Science.gov

Sample records for adult wild-type wt

  1. Quadruple wild-type (WT) GIST: defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways.

    PubMed

    Pantaleo, Maria A; Nannini, Margherita; Corless, Christopher L; Heinrich, Michael C

    2015-01-01

    A subset of GISTs lack mutations in the KIT/PDGFRA or RAS pathways and yet retain an intact succinate dehydrogensase (SDH) complex. We propose that these KIT/PDGFRA/SDH/RAS-P WT GIST tumors be designated as quadruple wild-type (WT) GIST. Further molecular and clinicophatological characterization of quadruple WT GIST will help to determine their prognosis as well as assist in the optimization of medical management, including clinical test of novel therapies.

  2. Patterns of differential gene expression in adult rotation-resistant and wild-type western corn rootworm digestive tracts

    PubMed Central

    Chu, Chia-Ching; Zavala, Jorge A; Spencer, Joseph L; Curzi, Matías J; Fields, Christopher J; Drnevich, Jenny; Siegfried, Blair D; Seufferheld, Manfredo J

    2015-01-01

    The western corn rootworm (WCR,Diabrotica virgifera virgifera LeConte) is an important pest of corn. Annual crop rotation between corn and soybean disrupts the corn-dependent WCR life cycle and is widely adopted to manage this pest. This strategy selected for rotation-resistant (RR) WCR with reduced ovipositional fidelity to corn. Previous studies revealed that RR-WCR adults exhibit greater tolerance of soybean diets, different gut physiology, and host–microbe interactions compared to rotation-susceptible wild types (WT). To identify the genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses of RNA libraries from different WCR phenotypes fed with corn or soybean diets. Global gene expression profiles of WT- and RR-WCR were similar when feeding on corn diets, but different when feeding on soybean. Using network-based methods, we identified gene modules transcriptionally correlated with the RR phenotype. Gene ontology enrichment analyses indicated that the functions of these modules were related to metabolic processes, immune responses, biological adhesion, and other functions/processes that appear to correlate to documented traits in RR populations. These results suggest that gut transcriptomic divergence correlated with brief soybean feeding and other physiological traits may exist between RR- and WT-WCR adults. PMID:26240606

  3. Impact of mTORC1 inhibition on keratinocyte proliferation during skin tumor promotion in wild-type and BK5.AktWT mice.

    PubMed

    Rho, Okkyung; Kiguchi, Kaoru; Jiang, Guiyu; DiGiovanni, John

    2014-11-01

    In this study, we examined the impact of rapamycin on mTORC1 signaling during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocyte proliferation and skin tumor promotion in both wild-type (FVB/N) and BK5.Akt(WT) mice. TPA activated mTORC1 signaling in a time-dependent manner in cultured primary mouse keratinocytes and a mouse keratinocyte cell line. Early activation (15-30 min) of mTORC1 signaling induced by TPA was mediated in part by PKC activation, whereas later activation (2-4 h) was mediated by activation of EGFR and Akt. BK5.Akt(WT) transgenic mice, where Akt1 is overexpressed in basal epidermis, are highly sensitive to TPA-induced epidermal proliferation and two-stage skin carcinogenesis. Targeting mTORC1 with rapamycin effectively inhibited TPA-induced epidermal hyperplasia and hyperproliferation as well as tumor promotion in a dose-dependent manner in both wild-type and BK5.Akt(WT) mice. A significant expansion (∼threefold) of the label retaining cell (LRC) population per hair follicle was observed in BK5.Akt(WT) mice compared to FVB/N mice. There was also a significant increase in K15 expressing cells in the hair follicle of transgenic mice that coincided with expression of phospho-Akt, phospho-S6K, and phospho-PRAS40, suggesting an important role of mTORC1 signaling in bulge-region keratinocyte stem cell (KSC) homeostasis. After 2 weeks of TPA treatment, LRCs had moved upward into the interfollicular epidermis from the bulge region of both wild-type and BK5.Akt(WT) mice. TPA-mediated LRC proliferation and migration was significantly inhibited by rapamycin. Collectively, the current data indicate that signaling through mTORC1 contributes significantly to the process of skin tumor promotion through effects on proliferation of the target cells for tumor development.

  4. Tetrahydrohyperforin increases adult hippocampal neurogenesis in wild-type and APPswe/PS1ΔE9 mice.

    PubMed

    Abbott, Ana C; Calderon Toledo, Carla; Aranguiz, Florencia C; Inestrosa, Nibaldo C; Varela-Nallar, Lorena

    2013-01-01

    Tetrahydrohyperforin (IDN5706), a semi-synthetic derivative of hyperforin, has shown neuroprotective properties preventing the impairment of synaptic plasticity and cognitive decline in an in vivo model of Alzheimer's disease (AD). Considering the reported role of adult neurogenesis in the plasticity of the hippocampal network, we investigated whether IDN5706 affects adult neurogenesis and hippocampal function. In hippocampal progenitors cultured from adult rats, IDN5706 increased proliferation. Moreover, treatment with IDN5706 for 4 weeks increased cell proliferation in the subgranular zone (SGZ) of the hippocampus in 2 month-old wild-type mice in vivo. As determined by double labeling with BrdU and neuronal markers, IDN5706 treatment increased the number of immature neurons and newborn mature neurons in the adult dentate gyrus. In addition, IDN5706 treatment improved long-term memory in a hippocampal-dependent spatial memory task. Finally, IDN5706 treatment increased cell proliferation and neural commitment in the SGZ of the double transgenic APPswe/PS1ΔE9 mouse model of AD. These results indicate that IDN5706 increases adult hippocampal neurogenesis and may have therapeutic value in neurological disorders in which adult neurogenesis is impaired.

  5. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice.

    PubMed

    Doiron, Bruno; Hu, Wenchao; DeFronzo, Ralph A

    2016-01-01

    Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ's adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) longterm normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes.

  6. Genomic markers of panitumumab resistance including ERBB2/ HER2 in a phase II study of KRAS wild-type (wt) metastatic colorectal cancer (mCRC).

    PubMed

    Barry, Garrett S; Cheang, Maggie C; Chang, Hector Li; Kennecke, Hagen F

    2016-04-05

    A prospective study was conducted to identify biomarkers associated with resistance to panitumumab monotherapy in patients with metastatic colorectal cancer (mCRC). Patients with previously treated, codon 12/13 KRAS wt, mCRC were prospectively administered panitumumab 6 mg/kg IV q2weeks. Of 34 panitumumab-treated patients, 11 (32%) had progressive disease at 8 weeks and were classified as non-responders. A Nanostring nCounter-based assay identified a 5-gene expression signature (ERBB2, MLPH, IRX3, MYRF, and KLK6) associated with panitumumab resistance (P = 0.001). Immunohistochemistry and in situ hybridization determined that the HER2 (ERBB2) protein was overexpressed in 4/11 non-responding and 0/21 responding cases (P = 0.035). Two non-responding tumors had ERBB2 gene amplification only, and one demonstrated both ERBB2 amplification and mutation. A non-codon 12/13 KRAS mutation occurred in one panitumumab-resistant patient and was mutually exclusive with ERBB2/HER2 abnormalities. This study identifies a 5-gene signature associated with non-response to single agent panitumumab, including a subgroup of non-responders with evidence of aberrant ERBB2/HER2 signaling. KRAS wt tumors resistant to EGFRi may be identified by gene signature analysis, and the HER2 pathway plays an important role in resistance to therapy.

  7. Sod1 gene ablation in adult mice leads to physiological changes at the neuromuscular junction similar to changes that occur in old wild-type mice.

    PubMed

    Ivannikov, Maxim V; Van Remmen, Holly

    2015-07-01

    Reactive oxygen species (ROS) are believed to be important mediators of muscle atrophy and weakness in aging and many degenerative conditions. However, the mechanisms and physiological processes specifically affected by elevated ROS in neuromuscular units that contribute to muscle weakness during aging are not well defined. Here we investigate the effects of chronic oxidative stress on neurotransmission and excitation-contraction (EC) coupling mechanisms in the levator auris longus (LAL) muscle from young (4-8 months) and old (22-28 months) wild-type mice and young adult Cu-Zn superoxide dismutase 1 knockout (Sod1(-/-)) mice. The frequency of spontaneous neurotransmitter release and the amplitude of evoked neurotransmitter release in young Sod1(-/-) and old wild-type LAL neuromuscular junctions were significantly reduced from the young wild-type values, and those declines were mirrored by decreases in synaptic vesicle pool size. Presynaptic cytosolic calcium concentration and mitochondrial calcium uptake amplitudes showed substantial increases in stimulated young Sod1(-/-) and old axon terminals. Surprisingly, LAL muscle fibers from old mice showed a greater excitability than fibers from either young wild-type or young Sod1(-/-) LAL. Both evoked excitatory junction potential (EJP) and spontaneous mini EJP amplitudes were considerably higher in LAL muscles from old mice than in fibers from young Sod1(-/-) LAL muscle. Despite a greater excitability, sarcoplasmic calcium influx in both old wild-type and young Sod1(-/-) LAL muscle fibers was significantly less. Sarcoplasmic reticulum calcium levels were also reduced in both old wild-type and young Sod1(-/-) mice, but the difference was not statistically significant in muscle fibers from old wild-type mice. The protein ratio of triad calcium channels RyR1/DHPR was not different in all groups. However, fibers from both young Sod1(-/-) and old mice had substantially elevated levels of protein carbonylation and S

  8. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies.

    PubMed

    Chi, Michael W; Griffith, Leslie C; Vecsey, Christopher G

    2014-08-11

    Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.

  9. Prognostic value of quantitative analysis of WT1 gene transcripts in adult acute lymphoblastic leukemia.

    PubMed

    Chiusa, Luigi; Francia di Celle, Paola; Campisi, Paola; Ceretto, Cristina; Marmont, Filippo; Pich, Achille

    2006-02-01

    We quantified Wilm's tumor gene (WT1) using a real time quantitative polymerase chain reaction in 20 adult patients with acute lymphoblastic leukemia at presentation. A WT1 level greater than 906 (median value for the whole series) was a significant predictor of a poor disease-free and overall survival in uni- and multivariate analyses.

  10. Action Potentials are required for nitric oxide dependent LTP in CA1 neurons of adult GluR1 knockout and Wild-type mice

    PubMed Central

    Phillips, Keith G.; Hardingham, Neil R.; Fox, Kevin

    2009-01-01

    Neocortical LTP consists of both pre- and postsynaptic components that rely on nitric oxide (NO) and GluR1 respectively. In this study, we found that hippocampal LTP, induced by theta-burst stimulation in mature (> 8 week old) GluR1 knockout mice was almost entirely NO-dependent and involved both the α splice variant of NO synthase-1 (αNOS-1) and the NO synthase-3 (NOS-3) isoforms of NO synthase. Theta-burst induced LTP was also partly NO-dependent in wild-type mice, and made up approximately 50% of the potentiation 2 hours post-tetanus. Theta-burst stimulation reliably produced postsynaptic spikes including a high probability of complex spikes. Inhibition of postsynaptic somatic spikes with intracellular QX314 or local TTX application prevented LTP in the GluR1 knockout mice and also blocked the NO-component of LTP in wild-types. We conclude that theta-burst stimulation is particularly well suited to producing the somatic postsynaptic spikes required for NO-dependent LTP. PMID:19109486

  11. WT1 overexpression affecting clinical outcome in non-hodgkin lymphomas and adult acute lymphoblastic leukemia.

    PubMed

    Ujj, Zsófia; Buglyó, Gergely; Udvardy, Miklós; Vargha, György; Biró, Sándor; Rejtő, László

    2014-07-01

    The Wilms tumor 1 (WT1) gene has a complex role as a transcriptional regulator, acting as tumor suppressor or oncogene in different malignancies. The prognostic role of its overexpression has been well-studied in leukemias, especially acute myeloid leukemia (AML), but not in lymphomas. For the first time to our knowledge, we present a study demonstrating the correlation of WT1 expression and survival in various non-Hodgkin lymphomas. We also studied the prognostic implications of WT1 overexpression in adult acute lymphoblastic leukemia (ALL). In our sample of 53 patients--25 with diffuse large B-cell lymphoma (DLBCL), 8 with mantle cell lymphoma (MCL), 9 with peripheral T-cell lymphoma (PTCL), 2 with Burkitt's lymphoma, 2 with mucosa-associated lymphoid tissue (MALT) lymphoma, and 7 with B-cell ALL--, we measured WT1 mRNA from blood samples by quantitative RT-PCR, and divided the patients into subgroups based on the level of expression. Kaplan-Meier survival curves were drawn and compared using the logrank test. In the sample of DLBCL patients, the difference in overall and disease-free survival between WT1-positive and negative subgroups was significant (p = 0.0475 and p = 0.0004, respectively), and in a few observed cases, a sudden increase in WT1 expression signified a relapse soon followed by death. Disease-free survival curves in MCL and ALL were similarly suggestive of a potential role played by WT1. In PTCL, though WT1-positivity was detected in 4 out of 9 cases, it did not seem to affect survival. The few cases of MALT and Burkitt's lymphoma all proved to be WT1-negative.

  12. Differential proteomic responses of selectively bred and wild-type Sydney rock oyster populations exposed to elevated CO2.

    PubMed

    Thompson, E L; O'Connor, W; Parker, L; Ross, P; Raftos, D A

    2015-03-01

    Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild-type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 μatm) before their proteomes were compared to those of oysters held under ambient conditions (375 μatm pCO2 ). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild-type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild-type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade-off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2 , whilst being deleterious to adult oysters.

  13. Complete genome sequence and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a healthy adult.

    PubMed

    Oshima, Kenshiro; Toh, Hidehiro; Ogura, Yoshitoshi; Sasamoto, Hiroyuki; Morita, Hidetoshi; Park, Sang-Hee; Ooka, Tadasuke; Iyoda, Sunao; Taylor, Todd D; Hayashi, Tetsuya; Itoh, Kikuji; Hattori, Masahira

    2008-12-01

    We sequenced and analyzed the genome of a commensal Escherichia coli (E. coli) strain SE11 (O152:H28) recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B1. SE11 harbored a 4.8 Mb chromosome encoding 4679 protein-coding genes and six plasmids encoding 323 protein-coding genes. None of the SE11 genes had sequence similarity to known genes encoding phage- and plasmid-borne virulence factors found in pathogenic E. coli strains. The comparative genome analysis with the laboratory strain K-12 MG1655 identified 62 poorly conserved genes between these two non-pathogenic strains and 1186 genes absent in MG1655. These genes in SE11 were mostly encoded in large insertion regions on the chromosome or in the plasmids, and were notably abundant in genes of fimbriae and autotransporters, which are cell surface appendages that largely contribute to the adherence ability of bacteria to host cells and bacterial conjugation. These data suggest that SE11 may have evolved to acquire and accumulate the functions advantageous for stable colonization of intestinal cells, and that the adhesion-associated functions are important for the commensality of E. coli in human gut habitat.

  14. Complete Genome Sequence and Comparative Analysis of the Wild-type Commensal Escherichia coli Strain SE11 Isolated from a Healthy Adult

    PubMed Central

    Oshima, Kenshiro; Toh, Hidehiro; Ogura, Yoshitoshi; Sasamoto, Hiroyuki; Morita, Hidetoshi; Park, Sang-Hee; Ooka, Tadasuke; Iyoda, Sunao; Taylor, Todd D.; Hayashi, Tetsuya; Itoh, Kikuji; Hattori, Masahira

    2008-01-01

    We sequenced and analyzed the genome of a commensal Escherichia coli (E. coli) strain SE11 (O152:H28) recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B1. SE11 harbored a 4.8 Mb chromosome encoding 4679 protein-coding genes and six plasmids encoding 323 protein-coding genes. None of the SE11 genes had sequence similarity to known genes encoding phage- and plasmid-borne virulence factors found in pathogenic E. coli strains. The comparative genome analysis with the laboratory strain K-12 MG1655 identified 62 poorly conserved genes between these two non-pathogenic strains and 1186 genes absent in MG1655. These genes in SE11 were mostly encoded in large insertion regions on the chromosome or in the plasmids, and were notably abundant in genes of fimbriae and autotransporters, which are cell surface appendages that largely contribute to the adherence ability of bacteria to host cells and bacterial conjugation. These data suggest that SE11 may have evolved to acquire and accumulate the functions advantageous for stable colonization of intestinal cells, and that the adhesion-associated functions are important for the commensality of E. coli in human gut habitat. PMID:18931093

  15. WT1 peptide immunotherapy for cancer in children and young adults.

    PubMed

    Hashii, Yoshiko; Sato, Emiko; Ohta, Hideaki; Oka, Yoshihiro; Sugiyama, Haruo; Ozono, Keiichi

    2010-08-01

    Wilms tumor gene (WT1) can be overexpressed in childhood cancers. We evaluated the efficacy of WT1 vaccination for five children with solid cancer or acute leukemia. WT1 vaccine was administered to HLA-A*2402-positive patients with WT1-overexpressing residual tumor despite prior conventional treatment. One patient showed complete response and one patient showed stable disease according to the Response Evaluation Criteria in Solid Tumors; the remaining three showed progressive disease. Treatment-related adverse effects were limited to local injection site erythema. These results suggest that WT1 vaccination has therapeutic potential, but any beneficial effect may be insufficient in the presence of gross residual disease.

