and image detector was considered. Imaging conditions (tube voltage, anti-scatter device) were varied and the images compared to a real computed radiography (Fuji FCR 9501) image. Four imaging systems were simulated (two tube voltages 81 kV and 141 kV using either a grid with ratio 10 or a 30 cm air gap). The effect of scattered radiation on the visibility of thoracic vertebrae against the heart and lungs is demonstrated. The simplicity in changing the imaging conditions will allow us not only to produce images of existing imaging systems, but also of hypothetical, future imaging systems. We conclude that the calculated images of the high-resolution voxel phantom are suitable for human detection experiments of low-contrast lesions.

  19. Comparison of Organ Dosimetry for Astronaut Phantoms: Earth-Based vs. Microgravity-Based Anthropometry and Body Positioning

    NASA Technical Reports Server (NTRS)

    VanBaalen, Mary; Bahadon, Amir; Shavers, Mark; Semones, Edward

    2011-01-01

    The purpose of this study is to use NASA radiation transport codes to compare astronaut organ dose equivalents resulting from solar particle events (SPE), geomagnetically trapped protons, and free-space galactic cosmic rays (GCR) using phantom models representing Earth-based and microgravity-based anthropometry and positioning. Methods: The Univer sity of Florida hybrid adult phantoms were scaled to represent male and female astronauts with 5th, 50th, and 95th percentile heights and weights as measured on Earth. Another set of scaled phantoms, incorporating microgravity-induced changes, such as spinal lengthening, leg volume loss, and the assumption of the neutral body position, was also created. A ray-tracer was created and used to generate body self-shielding distributions for dose points within a voxelized phantom under isotropic irradiation conditions, which closely approximates the free-space radiation environment. Simplified external shielding consisting of an aluminum spherical shell was used to consider the influence of a spacesuit or shielding of a hull. These distributions were combined with depth dose distributions generated from the NASA radiation transport codes BRYNTRN (SPE and trapped protons) and HZETRN (GCR) to yield dose equivalent. Many points were sampled per organ. Results: The organ dos e equivalent rates were on the order of 1.5-2.5 mSv per day for GCR (1977 solar minimum) and 0.4-0.8 mSv per day for trapped proton irradiation with shielding of 2 g cm-2 aluminum equivalent. The organ dose equivalents for SPE irradiation varied considerably, with the skin and eye lens having the highest organ dose equivalents and deep-seated organs, such as the bladder, liver, and stomach having the lowest. Conclus ions: The greatest differences between the Earth-based and microgravity-based phantoms are observed for smaller ray thicknesses, since the most drastic changes involved limb repositioning and not overall phantom size. Improved self-shielding models

  20. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  1. [Phantom limb pains].

    PubMed

    Giraux, Pascal

    2015-03-01

    With the radical experience of an amputation, the adaptation of body image is often incomplete. Some people experience phantom body perceptions, often painful and difficult to treat, after the amputation of a limb. PMID:26145132

  2. Lung pair phantom

    DOEpatents

    Olsen, P.C.; Gordon, N.R.; Simmons, K.L.

    1993-11-30

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  3. Lung pair phantom

    DOEpatents

    Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.

    1993-01-01

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  4. Phantom limb pain

    MedlinePlus

    ... limb is still there. This is called phantom sensation. It may feel: Tingly Prickly Numb Hot or ... your missing limb is getting shorter (telescoping) These sensations slowly get weaker and weaker. You should also ...

  5. Quantum phantom cosmology

    SciTech Connect

    DaPbrowski, Mariusz P.; Kiefer, Claus; Sandhoefer, Barbara

    2006-08-15

    We apply the formalism of quantum cosmology to models containing a phantom field. Three models are discussed explicitly: a toy model, a model with an exponential phantom potential, and a model with phantom field accompanied by a negative cosmological constant. In all these cases we calculate the classical trajectories in configuration space and give solutions to the Wheeler-DeWitt equation in quantum cosmology. In the cases of the toy model and the model with exponential potential we are able to solve the Wheeler-DeWitt equation exactly. For comparison, we also give the corresponding solutions for an ordinary scalar field. We discuss, in particular, the behavior of wave packets in minisuperspace. For the phantom field these packets disperse in the region that corresponds to the big-rip singularity. This thus constitutes a genuine quantum region at large scales, described by a regular solution of the Wheeler-DeWitt equation. For the ordinary scalar field, the big-bang singularity is avoided. Some remarks on the arrow of time in phantom models as well as on the relation of phantom models to loop quantum cosmology are given.

  6. Stability of phantom wormholes

    SciTech Connect

    Lobo, Francisco S.N.

    2005-06-15

    It has recently been shown that traversable wormholes may be supported by phantom energy. In this work phantom wormhole geometries are modeled by matching an interior traversable wormhole solution, governed by the equation of state p={omega}{rho} with {omega}<-1, to an exterior vacuum spacetime at a finite junction interface. The stability analysis of these phantom wormholes to linearized spherically symmetric perturbations about static equilibrium solutions is carried out. A master equation dictating the stability regions is deduced, and by separating the cases of a positive and a negative surface energy density, it is found that the respective stable equilibrium configurations may be increased by strategically varying the wormhole throat radius. The first model considered, in the absence of a thin shell, is that of an asymptotically flat phantom wormhole spacetime. The second model constructed is that of an isotropic pressure phantom wormhole, which is of particular interest, as the notion of phantom energy is that of a spatially homogeneous cosmic fluid, although it may be extended to inhomogeneous spherically symmetric spacetimes.

  7. Schizophrenia Patients Demonstrate Both Inter-Voxel Level and Intra-Voxel Level White Matter Alterations.

    PubMed

    Zhuo, Chuanjun; Ma, Xiaolei; Qu, Hongru; Wang, Lina; Jia, Feng; Wang, Chunli

    2016-01-01

    Fractional anisotropy (FA) and mean diffusivity (MD) are the most frequently used metrics to investigate white matter impairments in mental disorders. However, these two metrics are derived from intra-voxel analyses and only reflect the diffusion properties solely within the voxel unit. Local diffusion homogeneity (LDH) is a newly developed inter-voxel metric which quantifies the local coherence of water molecule diffusion in a model-free manner. In this study, 94 schizophrenia patients and 91 sex- and age-matched healthy controls underwent diffusion tensor imaging (DTI) examinations. White matter integrity was assessed by FA, MD and LDH. Group differences in these metrics were compared using tract-based spatial statistics (TBSS). Compared with healthy controls, schizophrenia patients exhibited reduced FA and increased MD in the corpus callosum, cingulum, internal capsule, fornix and widespread superficial white matter in the frontal, parietal, occipital and temporal lobes. We also found decreased LDH in the corpus callosum, cingulum, internal capsule and fornix in schizophrenia. Our findings suggest that both intra-voxel and inter-voxel diffusion metrics are able to detect impairments in the anisotropic white matter regions, and intra-voxel diffusion metrics could detect additional impairments in the widespread isotropic white matter regions in schizophrenia. PMID:27618693

  8. Frequency Selectivity of Voxel-by-Voxel Functional Connectivity in Human Auditory Cortex.

    PubMed

    Cha, Kuwook; Zatorre, Robert J; Schönwiesner, Marc

    2016-01-01

    While functional connectivity in the human cortex has been increasingly studied, its relationship to cortical representation of sensory features has not been documented as much. We used functional magnetic resonance imaging to demonstrate that voxel-by-voxel intrinsic functional connectivity (FC) is selective to frequency preference of voxels in the human auditory cortex. Thus, FC was significantly higher for voxels with similar frequency tuning than for voxels with dissimilar tuning functions. Frequency-selective FC, measured via the correlation of residual hemodynamic activity, was not explained by generic FC that is dependent on spatial distance over the cortex. This pattern remained even when FC was computed using residual activity taken from resting epochs. Further analysis showed that voxels in the core fields in the right hemisphere have a higher frequency selectivity in within-area FC than their counterpart in the left hemisphere, or than in the noncore-fields in the same hemisphere. Frequency-selective FC is consistent with previous findings of topographically organized FC in the human visual and motor cortices. The high degree of frequency selectivity in the right core area is in line with findings and theoretical proposals regarding the asymmetry of human auditory cortex for spectral processing. PMID:25183885

  9. Adaptation and applications of a realistic digital phantom based on patient lung tumor trajectories

    NASA Astrophysics Data System (ADS)

    Mishra, Pankaj; St. James, Sara; Segars, W. Paul; Berbeco, Ross I.; Lewis, John H.

    2012-06-01

    Digital phantoms continue to play a significant role in modeling and characterizing medical imaging. The currently available XCAT phantom incorporates both the flexibility of mathematical phantoms and the realistic nature of voxelized phantoms. This phantom generates images based on a regular breathing pattern and can include arbitrary lung tumor trajectories. In this work, we present an algorithm that modifies the current XCAT phantom to generate 4D imaging data based on irregular breathing. First, a parameter is added to the existing XCAT phantom to include any arbitrary tumor motion. This modification introduces the desired tumor motion but, comes at the cost of decoupled diaphragm, chest wall and lung motion. To remedy this problem diaphragm and chest wall motion is first modified based on initial tumor location and then input to the XCAT phantom. This generates a phantom with synchronized respiratory motion. Mapping of tumor motion trajectories to diaphragm and chest wall motion is done by adaptively calculating a scale factor based on tumor to lung contour distance. The distance is calculated by projecting the initial tumor location to lung edge contours characterized by quadratic polynomials. Data from ten patients were used to evaluate the accuracy between actual independent tumor location and the location obtained from the modified XCAT phantom. The RMSE and standard deviations for ten patients in x, y, and z directions are: (0.29 ± 0.04, 0.54 ± 0.17, and0.39 ± 0.06) mm. To demonstrate the utility of the phantom, we use the new phantom to simulate a 4DCT acquisition as well as a recently published method for phase sorting. The modified XCAT phantom can be used to generate more realistic imaging data for enhanced testing of algorithms for CT reconstruction, tumor tracking, and dose reconstruction.

  10. A computational tool based on voxel geometry for dose reconstruction of a radiological accident due to external exposure.

    PubMed

    Lemosquet, A; Clairand, I; de Carlan, L; Franck, D; Aubineau-Lanièce, I; Bottollier-Depois, J-F

    2004-01-01

    In the case of overexposure to ionising radiation, estimation of the absorbed dose in the organism is an important indicator for evaluating the biological consequences of this exposure. The physical dosimetry approach is based either on real reconstruction of the accident, using physical phantoms, or on calculation techniques. Tools using Monte Carlo simulations associated with geometric models are very powerful since they offer the possibility to simulate faithfully the victim and the environment for dose calculations in various accidental situations. Their work presents a new computational tool, called SESAME, dedicated to dose reconstruction of radiological accidents based on anthropomorphic voxel phantoms built from real medical images of the victim in association with the MCNP Monte Carlo code. The utility was, as a first step, validated for neutrons by experimental means using a physical tissue-equivalent phantom. PMID:15353689

  11. Phantom energy traversable wormholes

    SciTech Connect

    Lobo, Francisco S.N.

    2005-04-15

    It has been suggested that a possible candidate for the present accelerated expansion of the Universe is 'phantom energy'. The latter possesses an equation of state of the form {omega}{identical_to}p/{rho}<-1, consequently violating the null energy condition. As this is the fundamental ingredient to sustain traversable wormholes, this cosmic fluid presents us with a natural scenario for the existence of these exotic geometries. 'Note, however, that the notion of phantom energy is that of a homogeneously distributed fluid. Nevertheless, it can be extended to inhomogeneous spherically symmetric spacetimes, and it is shown that traversable wormholes may be supported by phantom energy. Because of the fact of the accelerating Universe, macroscopic wormholes could naturally be grown from the submicroscopic constructions that originally pervaded the quantum foam. One could also imagine an advanced civilization mining the cosmic fluid for phantom energy necessary to construct and sustain a traversable wormhole. In this context, we investigate the physical properties and characteristics of traversable wormholes constructed using the equation of state p={omega}{rho}, with {omega}<-1. We analyze specific wormhole geometries, considering asymptotically flat spacetimes and imposing an isotropic pressure. We also construct a thin shell around the interior wormhole solution, by imposing the phantom energy equation of state on the surface stresses. Using the 'volume integral quantifier' we verify that it is theoretically possible to construct these geometries with vanishing amounts of averaged null energy condition violating phantom energy. Specific wormhole dimensions and the traversal velocity and time are also deduced from the traversability conditions for a particular wormhole geometry. These phantom energy traversable wormholes have far-reaching physical and cosmological implications. For instance, an advanced civilization may use these geometries to induce closed timelike

  12. Construction of anthropomorphic hybrid, dual-lattice voxel models for optimizing image quality and dose in radiography

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph

    2014-03-01

    In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.

  13. Voxel-level reproducibility assessment of modality independent elastography in a pre-clinical murine model

    NASA Astrophysics Data System (ADS)

    Flint, Katelyn M.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2015-03-01

    Changes in tissue mechanical properties, measured non-invasively by elastography methods, have been shown to be an important diagnostic tool, particularly for cancer. Tissue elasticity information, tracked over the course of therapy, may be an important prognostic indicator of tumor response to treatment. While many elastography techniques exist, this work reports on the use of a novel form of elastography that uses image texture to reconstruct elastic property distributions in tissue (i.e., a modality independent elastography (MIE) method) within the context of a pre-clinical breast cancer system.1,2 The elasticity results have previously shown good correlation with independent mechanical testing.1 Furthermore, MIE has been successfully utilized to localize and characterize lesions in both phantom experiments and simulation experiments with clinical data.2,3 However, the reproducibility of this method has not been characterized in previous work. The goal of this study is to evaluate voxel-level reproducibility of MIE in a pre-clinical model of breast cancer. Bland-Altman analysis of co-registered repeat MIE scans in this preliminary study showed a reproducibility index of 24.7% (scaled to a percent of maximum stiffness) at the voxel level. As opposed to many reports in the magnetic resonance elastography (MRE) literature that speak to reproducibility measures of the bulk organ, these results establish MIE reproducibility at the voxel level; i.e., the reproducibility of locally-defined mechanical property measurements throughout the tumor volume.

  14. Application of Numerical Phantoms and MCNP Calculation for In Vivo Calibration

    NASA Astrophysics Data System (ADS)

    Franck, D.; Borisov, N. M.; Laval, L.

    The paper reports on development of numeric phantoms for Monte Carlo calculations for in vivo measurements of radionuclides deposited in tissues. The individual properties of each person require rather precise geometric representations. It is particularly important for low energy gamma ray emitting sources as thorium, uranium, plutonium and other actinides. The new utility which allows automatic creation of MCNP initial file from individual scanning information, was developed. It includes segmentation of voxel matrix, obtained with computer tomography, for distinguishing tissues by level of brightness, association colors with certain tissues, source and detector specification and, finally, voxel coupling to reduce the consumed memory and increase speed of calculations.

  15. Magnetic Resonance Image Phantom Code System to Calibrate in vivo Measurement Systems.

    1997-07-17

    Version 00 MRIPP provides relative calibration factors for the in vivo measurement of internally deposited photon emitting radionuclides within the human body. The code includes a database of human anthropometric structures (phantoms) that were constructed from whole body Magnetic Resonance Images. The database contains a large variety of human images with varying anatomical structure. Correction factors are obtained using Monte Carlo transport of photons through the voxel geometry of the phantom. Correction factors provided bymore » MRIPP allow users of in vivo measurement systems (e.g., whole body counters) to calibrate these systems with simple sources and obtain subject specific calibrations. Note that the capability to format MRI data for use with this system is not included; therefore, one must use the phantom data included in this package. MRIPP provides a simple interface to perform Monte Carlo simulation of photon transport through the human body. MRIPP also provides anthropometric information (e.g., height, weight, etc.) for individuals used to generate the phantom database. A modified Voxel version of the Los Alamos National Laboratory MCNP4A code is used for the Monte Carlo simulation. The Voxel version Fortran patch to MCNP4 and MCNP4A (Monte Carlo N-Particle transport simulation) and the MCNP executable are included in this distribution, but the MCNP Fortran source is not included. It was distributed by RSICC as CCC-200 but is now obsoleted by the current release MCNP4B.« less

  16. Magnetic Resonance Image Phantom Code System to Calibrate in vivo Measurement Systems.

    SciTech Connect

    HICKMAN, DAVE

    1997-07-17

    Version 00 MRIPP provides relative calibration factors for the in vivo measurement of internally deposited photon emitting radionuclides within the human body. The code includes a database of human anthropometric structures (phantoms) that were constructed from whole body Magnetic Resonance Images. The database contains a large variety of human images with varying anatomical structure. Correction factors are obtained using Monte Carlo transport of photons through the voxel geometry of the phantom. Correction factors provided by MRIPP allow users of in vivo measurement systems (e.g., whole body counters) to calibrate these systems with simple sources and obtain subject specific calibrations. Note that the capability to format MRI data for use with this system is not included; therefore, one must use the phantom data included in this package. MRIPP provides a simple interface to perform Monte Carlo simulation of photon transport through the human body. MRIPP also provides anthropometric information (e.g., height, weight, etc.) for individuals used to generate the phantom database. A modified Voxel version of the Los Alamos National Laboratory MCNP4A code is used for the Monte Carlo simulation. The Voxel version Fortran patch to MCNP4 and MCNP4A (Monte Carlo N-Particle transport simulation) and the MCNP executable are included in this distribution, but the MCNP Fortran source is not included. It was distributed by RSICC as CCC-200 but is now obsoleted by the current release MCNP4B.

  17. 21. Phantom pain.

    PubMed

    Wolff, Andre; Vanduynhoven, Eric; van Kleef, Maarten; Huygen, Frank; Pope, Jason E; Mekhail, Nagy

    2011-01-01

    Phantom pain is pain caused by elimination or interruption of sensory nerve impulses by destroying or injuring the sensory nerve fibers after amputation or deafferentation. The reported incidence of phantom limb pain after trauma, injury or peripheral vascular diseases is 60% to 80%. Over half the patients with phantom pain have stump pain as well. Phantom pain can also occur in other parts of the body; it has been described after mastectomies and enucleation of the eye. Most patients with phantom pain have intermittent pain, with intervals that range from 1 day to several weeks. Even intervals of over a year have been reported. The pain often presents itself in the form of attacks that vary in duration from a few seconds to minutes or hours. In most cases, the pain is experienced distally in the missing limb, in places with the most extensive innervation density and cortical representation. Although there are still many questions as to the underlying mechanisms, peripheral as well as central neuronal mechanisms seem to be involved. Conservative therapy consists of drug treatment with amitriptyline, tramadol, carbamazepine, ketamine, or morphine. Based on the available evidence some effect may be expected from drug treatment. When conservative treatment fails, pulsed radiofrequency treatment of the stump neuroma or of the spinal ganglion (DRG) or spinal cord stimulation could be considered (evidence score 0). These treatments should only be applied in a study design. PMID:21447079

  18. Monte Carlo dose calculations for phantoms with hip prostheses

    NASA Astrophysics Data System (ADS)

    Bazalova, M.; Coolens, C.; Cury, F.; Childs, P.; Beaulieu, L.; Verhaegen, F.

    2008-02-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses.

  19. Voxel-based morphometry and epilepsy.

    PubMed

    Yasuda, Clarissa Lin; Betting, Luiz Eduardo; Cendes, Fernando

    2010-06-01

    Voxel-based morphometry is an automated technique for MRI analyses, developed to study differences in brain morphology and frequently used to study patients with diverse disorders. In epilepsy, it has been used to investigate areas with reduction or increase of gray and white matter, in different syndromes (i.e., temporal lobe epilepsy, focal cortical dysplasia and generalized epilepsies). In temporal lobe epilepsy, voxel-based morphometry showed gray/white matter atrophy extending beyond the atrophic hippocampus. These widespread abnormalities have been associated with seizure frequency, epilepsy duration, incidence of precipitating factors, cognitive dysfunction and surgical outcome. In generalized epilepsies, gray matter abnormalities were identified mainly in the thalamus and frontal cortex, reinforcing the role of the thalamocortical network in the mechanisms of generalized seizures. PMID:20518612

  20. Modeling and analysis of caves using voxelization

    NASA Astrophysics Data System (ADS)

    Szeifert, Gábor; Szabó, Tivadar; Székely, Balázs

    2014-05-01

    Although there are many ways to create three dimensional representations of caves using modern information technology methods, modeling of caves has been challenging for researchers for a long time. One of these promising new alternative modeling methods is using voxels. We are using geodetic measurements as an input for our voxelization project. These geodetic underground surveys recorded the azimuth, altitude and distance of corner points of cave systems relative to each other. The diameter of each cave section is estimated from separate databases originating from different surveys. We have developed a simple but efficient method (it covers more than 99.9 % of the volume of the input model on the average) to convert these vector-type datasets to voxels. We have also developed software components to make visualization of the voxel and vector models easier. Since each cornerpoint position is measured relative to another cornerpoints positions, propagation of uncertainties is an important issue in case of long caves with many separate sections. We are using Monte Carlo simulations to analyze the effect of the error of each geodetic instrument possibly involved in a survey. Cross-sections of the simulated three dimensional distributions show, that even tiny uncertainties of individual measurements can result in high variation of positions that could be reduced by distributing the closing errors if such data are available. Using the results of our simulations, we can estimate cave volume and the error of the calculated cave volume depending on the complexity of the cave. Acknowledgements: the authors are grateful to Ariadne Karst and Cave Exploring Association and State Department of Environmental and Nature Protection of the Hungarian Ministry of Rural Development, Department of National Parks and Landscape Protection, Section Landscape and Cave Protection and Ecotourism for providing the cave measurement data. BS contributed as an Alexander von Humboldt Research

  1. Fine-Resolution Voxel S Values for Constructing Absorbed Dose Distributions at Variable Voxel Size

    PubMed Central

    Dieudonné, Arnaud; Hobbs, Robert F.; Bolch, Wesley E.; Sgouros, George; Gardin, Isabelle

    2010-01-01

    This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. Methods VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: 18F, 90Y, 99mTc, 111In, 123I, 131I, 177Lu, 186Re, and 201Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for 90Y and 131I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8–7.7 mm) and radii (4–64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. Results For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for 90Y and −0.36% ± 0.51% for 131I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for 90Y and −0.61% for 131I and the difference in average absorbed dose to the liver was 0.25% for 90Y and −1.35% for 131I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. Conclusion This new

  2. Jamitons: Phantom Traffic Jams

    ERIC Educational Resources Information Center

    Kowszun, Jorj

    2013-01-01

    Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…

  3. The Phantom brane revisited

    NASA Astrophysics Data System (ADS)

    Sahni, Varun

    2016-07-01

    The Phantom brane is based on the normal branch of the DGP braneworld. It possesses a phantom-like equation of state at late times, but no big-rip future singularity. In this braneworld, the cosmological constant is dynamically screened at late times. Consequently it provides a good fit to SDSS DR11 measurements of H(z) at high redshifts. We obtain a closed system of equations for scalar perturbations on the brane. Perturbations of radiation, matter and the Weyl fluid are self-consistently evolved until the present epoch. We find that the late time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials φ, Ψ evolve differently on the brane than in ΛCDM, for which φ = Ψ. On the Brane, by contrast, the ratio φ/Ψ exceeds unity during the late matter dominated epoch (z ≤ 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large scale structure. The phantom brane also displays a pole in its equation of state, which provides a key test of this dark energy model.

  4. Egg White Phantoms for HIFU

    SciTech Connect

    Divkovic, Gabriela; Jenne, Juergen W.

    2005-03-28

    We used fresh egg white and polyacrylamide to create a transparent tissue mimicking phantom. Heating of phantoms by HIFU leads to egg white protein denaturation and creation of visible white lesions. We measured the acoustical and thermal properties and investigated the possibility to use such phantoms to study the lesion formation during the HIFU therapy.

  5. Using a prototype voxel for visualizing volumetric data

    NASA Astrophysics Data System (ADS)

    Buckalew, William C.

    1993-07-01

    We present a method for visualizing volumetric data such as NMI or CAT-scan data that makes use of a data structure called the prototype voxel to create images very quickly on common workstation screens. The algorithm speeds up the standard process of casting rays through the volume data by precomputing a great deal of direction and interpolation information, assuming that all voxels are the same size and shape (which is normally the case for medical data sets). As rays are cast, this information, stored in the prototype voxel, is merely looked up when needed rather than being recomputed repeatedly. The prototype voxel must be computed only once for each data configuration; subsequent data sets which use the same size and shape of voxel can use the same prototype voxel information to speed rendering. This algorithm trades memory for speed: it uses 20 to 50 megabytes of memory (already becoming commonly available in modern workstations) for its speed improvements.

  6. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  7. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  8. Appeasing the phantom menace?

    SciTech Connect

    Bouhmadi-López, Mariam; Moniz, Paulo Vargas; Tavakoli, Yaser E-mail: tavakoli@ubi.pt

    2010-04-01

    An induced gravity brane-world model is considered herein. A Gauss-Bonnet term is provided for the bulk, whereas phantom matter is present on the brane. It is shown that a combination of infra-red and ultra-violet modifications to general relativity replaces a big rip singularity: A sudden singularity emerges instead. Using current observational data, we also determine a range of values for the cosmic time corresponding to the sudden singularity occurrence.

  9. The water equivalence of solid phantoms for low energy photon beams

    SciTech Connect

    Hill, Robin; Kuncic, Zdenka; Baldock, Clive

    2010-08-15

    Purpose: To compare and evaluate the dosimetric water equivalence of several commonly used solid phantoms for low energy photon beams. Methods: A total of ten different solid phantom materials was used in the study. The PENELOPE Monte Carlo code was used to calculate depth doses and beam profiles in all the phantom materials as well as the dose to a small water voxel at the surface of the solid phantom. These doses were compared to the corresponding doses calculated in a water phantom. The primary photon beams used ranged in energy from 50 to 280 kVp. Results: A number of phantom materials had excellent agreement in dose compared to water for all the x-ray beam energies studied. RMI457 Solid Water, Virtual Water, PAGAT, A150, and Plastic Water DT all had depth doses that agreed with those in water to within 2%. For these same phantom materials, the dose changes in the water voxel at the surface of the solid phantom were within 2%, except for A150, which agreed to within 2.7%. By comparison, the largest differences in depth doses occurred for Plastic Water (-21.7%) and polystyrene (17.6%) for the 50 kVp energy photon beam and 8 cm diameter field size. Plastic Water gave the largest difference in the normalized beam profiles with differences of up to 3.5% as compared to water. Surface dose changes, due to the presence of the solid phantom acting as the backscatter material, were found to be up to 9.1% for polystyrene with significant differences also found for Plastic Water, PMMA, and RW3 phantoms. Conclusions: The following solid phantoms can be considered water equivalent and are recommended for relative dosimetry of low energy photon beams: A150, PAGAT, Plastic Water DT, RMI457 Solid Water, and Virtual Water. However, the following solid phantoms give significant differences, compared to water, in depth doses, profiles, and/or in surface doses due to backscatter changes: Plastic Water, PMMA, polystyrene, PRESAGE, and RW3.

  10. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  11. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    SciTech Connect

    Yani, Sitti; Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam; Rhani, Moh. Fadhillah

    2015-09-30

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm{sup 3}, 1 × 1 × 0.5 cm{sup 3}, and 1 × 1 × 0.8 cm{sup 3}. The 1 × 10{sup 9} histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d{sub max} from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm{sup 3} about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm{sup 3} about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  12. Calibration of a radioactive ink-based stack phantom and its applications in nuclear medicine.

    PubMed

    El-Ali, H; Ljungberg, M; Strand, S-E; Palmer, J; Malmgren, L; Nilsson, J

    2003-04-01

    This paper describes a stack phantom useful for imaging complex activity distributions. It is based on images printed with radioactive ink using a commercial ink-jet printer. The application for the phantom is in the evaluation of planar and SPECT scintillation camera images and for validation of Monte Carlo simulated images. The accuracy in generating the activity distributions on paper sheets is especially important. Here we describe the calibration procedure for the ink-jet printer. The goal of the printer calibration is to find the relationship between the digital image count (voxel grey level) and its corresponding activity on the paper sheets (radioactivity). The relationship between the voxel grey level and the radioactivity on the paper sheets (measured by scanning technique and well counter) was found to be logarithmic, and a 3rd degree polynomial was found to fit the relationship. The distribution of radioactivity in the ink cartridge was investigated by pinhole SPECT. The distribution of (99m)Tc solution was found to be homogeneous in the ink solution. Experimental studies were done directly on Monte Carlo simulated heart images from the NCAT phantom. The result showed that the simulated images are similar to the images measured using the ink-jet technique. This stack phantom could be a promising solution with an advantage that the exact geometry generated in Monte Carlo could be imitated in the phantom. The phantom is a very flexible device and clearly much more versatile than conventional phantoms which have a fixed geometry and spatial limitation. PMID:12804045

  13. The phantom illusion.

    PubMed

    Galmonte, Alessandra; Soranzo, Alessandro; Rudd, Michael E; Agostini, Tiziano

    2015-12-01

    It is well known that visible luminance gradients may generate contrast effects. In this work we present a new paradoxical illusion in which the luminance range of gradual transitions has been reduced to make them invisible. By adopting the phenomenological method proposed by Kanizsa, we have found that unnoticeable luminance gradients still generate contrast effects. But, most interestingly, we have found that when their width is narrowed, rather than generating contrast effects on the surrounded surfaces, they generate an assimilation effect. Both high- and low-level interpretations of this "phantom" illusion are critically evaluated. PMID:26505683

  14. Evaluation of effective dose conversion coefficients for Korean adults during medical x-ray examinations up to 150 keV through comparison with ICRP Publication 74 and ICRP Publication 116.

    PubMed

    Keum, Mihyun; Park, Jae Hong; Park, Sung Ho; Ahn, Seung Do

    2014-03-01

    A Monte Carlo program for calculating organ doses for patients undergoing medical x-ray examination (PCXMC) was used to calculate effective dose conversion coefficients for Korean adults. Two sets of effective dose results were calculated based on tissue weighting factors recommended in International Commission on Radiological Protection (ICRP) Publications 60 and 103 for monochromatic energy photons of 10, 15, 20, 30, 40, 50, 60, 70, 80, 100 and 150 keV. The results were obtained for monoenergetic photons, since effective dose conversion coefficients recommended in ICRP Publications 74 and 116 were given for monochromatic energies, thereby enabling the comparison of our result to those suggested by the ICRP publications. The areas of comparison include: to observe effects due to changes in tissue weighting factors, modification within Medical Internal Radiation Dose (MIRD) phantoms and differences in phantom types. The phantom employed in the PCXMC program is a modified version of the phantom used in ICRP Publication 74, with additional organs that were added in order to take into account the updated tissue weighting factors given in ICRP Publication 103. Both use MIRD phantoms but our study modified the phantom size to the average physical condition of Korean adults, while ICRP Publication 74 uses the phantom size of the reference man defined in ICRP Publication 23. On the other hand, the effective dose suggested in ICRP 116 was calculated using an entirely different type of phantom: a voxel phantom with the size of reference man. Although significant differences were observed for certain organ doses in the lateral beam directions, differences in the effective doses were within 5% for the anterior-posterior (AP) and posterior-anterior (PA) directions, and within 16% in lateral directions when tissue weighting factors were applied and the variations were adjusted for all three comparisons. The results show that calculation of effective doses for Korean adults

  15. Multi-Modality Phantom Development

    SciTech Connect

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe both our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.

  16. Photon fluence-to-effective dose conversion coefficients calculated from a Saudi population-based phantom

    NASA Astrophysics Data System (ADS)

    Ma, A. K.; Altaher, K.; Hussein, M. A.; Amer, M.; Farid, K. Y.; Alghamdi, A. A.

    2014-02-01

    In this work we will present a new set of photon fluence-to-effective dose conversion coefficients using the Saudi population-based voxel phantom developed recently by our group. The phantom corresponds to an average Saudi male of 173 cm tall weighing 77 kg. There are over 125 million voxels in the phantom each of which is 1.37×1.37×1.00 mm3. Of the 27 organs and tissues of radiological interest specified in the recommendations of ICRP Publication 103, all but the oral mucosa, extrathoracic tissue and the lymph nodes were identified in the current version of the phantom. The bone surface (endosteum) is too thin to be identifiable; it is about 10 μm thick. The dose to the endosteum was therefore approximated by the dose to the bones. Irradiation geometries included anterior-posterior (AP), left (LLAT) and rotational (ROT). The simulations were carried out with the MCNPX code version 2.5.0. The fluence in free air and the energy depositions in each organ were calculated for monoenergetic photon beams from 10 keV to 10 MeV to obtain the conversion coefficients. The radiation and tissue weighting factors were taken from ICRP Publication 60 and 103. The results from this study will also be compared with the conversion coefficients in ICRP Publication 116.

  17. A Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme with Voxel-Level Parallelization for Cone-Beam CT Reconstruction.

    PubMed

    Park, Hyeong-Gyu; Shin, Yeong-Gil; Lee, Ho

    2015-12-01

    A ray-driven backprojector is based on ray-tracing, which computes the length of the intersection between the ray paths and each voxel to be reconstructed. To reduce the computational burden caused by these exhaustive intersection tests, we propose a fully graphics processing unit (GPU)-based ray-driven backprojector in conjunction with a ray-culling scheme that enables straightforward parallelization without compromising the high computing performance of a GPU. The purpose of the ray-culling scheme is to reduce the number of ray-voxel intersection tests by excluding rays irrelevant to a specific voxel computation. This rejection step is based on an axis-aligned bounding box (AABB) enclosing a region of voxel projection, where eight vertices of each voxel are projected onto the detector plane. The range of the rectangular-shaped AABB is determined by min/max operations on the coordinates in the region. Using the indices of pixels inside the AABB, the rays passing through the voxel can be identified and the voxel is weighted as the length of intersection between the voxel and the ray. This procedure makes it possible to reflect voxel-level parallelization, allowing an independent calculation at each voxel, which is feasible for a GPU implementation. To eliminate redundant calculations during ray-culling, a shared-memory optimization is applied to exploit the GPU memory hierarchy. In experimental results using real measurement data with phantoms, the proposed GPU-based ray-culling scheme reconstructed a volume of resolution 28032803176 in 77 seconds from 680 projections of resolution 10243768 , which is 26 times and 7.5 times faster than standard CPU-based and GPU-based ray-driven backprojectors, respectively. Qualitative and quantitative analyses showed that the ray-driven backprojector provides high-quality reconstruction images when compared with those generated by the Feldkamp-Davis-Kress algorithm using a pixel-driven backprojector, with an average of 2.5 times

  18. Application of GEANT4 radiation transport toolkit to dose calculations in anthropomorphic phantoms.

    PubMed

    Rodrigues, P; Trindade, A; Peralta, L; Alves, C; Chaves, A; Lopes, M C

    2004-12-01

    In this paper, we present a novel implementation of a dose calculation application, based on the GEANT4 Monte Carlo toolkit. Validation studies were performed with an homogeneous water phantom and an Alderson-Rando anthropomorphic phantom both irradiated with high-energy photon beams produced by a clinical linear accelerator. As input, this tool requires computer tomography images for automatic codification of voxel-based geometries and phase-space distributions to characterize the incident radiation field. Simulation results were compared with ionization chamber, thermoluminescent dosimetry data and commercial treatment planning system calculations. In homogeneous water phantom, overall agreement with measurements were within 1-2%. For anthropomorphic simulated setups (thorax and head irradiation) mean differences between GEANT4 and TLD measurements were less than 2%. Significant differences between GEANT4 and a semi-analytical algorithm implemented in the treatment planning system, were found in low-density regions, such as air cavities with strong electronic disequilibrium. PMID:15388147

  19. Infant phantom head circuit board for EEG head phantom and pediatric brain simulation

    NASA Astrophysics Data System (ADS)

    Almohsen, Safa

    The infant's skull differs from an adult skull because of the characteristic features of the human skull during early development. The fontanels and the conductivity of the infant skull influence surface currents, generated by neurons, which underlie electroencephalography (EEG) signals. An electric circuit was built to power a set of simulated neural sources for an infant brain activity simulator. Also, in the simulator, three phantom tissues were created using saline solution plus Agarose gel to mimic the conductivity of each layer in the head [scalp, skull brain]. The conductivity measurement was accomplished by two different techniques: using the four points' measurement technique, and a conductivity meter. Test results showed that the optimized phantom tissues had appropriate conductivities to simulate each tissue layer to fabricate a physical head phantom. In this case, the best results should be achieved by testing the electrical neural circuit with the sample physical model to generate simulated EEG data and use that to solve both the forward and the inverse problems for the purpose of localizing the neural sources in the head phantom.

  20. Comparison of two anthropomorphic phantoms as a calibration tool for whole-body counter using Monte Carlo simulations.

    PubMed

    Manohari, M; Mathiyarasu, R; Rajagopal, V; Venkatraman, B

    2015-04-01

    The whole-body counting facility at the Indira Gandhi Centre for Atomic Research uses an in-house built Masonite cut-sheet phantom for the calibration of whole-body monitors. Recently, an Indian Adult BOMAB phantom was procured as an additional utility to augment the facility. The present study is to generate full-energy peak efficiencies (FEPE) of the shielded chair (SC) whole-body counting system using the new BOMAB phantom through Monte Carlo (MC) simulations. The values are compared with that of the Masonite phantom. First, the SC was modelled along with the Masonite phantom to estimate the FEPE values and Compton scattering factors (CSFs) for different energies. The simulated values were validated against the measurements using the Masonite cut-sheet phantom (Masonite phantom). The validated SC model was used along with the Indian adult BOMAB phantom to estimate the FEPEs and the CSFs. The simulated BOMAB phantom values were compared with the simulated Masonite phantom values. The maximum deviation for both the FEPEs and CSFs was ±10% validating the use of the Masonite phantom as a calibration tool representing an Indian adult. PMID:25406363

  1. Finding significantly connected voxels based on histograms of connection strengths

    NASA Astrophysics Data System (ADS)

    Kasenburg, Niklas; Pedersen, Morten Vester; Darkner, Sune

    2016-03-01

    We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Connectivity based segmentations are usually based on fibre connections from a seed region to predefined target regions. We present a method for finding significantly connected voxels based on the distribution of connection strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography. For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the majority of estimated connections are false-positives and that their connection strength is distributed differently from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the average normalized histogram over all voxels in the seed region. Single histograms are then tested against the corresponding null-distribution and significance is determined using the false discovery rate (FDR). Segmentations are based on significantly connected voxels and their FDR. In this work we focus on the thalamus and the target regions were chosen by dividing the cortex into a prefrontal/temporal zone, motor zone, somatosensory zone and a parieto-occipital zone. The obtained segmentations consistently show a sparse number of significantly connected voxels that are located near the surface of the anterior thalamus over a population of 38 subjects.

  2. Ultrasonic Calibration Wire Test Phantom

    SciTech Connect

    Lehman, S K; Fisher, K A; Werve, M; Chambers, D H

    2004-09-24

    We designed and built a phantom consisting of vertical wires maintained under tension to be used as an ultrasonic test, calibration, and reconstruction object for the Lawrence Livermore National Laboratory annular array scanner. We provide a description of the phantom, present example data sets, preliminary reconstructions, example metadata, and MATLAB codes to read the data.

  3. A new sequence for shaped voxel spectroscopy in the human brain using 2D spatially selective excitation and parallel transmission.

    PubMed

    Waxmann, Patrick; Mekle, Ralf; Schubert, Florian; Brühl, Rüdiger; Kuehne, Andre; Lindel, Tomasz D; Seifert, Frank; Speck, Oliver; Ittermann, Bernd

    2016-08-01

    Spatially selective excitation in two dimensions (2D-SSE) utilizing parallel transmission was applied as a means to acquire signal from voxels adapted to the anatomy of interest for in vivo (1) H MR spectroscopy. A novel method to select spectroscopy voxels with arbitrary shapes in two dimensions was investigated. An on-off scheme with an adiabatic slice selective inversion pulse preceding a 2D-SSE pulse together with a segmented inward spiral excitation k-space trajectory enabled rapid free induction decay acquisitions. Performance of the sequence was evaluated in simulations, phantom experiments, and in vivo measurements at 3 T. High spatial fidelity of the excitation profile was achieved for different target shapes and with little off-resonance deterioration. Metabolite concentrations in human brain determined with the new sequence were quantified with Cramér-Rao lower bounds less than 20%. They were in the physiological range and did not deviate systematically from results acquired with a conventional SPECIAL sequence. In conclusion, a new approach for shaped voxel MRS in the human brain is presented, which complements existing sequences. Simulations show that 2D-SSE pulses yield reduced chemical shift artifact when compared with conventional localization methods. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27254102

  4. [Therapy of phantom limb pain].

    PubMed

    Schwarzer, Andreas; Zenz, Michael; Maier, Christoph

    2009-03-01

    About 80 % of all extremity amputations suffer from phantom limb pain following the operation. In this context, it is important to differentiate between painful phantom limb sensations, non-painful phantom limb sensations and residual limb pain. The pathophysiology of phantom limb pain is not fully understood. Current research findings ascribe a major pathophysiological role to cortical changes as well as a disturbed body perception. Peripheral and spinal mechanisms appear less relevant in the development of phantom limb pain. An essential part of the therapy is the pharmacological treatment with antidepressants, anticonvulsives and opioids. Another significant aspect of therapy is senso-motory training, important to mention here would be mirror therapy, lateralisation and motor imaging. In case of an elective amputation, an epidural or axiliar plexus catheter should be considered prior to the amputation. The perioperative treatment with ketamine is debated. PMID:19266417

  5. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.

    PubMed

    Hadid, L; Desbrée, A; Schlattl, H; Franck, D; Blanchardon, E; Zankl, M

    2010-07-01

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  6. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons

    NASA Astrophysics Data System (ADS)

    Hadid, L.; Desbrée, A.; Schlattl, H.; Franck, D.; Blanchardon, E.; Zankl, M.

    2010-07-01

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  7. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.

    PubMed

    Goorley, J T; Kiger, W S; Zamenhof, R G

    2002-02-01

    As clinical trials of Neutron Capture Therapy (NCT) are initiated in the U.S. and other countries, new treatment planning codes are being developed to calculate detailed dose distributions in patient-specific models. The thorough evaluation and comparison of treatment planning codes is a critical step toward the eventual standardization of dosimetry, which, in turn, is an essential element for the rational comparison of clinical results from different institutions. In this paper we report development of a reference suite of computational test problems for NCT dosimetry and discuss common issues encountered in these calculations to facilitate quantitative evaluations and comparisons of NCT treatment planning codes. Specifically, detailed depth-kerma rate curves were calculated using the Monte Carlo radiation transport code MCNP4B for four different representations of the modified Snyder head phantom, an analytic, multishell, ellipsoidal model, and voxel representations of this model with cubic voxel sizes of 16, 8, and 4 mm. Monoenergetic and monodirectional beams of 0.0253 eV, 1, 2, 10, 100, and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were individually simulated to calculate kerma rates to a statistical uncertainty of <1% (1 std. dev.) in the center of the head model. In addition, a "generic" epithermal neutron beam with a broad neutron spectrum, similar to epithermal beams currently used or proposed for NCT clinical trials, was computed for all models. The thermal neutron, fast neutron, and photon kerma rates calculated with the 4 and 8 mm voxel models were within 2% and 4%, respectively, of those calculated for the analytical model. The 16 mm voxel model produced unacceptably large discrepancies for all dose components. The effects from different kerma data sets and tissue compositions were evaluated. Updating the kerma data from ICRU 46 to ICRU 63 data produced less than 2% difference in kerma rate profiles. The depth-dose profile data

  8. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    NASA Astrophysics Data System (ADS)

    Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  9. Development of mathematical pediatric phantoms for internal dose calculations: designs, limitations, and prospects

    SciTech Connect

    Cristy, M.

    1980-01-01

    Mathematical phantoms of the human body at various ages are employed with Monte Carlo radiation transport codes for calculation of photon specific absorbed fractions. The author has developed a pediatric phantom series based on the design of the adult phantom, but with explicit equations for each organ so that organ sizes and marrow distributions could be assigned properly. Since the phantoms comprise simple geometric shapes, predictive dose capability is limited when geometry is critical to the calculation. Hence, there is a demand for better phantom design in situations where geometry is critical, such as for external irradiation or for internal emitters with low energy photons. Recent advances in computerized axial tomography (CAT) present the potential for derivation of anatomical information, which is so critical to development of phantoms, and ongoing developmental work on compuer architecture to handle large arrays for Monte Carlo calculations should make complex-geometry dose calculations economically feasible within this decade.

  10. Image guided constitutive modeling of the silicone brain phantom

    NASA Astrophysics Data System (ADS)

    Puzrin, Alexander; Skrinjar, Oskar; Ozan, Cem; Kim, Sihyun; Mukundan, Srinivasan

    2005-04-01

    The goal of this work is to develop reliable constitutive models of the mechanical behavior of the in-vivo human brain tissue for applications in neurosurgery. We propose to define the mechanical properties of the brain tissue in-vivo, by taking the global MR or CT images of a brain response to ventriculostomy - the relief of the elevated intracranial pressure. 3D image analysis translates these images into displacement fields, which by using inverse analysis allow for the constitutive models of the brain tissue to be developed. We term this approach Image Guided Constitutive Modeling (IGCM). The presented paper demonstrates performance of the IGCM in the controlled environment: on the silicone brain phantoms closely simulating the in-vivo brain geometry, mechanical properties and boundary conditions. The phantom of the left hemisphere of human brain was cast using silicon gel. An inflatable rubber membrane was placed inside the phantom to model the lateral ventricle. The experiments were carried out in a specially designed setup in a CT scanner with submillimeter isotropic voxels. The non-communicative hydrocephalus and ventriculostomy were simulated by consequently inflating and deflating the internal rubber membrane. The obtained images were analyzed to derive displacement fields, meshed, and incorporated into ABAQUS. The subsequent Inverse Finite Element Analysis (based on Levenberg-Marquardt algorithm) allowed for optimization of the parameters of the Mooney-Rivlin non-linear elastic model for the phantom material. The calculated mechanical properties were consistent with those obtained from the element tests, providing justification for the future application of the IGCM to in-vivo brain tissue.

  11. Automatic generation of digital anthropomorphic phantoms from simulated MRI acquisitions

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Gennert, M. A.; KÓ§nik, A.; Dasari, P. K.; King, M. A.

    2013-03-01

    In SPECT imaging, motion from patient respiration and body motion can introduce image artifacts that may reduce the diagnostic quality of the images. Simulation studies using numerical phantoms with precisely known motion can help to develop and evaluate motion correction algorithms. Previous methods for evaluating motion correction algorithms used either manual or semi-automated segmentation of MRI studies to produce patient models in the form of XCAT Phantoms, from which one calculates the transformation and deformation between MRI study and patient model. Both manual and semi-automated methods of XCAT Phantom generation require expertise in human anatomy, with the semiautomated method requiring up to 30 minutes and the manual method requiring up to eight hours. Although faster than manual segmentation, the semi-automated method still requires a significant amount of time, is not replicable, and is subject to errors due to the difficulty of aligning and deforming anatomical shapes in 3D. We propose a new method for matching patient models to MRI that extends the previous semi-automated method by eliminating the manual non-rigid transformation. Our method requires no user supervision and therefore does not require expert knowledge of human anatomy to align the NURBs to anatomical structures in the MR image. Our contribution is employing the SIMRI MRI simulator to convert the XCAT NURBs to a voxel-based representation that is amenable to automatic non-rigid registration. Then registration is used to transform and deform the NURBs to match the anatomy in the MR image. We show that our automated method generates XCAT Phantoms more robustly and significantly faster than the previous semi-automated method.

  12. Rasterization and Voxelization of - and Three-Dimensional Space Partitionings

    NASA Astrophysics Data System (ADS)

    Gorte, Ben; Zlatanov, Sisi

    2016-06-01

    The paper presents a very straightforward and effective algorithm to convert a space partitioning, made up of polyhedral objects, into a 3D block of voxels, which is fully occupied, i.e. in which every voxel has a value. In addition to walls, floors, etc. there are 'air' voxels, which in turn may be distinguished as indoor and outdoor air. The method is a 3D extension of a 2D polygon-to-raster conversion algorithm. The input of the algorithm is a set of non-overlapping, closed polyhedra, which can be nested or touching. The air volume is not necessarily represented explicitly as a polyhedron (it can be treated as 'background', leading to the 'default' voxel value). The approach consists of two stages, the first being object (boundary) based, the second scan-line based. In addition to planar faces, other primitives, such as ellipsoids, can be accommodated in the first stage without affecting the second.

  13. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging.

    PubMed

    Hutton, Chloe; Draganski, Bogdan; Ashburner, John; Weiskopf, Nikolaus

    2009-11-01

    The morphology of cortical grey matter is commonly assessed using T1-weighted MRI together with automated computerised methods such as voxel-based morphometry (VBM) and cortical thickness measures. In the presented study we investigate how grey matter changes identified using voxel-based cortical thickness (VBCT) measures compare with local grey matter volume changes identified using VBM. We use data from a healthy aging population to perform the comparison, focusing on brain regions where age-related changes have been observed in previous studies. Our results show that overall, in healthy aging, VBCT and VBM yield very consistent results but VBCT provides a more sensitive measure of age-associated decline in grey matter compared with VBM. Our findings suggest that while VBCT selectively investigates cortical thickness, VBM provides a mixed measure of grey matter including cortical surface area or cortical folding, as well as cortical thickness. We therefore propose that used together, these techniques can separate the underlying grey matter changes, highlighting the utility of combining these complementary methods. PMID:19559801

  14. Organ Dose-Rate Calculations for Small Mammals at Maralinga, the Nevada Test Site, Hanford and Fukushima: A Comparison of Ellipsoidal and Voxelized Dosimetric Methodologies.

    PubMed

    Caffrey, Emily A; Johansen, Mathew P; Higley, Kathryn A

    2015-10-01

    Radiological dosimetry for nonhuman biota typically relies on calculations that utilize the Monte Carlo simulations of simple, ellipsoidal geometries with internal radioactivity distributed homogeneously throughout. In this manner it is quick and easy to estimate whole-body dose rates to biota. Voxel models are detailed anatomical phantoms that were first used for calculating radiation dose to humans, which are now being extended to nonhuman biota dose calculations. However, if simple ellipsoidal models provide conservative dose-rate estimates, then the additional labor involved in creating voxel models may be unnecessary for most scenarios. Here we show that the ellipsoidal method provides conservative estimates of organ dose rates to small mammals. Organ dose rates were calculated for environmental source terms from Maralinga, the Nevada Test Site, Hanford and Fukushima using both the ellipsoidal and voxel techniques, and in all cases the ellipsoidal method yielded more conservative dose rates by factors of 1.2-1.4 for photons and 5.3 for beta particles. Dose rates for alpha-emitting radionuclides are identical for each method as full energy absorption in source tissue is assumed. The voxel procedure includes contributions to dose from organ-to-organ irradiation (shown here to comprise 2-50% of total dose from photons and 0-93% of total dose from beta particles) that is not specifically quantified in the ellipsoidal approach. Overall, the voxel models provide robust dosimetry for the nonhuman mammals considered in this study, and though the level of detail is likely extraneous to demonstrating regulatory compliance today, voxel models may nevertheless be advantageous in resolving ongoing questions regarding the effects of ionizing radiation on wildlife. PMID:26414505

  15. Voxel-Based Texture Analysis of the Brain

    PubMed Central

    Maani, Rouzbeh; Yang, Yee Hong; Kalra, Sanjay

    2015-01-01

    This paper presents a novel voxel-based method for texture analysis of brain images. Texture analysis is a powerful quantitative approach for analyzing voxel intensities and their interrelationships, but has been thus far limited to analyzing regions of interest. The proposed method provides a 3D statistical map comparing texture features on a voxel-by-voxel basis. The validity of the method was examined on artificially generated effects as well as on real MRI data in Alzheimer's Disease (AD). The artificially generated effects included hyperintense and hypointense signals added to T1-weighted brain MRIs from 30 healthy subjects. The AD dataset included 30 patients with AD and 30 age/sex matched healthy control subjects. The proposed method detected artificial effects with high accuracy and revealed statistically significant differences between the AD and control groups. This paper extends the usage of texture analysis beyond the current region of interest analysis to voxel-by-voxel 3D statistical mapping and provides a hypothesis-free analysis tool to study cerebral pathology in neurological diseases. PMID:25756621

  16. Voxel-based texture analysis of the brain.

    PubMed

    Maani, Rouzbeh; Yang, Yee Hong; Kalra, Sanjay

    2015-01-01

    This paper presents a novel voxel-based method for texture analysis of brain images. Texture analysis is a powerful quantitative approach for analyzing voxel intensities and their interrelationships, but has been thus far limited to analyzing regions of interest. The proposed method provides a 3D statistical map comparing texture features on a voxel-by-voxel basis. The validity of the method was examined on artificially generated effects as well as on real MRI data in Alzheimer's Disease (AD). The artificially generated effects included hyperintense and hypointense signals added to T1-weighted brain MRIs from 30 healthy subjects. The AD dataset included 30 patients with AD and 30 age/sex matched healthy control subjects. The proposed method detected artificial effects with high accuracy and revealed statistically significant differences between the AD and control groups. This paper extends the usage of texture analysis beyond the current region of interest analysis to voxel-by-voxel 3D statistical mapping and provides a hypothesis-free analysis tool to study cerebral pathology in neurological diseases. PMID:25756621

  17. Digital breast tomosynthesis reconstruction with an adaptive voxel grid

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard; Chan, Heang-Ping

    2014-03-01

    In digital breast tomosynthesis (DBT) volume datasets are typically reconstructed with an anisotropic voxel size, where the in-plane voxel size usually reflects the detector pixel size (e.g., 0.1 mm), and the slice separation is generally between 0.5-1.0 mm. Increasing the tomographic angle is expected to give better 3D image quality; however, the slice spacing in the reconstruction should be reduced, otherwise one may risk losing fine-scale image detail (e.g., small microcalcifications). An alternative strategy consists of reconstructing on an adaptive voxel grid, where the voxel height at each location is adapted based on the backprojected data at this location, with the goal to improve image quality for microcalcifications. In this paper we present an approach for generating such an adaptive voxel grid. This approach is based on an initial reconstruction step that is performed at a finer slice-spacing combined with a selection of an "optimal" height for each voxel. This initial step is followed by a (potentially iterative) reconstruction acting now on the adaptive grid only.

  18. Differentiation of low-attenuation intracranial hemorrhage and calcification using dual-energy computed tomography in a phantom system

    PubMed Central

    Nute, Jessica L.; Roux, Lucia Le; Chandler, Adam G.; Baladandayuthapani, Veera; Schellingerhout, Dawid; Cody, Dianna D.

    2015-01-01

    Objectives Calcific and hemorrhagic intracranial lesions with attenuation levels of <100 Hounsfield Units (HU) cannot currently be reliably differentiated by single-energy computed tomography (SECT). The proper differentiation of these lesion types would have a multitude of clinical applications. A phantom model was used to test the ability of dual-energy CT (DECT) to differentiate such lesions. Materials and Methods Agar gel-bound ferric oxide and hydroxyapatite were used to model hemorrhage and calcification, respectively. Gel models were scanned using SECT and DECT and organized into SECT attenuation-matched pairs at 16 attenuation levels between 0 and 100 HU. DECT data were analyzed using 3D Gaussian mixture models (GMMs), as well as a simplified threshold plane metric derived from the 3D GMM, to assign voxels to hemorrhagic or calcific categories. Accuracy was calculated by comparing predicted voxel assignments with actual voxel identities. Results We measured 6,032 voxels from each gel model, for a total of 193,024 data points (16 matched model pairs). Both the 3D GMM and its more clinically implementable threshold plane derivative yielded similar results, with >90% accuracy at matched SECT attenuation levels ≥50 HU. Conclusions Hemorrhagic and calcific lesions with attenuation levels between 50 and 100 HU were differentiable using DECT in a clinically relevant phantom system with >90% accuracy. This method warrants further testing for potential clinical applications. PMID:25162534

  19. SU-E-T-13: A Feasibility Study of the Use of Hybrid Computational Phantoms for Improved Historical Dose Reconstruction in the Study of Late Radiation Effects for Hodgkin's Lymphoma

    SciTech Connect

    Petroccia, H; O'Reilly, S; Bolch, W; Mendenhall, N; Li, Z; Slopsema, R

    2014-06-01

    Purpose: Radiation-induced cancer effects are well-documented following radiotherapy. Further investigation is needed to more accurately determine a dose-response relationship for late radiation effects. Recent dosimetry studies tend to use representative patients (Taylor 2009) or anthropomorphic phantoms (Wirth 2008) for estimating organ mean doses. In this study, we compare hybrid computational phantoms to patient-specific voxel phantoms to test the accuracy of University of Florida Hybrid Phantom Library (UFHP Library) for historical dose reconstructions. Methods: A cohort of 10 patients with CT images was used to reproduce the data that was collected historically for Hodgkin's lymphoma patients (i.e. caliper measurements and photographs). Four types of phantoms were generated to show a range of refinement from reference hybrid-computational phantom to patient-specific phantoms. Each patient is matched to a reference phantom from the UFHP Library based on height and weight. The reference phantom is refined in the anterior/posterior direction to create a ‘caliper-scaled phantom’. A photograph is simulated using a surface rendering from segmented CT images. Further refinement in the lateral direction is performed using ratios from a simulated-photograph to create a ‘photograph and caliper-scaled phantom’; breast size and position is visually adjusted. Patient-specific hybrid phantoms, with matched organ volumes, are generated and show the capabilities of the UF Hybrid Phantom Library. Reference, caliper-scaled, photograph and caliper-scaled, and patient-specific hybrid phantoms are compared with patient-specific voxel phantoms to determine the accuracy of the study. Results: Progression from reference phantom to patient specific hybrid shows good agreement with the patient specific voxel phantoms. Each stage of refinement shows an overall trend of improvement in dose accuracy within the study, which suggests that computational phantoms can show improved

  20. Phantoms in rheumatology.

    PubMed

    McCabe, C S; Haigh, R C; Shenker, N G; Lewis, J; Blake, D R

    2004-01-01

    This paper examines rheumatology pain and how it may relate to amputee phantom limb pain (PLP), specifically as experienced in rheumatoid arthritis, fibromyalgia and complex regional pain syndrome (CRPS). Clinical findings, which suggest cortical sensory reorganization, are discussed and illustrated for each condition. It is proposed that this sensory reorganization generates pain and altered body image in rheumatology patients in the same manner as has previously been hypothesized for amputees with PLP; that is via a motor/sensory conflict. The correction of this conflict through the provision of appropriate visual sensory input, using a mirror, is tested in a population of patients with CRPS. Its analgesic efficacy is assessed in those with acute, intermediate and chronic disease. Finally, the hypothesis is taken to its natural conclusion whereby motor/sensory conflict is artificially generated in healthy volunteers and chronic pain patients to establish whether sensory disturbances can be created where no pain symptoms exists and exacerbated when it is already present. The findings of our studies support the hypothesis that a mismatch between motor output and sensory input creates sensory disturbances, including pain, in rheumatology patients and healthy volunteers. We propose the term 'ominory' to describe the central monitoring mechanism and the resultant sensory disturbances as a dissensory state. PMID:15283449

  1. Monte Carlo and experimental internal radionuclide dosimetry in RANDO head phantom.

    PubMed

    Ghahraman Asl, Ruhollah; Nasseri, Shahrokh; Parach, Ali Asghar; Zakavi, Seyed Rasoul; Momennezhad, Mehdi; Davenport, David

    2015-09-01

    Monte Carlo techniques are widely employed in internal dosimetry to obtain better estimates of absorbed dose distributions from irradiation sources in medicine. Accurate 3D absorbed dosimetry would be useful for risk assessment of inducing deterministic and stochastic biological effects for both therapeutic and diagnostic radiopharmaceuticals in nuclear medicine. The goal of this study was to experimentally evaluate the use of Geant4 application for tomographic emission (GATE) Monte Carlo package for 3D internal dosimetry using the head portion of the RANDO phantom. GATE package (version 6.1) was used to create a voxel model of a human head phantom from computed tomography (CT) images. Matrix dimensions consisted of 319 × 216 × 30 voxels (0.7871 × 0.7871 × 5 mm(3)). Measurements were made using thermoluminescent dosimeters (TLD-100). One rod-shaped source with 94 MBq activity of (99m)Tc was positioned in the brain tissue of the posterior part of the human head phantom in slice number 2. The results of the simulation were compared with measured mean absorbed dose per cumulative activity (S value). Absorbed dose was also calculated for each slice of the digital model of the head phantom and dose volume histograms (DVHs) were computed to analyze the absolute and relative doses in each slice from the simulation data. The S-values calculated by GATE and TLD methods showed a significant correlation (correlation coefficient, r(2) ≥ 0.99, p < 0.05) with each other. The maximum relative percentage differences were ≤14% for most cases. DVHs demonstrated dose decrease along the direction of movement toward the lower slices of the head phantom. Based on the results obtained from GATE Monte Carlopackage it can be deduced that a complete dosimetry simulation study, from imaging to absorbed dose map calculation, is possible to execute in a single framework. PMID:26232251

  2. Phantom stars and topology change

    SciTech Connect

    DeBenedictis, Andrew; Garattini, Remo; Lobo, Francisco S. N.