  16. Development of multi-epitope vaccines targeting wild-type sequence p53 peptides.

    PubMed

    DeLeo, Albert B; Whiteside, Theresa L

    2008-09-01

    Loss of p53 tumor-suppressor function is the most common abnormality in human cancer, which can result in enhanced presentation to immune cells of wild-type (wt)-sequence peptides from tumor p53 molecules, thus providing the rationale for wt p53 peptide-based cancer vaccines. We review evidence from preclinical murine tumor models and preclinical studies that led to the clinical introduction of wt p53 peptide-based vaccines for cancer immunotherapy. Overall, this review illustrates the complex process of wt p53 epitope selection and the issues and concerns involved in the application of p53-based vaccines for patients with cancer.

  17. Gender differences between hypocretin/orexin knockout and wild type mice: age, body weight, body composition, metabolic markers, leptin and insulin resistance.

    PubMed

    Ramanathan, Lalini; Siegel, Jerome M

    2014-12-01

    Female hypocretin knockout (Hcrt KO) mice have increased body weight despite decreased food intake compared to wild type (WT) mice. In order to understand the nature of the increased body weight, we carried out a detailed study of Hcrt KO and WT, male, and female mice. Female KO mice showed consistently higher body weight than WT mice, from 4 to 20 months (20-60%). Fat, muscle, and free fluid levels were all significantly higher in adult (7-9 months) as well as old (18-20 months) female KO mice compared to age-matched WT mice. Old male KO mice showed significantly higher fat content (150%) compared to age-matched WT mice, but no significant change in body weight. Respiratory quotient (-19%) and metabolic rates (-14%) were significantly lower in KO mice compared to WT mice, regardless of gender or age. Female KO mice had significantly higher serum leptin levels (191%) than WT mice at 18-20 months, but no difference between male mice were observed. Conversely, insulin resistance was significantly higher in both male (73%) and female (93%) KO mice compared to age- and sex-matched WT mice. We conclude that absence of the Hcrt peptide has gender-specific effects. In contrast, Hcrt-ataxin mice and human narcoleptics, with loss of the whole Hcrt cell, show weight gain in both sexes.

  18. Cuticle surface proteins of wild type and mutant Caenorhabditis elegans.

    PubMed

    Blaxter, M L

    1993-03-25

    The molecular components of the surface of the free-living nematode Caenorhabditis elegans have been identified by surface-specific radioiodination. Four compartments were defined by fractionation of labeled wild type (N2 strain) adult hermaphrodites. Organic solvents extracted cuticular lipids. Homogenization in detergents released a single, non-collagenous, hydrophobic protein. This is not glycosylated and is a heterodimer of 6.5- and 12-kDa subunits. The third compartment, proteins solubilized by reducing agents, included both the cuticular collagens and the heterodimer. Residual material corresponds to the cuticlin fraction. Larval stages showed a similar pattern, except that the dauer larva had an additional 37-kDa detergent-soluble protein. Other species of rhabditid nematodes displayed similar profiles, and comparison with parasitic species suggests that this simple pattern may be primitive in the Nematoda. A C. elegans strain mutant in cuticular collagen (rol-6) had a pattern identical to that of wild type, but another morphological mutant (dpy-3) [corrected] and several mutants that differ in surface reactivity to antibody and lectins (srf mutants) also had striking differences in surface labeling patterns.

  19. Wild type measles virus attenuation independent of type I IFN

    PubMed Central

    Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T

    2008-01-01

    Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). Results The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system. PMID:18241351

  20. Recovery of the wild type atomic flexibility in the HIV-1 protease double mutants.

    PubMed

    De Conto, Valderes; Braz, Antônio S K; Perahia, David; Scott, Luis P B

    2015-06-01

    The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants. In most cases, the flexibility profile of the double mutants was more often similar to that of the WT than to that of the related single base mutants. All single mutants showed a significant alteration in h-bond formation compared to WT. Most of the significant changes occur in the border between the flap and cantilever regions. We found that all the considered double mutants have their h-bond pattern significantly altered in comparison to the respective single base mutants affecting their flexibility profile that becomes more similar to that of WT. This WT flexibility restoration in the double mutants appears as an important factor for the HIV-1 fitness recovery observed in patients.

  1. The mystery of oncogenic KRAS: Lessons from studying its wild-type counter part.

    PubMed

    Chang, Yuan-I; Damnernsawad, Alisa; Kong, Guangyao; You, Xiaona; Wang, Demin; Zhang, Jing

    2016-07-22

    Using conditional knock-in mouse models, we and others have shown that despite the very high sequence identity between Nras and Kras proteins, oncogenic Kras displays a much stronger leukemogenic activity than oncogenic Nras in vivo. In this manuscript, we will summarize our recent work of characterizing wild-type Kras function in adult hematopoiesis and in oncogenic Kras-induced leukemogenesis. We attribute the strong leukemogenic activity of oncogenic Kras to 2 unique aspects of Kras signaling. First, Kras is required in mediating cell type- and cytokine-specific ERK1/2 signaling. Second, oncogenic Kras, but not oncogenic Nras, induces hyperactivation of wild-type Ras, which significantly enhances Ras signaling in vivo. We will also discuss a possible mechanism that mediates oncogenic Kras-evoked hyperactivation of wild-type Ras and a potential approach to down-regulate oncogenic Kras signaling.

  2. WT1 Expression in Adult Acute Myeloid Leukemia: Assessing its Presence, Magnitude and Temporal Changes as Prognostic Factors.

    PubMed

    Ujj, Zsófia; Buglyó, Gergely; Udvardy, Miklós; Beyer, Dániel; Vargha, György; Biró, Sándor; Rejtő, László

    2016-01-01

    Expression of the gene Wilms tumor 1 (WT1) has been suggested as a marker of minimal residual disease in acute myeloid leukemia (AML), but literature data are not without controversy. Our aim was to assess the presence, magnitude and temporal changes of WT1 expression as prognostic factors. 60 AML patients were followed until death or the end of the 6-year observation period. Blood samples were taken at diagnosis, post-induction, during remission and in case of a relapse. Using quantitative real-time PCR, we determined WT1 expression from each sample, normalized it against the endogenous control gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and classified samples as negative, moderately positive or highly positive. We divided the patients into groups based on detected WT1 expression values, illustrated overall and disease-free survival on Kaplan-Meier curves, and compared differences between each group by the logrank test. Disappearance of WT1-positivity during chemotherapy had a favorable effect on survival. Interestingly, no difference was seen between the survivals of WT1-positive subgroups that expressed moderate or high levels of WT1 mRNA. A 1-log decrease in WT1 expression without becoming negative did not affect prognosis, either. Our results suggest that defining a cut-off value for WT1-positivity, rather than just using logarithmic figures of changes in gene expression, might have prognostic use in post-induction AML patients. We encourage further, larger-scale studies.

  3. Mating success of wild type and sepia mutants Drosophila melanogaster in different choice.

    PubMed

    Stanić, Snezana; Pavković-Lucic, Sofija

    2005-01-01

    Mating behaviour of red-eyed (wt) and brown-eyed (sepia) Drosophila melanogaster was studied under light conditions. Mating success was directly observed in mating vials and techniques usually applied in the studies of sexual selection ("female choice" and "multiple choice"). The comparison of sexual activity of mutant and wild types clearly indicates that they are not equally successful in matings. Sepia eye colour mutation decreases sexual activity of Drosophila melanogaster males, influences the preference ability of females and decreases the number of progeny from homogamic mating of the se x se type, as well as from heterogamic copulations in which sepia females take part. Non-random mating of wild type males and sepia females (in "multiple-choice" situation), with genetically and phenotypically different individuals, could be another mechanism for conservation of genetic polymorphism in natural populations.

  4. SRC protein tyrosine kinase, c-Jun N-terminal kinase (JNK), and NF-kappaBp65 signaling in commercial and wild-type turkey leukocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies comparing signaling in wild-type turkey (WT) leukocytes and commercial turkey (CT) leukocytes found that the activity of protein tyrosine kinases (PTK) and MAP kinases, ERK 1/2 and p38, were significantly higher in WT leukocytes compared to CT lines upon exposure to both SE and OPSE on days...

  5. Purification of extrachloroplastic. beta. -amylase from leaves of starchless and wild type Arabidopsis

    SciTech Connect

    Somerville, C.; Monroe, J.; Preiss, J. )

    1989-04-01

    Amylase activity in crude leaf extracts from starchless mutants of Arabidopsis thaliana is 5 to 10 fold higher than in the wild type (WT) when plants are grown under a 12 h photoperiod. Visualized on native PAGE, the increased activity is attributed primarily to a previously characterized extrachloroplastic {beta}-(exo)amylase. The {beta}-amylases from phosoglucomutase deficient (starchless) and WT leaves were purified to homogeneity in two steps utilizing polyethylene glycol fractionation, and cyclohexaamylose affinity chromatography. The enzyme from both mutant and WT leaves had negligible activity toward either {beta}-limit dextrin or pullulan. The specific activities of both purified enzymes were similar indicating that the protein is over-expressed in the mutant. Preliminary antibody neutralization experiments suggest that the two {beta}-amylases are not different.

  6. A conditionally replicating HIV-1 vector interferes with wild-type HIV-1 replication and spread.

    PubMed Central

    Dropulić, B; Hĕrmánková, M; Pitha, P M

    1996-01-01

    Defective-interfering viruses are known to modulate virus pathogenicity. We describe conditionally replicating HIV-1 (crHIV) vectors that interfere with wild-type HIV-1 (wt-HIV) replication and spread. crHIV vectors are defective-interfering HIV genomes that do not encode viral proteins and replicate only in the presence of wt-HIV helper virus. In cells that contain both wt-HIV and crHIV genomes, the latter are shown to have a selective advantage for packaging into progeny virions because they contain ribozymes that cleave wt-HIV RNA but not crHIV RNA. A crHIV vector containing a triple anti-U5 ribozyme significantly interferes with wt-HIV replication and spread. crHIV vectors are also shown to undergo the full viral replicative cycle after complementation with wt-HIV helper-virus. The application of defective interfering crHIV vectors may result in competition with wt-HIVs and decrease pathogenic viral loads in vivo. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8855316

  7. The fusion protein of wild-type canine distemper virus is a major determinant of persistent infection.

    PubMed

    Plattet, Philippe; Rivals, Jean-Paul; Zuber, Benoît; Brunner, Jean-Marc; Zurbriggen, Andreas; Wittek, Riccardo

    2005-07-05

    The wild-type A75/17 canine distemper virus (CDV) strain induces a persistent infection in the central nervous system but infects cell lines very inefficiently. In contrast, the genetically more distant Onderstepoort CDV vaccine strain (OP-CDV) induces extensive syncytia formation. Here, we investigated the roles of wild-type fusion (F(WT)) and attachment (H(WT)) proteins in Vero cells expressing, or not, the canine SLAM receptor by transfection experiments and by studying recombinants viruses expressing different combinations of wild-type and OP-CDV glycoproteins. We show that low fusogenicity is not due to a defect of the envelope proteins to reach the cell surface and that H(WT) determines persistent infection in a receptor-dependent manner, emphasizing the role of SLAM as a potent enhancer of fusogenicity. However, importantly, F(WT) reduced cell-to-cell fusion independently of the cell surface receptor, thus demonstrating that the fusion protein of the neurovirulent A75/17-CDV strain plays a key role in determining persistent infection.

  8. Transcriptional response of wild-type and ataxia telangiectasia lymphoblasts following exposure to equitoxic doses of ionizing radiation.

    PubMed

    Klising-Sireul, Eve; Rigaud, Odile; Ory, Katherine; Ugolin, Nicolas; Lebeau, Jérome; Levalois, Céline; Lectard, Bruno; Chevillard, Sylvie

    2006-11-01

    Experiments were designed to compare the transcriptional response to ionizing radiation (IR) of wild-type (WT) and ataxia telangiectasia (AT) cells. mRNA levels were assessed 2, 4 and 24 h after exposure to equitoxic doses using cDNA microarrays. Data reveal distinct patterns of gene expression between AT and WT cells since IR-responsive genes were mostly cell-type specific, this group representing 87 and 94% of the responding genes in WT and AT cells, respectively. In both cell lines, transcriptional alterations of genes associated with proliferation correlated with the observed cell cycle and growth data. Deregulated genes involved in apoptosis suggest that wild-type cells were more prone to cell death by apoptosis than AT cells. Furthermore, genes associated with the response to oxidative stress were particularly deregulated in wild-type cells whereas alterations of genes related to unexpected pathways including RNA processing, protein synthesis and lipid metabolism were specifically found in irradiated AT cells. These data suggest that under radiation conditions leading to a similar survival of WT and AT cells, the mechanisms triggered after radiation were mainly dependent on ATM status and thus on the intrinsic radiosensitivity.

  9. The fusion protein of wild-type canine distemper virus is a major determinant of persistent infection

    SciTech Connect

    Plattet, Philippe; Rivals, Jean-Paul; Zuber, BenoIt; Brunner, Jean-Marc; Zurbriggen, Andreas; Wittek, Riccardo . E-mail: Riccardo.Wittek@unil.ch

    2005-07-05

    The wild-type A75/17 canine distemper virus (CDV) strain induces a persistent infection in the central nervous system but infects cell lines very inefficiently. In contrast, the genetically more distant Onderstepoort CDV vaccine strain (OP-CDV) induces extensive syncytia formation. Here, we investigated the roles of wild-type fusion (F{sub WT}) and attachment (H{sub WT}) proteins in Vero cells expressing, or not, the canine SLAM receptor by transfection experiments and by studying recombinants viruses expressing different combinations of wild-type and OP-CDV glycoproteins. We show that low fusogenicity is not due to a defect of the envelope proteins to reach the cell surface and that H{sub WT} determines persistent infection in a receptor-dependent manner, emphasizing the role of SLAM as a potent enhancer of fusogenicity. However, importantly, F{sub WT} reduced cell-to-cell fusion independently of the cell surface receptor, thus demonstrating that the fusion protein of the neurovirulent A75/17-CDV strain plays a key role in determining persistent infection.

  10. Stringent Requirement for the C Protein of Wild-Type Measles Virus for Growth both In Vitro and in Macaques

    PubMed Central

    Takeuchi, Kaoru; Takeda, Makoto; Miyajima, Naoko; Ami, Yasushi; Nagata, Noriyo; Suzaki, Yuriko; Shahnewaz, Jamila; Kadota, Shin-ichi; Nagata, Kyosuke

    2005-01-01

    The P gene of measles virus (MV) encodes the P protein and three accessory proteins (C, V, and R). However, the role of these accessory proteins in the natural course of MV infection remains unclear. For this study, we generated a recombinant wild-type MV lacking the C protein, called wtMV(C−), by using a reverse genetics system (M. Takeda, K. Takeuchi, N. Miyajima, F. Kobune, Y. Ami, N. Nagata, Y. Suzaki, Y. Nagai, and M. Tashiro, J. Virol. 74:6643-6647). When 293 cells expressing the MV receptor SLAM (293/hSLAM) were infected with wtMV(C−) or parental wild-type MV (wtMV), the growth of wtMV(C−) was restricted, particularly during late stages. Enhanced green fluorescent protein-expressing wtMV(C−) consistently induced late-stage cell rounding and cell death in the presence of a fusion-inhibiting peptide, suggesting that the C protein can prevent cell death and is required for long-term MV infection. Neutralizing antibodies against alpha/beta interferon did not restore the growth restriction of wtMV(C−) in 293/hSLAM cells. When cynomolgus monkeys were infected with wtMV(C−) or wtMV, the number of MV-infected cells in the thymus was >1,000-fold smaller for wtMV(C−) than for wtMV. Immunohistochemical analyses showed strong expression of an MV antigen in the spleen, lymph nodes, tonsils, and larynx of a cynomolgus monkey infected with wtMV but dramatically reduced expression in the same tissues in a cynomolgus monkey infected with wtMV(C−). These data indicate that the MV C protein is necessary for efficient MV replication both in vitro and in cynomolgus monkeys. PMID:15919937

  11. Brucella abortus ΔrpoE1 confers protective immunity against wild type challenge in a mouse model of brucellosis.

    PubMed

    Willett, Jonathan W; Herrou, Julien; Czyż, Daniel M; Cheng, Jason X; Crosson, Sean

    2016-09-30

    The Brucella abortus general stress response (GSR) system regulates activity of the alternative sigma factor, σ(E1), which controls transcription of approximately 100 genes and is required for persistence in a BALB/c mouse chronic infection model. We evaluated the host response to infection by a B. abortus strain lacking σ(E1) (ΔrpoE1), and identified pathological and immunological features that distinguish ΔrpoE1-infected mice from wild-type (WT), and that correspond with clearance of ΔrpoE1 from the host. ΔrpoE1 infection was indistinguishable from WT in terms of splenic bacterial burden, inflammation and histopathology up to 6weeks post-infection. However, Brucella-specific serum IgG levels in ΔrpoE1-infected mice were 5 times higher than WT by 4weeks post-infection, and remained significantly higher throughout the course of a 12-week infection. Total IgG and Brucella-specific IgG levels peaked strongly in ΔrpoE1-infected mice at 6weeks, which correlated with reduced splenomegaly and bacterial burden relative to WT-infected mice. Given the difference in immune response to infection with wild-type and ΔrpoE1, we tested whether ΔrpoE1 confers protective immunity to wild-type challenge. Mice immunized with ΔrpoE1 completely resisted WT infection and had significantly higher serum titers of Brucella-specific IgG, IgG2a and IFN-γ after WT challenge relative to age-matched naïve mice. We conclude that immunization of BALB/c mice with the B. abortus GSR pathway mutant, ΔrpoE1, elicits an adaptive immune response that confers significant protective immunity against WT infection.