    2008-11-15

    In this work, we consider time-dependent dark-energy star models, with an evolving parameter {omega} crossing the phantom divide {omega}=-1. Once in the phantom regime, the null energy condition is violated, which physically implies that the negative radial pressure exceeds the energy density. Therefore, an enormous negative pressure in the center may, in principle, imply a topology change, consequently opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal energy difference calculations that may reflect or measure the occurrence of a topology change. We denote these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an absurdly advanced civilization may manipulate these geometries to induce closed timelike curves, consequently violating causality.

  3. Organosilicon phantom for photoacoustic imaging.

    PubMed

    Avigo, Cinzia; Di Lascio, Nicole; Armanetti, Paolo; Kusmic, Claudia; Cavigli, Lucia; Ratto, Fulvio; Meucci, Sandro; Masciullo, Cecilia; Cecchini, Marco; Pini, Roberto; Faita, Francesco; Menichetti, Luca

    2015-04-01

    Photoacoustic imaging is an emerging technique. Although commercially available photoacoustic imaging systems currently exist, the technology is still in its infancy. Therefore, the design of stable phantoms is essential to achieve semiquantitative evaluation of the performance of a photoacoustic system and can help optimize the properties of contrast agents. We designed and developed a polydimethylsiloxane (PDMS) phantom with exceptionally fine geometry; the phantom was tested using photoacoustic experiments loaded with the standard indocyanine green dye and compared to an agar phantom pattern through polyethylene glycol-gold nanorods. The linearity of the photoacoustic signal with the nanoparticle number was assessed. The signal-tonoiseratio and contrast were employed as image quality parameters, and enhancements of up to 50 and up to 300%, respectively, were measured with the PDMS phantom with respect to the agar one. A tissue-mimicking (TM)-PDMS was prepared by adding TiO2 and India ink; photoacoustic tests were performed in order to compare the signal generated by the TM-PDMS and the biological tissue. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues. PMID:25894254

  4. A set of 4D pediatric XCAT reference phantoms for multimodality research

    SciTech Connect

    Norris, Hannah Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Samei, E.; Segars, W. P.; Minhas, Anum; Frush, D.; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2014-03-15

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  5. A set of 4D pediatric XCAT reference phantoms for multimodality research

    PubMed Central

    Norris, Hannah; Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Minhas, Anum; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.; Frush, D.; Samei, E.; Segars, W. P.

    2014-01-01

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  6. A new, open-source, multi-modality digital breast phantom

    NASA Astrophysics Data System (ADS)

    Graff, Christian G.

    2016-03-01

    An anthropomorphic digital breast phantom has been developed with the goal of generating random voxelized breast models that capture the anatomic variability observed in vivo. This is a new phantom and is not based on existing digital breast phantoms or segmentation of patient images. It has been designed at the outset to be modality agnostic (i.e., suitable for use in modeling x-ray based imaging systems, magnetic resonance imaging, and potentially other imaging systems) and open source so that users may freely modify the phantom to suit a particular study. In this work we describe the modeling techniques that have been developed, the capabilities and novel features of this phantom, and study simulated images produced from it. Starting from a base quadric, a series of deformations are performed to create a breast with a particular volume and shape. Initial glandular compartments are generated using a Voronoi technique and a ductal tree structure with terminal duct lobular units is grown from the nipple into each compartment. An additional step involving the creation of fat and glandular lobules using a Perlin noise function is performed to create more realistic glandular/fat tissue interfaces and generate a Cooper's ligament network. A vascular tree is grown from the chest muscle into the breast tissue. Breast compression is performed using a neo-Hookean elasticity model. We show simulated mammographic and T1-weighted MRI images and study properties of these images.

  7. Some present problems and a proposed experimental phantom for SAR compliance testing of cellular telephones at 835 and 1900 MHz

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Kang, Gang

    2002-05-01

    This paper compares the maximum allowable powers of some typical cellular telephones at 835 and 1900 MHz for compliance with the limits of specific absorption rates (SAR) given in ANSI/IEEE, ICNIRP and the proposed modification of ANSI/IEEE safety guidelines. It is shown that the present ANSI/IEEE guideline is the most conservative with the ICNIRP guidelines allowing a maximum radiated power that is 2.5-3 times higher, and the proposed IEEE modification of treating pinna as an extremity tissue the least conservative allowing even higher radiated powers by up to 50%. The paper also expands the previously reported study of energy deposition in models of adults versus children to two different and distinct anatomically-based models of the adult head, namely the Utah model and the 'Visible Man' model, each of which is increased or reduced by the voxel size to obtain additional head models larger or smaller in all dimensions by 11.1% or -9.1%, respectively. The peak 1 g body-tissue SAR calculated using the widely accepted FDTD method for smaller models is up to 56% higher at 1900 MHz and up to 20% higher at 835 MHz compared to the larger models, with the average models giving intermediate SARs. Also given in the paper is a comparison of the peak 1 g and 10 g SARs for two different anatomically-based models with 6 mm thick smooth plastic ear models used for SAR compliance testing. The SARs obtained with the insulating plastic ear models are up to two or more times smaller than realistic anatomic models. We propose a 2 mm thin shell phantom with lossy ear that should give SARs within +/-15% of those of anatomic models.

  8. Voxel-based morphometry in eating disorders: correlation of psychopathology with grey matter volume.

    PubMed

    Joos, Andreas; Klöppel, Stefan; Hartmann, Armin; Glauche, Volkmar; Tüscher, Oliver; Perlov, Evgeniy; Saum, Barbara; Freyer, Tobias; Zeeck, Almut; Tebartz van Elst, Ludger

    2010-05-30

    Twenty-nine adult female patients with eating disorders (17 with bulimia nervosa, 12 with restrictive anorexia nervosa) were compared with 18 age-matched female healthy controls, using voxel-based morphometry. Restrictive anorexia nervosa patients showed a decrease of grey matter, particularly affecting the anterior cingulate cortex, frontal operculum, temporoparietal regions and the precuneus. By contrast, patients with bulimia nervosa did not differ from healthy controls. A positive correlation of "drive for thinness" and grey matter volume of the right inferior parietal lobe was found for both eating disorder groups. The strong reduction of grey matter volume in adult patients with restrictive anorexia nervosa is in line with results of adolescent patients. Contrary to other studies, this first voxel-based morphometry report of bulimic patients did not find any structural abnormalities. The inferior parietal cortex is a critical region for sensory integration of body and spatial perception, and the correlation of "drive for thinness" with grey matter volume of this region points to a neural correlate of this core psychopathological feature of eating disorders. PMID:20400273

  9. Phantom black holes and sigma models

    SciTech Connect

    Azreg-Aienou, Mustapha; Clement, Gerard; Fabris, Julio C.; Rodrigues, Manuel E.

    2011-06-15

    We construct static multicenter solutions of phantom Einstein-Maxwell-dilaton theory from null geodesics of the target space, leading to regular black holes without spatial symmetry for certain discrete values of the dilaton coupling constant. We also discuss the three-dimensional gravitating sigma models obtained by reduction of phantom Einstein-Maxwell, phantom Kaluza-Klein and phantom Einstein-Maxwell-dilaton-axion theories. In each case, we generate by group transformations phantom charged black hole solutions from a neutral seed.

  10. MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model

    NASA Technical Reports Server (NTRS)

    James, Michael R.; Durkee, Joe W.; McKinney, Gregg; Singleterry Robert

    2008-01-01

    The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom.

  11. Coarse Point Cloud Registration by Egi Matching of Voxel Clusters

    NASA Astrophysics Data System (ADS)

    Wang, Jinhu; Lindenbergh, Roderik; Shen, Yueqian; Menenti, Massimo

    2016-06-01

    Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.

  12. Laser-induced forward transfer (LIFT) of congruent voxels

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  13. Skeletal dosimetry for external exposures to photons based on {mu}CT images of spongiosa: Consideration of voxel resolution, cluster size, and medullary bone surfaces

    SciTech Connect

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Brown, K. A. Robson

    2009-11-15

    Skeletal dosimetry based on {mu}CT images of trabecular bone has recently been introduced to calculate the red bone marrow (RBM) and the bone surface cell (BSC) equivalent doses in human phantoms for external exposure to photons. In order to use the {mu}CT images for skeletal dosimetry, spongiosa voxels in the skeletons were replaced at run time by so-called micromatrices, which have exactly the size of a spongiosa voxel and contain segmented trabecular bone and marrow microvoxels. A cluster (=parallelepiped) of 2x2x2=8 micromatrices was used systematically and periodically throughout the spongiosa volume during the radiation transport calculation. Systematic means that when a particle leaves a spongiosa voxel to enter into a neighboring spongiosa voxel, then the next micromatrix in the cluster will be used. Periodical means that if the particle travels through more than two spongiosa voxels in a row, then the cluster will be repeated. Based on the bone samples available at the time, clusters of up to 3x3x3=27 micromatrices were studied. While for a given trabecular bone volume fraction the whole-body RBM equivalent dose showed converging results for cluster sizes between 8 and 27 micromatrices, this was not the case for the BSC equivalent dose. The BSC equivalent dose seemed to be very sensitive to the number, form, and thickness of the trabeculae. In addition, the cluster size and/or the microvoxel resolution were considered to be possible causes for the differences observed. In order to resolve this problem, this study used a bone sample large enough to extract clusters containing up to 8x8x8=512 micromatrices and which was scanned with two different voxel resolutions. Taking into account a recent proposal, this investigation also calculated the BSC equivalent dose on medullary surfaces of cortical bone in the arm and leg bones. The results showed (1) that different voxel resolutions have no effect on the RBM equivalent dose but do influence the BSC equivalent

  14. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms

    NASA Astrophysics Data System (ADS)

    Koivunoro, Hanna; Seppälä, Tiina; Uusi-Simola, Jouni; Merimaa, Katja; Kotiluoto, Petri; Serén, Tom; Kortesniemi, Mika; Auterinen, Iiro; Savolainen, Sauli

    2010-06-01

    In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The 55Mn(n,γ) and 197Au(n,γ) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The 55Mn(n,γ) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size (<=0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

  15. Monte Carlo simulation of secondary radiation exposure from high-energy photon therapy using an anthropomorphic phantom.

    PubMed

    Frankl, Matthias; Macián-Juan, Rafael

    2016-03-01

    The development of intensity-modulated radiotherapy treatments delivering large amounts of monitor units (MUs) recently raised concern about higher risks for secondary malignancies. In this study, optimised combinations of several variance reduction techniques (VRTs) have been implemented in order to achieve a high precision in Monte Carlo (MC) radiation transport simulations and the calculation of in- and out-of-field photon and neutron dose-equivalent distributions in an anthropomorphic phantom using MCNPX, v.2.7. The computer model included a Varian Clinac 2100C treatment head and a high-resolution head phantom. By means of the applied VRTs, a relative uncertainty for the photon dose-equivalent distribution of <1 % in-field and 15 % in average over the rest of the phantom could be obtained. Neutron dose equivalent, caused by photonuclear reactions in the linear accelerator components at photon energies of approximately >8 MeV, has been calculated. Relative uncertainty, calculated for each voxel, could be kept below 5 % in average over all voxels of the phantom. Thus, a very detailed neutron dose distribution could be obtained. The achieved precision now allows a far better estimation of both photon and especially neutron doses out-of-field, where neutrons can become the predominant component of secondary radiation. PMID:26311702

  16. Voxel modeling of rabbits for use in radiological dose rate calculations.

    PubMed

    Caffrey, E A; Johansen, M P; Higley, K A

    2016-01-01

    Radiation dose to biota is generally calculated using Monte Carlo simulations of whole body ellipsoids with homogeneously distributed radioactivity throughout. More complex anatomical phantoms, termed voxel phantoms, have been developed to test the validity of these simplistic geometric models. In most voxel models created to date, human tissue composition and density values have been used in lieu of biologically accurate values for non-human biota. This has raised questions regarding variable tissue composition and density effects on the fraction of radioactive emission energy absorbed within tissues (e.g. the absorbed fraction - AF), along with implications for age-dependent dose rates as organisms mature. The results of this study on rabbits indicates that the variation in composition between two mammalian tissue types (e.g. human vs rabbit bones) made little difference in self-AF (SAF) values (within 5% over most energy ranges). However, variable tissue density (e.g. bone vs liver) can significantly impact SAF values. An examination of differences across life-stages revealed increasing SAF with testis and ovary size of over an order of magnitude for photons and several factors for electrons, indicating the potential for increasing dose rates to these sensitive organs as animals mature. AFs for electron energies of 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0, and 4.0 MeV and photon energies of 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV are provided for eleven rabbit tissues. The data presented in this study can be used to calculate accurate organ dose rates for rabbits and other small rodents; to aide in extending dose results among different mammal species; and to validate the use of ellipsoidal models for regulatory purposes. PMID:25971772

  17. Low abundances of synthetics lipids in phantoms

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Santiago-Alvarado, A.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Aguilar-Soto, J.; Delgado-Atencio, J. A.

    2012-03-01

    Phantoms simulate optical characteristics of tissues. Phantoms use to mimic light distributions in living tissue. Several Phantoms compositions made of silicone, polyester, polyurethane, and epoxy resin have been described in the literature. These kinds of phantoms have the problem of long time preservation. In this work, we describe the fabrication and characterization of phantoms with low concentrations of synthetic lipid using Raman spectroscopy. We fabricate four phantoms made of Polydimethylsiloxane (PDMS). These phantoms have synthetic lipid content of cholesterol and triglycerides. The size of our phantoms is 1 x 1 cm and 5 mm of thickness.We used the point-to-point mapping technique. Finally, we compared advantages and performance of made PDMS and gelatin phantoms.

  18. Voxel-Based Lesion Symptom Mapping of Coarse Coding and Suppression Deficits in Patients With Right Hemisphere Damage

    PubMed Central

    Tompkins, Connie A.; Meigh, Kimberly M.; Prat, Chantel S.

    2015-01-01

    Purpose This study examined right hemisphere (RH) neuroanatomical correlates of lexical–semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Method Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. Results A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Conclusion Beyond their scientific implications, these lesion–deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage. PMID:26425785

  19. Eigenbreasts for statistical breast phantoms

    NASA Astrophysics Data System (ADS)

    Sturgeon, Gregory M.; Tward, Daniel J.; Ketcha, M.; Ratnanather, J. T.; Miller, M. I.; Park, Subok; Segars, W. P.; Lo, Joseph Y.

    2016-03-01

    To facilitate rigorous virtual clinical trials using model observers for breast imaging optimization and evaluation, we demonstrated a method of defining statistical models, based on 177 sets of breast CT patient data, in order to generate tens of thousands of unique digital breast phantoms. In order to separate anatomical texture from variation in breast shape, each training set of breast phantoms were deformed to a consistent atlas compressed geometry. Principal component analysis (PCA) was then performed on the shape-matched breast CT volumes to capture the variation of patient breast textures. PCA decomposes the training set of N breast CT volumes into an N-1-dimensional space of eigenvectors, which we call eigenbreasts. By summing weighted combinations of eigenbreasts, a large ensemble of different breast phantoms can be newly created. Different training sets can be used in eigenbreast analysis for designing basis models to target sub-populations defined by breast characteristics, such as size or density. In this work, we plan to generate ensembles of 30,000 new phantoms based on glandularity for an upcoming virtual trial of lesion detectability in digital breast tomosynthesis. Our method extends our series of digital and physical breast phantoms based on human subject anatomy, providing the capability to generate new, unique ensembles consisting of tens of thousands or more virtual subjects. This work represents an important step towards conducting future virtual trials for tasks-based assessment of breast imaging, where it is vital to have a large ensemble of realistic phantoms for statistical power as well as clinical relevance.

  20. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    SciTech Connect

    Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo; Rivard, Mark J.

    2013-03-15

    Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes from an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials

  1. Selection of voxel size and photon number in voxel-based Monte Carlo method: criteria and applications.

    PubMed

    Li, Dong; Chen, Bin; Ran, Wei Yu; Wang, Guo Xiang; Wu, Wen Juan

    2015-01-01

    The voxel-based Monte Carlo method (VMC) is now a gold standard in the simulation of light propagation in turbid media. For complex tissue structures, however, the computational cost will be higher when small voxels are used to improve smoothness of tissue interface and a large number of photons are used to obtain accurate results. To reduce computational cost, criteria were proposed to determine the voxel size and photon number in 3-dimensional VMC simulations with acceptable accuracy and computation time. The selection of the voxel size can be expressed as a function of tissue geometry and optical properties. The photon number should be at least 5 times the total voxel number. These criteria are further applied in developing a photon ray splitting scheme of local grid refinement technique to reduce computational cost of a nonuniform tissue structure with significantly varying optical properties. In the proposed technique, a nonuniform refined grid system is used, where fine grids are used for the tissue with high absorption and complex geometry, and coarse grids are used for the other part. In this technique, the total photon number is selected based on the voxel size of the coarse grid. Furthermore, the photon-splitting scheme is developed to satisfy the statistical accuracy requirement for the dense grid area. Result shows that local grid refinement technique photon ray splitting scheme can accelerate the computation by 7.6 times (reduce time consumption from 17.5 to 2.3 h) in the simulation of laser light energy deposition in skin tissue that contains port wine stain lesions. PMID:26417866

  2. Selection of voxel size and photon number in voxel-based Monte Carlo method: criteria and applications

    NASA Astrophysics Data System (ADS)

    Li, Dong; Chen, Bin; Ran, Wei Yu; Wang, Guo Xiang; Wu, Wen Juan

    2015-09-01

    The voxel-based Monte Carlo method (VMC) is now a gold standard in the simulation of light propagation in turbid media. For complex tissue structures, however, the computational cost will be higher when small voxels are used to improve smoothness of tissue interface and a large number of photons are used to obtain accurate results. To reduce computational cost, criteria were proposed to determine the voxel size and photon number in 3-dimensional VMC simulations with acceptable accuracy and computation time. The selection of the voxel size can be expressed as a function of tissue geometry and optical properties. The photon number should be at least 5 times the total voxel number. These criteria are further applied in developing a photon ray splitting scheme of local grid refinement technique to reduce computational cost of a nonuniform tissue structure with significantly varying optical properties. In the proposed technique, a nonuniform refined grid system is used, where fine grids are used for the tissue with high absorption and complex geometry, and coarse grids are used for the other part. In this technique, the total photon number is selected based on the voxel size of the coarse grid. Furthermore, the photon-splitting scheme is developed to satisfy the statistical accuracy requirement for the dense grid area. Result shows that local grid refinement technique photon ray splitting scheme can accelerate the computation by 7.6 times (reduce time consumption from 17.5 to 2.3 h) in the simulation of laser light energy deposition in skin tissue that contains port wine stain lesions.

  3. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in 177Lu-DOTATATE peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with 177Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for 177Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in 177Lu PRRT.

  4. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in (177)Lu-DOTATATE peptide receptor radionuclide therapy.

    PubMed

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with (177)Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for (177)Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in (177)Lu PRRT. PMID:26215085

  5. Development of 5- and 10-year-old pediatric phantoms based on polygon mesh surfaces

    SciTech Connect

    Melo Lima, V. J. de; Cassola, V. F.; Kramer, R.; Oliveira Lira, C. A. B. de; Khoury, H. J.; Vieira, J. W.

    2011-08-15

    Purpose: The purpose of this study is the development of reference pediatric phantoms for 5- and 10-year-old children to be used for the calculation of organ and tissue equivalent doses in radiation protection. Methods: The study proposes a method for developing anatomically highly sophisticated pediatric phantoms without using medical images. The 5- and 10-year-old male and female phantoms presented here were developed using 3D modeling software applied to anatomical information taken from atlases and textbooks. The method uses polygon mesh surfaces to model body contours, the shape of organs as well as their positions, and orientations in the human body. Organ and tissue masses comply with the corresponding data given by the International Commission on Radiological Protection (ICRP) for the 5- and 10-year-old reference children. Bones were segmented into cortical bone, spongiosa, medullary marrow, and cartilage to allow for the use of micro computer tomographic ({mu}CT) images of trabecular bone for skeletal dosimetry. Results: The four phantoms, a male and a female for each age, and their organs are presented in 3D images and their organ and tissue masses in tables which show the compliance of the ICRP reference values. Dosimetric data, calculated for the reference pediatric phantoms by Monte Carlo methods were compared with corresponding data from adult mesh phantoms and pediatric stylized phantoms. The comparisons show reasonable agreement if the anatomical differences between the phantoms are properly taken into account. Conclusions: Pediatric phantoms were developed without using medical images of patients or volunteers for the first time. The models are reference phantoms, suitable for regulatory dosimetry, however, the 3D modeling method can also be applied to medical images to develop patient-specific phantoms.

  6. Voxel selection in FMRI data analysis based on sparse representation.

    PubMed

    Li, Yuanqing; Namburi, Praneeth; Yu, Zhuliang; Guan, Cuntai; Feng, Jianfeng; Gu, Zhenghui

    2009-10-01

    Multivariate pattern analysis approaches toward detection of brain regions from fMRI data have been gaining attention recently. In this study, we introduce an iterative sparse-representation-based algorithm for detection of voxels in functional MRI (fMRI) data with task relevant information. In each iteration of the algorithm, a linear programming problem is solved and a sparse weight vector is subsequently obtained. The final weight vector is the mean of those obtained in all iterations. The characteristics of our algorithm are as follows: 1) the weight vector (output) is sparse; 2) the magnitude of each entry of the weight vector represents the significance of its corresponding variable or feature in a classification or regression problem; and 3) due to the convergence of this algorithm, a stable weight vector is obtained. To demonstrate the validity of our algorithm and illustrate its application, we apply the algorithm to the Pittsburgh Brain Activity Interpretation Competition 2007 functional fMRI dataset for selecting the voxels, which are the most relevant to the tasks of the subjects. Based on this dataset, the aforementioned characteristics of our algorithm are analyzed, and a comparison between our method with the univariate general-linear-model-based statistical parametric mapping is performed. Using our method, a combination of voxels are selected based on the principle of effective/sparse representation of a task. Data analysis results in this paper show that this combination of voxels is suitable for decoding tasks and demonstrate the effectiveness of our method. PMID:19567340

  7. Evaluating Voxel Enabled Scalable Intersection of Large Point Clouds

    NASA Astrophysics Data System (ADS)

    Wang, J.; Lindenbergh, R.; Menenti, M.

    2015-08-01

    Laser scanning has become a well established surveying solution for obtaining 3D geo-spatial information on objects and environment. Nowadays scanners acquire up to millions of points per second which makes point cloud huge. Laser scanning is widely applied from airborne, carborne and stable platforms, resulting in point clouds obtained at different attitudes and with different extents. Working with such different large point clouds makes the determination of their overlapping area necessary but often time consuming. In this paper, a scalable point cloud intersection determination method is presented based on voxels. The method takes two overlapping point clouds as input. It consecutively resamples the input point clouds according to a preset voxel cell size. For all non-empty cells the center of gravity of the points in contains is computed. Consecutively for those centers it is checked if they are in a voxel cell of the other point cloud. The same process is repeated after interchanging the role of the two point clouds. The quality of the results is evaluated by the distance to the pints from the other data set. Also computation time and quality of the results are compared for different voxel cell sizes. The results are demonstrated on determining he intersection between an airborne and carborne laser point clouds and show that the proposed method takes 0.10%, 0.15%, 1.26% and 14.35% of computation time compared the the classic method when using cell sizes of of 10, 8, 5 and 3 meters respectively.

  8. Geodesic Binding for Degenerate Character Geometry Using Sparse Voxelization.

    PubMed

    Dionne, Olivier; de Lasa, Martin

    2014-10-01

    We propose a fully automatic method for specifying influence weights for closed-form skinning methods, such as linear blend or dual quaternion skinning. Our method is designed to work with production meshes that may contain non-manifold geometry, be non-watertight, have intersecting triangles, or be comprised of multiple connected components. Starting from a character rest pose mesh and skeleton hierarchy, we first voxelize the input geometry. The resulting sparse voxelization is then used to calculate binding weights, based on the geodesic distance between each voxel lying on a skeleton "bone" and all non-exterior voxels. This yields smooth weights at interactive rates, without time-constants, iteration parameters, or costly optimization at bind or pose time. By decoupling weight assignment from distance computation we make it possible to modify weights interactively, at pose time, without additional pre-processing or computation. This allows artists to assess impact of weight selection in the context in which they are used. PMID:26357384

  9. Effect of Anatomical Modeling on Space Radiation Dose Estimates: A Comparison of Doses for NASA Phantoms and 5th, 50th, and 95th Percentile UF Hybrid Phantoms

    NASA Technical Reports Server (NTRS)

    Bahadori, A.; VanBaalen, M.; Shavers, M.; Semones, E.; Dodge, C.; Bolch, W.

    2010-01-01

    The estimate of absorbed dose to individual organs of a space crewmember is affected by the geometry of the anatomical model of the astronaut used in the radiation transport calculation. For astronaut dosimetry, NASA currently uses the computerized anatomical male (CAM) and computerized anatomical female (CAF) stylized phantoms to represent astronauts in its operational radiation dose analyses. These phantoms are available in one size and in two body positions. In contrast, the UF Hybrid Adult Male and Female (UFHADM and UFHADF) phantoms have organ shapes based on actual CT data. The surfaces of these phantoms are defined by non-uniform rational B-spline surfaces, and are thus flexible in terms of body morphometry and extremity positioning. In this study, UFHADM and UFHADF are scaled to dimensions corresponding to 5th, 50th, and 95th percentile (PCTL) male and female astronauts. A ray-tracing program is written in Visual Basic 2008, which is then used to create areal density maps for dose points corresponding to various organs within the phantoms. The areal density maps, along with appropriate space radiation spectra, are input into the NASA program couplet HZETRN/BRYNTRN, and organ doses are calculated. The areal density maps selected tissues and organs of the 5th, 50th, and 95th PCTL male and female phantoms are presented and compared. In addition, the organ doses for the 5th, 50th, and 95th PCTL male and female phantoms are presented and compared to organ doses for CAM and CAF.

  10. Monte Carlo simulation on pre-clinical irradiation: A heterogeneous phantom study on monoenergetic kilovoltage photon beams

    NASA Astrophysics Data System (ADS)

    Chow, James C. L.

    2012-10-01

    This study investigated radiation dose variations in pre-clinical irradiation due to the photon beam energy and presence of tissue heterogeneity. Based on the same mouse computed tomography image dataset, three phantoms namely, heterogeneous, homogeneous and bone homogeneous were used. These phantoms were generated by overriding the relative electron density of no voxel (heterogeneous), all voxel (homogeneous) and the bone voxel (bone homogeneous) to one. 360° photon arcs with beam energies of 50 - 1250 keV were used in mouse irradiations. Doses in the above phantoms were calculated using the EGSnrc-based DOSXYZnrc code through the DOSCTP. Monte Carlo simulations were carried out in parallel using multiple nodes in a high-performance computing cluster. It was found that the dose conformity increased with the increase of the photon beam energy from the keV to MeV range. For the heterogeneous mouse phantom, increasing the photon beam energy from 50 keV to 1250 keV increased seven times the dose deposited at the isocenter. For the bone dose enhancement, the mean dose was 2.7 times higher when the bone heterogeneity was not neglected using the 50 keV photon beams in the mouse irradiation. Bone dose enhancement affecting the mean dose was found in the photon beams with energy range of 50 - 200 keV and the dose enhancement decreased with an increase of the beam energy. Moreover, the MeV photon beam had a higher dose at the isocenter, and a better dose conformity compared to the keV beam.

  11. Voxel-based analysis in neuroferritinopathy expands the phenotype and determines radiological correlates of disease severity.

    PubMed

    Keogh, M J; Aribisala, B S; He, J; Tulip, E; Butteriss, D; Morris, C; Gorman, G; Horvath, R; Chinnery, P F; Blamire, Andrew M

    2015-10-01

    Neuroferritinopathy is an autosomal dominant adult-onset movement disorder which occurs due to mutations in the ferritin light chain gene (FTL). Extensive iron deposition and cavitation are observed post-mortem in the basal ganglia, but whether more widespread pathological changes occur, and whether they correlate with disease severity is unknown. 3D-T1w and quantitative T2 whole brain MRI scans were performed in 10 clinically symptomatic patients with the 460InsA FTL mutation and 10 age-matched controls. Voxel-based morphometry (VBM) and voxel-based relaxometry (VBR) were subsequently performed. Clinical assessment using the Unified Dystonia Rating Scale (UDRS) and Unified Huntington's Disease Rating Scale (UHDRS) was undertaken in all patients. VBM detected significant tissue changes within the substantia nigra, midbrain and dentate together with significant cerebellar atrophy in patients (FWE, p < 0.05). Iron deposition in the caudate head and cavitation in the lateral globus pallidus correlated with UDRS score (p < 0.001). There were no differences between groups with VBR. Our data show that progressive iron accumulation in the caudate nucleus, and cavitation of the globus pallidus correlate with disease severity in neuroferritinopathy. We also confirm sub-clinical cerebellar atrophy as a feature of the disease. We suggest that VBM is an effective technique to detect regions of iron deposition and cavitation, with potential wider utility to determine radiological markers of disease severity for all NBIA disorders. PMID:26142024

  12. Code system to compute radiation dose in human phantoms

    SciTech Connect

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods. (LEW)

  13. Analytical calculation of proton linear energy transfer in voxelized geometries including secondary protons

    NASA Astrophysics Data System (ADS)

    Sanchez-Parcerisa, D.; Cortés-Giraldo, M. A.; Dolney, D.; Kondrla, M.; Fager, M.; Carabe, A.

    2016-02-01

    In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm-1) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process.

  14. Phantom Recollection of Bridging and Elaborative Inferences

    ERIC Educational Resources Information Center

    Singer, Murray; Spear, Jackie

    2015-01-01

    The phantom recollection model is a multiprocess analysis according to which memory judgments are collaboratively supported by one's recollection of an item in its context, a vaguer sense of stimulus familiarity, and the phantom recollection of the substance and even perceptual details of unstudied but related lures. Phantom recollection has…

  15. The perception of phantom limbs. The D. O. Hebb lecture.

    PubMed

    Ramachandran, V S; Hirstein, W

    1998-09-01

    Almost everyone who has a limb amputated will experience a phantom limb--the vivid impression that the limb is not only still present, but in some cases, painful. There is now a wealth of empirical evidence demonstrating changes in cortical topography in primates following deafferentation or amputation, and this review will attempt to relate these in a systematic way to the clinical phenomenology of phantom limbs. With the advent of non-invasive imaging techniques such as MEG (magnetoencephalogram) and functional MRI, topographical reorganization can also be demonstrated in humans, so that it is now possible to track perceptual changes and changes in cortical topography in individual patients. We suggest, therefore, that these patients provide a valuable opportunity not only for exploring neural plasticity in the adult human brain but also for understanding the relationship between the activity of sensory neurons and conscious experience. We conclude with a theory of phantom limbs, some striking demonstrations of phantoms induced in normal subjects, and some remarks about the relevance of these phenomena to the question of how the brain constructs a 'body image.' PMID:9762952

  16. Dosimetric evaluation of intrafractional tumor motion by means of a robot driven phantom

    SciTech Connect

    Richter, Anne; Wilbert, Juergen; Flentje, Michael

    2011-10-15

    Purpose: The aim of the work was to investigate the influence of intrafractional tumor motion to the accumulated (absorbed) dose. The accumulated dose was determined by means of calculations and measurements with a robot driven motion phantom. Methods: Different motion scenarios and compensation techniques were realized in a phantom study to investigate the influence of motion on image acquisition, dose calculation, and dose measurement. The influence of motion on the accumulated dose was calculated by employing two methods (a model based and a voxel based method). Results: Tumor motion resulted in a blurring of steep dose gradients and a reduction of dose at the periphery of the target. A systematic variation of motion parameters allowed the determination of the main influence parameters on the accumulated dose. The key parameters with the greatest influence on dose were the mean amplitude and the pattern of motion. Investigations on necessary safety margins to compensate for dose reduction have shown that smaller safety margins are sufficient, if the developed concept with optimized margins (OPT concept) was used instead of the standard internal target volume (ITV) concept. Both calculation methods were a reasonable approximation of the measured dose with the voxel based method being in better agreement with the measurements. Conclusions: Further evaluation of available systems and algorithms for dose accumulation are needed to create guidelines for the verification of the accumulated dose.

  17. The effect of anatomical modeling on space radiation dose estimates: a comparison of doses for NASA phantoms and the 5th, 50th, and 95th percentile male and female astronauts

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir A.; Van Baalen, Mary; Shavers, Mark R.; Dodge, Charles; Semones, Edward J.; Bolch, Wesley E.

    2011-03-01

    The National Aeronautics and Space Administration (NASA) performs organ dosimetry and risk assessment for astronauts using model-normalized measurements of the radiation fields encountered in space. To determine the radiation fields in an organ or tissue of interest, particle transport calculations are performed using self-shielding distributions generated with the computer program CAMERA to represent the human body. CAMERA mathematically traces linear rays (or path lengths) through the computerized anatomical man (CAM) phantom, a computational stylized model developed in the early 1970s with organ and body profiles modeled using solid shapes and scaled to represent the body morphometry of the 1950 50th percentile (PCTL) Air Force male. With the increasing use of voxel phantoms in medical and health physics, a conversion from a mathematical-based to a voxel-based ray-tracing algorithm is warranted. In this study, the voxel-based ray tracer (VoBRaT) is introduced to ray trace voxel phantoms using a modified version of the algorithm first proposed by Siddon (1985 Med. Phys. 12 252-5). After validation, VoBRAT is used to evaluate variations in body self-shielding distributions for NASA phantoms and six University of Florida (UF) hybrid phantoms, scaled to represent the 5th, 50th, and 95th PCTL male and female astronaut body morphometries, which have changed considerably since the inception of CAM. These body self-shielding distributions are used to generate organ dose equivalents and effective doses for five commonly evaluated space radiation environments. It is found that dosimetric differences among the phantoms are greatest for soft radiation spectra and light vehicular shielding.

  18. Depth dose distribution study within a phantom torso after irradiation with a simulated Solar Particle Event at NSRL

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther

    benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations, based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study. The help and support of Adam Russek and Michael Sivertz of the NASA Space Radiation Laboratory (NSRL), Brookhaven, USA during the setup and the irradiation of the phantom are highly appreciated. The Voxel model describing the human phantom used for the GEANT4 simulations was kindly provided by Monika Puchalska (CHALMERS, Gothenburg, Sweden).

  19. Absorbed Dose Calculations Using Mesh-based Human Phantoms And Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Kramer, Richard

    2011-08-01

    Health risks attributable to the exposure to ionizing radiation are considered to be a function of the absorbed or equivalent dose to radiosensitive organs and tissues. However, as human tissue cannot express itself in terms of equivalent dose, exposure models have to be used to determine the distribution of equivalent dose throughout the human body. An exposure model, be it physical or computational, consists of a representation of the human body, called phantom, plus a method for transporting ionizing radiation through the phantom and measuring or calculating the equivalent dose to organ and tissues of interest. The FASH2 (Female Adult meSH) and the MASH2 (Male Adult meSH) computational phantoms have been developed at the University of Pernambuco in Recife/Brazil based on polygon mesh surfaces using open source software tools and anatomical atlases. Representing standing adults, FASH2 and MASH2 have organ and tissue masses, body height and body mass adjusted to the anatomical data published by the International Commission on Radiological Protection for the reference male and female adult. For the purposes of absorbed dose calculations the phantoms have been coupled to the EGSnrc Monte Carlo code, which can transport photons, electrons and positrons through arbitrary media. This paper reviews the development of the FASH2 and the MASH2 phantoms and presents dosimetric applications for X-ray diagnosis and for prostate brachytherapy.

  20. Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans for image-guided surgery.

    PubMed

    Weese, J; Penney, G P; Desmedt, P; Buzug, T M; Hill, D L; Hawkes, D J

    1997-12-01

    Registration of intraoperative fluoroscopy images with preoperative three-dimensional (3-D) CT images can be used for several purposes in image-guided surgery. On the one hand, it can be used to display the position of surgical instruments, which are being tracked by a localizer, in the preoperative CT scan. On the other hand, the registration result can be used to project preoperative planning information or important anatomical structures visible in the CT image onto the fluoroscopy image. For this registration task, a novel voxel-based method in combination with a new similarity measure (pattern intensity) has been developed. The basic concept of the method is explained at the example of two-dimensional (2-D)/3-D registration of a vertebra in an X-ray fluoroscopy image with a 3-D CT image. The registration method is described, and the results for a spine phantom are presented and discussed. Registration has been carried out repeatedly with different starting estimates to study the capture range. Information about registration accuracy has been obtained by comparing the registration results with a highly accurate "ground-truth" registration, which has been derived from fiducial markers attached to the phantom prior to imaging. In addition, registration results for different vertebrae have been compared. The results show that the rotation parameters and the shifts parallel to the projection plane can accurately be determined from a single projection. Because of the projection geometry, the accuracy of the height above the projection plane is significantly lower. PMID:11020832

  1. Change in Image Quality According to the 3D Locations of a CBCT Phantom.

    PubMed

    Hwang, Jae Joon; Park, Hyok; Jeong, Ho-Gul; Han, Sang-Sun

    2016-01-01

    A patient's position changes in every CBCT scan despite patient alignment protocols. However, there have been studies to determine image quality differences when an object is located at the center of the field of view (FOV). To evaluate changes in the image quality of the CBCT scan according to different object positions, the image quality indexes of the Alphard 3030 (Alphard Roentgen Ind., Ltd., Kyoto, Japan) and the Rayscan Symphony (RAY Ind., Ltd., Suwon, Korea) were measured using the Quart DVT_AP phantom at the center of the FOV and 6 peripheral positions under four types of exposure conditions. Anterior, posterior, right, left, upper, and lower positions 1 cm offset from the center of the FOV were used for the peripheral positions. We evaluated and compared the voxel size, homogeneity, contrast to noise ratio (CNR), and the 10% point of the modulation transfer function (MTF10%) of the center and periphery. Because the voxel size, which is determined by the Nyquist frequency, was within tolerance, other image quality indexes were not influenced by the voxel size. For the CNR, homogeneity, and MTF10%, there were peripheral positions which showed considerable differences with statistical significance. The average difference between the center and periphery was up to 31.27% (CNR), 70.49% (homogeneity), and 13.64% (MTF10%). Homogeneity was under tolerance at some of the peripheral locations. Because the CNR, homogeneity, and MTF10% were significantly affected by positional changes of the phantom, an object's position can influence the interpretation of follow up CBCT images. Therefore, efforts to locate the object in the same position are important. PMID:27093639

  2. Change in Image Quality According to the 3D Locations of a CBCT Phantom

    PubMed Central

    Hwang, Jae Joon; Park, Hyok; Jeong, Ho-Gul; Han, Sang-Sun

    2016-01-01

    A patient’s position changes in every CBCT scan despite patient alignment protocols. However, there have been studies to determine image quality differences when an object is located at the center of the field of view (FOV). To evaluate changes in the image quality of the CBCT scan according to different object positions, the image quality indexes of the Alphard 3030 (Alphard Roentgen Ind., Ltd., Kyoto, Japan) and the Rayscan Symphony (RAY Ind., Ltd., Suwon, Korea) were measured using the Quart DVT_AP phantom at the center of the FOV and 6 peripheral positions under four types of exposure conditions. Anterior, posterior, right, left, upper, and lower positions 1 cm offset from the center of the FOV were used for the peripheral positions. We evaluated and compared the voxel size, homogeneity, contrast to noise ratio (CNR), and the 10% point of the modulation transfer function (MTF10%) of the center and periphery. Because the voxel size, which is determined by the Nyquist frequency, was within tolerance, other image quality indexes were not influenced by the voxel size. For the CNR, homogeneity, and MTF10%, there were peripheral positions which showed considerable differences with statistical significance. The average difference between the center and periphery was up to 31.27% (CNR), 70.49% (homogeneity), and 13.64% (MTF10%). Homogeneity was under tolerance at some of the peripheral locations. Because the CNR, homogeneity, and MTF10% were significantly affected by positional changes of the phantom, an object’s position can influence the interpretation of follow up CBCT images. Therefore, efforts to locate the object in the same position are important. PMID:27093639

  3. Single voxel localization for dynamic hyperpolarized 13C MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Albert P.; Cunningham, Charles H.

    2015-09-01

    The PRESS technique has been widely used to achieve voxel localization for in vivo1H MRS acquisitions. However, for dynamic hyperpolarized 13C MRS experiments, the transition bands of the refocusing pulses may saturate the pre-polarized substrate spins flowing into the voxel. This limitation may be overcome by designing refocusing pulses that do not perturb the resonance of the hyperpolarized substrate, but selectively refocuses the spins of the metabolic products. In this study, a PRESS pulse sequence incorporating spectral-spatial refocusing pulses that have a stop band ('notch') at the substrate resonance is tested in vivo using hyperpolarized [1-13C]pyruvate. Higher metabolite SNR was observed in experiments using the spectral-spatial refocusing pulses as compared to conventional refocusing pulses.

  4. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  5. Single voxel localization for dynamic hyperpolarized (13)C MR spectroscopy.

    PubMed

    Chen, Albert P; Cunningham, Charles H

    2015-09-01

    The PRESS technique has been widely used to achieve voxel localization for in vivo(1)H MRS acquisitions. However, for dynamic hyperpolarized (13)C MRS experiments, the transition bands of the refocusing pulses may saturate the pre-polarized substrate spins flowing into the voxel. This limitation may be overcome by designing refocusing pulses that do not perturb the resonance of the hyperpolarized substrate, but selectively refocuses the spins of the metabolic products. In this study, a PRESS pulse sequence incorporating spectral-spatial refocusing pulses that have a stop band ('notch') at the substrate resonance is tested in vivo using hyperpolarized [1-(13)C]pyruvate. Higher metabolite SNR was observed in experiments using the spectral-spatial refocusing pulses as compared to conventional refocusing pulses. PMID:26232365

  6. Fast construction of voxel-level functional connectivity graphs

    PubMed Central

    2014-01-01

    Background Graph-based analysis of fMRI data has recently emerged as a promising approach to study brain networks. Based on the assessment of synchronous fMRI activity at separate brain sites, functional connectivity graphs are constructed and analyzed using graph-theoretical concepts. Most previous studies investigated region-level graphs, which are computationally inexpensive, but bring along the problem of choosing sensible regions and involve blurring of more detailed information. In contrast, voxel-level graphs provide the finest granularity attainable from the data, enabling analyses at superior spatial resolution. They are, however, associated with considerable computational demands, which can render high-resolution analyses infeasible. In response, many existing studies investigating functional connectivity at the voxel-level reduced the computational burden by sacrificing spatial resolution. Methods Here, a novel, time-efficient method for graph construction is presented that retains the original spatial resolution. Performance gains are instead achieved through data reduction in the temporal domain based on dichotomization of voxel time series combined with tetrachoric correlation estimation and efficient implementation. Results By comparison with graph construction based on Pearson’s r, the technique used by the majority of previous studies, we find that the novel approach produces highly similar results an order of magnitude faster. Conclusions Its demonstrated performance makes the proposed approach a sensible and efficient alternative to customary practice. An open source software package containing the created programs is freely available for download. PMID:24947161

  7. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    NASA Astrophysics Data System (ADS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-11-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm-3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source-target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  8. A voxel visualization and analysis system based on AutoCAD

    NASA Astrophysics Data System (ADS)

    Marschallinger, Robert

    1996-05-01

    A collection of AutoLISP programs is presented which enable the visualization and analysis of voxel models by AutoCAD rel. 12/rel. 13. The programs serve as an interactive, graphical front end for manipulating the results of three-dimensional modeling software producing block estimation data. ASCII data files describing geometry and attributes per estimation block are imported and stored as a voxel array. Each voxel may contain multiple attributes, therefore different parameters may be incorporated in one voxel array. Voxel classification is implemented on a layer basis providing flexible treatment of voxel classes such as recoloring, peeling, or volumetry. A versatile clipping tool enables slicing voxel arrays according to combinations of three perpendicular clipping planes. The programs feature an up-to-date, graphical user interface for user-friendly operation by non AutoCAD specialists.

  9. Assessment of diffusion tensor image quality across sites and vendors using the American College of Radiology head phantom.

    PubMed

    Wang, Zhiyue J; Seo, Youngseob; Babcock, Evelyn; Huang, Hao; Bluml, Stefan; Wisnowski, Jessica; Holshouser, Barbara; Panigrahy, Ashok; Shaw, Dennis W W; Altman, Nolan; McColl, Roderick W; Rollins, Nancy K

    2016-01-01

    The purpose of this study was to explore the feasibility of assessing quality of diffusion tensor imaging (DTI) from multiple sites and vendors using American College of Radiology (ACR) phantom. Participating sites (Siemens (n = 2), GE (n= 2), and Philips (n = 4)) reached consensus on parameters for DTI and used the widely available ACR phantom. Tensor data were processed at one site. B0 and eddy current distortions were assessed using grid line displacement on phantom Slice 5; signal-to-noise ratio (SNR) was measured at the center and periphery of the b = 0 image; fractional anisotropy (FA) and mean diffusivity (MD) were assessed using phantom Slice 7. Variations of acquisition parameters and deviations from specified sequence parameters were recorded. Nonlinear grid line distortion was higher with linear shimming and could be corrected using the 2nd order shimming. Following image registration, eddy current distortion was consistently smaller than acquisi-tion voxel size. SNR was consistently higher in the image periphery than center by a factor of 1.3-2.0. ROI-based FA ranged from 0.007 to 0.024. ROI-based MD ranged from 1.90 × 10-3 to 2.33 × 10-3 mm2/s (median = 2.04 × 10-3 mm2/s). Two sites had image void artifacts. The ACR phantom can be used to compare key qual-ity measures of diffusion images acquired from multiple vendors at multiple sites. PMID:27167268

  10. Phantom limb after stroke: an underreported phenomenon.

    PubMed

    Antoniello, Daniel; Kluger, Benzi M; Sahlein, Daniel H; Heilman, Kenneth M

    2010-10-01

    The presence of a phantom limb (PL) resulting from a cerebral lesion has been reported to be a rare event. No prior study, however, has systematically investigated the prevalence of this syndrome in a group of post-stroke individuals. Fifty post-stroke individuals were examined with structured interview/questionnaire to establish the presence and perceptual characteristics of PLs. We document the presence of phantom experiences in over half of these individuals (n=27). We provide details of these phantom experiences and further characterize these symptoms in terms of temporal qualities, posture, kinesthesia, and associated features. Twenty-two participants reported postural phantoms, which were perceived as illusions of limb position that commonly manifested while lying in bed at night - a time when visual input is removed from multi-sensory integration. Fourteen participants reported kinesthetic phantoms, with illusory movements ranging from simple single joint sensations to complex goal-directed phantom movements. A striking syndrome of near total volitional control of phantom movements was reported in four participants who had immobile plegic hands. Reduplicative phantom percepts were reported by only one participant. Similarly, phantom pain was present in only one individual - the sole participant with a pre-stroke limb amputation. The results suggest that stroke results in phantom experiences more commonly than previously described in the literature. We speculate that subtotal deafferance or defective motor efference after stroke may manifest intermittently as a PL. PMID:19914617

  11. Creation and use of adjustable 3D phantoms: application for the lung monitoring of female workers.

    PubMed

    Farah, Jad; Broggio, David; Franck, Didier

    2010-11-01

    In vivo counting measurements, used for the monitoring of workers with internal contamination risks, are based on the use of calibration physical phantoms. However, such phantoms do not exist for female subjects. Computational calibration using numerical representations, Mesh and non-uniform rational basis spline (NURBS) geometries, was thus considered. The study presented here is focused on the creation of different female thoracic phantoms with various breast sizes and chest girths. These 3D models are used to estimate the radiation attenuation with morphology and the resulting variation of the calibration coefficient of a typical 4-germanium in vivo counting system. A basic Mesh female thoracic phantom was created from the International Commission on Radiological Protection Adult Female Reference Computational Phantom. Using this basic phantom, different chest girths (85, 90, 100, 110, and 120) and cup sizes (A to F) were created representing the most common thoracic female morphologies, as recommended by the available and relevant literature. Variation of breast tissue composition and internal organ volumes with morphology were also considered. As a result, 34 thoracic female phantoms were created combining different cup sizes and chest girths. For the 85 chest girth, at very low energies (15 keV), a relative counting efficiency variation of about 85% was observed between the A and E cups. As a result of this study, breast size dependent calibration coefficients, between 15 keV and 1.4 MeV, were obtained and tabulated for a typical lung counting germanium system. PMID:20938235

  12. Kilovoltage beam Monte Carlo dose calculations in submillimeter voxels for small animal radiotherapy

    PubMed Central

    Bazalova, Magdalena; Zhou, Hu; Keall, Paul J.; Graves, Edward E.

    2009-01-01

    Purpose: Small animal conformal radiotherapy (RT) is essential for preclinical cancer research studies and therefore various microRT systems have been recently designed. The aim of this paper is to efficiently calculate the dose delivered using our microRT system based on a microCT scanner with the Monte Carlo (MC) method and to compare the MC calculations to film measurements. Methods: Doses from 2–30 mm diameter 120 kVp photon beams deposited in a solid water phantom with 0.2×0.2×0.2 mm3 voxels are calculated using the latest versions of the EGSnrc codes BEAMNRC and DOSXYZNRC. Two dose calculation approaches are studied: a two-step approach using phase-space files and direct dose calculation with BEAMNRC simulation sources. Due to the small beam size and submillimeter voxel size resulting in long calculation times, variance reduction techniques are studied. The optimum bremsstrahlung splitting number (NBRSPL in BEAMNRC) and the optimum DOSXYZNRC photon splitting (Nsplit) number are examined for both calculation approaches and various beam sizes. The dose calculation efficiencies and the required number of histories to achieve 1% statistical uncertainty—with no particle recycling—are evaluated for 2–30 mm beams. As a final step, film dose measurements are compared to MC calculated dose distributions. Results: The optimum NBRSPL is approximately 1×106 for both dose calculation approaches. For the dose calculations with phase-space files, Nsplit varies only slightly for 2–30 mm beams and is established to be 300. Nsplit for the DOSXYZNRC calculation with the BEAMNRC source ranges from 300 for the 30 mm beam to 4000 for the 2 mm beam. The calculation time significantly increases for small beam sizes when the BEAMNRC simulation source is used compared to the simulations with phase-space files. For the 2 and 30 mm beams, the dose calculations with phase-space files are more efficient than the dose calculations with BEAMNRC sources by factors of 54 and 1

  13. Voxel-by-voxel correlations of perfusion, substrate, and metabolite signals in dynamic hyperpolarized (13) C imaging.

    PubMed

    Lau, Justin Y C; Chen, Albert P; Gu, Yi-Ping; Cunningham, Charles H

    2016-08-01

    In this study, a mixture of pyruvic acid and the perfusion agent HP001 was co-polarized for simultaneous assessment of perfusion and metabolism in vivo. The pre-polarized mixture was administered to rats with subcutaneous MDA-MB-231 breast cancer xenografts and imaged using an interleaved sequence with designed spectral-spatial pulses and flyback echo-planar readouts. Voxel-by-voxel signal correlations from 10 animals (15 data sets) were analyzed for tumour, kidney, and muscle regions of interest. The relationship between perfusion and hyperpolarized signal was explored on a voxel-by-voxel basis in various metabolically active tissues, including tumour, healthy kidneys, and skeletal muscle. Positive pairwise correlations between lactate, pyruvate, and HP001 observed in all 10 tumours suggested that substrate delivery was the dominant factor limiting the conversion of pyruvate to lactate in the tumour model used in this study. On the other hand, in cases where conversion is the limiting factor, such as in healthy kidneys, both pyruvate and lactate can act as excellent perfusion markers. In intermediate cases between the two limits, such as in skeletal muscle, some perfusion information may be inferred from the (pyruvate + lactate) signal distribution. Co-administration of pyruvate with a dynamic nuclear polarization (DNP) perfusion agent is an effective approach for distinguishing between slow metabolism and poor perfusion and a practical strategy for lactate signal normalization to account for substrate delivery, especially in cases of rapid pyruvate-to-lactate conversion and in poorly perfused regions with inadequate pyruvate signal-to-noise ratio for reliable determination of the lactate-to-pyruvate ratio. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27295304

  14. SU-E-J-07: IGRT Gently: Evaluating Imaging Dose in Phantoms of Different Sizes

    SciTech Connect

    Morris, B; Duggar, W; Stanford, J; Yang, C

    2015-06-15

    Purpose: IGRT imaging procedures have emerged as a common method of patient position verification in radiotherapy, though imaging dose is generally neglected in the treatment plan. Consequently, evaluating and optimizing the dose from these procedures is worthwhile. This process is especially important for children, who are more radiosensitive than adults. The aim of this work was to gain some understanding of the relative doses involved with various XVI-preset parameters for an “adult” and “child” phantom set, with the hopes that imaging dose for a child can be reduced. Methods: 32 and 16cm CTDI-phantoms were used as surrogates for adult and child torsos, respectively. Dose was measured in the central and peripheral chamber positions of the phantoms. CBCT scans were made for both phantoms using Elekta’s Chest-preset to establish a dose baseline. The child-phantom was then scanned using the Elekta Head and Neck (HN) preset. A modified HN-preset (named Peds Abd-pelvis) was also created with a doubled mAs to maintain a reduction in dose to the child-phantom (relative to the baseline), while providing clinically-usable image quality. Results: The baseline dose to the child-phantom from the Chest-preset was 310% that of the adult-phantom for the center chamber position and 150% at the periphery. An average dose reduction of 97% was obtained in the childphantom by switching from the Chest-preset to the HN-preset, while the Peds Abd-pelvis-preset similarly reduced the dose by an average of 92%. Conclusion: XVI-preset parameters significantly affect dose, and should be optimized to reduce dose, while ensuring clinically-usable image quality. Using a modified imaging preset (Peds Abd-pelvis-preset) greatly reduced the dose to the child-phantom compared to the dose for the Chest-preset for both the child and adult-phantoms. This outcome provides support for the development of child-specific protocols for IGRT imaging in pediatric patients.

  15. Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.

    2006-08-01

    The unifying approach to early-time and late-time universe based on phantom cosmology is proposed. We consider gravity-scalar system which contains usual potential and scalar coupling function in front of kinetic term. As a result, the possibility of phantom-non-phantom transition appears in such a way that universe could have effectively phantom equation of state at early time as well as at late time. In fact, the oscillating universe may have several phantom and non-phantom phases. Role in each of two phase and can be absorbed into the redefinition of the scalar field. Right on the transition point, however, the factor cannot be absorbed into the redefinition and play the role to connect two phases smoothly. Holographic dark energy where infrared cutoff is identified with combination of FRW parameters: Hubble constant, particle and future horizons, cosmological constant and universe life-time (if finite). Depending on the specific choice of the model the number of interesting effects occur: the possibility to solve the coincidence problem, crossing of phantom divide and unification of early-time inflationary and late-time accelerating phantom universe. The bound for holographic entropy which decreases in phantom era is also discussed.

  16. Segmentation and quantification of materials with energy discriminating computed tomography: A phantom study

    SciTech Connect

    Le, Huy Q.; Molloi, Sabee

    2011-01-15

    Purpose: To experimentally investigate whether a computed tomography (CT) system based on CdZnTe (CZT) detectors in conjunction with a least-squares parameter estimation technique can be used to decompose four different materials. Methods: The material decomposition process was divided into a segmentation task and a quantification task. A least-squares minimization algorithm was used to decompose materials with five measurements of the energy dependent linear attenuation coefficients. A small field-of-view energy discriminating CT system was built. The CT system consisted of an x-ray tube, a rotational stage, and an array of CZT detectors. The CZT array was composed of 64 pixels, each of which is 0.8x0.8x3 mm. Images were acquired at 80 kVp in fluoroscopic mode at 50 ms per frame. The detector resolved the x-ray spectrum into energy bins of 22-32, 33-39, 40-46, 47-56, and 57-80 keV. Four phantoms were constructed from polymethylmethacrylate (PMMA), polyethylene, polyoxymethylene, hydroxyapatite, and iodine. Three phantoms were composed of three materials with embedded hydroxyapatite (50, 150, 250, and 350 mg/ml) and iodine (4, 8, 12, and 16 mg/ml) contrast elements. One phantom was composed of four materials with embedded hydroxyapatite (150 and 350 mg/ml) and iodine (8 and 16 mg/ml). Calibrations consisted of PMMA phantoms with either hydroxyapatite (100, 200, 300, 400, and 500 mg/ml) or iodine (5, 15, 25, 35, and 45 mg/ml) embedded. Filtered backprojection and a ramp filter were used to reconstruct images from each energy bin. Material segmentation and quantification were performed and compared between different phantoms. Results: All phantoms were decomposed accurately, but some voxels in the base material regions were incorrectly identified. Average quantification errors of hydroxyapatite/iodine were 9.26/7.13%, 7.73/5.58%, and 12.93/8.23% for the three-material PMMA, polyethylene, and polyoxymethylene phantoms, respectively. The average errors for the four

  17. Ultrasound Phantoms to Protect Patients from Novices

    PubMed Central

    2016-01-01

    With the growing use of ultrasound for pain management, we are interested in how to teach and practice ultrasound-guided procedures. Ethically, we should not insert a needle in a patient until after much practice on a phantom. Several types of phantoms have been introduced for ultrasound training, including water, agar/gelatin, elastomeric rubber, and meat phantoms and cadavers. The ideal phantom is similar to human tissue, is readily available and inexpensive, can be used repeatedly, provides tactile feedback, will hold a needle in place, does not generate needle tracks, and is not a health hazard. Several studies have shown the effectiveness of phantoms for improving the proficiency of novices. We hope that the application of phantoms in education leads to improved proficiency and increased patient safety. PMID:27103961

  18. Neutron dosimetry in solid water phantom

    SciTech Connect

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2014-11-07

    The neutron spectra, the Kerma and the absorbed dose due to neutrons were estimated along the incoming beam in a solid water phantom. Calculations were carried out with the MCNP5 code, where the bunker, the phantom and the model of the15 MV LINAC head were modeled. As the incoming beam goes into the phantom the neutron spectrum is modified and the dosimetric values are reduced.

  19. Monte Carlo dose calculation in dental amalgam phantom

    PubMed Central

    Aziz, Mohd. Zahri Abdul; Yusoff, A. L.; Osman, N. D.; Abdullah, R.; Rabaie, N. A.; Salikin, M. S.

    2015-01-01

    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation. PMID:26500401

  20. Monte Carlo dose calculation in dental amalgam phantom.

    PubMed

    Aziz, Mohd Zahri Abdul; Yusoff, A L; Osman, N D; Abdullah, R; Rabaie, N A; Salikin, M S

    2015-01-01

    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation. PMID:26500401

  1. Fast voxel-level dosimetry for (177)Lu labelled peptide treatments.

    PubMed

    Hippeläinen, E; Tenhunen, M; Sohlberg, A

    2015-09-01

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for (177)Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions.Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by (177)Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared.The photon cross-fire dose from the kidney increased the background's absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  2. Fast voxel-level dosimetry for 177Lu labelled peptide treatments

    NASA Astrophysics Data System (ADS)

    Hippeläinen, E.; Tenhunen, M.; Sohlberg, A.

    2015-09-01

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for 177Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions. Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by 177Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared. The photon cross-fire dose from the kidney increased the background’s absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  3. Phantom perception: voluntary and involuntary nonretinal vision.

    PubMed

    Pearson, Joel; Westbrook, Fred

    2015-05-01

    Hallucinations, mental imagery, synesthesia, perceptual filling-in, and many illusions are conscious visual experiences without a corresponding retinal stimulus: what we call 'phantom perception'. Such percepts show that our experience of the world is not solely determined by direct sensory input. Some phantom percepts are voluntary, whereas others are involuntarily, occurring automatically. Here, by way of review, we compare and contrast these two types of phantom perception and their neural representations. We propose a dichotomous framework for phantom vision, analogous to the subtypes of attention: endogenous and exogenous. This framework unifies findings from different fields and species, providing a guide to study the constructive nature of conscious sensory perception. PMID:25863415

  4. Development of a HIFU Phantom

    NASA Astrophysics Data System (ADS)

    King, Randy L.; Herman, Bruce A.; Maruvada, Subha; Wear, Keith A.; Harris, Gerald R.