  12. Determination of the dipole moments of RNAse SA wild type and a basic mutant.

    PubMed

    Chari, Ravi; Singh, Shubhadra N; Yadav, Sandeep; Brems, David N; Kalonia, Devendra S

    2012-04-01

    In this study, we report the effects of acidic to basic residue point mutations (5K) on the dipole moment of RNAse SA at different pHs. Dipole moments were determined by measuring solution capacitance of the wild type (WT) and the 5K mutant with an impedance analyzer. The dipole moments were then (1) compared with theoretically calculated dipole moments, (2) analyzed to determine the effect of the point mutations, and (3) analyzed for their contribution to overall protein-protein interactions (PPI) in solution as quantitated by experimentally derived second virial coefficients. We determined that experimental and calculated dipoles were in reasonable agreement. Differences are likely due to local motions of residue side chains, which are not accounted for by the calculated dipole. We observed that the proteins' dipole moments increase as the pH is shifted further from their isoelectric points and that the wild-type dipole moments were greater than those of the 5K. This is likely due to an increase in the proportion of one charge (either negative or positive) relative to the other. A greater charge disparity corresponded to a larger dipole moment. Finally, the larger dipole moments of the WT resulted in greater attractive overall PPI for that protein as compared to the 5K.

  13. Real-time quantification of wild-type contaminants in glyphosate tolerant soybean

    PubMed Central

    Battistini, Elena; Noli, Enrico

    2009-01-01

    Background Trait purity is a key factor for the successful utilization of biotech varieties and is currently assessed by analysis of individual seeds or plants. Here we propose a novel PCR-based approach to test trait purity that can be applied to bulk samples. To this aim the insertion site of a transgene is characterized and the corresponding sequence of the wild-type (wt) allele is used as diagnostic target for amplification. As a demonstration, we developed a real-time quantitative PCR method to test purity of glyphosate tolerant (Roundup Ready®, RR) soybean. Results The soybean wt sequence at the RR locus was characterized and found to be highly conserved among conventional genotypes, thus allowing the detection of possibly any soybean non-trait contaminant. On the other hand, no amplification product was obtained from RR soybean varieties, indicating that the wt sequence is single copy and represents a suitable marker of conventional soybean presence. In addition, results obtained from the analysis of wt-spiked RR samples demonstrate that it is possible to use the real-time PCR assay to quantify the non-trait contamination with an acceptable degree of accuracy. Conclusion In principle this approach could be successfully applied to any transgenic event, provided that the wild-type sequence is conserved and single copy. The main advantages of the assay here described derive from its applicability to bulk samples, which would allow to increase the number of single seeds or plants forming the analytical sample, thus improving accuracy and throughput while containing costs. For these reasons this application of quantitative PCR could represent a useful tool in agricultural biotechnology. PMID:19267904

  14. Virologic surveillance for wild-type rubella viruses in the Americas.

    PubMed

    Icenogle, Joseph P; Siqueira, Marilda M; Abernathy, Emily S; Lemos, Xenia R; Fasce, Rodrigo A; Torres, Graciela; Reef, Susan E

    2011-09-01

    The goal of eliminating rubella from the Americas by 2010 was established in 2003. Subsequently, a systematic nomenclature for wild-type rubella viruses (wtRVs) was established, wtRVs circulating in the region were catalogued, and importations of wtRVs into a number of countries were documented. The geographic distribution of wtRVs of various genotypes in the Americas, interpreted in the context of the global distribution of these viruses, contributed to the documentation of rubella elimination from some countries. Data from virologic surveillance also contributed to the conclusion that viruses of genotype 2B began circulating endemically in the Americas during 2006-2007. Viruses of one genotype (1C), which are restricted to the Americas, will likely disappear completely from the world as they are eliminated from the Americas. Efforts to expand virologic surveillance for wtRVs in the Americas will also provide additional data aiding the elimination of rubella from the region. For example, identification of vaccine virus in specimens from rash and fever cases found during elimination can identify such cases as vaccine associated.

  15. Direct comparison of progenitor cells derived from adipose, muscle, and bone marrow from wild-type or craniosynostotic rabbits

    PubMed Central

    GM, Cooper; EL, Lensie; JJ, Cray; MR, Bykowski; GE, DeCesare; MA, Smalley; MP, Mooney; PG, Campbell; JE, Losee

    2010-01-01

    Background Reports have identified cells capable of osteogenic differentiation in bone marrow, muscle, and adipose tissues, but there are few direct comparisons of these different cell-types. Also, few have investigated the potential connection between a tissue-specific pathology and cells derived from seemingly unrelated tissues. Here, we compare cells isolated from wild-type rabbits or rabbits with nonsyndromic craniosynostosis, defined as the premature fusion of one or more of the cranial sutures. Methods Cells were derived from bone marrow, adipose, and muscle of 10 day-old wild-type rabbits (WT; n=17) or from age-matched rabbits with familial nonsyndromic craniosynostosis (CS; n=18). Cells were stimulated with bone morphogenetic protein 4 (BMP4) and alkaline phosphatase expression and cell proliferation were assessed. Results In WT rabbits, cells derived from muscle had more alkaline phosphatase activity than cells derived from either adipose or bone marrow. The cells derived from CS rabbit bone marrow and muscle were significantly more osteogenic than WT. Adipose-derived cells demonstrated no significant differences. While muscle-derived cells were most osteogenic in WT rabbits, bone marrow-derived cells were most osteogenic in CS rabbits. Conclusions Results suggest that cells from different tissues have different potentials for differentiation. Furthermore, cells derived from rabbits with craniosynostosis were different from wild-type derived cells. Interestingly, cells derived from the craniosynostotic rabbits were not uniformly more responsive compared with wild-type cells, suggesting that specific tissue-derived cells may react differently in individuals with craniosynostosis. PMID:20871482

  16. Drought stress-induced compositional changes in tolerant transgenic rice and its wild type.

    PubMed

    Nam, Kyong-Hee; Kim, Do-Young; Shin, Hee Jae; Nam, Ki Jung; An, Joo Hee; Pack, In-Soon; Park, Jung-Ho; Jeong, Soon-Chun; Kim, Ho Bang; Kim, Chang-Gi

    2014-06-15

    Comparing well-watered versus deficit conditions, we evaluated the chemical composition of grains harvested from wild-type (WT) and drought-tolerant, transgenic rice (Oryza sativa L.). The latter had been developed by inserting AtCYP78A7, which encodes a cytochrome P450 protein. Two transgenic Lines, '10B-5' and '18A-4', and the 'Hwayoung' WT were grown under a rainout shelter. After the harvested grains were polished, their levels of key components, including proximates, amino acids, fatty acids, minerals and vitamins were analysed to determine the effect of watering system and genotype. Drought treatment significantly influenced the levels of some nutritional components in both transgenic and WT grains. In particular, the amounts of lignoceric acid and copper in the WT decreased by 12.6% and 39.5%, respectively, by drought stress, whereas those of copper and potassium in the transgenics rose by 88.1-113.3% and 10.4-11.9%, respectively, under water-deficit conditions.

  17. Targeting Mdmx to treat breast cancers with wild-type p53.

    PubMed

    Haupt, S; Buckley, D; Pang, J-M B; Panimaya, J; Paul, P J; Gamell, C; Takano, E A; Lee, Y Ying; Hiddingh, S; Rogers, T-M; Teunisse, A F A S; Herold, M J; Marine, J-C; Fox, S B; Jochemsen, A; Haupt, Y

    2015-07-16

    The function of the tumor suppressor p53 is universally compromised in cancers. It is the most frequently mutated gene in human cancers (reviewed). In cases where p53 is not mutated, alternative regulatory pathways inactivate its tumor suppressive functions. This is primarily achieved through elevation in the expression of the key inhibitors of p53: Mdm2 or Mdmx (also called Mdm4) (reviewed). In breast cancer (BrCa), the frequency of p53 mutations varies markedly between the different subtypes, with basal-like BrCas bearing a high frequency of p53 mutations, whereas luminal BrCas generally express wild-type (wt) p53. Here we show that Mdmx is unexpectedly highly expressed in normal breast epithelial cells and its expression is further elevated in most luminal BrCas, whereas p53 expression is generally low, consistent with wt p53 status. Inducible knockdown (KD) of Mdmx in luminal BrCa MCF-7 cells impedes the growth of these cells in culture, in a p53-dependent manner. Importantly, KD of Mdmx in orthotopic xenograft transplants resulted in growth inhibition associated with prolonged survival, both in a preventative model and also in a treatment model. Growth impediment in response to Mdmx KD was associated with cellular senescence. The growth inhibitory capacity of Mdmx KD was recapitulated in an additional luminal BrCa cell line MPE600, which expresses wt p53. Further, the growth inhibitory capacity of Mdmx KD was also demonstrated in the wt p53 basal-like cell line SKBR7 line. These results identify Mdmx growth dependency in wt p53 expressing BrCas, across a range of subtypes. Based on our findings, we propose that Mdmx targeting is an attractive strategy for treating BrCas harboring wt p53.

  18. Wild-type p53 induces diverse effects in 32D cells expressing different oncogenes.

    PubMed Central

    Soddu, S; Blandino, G; Scardigli, R; Martinelli, R; Rizzo, M G; Crescenzi, M; Sacchi, A

    1996-01-01

    Expression of exogenous wild-type (wt) p53 in different leukemia cell lines can induce growth arrest, apoptotic cell death, or cell differentiation. The hematopoietic cell lines that have been used so far to study wt p53 functions have in common the characteristic of not expressing endogenous p53. However, the mechanisms involved in the transformation of these cells are different, and the cells are at different stages of tumor progression. It can be postulated that each type of neoplastic cell offers a particular environment in which p53 might generate different effects. To test this hypothesis, we introduced individual oncogenes into untransformed, interleukin-3 (IL-3)-dependent myeloid precursor 32D cells to have a single transforming agent at a time. The effects induced by wt p53 overexpression were subsequently evaluated in each oncogene-expressing 32D derivative. We found that in not fully transformed, v-ras-expressing 32D cells, as already shown for the parental 32D cells, overexpression of the wt p53 gene caused no phenotypic changes and no reduction of the proliferative rate as long as the cells were maintained in their normal culture conditions (presence of IL-3 and serum). An accelerated rate of apoptosis was observed after IL-3 withdrawal. In contrast, in transformed, IL-3-independent 32D cells, wt p53 overexpression induced different effects. The v-abl-transformed cells manifested a reduction in growth rate, while the v-src-transformed cells underwent monocytic differentiation. These results show that the phenotype effects of wt p53 action(s) can vary as a function of the cellular environment. PMID:8552075

  19. Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer

    PubMed Central

    Jorissen, Robert N; Christie, Michael; Mouradov, Dmitri; Sakthianandeswaren, Anuratha; Li, Shan; Love, Christopher; Xu, Zheng-Zhou; Molloy, Peter L; Jones, Ian T; McLaughlin, Stephen; Ward, Robyn L; Hawkins, Nicholas J; Ruszkiewicz, Andrew R; Moore, James; Burgess, Antony W; Busam, Dana; Zhao, Qi; Strausberg, Robert L; Lipton, Lara; Desai, Jayesh; Gibbs, Peter; Sieber, Oliver M

    2015-01-01

    Background: APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear. Methods: APC prognostic value was evaluated in 746 stage I–IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort. Results: Wild-type APC microsatellite stable (APC-wt/MSS) tumours from the proximal colon showed poorer overall and recurrence-free survival (OS, RFS) than APC-mt/MSS proximal, APC-wt/MSS distal and APC-mt/MSS distal tumours (OS HR⩾1.79, P⩽0.015; RFS HR⩾1.88, P⩽0.026). APC was a stronger prognostic indicator than BRAF, KRAS, PIK3CA, TP53, CpG island methylator phenotype or chromosomal instability status (P⩽0.036). Microarray analysis similarly revealed poorer survival in MSS proximal cancers with an APC-wt-like signature (P=0.019). APC status did not affect outcomes in MSI tumours. In a validation on 206 patients with proximal colon cancer, APC-wt-like signature MSS cases showed poorer survival than APC-mt-like signature MSS or MSI cases (OS HR⩾2.50, P⩽0.010; RFS HR⩾2.14, P⩽0.025). Poor prognosis APC-wt/MSS proximal tumours exhibited features of the sessile serrated neoplasia pathway (P⩽0.016). Conclusions: APC-wt status is a marker of poor prognosis in MSS proximal colon cancer. PMID:26305864

  20. H1-antihistamines exacerbate high-fat diet-induced hepatic steatosis in wild-type but not in apolipoprotein E knockout mice

    PubMed Central

    Raveendran, Vineesh V.; Kassel, Karen M.; Smith, Donald D.; Luyendyk, James P.; Williams, Kurt J.; Cherian, Rachel; Reed, Gregory A.; Flynn, Colleen A.; Csanaky, Iván L.; Lickteig, Andrew L.; Pratt-Hyatt, Matthew J.; Klaassen, Curtis D.

    2014-01-01

    We examined the effects of two over-the-counter H1-antihistamines on the progression of fatty liver disease in male C57Bl/6 wild-type and apolipoprotein E (ApoE)−/− mice. Mice were fed a high-fat diet (HFD) for 3 mo, together with administration of either cetirizine (4 mg/kg body wt) or fexofenadine (40 mg/kg body wt) in drinking water. Antihistamine treatments increased body weight gain, gonadal fat deposition, liver weight, and hepatic steatosis in wild-type mice but not in ApoE−/− mice. Lobular inflammation, acute inflammation, and necrosis were not affected by H1-antihistamines in either genotype. Serum biomarkers of liver injury tended to increase in antihistamine-treated wild-type mice. Serum level of glucose was increased by fexofenadine, whereas lipase was increased by cetirizine. H1-antihistamines reduced the mRNA expression of ApoE and carbohydrate response element-binding protein in wild-type mice, without altering the mRNA expression of sterol regulatory element-binding protein 1c, fatty acid synthase, or ApoB100, in either genotype. Fexofenadine increased both triglycerides and cholesterol ester, whereas cetirizine increased only cholesterol ester in liver, with a concomitant decrease in serum triglycerides by both antihistamines in wild-type mice. Antihistamines increased hepatic levels of conjugated bile acids in wild-type mice, with the effect being significant in fexofenadine-treated animals. The increase was associated with changes in the expression of organic anion transport polypeptide 1b2 and bile salt export pump. These results suggest that H1-antihistamines increase the progression of fatty liver disease in wild-type mice, and there seems to be an association between the severity of disease, presence of ApoE, and increase in hepatic bile acid levels. PMID:24852568

  1. Comparative transcriptomic analysis of silkwormBmovo-1 and wild type silkworm ovary

    PubMed Central

    Xue, Renyu; Hu, Xiaolong; Zhu, Liyuan; Cao, Guangli; Huang, Moli; Xue, Gaoxu; Song, Zuowei; Lu, Jiayu; Chen, Xueying; Gong, Chengliang

    2015-01-01

    The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm+Bmovo-1) ovaries. Using a pair-end Illumina Solexa sequencing strategy, 5,296,942 total reads were obtained from silkworm+Bmovo-1 ovaries and 6,306,078 from WT ovaries. The average read length was about 100 bp. Clean read ratios were 98.79% for silkworm+Bmovo-1 and 98.87% for WT silkworm ovaries. Comparative transcriptome analysis showed 123 upregulated and 111 downregulated genes in silkworm+Bmovo-1 ovaries. These differentially expressed genes were enriched in the extracellular and extracellular spaces and involved in metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems. Bmovo-1 overexpression in silkworm ovaries might promote anabolism for ovarian development and oogenesis and oocyte proliferation and transport of nutrients to ovaries by altering nutrient partitioning, which would support ovary development. Excessive consumption of nutrients for ovary development alters nutrient partitioning and deters silk protein synthesis. PMID:26643037

  2. Temperature sensitivity of human wild-type and mutant p53 proteins expressed in vivo.

    PubMed Central

    Ponchel, F.; Milner, J.