    2007-05-01

    The field of high intensity focused ultrasound (HIFU) is developing rapidly. For basic research, quality control, and regulatory assessment a reusable phantom that has both thermal and acoustic properties close to that of soft tissue is critical. A hydrogel-based tissue mimicking material (TMM) has been developed that shows promise for such a phantom. The acoustic attenuation, speed of sound, B/A, thermal diffusivity and conductivity, as well as the cavitation threshold, were measured and found to mimic published values for soft tissue. The attenuation of 0.53f1.04 from 1 MHz to 8 MHz, as well as the sound speed of 1565 m/s and the tissue-like image quality, indicate the usefulness of the TMM for ultrasound imaging applications. These properties along with the thermal conductivity of 0.58 W/m- °C, diffusivity of 0.15 (mm2)/s, and the ability to withstand temperatures above 95 °C make this material appropriate for HIFU applications. The TMM also allows for the embedding of thermocouples and the formation of wall-less vessels that do not deteriorate as a result of continuous flow of blood mimicking fluids through the material. Tissue characteristics are strongly dependent on the fabrication technique, and care must be taken to achieve reproducible results. Note: This research was supported by the Defense Advanced Research Projects Agency (DARPA).

  5. The phantom limb in dreams.

    PubMed

    Brugger, Peter

    2008-12-01

    Mulder and colleagues [Mulder, T., Hochstenbach, J., Dijkstra, P. U., Geertzen, J. H. B. (2008). Born to adapt, but not in your dreams. Consciousness and Cognition, 17, 1266-1271.] report that a majority of amputees continue to experience a normally-limbed body during their night dreams. They interprete this observation as a failure of the body schema to adapt to the new body shape. The present note does not question this interpretation, but points to the already existing literature on the phenomenology of the phantom limb in dreams. A summary of published investigations is complemented by a note on phantom phenomena in the dreams of paraplegic patients and persons born without a limb. Integration of the available data allows the recommendation for prospective studies to consider dream content in more detail. For instance, "adaptation" to the loss of a limb can also manifest itself by seeing oneself surrounded by amputees. Such projective types of anosognosia ("transitivism") in nocturnal dreams should also be experimentally induced in normally-limbed individuals, and some relevant techniques are mentioned. PMID:18313942

  6. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.

    2003-08-01

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  7. Analytical calculation of proton linear energy transfer in voxelized geometries including secondary protons.

    PubMed

    Sanchez-Parcerisa, D; Cortés-Giraldo, M A; Dolney, D; Kondrla, M; Fager, M; Carabe, A

    2016-02-21

    In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm(-1)) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process. PMID:26840945

  8. Phantom size in brachytherapy source dosimetric studies.

    PubMed

    Pérez-Calatayud, J; Granero, D; Ballester, F

    2004-07-01

    An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776-786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide 137Cs, 192Ir, 125I and 103Pd, mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for 137Cs and 192Ir, a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For 125I and 103Pd, the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is R = 15 cm. A simple expression based on fits of the dose distributions for various phantom sizes has been developed for 137Cs and 192Ir in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones. PMID:15305460

  9. Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography

    PubMed Central

    Ludlow, John B.; Walker, Cameron

    2013-01-01

    Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904

  10. Anatomical correlates of quality of life: evidence from voxel-based morphometry.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Hashizume, Hiroshi; Sassa, Yuko; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Nagase, Tomomi; Miyauchi, Carlos Makoto; Kawashima, Ryuta

    2014-05-01

    Quality of life (QOL) has been defined in many ways, and these definitions usually emphasize happiness and satisfaction with life. Health-related problems are known to cause lower QOL. However, the neural mechanisms underlying individual differences in QOL measured by questionnaire (QOLMQ) in young healthy subjects are unknown. QOL is essential to our well-being, and investigation of the neural mechanisms underlying QOL in uncompromised subjects is obviously of great scientific and social interest. We used voxel-based morphometry to investigate the association between regional gray matter volume (rGMV) and QOLMQ across the brain in healthy young adults (age, 21.4 ± 1.8 years) men (n = 88) and women (n = 68) in humans. We found significant negative relationships between QOLMQ and rGMV in a region in the left rostrolateral prefrontal cortex and regions in the dorsal part of the anterior cingulate gyrus and contingent cingulate regions. These findings show that structural variations in regions associated with processing of negative emotions such as fear and anger as well as those associated with evaluation of internally generated information are associated with QOLMQ. These findings suggest that these processes might be related to QOLMQ in healthy young adults. PMID:23671021

  11. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  12. Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Conil, E.; Hadjem, A.; Lacroux, F.; Wong, M. F.; Wiart, J.

    2008-03-01

    This paper deals with the variability of body models used in numerical dosimetry studies. Six adult anthropomorphic voxel models have been collected and used to build 5-, 8- and 12-year-old children using a morphing method respecting anatomical parameters. Finite-difference time-domain calculations of a specific absorption rate (SAR) have been performed for a range of frequencies from 20 MHz to 2.4 GHz for isolated models illuminated by plane waves. A whole-body-averaged SAR is presented as well as the average on specific tissues such as skin, muscles, fat or bones and the average on specific parts of the body such as head, legs, arms or torso. Results point out the variability of adult models. The standard deviation of whole-body-averaged SAR of adult models can reach 40%. All phantoms are exposed to the ICNIRP reference levels. Results show that for adults, compliance with reference levels ensures compliance with basic restrictions, but concerning children models involved in this study, the whole-body-averaged SAR goes over the fundamental safety limits up to 40%. For more information on this article, see medicalphysicsweb.org

  13. Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain.

    PubMed

    Conil, E; Hadjem, A; Lacroux, F; Wong, M F; Wiart, J

    2008-03-21

    This paper deals with the variability of body models used in numerical dosimetry studies. Six adult anthropomorphic voxel models have been collected and used to build 5-, 8- and 12-year-old children using a morphing method respecting anatomical parameters. Finite-difference time-domain calculations of a specific absorption rate (SAR) have been performed for a range of frequencies from 20 MHz to 2.4 GHz for isolated models illuminated by plane waves. A whole-body-averaged SAR is presented as well as the average on specific tissues such as skin, muscles, fat or bones and the average on specific parts of the body such as head, legs, arms or torso. Results point out the variability of adult models. The standard deviation of whole-body-averaged SAR of adult models can reach 40%. All phantoms are exposed to the ICNIRP reference levels. Results show that for adults, compliance with reference levels ensures compliance with basic restrictions, but concerning children models involved in this study, the whole-body-averaged SAR goes over the fundamental safety limits up to 40%. PMID:18367785

  14. The neural basis of phantom limb pain.

    PubMed

    Flor, Herta; Diers, Martin; Andoh, Jamila

    2013-07-01

    A recent study suggests that brain changes in amputees may be pain-induced, questioning maladaptive plasticity as a neural basis of phantom pain. These findings add valuable information on cortical reorganization after amputation. We suggest further lines of research to clarify the mechanisms that underlie phantom pain. PMID:23608362

  15. Voxelization algorithms for geospatial applications: Computational methods for voxelating spatial datasets of 3D city models containing 3D surface, curve and point data models.

    PubMed

    Nourian, Pirouz; Gonçalves, Romulo; Zlatanova, Sisi; Ohori, Ken Arroyo; Vu Vo, Anh

    2016-01-01

    Voxel representations have been used for years in scientific computation and medical imaging. The main focus of our research is to provide easy access to methods for making large-scale voxel models of built environment for environmental modelling studies while ensuring they are spatially correct, meaning they correctly represent topological and semantic relations among objects. In this article, we present algorithms that generate voxels (volumetric pixels) out of point cloud, curve, or surface objects. The algorithms for voxelization of surfaces and curves are a customization of the topological voxelization approach [1]; we additionally provide an extension of this method for voxelization of point clouds. The developed software has the following advantages:•It provides easy management of connectivity levels in the resulting voxels.•It is not dependant on any external library except for primitive types and constructs; therefore, it is easy to integrate them in any application.•One of the algorithms is implemented in C++ and C for platform independence and efficiency. PMID:27408832

  16. Galactosemia and phantom absence seizures.

    PubMed

    Aydin-Özemir, Zeynep; Tektürk, Pınar; Uyguner, Zehra Oya; Baykan, Betül

    2014-01-01

    Generalized and focal seizures can rarely be seen in galactosemia patients, but absence seizures were not reported previously. An 18-year-old male was diagnosed as galactosemia at the age of 8 months. No family history of epilepsy was present. His absence seizures realized at the age of 9 years. Generalized 3-4 Hz spike-wave discharges were identified in his electroencephalography. Homozygous mutation at exon 6 c. 563A > G was identified. The electroencephalogram of his sibling was unremarkable. Our aim was to present the long-term follow-up of a patient diagnosed with galactosemia, who had phantom absence seizures and typical 3-4 Hz spike-wave discharges in his electroencephalogram to draw attention to this rare association. PMID:25624930

  17. Wormholes supported by a phantom energy

    SciTech Connect

    Sushkov, Sergey

    2005-02-15

    We extend the notion of phantom energy, which is generally accepted for homogeneously distributed matter with w<-1 in the universe, on inhomogeneous spherically symmetric spacetime configurations. A spherically symmetric distribution of phantom energy is shown to be able to support the existence of static wormholes. We find an exact solution describing a static spherically symmetric wormhole with phantom energy and show that a spatial distribution of the phantom energy is mainly restricted by the vicinity of the wormhole's throat. The maximal size of the spherical region, surrounding the throat and containing the most part of the phantom energy, depends on the equation-of-state parameter w and cannot exceed some upper limit.

  18. Optical computed tomography liquid calibration phantom

    NASA Astrophysics Data System (ADS)

    Jordan, K.

    2013-06-01

    Fluorinated ethylene propylene tubing is investigated as a method of preparing a contrast-resolution phantom for quantitative characterization of optical CT scanners and hydrogel dosimeters. Two sizes of tubing were examined: 6 and 13 mm inner diameter with 0.75 and 0.5 mm wall thicknesses, respectively. Water solutions of carbon black, nanoparticles in micelles provided continuously adjustable absorption contrast. Cross-sectional slices from two phantoms scanned with two different optical CT scanners are presented. Reconstructions from these simple phantoms can be used to identify scanner artefacts and improve instrument design. These phantoms represent a more reproducible approach than casting "gel fingers" into gel phantoms for system characterization. The thinner walled tubes have fewer optical artefacts.

  19. Voxel-based texture mapping for medical data.

    PubMed

    Weng, T L; Lin, S J; Chang, W Y; Sun, Y N

    2002-01-01

    In computerized image and graphic applications, texture mapping is one of the most commonly used methods to improve the realism or to enhance the visual effect of object rendering without too much increase in computational complexity. The conventional method usually has to transfer three-dimensional (3D) object to the polygonal structure, and is computationally expensive. As the medical data are mostly in voxel format, the polygonal structure is not efficient or requires more complicated mechanism in retrieving the internal information of medical data. In this paper, we propose a new texture mapping method, based on flattening a chain-coded 3D surface, to handle the voxel-based data directly. The method flattens the 3D object surface onto a two-dimensional (2D) plane and then uses 2D metamorphosis to generate the correspondences between object surface and texture image. Therefore, polygon transformation is no longer necessary and texture mapping is handled with inexpensive 2D morphing. More importantly, the internal information of medical data can be easily preserved and utilized further. Experimental results have shown the effectiveness and efficiency of the proposed algorithm. PMID:12453508

  20. Visualization using 3D voxelization of full lidar waveforms

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Ramnath, Vinod; Feygels, Victor

    2014-11-01

    Airborne bathymetric lidar (Light Detection and Ranging) systems measure photoelectrons on the optical path (range and angle) at the photocathode of a returned laser pulse at high rates, such as every nanosecond. The collected measurement of a single pulse in a time series is called a waveform. Based on the calibration of the lidar system, the return signal is converted into units of received power. This converted value from the lidar waveform data is used to compute an estimate of the reflectance from the returned backscatter, which contains environmental information from along the optical path. This concept led us to develop a novel tool to visualize lidar data in terms of the returned backscatter, and to use this as a data analysis and editing tool. The full lidar waveforms along the optical path, from laser points collected in the region of interest (ROI), are voxelized into a 3D image cube. This allows lidar measurements to be analyzed in three orthogonal directions simultaneously. The laser pulse return (reflection) from the seafloor is visible in the waveform as a pronounced "bump" above the volume backscatter. Floating or submerged objects in the water may also be visible. Similarly, forest canopies and tree branches can be identified in the 3D voxelization. This paper discusses the possibility of using this unique three-orthogonal volume visualizing tool to extract environmental information for carrying out rapid environmental assessments over forests and water.

  1. Enceladus' 101 Geysers: Phantoms? Hardly

    NASA Astrophysics Data System (ADS)

    Porco, C.; Nimmo, F.; DiNino, D.

    2015-12-01

    The discovery by the Cassini mission of present-day geysering activity capping the southern hemisphere of Saturn's moon Enceladus (eg, Porco, C. C. et al. Science 311, 1393, 2006) and sourced within a subsurface body of liquid water (eg, Postberg, F. et al. Nature 459, 1098, 2009; Porco, C.C. et al. AJ 148, 45, 2014, hereafter PEA], laced with organic compounds (eg, Waite, J.H. et al. Science 311, 1419, 2006), has been a significant one, with far-reaching astrobiological implications. In an extensive Cassini imaging survey of the moon's south polar terrain (SPT), PEA identified 101 distinct, narrow jets of small icy particles erupting, with varying strengths, from the four major fractures crossing the SPT. A sufficient spread in stereo angles of the 107 images used in that work allowed (in some cases, many) pair-wise triangulations to be computed; precise surface locations were derived for 98 jets. Recently, it has been claimed (Spitale, J.N. et al. Nature 521, 57, 2015) that the majority of the geysers are not true discrete jets, but are "phantoms" that appear in shallow-angle views of a dense continuous curtain of material with acute bends in it. These authors also concluded that the majority of the eruptive material is not in the form of jets but in the form of fissure-style 'curtain' eruptions. We argue below the contrary, that because almost all the moon's geysers were identified by PEA using multiple images with favorable viewing geometries, the vast majority of them, and likely all, are discrete jets. Specifically, out of 98 jets, no fewer than 90 to 95 were identified with viewing geometries that preclude the appearance of phantoms. How the erupting solids (i.e., icy particles) that are seen in Cassini images are partitioned between jets and inter-jet curtains is still an open question.

  2. Mapping protein abundance patterns in the brain using voxelation combined with liquid chromatography and mass spectrometry

    SciTech Connect

    Petyuk, Vladislav A.; Qian, Weijun; Smith, Richard D.; Smith, Desmond J.

    2010-02-01

    Voxelation creates expression atlases by high-throughput analysis of spatially registered cubes or voxels harvested from the brain. The modality independence of voxelation allows a variety of bioanalytical techniques to be used to map abundance. Protein expression patterns in the brain can be obtained using liquid chromatography (LC) combined with mass spectrometry (MS). Here we describe the methodology of voxelation as it pertains particularly to LC-MS proteomic analysis: sample preparation, instrumental set up and analysis, peptide identification and protein relative abundance quantitation. We also briefly describe some of the advantages, limitations and insights into the brain that can be obtained using combined proteomic and transcriptomic maps

  3. WE-D-BRE-06: Quantification of Dose-Response for High Grade Esophagtis Patients Using a Novel Voxel-To-Voxel Method

    SciTech Connect

    Niedzielski, J; Martel, M; Tucker, S; Gomez, D; Court, L; Yang, J; Briere, T

    2014-06-15

    Purpose: Radiation induces an inflammatory response in the esophagus, discernible on CT studies. This work objectively quantifies the voxel esophageal radiation-response for patients with acute esophagitis. This knowledge is an important first-step towards predicting the effect of complex dose distributions on patient esophagitis symptoms. Methods: A previously validated voxel-based methodology of quantifying radiation esophagitis severity was used to identify the voxel dose-response for 18 NSCLC patients with severe esophagitis (CTCAE grading criteria, grade2 or higher). The response is quantified as percent voxel volume change for a given dose. During treatment (6–8 weeks), patients had weekly 4DCT studies and esophagitis scoring. Planning CT esophageal contours were deformed to each weekly CT using a demons DIR algorithm. An algorithm using the Jacobian Map from the DIR of the planning CT to all weekly CTs was used to quantify voxel-volume change, along with corresponding delivered voxel dose, to the planning voxel. Dose for each voxel for each time-point was calculated on each previous weekly CT image, and accumulated using DIR. Thus, for each voxel, the volume-change and delivered dose was calculated for each time-point. The data was binned according to when the volume-change first increased by a threshold volume (10%–100%, in 10% increments), and the average delivered dose calculated for each bin. Results: The average dose resulting in a voxel volume increase of 10–100% was 21.6 to 45.9Gy, respectively. The mean population dose to give a 50% volume increase was 36.3±4.4Gy, (range:29.8 to 43.5Gy). The average week of 50% response was 4.1 (range:4.9 to 2.8 weeks). All 18 patients showed similar dose to first response curves, showing a common trend in the initial inflammatoryresponse. Conclusion: We extracted the dose-response curve of the esophagus on a voxel-to-voxel level. This may be useful for estimating the esophagus response (and patient symptoms

  4. Compact and extended objects from self-interacting phantom fields

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Makhmudov, Arislan; Urazalina, Ainur; Singleton, Douglas; Scott, John

    2016-07-01

    In this work, we investigate localized and extended objects for gravitating, self-interacting phantom fields. The phantom fields come from two scalar fields with a "wrong-sign" (negative) kinetic energy term in the Lagrangian. This study covers several solutions supported by these phantom fields: phantom balls, traversable wormholes, phantom cosmic strings, and "phantom" domain walls. These four systems are solved numerically, and we try to draw out general, interesting features in each case.

  5. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.

    PubMed

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George

    2015-07-21

    This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations. PMID:26134511

  6. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  7. EURADOS intercomparison exercise on MC modeling for the in-vivo monitoring of Am-241 in skull phantoms (Part I)

    NASA Astrophysics Data System (ADS)

    Vrba, Tomas; Nogueira, Pedro; Broggio, David; Caldeira, Margarida; Capello, Kevin; Fantínová, Karin; Figueira, Catarina; Hunt, John; Leone, Debora; Murugan, Manohari; Marzocchi, Olaf; Moraleda, Montse; Shutt, Arron; Suh, Soheigh; Takahashi, Masa; Tymińska, Katarzyna; Antonia Lopez, Maria; Tanner, Rick

    2014-11-01

    An intercomparison on in-vivo monitoring for determination of 241Am in three skull phantoms was launched by EURADOS in 2011. The project focused on the measurement and estimation of 241Am activity in the human skull. Three human skull phantoms of different complexity were used. A Monte Carlo (MC) exercise with the voxel representations of the real phantoms was also launched in September 2012. The main goals of the project were to investigate the use of MC techniques for efficiency calibrations for body monitoring systems for a special calibration exercise and compare the approaches of participating laboratories. The full MC exercise consisted of three tasks with increasing difficulty, to test the extent of the skills of each participating laboratory. The first task in this intercomparison was to simulate a specified detector and a well defined semi-skull phantom. All parameters of the simulation, including photon yield, material property and geometry were fixed. This paper provides an overview of the participants’ results and analyses of the issues presented by this first task. The majority of the responses did not need any correction and the number of incorrect results was less than in a previous exercise of a similar kind. Overall knowledge in this research area utilising MC techniques appears to have improved and the repetition of the intercomparison exercise has positively affected the skills of the participating laboratories.

  8. Design of a digital phantom population for myocardial perfusion SPECT imaging research

    PubMed Central

    Ghaly, Michael; Du, Yong; Fung, George S.K.; Tsui, Benjamin M.W.; Links, Jonathan M.; Frey, Eric

    2014-01-01

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the 3D XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included 3 variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET Monte Carlo code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in the

  9. Design of a digital phantom population for myocardial perfusion SPECT imaging research.

    PubMed

    Ghaly, Michael; Du, Yong; Fung, George S K; Tsui, Benjamin M W; Links, Jonathan M; Frey, Eric

    2014-06-21

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk

  10. Design of a digital phantom population for myocardial perfusion SPECT imaging research

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Fung, George S. K.; Tsui, Benjamin M. W.; Links, Jonathan M.; Frey, Eric

    2014-06-01

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in

  11. Automatic detection of coronary artery disease in myocardial perfusion SPECT using image registration and voxel to voxel statistical comparisons.

    PubMed

    Peace, R A; Staff, R T; Gemmell, H G; McKiddie, F I; Metcalfe, M J

    2002-08-01

    The purpose of this study was to compare the performance of automatic detection of coronary artery disease (CAD) with that of expert observers. A male and female normal image template was constructed from normal stress technetium-99m single photon emission computed tomography (SPECT) studies. Mean and standard deviation images for each sex were created by registering normal studies to a standard shape and position. The test group consisted of 104 patients who had been routinely referred for SPECT and angiography. The gold standard for CAD was defined by angiography. The test group studies were registered to the respective templates and the Z-score was calculated for each voxel. Voxels with a Z-score greater than 5 indicated the presence of CAD. The performance of this method and that of three observers were compared by continuous receiver operating characteristic (CROC) analysis. The overall sensitivity and specificity for automatic detection were 73% and 92%, respectively. The area (Az) under the CROC curve (+/-1 SE) for automatic detection of CAD was 0.88+/-0.06. There was no statistically significant difference between the performances of the three observers in terms of Az and that of automatic detection (P> or =0.25, univariate Z-score test). The use of this automated statistical mapping approach shows a performance comparable with experienced observers, but avoids inter-observer and intra-observer variability. PMID:12124485

  12. A phantom design for validating colonoscopy tracking

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2012-03-01

    Phantom experiments are useful and frequently used in validating algorithms or techniques in applications where it is difficult or impossible to generate accurate ground-truth. In this work we present a phantom design and experiments to validate our colonoscopy tracking algorithms, that serve to keep both virtual colonoscopy and optical colonoscopy images aligned (in location and orientation). We describe the construction of two phantoms, capable of respectively moving along a straight and a curved path. The phantoms are motorized so as to be able to move at a near constant speed. Experiments were performed at three speeds: 10, 15 and 20mm/sec, to simulate motion velocities during colonoscopy procedures. The average velocity error was within 3mm/sec in both straight and curved phantoms. Displacement error was within 7mm over a total distance of 288mm in the straight phantom, and less than 7mm over 287mm in the curved phantom. Multiple trials were performed of each experiment(and their errors averaged) to ensure repeatability.

  13. Biomimetic phantom for cardiac diffusion MRI

    PubMed Central

    Teh, Irvin; Zhou, Feng‐Lei; Hubbard Cristinacce, Penny L.; Parker, Geoffrey J.M.

    2015-01-01

    Purpose Diffusion magnetic resonance imaging (MRI) is increasingly used to characterize cardiac tissue microstructure, necessitating the use of physiologically relevant phantoms for methods development. Existing phantoms are generally simplistic and mostly simulate diffusion in the brain. Thus, there is a need for phantoms mimicking diffusion in cardiac tissue. Materials and Methods A biomimetic phantom composed of hollow microfibers generated using co‐electrospinning was developed to mimic myocardial diffusion properties and fiber and sheet orientations. Diffusion tensor imaging was carried out at monthly intervals over 4 months at 9.4T. 3D fiber tracking was performed using the phantom and compared with fiber tracking in an ex vivo rat heart. Results The mean apparent diffusion coefficient and fractional anisotropy of the phantom remained stable over the 4‐month period, with mean values of 7.53 ± 0.16 × 10‐4 mm2/s and 0.388 ± 0.007, respectively. Fiber tracking of the 1st and 3rd eigenvectors generated analogous results to the fiber and sheet‐normal direction respectively, found in the left ventricular myocardium. Conclusion A biomimetic phantom simulating diffusion in the heart was designed and built. This could aid development and validation of novel diffusion MRI methods for investigating cardiac microstructure, decrease the number of animals and patients needed for methods development, and improve quality control in longitudinal and multicenter cardiac diffusion MRI studies. J. MAGN. RESON. IMAGING 2016;43:594–600. PMID:26213152

  14. [Comparison of phantom limb pain or phantom extremity sensation of upper and lower extremity amputations].

    PubMed

    Uğur, Fatih; Akin, Aynur; Esmaoğlu, Aliye; Doğru, Kudret; Ors, Sevgi; Aydoğan, Harun; Gülcü, Nebahat; Boyaci, Adem

    2007-01-01

    The aim of this retrospective study is to evaluate the upper and the lower extremity amputations with regard to phantom pain, phantom sensation and stump pain. A questionnaire consisting of 23 questions was send to the patients who underwent upper or lower extremity amputation surgery between 1996- 2005. The patients were questioned for the presence of phantom pain and sensations and if they existed for the frequency, intensity, cause of amputation, pre-amputation pain, stump pain, usage of artificial limb. Totally 147 patients were included and the response rate was 70 %. The incidence of phantom pain in Upper Extremity Group was 60 % and 65.8% in Lower Extremity Group. The incidence of phantom sensations was 70.7% in Upper Extremity Group and 75.6% in Lower Extremity Group. There was no significant difference between two groups considering in phantom pain and phantom sensations. The phantom pain was significantly higher in patients who lost dominant hand, experienced pre amputation pain and suffered stump pain. There were no significant differences in regard to phantom pain and sensation between upper and lower extremity amputations. However the presence of preamputation pain, stump pain and amputation of dominant hand were found as risk factors for the development of phantom pain. PMID:17457707

  15. New ANSI standard for thyroid phantom

    SciTech Connect

    Mallett, Michael W.; Bolch, Wesley E.; Fulmer, Philip C.; Jue, Tracy M.; McCurdy, David E.; Pillay, Mike; Xu, X. George

    2015-08-01

    Here, a new ANSI standard titled “Thyroid Phantom Used in Occupational Monitoring” (Health Physics Society 2014) has been published. The standard establishes the criteria for acceptable design, fabrication, or modeling of a phantom suitable for calibrating in vivo monitoring systems to measure photon-emitting radionuclides deposited in the thyroid. The current thyroid phantom standard was drafted in 1973 (ANSI N44.3-1973), last reviewed in 1984, and a revision of the standard to cover a more modern approach was deemed warranted.

  16. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

    NASA Astrophysics Data System (ADS)

    Jarry, G.; DeMarco, J. J.; Beifuss, U.; Cagnon, C. H.; McNitt-Gray, M. F.

    2003-08-01

    The purpose of this work is to develop and test a method to estimate the relative and absolute absorbed radiation dose from axial and spiral CT scans using a Monte Carlo approach. Initial testing was done in phantoms and preliminary results were obtained from a standard mathematical anthropomorphic model (MIRD V) and voxelized patient data. To accomplish this we have modified a general purpose Monte Carlo transport code (MCNP4B) to simulate the CT x-ray source and movement, and then to calculate absorbed radiation dose in desired objects. The movement of the source in either axial or spiral modes was modelled explicitly while the CT system components were modelled using published information about x-ray spectra as well as information provided by the manufacturer. Simulations were performed for single axial scans using the head and body computed tomography dose index (CTDI) polymethylmethacrylate phantoms at both central and peripheral positions for all available beam energies and slice thicknesses. For comparison, corresponding physical measurements of CTDI in phantom were made with an ion chamber. To obtain absolute dose values, simulations and measurements were performed in air at the scanner isocentre for each beam energy. To extend the verification, the CT scanner model was applied to the MIRD V model and compared with published results using similar technical factors. After verification of the model, the generalized source was simulated and applied to voxelized models of patient anatomy. The simulated and measured absolute dose data in phantom agreed to within 2% for the head phantom and within 4% for the body phantom at 120 and 140 kVp; this extends to 8% for the head and 9% for the body phantom across all available beam energies and positions. For the head phantom, the simulated and measured absolute dose data agree to within 2% across all slice thicknesses at 120 kVp. Our results in the MIRD phantom agree within 11% of all the different organ dose values

  17. Comparison of Snyder Head Phantom Models Used for Neutron Capture Therapy Benchmark Monte Carlo Dosimetry Calculations

    NASA Astrophysics Data System (ADS)

    Goorley, T.; Kiger, W. S.; Zamenhof, R.

    As Boron Neutron Capture Therapy (BNCT) clinical trials are initiated in more countries, new treatment planning software programs are being developed to calculate dose distributions in patient specific models. A reference suite of test problems, i.e., head phantom irradiations and resulting depth-dose curves, would allow quantitative comparison of the treatment planning software. This paper presents sets of central axis depth vs. dose curves calculated with the Monte Carlo radiation transport code MCNP4B for five different representations of the Snyder head phantom. The first is a multi-shell analytic ellipsoidal representation, and the remaining four are voxelized representations with cube edge lengths of 16, 10, 8 and 4 mm. For these calculations, 10 cm diameter monoenergetic and monodirectional neutron and photon beams were incident along the central axes of the models. Individual beams of 0.0253 eV, 1, 2, 10, 100 and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were simulated to high statistical convergence, with statistical error less than 1% in the center of the model. A "generic" epithermal neutron beam, with 1% fast flux contamination and 10% thermal flux contamination, similar to those proposed for BNCT treatments, was also simulated with all five models. Computations for both of the smaller sized voxel models produced thermal neutron, fast neutron, and gamma dose rates within 4% of those from the analytical representation. It is proposed that these data sets be used by the BNCT community for the verification of existing and new BNCT treatment planning software.

  18. Voxel Based Representation of Full-Waveform Airborne Laser Scanner Data for Forestry Applications

    NASA Astrophysics Data System (ADS)

    Stelling, N.; Richter, K.

    2016-06-01

    The advantages of using airborne full-waveform laser scanner data in forest applications, e.g. for the description of the vertical vegetation structure or accurate biomass estimation, have been emphasized in many publications. To exploit the full potential offered by airborne full-waveform laser scanning data, the development of voxel based methods for data analysis is essential. In contrast to existing approaches based on the extraction of discrete 3D points by a Gaussian decomposition, it is very promising to derive the voxel attributes from the digitised waveform directly. For this purpose, the waveform data have to be transferred into a 3D voxel representation. This requires a series of radiometric and geometric transformations of the raw full-waveform laser scanner data. Thus, the paper deals with the geometric aspects and describes a processing chain from the raw waveform data to an attenuationcorrected volumetric forest stand reconstruction. The integration of attenuation-corrected waveform data into the voxel space is realised with an efficient parametric voxel traversal method operating on an octree data structure. The voxel attributes are derived from the amplitudes of the attenuation-corrected waveforms. Additionally, a new 3D filtering approach is presented to eliminate non-object voxel. Applying these methods to real full-waveform laser scanning data, a voxel based representation of a spruce was generated combining three flight strips from different viewing directions.

  19. Wormholes supported by phantom energy

    NASA Astrophysics Data System (ADS)

    González, J. A.; Guzmán, F. S.; Montelongo-García, N.; Zannias, T.