    1998-01-01

    p53 is activated in response to DNA damage and functions in the maintenance of genetic integrity. Loss of p53 function because of mutation of the p53 gene is associated with over half all human cancers. Certain human p53 mutants are conformationally flexible in vitro and are temperature sensitive, with partial or complete recovery of wild-type (wt) properties at 32 degrees C. We have now tested the functional capacities of selected p53 mutants in vivo, by transfection into established human cell lines. Unexpectedly, we found that wt p53 can be temperature sensitive for transactivation of a co-transfected target gene in vivo. Flexible mutants retained varying degrees of functional capacity in transfected cells, and the recipient cell line appeared to be a significant determinant of both wt and mutant p53 function; importantly, two p53 null cell lines commonly used to study p53 function (Saos-2 and Hep3B) differed markedly in this latter respect. We also show that the p53 mutant V272M, which exhibits sequence-specific DNA binding in vitro, is nonetheless defective for transactivation and is unable to induce apoptosis in vivo. The valine 272 residue may thus be crucial for properties (other than sequence-specific DNA binding) that are important for p53 function(s) in vivo. Images Figure 4 PMID:9635828

  3. Mapping wild-type and R345W fibulin-3 intracellular interactomes.

    PubMed

    Hulleman, John D; Genereux, Joseph C; Nguyen, Annie

    2016-12-01

    Fibulin-3 (F3) is an important, disulfide-rich, extracellular matrix glycoprotein that has been associated with a number of diseases ranging from cancer to retinal degeneration. An Arg345Trp (R345W) mutation in F3 causes the rare, autosomal dominant macular dystrophy, Malattia Leventinese. The purpose of this study was to identify and validate novel intracellular interacting partners of wild-type (WT) and R345W F3 in retinal pigment epithelium cells. We used stable isotope labeling by amino acids in cell culture (SILAC) to generate 'heavy' and 'light' isotopically labeled ARPE-19 cell populations which were subsequently infected with adenovirus encoding for FLAG-tagged WT or R345W F3. After immunoprecipitation, interacting proteins were identified by multidimensional protein identification technology (MudPIT). We identified sixteen new intracellular F3 interacting partners, the vast majority of which are involved in protein folding and/or degradation in the endoplasmic reticulum (ER). Eight of these interactions (ANXA5, ERdj5, PDIA4, P4HB, PDIA6, RCN1, SDF2L1, and TXNDC5) were verified at the western blotting level. These F3 interactome results can serve as the basis for pursuing targeted genetic or pharmacologic approaches in an effort to alter the fate of either WT or mutant F3.

  4. Porphyrin Interactions with Wild Type and Mutant Mouse Ferrochelatase

    SciTech Connect

    Ferreira, Gloria C.; Franco, Ricardo; Lu, Yi; Ma, Jian-Guo; Shelnutt, John A.

    1999-05-19

    Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, catalyzes Fe2+ chelation into protoporphyrin IX. Resonance Raman and W-visible absorbance spectroscopes of wild type and engineered variants of murine ferrochelatase were used to examine the proposed structural mechanism for iron insertion into protoporphyrin by ferrochelatase. The recombinant variants (i.e., H207N and E287Q) are enzymes in which the conserved amino acids histidine-207 and glutamate-287 of murine ferrochelatase were substituted with asparagine and glutamine, respectively. Both of these residues are at the active site of the enzyme as deduced from the Bacillus subtilis ferrochelatase three-dimensional structure. Addition of free base or metalated porphyrins to wild type ferrochelatase and H207N variant yields a quasi 1:1 complex, possibly a monomeric protein-bound species. In contrast, the addition of porphyrin (either free base or metalated) to E287Q is sub-stoichiometric, as this variant retains bound porphyrin in the active site during isolation and purification. The specificity of porphyrin binding is confirmed by the narrowing of the structure-sensitive resonance Raman lines and the vinyl vibrational mode. Resonance Raman spectra of free base and metalated porphyrins bound to the wild type ferrochelatase indicate a nonplanar distortion of the porphyrin macrocycle, although the magnitude of the distortion cannot be determined without first defining the specific type of deformation. Significantly, the extent of the nonplanar distortion varies in the case of H207N- and E287Q-bound porphyrins. In fact, resonance Raman spectral decomposition indicates a homogeneous ruffled distortion for the nickel protoporphyrin bound to the wild type ferrochelatase, whereas both a planar and ruffled conformations are present for the H207N-bound porphyrin. Perhaps more revealing is the unusual resonance , 3 Raman spectrum of the endogenous E287Q-bound porphyrin, which has

  5. Sublingual vaccines based on wild-type recombinant allergens.

    PubMed

    Van Overtvelt, L; Razafindratsita, A; St-Lu, N; Didierlaurent, A; Batard, Th; Lombardi, V; Martin, E; Moingeon, Ph

    2006-09-01

    Sublingual immunotherapy (SLIT) represents a non invasive alternative to subcutaneous immunotherapy in order to treat type I allergies. Vaccines based on recombinant allergens expressed in a native (i.e. wild-type) configuration, formulated with ad hoc adjuvants designed to target Langerhans cells in the sublingual mucosa should allow to induce allergen-specific regulatory T cells. In this context, we have developed animal and human preclinical models to test the capacity of candidate vaccines to modulate selectively allergen-specific T helper lymphocyte polarization following sublingual vaccination.

  6. Salmonella induces SRC protein tyrosine kinase, c-Jun N-terminal kinase (JNK), and NF-kappaBp65 signaling pathways in commercial and wild-type turkey leukocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies comparing signaling in wild-type turkey (WT) leukocytes and commercial turkey (CT) leukocytes found that the activity of protein tyrosine kinases and MAP kinases, ERK 1/2 and p38, were significantly higher in WT leukocytes compared to CT lines upon exposure to both SE and OPSE on d...

  7. "Wild type" GIST: Clinicopathological features and clinical practice.

    PubMed

    Wada, Ryuichi; Arai, Hiroki; Kure, Shoko; Peng, Wei-Xia; Naito, Zenya

    2016-08-01

    Gastrointestinal stromal tumor (GIST) is a mesenchymal tumor of the gastrointestinal tract. Mutation of KIT and PDGFRA genes is implicated in the tumorigenesis. Approximately 10% of GISTs do not harbor mutation of these genes, and they are designated as "wild type" GIST. They are classified into succinate dehydrogenase (SDH)-deficient and non-SDH-deficient groups. SDH-deficient group includes Carney triad and Carney Stratakis syndrome. The patients are young women. Tumors occur in the antrum of the stomach, and tumor cells are epithelioid. Lymph node metastasis is frequent. The non-SDH-deficient group includes neurofibromatosis (NF) type 1 and GISTs with mutations of BRAF, KRAS, and PIK3CA and with the ETV6-NTRK3 fusion gene. GIST in NF occurs in the small intestine, and tumor cells are spindle shaped. GIST with BRAF mutation arises in the small intestine. Attention to the age, gender, family history and other neoplasms may raise the prediction of syndromic disease. Location of the tumor, morphology, and pleomorphism of the tumor cells are further informative. Lymphovascular invasion should be carefully evaluated. The determination of KIT expression is essential for the diagnosis. When wild type GIST is suspected, intensive genetic analysis is required. Further, a careful and long-time observation is recommended.

  8. PHEX Mimetic (SPR4-Peptide) Corrects and Improves HYP and Wild Type Mice Energy-Metabolism

    PubMed Central

    Zelenchuk, Lesya V.; Hedge, Anne-Marie; Rowe, Peter S. N.

    2014-01-01

    Context PHEX or DMP1 mutations cause hypophosphatemic-rickets and altered energy metabolism. PHEX binds to DMP1-ASARM-motif to form a complex with α5β3 integrin that suppresses FGF23 expression. ASARM-peptides increase FGF23 by disrupting the PHEX-DMP1-Integrin complex. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide/motif to study the DMP1-PHEX interaction and to assess SPR4 for the treatment of energy metabolism defects in HYP and potentially other bone-mineral disorders. Design Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle (VE) into wild-type mice (WT) and HYP-mice (PHEX mutation) for 4 weeks. Results SPR4 partially corrected HYP mice hypophosphatemia and increased serum 1.25(OH)2D3. Serum FGF23 remained high and PTH was unaffected. WT-SPR4 mice developed hypophosphatemia and hypercalcemia with increased PTH, FGF23 and 1.25(OH)2D3. SPR4 increased GAPDH HYP-bone expression 60× and corrected HYP-mice hyperglycemia and hypoinsulinemia. HYP-VE serum uric-acid (UA) levels were reduced and SPR4 infusion suppressed UA levels in WT-mice but not HYP-mice. SPR4 altered leptin, adiponectin, and sympathetic-tone and increased the fat mass/weight ratio for HYP and WT mice. Expression of perlipin-2 a gene involved in obesity was reduced in HYP-VE and WT-SPR4 mice but increased in HYP-SPR4 mice. Also, increased expression of two genes that inhibit insulin-signaling, ENPP1 and ESP, occurred with HYP-VE mice. In contrast, SPR4 reduced expression of both ENPP1 and ESP in WT mice and suppressed ENPP1 in HYP mice. Increased expression of FAM20C and sclerostin occurred with HYP-VE mice. SPR4 suppressed expression of FAM20C and sclerostin in HYP and WT mice. Conclusions ASARM peptides and motifs are physiological substrates for PHEX and modulate osteocyte PHEX-DMP1-α5β3-integrin interactions and thereby FGF23 expression. These interactions also provide a nexus that regulates bone and energy metabolism. SPR4 suppression of

  9. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight.

    PubMed

    Kiss, J Z; Katembe, W J; Edelmann, R E

    1998-04-01

    The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.

  10. Comparative assessment of bone among wild-type, restricted ovulator and out-of-production hens.

    PubMed

    Kim, W K; Ford, B C; Mitchell, A D; Elkin, R G; Leach, R M

    2004-08-01

    1. The aim of this study was to assess bone characteristics in restricted ovulator (RO) hens. These hens generally are unable to ovulate due to a point mutation in the oocyte VLDL receptor gene whose protein product mediates the uptake of yolk precursors. Because these hens do not have the cyclic calcium (Ca) metabolism associated with egg formation, they could be a useful model for studying bone metabolism. 2. RO hens had greater humerus, femur and tibia ash concentrations than wild-type (WT) and out-of-production (OP) hens. Bone mineral content and density obtained with dual-energy X-ray absorptiometry (DXA) were highly correlated with the results of conventional bone assays. 3. Gross and histological examination of the femurs confirmed the presence of extremely dense medullary bone deposition in the RO hens. However, the composition of non-collagenous protein extracts of medullary bone was similar for the two genotypes. 4. Analysis of medullary bone extracts for glycosaminoglycans (GAG) confirmed the presence of large amounts of keratan sulphate (KS) in the matrix of medullary bone. 5. Plasma Ca, total GAG and KS concentrations of RO hens were markedly higher than WT and OP hens. The changes in plasma calcium and keratan sulphate are probably a reflection of elevated Ca-binding yolk precursor molecules and intensive medullary bone formation in response to increased plasma oestrogen observed by others in RO hens.

  11. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Katembe, W. J.; Edelmann, R. E.

    1998-01-01

    The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.

  12. Rootcap structure in wild type and in a starchless mutant of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Kiss, J. Z.

    1989-01-01

    Rootcaps of the wild type (WT) and of a starchless, gravitropic mutant (TC7) of Arabidopsis thaliana L. were examined by electron microscopy to identify cellular polarities with respect to gravity. In columella cells, nuclei are located proximally, and the nuclear envelope is continuous with endoplasmic reticulum (ER) that is in turn connected to nearby plasmodesmata. Impregnation of ER with osmium ferricyanide revealed numerous contacts between columella plastids and ER in both genotypes. ER is present mostly in the outer regions of the columella protoplast except in older columella cells that are developing into peripheral cells. In vertical roots, only columella cells that are intermediate in development (story 2 cells) have a higher surface density (S) of ER in the distal compared to proximal regions of the cell. The distal but not the proximal S of the ER is constant throughout columella development. Plastids are less sedimented in TC7 columella cells compared to those of the WT. It is hypothesized that plastid contact with the ER plays a role in gravity perception in both genotypes.

  13. MAP kinase pathway gene copy alterations in NRAS/BRAF wild-type advanced melanoma.

    PubMed

    Orouji, Elias; Orouji, Azadeh; Gaiser, Timo; Larribère, Lionel; Gebhardt, Christoffer; Utikal, Jochen

    2016-05-01

    Recent therapeutic advances have improved melanoma patientś clinical outcome. Novel therapeutics targeting BRAF, NRAS and cKit mutant melanomas are widely used in clinical practice. However therapeutic options in NRAS(wild-type) /BRAF(wild-type) /cKit(wild-type) melanoma patients are limited. Our study shows that gene copy numbers of members of the MAPK signaling pathway vary in different melanoma subgroups. NRAS(wild-type) /BRAF(wild-type) melanoma metastases are characterized by significant gains of MAP2K1 (MEK1) and MAPK3 (ERK1) gene loci. These additional gene copies could lead to an activation of the MAPK signaling pathway via a gene-dosage effect. Our results suggest that downstream analyses of the pMEK and pERK expression status in NRAS(wild-type) /BRAF(wild-type) melanoma patients identify patients that could benefit from targeted therapies with MEK and ERK inhibitors.

  14. Mice Deficient in the Gene for Cytochrome P450 (CYP)1A1 Are More Susceptible Than Wild-Type to Hyperoxic Lung Injury: Evidence for Protective Role of CYP1A1 Against Oxidative Stress

    PubMed Central

    Wang, Lihua; Wang, Gangduo; Couroucli, Xanthi I.; Shivanna, Binoy; Welty, Stephen E.; Barrios, Roberto; Khan,  M. Firoze; Nebert, Daniel W.; Roberts, L. Jackson; Moorthy, Bhagavatula

    2014-01-01

    Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known. In this investigation, we hypothesized that Cyp1a1(–/–) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(–/–) mice were exposed to hyperoxia (>95% O2) or room air for 24–72 h. The Cyp1a1(–/–) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24–48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(–/–) mice showed higher levels after 48–72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury. PMID:24893714

  15. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms

    PubMed Central

    Grad, Leslie I.; Yerbury, Justin J.; Turner, Bradley J.; Guest, William C.; Pokrishevsky, Edward; O’Neill, Megan A.; Yanai, Anat; Silverman, Judith M.; Zeineddine, Rafaa; Corcoran, Lisa; Kumita, Janet R.; Luheshi, Leila M.; Yousefi, Masoud; Coleman, Bradley M.; Hill, Andrew F.; Plotkin, Steven S.; Mackenzie, Ian R.; Cashman, Neil R.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is predominantly sporadic, but associated with heritable genetic mutations in 5–10% of cases, including those in Cu/Zn superoxide dismutase (SOD1). We previously showed that misfolding of SOD1 can be transmitted to endogenous human wild-type SOD1 (HuWtSOD1) in an intracellular compartment. Using NSC-34 motor neuron-like cells, we now demonstrate that misfolded mutant and HuWtSOD1 can traverse between cells via two nonexclusive mechanisms: protein aggregates released from dying cells and taken up by macropinocytosis, and exosomes secreted from living cells. Furthermore, once HuWtSOD1 propagation has been established, misfolding of HuWtSOD1 can be efficiently and repeatedly propagated between HEK293 cell cultures via conditioned media over multiple passages, and to cultured mouse primary spinal cord cells transgenically expressing HuWtSOD1, but not to cells derived from nontransgenic littermates. Conditioned media transmission of HuWtSOD1 misfolding in HEK293 cells is blocked by HuWtSOD1 siRNA knockdown, consistent with human SOD1 being a substrate for conversion, and attenuated by ultracentrifugation or incubation with SOD1 misfolding-specific antibodies, indicating a relatively massive transmission particle which possesses antibody-accessible SOD1. Finally, misfolded and protease-sensitive HuWtSOD1 comprises up to 4% of total SOD1 in spinal cords of patients with sporadic ALS (SALS). Propagation of HuWtSOD1 misfolding, and its subsequent cell-to-cell transmission, is thus a candidate process for the molecular pathogenesis of SALS, which may provide novel treatment and biomarker targets for this devastating disease. PMID:24550511

  16. Voluntary sodium ingestion in wild-type and oxytocin knockout mice.

    PubMed

    Vollmer, Regis R; Cai, Hou-Ming; Miedlar, Julie A; Amico, Janet A

    2013-01-01

    Oxytocin knockout (OT KO) mice acutely consume inappropriate amounts of sodium following overnight water deprivation suggesting that oxytocinergic neurons inhibit excessive sodium ingestion (Amico JA, Morris M, Vollmer RR. Mice deficient in oxytocin manifest increased saline consumption following overnight fluid deprivation. Am J Physiol - Regul Integr Comp Physiol 2001; 281:R1368-R1373). This study sought to determine whether oxytocin (OT) provides long-term regulation of voluntary sodium ingestion. Wild-type (WT) and oxytocin knockout male mice were provided choices between diets or drinking solutions that differed in their sodium content. Mice were given access for 1 week to two diets, one containing low sodium (0.01% sodium chloride [NaCl]) content and a second containing a normal sodium (1.0% NaCl) content. During the second week, the animals were given a choice between a low sodium diet and a high sodium (8.0% NaCl) diet. In the second week, mice consumed 4 times more sodium; however, there were no differences between WT and OT KO mice. In a second experiment, mice had access to a two-bottle choice of tap water and a 0.5 M NaCl solution made palatable by the addition of a 4.1% Intralipid emulsion. Both genotypes consumed large, but equivalent, volumes of the Intralipid/sodium solution. The ingestion of this sodium-rich solution stimulated thirst and enhanced the intake of water. Thus, the availability of palatable sodium-rich food or solutions can lead to excessive voluntary sodium ingestion. Compared with oxytocin knockout mice, enhanced voluntary ingestion of sodium-rich solid and liquid diets proceeded unimpeded in WT mice. Therefore, OT pathways may not be essential for regulating solute intake in this setting.

  17. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge.

    PubMed

    Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete

    2012-10-01

    Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.

  18. Vemurafenib-resistant BRAF selects alternative branch points different from its wild-type BRAF in intron 8 for RNA splicing.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2015-01-01

    One mechanism of resistance of the melanoma-associated BRAF kinase to its small molecule inhibitor vemurafenib is by point mutations in its intron 8 resulting in exons 4-8 skipping. In this report, we carried out in vitro BRAF RNA splicing assays and lariat RT-PCR to map the intron 8 branch points in wild-type and BRAF mutants. We identify multiple branch points (BP) in intron 8 of both wild-type (wt) and vemurafenib-resistant BRAF RNA. In wt BRAF, BPs are located at -29A, -28A and -26A, whereas in a vemurafenib-resistant BRAF splicing mutant, BPs map to -22A, -18A and -15A, proximal to the intron 8 3' splice site. This finding of a distal-to-proximal shift of the branch point sequence in BRAF splicing in response to point-mutations in intron 8 provides insight into the regulation of BRAF alternative splicing upon vemurafenib resistance.

  19. Impact of CD4+ T Cell Responses on Clinical Outcome following Oral Administration of Wild-Type Enterotoxigenic Escherichia coli in Humans

    PubMed Central

    Chen, Wilbur H.; Magder, Laurence; Levine, Myron M.; Sztein, Marcelo B.

    2017-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a non-invasive enteric pathogen of considerable public health importance, being one of the most common attributable causes of diarrheal illness in infants and young children in developing countries and the most common cause of traveler’s diarrhea. To enhance study-to-study consistency of our experimental challenge model of ETEC in volunteers, and to allow concomitant multi-site trials to evaluate anti-ETEC immunoprophylactic products, hundreds of vials, each containing a standardized inoculum of virulent wild-type (wt) ETEC strain H10407 (serotype O78:H11 expressing colonization factor antigen I and heat-labile and heat-stable enterotoxins), were prepared under current Good Manufacturing Practices (cGMP) and frozen. Following thawing, the contents of each vial can be used (diluted as necessary) to prepare consistent challenge inoculum, even at different study sites. A preliminary human experimental challenge study using this cGMP inoculum was conducted on a research isolation ward and the clinical and cell-mediated immune responses evaluated. Of the 6 healthy adult volunteers challenged 83% (5/6) developed diarrhea and 50% developed moderate-to-severe diarrhea (MSD). Moderate and severe diarrhea were defined as passage of ≥ 1 liter or ≥ 3 liters of diarrheal stool respectively. We compared the CD4+ T cell responses of volunteers who developed MSD against those who did not and identified significant differences in ETEC-specific cytokine production and gut homing potential. We furthermore demonstrated that increased expression of the gut-homing molecule integrin α4β7 by peripheral T follicular helper cells (pTfh) correlated with decreased stool volume and increased ETEC-specific IgA B memory cell (BM) development. Collectively, despite small numbers of volunteers, our results indicate a potential role for CD4+ T cells, in particular pTfh, in modulating disease outcome following exposure to wt ETEC in a volunteer

  20. Differential effects of chronic amphetamine and baclofen administration on cAMP levels and phosphorylation of CREB in distinct brain regions of wild type and monoamine oxidase B-deficient mice.

    PubMed

    Yin, Hsiang-Shu; Chen, Kevin; Kalpana, Sriram; Shih, Jean C

    2006-12-15

    Roles of GABA(B) transmission were explored in the action of amphetamine (Amph) on the brain. Adult male wild type (WT) and monoamine oxidase B-knocked out (MAOBKO) mice received i.p. injections of saline, d-Amph (5 mg/kg), plus baclofen (GABA(B) receptor agonist, 10 mg/kg), or baclofen and Amph, twice daily for 3 days and single treatments on day 4, followed by immuno-cyclic-AMP (cAMP) and immunoblotting assays on the brain tissue. The WT mice responded with higher levels of behavioral responses than the KO to the daily Amph injection; however, baclofen blocked the Amph-induced behavioral hyperactivity of both WT and KO mice. After the last treatment, levels of cAMP and phosphorylated (p) cyclic-AMP response element binding protein (CREB) were up-regulated in the striatum and somatosensory cortex of Amph-treated WT mice, while similar to the saline-controls in the baclofen+Amph-treated group, indicating the blockade by baclofen to Amph. Baclofen similarly suppressed the Amph-induced increases in pCREB levels of WT hippocampus and amygdala, and decreases of olfactory bulb and thalamus. For MAOBKO mice, baclofen hindered the Amph-generated increases in motor cortical cAMP and pCREB, and amygdaloid pCREB, and the decrease in olfactory bulb pCREB, whereas did not affect the Amph-raised hippocampal pCREB. Furthermore, the levels of CREB were variably modified in distinct regions by the drug exposures. The data reveal that the GABA(B)-mediated intracellular signaling differentially participates in mechanisms underlying Amph perturbation to various regions, and may thereby contribute explanations to the behavioral consequences. Moreover, MAOB is region-dependently involved in responses of the brain to Amph and baclofen, supporting interactions between GABA and monoamines.

  1. Biosafety of Recombinant and Wild Type Nucleopolyhedroviruses as Bioinsecticides

    PubMed Central

    Ashour, Mohamed-Bassem; Ragheb, Didair A.; El-Sheikh, El-Sayed A.; Gomaa, El-Adarosy A.; Kamita, Shizuo G.; Hammock, Bruce D.

    2007-01-01

    The entomopathogenic Autographa californica (Speyer) nucleopolyhedrovirus (AcMNPV) has been genetically modified to increase its speed of kill. The potential adverse effects of a recombinant AcMNPV (AcAaIT) as well as wild type AcMNPV and wild type Spodoptera littoralis NPV (SlNPV) were studied. Cotton plants were treated with these viruses at concentrations that were adjusted to resemble the recommended field application rate (4 × 1012 PIBs/feddan, feddan = 4,200 m2) and 3rd instar larvae of S. littoralis were allowed to feed on the contaminated plants. SDS-PAGE, ELISA, and DNA analyses were used to confirm that larvae that fed on these plants were virus-infected. Polyhedra that were purified from the infected larvae were subjected to structural protein analysis. A 32 KDa protein was found in polyhedra that were isolated from all of the viruses. Subtle differences were found in the size and abundance of ODV proteins. Antisera against polyhedral proteins isolated from AcAaIT polyhedra were raised in rabbits. The terminal bleeds from rabbits were screened against four coating antigens (i.e., polyhedral proteins from AcAaIT, AcAaIT from field-infected larvae (AcAaIT-field), AcMNPV, and SlNPV) using a two-dimensional titration method with the coated antigen format. Competitive inhibition experiments were conducted in parallel to optimize antibody and coating antigen concentrations for ELISA. The IC50 values for each combination ranged from 1.42 to 163 μg/ml. AcAaIT-derived polyhedrin gave the lowest IC50 value, followed by those of SlNPV, AcAaIT-field, and AcMNPV. The optimized ELISA system showed low cross reactivity for AcMNPV (0.87%), AcAaIT-field (1.2%), and SlNPV (4.0%). Genomic DNAs isolated from AcAaIT that were passaged in larvae of S. littoralis that were reared in the laboratory or field did not show any detectable differences. Albino rats (male and female) that were treated with AcAaIT, AcMNPV or SlNPV (either orally or by intraperitoneal injection at

  2. Podocyte-Specific Overexpression of Wild Type or Mutant Trpc6 in Mice Is Sufficient to Cause Glomerular Disease

    PubMed Central

    Kairath, Pamela; Carmona-Mora, Paulina; Molina, Jessica; Carpio, J. Daniel; Ruiz, Phillip; Mezzano, Sergio A.; Li, Jing; Wei, Changli; Reiser, Jochen; Young, Juan I.; Walz, Katherina

    2010-01-01

    Mutations in the TRPC6 calcium channel (Transient receptor potential channel 6) gene have been associated with familiar forms of Focal and Segmental Glomerulosclerosis (FSGS) affecting children and adults. In addition, acquired glomerular diseases are associated with increased expression levels of TRPC6. However, the exact role of TRPC6 in the pathogenesis of FSGS remains to be elucidated. In this work we describe the generation and phenotypic characterization of three different transgenic mouse lines with podocyte-specific overexpression of the wild type or any of two mutant forms of Trpc6 (P111Q and E896K) previously related to FSGS. Consistent with the human phenotype a non-nephrotic range of albuminuria was detectable in almost all transgenic lines. The histological analysis demonstrated that the transgenic mice developed a kidney disease similar to human FSGS. Differences of 2–3 folds in the presence of glomerular lesions were found between the non transgenic and transgenic mice expressing Trpc6 in its wild type or mutant forms specifically in podocytes. Electron microscopy of glomerulus from transgenic mice showed extensive podocyte foot process effacement. We conclude that overexpression of Trpc6 (wild type or mutated) in podocytes is sufficient to cause a kidney disease consistent with FSGS. Our results contribute to reinforce the central role of podocytes in the etiology of FSGS. These mice constitute an important new model in which to study future therapies and outcomes of this complex disease. PMID:20877463

  3. Eye pigments in wild-type and eye-color mutant strains of the African malaria vector Anopheles gambiae.

    PubMed

    Beard, C B; Benedict, M Q; Primus, J P; Finnerty, V; Collins, F H

    1995-01-01

    Chromatographic analysis of pigments extracted from wild-type eyes of the mosquito Anopheles gambiae reveals the presence of the ommatin precursor 3-hydroxykynurenine, its transamination derivative xanthurenic acid, and a dark, red-brown pigment spot that probably is composed of two or more low mobility xanthommatins. No colored or fluorescent pteridines are evident. Mosquitoes homozygous for an autosomal recessive mutation at the red-eye (r) locus have a brick-red eye color in larvae, pupae, and young adults, in contrast to the almost black color of the wild eye. Mosquitoes homozygous for this mutant allele have levels of ommochrome precursors that are indistinguishable from the wild-type, but the low-mobility xanthommatin spot is ochre-brown in color rather than red-brown as in the wild-type. Mosquitoes with two different mutant alleles at the X-linked pink-eye locus (p, which confers a pink eye color, and pw, which confers a white eye phenotype in homozygotes or hemizygous males) have normal levels of ommochrome precursors but no detectable xanthommatins. Mosquitoes homozygous for both the r and p mutant alleles have apricot-colored eyes and show no detectable xanthommatins. Both the pink-eye and red-eye mutations appear to involve defects in the transport into or assembly of pigments in the membrane-bound pigment granules rather then defects in ommochrome synthesis.

  4. Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates

    SciTech Connect

    Larosche, Isabelle; Choumar, Amal; Fromenty, Bernard; Letteron, Philippe; Abbey-Toby, Adje; Van Remmen, Holly; Epstein, Charles J.; Richardson, Arlan; Feldmann, Gerard; Pessayre, Dominique; Mansouri, Abdellah

    2009-02-01

    Alcohol consumption increases reactive oxygen species formation and lipid peroxidation, whose products can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. A possible role of manganese superoxide dismutase (MnSOD) on these effects has not been investigated. To test whether MnSOD overexpression modulates alcohol-induced mitochondrial alterations, we added ethanol to the drinking water of transgenic MnSOD-overexpressing (TgMnSOD) mice and their wild type (WT) littermates for 7 weeks. In TgMnSOD mice, alcohol administration further increased the activity of MnSOD, but decreased cytosolic glutathione as well as cytosolic glutathione peroxidase activity and peroxisomal catalase activity. Whereas ethanol increased cytochrome P-450 2E1 and mitochondrial ROS generation in both WT and TgMnSOD mice, hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls were only increased in ethanol-treated TgMnSOD mice but not in WT mice. In ethanol-fed TgMnSOD mice, but not ethanol-fed WT mice, mtDNA was depleted, and mtDNA lesions blocked the progress of polymerases. The iron chelator, DFO prevented hepatic iron accumulation, lipid peroxidation, protein carbonyl formation and mtDNA depletion in alcohol-treated TgMnSOD mice. Alcohol markedly decreased the activities of complexes I, IV and V of the respiratory chain in TgMnSOD, with absent or lesser effects in WT mice. There was no inflammation, apoptosis or necrosis, and steatosis was similar in ethanol-treated WT and TgMnSOD mice. In conclusion, prolonged alcohol administration selectively triggers iron accumulation, lipid peroxidation, respiratory complex I protein carbonylation, mtDNA lesions blocking the progress of polymerases, mtDNA depletion and respiratory complex dysfunction in TgMnSOD mice but not in WT mice.

  5. Reduced Innate Immune Response to a Staphylococcus aureus Small Colony Variant Compared to Its Wild-Type Parent Strain

    PubMed Central

    Ou, Judy J. J.; Drilling, Amanda J.; Cooksley, Clare; Bassiouni, Ahmed; Kidd, Stephen P.; Psaltis, Alkis J.; Wormald, Peter J.; Vreugde, Sarah

    2016-01-01

    Background: Staphylococcus aureus (S. aureus) small colony variants (SCVs) can survive within the host intracellular milieu and are associated with chronic relapsing infections. However, it is unknown whether host invasion rates and immune responses differ between SCVs and their wild-type counterparts. This study used a stable S. aureus SCV (WCH-SK2SCV) developed from a clinical isolate (WCH-SK2WT) in inflammation-relevant conditions. Intracellular infection rates as well as host immune responses to WCH-SK2WT and WCH-SK2SCV infections were investigated. Method: NuLi-1 cells were infected with either WCH-SK2WT or WCH-SK2SCV, and the intracellular infection rate was determined over time. mRNA expression of cells infected with each strain intra- and extra-cellularly was analyzed using a microfluidic qPCR array to generate an expression profile of thirty-nine genes involved in the host immune response. Results: No difference was found in the intracellular infection rate between WCH-SK2WT and WCH-SK2SCV. Whereas, extracellular infection induced a robust pro-inflammatory response, intracellular infection elicited a modest response. Intracellular WCH-SK2WT infection induced mRNA expression of TLR2, pro-inflammatory cytokines (IL1B, IL6, and IL12) and tissue remodeling factors (MMP9). In contrast, intracellular WCH-SK2SCV infection induced up regulation of only TLR2. Conclusions: Whereas, host intracellular infection rates of WCH-SK2SCV and WCH-SK2WT were similar, WCH-SK2SCV intracellular infection induced a less widespread up regulation of pro-inflammatory and tissue remodeling factors in comparison to intracellular WCH-SK2WT infection. These findings support the current view that SCVs are able to evade host immune detection to allow their own survival. PMID:28083514

  6. Reduced Innate Immune Response to a Staphylococcus aureus Small Colony Variant Compared to Its Wild-Type Parent Strain.

    PubMed

    Ou, Judy J J; Drilling, Amanda J; Cooksley, Clare; Bassiouni, Ahmed; Kidd, Stephen P; Psaltis, Alkis J; Wormald, Peter J; Vreugde, Sarah

    2016-01-01

    Background:Staphylococcus aureus (S. aureus) small colony variants (SCVs) can survive within the host intracellular milieu and are associated with chronic relapsing infections. However, it is unknown whether host invasion rates and immune responses differ between SCVs and their wild-type counterparts. This study used a stable S. aureus SCV (WCH-SK2(SCV)) developed from a clinical isolate (WCH-SK2(WT)) in inflammation-relevant conditions. Intracellular infection rates as well as host immune responses to WCH-SK2(WT) and WCH-SK2(SCV) infections were investigated. Method: NuLi-1 cells were infected with either WCH-SK2(WT) or WCH-SK2(SCV), and the intracellular infection rate was determined over time. mRNA expression of cells infected with each strain intra- and extra-cellularly was analyzed using a microfluidic qPCR array to generate an expression profile of thirty-nine genes involved in the host immune response. Results: No difference was found in the intracellular infection rate between WCH-SK2(WT) and WCH-SK2(SCV). Whereas, extracellular infection induced a robust pro-inflammatory response, intracellular infection elicited a modest response. Intracellular WCH-SK2(WT) infection induced mRNA expression of TLR2, pro-inflammatory cytokines (IL1B, IL6, and IL12) and tissue remodeling factors (MMP9). In contrast, intracellular WCH-SK2(SCV) infection induced up regulation of only TLR2. Conclusions: Whereas, host intracellular infection rates of WCH-SK2(SCV) and WCH-SK2(WT) were similar, WCH-SK2(SCV) intracellular infection induced a less widespread up regulation of pro-inflammatory and tissue remodeling factors in comparison to intracellular WCH-SK2(WT) infection. These findings support the current view that SCVs are able to evade host immune detection to allow their own survival.

  7. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    PubMed

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  8. Wild-Type Measles Virus with the Hemagglutinin Protein of the Edmonston Vaccine Strain Retains Wild-Type Tropism in Macaques

    PubMed Central

    Nagata, Noriyo; Kato, Sei-ich; Ami, Yasushi; Suzaki, Yuriko; Suzuki, Tadaki; Sato, Yuko; Tsunetsugu-Yokota, Yasuko; Mori, Kazuyasu; Van Nguyen, Nguyen; Kimura, Hideki; Nagata, Kyosuke

    2012-01-01

    A major difference between vaccine and wild-type strains of measles virus (MV) in vitro is the wider cell specificity of vaccine strains, resulting from the receptor usage of the hemagglutinin (H) protein. Wild-type H proteins recognize the signaling lymphocyte activation molecule (SLAM) (CD150), which is expressed on certain cells of the immune system, whereas vaccine H proteins recognize CD46, which is ubiquitously expressed on all nucleated human and monkey cells, in addition to SLAM. To examine the effect of the H protein on the tropism and attenuation of MV, we generated enhanced green fluorescent protein (EGFP)-expressing recombinant wild-type MV strains bearing the Edmonston vaccine H protein (MV-EdH) and compared them to EGFP-expressing wild-type MV strains. In vitro, MV-EdH replicated in SLAM+ as well as CD46+ cells, including primary cell cultures from cynomolgus monkey tissues, whereas the wild-type MV replicated only in SLAM+ cells. However, in macaques, both wild-type MV and MV-EdH strains infected lymphoid and respiratory organs, and widespread infection of MV-EdH was not observed. Flow cytometric analysis indicated that SLAM+ lymphocyte cells were infected preferentially with both strains. Interestingly, EGFP expression of MV-EdH in tissues and lymphocytes was significantly weaker than that of the wild-type MV. Taken together, these results indicate that the CD46-binding activity of the vaccine H protein is important for determining the cell specificity of MV in vitro but not the tropism in vivo. They also suggest that the vaccine H protein attenuates MV growth in vivo. PMID:22238320

  9. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice

    PubMed Central

    Sanchez, Benjamin; Li, Jia; Yim, Sung; Pacheck, Adam; Widrick, Jeffrey J.; Rutkove, Seward B.