    2009-03-01

    By a combination of analytical and numerical techniques, we demonstrate the existence of spherical, asymptotically flat traversable wormholes supported by exotic matter whose stress tensor relative to the orthonormal frame of Killing observers takes the form of a perfect fluid possessing anisotropic pressures and subject to linear equations of state: τ=λρc2, P=μρc2. We show that there exists a four parameter family of asymptotically flat spherical wormholes parametrized by the area of the throat A(0), the gradient Λ(0) of the red shift factor evaluated on the throat as well as the values of (λ,μ). The latter are subject to restrictions: λ>1 and 2μ>λ or λ<0 and 2μ<-|λ|. For particular values of (λ,μ), the stress tensor may be interpreted as representing a phantom configuration, while for other values represents exotic matter. All solutions have the property that the two asymptotically flat ends possess finite Arnowitt-Deser-Misner mass.

  20. Determining correspondence in 3-D MR brain images using attribute vectors as morphological signatures of voxels.

    PubMed

    Xue, Zhong; Shen, Dinggang; Davatzikos, Christos

    2004-10-01

    Finding point correspondence in anatomical images is a key step in shape analysis and deformable registration. This paper proposes an automatic correspondence detection algorithm for intramodality MR brain images of different subjects using wavelet-based attribute vectors (WAVs) defined on every image voxel. The attribute vector (AV) is extracted from the wavelet subimages and reflects the image structure in a large neighborhood around the respective voxel in a multiscale fashion. It plays the role of a morphological signature for each voxel, and our goal is, therefore, to make it distinctive of the respective voxel. Correspondence is then determined from similarities of AVs. By incorporating the prior knowledge of the spatial relationship among voxels, the ability of the proposed algorithm to find anatomical correspondence is further improved. Experiments with MR images of human brains show that the algorithm performs similarly to experts, even for complex cortical structures. PMID:15493695

  1. Comparison of the effect of simple and complex acquisition trajectories on the 2D SPR and 3D voxelized differences for dedicated breast CT imaging

    NASA Astrophysics Data System (ADS)

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2014-03-01

    The 2D scatter-to-primary (SPR) ratios and 3D voxelized difference volumes were characterized for a cone beam breast CT scanner capable of arbitrary (non-traditional) 3D trajectories. The CT system uses a 30x30cm2 flat panel imager with 197 micron pixellation and a rotating tungsten anode x-ray source with 0.3mm focal spot, with an SID of 70cm. Data were acquired for two cylindrical phantoms (12.5cm and 15cm diameter) filled with three different combinations of water and methanol yielding a range of uniform densities. Projections were acquired with two acquisition trajectories: 1) simple-circular azimuthal orbit with fixed tilt; and 2) saddle orbit following a +/-15° sinusoidal trajectory around the object. Projection data were acquired in 2x2 binned mode. Projections were scatter corrected using a beam stop array method, and the 2D SPR was measured on the projections. The scatter corrected and uncorrected data were then reconstructed individually using an iterative ordered subsets convex algorithm, and the 3D difference volumes were calculated as the absolute difference between the two. Results indicate that the 2D SPR is ~7-15% higher on projections with greatest tilt for the saddle orbit, due to the longer x-ray path length through the volume, compared to the 0° tilt projections. Additionally, the 2D SPR increases with object diameter as well as density. The 3D voxelized difference volumes are an estimate of the scatter contribution to the reconstructed attenuation coefficients on a voxel level. They help visualize minor deficiencies and artifacts in the volumes due to correction methods.

  2. Spatially 2D-selective RF excitations using the PROPELLER trajectory: basic principles and application to MR spectroscopy of irregularly shaped single voxel.

    PubMed

    Busch, Martin G; Finsterbusch, Jürgen

    2011-11-01

    Spatially two-dimensional selective radio frequency (2DRF) excitations are able to excite arbitrarily-shaped profiles in their excitation plane and, hence, can be used to minimize partial volume effects in single-voxel magnetic resonance spectroscopy. In this study, 2DRF excitations based on the PROPELLER trajectory which consists of blades of parallel lines that are rotated against each other, are presented. Because the k-space center is covered with each segment, the trajectory yields a high signal efficiency which, e.g., is considerably improved compared to a segmented blipped-planar approach. It is shown that a sampling density correction based on the PROPELLER trajectory's Voronoi diagram suppresses unwanted side excitations. Off-resonance effects like chemical-shift displacement artifacts, can be minimized by applying nonselective refocusing radio frequency pulses between the lines of a blade. With half-Fourier segments, the 2DRF's echo time contribution can be shortened considerably. Thus, robust 2DRF excitations capable of exciting high-resolution profiles at short echo times with high signal efficiency are obtained. Their applicability to MR spectroscopy of an arbitrarily-shaped single voxel is demonstrated in a two-bottle phantom and in the human brain in vivo on a 3 T whole-body MR system. PMID:21465546

  3. Custom molded thermal MRg-FUS phantom

    NASA Astrophysics Data System (ADS)

    Eames, Matthew D. C.; Snell, John W.; Hananel, Arik; Kassell, Neal F.

    2012-11-01

    This article describes a method for creating custom-molded thermal phantoms for use with MR-guided focused ultrasound systems. The method is defined here for intracranial applications, though it may be modified for other anatomical targets.

  4. Can neural blocks prevent phantom limb pain?

    PubMed

    Borghi, Battista; D'Addabbo, Marco; Borghi, Raffaele

    2014-07-01

    Phantom limb syndrome (PLS) is a syndrome including stump pain, phantom limb pain and not-painful phantom sensations, which involves a large part of amputee patients and often has devastating effects on their quality of life. The efficacy of standard therapies is very poor. Nerve blocks have been investigated for the treatment and prevention of PLS. Epidural and peripheral blocks limited to the first three postamputation days can only reduce acute pain but cannot prevent the later development of PLS. Recent studies have shown that ambulatory prolonged peripheral nerve block (up to 30 days postamputation) may represent a new possible option to treat phantom pain and prevent the development of PLS and chronic pain. PMID:25300383

  5. Mirror therapy for phantom limb pain.

    PubMed

    Kim, Sae Young; Kim, Yun Young

    2012-10-01

    Phantom limb pain is a painful sensation that is perceived in a body part that no longer exists. To control this pain, many methods have been used such as medication, physical treatment, nerve block, neuromodulation, surgical treatment and mirror therapy. However, until now, there effects have been uncertain. We report the successful reduction of phantom limb pain using mirror therapy when other treatments initially failed to control the pain. PMID:23091690

  6. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    SciTech Connect

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan; and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  7. Acupuncture treatment of phantom limb pain and phantom limb sensation in a primary care setting.

    PubMed

    Davies, Arwel

    2013-03-01

    A 45-year-old man presented with phantom limb pain and phantom limb sensation 12 weeks after an above-elbow amputation of his right arm. He underwent seven sessions of acupuncture at weekly intervals carried out by his general practitioner on his intact left arm, with complete relief of the phantom limb pain and considerable improvement of the phantom limb sensation of his right arm. This case demonstrates the possible benefits from the use of short acupuncture sessions for a potentially chronic condition undertaken within the constraints of a busy general medical practice. PMID:23220713

  8. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit

    SciTech Connect

    Badal, Andreu; Badano, Aldo

    2009-11-15

    Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  9. Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study

    PubMed Central

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F.

    2015-01-01

    Background Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. Objectives This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. Methods High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Results Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Conclusions Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature. PMID:26601082

  10. A Voxel Based Morphometry Study of Brain Gray Matter Volumes in Juvenile Obsessive Compulsive Disorder

    PubMed Central

    Jayarajan, Rajan Nishanth; Agarwal, Sri Mahavir; Viswanath, Biju; Kalmady, Sunil V.; Venkatasubramanian, Ganesan; Srinath, Shoba; Chandrashekar, C.R.; Janardhan Reddy, Y.C.

    2015-01-01

    Introduction: Adult patients with Obsessive Compulsive Disorder (OCD) have been shown to have gray matter (GM) volume differences from healthy controls in multiple regions – the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), medial frontal gyri (MFG), striatum, thalamus, and superior parietal lobule. However, there is paucity of data with regard to juvenile OCD. Hence, we examined GM volume differences between juvenile OCD patients and matched healthy controls using voxel based morphometry (VBM) with the above apriori regions of interest. Method: Fifteen right handed juvenile patients with OCD and age- sex- handedness- matched healthy controls were recruited after administering the Mini International Neuropsychiatric Interview-KID and the Children’s Yale-Brown Obsessive Compulsive Scale, and scanned using a 3 Tesla magnetic resonance imaging scanner. VBM methodology was followed. Results: In comparison with healthy controls, patients had significantly smaller GM volumes in left ACC. YBOCS total score (current) showed significant negative correlation with GM volumes in bilateral OFC, and left superior parietal lobule. Conclusion: These findings while reiterating the important role of the orbito-fronto-striatal circuitry, also implicate in the parietal lobe – especially the superior parietal lobule as an important structure involved in the pathogenesis of OCD. PMID:26379719

  11. Multimodality vascular imaging phantom for calibration purpose

    NASA Astrophysics Data System (ADS)

    Cloutier, Guy; Soulez, Gilles; Teppaz, Pierre; Qanadli, Salah D.; Qin, Zhao; Durand, Louis-Gilles

    2003-05-01

    The objective of the project was to design a vascular phantom compatible with X-ray, ultrasound and MRI. Fiducial markers were implanted at precise known locations in the phantom to facilitate identification and orientation of plane views from the 3D reconstructed images. They also allowed optimizing image fusion and calibration. A vascular conduit connected to tubing at the extremities of the phantom ran through an agar-based gel filling it. A vessel wall in latex was included to avoid diffusion of contrast agents. Using a lost-material casting technique based on a low melting point metal, complex realistic geometries of normal and pathological vessels were modeled. The fiducial markers were detectable in all modalities without distortion. No leak of gadolinium through the vascular wall was observed on MRI for 5h of scan. The potential use of the phantom for calibration, rescaling, and fusion of 3D images obtained from the different modalities as well as its use for the evaluation of intra and inter-modality comparative studies of imaging systems were recently demonstrated by our group (results published in SPIE-2003). Endovascular prostheses were also implanted into the lumen of the phantom to evaluate the extent of metallic imaging artifacts (results submitted elsewhere). In conclusion, the phantom can allow accurate calibration of radiological imaging devices and quantitative comparisons of the geometric accuracy of each radiological imaging method tested.

  12. ANTHROPOMORPHIC BREAST PHANTOMS FOR TESTING ELASTOGRAPHY SYSTEMS

    PubMed Central

    Madsen, Ernest L.; Hobson, Maritza A.; Frank, Gary R.; Shi, Hairong; Jiang, Jingfeng; Hall, Timothy J.; Varghese, Tomy; Doyley, Marvin M.; Weaver, John B.

    2006-01-01

    Two equivalent anthropomorphic breast phantoms were constructed, one for use in ultrasound elastography and the other in magnetic resonance (MR) elastography. A complete description of the manufacturing methods is provided. The materials used were oil-in-gelatin dispersions, where the volume percent oil differentiates the materials, primarily according to Young’s moduli. Values of Young’s moduli are in agreement with in vitro ranges for the corresponding normal and abnormal breast tissues. Ultrasound and nuclear magnetic resonance (NMR) properties are reasonably well represented. Phantoms of the type described promise to aid researchers who are developing hardware and software for elastography. Examples of ultrasound and MR elastograms of the phantoms are included to demonstrate the utility of the phantoms. Also, the level of stability of elastic properties of the component materials is quantified over a 15-month period. Such phantoms can serve as performance-assessing intermediaries between simple phantoms (consisting, for example, of homogeneous cylindrical inclusions in a homogeneous background) and a full-scale clinical trial. Thus, premature clinical trials may be avoided. PMID:16785008

  13. A nonlinear elasticity phantom containing spherical inclusions

    PubMed Central

    Pavan, Theo Z.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Carneiro, Antonio Adilton O.; Hall, Timothy J.

    2012-01-01

    The strain image contrast of some in vivo breast lesions changes with increasing applied load. This change is attributed to differences in the nonlinear elastic properties of the constituent tissues suggesting some potential to help classify breast diseases by their nonlinear elastic properties. A phantom with inclusions and long-term stability is desired to serve as a test bed for nonlinear elasticity imaging method development, testing, etc. This study reports a phantom designed to investigate nonlinear elastic properties with ultrasound elastographic techniques. The phantom contains four spherical inclusions and was manufactured from a mixture of gelatin, agar and oil. The phantom background and each of the inclusions has distinct Young’s modulus and nonlinear mechanical behavior. This phantom was subjected to large deformations (up to 20%) while scanning with ultrasound, and changes in strain image contrast and contrast-to-noise ratio (CNR) between inclusion and background, as a function of applied deformation, were investigated. The changes in contrast over a large deformation range predicted by the finite element analysis (FEA) were consistent with those experimentally observed. Therefore, the paper reports a procedure for making phantoms with predictable nonlinear behavior, based on independent measurements of the constituent materials, and shows that the resulting strain images (e.g., strain contrast) agrees with that predicted with nonlinear FEA. PMID:22772074

  14. Phantom Limb Pain: Mechanisms and Treatment Approaches

    PubMed Central

    Subedi, Bishnu; Grossberg, George T.

    2011-01-01

    The vast amount of research over the past decades has significantly added to our knowledge of phantom limb pain. Multiple factors including site of amputation or presence of preamputation pain have been found to have a positive correlation with the development of phantom limb pain. The paradigms of proposed mechanisms have shifted over the past years from the psychogenic theory to peripheral and central neural changes involving cortical reorganization. More recently, the role of mirror neurons in the brain has been proposed in the generation of phantom pain. A wide variety of treatment approaches have been employed, but mechanism-based specific treatment guidelines are yet to evolve. Phantom limb pain is considered a neuropathic pain, and most treatment recommendations are based on recommendations for neuropathic pain syndromes. Mirror therapy, a relatively recently proposed therapy for phantom limb pain, has mixed results in randomized controlled trials. Most successful treatment outcomes include multidisciplinary measures. This paper attempts to review and summarize recent research relative to the proposed mechanisms of and treatments for phantom limb pain. PMID:22110933

  15. Anthropomorphic breast phantoms for testing elastography systems.

    PubMed

    Madsen, Ernest L; Hobson, Maritza A; Frank, Gary R; Shi, Hairong; Jiang, Jingfeng; Hall, Timothy J; Varghese, Tomy; Doyley, Marvin M; Weaver, John B

    2006-06-01

    Two equivalent anthropomorphic breast phantoms were constructed, one for use in ultrasound elastography and the other in magnetic resonance (MR) elastography. A complete description of the manufacturing methods is provided. The materials used were oil-in-gelatin dispersions, where the volume percent oil differentiates the materials, primarily according to Young's moduli. Values of Young's moduli are in agreement with in vitro ranges for the corresponding normal and abnormal breast tissues. Ultrasound and nuclear magnetic resonance (NMR) properties are reasonably well represented. Phantoms of the type described promise to aid researchers who are developing hardware and software for elastography. Examples of ultrasound and MR elastograms of the phantoms are included to demonstrate the utility of the phantoms. Also, the level of stability of elastic properties of the component materials is quantified over a 15-month period. Such phantoms can serve as performance-assessing intermediaries between simple phantoms (consisting, for example, of homogeneous cylindrical inclusions in a homogeneous background) and a full-scale clinical trial. Thus, premature clinical trials may be avoided. PMID:16785008

  16. Phantom limb pain: mechanisms and treatment approaches.

    PubMed

    Subedi, Bishnu; Grossberg, George T

    2011-01-01

    The vast amount of research over the past decades has significantly added to our knowledge of phantom limb pain. Multiple factors including site of amputation or presence of preamputation pain have been found to have a positive correlation with the development of phantom limb pain. The paradigms of proposed mechanisms have shifted over the past years from the psychogenic theory to peripheral and central neural changes involving cortical reorganization. More recently, the role of mirror neurons in the brain has been proposed in the generation of phantom pain. A wide variety of treatment approaches have been employed, but mechanism-based specific treatment guidelines are yet to evolve. Phantom limb pain is considered a neuropathic pain, and most treatment recommendations are based on recommendations for neuropathic pain syndromes. Mirror therapy, a relatively recently proposed therapy for phantom limb pain, has mixed results in randomized controlled trials. Most successful treatment outcomes include multidisciplinary measures. This paper attempts to review and summarize recent research relative to the proposed mechanisms of and treatments for phantom limb pain. PMID:22110933

  17. Effects of computational phantoms on the effective dose and two-dosimeter algorithm for external photon beams.

    PubMed

    Karimi-Shahri, K; Rafat-Motavalli, L; Miri-Hakimabad, H; Liu, L; Li, J

    2016-09-01

    In this study, the effect of computational phantoms on the effective dose (E), dosimeter responses positioned on the front (chest) and back of phantom, and two-dosimeter algorithm was investigated for external photon beams. This study was performed using Korean Typical MAN-2 (KTMAN-2), Chinese Reference Adult Male (CRAM), ICRP male reference, and Male Adult meSH (MASH) reference phantoms. Calculations were performed for beam directions in different polar and azimuthal angles using the Monte Carlo code of MCNP at energies of 0.08, 0.3, and 1MeV. Results show that the body shape significantly affects E and two-dosimeter responses when the dosimeters are indirectly irradiated. The acquired two-dosimeter algorithms are almost the same for all the mentioned phantoms except for KTMAN-2. Comparisons between the obtained E and estimated E (Eest), acquired from two-dosimeter algorithm, illustrate that the Eest is overestimated in overhead (OH) and underfoot (UF) directions. The effect of using one algorithm for all phantoms was also investigated. Results show that application of one algorithm to all reference phantoms is possible. PMID:27389880

  18. Multimodal Voxel-Based Meta-Analysis of White Matter Abnormalities in Obsessive–Compulsive Disorder

    PubMed Central

    Radua, Joaquim; Grau, Mar; van den Heuvel, Odile A; Thiebaut de Schotten, Michel; Stein, Dan J; Canales-Rodríguez, Erick J; Catani, Marco; Mataix-Cols, David

    2014-01-01

    White matter (WM) abnormalities have long been suspected in obsessive–compulsive disorder (OCD) but the available evidence has been inconsistent. We conducted the first multimodal meta-analysis of WM volume (WMV) and fractional anisotropy (FA) studies in OCD. All voxel-wise studies comparing WMV or FA between patients with OCD and healthy controls in the PubMed, ScienceDirect, Google Scholar, Web of Knowledge and Scopus databases were retrieved. Manual searches were also conducted and authors were contacted soliciting additional data. Thirty-four data sets were identified, of which 22 met inclusion criteria (five of them unpublished; comprising 537 adult and pediatric patients with OCD and 575 matched healthy controls). Whenever possible, raw statistical parametric maps were also obtained from the authors. Peak and raw WMV and FA data were combined using novel multimodal meta-analytic methods implemented in effect-size signed differential mapping. Patients with OCD showed widespread WM abnormalities, but findings were particularly robust in the anterior midline tracts (crossing between anterior parts of cingulum bundle and body of corpus callosum), which showed both increased WMV and decreased FA, possibly suggesting an increase of fiber crossing in these regions. This finding was also observed when the analysis was limited to adult participants, and especially pronounced in samples with a higher proportion of medicated patients. Therefore, patients with OCD may have widespread WM abnormalities, particularly evident in anterior midline tracts, although these changes might be, at least in part, attributable to the effects of therapeutic drugs. PMID:24407265

  19. Which Phantom Is Better for Assessing the Image Quality in Full-Field Digital Mammography?: American College of Radiology Accreditation Phantom versus Digital Mammography Accreditation Phantom

    PubMed Central

    Song, Sung Eun; Yie, An; Ku, Bon Kyung; Kim, Hee-Young; Cho, Kyu Ran; Chung, Hwan Hoon; Lee, Seung Hwa; Hwang, Kyu-Won

    2012-01-01

    Objective To compare between the American College of Radiology (ACR) accreditation phantom and digital mammography accreditation phantom in assessing the image quality in full-field digital mammography (FFDM). Materials and Methods In each week throughout the 42-week study, we obtained phantom images using both the ACR accreditation phantom and the digital mammography accreditation phantom, and a total of 42 pairs of images were included in this study. We assessed the signal-to-noise ratio (SNR) in each phantom image. A radiologist drew a square-shaped region of interest on the phantom and then the mean value of the SNR and the standard deviation were automatically provided on a monitor. SNR was calculated by an equation, measured mean value of SNR-constant coefficient of FFDM/standard deviation. Two breast radiologists scored visible objects (fibers, specks, and masses) with soft-copy images and calculated the visible rate (number of visible objects/total number of objects). We compared SNR and the visible rate of objects between the two phantoms and calculated the k-coefficient for interobserver agreement. Results The SNR of the ACR accreditation phantom ranged from 42.0 to 52.9 (Mean, 47.3 ± 2.79) and that of Digital Phantom ranged from 24.8 to 54.0 (Mean, 44.1 ± 9.93) (p = 0.028). The visible rates of all three types of objects were much higher in the ACR accreditation phantom than those in the digital mammography accreditation phantom (p < 0.05). Interobserver agreement for visible rates of objects on phantom images was fair to moderate agreement (k-coefficients: 0.34-0.57). Conclusion The ACR accreditation phantom is superior to the digital mammography accreditation phantom in terms of SNR and visibility of phantom objects. Thus, ACR accreditation phantom appears to be satisfactory for assessing the image quality in FFDM. PMID:23118577

  20. Phantom dosimetry calculations for use in radiation-effects correlations. Technical report, 1 April 1983-30 July 1984

    SciTech Connect

    Kaul, D.C.; Roberts, J.A.; Egbert, S.D.

    1984-07-30

    Models corresponding to an adult Rhesus Monkey and a simple analogue were created in combinatorial geometry for use in Monte Carlo radiation-transport calculations. The complex monkey phantom is based on anatomical measurements of a sectioned cadaver. Adjoint Monte Carlo calculations were performed to obtain the energy- and angle-differential adjoint fluence for the mid-head, mid-thorax locations in both phantoms and active marrow in the complex monkey phantom. The results were also convoluted with free-field spectra for two TRIGA reactor exposure room configurations at the Armed Forces Radiobiological Research Institute, using the VCS code system. Comparisons are made between calculated and measured KERMA values in the simple phantom. Good agreement is obtained. However, it is found that good agreement cannot be obtained using simple scalar coupling.

  1. Monte Carlo-based diffusion tensor tractography with a geometrically corrected voxel-centre connecting method

    NASA Astrophysics Data System (ADS)

    Bodammer, N. C.; Kaufmann, J.; Kanowski, M.; Tempelmann, C.

    2009-02-01

    Diffusion tensor tractography (DTT) allows one to explore axonal connectivity patterns in neuronal tissue by linking local predominant diffusion directions determined by diffusion tensor imaging (DTI). The majority of existing tractography approaches use continuous coordinates for calculating single trajectories through the diffusion tensor field. The tractography algorithm we propose is characterized by (1) a trajectory propagation rule that uses voxel centres as vertices and (2) orientation probabilities for the calculated steps in a trajectory that are obtained from the diffusion tensors of either two or three voxels. These voxels include the last voxel of each previous step and one or two candidate successor voxels. The precision and the accuracy of the suggested method are explored with synthetic data. Results clearly favour probabilities based on two consecutive successor voxels. Evidence is also provided that in any voxel-centre-based tractography approach, there is a need for a probability correction that takes into account the geometry of the acquisition grid. Finally, we provide examples in which the proposed fibre-tracking method is applied to the human optical radiation, the cortico-spinal tracts and to connections between Broca's and Wernicke's area to demonstrate the performance of the proposed method on measured data.

  2. Structured movement representations of a phantom limb associated with phantom limb pain.

    PubMed

    Osumi, Michihiro; Sumitani, Masahiko; Wake, Naoki; Sano, Yuko; Ichinose, Akimichi; Kumagaya, Shin-Ichiro; Kuniyoshi, Yasuo; Morioka, Shu

    2015-09-25

    The relation between phantom limb pain (PLP) and the movement representation of a phantom limb remains controversial in several areas of neurorehabilitation, although there are a few studies in which the representation of phantom limb movement was precisely evaluated. We evaluated the structured movement representation of a phantom limb objectively using a bimanual circle-line coordination task. We then investigated the relation between PLP and the structured movement representation. Nine patients with a brachial plexus avulsion injury were enrolled who perceived a phantom limb and had neuropathic pain. While blindfolded, the participants repeatedly drew vertical lines using the intact hand and intended to draw circles using the phantom limb simultaneously. "Drawing of circles" by the phantom limb resulted in an oval transfiguration of the vertical lines ("bimanual coupling" effect). We used an arbitrary ovalization index (OI) to quantify the oval transfiguration. When the OI neared 100%, the trajectory changed toward becoming more circular. A significant negative correlation was observed between the intensity of PLP and the OI (r=-0.66, p<0.05). Our findings directly suggest that structured movement representations of the phantom limb are necessary for alleviating PLP. PMID:26272300

  3. The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults—application to CT dosimetry

    NASA Astrophysics Data System (ADS)

    Geyer, Amy M.; O'Reilly, Shannon; Lee, Choonsik; Long, Daniel J.; Bolch, Wesley E.

    2014-09-01

    Substantial increases in pediatric and adult obesity in the US have prompted a major revision to the current UF/NCI (University of Florida/National Cancer Institute) family of hybrid computational phantoms to more accurately reflect current trends in larger body morphometry. A decision was made to construct the new library in a gridded fashion by height/weight without further reference to age-dependent weight/height percentiles as these become quickly outdated. At each height/weight combination, circumferential parameters were defined and used for phantom construction. All morphometric data for the new library were taken from the CDC NHANES survey data over the time period 1999-2006, the most recent reported survey period. A subset of the phantom library was then used in a CT organ dose sensitivity study to examine the degree to which body morphometry influences the magnitude of organ doses for patients that are underweight to morbidly obese in body size. Using primary and secondary morphometric parameters, grids containing 100 adult male height/weight bins, 93 adult female height/weight bins, 85 pediatric male height/weight bins and 73 pediatric female height/weight bins were constructed. These grids served as the blueprints for construction of a comprehensive library of patient-dependent phantoms containing 351 computational phantoms. At a given phantom standing height, normalized CT organ doses were shown to linearly decrease with increasing phantom BMI for pediatric males, while curvilinear decreases in organ dose were shown with increasing phantom BMI for adult females. These results suggest that one very useful application of the phantom library would be the construction of a pre-computed dose library for CT imaging as needed for patient dose-tracking.

  4. What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis.

    PubMed

    Davis, Tyler; LaRocque, Karen F; Mumford, Jeanette A; Norman, Kenneth A; Wagner, Anthony D; Poldrack, Russell A

    2014-08-15

    Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results. PMID:24768930

  5. Calculation of Dose Deposition in 3D Voxels by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    The biological response to high-LET radiation is very different from low-LET radiation, and can be partly attributed to the energy deposition by the radiation. Several experiments, notably detection of gamma-H2AX foci by immunofluorescence, has revealed important differences in the nature and in the spatial distribution of double-strand breaks (DSB) induced by low- and high-LET radiations. Many calculations, most of which are based on amorphous track models with radial dose, have been combined with chromosome models to calculate the number and distribution of DSB within nuclei and chromosome aberrations. In this work, the Monte-Carlo track structure simulation code RITRACKS have been used to calculate directly the energy deposition in voxels (3D pixels). A cubic volume of 5 micrometers of side was irradiated by 1) 450 (1)H+ ions of 300 MeV (LET is approximately 0.3 keV/micrometer) and 2) by 1 (56)Fe26+ ion of 1 GeV/amu (LET is approximately 150 keV/micrometer). In both cases, the dose deposited in the volume is approximately 1 Gy. All energy deposition events are recorded and dose is calculated in voxels of 20 micrometers of side. The voxels are then visualized in 3D by using a color scale to represent the intensity of the dose in a voxel. This simple approach has revealed several important points which may help understand experimental observations. In both simulations, voxels which receive low dose are the most numerous, and those corresponding to electron track ends received a dose which is in the higher range. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. The distribution of the voxels shows major differences for the (56)Fe26+ ion. The track structure can still be seen, and voxels with much higher dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and may be responsible for DSB that are more difficult to

  6. Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information

    NASA Astrophysics Data System (ADS)

    Hosoi, F.

    2014-12-01

    Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of

  7. Validation of voxel-based morphometry (VBM) based on MRI

    NASA Astrophysics Data System (ADS)

    Yang, Xueyu; Chen, Kewei; Guo, Xiaojuan; Yao, Li

    2007-03-01

    Voxel-based morphometry (VBM) is an automated and objective image analysis technique for detecting differences in regional concentration or volume of brain tissue composition based on structural magnetic resonance (MR) images. VBM has been used widely to evaluate brain morphometric differences between different populations, but there isn't an evaluation system for its validation until now. In this study, a quantitative and objective evaluation system was established in order to assess VBM performance. We recruited twenty normal volunteers (10 males and 10 females, age range 20-26 years, mean age 22.6 years). Firstly, several focal lesions (hippocampus, frontal lobe, anterior cingulate, back of hippocampus, back of anterior cingulate) were simulated in selected brain regions using real MRI data. Secondly, optimized VBM was performed to detect structural differences between groups. Thirdly, one-way ANOVA and post-hoc test were used to assess the accuracy and sensitivity of VBM analysis. The results revealed that VBM was a good detective tool in majority of brain regions, even in controversial brain region such as hippocampus in VBM study. Generally speaking, much more severity of focal lesion was, better VBM performance was. However size of focal lesion had little effects on VBM analysis.