    2015-01-01

    Objectives Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx). Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters. Methods Eight wild-type (wt) and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg−1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed. Results As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p < 0.001 respectively) and muscle mass (25% p < 0.05 and 22% p < 0.001, respectively). The Cole impedance parameters in treated wt mice, showed a 24% lower central frequency (p < 0.05) and 19% higher resistance ratio (p < 0.05); no significant differences were observed in the mdx mice. These differences were consistent with those seen in maximum isometric force, which was greater in the wt animals (p < 0.05 at > 70 Hz), but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01). Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively). Conclusions Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials. PMID:26485280

  10. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    PubMed Central

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-01-01

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  11. Computational classification of different wild-type zebrafish strains based on their variation in light-induced locomotor response.

    PubMed

    Gao, Yuan; Zhang, Gaonan; Jelfs, Beth; Carmer, Robert; Venkatraman, Prahatha; Ghadami, Mohammad; Brown, Skye A; Pang, Chi Pui; Leung, Yuk Fai; Chan, Rosa H M; Zhang, Mingzhi

    2016-02-01

    Zebrafish larvae display a rapid and characteristic swimming behaviour after abrupt light onset or offset. This light-induced locomotor response (LLR) has been widely used for behavioural research and drug screening. However, the locomotor responses have long been shown to be different between different wild-type (WT) strains. Thus, it is critical to define the differences in the WT LLR to facilitate accurate interpretation of behavioural data. In this investigation, we used support vector machine (SVM) models to classify LLR data collected from three WT strains: AB, TL and TLAB (a hybrid of AB and TL), during early embryogenesis, from 3 to 9 days post-fertilisation (dpf). We analysed both the complete dataset and a subset of the data during the first 30after light change. This initial period of activity is substantially driven by vision, and is also known as the visual motor response (VMR). The analyses have resulted in three major conclusions: First, the LLR is different between the three WT strains, and at different developmental stages. Second, the distinguishable information in the VMR is comparable to, if not better than, the full dataset for classification purposes. Third, the distinguishable information of WT strains in the light-onset response differs from that in the light-offset response. While the classification accuracies were higher for the light-offset than light-onset response when using the complete LLR dataset, a reverse trend was observed when using a shorter VMR dataset. Together, our results indicate that one should use caution when extrapolating interpretations of LLR/VMR obtained from one WT strain to another.

  12. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGES

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; ...

    2016-03-23

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemicalmore » data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  13. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    SciTech Connect

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-03-23

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in

  14. Characteristics of alpha/beta interferon induction after infection of murine fibroblasts with wild-type and mutant alphaviruses

    SciTech Connect

    Burke, Crystal W.; Gardner, Christina L.; Steffan, Joshua J.; Ryman, Kate D.; Klimstra, William B.

    2009-12-05

    We examined the characteristics of interferon alpha/beta (IFN-alpha/beta) induction after alphavirus or control Sendai virus (SeV) infection of murine fibroblasts (MEFs). As expected, SeV infection of wild-type (wt) MEFs resulted in strong dimerization of IRF3 and the production of high levels of IFN-alpha/beta. In contrast, infection of MEFs with multiple alphaviruses failed to elicit detectable IFN-alpha/beta. In more detailed studies, Sindbis virus (SINV) infection caused dimerization and nuclear migration of IRF3, but minimal IFN-beta promoter activity, although surprisingly, the infected cells were competent for IFN production by other stimuli early after infection. A SINV mutant defective in host macromolecular synthesis shutoff induced IFN-alpha/beta in the MEF cultures dependent upon the activities of the TBK1 IRF3 activating kinase and host pattern recognition receptors (PRRs) PKR and MDA5 but not RIG-I. These results suggest that wild-type alphaviruses antagonize IFN induction after IRF3 activation but also may avoid detection by host PRRs early after infection.

  15. The pigmentary system of developing axolotls. I. A biochemical and structural analysis of chromatophores in wild-type axolotls.

    PubMed

    Frost, S K; Epp, L G; Robinson, S J

    1984-06-01

    A biochemical and transmission electron microscopic description of the wild-type pigment phenotype in developing Mexican axolotls (Ambystoma mexicanum) is presented. There are three pigment cell types found in adult axolotl skin - melanophores, xanthophores and iridophores. Both pigments and pigment cells undergo specific developmental changes in axolotls. Melanophores are the predominant pigment cell type throughout development; xanthophores occur secondarily and in fewer numbers than melanophores; iridophores do not appear until well into the larval stage and remain thereafter as the least frequently encountered pigment cell type. Ultrastructural differences in xanthophore organelle (pterinosome) structure at different developmental stages correlate with changes in the pattern of pteridine biosynthesis. Sepiapterin, a yellow pteridine, is present in larval axolotl skin but not in adults. Riboflavin (also yellow) is present in minimal quantities in larval skin and large quantities in adult axolotl skin. Pterinosomes undergo a morphological "reversion" at some point prior to or shortly after axolotls attain sexual maturity. Correlated with the neotenic state of the axolotl, certain larval pigmentary features are retained throughout development. Notably, the pigment cells remain scattered in the dermis such that no two pigment cell bodies overlap, although cell processes may overlap. This study forms the basis for comparison of the wild type pigment phenotype to the three mutant phenotypes-melanoid, axanthic and albino-found in the axolotl.

  16. [Drug susceptibility of wild-type and mutant H7N9 neuraminidase to zanamivir and oseltamivir].

    PubMed

    Wei, Yan-Nan; Zhang, Chao; Chen, Qing; Guo, Ying

    2014-07-01

    This study aimed to investigate the drug susceptibility of wild-type and mutant avian influenza A (H7N9) virus neuraminidase (NA) to oseltamivir and zanamivir. Codon optimized DNA of H7N9 (A/ Hangzhou/1/2013) NA was synthesized and constructed into the pcDNA3.1/His vector (NA(H7N9-WT)). Mutant NA(H7N9-H274Y) and NA(H7N9-R292K) plasmids were constructed by directed mutagenesis PCR using NA(H7N9-WT) plasmid as the template followed by sequencing. NA plasmids were transfected into 293T cells and cell lysates containing NAs were collected 48 h post-transfection. Wild-type and mutant NAs were analyzed by Western blotting and their activities were tested by the 4-MUNANA-based assay. All three NAs were expressed and enzymatic activities were confirmed. The effects of oseltamivir and zanamivir on all three NAs were then tested. It showed that the half maximal inhibitory concentrations (IC50s) of oseltamivir carboxylate on NA(H7N9-WT), NA(H7N9-H274Y) and NA(H7N9-R292K) were 1.6 nM, 15.1 nM, and > 1 000 nM with fold changes of 9 and > 625, respectively. The IC50 values of zanamivir on NA(H7N9-WT), NA(H7N9-H274Y), and NA(H7N9-R292K) were 1.1 nM, 1.4 nM, and 38.0 nM with fold changes of 1.3 and 34, respectively. These results indicated that oseltamivir and zanamivir could significantly inhibit NA(H7N9-WT). NA(H7N9-R292K) showed high-level resistance to both drugs (34-fold and 625-fold) and NA(H7N9-H274Y) was sensitive to both (1.3-fold and 9-fold). These results indicated that both oseltamivir and zanamivir could be used for patients infected with the H7N9 virus. However, when patients carried the H7N9 virus with a NA R292K mutation, other medications would be preferred over oseltamivir or zanamivir.

  17. Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin

    PubMed Central

    Yu, Xia; Wang, Guirong; Chen, Suting; Wei, Guomei; Shang, Yuanyuan; Dong, Lingling; Schön, Thomas; Moradigaravand, Danesh; Peacock, Sharon J.

    2016-01-01

    Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. PMID:27324769

  18. Subunit dissociation and activation of wild-type and mutant glucocorticoid receptors.

    PubMed

    Gehring, U; Mugele, K; Arndt, H; Busch, W

    1987-09-01

    Apparent molecular weights of wild-type and nti ('increased nuclear transfer') mutant glucocorticoid receptors were obtained from Stokes radii and sedimentation coefficients. At low salt concentrations molecular forms of Mr 328,000 and 298,000 of the wild-type and mutant, respectively, were predominant. Increasing ionic strength resulted in receptor dissociation. Dissociated forms of Mr 130,000 and 63,000 of the wild-type and mutant, respectively, were obtained at 300 mM KCl and above. Some metal oxi-anions prevented dissociation. Receptor activation to allow DNA binding produced the dissociated forms which could be separated from non-activated receptors by filtration through DNA-cellulose or by DEAE-cellulose chromatography. Non-activated wild-type and nti receptors eluted from DEAE-cellulose under identical conditions while activated wild-type and nti receptors eluted differently. Partially proteolyzed wild-type receptors behaved identically to nti receptors. We conclude that the large forms of wild-type and nti receptors are heteromeric and contain only one hormone-building polypeptide per complex.

  19. A nonimmunogenic sarcoma transduced with the cDNA for interferon gamma elicits CD8+ T cells against the wild-type tumor: correlation with antigen presentation capability

    PubMed Central

    1992-01-01

    To be recognized by CD8+ T lymphocytes, target cells must process and present peptide antigens in the context of major histocompatibility complex (MHC) class I molecules. The nonimmunogenic, low class I- expressing, methylcholanthrene (MCA)-induced murine sarcoma cell line, MCA 101, is a poor presenter of endogenously generated viral antigens to specific CD8+ T lymphocytes and cannot be used to generate tumor infiltrating lymphocytes (TIL). Since interferon gamma (IFN-gamma) has been shown to upregulate three sets of molecules important for antigen processing and presentation, we retrovirally transduced wild-type MCA 101 (101.WT) tumor with the mIFN-gamma cDNA to create the 101.NAT cell line. Unlike 101.WT, some clones of retrovirally transduced 101.NAT tumor expressed high levels of class I, and could be used to generate CD8+ TIL. More importantly, these TIL were therapeutic in vivo against established pulmonary metastases from the wild-type tumor. Although not uniformly cytotoxic amongst several separate cultures, these TIL did specifically release cytokines (IFN-gamma and tumor necrosis factor- alpha) in response to 101.WT targets. 101.WT's antigen presentation deficit was also reversed by gene modification with mIFN-gamma cDNA. 101.NAT had a greatly improved capacity to present viral antigens to CD8+ cytotoxic T lymphocytes. These findings show that a nonimmunogenic tumor, incapable of generating a CD8+ T cell immune response, could be gene-modified to generate a therapeutically useful immune response against the wild-type tumor. This strategy may be useful in developing treatments for tumor histologies not thought to be susceptible to T cell-based immunotherapy. PMID:1588273

  20. Anticancer Effects of the Marine Sponge Lipastrotethya sp. Extract on Wild-Type and p53 Knockout HCT116 Cells

    PubMed Central

    Choi, Kiheon; Lim, Hyun Kyung; Oh, Sung Ryong; Chung, Woo-Hyun

    2017-01-01

    Interest in marine bioresources is increasing in the drug development sector. In particular, marine sponges produce a wide range of unique metabolites that enable them to survive in challenging environments, which makes them attractive sources of candidate pharmaceuticals. In previous study, we investigated over 40 marine specimens collected in Micronesia and provided by the Korean Institute of Ocean Science and Technology, for their antiproliferative effects on various cancer cell lines, and Lipastrotethya sp. extract (LSSE) was found to have a marked antiproliferative effect. In the present study, we investigated the mechanism responsible for its anticancer effect on wild-type p53 (WT) or p53 knockout (KO) HCT116 cells. LSSE inhibited cell viability and induced apoptotic cell death more so in HCT116 p53 KO cells than the WT. HCT116 WT cells treated with LSSE underwent apoptosis associated with the induction of p53 and its target genes. On the other hand, in HCT116 p53 KO cells, LSSE reduced mTOR and Bcl-2 and increased Beclin-1 and LC3-II protein levels, suggesting autophagy induction. These results indicate that the mechanisms responsible for the anticancer effect of LSSE depend on p53 status. PMID:28127380

  1. Differential composition of culture supernatants from wild-type Brucella abortus and its isogenic virB mutants.

    PubMed

    Delpino, M Victoria; Comerci, Diego J; Wagner, Mary Ann; Eschenbrenner, Michel; Mujer, Cesar V; Ugalde, Rodolfo A; Fossati, Carlos A; Baldi, Pablo C; Delvecchio, Vito G

    2009-07-01

    The virB genes coding type IV secretion system are necessary for the intracellular survival and replication of Brucella spp. In this study, extracellular proteins from B. abortus 2308 (wild type, WT) and its isogenic virB10 polar mutant were compared. Culture supernatants harvested in the early stationary phase were concentrated and subjected to 2D electrophoresis. Spots present in the WT strain but absent in the virB10 mutant (differential spots) were considered extracellular proteins released in a virB-related manner, and were identified by MALDI-TOF analysis and matching with Brucella genomes. Among the 11 differential proteins identified, DnaK chaperone (Hsp70), choloylglycine hydrolase (CGH) and a peptidyl-prolyl cis-trans isomerase (PPIase) were chosen for further investigation because of their homology with extracellular and/or virulence factors from other bacteria. The three proteins were obtained in recombinant form and specific monoclonal antibodies (mAbs) were prepared. By Western blot with these mAbs, the three proteins were detected in supernatants from the WT but not in those from the virB10 polar mutant or from strains carrying non-polar mutations in virB10 or virB11 genes. These results suggest that the expression of virB genes affects the extracellular release of DnaK, PPIase and CGH, and possibly other proteins from B. abortus.

  2. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    PubMed

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf .

  3. Gene mutation analysis in EGFR wild type NSCLC responsive to erlotinib: are there features to guide patient selection?

    PubMed

    Ulivi, Paola; Delmonte, Angelo; Chiadini, Elisa; Calistri, Daniele; Papi, Maximilian; Mariotti, Marita; Verlicchi, Alberto; Ragazzini, Angela; Capelli, Laura; Gamboni, Alessandro; Puccetti, Maurizio; Dubini, Alessandra; Burgio, Marco Angelo; Casanova, Claudia; Crinò, Lucio; Amadori, Dino; Dazzi, Claudio

    2014-12-31

    Tyrosine kinase inhibitors (TKIs) are very efficacious in non-small-cell lung cancer (NSCLC) patients harboring activating Epidermal Growth Factor Receptor (EGFR) mutations. However, about 10% of EGFR wild type (wt) patients respond to TKI, with unknown molecular mechanisms of sensitivity. We considered a case series of 34 EGFR wt NSCLC patients responsive to erlotinib after at least one line of therapy. Responsive patients were matched with an equal number of non-responsive EGFR wt patients. A panel of 26 genes, for a total of 214 somatic mutations, was analyzed by MassARRAY® System (Sequenom, San Diego, CA, USA). A 15% KRAS mutation was observed in both groups, with a prevalence of G12C in non-responders (80% vs. 40% in responders). NOTCH1, p53 and EGFR-resistance-related mutations were found more frequently in non-responders, whereas EGFR-sensitizing mutations and alterations in genes involved in proliferation pathways were more frequent in responders. In conclusion, our findings indicate that p53, NOTCH1 and exon 20 EGFR mutations seem to be related to TKI resistance. KRAS mutations do not appear to influence the TKI response, although G12C mutation is more frequent in non-responders. Finally, the use of highly sensitive methodologies could lead to the identification of under-represented EGFR mutations potentially associated with TKI sensitivity.

  4. Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin.

    PubMed

    Whitmire, S E; Wolpert, D; Markelz, A G; Hillebrecht, J R; Galan, J; Birge, R R

    2003-08-01

    Far infrared (FIR) spectral measurements of wild-type (WT) and D96N mutant bacteriorhodopsin thin films have been carried out using terahertz time domain spectroscopy as a function of hydration, temperature, and conformational state. The results are compared to calculated spectra generated via normal mode analyses using CHARMM. We find that the FIR absorbance is slowly increasing with frequency and without strong narrow features over the range of 2-60 cm(-1) and up to a resolution of 0.17 cm(-1). The broad absorption shifts in frequency with decreasing temperature as expected with a strongly anharmonic potential and in agreement with neutron inelastic scattering results. Decreasing hydration shifts the absorption to higher frequencies, possibly resulting from decreased coupling mediated by the interior water molecules. Ground-state FIR absorbances have nearly identical frequency dependence, with the mutant having less optical density than the WT. In the M state, the FIR absorbance of the WT increases whereas there is no change for D96N. These results represent the first measurement of FIR absorbance change as a function of conformational state.

  5. Age-dependent arginine phosphokinase activity changes in male vestigial and wild-type Drosophila melanogaster.

    PubMed

    Baker, G T

    1975-01-01

    The activity of arginine phosphokinase, an important muscle enzyme in insects, was investigated with age in vestigial-winged and wild-type Drosophila melanogaster. Identical patterns of age-dependent activity changes were observed in the vestigial-winged flies as in the wild-type, even though vestigial-winged flies exhibit a 50% mortality approximately two thirds that of the wild-type as well as being incapable of flight. Results indicate that the age-dependent changes in arginine phosphokinase activity are intrinsically regulated within the cells of the flight muscle.

  6. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS).

    PubMed

    Tavella, Sara; Ruggiu, Alessandra; Giuliani, Alessandra; Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity's negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice.

  7. Sensitivity of prostate tumors to wild type and M protein mutant vesicular stomatitis viruses.

    PubMed

    Ahmed, Maryam; Cramer, Scott D; Lyles, Douglas S

    2004-12-05

    Because of its potent ability to induce apoptosis, vesicular stomatitis virus (VSV) is an attractive candidate as an oncolytic virus for tumor therapy. Previous studies have suggested that VSV selectively infects tumor cells due to defects in their antiviral responses making them more susceptible to VSV infection than normal cells. We tested this hypothesis in the prostate tumor system by comparing LNCaP and PC-3 prostate tumor cells to benign human prostatic epithelial cells from patient prostatectomy specimens. We compared the cell killing ability of a recombinant virus containing a wild-type (wt) M protein (rwt) and an isogenic M protein mutant virus (rM51R-M) that induces interferon (IFN) in infected cells and should display a greater selectivity for tumor cells. Our results showed that in single-cycle infection experiments, LNCaP cells were sensitive to killing by both wt and mutant viruses, while PC-3 cells were highly resistant to VSV-induced cell killing. LNCaP and benign prostate cells were similarly susceptible to both viruses, indicating that normal prostate cells are not inherently resistant to killing by VSV. In each of the cell lines, the rM51R-M virus induced similar levels of apoptosis to rwt virus, showing that the M protein does not play a significant role in apoptosis induction by VSV in these cells. In multiple-cycle infection experiments, LNCaP cells were more sensitive than benign prostatic epithelial cells to virus-induced cell killing by rM51R-M virus, but not rwt virus. Both viruses were equally effective at reducing LNCaP tumor volume in vivo following intratumoral and intravenous inoculation in nude mice, while PC-3 tumors were resistant to VSV treatment. None of the mice treated with rM51R-M virus died as a result of virus infection, while 50-71% of mice treated with rwt virus succumbed to virus infection. Similarly, when inoculated by the more sensitive intranasal route, the rM51R-M virus was less pathogenic than the rwt virus from

  8. Modeling and Validation of the Ecological Behavior of Wild-Type Listeria monocytogenes and Stress-Resistant Variants

    PubMed Central

    Metselaar, Karin I.; Abee, Tjakko; den Besten, Heidy M. W.

    2016-01-01

    ABSTRACT Listeria monocytogenes exhibits a heterogeneous response upon stress exposure which can be partially attributed to the presence of stable stress-resistant variants. This study aimed to evaluate the impact of the presence of stress-resistant variants of Listeria monocytogenes and their corresponding trade-offs on population composition under different environmental conditions. A set of stress robustness and growth parameters of the wild type (WT) and an rpsU deletion variant was obtained and used to model their growth behavior under combined mild stress conditions and to model their kinetics under single- and mixed-strain conditions in a simulated food chain. Growth predictions for the WT and the rpsU deletion variant matched the experimental data generally well, although some deviations from the predictions were observed. The data highlighted the influence of the environmental conditions on the ratio between the WT and variant. Prediction of performance in the simulated food chain proved to be challenging. The trend of faster growth and lower stress robustness for the WT than for the rpsU variant in the different steps of the chain was confirmed, but especially for the inactivation steps and the time needed to resume growth after an inactivation step, the experimental data deviated from the model predictions. This report provides insights into the conditions which can select for stress-resistant variants in industrial settings and discusses their potential persistence in food processing environments. IMPORTANCE Listeria monocytogenes exhibits a heterogeneous stress response which can partially be attributed to the presence of genetic variants. These stress-resistant variants survive better under severe conditions but have, on the other hand, a reduced growth rate. To date, the ecological behavior and potential impact of the presence of stress-resistant variants is not fully understood. In this study, we quantitatively assessed growth and inactivation

  9. Comparison between NOx Evolution Mechanisms of Wild-Type and nr1 Mutant Soybean Leaves 1

    PubMed Central

    Klepper, Lowell

    1990-01-01

    The nr1 soybean (Glycine max [L.] Merr.) mutant does not contain the two constitutive nitrate reductases, one of which is responsible for enzymic conversion of nitrite to NOx (NO + NO2). It was tested for possible nonenzymic NOx formation and evolution because of known chemical reactions between NO2− and plant metabolites and the instability of nitrous acid. It did not evolve NOx during the in vivo NR assay, but intact leaves did evolve small amounts of NOx under dark, anaerobic conditions. Experiments were conducted to compare NO3− reduction, NO2− accumulation, and the NOx evolution processes of the wild type (cv Williams) and the nr1 mutant. In vivo NR assays showed that wild-type leaves had three times more NO3− reducing capacity than the nr1 mutant. NOx evolution from intact, anerobic nr1 leaves was approximately 10 to 20% that from wild-type leaves. Nitrite content of the nr1 mutant leaves was usually higher than wild type due to low NOx evolution. Lag times and threshold NO2− concentrations for NOx evolution were similar for the two genotypes. While only 1 to 2% of NOx from wild type is NO2, the nr1 mutant evolved 15 to 30% NO2. The kinetic patterns of NOx evolution with time weré completely different for the mutant and wild type. Comparisons of light and heat treatments also gave very different results. It is generally accepted that the NOx evolution by wild type is primarily an enzymic conversion of NO2− to NO. However, this report concludes that NOx evolution by the nr1 mutant was due to nonenzymic, chemical reactions between plant metabolites and accumulated NO2− and/or decomposition of nitrous acid. Nonenzymic NOx evolution probably also occurs in wild type to a degree but could be easily masked by high rates of the enzymic process. PMID:16667445

  10. Electrophoretic Mobilities of Escherichia coli O157:H7 and Wild-Type Escherichia coli Strains

    PubMed Central

    Lytle, Darren A.; Rice, Eugene W.; Johnson, Clifford H.; Fox, Kim R.

    1999-01-01

    The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased. PMID:10388724

  11. The new and recurrent FLT3 juxtamembrane deletion mutation shows a dominant negative effect on the wild-type FLT3 receptor

    PubMed Central

    Sandhöfer, Nadine; Bauer, Julia; Reiter, Katrin; Dufour, Annika; Rothenberg, Maja; Konstandin, Nikola P.; Zellmeier, Evelyn; Tizazu, Belay; Greif, Philipp A.; Metzeler, Klaus H.; Hiddemann, Wolfgang; Polzer, Harald; Spiekermann, Karsten

    2016-01-01

    In acute myeloid leukemia (AML), the Fms-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes. Recently, a new and recurrent juxtamembrane deletion mutation (p.Q569Vfs*2) resulting in a truncated receptor was identified. The mutated receptor is expressed on the cell surface and still binds its ligand but loses the ability to activate ERK signaling. FLT3 p.Q569fs-expressing Ba/F3 cells show no proliferation after ligand stimulation. Furthermore, coexpressed with the FLT3 wild-type (WT) receptor, the truncated receptor suppresses stimulation and activation of the WT receptor. Thus, FLT3 p.Q569Vfs*2, to our knowledge, is the first FLT3 mutation with a dominant negative effect on the WT receptor. PMID:27346558

  12. Single cell monitoring of growth arrest and morphological changes induced by transfer of wild-type p53 alleles to glioblastoma cells.

    PubMed Central

    Van Meir, E G; Roemer, K; Diserens, A C; Kikuchi, T; Rempel, S A; Haas, M; Huang, H J; Friedmann, T; de Tribolet, N; Cavenee, W K

    1995-01-01

    Mutation of the p53 tumor suppressor gene is one of the earliest identified genetic lesions during malignant progression of human astrocytomas. To assess the functional significance of these mutations, wild-type (WT) p53 genes were introduced into glioblastoma cell lines having mutant, WT, or null endogenous p53 alleles. Populations of cells with mutant or null endogenous p53 alleles and exogenous WT p53 were spontaneously selected in culture for cells expressing only mutant p53 or no p53, which then displayed a growth and tumorigenic phenotype identical to the parental cells. To determine the phenotypic consequences of WT p53 expression before the occurrence of mutations, we developed a single cell assay to monitor WT p53-dependent transcription activity. Transfer and expression of exogenous WT p53 genes to cells with endogenous mutant or deleted, but not WT, p53 alleles caused growth arrest and morphological changes, including increased cell size and acquisition of multiple nuclei. This supports the hypothesis that genetic lesions of the p53 gene play an important role in the genesis of astrocytomas. Furthermore, the high sensitivity of the episomal single cell reporter strategy developed here has potential clinical applications in the rapid screening of patients for germ-line mutations of the p53 gene or any other gene with known targets for transcriptional transactivation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7862624

  13. Amplification-free In Situ KRAS Point Mutation Detection at 60 copies/mL in Urine in a Background of 1000-fold Wild Type

    PubMed Central

    KirimLi, Ceyhun E.; Shih, Wei-Heng; Shih, Wan Y.

    2016-01-01

    We have examined in situ detection of single-nucleotide KRAS mutation in urine using a (Pb(Mg1/3Nb2/3)O3)0.65(PbTiO3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 17-nucleotide (nt) locked nucleic acid (LNA) probe DNA complementary to the KRAS mutation. To enhance in situ mutant (MT) DNA detection specificity against the wild type (WT), the detection was carried out in a flow with a flow rate of 4 mL/min and at 63°C with the PEPS vertically situated at the center of the flow in which both the temperature and the flow impingement force discriminated the wild type. Under such conditions, PEPS was shown to specifically detect KRAS MT in situ with 60 copies/mL analytical sensitivity in a background of clinically-relevant 1000-fold more WT in 30 min without DNA isolation, amplification, or labeling. For validation, the detection was followed with detection in a mixture of blue MT fluorescent reporter microspheres (FRMs) (MT FRMs) that bound to only the captured MT and orange WT FRMs that bound to only the captured WT. Microscopic examinations showed that the captured blue MT FRMs still outnumbered the orange WT FRMs by a factor of 4 to 1 even though WT was 1000-fold of MT in urine. Finally, multiplexed specific mutation detection was demonstrated using a 6-PEPS array each with a probe DNA targeting one of the 6 codon-12 KRAS mutations. PMID:26783561

  14. Comparative Transcriptome of Wild Type and Selected Strains of the Microalgae Tisochrysis lutea Provides Insights into the Genetic Basis, Lipid Metabolism and the Life Cycle

    PubMed Central

    Carrier, Gregory; Garnier, Matthieu; Le Cunff, Loïc; Bougaran, Gaël; Probert, Ian; De Vargas, Colomban; Corre, Erwan; Cadoret, Jean-Paul; Saint-Jean, Bruno

    2014-01-01

    The applied exploitation of microalgae cultures has to date almost exclusively involved the use of wild type strains, deposited over decades in dedicated culture collections. Concomitantly, the concept of improving algae with selection programs for particular specific purposes is slowly emerging. Studying since a decade an economically and ecologically important haptophyte Tisochrysis lutea (Tiso), we took advantage of the availability of wild type (Tiso-Wt) and selected (Tiso-S2M2) strains to conduct a molecular variations study. This endeavour presented substantial challenges: the genome assembly was not yet available, the life cycle unknown and genetic diversity of Tiso-Wt poorly documented. This study brings the first molecular data in order to set up a selection strategy for that microalgae. Following high-throughput Illumina sequencing, transcriptomes of Tiso-Wt and Tiso-S2M2 were de novo assembled and annotated. Genetic diversity between both strains was analyzed and revealed a clear conservation, while a comparison of transcriptomes allowed identification of polymorphisms resulting from the selection program. Of 34,374 transcripts, 291 were differentially expressed and 165 contained positional polymorphisms (SNP, Indel). We focused on lipid over-accumulation of the Tiso-S2M2 strain and 8 candidate genes were identified by combining analysis of positional polymorphism, differential expression levels, selection signature and by study of putative gene function. Moreover, genetic analysis also suggests the existence of a sexual cycle and genetic recombination in Tisochrysis lutea. PMID:24489800

  15. Comparative transcriptome of wild type and selected strains of the microalgae Tisochrysis lutea provides insights into the genetic basis, lipid metabolism and the life cycle.

    PubMed

    Carrier, Gregory; Garnier, Matthieu; Le Cunff, Loïc; Bougaran, Gaël; Probert, Ian; De Vargas, Colomban; Corre, Erwan; Cadoret, Jean-Paul; Saint-Jean, Bruno

    2014-01-01

    The applied exploitation of microalgae cultures has to date almost exclusively involved the use of wild type strains, deposited over decades in dedicated culture collections. Concomitantly, the concept of improving algae with selection programs for particular specific purposes is slowly emerging. Studying since a decade an economically and ecologically important haptophyte Tisochrysis lutea (Tiso), we took advantage of the availability of wild type (Tiso-Wt) and selected (Tiso-S2M2) strains to conduct a molecular variations study. This endeavour presented substantial challenges: the genome assembly was not yet available, the life cycle unknown and genetic diversity of Tiso-Wt poorly documented. This study brings the first molecular data in order to set up a selection strategy for that microalgae. Following high-throughput Illumina sequencing, transcriptomes of Tiso-Wt and Tiso-S2M2 were de novo assembled and annotated. Genetic diversity between both strains was analyzed and revealed a clear conservation, while a comparison of transcriptomes allowed identification of polymorphisms resulting from the selection program. Of 34,374 transcripts, 291 were differentially expressed and 165 contained positional polymorphisms (SNP, Indel). We focused on lipid over-accumulation of the Tiso-S2M2 strain and 8 candidate genes were identified by combining analysis of positional polymorphism, differential expression levels, selection signature and by study of putative gene function. Moreover, genetic analysis also suggests the existence of a sexual cycle and genetic recombination in Tisochrysis lutea.

  16. Different metabolic responses to PI3K inhibition in NSCLC cells harboring wild-type and G12C mutant KRAS

    PubMed Central

    Marabese, Mirko; Broggini, Massimo; Lupi, Monica; Pastorelli, Roberta

    2016-01-01

    KRAS mutations in non-small-cell lung cancer (NSCLC) patients are considered a negative predictive factor and indicate poor response to anticancer treatments. KRAS mutations lead to activation of the PI3K/akt/mTOR pathway, whose inhibition remains a challenging clinical target. Since the PI3K/akt/mTOR pathway and KRAS oncogene mutations all have roles in cancer cell metabolism, we investigated whether the activity of PI3K/akt/mTOR inhibitors (BEZ235 and BKM120) in cells harboring different KRAS status is related to their metabolic effect. Isogenic NSCLC cell clones expressing wild-type (WT) and mutated (G12C) KRAS were used to determine the response to BEZ235 and BKM120. Metabolomics analysis indicated the impairment of glutamine in KRAS-G12C and serine metabolism in KRAS-WT, after pharmacological blockade of the PI3K signaling, although the net effect on cell growth, cell cycle distribution and caspase activation was similar. PI3K inhibitors caused autophagy in KRAS-WT, but not in KRAS-G12C, where there was a striking decrease in ammonia production, probably a consequence of glutamine metabolism impairment. These findings lay the grounds for more effective therapeutic combinations possibly distinguishing wild-type and mutated KRAS cancer cells in NSCLC, exploiting their different metabolic responses to PI3K/akt/mTOR inhibitors. PMID:27283493

  17. Randomized study of FOLFIRI plus either panitumumab or bevacizumab for wild-type KRAS colorectal cancer-WJOG 6210G.

    PubMed

    Shitara, Kohei; Yonesaka, Kimio; Denda, Tadamichi; Yamazaki, Kentaro; Moriwaki, Toshikazu; Tsuda, Masahiro; Takano, Toshimi; Okuda, Hiroyuki; Nishina, Tomohiro; Sakai, Kazuko; Nishio, Kazuto; Tokunaga, Shoji; Yamanaka, Takeharu; Boku, Narikazu; Hyodo, Ichinosuke; Muro, Kei

    2016-12-01

    This randomized phase II trial compared panitumumab plus fluorouracil, leucovorin, and irinotecan (FOLFIRI) with bevacizumab plus FOLFIRI as second-line chemotherapy for wild-type (WT) KRAS exon 2 metastatic colorectal cancer (mCRC) and to explore the values of oncogenes in circulating tumor DNA (ctDNA) and serum proteins as predictive biomarkers. Patients with WT KRAS exon 2 mCRC refractory to first-line chemotherapy containing oxaliplatin and bevacizumab were randomly assigned to panitumumab plus FOLFIRI or bevacizumab plus FOLFIRI. Of 121 randomly assigned patients, 117 were eligible. Median overall survival (OS) for panitumumab plus FOLFIRI and bevacizumab plus FOLFIRI were 16.2 and 13.4 months [hazard ratio (HR), 1.16; 95% CI, 0.76-1.77], respectively. Progression-free survival (PFS) was also similar (HR, 1.14; 95% CI, 0.78-1.66). KRAS, NRAS, and BRAF status using ctDNA was successfully examined in 109 patients, and mutations were identified in 19 patients (17.4%). Panitumumab plus FOLFIRI showed favorable survival compared with bevacizumab plus FOLFIRI in WT patients and unfavorable survival in those with mutations (P for interaction = 0.026 in OS and 0.054 in PFS). OS with bevacizumab plus FOLFIRI was better than panitumumab plus FOLFIRI in patients with high serum vascular endothelial growth factor-A (VEGF-A) levels and worse in those with low levels (P for interaction = 0.016). Second-line FOLFIRI plus panitumumab and FOLFIRI plus bevacizumab showed a similar efficacy in patients with WT KRAS exon 2 mCRC. RAS and BRAF mutation in ctDNA could be a negative predictive marker for panitumumab.