  8. Voxel-based morphometry in patients with idiopathic generalized epilepsies.

    PubMed

    Betting, Luiz Eduardo; Mory, Susana Barreto; Li, Li Min; Lopes-Cendes, Iscia; Guerreiro, Marilisa M; Guerreiro, Carlos A M; Cendes, Fernando

    2006-08-15

    Idiopathic generalized epilepsies (IGE) are a group of frequent age-related epilepsy syndromes. IGE are clinically characterized by generalized tonic-clonic, myoclonic and absence seizures. According to predominant seizure type and age of onset, IGE are divided in subsyndromes: childhood absence and juvenile absence epilepsy (AE), juvenile myoclonic epilepsy (JME) and generalized tonic-clonic seizures on awakening (GTCS). The limits between these subsyndromes are not well defined, supporting the existence of only one major syndrome. Visual assessment of routine magnetic resonance imaging (MRI) in patients with IGE is normal. MRI voxel-based morphometry (VBM) uses automatically segmented gray and white matter for comparisons, eliminating the investigator bias. We used VBM to study 120 individuals (47 controls, 44 with JME, 24 with AE and 15 with GTCS) to investigate the presence of subtle structural abnormalities in IGE subsyndromes. VBM was performed searching for abnormalities on gray matter concentration (GMC) between patients groups and controls. Compared to controls, JME presented increased GMC in frontobasal region and AE showed increased GMC in the superior mesiofrontal region. The GTCS group did not differ from controls. There were no areas of reduced GMC with the statistical level selected. Region of interest analysis showed increased GMC in the anterior portion of the thalamus in patients with absence seizures. Our results support subtle GMC abnormalities in patients with JME and AE when compared to controls. These findings suggest the existence of different patterns of cortical abnormalities in IGE subsyndromes. PMID:16702001

  9. Neuroanatomical voxel-based profile of schizophrenia and bipolar disorder.

    PubMed

    Maggioni, E; Bellani, M; Altamura, A C; Brambilla, P

    2016-08-01

    Although schizophrenia (SCZ) and bipolar disorder (BD) share elements of pathology (Ellison-Wright and Bullmore, 2009), the neural mechanisms underlying these disorders are still under investigation. Up until now, many neuroimaging studies investigated the brain structural differences of SCZ and BD compared with healthy controls (HC), trying to identify the possible neuroanatomical markers for the two disorders. However, just a few studies focused on the brain structural changes between the two diagnoses. The present review summarises the findings of the voxel-based grey matter (GM) comparisons between SCZ and BD, with the objective to highlight the possible consistent anatomical differences between the two disorders. While the comparisons between patients and HC highlighted overlapping areas of GM reduction in insula and anterior cingulate cortex, the SCZ-BD comparisons suggest the presence of more generalised GM deficits in SCZ compared with BD. Indeed, in a number of studies, SCZ patients showed lower GM volumes than BD patients in fronto-temporal cortex, thalamus, hippocampus and amygdala. Conversely, only a couple of studies reported GM deficits in BD compared with SCZ, both at the level of cerebellum. In summary, the two disorders exhibit both common and specific neuroanatomical characteristics, whose knowledge is mandatory to develop innovative diagnostic and treatment strategies. PMID:27095442

  10. Investigation of mindfulness meditation practitioners with voxel-based morphometry.

    PubMed

    Hölzel, Britta K; Ott, Ulrich; Gard, Tim; Hempel, Hannes; Weygandt, Martin; Morgen, Katrin; Vaitl, Dieter

    2008-03-01

    Mindfulness meditators practice the non-judgmental observation of the ongoing stream of internal experiences as they arise. Using voxel-based morphometry, this study investigated MRI brain images of 20 mindfulness (Vipassana) meditators (mean practice 8.6 years; 2 h daily) and compared the regional gray matter concentration to that of non-meditators matched for sex, age, education and handedness. Meditators were predicted to show greater gray matter concentration in regions that are typically activated during meditation. Results confirmed greater gray matter concentration for meditators in the right anterior insula, which is involved in interoceptive awareness. This group difference presumably reflects the training of bodily awareness during mindfulness meditation. Furthermore, meditators had greater gray matter concentration in the left inferior temporal gyrus and right hippocampus. Both regions have previously been found to be involved in meditation. The mean value of gray matter concentration in the left inferior temporal gyrus was predictable by the amount of meditation training, corroborating the assumption of a causal impact of meditation training on gray matter concentration in this region. Results suggest that meditation practice is associated with structural differences in regions that are typically activated during meditation and in regions that are relevant for the task of meditation. PMID:19015095

  11. Voxel Based Morphometry in Optical Coherence Tomography: Validation & Core Findings

    PubMed Central

    Antony, Bhavna J.; Chen, Min; Carass, Aaron; Jedynak, Bruno M.; Al-Louzi, Omar; Solomon, Sharon D.; Saidha, Shiv; Calabresi, Peter A.; Prince, Jerry L.

    2016-01-01

    Optical coherence tomography (OCT) of the human retina is now becoming established as an important modality for the detection and tracking of various ocular diseases. Voxel based morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the exploration of the regional differences in the brain. There has been limited work done in developing registration based methods for OCT, which has hampered the advancement of VBM analyses in OCT based population studies. Following on from our recent development of an OCT registration method, we explore the potential benefits of VBM analysis in cohorts of healthy controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM analysis in two pools of HCs showing no significant difference between the two populations. Additionally, we also present a retrospective study of age and sex matched HCs and relapsing remitting MS patients, demonstrating results consistent with the reported literature while providing insight into the retinal changes associated with this MS subtype. PMID:27199503

  12. Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography organ-based tube current modulation technique

    SciTech Connect

    Gandhi, Diksha; Schmidt, Taly Gilat; Crotty, Dominic J.; Stevens, Grant M.

    2015-11-15

    Purpose: This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods: Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results: ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head

  13. Adjustable fetal phantom for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Stubán, Norbert; Niwayama, Masatsugu

    2009-05-01

    As the measuring head of a fetal pulse oximeter must be attached to the head of the fetus inside the mother's uterus during labor, testing, and developing of fetal pulse oximeters in real environment have several difficulties. A fetal phantom could enable evaluation of pulse oximeters in a simulated environment without the restrictions and difficultness of medical experiments in the labor room. Based on anatomic data we developed an adjustable fetal head phantom with three different tissue layers and artificial arteries. The phantom consisted of two arteries with an inner diameter of 0.2 and 0.4 mm. An electronically controlled pump produced pulse waves in the arteries. With the phantom we investigated the sensitivity of a custom-designed wireless pulse oximeter at different pulsation intensity and artery diameters. The results showed that the oximeter was capable of identifying 4% and 2% changes in diameter between the diastolic and systolic point in arteries of over 0.2 and 0.4 mm inner diameter, respectively. As the structure of the phantom is based on reported anatomic values, the results predict that the investigated custom-designed wireless pulse oximeter has sufficient sensitivity to detect the pulse waves and to calculate the R rate on the fetal head.

  14. Innovative anisotropic phantoms for calibration of diffusion tensor imaging sequences.

    PubMed

    Kłodowski, Krzysztof; Krzyżak, Artur Tadeusz

    2016-05-01

    The paper describes a novel type of anisotropic phantoms designed for b-matrix spatial distribution diffusion tensor imaging (BSD-DTI). Cubic plate anisotropic phantom, cylinder capillary phantom and water reference phantom are described as a complete set necessary for calibration, validation and normalization of BSD-DTI. An innovative design of the phantoms basing on enclosing the anisotropic cores in glass balls filled with liquid made for the first time possible BSD calibration with usage of echo planar imaging (EPI) sequence. Susceptibility artifacts prone to occur in EPI sequences were visibly reduced in the central region of the phantoms. The phantoms were designed for usage in a clinical scanner's head coil, but can be scaled for other coil or scanner types. The phantoms can be also used for a pre-calibration of imaging of other types of phantoms having more specific applications. PMID:26707852

  15. Poster — Thur Eve — 71: A 4D Multimodal Lung Phantom for Regmentation Evaluation

    SciTech Connect

    Markel, D; Levesque, I R; El Naqa, I

    2014-08-15

    Segmentation and registration of medical imaging data are two processes that can be integrated (a process termed regmentation) to iteratively reinforce each other, potentially improving efficiency and overall accuracy. A significant challenge is presented when attempting to validate the joint process particularly with regards to minimizing geometric uncertainties associated with the ground truth while maintaining anatomical realism. This work demonstrates a 4D MRI, PET, and CT compatible tissue phantom with a known ground truth for evaluating registration and segmentation accuracy. The phantom consists of a preserved swine lung connected to an air pump via a PVC tube for inflation. Mock tumors were constructed from sea sponges contained within two vacuum-sealed compartments with catheters running into each one for injection of radiotracer solution. The phantom was scanned using a GE Discovery-ST PET/CT scanner and a 0.23T Phillips MRI, and resulted in anatomically realistic images. A bifurcation tracking algorithm was implemented to provide a ground truth for evaluating registration accuracy. This algorithm was validated using known deformations of up to 7.8 cm using a separate CT scan of a human thorax. Using the known deformation vectors to compare against, 76 bifurcation points were selected. The tracking accuracy was found to have maximum mean errors of −0.94, 0.79 and −0.57 voxels in the left-right, anterior-posterior and inferior-superior directions, respectively. A pneumatic control system is under development to match the respiratory profile of the lungs to a breathing trace from an individual patient.

  16. A genome-scale map of expression for a mouse brain section obtained using voxelation

    SciTech Connect

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Weijun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2007-08-20

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed 2- dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community.

  17. Reconstruction of finer voxel grid transmission images in Tomographic Gamma Scanning

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Li, Zheng; Feng, Wei

    2014-08-01

    Tomographic Gamma Scanning (TGS) is a technique used to assay the nuclide distribution and radioactivity in nuclear waste drums. Limited to few transmission measurements, the drum is divided into large voxels and thus leads to the inhomogeneity of the voxels and negatively affects the results. A new algorithm is presented to reconstruct finer voxel grid transmission images with the same number of measurements. The small voxel size decreases the effect of the inhomogeneity and makes the result more accurate. The algorithm employs total variation minimization and precisely describes the attenuation process. The influences of the different scan modes are discussed with Monte Carlo simulations. Experiments are performed to verify the effectiveness of our method.

  18. New polymer-based phantom for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yasushi; Iwazaki, Hideaki; Ida, Taiichiro; Nishi, Taiji; Tanikawa, Yukari; Nitta, Naotaka

    2014-03-01

    We will report newly developed polymer-based phantom for photoacoustic (PA) imaging systems. Phantoms are important for performance evaluation and calibration of new modalities; however, there is no established method for making phantoms with no long-term change. We have developed skin mimicking phantoms simulating both optical and acoustic properties (i.e. optical scattering and absorption coefficients, and sound velocity). Furthermore, the phantoms are able to give accurate simulation of blood vessels by Inkjet-printing. Newly developed phantoms are consisted of castor oil included acrylic block copolymer and we can fabricate 0.8mm or less thick sheets and pile them using their self-adhesiveness.

  19. [Phantom limb pain. Psychological treatment strategies].

    PubMed

    Diers, M; Flor, H

    2013-04-01

    Similar to other pain syndromes phantom limb pain is characterized by learning and memory processes that maintain the pain and increase maladaptive plastic changes of the brain: therefore, psychological interventions that change maladaptive memory processes are useful. In addition to traditional psychological interventions, such as pain management training and biofeedback, more recent developments that involve sensory discrimination training, mirror treatment, graded motor imagery, prosthesis training and training in virtual reality are interesting. These interventions not only reduce phantom limb pain but also reverse the associated maladaptive brain changes. PMID:23588803

  20. Standard operating procedure to prepare agar phantoms

    NASA Astrophysics Data System (ADS)

    Souza, R. M.; Santos, T. Q.; Oliveira, D. P.; Souza, R. M.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2016-07-01

    Agar phantoms are widely used as soft tissue mimics and some preparation techniques are described in the literature. There are also standards that describe the recipe of a soft tissue mimicking material (TMM). However some details of manufacture process are not clearly defined. The standardization of the phantom's preparation can produce a metrological impact on the results of the acoustic properties measured. In this direction, this paper presents a standard operating procedure (SOP) to prepare the agar TMM described on the IEC 60601-237.

  1. The phantom bounce: a new oscillating cosmology

    SciTech Connect

    Brown, Matthew G; Freese, Katherine; Kinney, William H E-mail: ktfreese@umich.edu

    2008-03-15

    An oscillating universe cycles through a series of expansions and contractions. We propose a model in which 'phantom' energy with p<-{rho} grows rapidly and dominates the late-time expanding phase. The universe's energy density is so large that the effects of quantum gravity are important at both the beginning and the end of each expansion (or contraction). The bounce can be caused by high energy modifications to the Friedmann equation, which make the cosmology non-singular. The classic black hole overproduction of oscillating universes is resolved due to their destruction by the phantom energy.

  2. Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms.

    PubMed

    Laidlaw, D H; Fleischer, K W; Barr, A H

    1998-02-01

    We present a new algorithm for identifying the distribution of different material types in volumetric datasets such as those produced with magnetic resonance imaging (MRI) or computed tomography (CT). Because we allow for mixtures of materials and treat voxels as regions, our technique reduces errors that other classification techniques can create along boundaries between materials and is particularly useful for creating accurate geometric models and renderings from volume data. It also has the potential to make volume measurements more accurately and classifies noisy, low-resolution data well. There are two unusual aspects to our approach. First, we assume that, due to partial-volume effects, or blurring, voxels can contain more than one material, e.g., both muscle and fat; we compute the relative proportion of each material in the voxels. Second, we incorporate information from neighboring voxels into the classification process by reconstructing a continuous function, rho(x), from the samples and then looking at the distribution of values that rho(x) takes on within the region of a voxel. This distribution of values is represented by a histogram taken over the region of the voxel; the mixture of materials that those values measure is identified within the voxel using a probabilistic Bayesian approach that matches the histogram by finding the mixture of materials within each voxel most likely to have created the histogram. The size of regions that we classify is chosen to match the spacing of the samples because the spacing is intrinsically related to the minimum feature size that the reconstructed continuous function can represent. PMID:9617909

  3. An exact general remeshing scheme applied to physically conservative voxelization

    NASA Astrophysics Data System (ADS)

    Powell, Devon; Abel, Tom

    2015-09-01

    We present an exact general remeshing scheme to compute analytic integrals of polynomial functions over the intersections between convex polyhedral cells of old and new meshes. In physics applications this allows one to ensure global mass, momentum, and energy conservation while applying higher-order polynomial interpolation. We elaborate on applications of our algorithm arising in the analysis of cosmological N-body data, computer graphics, and continuum mechanics problems. We focus on the particular case of remeshing tetrahedral cells onto a Cartesian grid such that the volume integral of the polynomial density function given on the input mesh is guaranteed to equal the corresponding integral over the output mesh. We refer to this as "physically conservative voxelization." At the core of our method is an algorithm for intersecting two convex polyhedra by successively clipping one against the faces of the other. This algorithm is an implementation of the ideas presented abstractly by Sugihara [48], who suggests using the planar graph representations of convex polyhedra to ensure topological consistency of the output. This makes our implementation robust to geometric degeneracy in the input. We employ a simplicial decomposition to calculate moment integrals up to quadratic order over the resulting intersection domain. We also address practical issues arising in a software implementation, including numerical stability in geometric calculations, management of cancellation errors, and extension to two dimensions. In a comparison to recent work, we show substantial performance gains. We provide a C implementation intended to be a fast, accurate, and robust tool for geometric calculations on polyhedral mesh elements.

  4. Quantifying Colocalization: Thresholding, Void Voxels and the Hcoef

    PubMed Central

    Adler, Jeremy; Parmryd, Ingela

    2014-01-01

    A critical step in the analysis of images is identifying the area of interest e.g. nuclei. When the nuclei are brighter than the remainder of the image an intensity can be chosen to identify the nuclei. Intensity thresholding is complicated by variations in the intensity of individual nuclei and their intensity relative to their surroundings. To compensate thresholds can be based on local rather than global intensities. By testing local thresholding methods we found that the local mean performed poorly while the Phansalkar method and a new method based on identifying the local background were superior. A new colocalization coefficient, the Hcoef, highlights a number of controversial issues. (i) Are molecular interactions measurable (ii) whether to include voxels without fluorophores in calculations, and (iii) the meaning of negative correlations. Negative correlations can arise biologically (a) because the two fluorophores are in different places or (b) when high intensities of one fluorophore coincide with low intensities of a second. The cases are distinct and we argue that it is only relevant to measure correlation using pixels that contain both fluorophores and, when the fluorophores are in different places, to just report the lack of co-occurrence and omit these uninformative negative correlation. The Hcoef could report molecular interactions in a homogenous medium. But biology is not homogenous and distributions also reflect physico-chemical properties, targeted delivery and retention. The Hcoef actually measures a mix of correlation and co-occurrence, which makes its interpretation problematic and in the absence of a convincing demonstration we advise caution, favouring separate measurements of correlation and of co-occurrence. PMID:25375829

  5. 4D XCAT phantom for multimodality imaging research

    SciTech Connect

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-09-15

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  6. 4D XCAT phantom for multimodality imaging research

    PubMed Central

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  7. Influence of voxelization on finite difference time domain simulations of head-related transfer functions.

    PubMed

    Prepeliță, Sebastian; Geronazzo, Michele; Avanzini, Federico; Savioja, Lauri

    2016-05-01

    The scattering around the human pinna that is captured by the Head-Related Transfer Functions (HRTFs) is a complex problem that creates uncertainties in both acoustical measurements and simulations. Within the simulation framework of Finite Difference Time Domain (FDTD) with axis-aligned staircase boundaries resulting from a voxelization process, the voxelization-based uncertainty propagating in the HRTF-captured sound field is quantified for one solid and two surface voxelization algorithms. Simulated results utilizing a laser-scanned mesh of Knowles Electronics Manikin for Acoustic Research (KEMAR) show that in the context of complex geometries with local topology comparable to grid spacing such as the human pinna, the voxelization-related uncertainties in simulations emerge at lower frequencies than the generally used accuracy bandwidths. Numerical simulations show that the voxelization process induces both random error and algorithm-dependent bias in the simulated HRTF spectral features. Frequencies fr below which the random error is bounded by various dB thresholds are estimated and predicted. Particular shortcomings of the used voxelization algorithms are identified and the influence of the surface impedance on the induced errors is studied. Simulations are also validated against measurements. PMID:27250145

  8. A novel, optimized approach of voxel division for water vapor tomography

    NASA Astrophysics Data System (ADS)

    Yao, Yibin; Zhao, Qingzhi

    2016-03-01

    Water vapor information with highly spatial and temporal resolution can be acquired using Global Navigation Satellite System (GNSS) water vapor tomography technique. Usually, the targeted tomographic area is discretized into a number of voxels and the water vapor distribution can be reconstructed using a large number of GNSS signals which penetrate the entire tomographic area. Due to the influence of geographic distribution of receivers and geometric location of satellite constellation, many voxels located at the bottom and the side of research area are not crossed by signals, which would undermine the quality of tomographic result. To alleviate this problem, a novel, optimized approach of voxel division is here proposed which increases the number of voxels crossed by signals. On the vertical axis, a 3D water vapor profile is utilized, which is derived from radiosonde data for many years, to identify the maximum height of tomography space. On the horizontal axis, the total number of voxel crossed by signal is enhanced, based on the concept of non-uniform symmetrical division of horizontal voxels. In this study, tomographic experiments are implemented using GPS data from Hong Kong Satellite Positioning Reference Station Network, and tomographic result is compared with water vapor derived from radiosonde and European Center for Medium-Range Weather Forecasting (ECMWF). The result shows that the Integrated Water Vapour (IWV), RMS, and error distribution of the proposed approach are better than that of traditional method.

  9. Informational connectivity: identifying synchronized discriminability of multi-voxel patterns across the brain

    PubMed Central

    Coutanche, Marc N.; Thompson-Schill, Sharon L.

    2013-01-01

    The fluctuations in a brain region's activation levels over a functional magnetic resonance imaging (fMRI) time-course are used in functional connectivity (FC) to identify networks with synchronous responses. It is increasingly recognized that multi-voxel activity patterns contain information that cannot be extracted from univariate activation levels. Here we present a novel analysis method that quantifies regions' synchrony in multi-voxel activity pattern discriminability, rather than univariate activation, across a timeseries. We introduce a measure of multi-voxel pattern discriminability at each time-point, which is then used to identify regions that share synchronous time-courses of condition-specific multi-voxel information. This method has the sensitivity and access to distributed information that multi-voxel pattern analysis enjoys, allowing it to be applied to data from conditions not separable by univariate responses. We demonstrate this by analyzing data collected while people viewed four different types of man-made objects (typically not separable by univariate analyses) using both FC and informational connectivity (IC) methods. IC reveals networks of object-processing regions that are not detectable using FC. The IC results support prior findings and hypotheses about object processing. This new method allows investigators to ask questions that are not addressable through typical FC, just as multi-voxel pattern analysis (MVPA) has added new research avenues to those addressable with the general linear model (GLM). PMID:23403700

  10. The phantom and the supernumerary phantom limb: historical review and new case.

    PubMed

    Cipriani, Gabriele; Picchi, Lucia; Vedovello, Marcella; Nuti, Angelo; Fiorino, Mario Di

    2011-12-01

    The way we experience the world is determined by the way our brain works. The phantom limb phenomenon, which is a delusional belief of the presence of a non-existent limb, has a particular fascination in neurology. This positive phenomenon of the phantom limb raises theoretical questions about its nature. After a stroke, some patients experience the perception of an extra limb in addition to the regular set of two arms and two legs. This complex cognitive and perceptual distortion is called supernumerary phantom limb. Here, we review the pathogenesis and historical aspects, and report a new case. PMID:22108813

  11. Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique

    PubMed Central

    Shea, Jacob D.; Kosmas, Panagiotis; Hagness, Susan C.; Van Veen, Barry D.

    2010-01-01

    Purpose: Breast density measurement has the potential to play an important role in individualized breast cancer risk assessment and prevention decisions. Routine evaluation of breast density will require the availability of a low-cost, nonionizing, three-dimensional (3-D) tomographic imaging modality that exploits a strong properties contrast between dense fibroglandular tissue and less dense adipose tissue. The purpose of this computational study is to investigate the performance of 3-D tomography using low-power microwaves to reconstruct the spatial distribution of breast tissue dielectric properties and to evaluate the modality for application to breast density characterization. Methods: State-of-the-art 3-D numerical breast phantoms that are realistic in both structural and dielectric properties are employed. The test phantoms include one sample from each of four classes of mammographic breast density. Since the properties of these phantoms are known exactly, these testbeds serve as a rigorous benchmark for the imaging results. The distorted Born iterative imaging method is applied to simulated array measurements of the numerical phantoms. The forward solver in the imaging algorithm employs the finite-difference time-domain method of solving the time-domain Maxwell’s equations, and the dielectric profiles are estimated using an integral equation form of the Helmholtz wave equation. A multiple-frequency, bound-constrained, vector field inverse scattering solution is implemented that enables practical inversion of the large-scale 3-D problem. Knowledge of the frequency-dependent characteristic of breast tissues at microwave frequencies is exploited to obtain a parametric reconstruction of the dispersive dielectric profile of the interior of the breast. Imaging is performed on a high-resolution voxel basis and the solution is bounded by a known range of dielectric properties of the constituent breast tissues. The imaging method is validated using a breast

  12. Depth Dose Distribution Study within a Phantom Torso after Irradiation with a Simulated Solar Particle Event at NSRL

    NASA Technical Reports Server (NTRS)

    Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther

    2010-01-01

    with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The initial focus of the present experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on, the results of the passive dosimetry within the anthropomorphic phantoms represent the best tool to generate reliable data to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study.

  13. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using X-ray fluorescence

    SciTech Connect

    Spitz, H.; Jenkins, M.; Lodwick, J.; Bornschein, R.

    2000-02-01

    A new anthropometric phantom has been developed for calibrating in vivo measurements of stable lead deposited in bone using x-ray fluorescence. The phantom reproduces the shape of the mid shaft of the adult human leg and is fabricated using polyurethanes and calcium carbonate to produce materials that exhibit the same density, energy transmission, and calcium content as cortical bone, bone marrow, and muscle. The phantom includes a removable tibia fabricated using simulants for cortical bone and bone marrow to which a precise amount of stable lead has been added to cortical bone. The formulations used in fabricating the new anthropometric phantom are much more uniform in density and composition than the conventional phantom made from Plexiglas cylinders filled with plaster-of-Paris. The energy spectrum from an x-ray fluorescence measurement of the phantom using a {sup 109}Cd source is indistinguishable from an in vivo x-ray fluorescence measurement of the human leg, demonstrating that the materials used in the phantom exhibit the same radiological properties as human tissue. Likewise, results from x-ray fluorescence measurements of the phantom exhibit the same positional dependency as the human leg and vary by approximately 36% when, for example, the phantom containing 54 ppm of stable lead in the tibia was rotated by only 15 degrees. The detection limit for a 30 min {sup 109}Cd K shell x-ray fluorescence in vivo measurement is approximately 20 ppm determined from a background measurement using the new phantom containing no added lead in the muscle, bone, or bone marrow. The new anthropometric phantom significantly improves in vivo x-ray fluorescence calibration measurements by (1) faithfully reproducing the anatomy of the human leg, (2) having components that exhibit radiological properties similar to that of human tissue, and (3) providing a realistic calibration standard that can be used for in vivo x-ray fluorescence intercomparison measurements.

  14. Comprehensive phantom for interventional fluorescence molecular imaging.

    PubMed

    Anastasopoulou, Maria; Koch, Maximilian; Gorpas, Dimitris; Karlas, Angelos; Klemm, Uwe; Garcia-Allende, Pilar Beatriz; Ntziachristos, Vasilis

    2016-09-01

    Fluorescence imaging has been considered for over a half-century as a modality that could assist surgical guidance and visualization. The administration of fluorescent molecules with sensitivity to disease biomarkers and their imaging using a fluorescence camera can outline pathophysiological parameters of tissue invisible to the human eye during operation. The advent of fluorescent agents that target specific cellular responses and molecular pathways of disease has facilitated the intraoperative identification of cancer with improved sensitivity and specificity over nonspecific fluorescent dyes that only outline the vascular system and enhanced permeability effects. With these new abilities come unique requirements for developing phantoms to calibrate imaging systems and algorithms. We briefly review herein progress with fluorescence phantoms employed to validate fluorescence imaging systems and results. We identify current limitations and discuss the level of phantom complexity that may be required for developing a universal strategy for fluorescence imaging calibration. Finally, we present a phantom design that could be used as a tool for interlaboratory system performance evaluation. PMID:27304578

  15. Phantom Word Activation in L2

    ERIC Educational Resources Information Center

    Broersma, Mirjam; Cutler, Anne

    2008-01-01

    L2 listening can involve the phantom activation of words which are not actually in the input. All spoken-word recognition involves multiple concurrent activation of word candidates, with selection of the correct words achieved by a process of competition between them. L2 listening involves more such activation than L1 listening, and we report two…

  16. New eye phantom for ophthalmic surgery

    NASA Astrophysics Data System (ADS)

    Fogli, Gessica; Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Palla, Michele; Rizzo, Stanislao; Vozzi, Giovanni

    2014-06-01

    In this work, we designed and realized a new phantom able to mimic the principal mechanical, rheological, and physical cues of the human eye and that can be used as a common benchmark to validate new surgical procedures, innovative vitrectomes, and as a training system for surgeons. This phantom, in particular its synthetic humor vitreous, had the aim of reproducing diffusion properties of the natural eye and can be used as a system to evaluate the pharmacokinetics of drugs and optimization of their dose, limiting animal experiments. The eye phantom was built layer-by-layer starting from the sclera up to the retina, using low cost and easy to process polymers. The validation of the phantom was carried out by mechanical characterization of each layer, by diffusion test with commercial drugs into a purposely developed apparatus, and finally by a team of ophthalmic surgeons. Experiments demonstrated that polycaprolactone, polydimethylsiloxane, and gelatin, properly prepared, are the best materials to mimic the mechanical properties of sclera, choroid, and retina, respectively. A polyvinyl alcohol-gelatin polymeric system is the best for mimicking the viscosity of the human humor vitreous, even if the bevacizumab half-life is lower than in the human eye.

  17. A Rat Body Phantom for Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Qualls, Garry D.; Clowdsley, Martha S.; Slaba, Tony C.; Walker, Steven A.

    2010-01-01

    To reduce the uncertainties associated with estimating the biological effects of ionizing radiation in tissue, researchers rely on laboratory experiments in which mono-energetic, single specie beams are applied to cell cultures, insects, and small animals. To estimate the radiation effects on astronauts in deep space or low Earth orbit, who are exposed to mixed field broad spectrum radiation, these experimental results are extrapolated and combined with other data to produce radiation quality factors, radiation weighting factors, and other risk related quantities for humans. One way to reduce the uncertainty associated with such extrapolations is to utilize analysis tools that are applicable to both laboratory and space environments. The use of physical and computational body phantoms to predict radiation exposure and its effects is well established and a wide range of human and non-human phantoms are in use today. In this paper, a computational rat phantom is presented, as well as a description of the process through which that phantom has been coupled to existing radiation analysis tools. Sample results are presented for two space radiation environments.

  18. Calibration of a large hyperpure germanium array for in-vivo detection of the actinides with a tissue-equivalent torso phantom

    SciTech Connect

    Berger, C.D.; Lane, B.H.

    1983-01-01

    For calibration of the array for internally deposited /sup 238/Pu, /sup 239/Pu, and /sup 241/Am, a tissue-equivalent anthropomorphic phantom, was used for efficiency determinations at the ORNL facility. This phantom consists of a tissue-equivalent torso into which is imbedded an adult male skeleton, interchangeable organs containing a homogeneous distribution of various radionuclides, and two sets of chest overlay plates for simulation of progressively thicker tissue over the chest, as well as differing thoracic fat contents. (PSB)

  19. A computational model unifies apparently contradictory findings concerning phantom pain

    PubMed Central

    Boström, Kim J.; de Lussanet, Marc H. E.; Weiss, Thomas; Puta, Christian; Wagner, Heiko

    2014-01-01

    Amputation often leads to painful phantom sensations, whose pathogenesis is still unclear. Supported by experimental findings, an explanatory model has been proposed that identifies maladaptive reorganization of the primary somatosensory cortex (S1) as a cause of phantom pain. However, it was recently found that BOLD activity during voluntary movements of the phantom positively correlates with phantom pain rating, giving rise to a model of persistent representation. In the present study, we develop a physiologically realistic, computational model to resolve the conflicting findings. Simulations yielded that both the amount of reorganization and the level of cortical activity during phantom movements were enhanced in a scenario with strong phantom pain as compared to a scenario with weak phantom pain. These results suggest that phantom pain, maladaptive reorganization, and persistent representation may all be caused by the same underlying mechanism, which is driven by an abnormally enhanced spontaneous activity of deafferented nociceptive channels. PMID:24931344

  20. A computational model unifies apparently contradictory findings concerning phantom pain

    NASA Astrophysics Data System (ADS)

    Boström, Kim J.; de Lussanet, Marc H. E.; Weiss, Thomas; Puta, Christian; Wagner, Heiko

    2014-06-01

    Amputation often leads to painful phantom sensations, whose pathogenesis is still unclear. Supported by experimental findings, an explanatory model has been proposed that identifies maladaptive reorganization of the primary somatosensory cortex (S1) as a cause of phantom pain. However, it was recently found that BOLD activity during voluntary movements of the phantom positively correlates with phantom pain rating, giving rise to a model of persistent representation. In the present study, we develop a physiologically realistic, computational model to resolve the conflicting findings. Simulations yielded that both the amount of reorganization and the level of cortical activity during phantom movements were enhanced in a scenario with strong phantom pain as compared to a scenario with weak phantom pain. These results suggest that phantom pain, maladaptive reorganization, and persistent representation may all be caused by the same underlying mechanism, which is driven by an abnormally enhanced spontaneous activity of deafferented nociceptive channels.

  1. A computational model unifies apparently contradictory findings concerning phantom pain.

    PubMed

    Boström, Kim J; de Lussanet, Marc H E; Weiss, Thomas; Puta, Christian; Wagner, Heiko

    2014-01-01

    Amputation often leads to painful phantom sensations, whose pathogenesis is still unclear. Supported by experimental findings, an explanatory model has been proposed that identifies maladaptive reorganization of the primary somatosensory cortex (S1) as a cause of phantom pain. However, it was recently found that BOLD activity during voluntary movements of the phantom positively correlates with phantom pain rating, giving rise to a model of persistent representation. In the present study, we develop a physiologically realistic, computational model to resolve the conflicting findings. Simulations yielded that both the amount of reorganization and the level of cortical activity during phantom movements were enhanced in a scenario with strong phantom pain as compared to a scenario with weak phantom pain. These results suggest that phantom pain, maladaptive reorganization, and persistent representation may all be caused by the same underlying mechanism, which is driven by an abnormally enhanced spontaneous activity of deafferented nociceptive channels. PMID:24931344

  2. Automated Analysis of Mammography Phantom Images

    NASA Astrophysics Data System (ADS)

    Brooks, Kenneth Wesley

    The present work stems from the hypothesis that humans are inconsistent when making subjective analyses of images and that human decisions for moderately complex images may be performed by a computer with complete objectivity, once a human acceptance level has been established. The following goals were established to test the hypothesis: (1) investigate observer variability within the standard mammographic phantom evaluation process; (2) evaluate options for high-resolution image digitization and utilize the most appropriate technology for standard mammographic phantom film digitization; (3) develop a machine-based vision system for evaluating standard mammographic phantom images to eliminate effects of human variabilities; and (4) demonstrate the completed system's performance against human observers for accreditation and for manufacturing quality control of standard mammographic phantom images. The following methods and procedures were followed to achieve the goals of the research: (1) human variabilities in the American College of Radiology accreditation process were simulated by observer studies involving 30 medical physicists and these were compared to the same number of diagnostic radiologists and untrained control group of observers; (2) current digitization technologies were presented and performance test procedures were developed; three devices were tested which represented commercially available high, intermediate and low-end contrast and spatial resolution capabilities; (3) optimal image processing schemes were applied and tested which performed low, intermediate and high-level computer vision tasks; and (4) the completed system's performance was tested against human observers for accreditation and for manufacturing quality control of standard mammographic phantom images. The results from application of the procedures were as follows: (1) the simulated American College of Radiology mammography accreditation program phantom evaluation process demonstrated

  3. Atypical supernumerary phantom limb and phantom limb pain in two patients with pontine hemorrhage.

    PubMed

    Yoo, Seung Don; Kim, Dong Hwan; Jeong, Yong Seol; Chon, Jinmann; Bark, Jihea

    2011-06-01

    Phantom limbs are usually observed after amputation of extremities. In patients after a stroke, a similar but rarely occurring phenomenon consisting of the patient experiencing the presence of an additional limb has been described. This phenomenon, generally called supernumerary phantom limb (SPL), may be caused by lesions in the right or left cerebral hemisphere, but has been predominantly reported in patients who have had a right hemispheric stroke. We report two cases of atypical SPL and phantom limb pain (PLP) after pontine hemorrhage. The patients were treated conservatively and their symptoms lasted more than 1 month. This is the first report of SPLs after left pontine hemorrhage, and phantom perception and pain lasted longer than those in previously observed cases. Our results indicate that SPL may be more common than reported; therefore, thorough examinations are essential for the care of stroke patients. PMID:21655076

  4. The leicester Doppler phantom--a digital electronic phantom for ultrasound pulsed Doppler system testing.

    PubMed

    Gittins, John; Martin, Kevin

    2010-04-01

    Doppler flow and string phantoms have been used to assess the performance of ultrasound Doppler systems in terms of parameters such as sensitivity, velocity accuracy and sample volume registration. However, because of the nature of their construction, they cannot challenge the accuracy and repeatability of modern digital ultrasound systems or give objective measures of system performance. Electronic Doppler phantoms are able to make use of electronically generated test signals, which may be controlled precisely in terms of frequency, amplitude and timing. The Leicester Electronic Doppler Phantom uses modern digital signal processing methods and field programmable gate array technology to overcome some of the limitations of previously described electronic phantoms. In its present form, it is able to give quantitative graphical assessments of frequency response and range gate characteristics, as well as measures of dynamic range and velocity measurement accuracy. The use of direct acoustic coupling eliminates uncertainties caused by Doppler beam effects, such as intrinsic spectral broadening, but prevents their evaluation. PMID:20350689

  5. Computerized scheme for evaluating mammographic phantom images

    SciTech Connect

    Asahara, Masaki; Kodera, Yoshie

    2012-03-15

    Purpose: The authors developed a computer algorithm to automatically evaluate images of the American College of Radiology (ACR) mammography accreditation phantom. Methods: The developed algorithm consist of the edge detection of wax insert, nonuniformity correction of background, and correction for magnification and also calculate the cross-correlation coefficient by image matching technique. The algorithm additionally evaluates target shape for fibers, target contrast for speck groups, and target circularity for masses. To obtain an ideal template image without noise and spatial resolution loss, the wax insert containing the embedded test pattern was extracted from the phantom and radiographed. Two template images and ten test phantom images were prepared for this study. The results of evaluation using the algorithm outputs were compared with the averaged results of observer studies by six skilled observers. Results: In comparing the results from the algorithm outputs with the results of observers, the authors found that the computer outputs were well correlated with the evaluations by observers, and they indicate the quality of the phantom image. The correlation coefficients between results of observer studies and two outputs of computer algorithm, i.e., the cross-correlation coefficient by template matching and indices of target shape for fibers, were 0.89 (95% confidence interval, 0.82-0.93; hereinafter the same) and 0.85 (0.76-0.91). The correlation coefficients between observer's results and two outputs: the cross-correlation coefficient and indices of target contrast for speck groups, were 0.83 (0.79-0.86) and 0.85 (0.81-0.88) and between observer's results and two outputs: the cross-correlation coefficient and indices of target circularity for masses, were 0.90 (0.84-0.94) and 0.87 (0.77-0.92). Conclusions: Image evaluation using the ACR phantom is indispensable in quality control of a mammography system. The proposed algorithm is useful for quality control

  6. Phantom energy accretion onto black holes in a cyclic universe

    SciTech Connect

    Sun Chengyi

    2008-09-15

    Black holes pose a serious problem in cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by phantom energy prior to turnaround before they can create any problems. In this paper, using the mechanism of phantom accretion onto black holes, we find that black holes do not disappear before phantom turnaround. But the remanent black holes will not cause any problems due to Hawking evaporation.

  7. Determination of photon backscatter from several calibration phantoms

    SciTech Connect

    McDonald, J.C.; Murphy, M.K.; Traub, R.J.

    1996-06-01

    American National Standards Institute (ANSI) and International Organization for Standardization (ISO) standards recommend the use of different phantoms for the calibration and proficiency testing of personnel dosimeters. The ANSI N13.11 standard describes a polymethyl methacrylate (PMMA) phantom measuring 30 x 30 x 15 cm. ISO draft standard 4037, part 3, recommends the use of a 30 x 30x 15-cm water-filled phantom with PMMA walls. An additional phantom with dimensions identical to the other two, but constructed of a tissue-equivalent plastic mixture, RS-1, was also used in these studies. The photon backscatter factor for these phantoms was compared to the International Commission on Radiation Units and Measurements (ICRU) reference phantom that has the same dimensions as the above mentioned phantoms, but has the elemental composition of ICRU four element tissue. Calculations of the photon backscatter over the range from 10 to 2,000 keV were performed using the MCNP 4A code for each of the phantoms. Measurements of the backscatter were carried out using thin-walled ionization chambers and thermoluminescent dosimeters that were exposed to x-ray beams With narrow energy spectra, either free-in-air or placed on the surface of the phantoms. The measurements and calculations were consistent and demonstrated that the ISO water filled phantom and the RS-1 plastic phantom generate photon backscatter that is nearly the same as that produced by the ICRU tissue reference phantom, but the backscatter from the PMMA phantom was up to about 8% higher. The conclusion drawn from these measurements is that either an ISO water-filled phantom or one constructed of RS-1 plastic would provide photon backscatter more comparable to an ICRU tissue reference phantom than a PMMA phantom.

  8. Size reduction using Mirror Visual Feedback (MVF) reduces phantom pain.

    PubMed

    Ramachandran, V S; Brang, David; McGeoch, Paul D

    2009-10-01

    Following limb amputation patients continue to feel the vivid presence of a phantom limb. A majority of patients also experience pain in the phantom and sometimes (as in our case DS) the pain is severe. Remarkably we find that optically 'resurrecting' the phantom with a mirror and using a lens to make the phantom appear to shrink caused the pain to 'shrink' as well. PMID:19657972

  9. EURADOS intercomparison exercise on MC modelling for the in-vivo monitoring of AM-241 in skull phantoms (Part II and III).

    NASA Astrophysics Data System (ADS)

    Vrba, Tomas; Broggio, David; Caldeira, Margarida; Capello, Kevin; Fantínová, Karin; Franck, Didier; Gómez-Ros, Jose Maria; Hunt, John; Kinase, Sakae; Leone, Debora; Lombardo, Pasquale Alessandro; Manohari, Murugan; Marzocchi, Olaf; Moraleda, Montserrat; Nogueira, Pedro; Ośko, Jakub; Arron, Shutt; Suhl, Soheigh; Takahashi, Masa; Teles, Pedro; Tremblay, Marilyn; Tymińska, Katarzyna; Lopez, Maria Antonia; Tanner, Rick

    2015-08-01

    An intercomparison on in-vivo monitoring for determination of Am-241 in three skull phantoms was launched by EURADOS in 2011. The project focused on measurement and estimation of the activity of Am-241 in the human skull. Three human skull phantoms of different complexity were used. A Monte Carlo (MC) intercomparison exercise with the voxel representations of the physical phantom was launched additionally in September of 2012. The main goals of the action were (1) to investigate the different methodologies for developing MC calibrations that might arise from a complex radiological assessment and (2) to compare individual approaches of the participating laboratories in order to determine international guidance for best practice. The MC exercise consisted of three tasks with increasing difficulty, in order to test the extent of skills needed by the participating laboratory. The first task was to simulate a given detector and a well-defined semi-skull phantom. The second and third tasks presented in this paper-introduced more complex simulations with individual geometry and real detector modelling. The paper provides an overview of the participant's results, analyses of the observed issues concerning tasks two and three, and a general evaluation of the whole project.

  10. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains...

  11. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains...

  12. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with...

  13. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with...

  14. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Maynard, Matthew R.; Geyer, John W.; Aris, John P.; Shifrin, Roger Y.; Bolch, Wesley

    2011-08-01

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR™ and then imported to the 3D modeling software package Rhinoceros™ for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in

  15. The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Maynard, Matthew R.; Long, Nelia S.; Moawad, Nash S.; Shifrin, Roger Y.; Geyer, Amy M.; Fong, Grant; Bolch, Wesley E.

    2014-08-01

    Efforts to assess in utero radiation doses and related quantities to the developing fetus should account for the presence of the surrounding maternal tissues. Maternal tissues can provide varying levels of protection to the fetus by shielding externally-emitted radiation or, alternatively, can become sources of internally-emitted radiation following the biokinetic uptake of medically-administered radiopharmaceuticals or radionuclides located in the surrounding environment—as in the case of the European Union’s SOLO project (Epidemiological Studies of Exposed Southern Urals Populations). The University of Florida had previously addressed limitations in available computational phantom representation of the developing fetus by constructing a series of hybrid computational fetal phantoms at eight different ages and three weight percentiles. Using CT image sets of pregnant patients contoured using 3D-DOCTORTM, the eight 50th percentile fetal phantoms from that study were systematically combined in RhinocerosTM with the UF adult non-pregnant female to yield a series of reference pregnant female phantoms at fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. Deformable, non-uniform rational B-spline surfaces were utilized to alter contoured maternal anatomy in order to (1) accurately position and orient each fetus and surrounding maternal tissues and (2) match target masses of maternal soft tissue organs to reference data reported in the literature.

  16. HOME-BASED SELF-DELIVERED MIRROR THERAPY FOR PHANTOM PAIN: A PILOT STUDY*

    PubMed Central

    Darnall, Beth D.; Li, Hong

    2014-01-01

    Objective To test the feasibility and preliminary efficacy of self-delivered home-based mirror therapy for phantom pain. Design Uncontrolled prospective treatment outcome pilot study. Participants Forty community-dwelling adults with unilateral amputation and phantom pain >3 on a 0–10 numeric rating scale enrolled either during a one-time study visit (n = 30) or remotely (n = 10). Methods Participants received an explanation of mirror therapy and were asked to self-treat for 25 min daily. Participants completed and posted back sets of outcomes questionnaires at months 1 and 2 post-treatment. Main outcome was mean phantom pain intensity at post-treatment. Results A significant reduction in mean phantom pain intensity was found at month 1 (n = 31, p = 0.0002) and at month 2 (n = 26, p = 0.002). The overall median percentage reduction at month 2 was 15.4%. Subjects with high education (>16 years) compared with low education (<16 years) (37.5% vs 4.1%) had greater reduction in pain intensity (p = 0.01). Conclusion These findings support the feasibility and efficacy of home-based self-delivered mirror therapy; this low-cost treatment may defray medical costs, therapy visits, and the patient travel burden for people with motivation and a high level of education. More research is needed to determine methods of cost-effective support for people with lower levels of education. PMID:22378591

  17. SU-E-T-540: MCNPX Simulation of Proton Dose Distributions in a Water Phantom

    SciTech Connect

    Lee, C; Chen, S; Chiang, B; Tung, C; Chao, T

    2015-06-15

    Purpose: In this study, fluence and energy deposition of proton and proton by-products and dose distributions were simulated. Lateral dose distributions were also been discussed to understand the difference between Monte Carlo simulations and pencil beam algorithm. Methods: MCNPX codes were used to build a water phantom by using “repeated structures” technique and the doses and fluences in each cell was recorded by mesh tally. This study includes, proton equilibrium and proton disequilibrium case. For the proton equilibrium case, the doses difference between proton and proton by-products were studied. A 160 MeV proton pencil beam was perpendicularly incident into a 40 × 40 × 50 cm{sup 3} water phantom and the scoring volume was 20 × 20 × 0.2 cm{sup 3}. Energy deposition and fluence were calculated from MCNPX with (1) proton only; and (2) proton and secondary particles. For the proton disequilibrium case, the dose distribution variation using different multiple Coulomb scattering were studied. A 70 MeV proton pencil beam was perpendicularly incident into a 40 × 40 × 10 cm{sup 3} water phantom and two scoring voxel sizes of 0.1 × 0.1 × 0.05 cm{sup 3} and 0.01 × 0.01 × 0.05 cm{sup 3} were used for the depth dose distribution, and 0.01 × 0.01 × 0.05 cm{sup 3} for the lateral profile distribution simulations. Results: In the water phantom, proton fluence and dose in depths beyond the Bragg peak were slightly perturbed by the choice of the simulated particle types. The dose from secondary particles was about three orders smaller, but its simulation consumed significant computing time. The depth dose distributions and lateral dose distributions of 70 MeV proton pencil beam obtained from MCNPX, GEANT4, and the pencil beam algorithm showed the significant deviations, probably caused by multiple Coulomb scattering. Conclusion: Multiple Coulomb scattering is critical when there is in proton disequilibrium.

  18. A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimization

    SciTech Connect

    Zarepisheh, Masoud; Uribe-Sanchez, Andres F.; Li, Nan; Jia, Xun; Jiang, Steve B.

    2014-04-15

    Purpose: To establish a new mathematical framework for radiotherapy treatment optimization with voxel-dependent optimization parameters. Methods: In the treatment plan optimization problem for radiotherapy, a clinically acceptable plan is usually generated by an optimization process with weighting factors or reference doses adjusted for a set of the objective functions associated to the organs. Recent discoveries indicate that adjusting parameters associated with each voxel may lead to better plan quality. However, it is still unclear regarding the mathematical reasons behind it. Furthermore, questions about the objective function selection and parameter adjustment to assure Pareto optimality as well as the relationship between the optimal solutions obtained from the organ-based and voxel-based models remain unanswered. To answer these questions, the authors establish in this work a new mathematical framework equipped with two theorems. Results: The new framework clarifies the different consequences of adjusting organ-dependent and voxel-dependent parameters for the treatment plan optimization of radiation therapy, as well as the impact of using different objective functions on plan qualities and Pareto surfaces. The main discoveries are threefold: (1) While in the organ-based model the selection of the objective function has an impact on the quality of the optimized plans, this is no longer an issue for the voxel-based model since the Pareto surface is independent of the objective function selection and the entire Pareto surface could be generated as long as the objective function satisfies certain mathematical conditions; (2) All Pareto solutions generated by the organ-based model with different objective functions are parts of a unique Pareto surface generated by the voxel-based model with any appropriate objective function; (3) A much larger Pareto surface is explored by adjusting voxel-dependent parameters than by adjusting organ-dependent parameters, possibly

  19. A visual LISP program for voxelizing AutoCAD solid models

    NASA Astrophysics Data System (ADS)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  20. Influence of voxel size settings in X-Ray CT Imagery of soil in scaling properties

    NASA Astrophysics Data System (ADS)

    Heck, R.; Scaiff, N. T.; Andina, D.; Tarquis, A. M.

    2012-04-01

    Fundamental to the interpretation and comparison of X-ray CT imagery of soil is recognition of the objectivity and consistency of procedures used to generate the 3D models. Notably, there has been a lack of consistency in the size of voxels used for diverse interpretations of soils features and processes; in part, this is due to the ongoing evolution of instrumentation and computerized image processing capacity. Moreover, there is still need for discussion on whether standard voxels sizes should be recommended, and what those would be. Regardless of any eventual adoption of such standards, there is a need to also consider the manner in which voxel size is set in the 3D imagery. In the typical approaches to X-ray CT imaging, voxel size may be set at three stages: image acquisition (involving the position of the sample relative to the tube and detector), image reconstruction (where binning of pixels in the acquired images may occur), as well as post-reconstruction re-sampling (which may involve algorithms such as tri-cubic convolution). This research evaluates and compares the spatial distribution of intra-aggregate voids in 3D imagery as well as their scaling properties, of equivalent voxel size, generated using various combinations of the afore-mentioned approaches. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  1. A comparison of voxel and surface based cortical thickness estimation methods.

    PubMed

    Clarkson, Matthew J; Cardoso, M Jorge; Ridgway, Gerard R; Modat, Marc; Leung, Kelvin K; Rohrer, Jonathan D; Fox, Nick C; Ourselin, Sébastien

    2011-08-01

    Cortical thickness estimation performed in-vivo via magnetic resonance imaging is an important technique for the diagnosis and understanding of the progression of neurodegenerative diseases. Currently, two different computational paradigms exist, with methods generally classified as either surface or voxel-based. This paper provides a much needed comparison of the surface-based method FreeSurfer and two voxel-based methods using clinical data. We test the effects of computing regional statistics using two different atlases and demonstrate that this makes a significant difference to the cortical thickness results. We assess reproducibility, and show that FreeSurfer has a regional standard deviation of thickness difference on same day scans that is significantly lower than either a Laplacian or Registration based method and discuss the trade off between reproducibility and segmentation accuracy caused by bending energy constraints. We demonstrate that voxel-based methods can detect similar patterns of group-wise differences as well as FreeSurfer in typical applications such as producing group-wise maps of statistically significant thickness change, but that regional statistics can vary between methods. We use a Support Vector Machine to classify patients against controls and did not find statistically significantly different results with voxel based methods compared to FreeSurfer. Finally we assessed longitudinal performance and concluded that currently FreeSurfer provides the most plausible measure of change over time, with further work required for voxel based methods. PMID:21640841

  2. Rapid three-dimensional quantification of voxel-wise collagen fiber orientation

    PubMed Central

    Liu, Zhiyi; Quinn, Kyle P.; Speroni, Lucia; Arendt, Lisa; Kuperwasser, Charlotte; Sonnenschein, Carlos; Soto, Ana M.; Georgakoudi, Irene

    2015-01-01

    Defining fiber orientation at each voxel within a 3D biomedical image stack is potentially useful for a variety of applications, including cancer, wound healing and tissue regeneration. Current methods are typically computationally intensive or inaccurate. Herein, we present a 3D weighted orientation vector summation algorithm, which is a generalization of a previously reported 2D vector summation technique aimed at quantifying collagen fiber orientations simultaneously at each voxel of an image stack. As a result, voxel-wise fiber orientation information with 4° to 5° accuracy can be determined, and the computational time required to analyze a typical stack with the size of 512x512x100 voxels is less than 5 min. Thus, this technique enables the practical extraction of voxel-specific orientation data for characterizing structural anisotropy in 3D specimens. As examples, we use this approach to characterize the fiber organization in an excised mouse mammary gland and a 3D breast tissue model. PMID:26203362

  3. TU-F-17A-03: A 4D Lung Phantom for Coupled Registration/Segmentation Evaluation

    SciTech Connect

    Markel, D; El Naqa, I; Levesque, I

    2014-06-15

    Purpose: Coupling the processes of segmentation and registration (regmentation) is a recent development that allows improved efficiency and accuracy for both steps and may improve the clinical feasibility of online adaptive radiotherapy. Presented is a multimodality animal tissue model designed specifically to provide a ground truth to simultaneously evaluate segmentation and registration errors during respiratory motion. Methods: Tumor surrogates were constructed from vacuum sealed hydrated natural sea sponges with catheters used for the injection of PET radiotracer. These contained two compartments allowing for two concentrations of radiotracer mimicking both tumor and background signals. The lungs were inflated to different volumes using an air pump and flow valve and scanned using PET/CT and MRI. Anatomical landmarks were used to evaluate the registration accuracy using an automated bifurcation tracking pipeline for reproducibility. The bifurcation tracking accuracy was assessed using virtual deformations of 2.6 cm, 5.2 cm and 7.8 cm of a CT scan of a corresponding human thorax. Bifurcations were detected in the deformed dataset and compared to known deformation coordinates for 76 points. Results: The bifurcation tracking accuracy was found to have a mean error of −0.94, 0.79 and −0.57 voxels in the left-right, anterior-posterior and inferior-superior axes using a 1×1×5 mm3 resolution after the CT volume was deformed 7.8 cm. The tumor surrogates provided a segmentation ground truth after being registered to the phantom image. Conclusion: A swine lung model in conjunction with vacuum sealed sponges and a bifurcation tracking algorithm is presented that is MRI, PET and CT compatible and anatomically and kinetically realistic. Corresponding software for tracking anatomical landmarks within the phantom shows sub-voxel accuracy. Vacuum sealed sponges provide realistic tumor surrogate with a known boundary. A ground truth with minimal uncertainty is thus

  4. Image based Monte Carlo Modeling for Computational Phantom

    NASA Astrophysics Data System (ADS)

    Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican

    2014-06-01

    The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.

  5. Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome

    PubMed Central

    Cha, Yoon-Hee; Chakrapani, Shruthi

    2015-01-01

    Background Mal de debarquement syndrome (MdDS) is a disorder of chronic self-motion perception that occurs though entrainment to rhythmic background motion, such as from sea voyage, and involves the perception of low-frequency rocking that can last for months or years. The neural basis of this persistent sensory perception abnormality is not well understood. Methods We investigated grey matter volume differences underlying persistent MdDS by performing voxel-based morphometry on whole brain and pre-specified ROIs in 28 individuals with MdDS and comparing them to 18 age, sex, and handedness matched controls. Results MdDS participants exhibited greater grey matter volume in the left inferior parietal lobule, right inferior occipital gyrus (area V3v), right temporal pole, bilateral cerebellar hemispheric lobules VIII/IX and left lobule VIIa/VIIb. Grey matter volumes were lower in bilateral inferior frontal, orbitofrontal, pregenual anterior cingulate cortex (pgACC) and left superior medial gyri (t = 3.0, p<0.005uncorr). In ROI analyses, there were no volume differences in the middle occipital gyrus (region of V5/MT) or parietal operculum 2 (region of the parietoinsular vestibular cortex). Illness duration was positively related to grey matter volume in bilateral inferior frontal gyrus/anterior insula (IFG/AI), right posterior insula, superior parietal lobule, left middle occipital gyrus (V5/MT), bilateral postcentral gyrus, anterior cerebellum, and left cerebellar hemisphere and vermian lobule IX. In contrast, illness duration was negatively related to volume in pgACC, posterior middle cingulate gyrus (MCC), left middle frontal gyrus (dorsolateral prefrontal cortex-DLPFC), and right cerebellar hemispheric lobule VIIIb (t = 3.0, p<0.005uncorr). The most significant differences were decreased volume in the pgACC and increased volume in the left IFG/AI with longer illness duration (qFDRcorr <0.05). Concurrent medication use did not correlate with these findings or have a

  6. Optical phantoms with adjustable subdiffusive scattering parameters.

    PubMed

    Krauter, Philipp; Nothelfer, Steffen; Bodenschatz, Nico; Simon, Emanuel; Stocker, Sabrina; Foschum, Florian; Kienle, Alwin

    2015-10-01

    A new epoxy-resin-based optical phantom system with adjustable subdiffusive scattering parameters is presented along with measurements of the intrinsic absorption, scattering, fluorescence, and refractive index of the matrix material. Both an aluminium oxide powder and a titanium dioxide dispersion were used as scattering agents and we present measurements of their scattering and reduced scattering coefficients. A method is theoretically described for a mixture of both scattering agents to obtain continuously adjustable anisotropy values g between 0.65 and 0.9 and values of the phase function parameter γ in the range of 1.4 to 2.2. Furthermore, we show absorption spectra for a set of pigments that can be added to achieve particular absorption characteristics. By additional analysis of the aging, a fully characterized phantom system is obtained with the novelty of g and γ parameter adjustment. PMID:26473589

  7. Photoacoustic microscopy of bilirubin in tissue phantoms

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2012-12-01

    Determining both bilirubin's concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83 mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400 μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications.

  8. Optical phantoms with adjustable subdiffusive scattering parameters

    NASA Astrophysics Data System (ADS)

    Krauter, Philipp; Nothelfer, Steffen; Bodenschatz, Nico; Simon, Emanuel; Stocker, Sabrina; Foschum, Florian; Kienle, Alwin

    2015-10-01

    A new epoxy-resin-based optical phantom system with adjustable subdiffusive scattering parameters is presented along with measurements of the intrinsic absorption, scattering, fluorescence, and refractive index of the matrix material. Both an aluminium oxide powder and a titanium dioxide dispersion were used as scattering agents and we present measurements of their scattering and reduced scattering coefficients. A method is theoretically described for a mixture of both scattering agents to obtain continuously adjustable anisotropy values g between 0.65 and 0.9 and values of the phase function parameter γ in the range of 1.4 to 2.2. Furthermore, we show absorption spectra for a set of pigments that can be added to achieve particular absorption characteristics. By additional analysis of the aging, a fully characterized phantom system is obtained with the novelty of g and γ parameter adjustment.

  9. Characterization of a novel anthropomorphic plastinated lung phantom.

    PubMed

    Yoon, Sungwon; Henry, Robert W; Bouley, Donna M; Bennett, N Robert; Fahrig, Rebecca

    2008-12-01

    Phantoms are widely used during the development of new imaging systems and algorithms. For development and optimization of new imaging systems such as tomosynthesis, where conventional image quality metrics may not be applicable, a realistic phantom that can be used across imaging systems is desirable. A novel anthropomorphic lung phantom was developed by plastination of an actual pig lung. The plastinated phantom is characterized and compared with reference to in vivo images of the same tissue prior to plastination using high resolution 3D CT. The phantom is stable over time and preserves the anatomical features and relative locations of the in vivo sample. The volumes for different tissue types in the phantom are comparable to the in vivo counterparts, and CT numbers for different tissue types fall within a clinically useful range. Based on the measured CT numbers, the phantom cardiac tissue experienced a 92% decrease in bulk density and the phantom pulmonary tissue experienced a 78% decrease in bulk density compared to their in vivo counterparts. By-products in the phantom from the room temperature vulcanizing silicone and plastination process are also identified. A second generation phantom, which eliminates most of the by-products, is presented. Such anthropomorphic phantoms can be used to evaluate a wide range of novel imaging systems. PMID:19175148

  10. Characterization of a novel anthropomorphic plastinated lung phantom

    PubMed Central

    Yoon, Sungwon; Henry, Robert W.; Bouley, Donna M.; Bennett, N. Robert; Fahrig, Rebecca

    2008-01-01

    Phantoms are widely used during the development of new imaging systems and algorithms. For development and optimization of new imaging systems such as tomosynthesis, where conventional image quality metrics may not be applicable, a realistic phantom that can be used across imaging systems is desirable. A novel anthropomorphic lung phantom was developed by plastination of an actual pig lung. The plastinated phantom is characterized and compared with reference to in vivo images of the same tissue prior to plastination using high resolution 3D CT. The phantom is stable over time and preserves the anatomical features and relative locations of the in vivo sample. The volumes for different tissue types in the phantom are comparable to the in vivo counterparts, and CT numbers for different tissue types fall within a clinically useful range. Based on the measured CT numbers, the phantom cardiac tissue experienced a 92% decrease in bulk density and the phantom pulmonary tissue experienced a 78% decrease in bulk density compared to their in vivo counterparts. By-products in the phantom from the room temperature vulcanizing silicone and plastination process are also identified. A second generation phantom, which eliminates most of the by-products, is presented. Such anthropomorphic phantoms can be used to evaluate a wide range of novel imaging systems. PMID:19175148

  11. Phantom limb pain after lower limb trauma: origins and treatments.

    PubMed

    Foell, Jens; Bekrater-Bodmann, Robin; Flor, Herta; Cole, Jonathan

    2011-12-01

    Phantom sensations, that is, sensations perceived in a body part that has been lost, are a common consequence of accidental or clinical extremity amputations. Most amputation patients report a continuing presence of the limb, with some describing additional sensations such as numbness, tickling, or cramping of the phantom limb. The type, frequency, and stability of these phantom sensations can vary immensely. The phenomenon of painful