  18. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice

    PubMed Central

    Alfieri, Julio A.; Silva, Pablo R.; Igaz, Lionel M.

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies. PMID:28066234

  19. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice.

    PubMed

    Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.

  20. Inhibition of Wild-Type p53-Expressing AML by the Novel Small Molecule HDM2 Inhibitor CGM097.

    PubMed

    Weisberg, Ellen; Halilovic, Ensar; Cooke, Vesselina G; Nonami, Atsushi; Ren, Tao; Sanda, Takaomi; Simkin, Irene; Yuan, Jing; Antonakos, Brandon; Barys, Louise; Ito, Moriko; Stone, Richard; Galinsky, Ilene; Cowens, Kristen; Nelson, Erik; Sattler, Martin; Jeay, Sebastien; Wuerthner, Jens U; McDonough, Sean M; Wiesmann, Marion; Griffin, James D

    2015-10-01

    The tumor suppressor p53 is a key regulator of apoptosis and functions upstream in the apoptotic cascade by both indirectly and directly regulating Bcl-2 family proteins. In cells expressing wild-type (WT) p53, the HDM2 protein binds to p53 and blocks its activity. Inhibition of HDM2:p53 interaction activates p53 and causes apoptosis or cell-cycle arrest. Here, we investigated the ability of the novel HDM2 inhibitor CGM097 to potently and selectively kill WT p53-expressing AML cells. The antileukemic effects of CGM097 were studied using cell-based proliferation assays (human AML cell lines, primary AML patient cells, and normal bone marrow samples), apoptosis, and cell-cycle assays, ELISA, immunoblotting, and an AML patient-derived in vivo mouse model. CGM097 potently and selectively inhibited the proliferation of human AML cell lines and the majority of primary AML cells expressing WT p53, but not mutant p53, in a target-specific manner. Several patient samples that harbored mutant p53 were comparatively unresponsive to CGM097. Synergy was observed when CGM097 was combined with FLT3 inhibition against oncogenic FLT3-expressing cells cultured both in the absence as well as the presence of cytoprotective stromal-secreted cytokines, as well as when combined with MEK inhibition in cells with activated MAPK signaling. Finally, CGM097 was effective in reducing leukemia burden in vivo. These data suggest that CGM097 is a promising treatment for AML characterized as harboring WT p53 as a single agent, as well as in combination with other therapies targeting oncogene-activated pathways that drive AML.

  1. Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages.

    PubMed

    Gonzalez-Pena, Dianelys; Nixon, Scott E; Southey, Bruce R; Lawson, Marcus A; McCusker, Robert H; Hernandez, Alvaro G; Dantzer, Robert; Kelley, Keith W; Rodriguez-Zas, Sandra L

    2016-01-01

    Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome

  2. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    PubMed Central

    2010-01-01

    Background Glucocorticoids (GCs) control expression of a large number of genes via binding to the GC receptor (GR). Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT) and mice that have lost the ability to form GR dimers (GRdim). Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs. PMID:20525385

  3. Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages

    PubMed Central

    Gonzalez-Pena, Dianelys; Nixon, Scott E.; Southey, Bruce R.; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; Dantzer, Robert; Kelley, Keith W.; Rodriguez-Zas, Sandra L.

    2016-01-01

    Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome

  4. Wild-type amyloid beta 1-40 peptide induces vascular smooth muscle cell death independently from matrix metalloprotease activity.

    PubMed

    Blaise, Régis; Mateo, Véronique; Rouxel, Clotilde; Zaccarini, François; Glorian, Martine; Béréziat, Gilbert; Golubkov, Vladislav S; Limon, Isabelle

    2012-06-01

    Cerebral amyloid angiopathy (CAA) is an important cause of intracerebral hemorrhages in the elderly, characterized by amyloid-β (Aβ) peptide accumulating in central nervous system blood vessels. Within the vessel walls, Aβ-peptide deposits [composed mainly of wild-type (WT) Aβ(1-40) peptide in sporadic forms] induce impaired adhesion of vascular smooth muscle cells (VSMCs) to the extracellular matrix (ECM) associated with their degeneration. This process often results in a loss of blood vessel wall integrity and ultimately translates into cerebral ischemia and microhemorrhages, both clinical features of CAA. In this study, we decipher the molecular mechanism of matrix metalloprotease (MMP)-2 activation in WT-Aβ(1-40) -treated VSMC and provide evidence that MMP activity, although playing a critical role in cell detachment disrupting ECM components, is not involved in the WT-Aβ(1-40) -induced degeneration of VSMCs. Indeed, whereas this peptide clearly induced VSMC apoptosis, neither preventing MMP-2 activity nor hampering the expression of membrane type1-MMP, or preventing tissue inhibitors of MMPs-2 (TIMP-2) recruitment (two proteins evidenced here as involved in MMP-2 activation), reduced the number of dead cells. Even the use of broad-range MMP inhibitors (GM6001 and Batimastat) did not affect WT-Aβ(1-40) -induced cell apoptosis. Our results, in contrast to those obtained using the Aβ(1-40) Dutch variant suggesting a link between MMP-2 activity, VSMC mortality and degradation of specific matrix components, indicate that the ontogenesis of the Dutch familial and sporadic forms of CAAs is different. ECM degradation and VSMC degeneration would be tightly connected in the Dutch familial form while being two independent processes in sporadic forms of CAA.

  5. Wild-type Human γD-crystallin Promotes Aggregation of Its Oxidation-mimicking, Misfolding-prone W42Q Mutant*

    PubMed Central

    Serebryany, Eugene; King, Jonathan A.

    2015-01-01

    Non-native protein conformers generated by mutation or chemical damage template aggregation of wild-type, undamaged polypeptides in diseases ranging from amyotrophic lateral sclerosis to cancer. We tested for such interactions in the natively monomeric human eye lens protein γd-crystallin, whose aggregation leads to cataract disease. The oxidation-mimicking W42Q mutant of γd-crystallin formed non-native polymers starting from a native-like state under physiological conditions. Aggregation occurred in the temperature range 35–45 °C, in which the mutant protein began to lose the native conformation of its N-terminal domain. Surprisingly, wild-type γd-crystallin promoted W42Q polymerization in a catalytic manner, even at mutant concentrations too low for homogeneous nucleation to occur. The presence of wild-type protein also downshifted the temperature range of W42Q aggregation. W42Q aggregation required formation of a non-native intramolecular disulfide bond but not intermolecular cross-linking. Transient WT/W42Q binding may catalyze this oxidative misfolding event in the mutant. That a more stable variant in a mixture can specifically promote aggregation of a less stable one rationalizes how extensive aggregation of rare damaged polypeptides can occur during the course of aging. PMID:25787081

  6. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53.

    PubMed

    Martinez-Rivera, Michelle; Siddik, Zahid H

    2012-04-15

    Chemotherapy is the bedrock for the clinical management of cancer, and the tumor suppressor p53 has a central role in this therapeutic modality. This protein facilitates favorable antitumor drug response through a variety of key cellular functions, including cell cycle arrest, senescence, and apoptosis. These functions essentially cease once p53 becomes mutated, as occurs in ∼50% of cancers, and some p53 mutants even exhibit gain-of-function effects, which lead to greater drug resistance. However, it is becoming increasingly evident that resistance is also seen in cancers harboring wild-type p53. In this review, we discuss how wild-type p53 is inactivated to render cells resistant to antitumor drugs. This may occur through various mechanisms, including an increase in proteasomal degradation, defects in post-translational modification, and downstream defects in p53 target genes. We also consider evidence that the resistance seen in wild-type p53 cancers can be substantially greater than that seen in mutant p53 cancers, and this poses a far greater challenge for efforts to design strategies that increase drug response in resistant cancers already primed with wild-type p53. Because the mechanisms contributing to this wild-type p53 "gain-of-resistance" phenotype are largely unknown, a concerted research effort is needed to identify the underlying basis for the occurrence of this phenotype and, in parallel, to explore the possibility that the phenotype may be a product of wild-type p53 gain-of-function effects. Such studies are essential to lay the foundation for a rational therapeutic approach in the treatment of resistant wild-type p53 cancers.

  7. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53

    PubMed Central

    Martinez-Rivera, Michelle; Siddik, Zahid H.

    2012-01-01

    Chemotherapy is the bedrock for the clinical management of cancer, and the tumor suppressor p53 has a central role in this therapeutic modality. This protein facilitates favorable antitumor drug response through a variety of key cellular functions, including cell cycle arrest, senescence, and apoptosis. These functions essentially cease once p53 becomes mutated, as occurs in ~50% of cancers, and some p53 mutants even exhibit gain-of-function effects, which lead to greater drug resistance. However, it is becoming increasingly evident that resistance is also seen in cancers harboring wild-type p53. In this review, we discuss how wild-type p53 is inactivated to render cells resistant to antitumor drugs. This may occur through various mechanisms, including an increase in proteasomal degradation, defects in post-translational modification, and downstream defects in p53 target genes. We also consider evidence that the resistance seen in wild-type p53 cancers can be substantially greater than that seen in mutant p53 cancers, and this poses a far greater challenge for efforts to design strategies that increase drug response in resistant cancers already primed with wild-type p53. Because the mechanisms contributing to this wild-type p53 “gain-of-resistance” phenotype are largely unknown, a concerted research effort is needed to identify the underlying basis for the occurrence of this phenotype and, in parallel, to explore the possibility that the phenotype may be a product of wild-type p53 gain-of-function effects. Such studies are essential to lay the foundation for a rational therapeutic approach in the treatment of resistant wild-type p53 cancers. PMID:22227014

  8. The clinical presentation of Marfan syndrome is modulated by expression of wild-type FBN1 allele.

    PubMed

    Aubart, Mélodie; Gross, Marie-Sylvie; Hanna, Nadine; Zabot, Marie-Thérèse; Sznajder, Marc; Detaint, Delphine; Gouya, Laurent; Jondeau, Guillaume; Boileau, Catherine; Stheneur, Chantal

    2015-05-15

    Marfan syndrome is an autosomal dominant disorder mainly caused by mutations within FBN1 gene. The disease displays large variability in age of onset or severity and very poor phenotype/genotype correlations have been demonstrated. We investigated the hypothesis that phenotype severity could be related to the variable expression level of fibrillin-1 (FBN1) synthesized from the wild-type (WT) allele. Quantitative reverse-transcription and polymerase chain reaction was used to evaluate FBN1 levels in skin fibroblasts from 80 Marfan patients with premature termination codons and in skin fibroblasts from 80 controls. Results in controls showed a 3.9-fold variation in FBN1 mRNA synthesis level between subjects. A similar 4.4-fold variation was found in the Marfan population, but the mean level of FBN1 mRNA was a half of the control population. Differential allelic expression analysis in Marfan fibroblasts showed that over 90% of FBN1 mRNA was transcribed from the wild allele and the mutated allele was not detected. In the control population, independently of the expression level of FBN1, we observed steady-state equilibrium between the two allelic-mRNAs suggesting that FBN1 expression mainly depends on trans-acting regulators. Finally, we show that a low level of residual WT FBN1 mRNA accounts for a high risk of ectopia lentis and pectus abnormality and tends to increase the risk of aortic dilatation.

  9. Differential morphology and transcriptome profile between the incompletely fused carpels ovary and its wild-type in maize

    PubMed Central

    Li, Hongping; Wu, Yufeng; Zhao, Yali; Hu, Xiuli; Chang, Jianfeng; Wang, Qun; Dong, Pengfei; Zhang, Moubiao; Li, Chaohai

    2016-01-01

    We have isolated a new mutation in maize, incompletely fused carpels (ifc), which results in an open stylar canal on the ovary and an incomplete pericarp at the top of the kernel. The maize ovary derives from the fusion of three carpels; however, the molecular networks regulating maize carpel fusion remain largely unclear. In this study, RNA sequencing (RNA-seq) was performed on wild-type (WT) and ifc ovaries that were collected after carpel fusion defects could be morphologically distinguished. In total, 877 differentially expressed genes were identified. Functional analysis revealed overexpression of genes related to “DNA binding”, “transcription regulation”, “hormones”, and “stress responses”. Among the 88 differentially expressed transcription factor (TF) genes, five showed a high degree of conservation (77.7–88.0% amino acid identity) of their conserved domains with genes associated with carpel fusion deficiency in Arabidopsis thaliana, suggesting that these five genes might control carpel fusion in maize. In addition, 30 genes encoding components of hormone synthesis and signaling pathways were differentially expressed between ifc and WT ovaries, indicating complex hormonal regulation during carpel fusion. These results help elucidate the underlying mechanisms that regulate carpel fusion, supporting the functional analysis of genes involved in producing this phenotype. PMID:27587343

  10. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia.

    PubMed

    Xie, Changyan; Cao, Xu; Chen, Xibing; Wang, Dong; Zhang, Wei Kevin; Sun, Ying; Hu, Wenbao; Zhou, Zijing; Wang, Yan; Huang, Pingbo

    2016-04-01

    Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand-gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild-type (WT) and G551D CFTR have been implicated in regulatory volume decrease (RVD), but the underlying mechanism remains incompletely understood. Here, we show that the channel activity of both WT and G551D CFTR is directly stimulated by mechanical perturbation induced by cell swelling at the single-channel, cellular, and tissue levels. Hypotonicity activated CFTR single channels in cell-attached membrane patches and WT-CFTR-mediated short-circuit current (Isc) in Calu-3 cells, and this was independent of Ca(2+)and cAMP/PKA signaling. Genetic suppression and ablation but not G551D mutation of CFTR suppressed the hypotonicity- and stretch-inducedIscin Calu-3 cells and mouse duodena. Moreover, ablation but not G551D mutation of the CFTR gene inhibited the RVD of crypts isolated from mouse intestine; more importantly, CFTR-specific blockers markedly suppressed RVD in both WT- and G551D CFTR mice, demonstrating for the first time that the channel activity of both WT and G551D CFTR is required for epithelial RVD. Our findings uncover a previously unrecognized mechanism underlying CFTR involvement in epithelial RVD and suggest that the mechanosensitivity of G551D CFTR might underlie the mild phenotypes resulting from this mutation.-Xie, C., Cao, X., Chen, X, Wang, D., Zhang, W. K., Sun, Y., Hu, W., Zhou, Z., Wang, Y., Huang, P. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia.

  11. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type.

    PubMed

    Wu, Juxun; Fu, Lili; Yi, Hualin

    2016-01-01

    Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key roles in plant development and ripening by temporarily and spatially regulating the transcription of their target genes. In this study, a total of 159 TFs were identified from a spontaneous late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type counterpart ('Fengjie 72-1', WT) along the ripening period via the Transcription Factor Prediction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT and WT; 92 and 120 differentially expressed TFs were identified in WT and MT, respectively. The Venn diagram analysis showed that 16 differentially expressed TFs were identified between MT and WT and during the ripening of WT and MT. These TFs were primarily assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the number of TFs of the ERF family was the greatest between MT and WT. According to the results of the WGCNA analysis, a weighted correlation network analysis tool, several important TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were identified, such as RD26, NTT, GATA7 and MYB21/62/77. Hierarchical cluster analysis and the expression analysis conducted at five fruit ripening stages further validated the pivotal TFs that potentially function during orange fruit development and ripening.

  12. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type

    PubMed Central

    Wu, Juxun; Fu, Lili; Yi, Hualin

    2016-01-01

    Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key roles in plant development and ripening by temporarily and spatially regulating the transcription of their target genes. In this study, a total of 159 TFs were identified from a spontaneous late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type counterpart ('Fengjie 72–1', WT) along the ripening period via the Transcription Factor Prediction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT and WT; 92 and 120 differentially expressed TFs were identified in WT and MT, respectively. The Venn diagram analysis showed that 16 differentially expressed TFs were identified between MT and WT and during the ripening of WT and MT. These TFs were primarily assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the number of TFs of the ERF family was the greatest between MT and WT. According to the results of the WGCNA analysis, a weighted correlation network analysis tool, several important TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were identified, such as RD26, NTT, GATA7 and MYB21/62/77. Hierarchical cluster analysis and the expression analysis conducted at five fruit ripening stages further validated the pivotal TFs that potentially function during orange fruit development and ripening. PMID:27104786

  13. Modeling the competition between antenna size mutant and wild type microalgae in outdoor mass culture.

    PubMed

    de Mooij, Tim; Schediwy, Kira; Wijffels, René H; Janssen, Marcel

    2016-12-20

    Under high light conditions, microalgae are oversaturated with light which significantly reduces the light use efficiency. Microalgae with a reduced pigment content, antenna size mutants, have been proposed as a potential solution to increase the light use efficiency. The goal of this study was to investigate the competition between antenna size mutants and wild type microalgae in mass cultures. Using a kinetic model and literature-derived experimental data from wild type Chlorella sorokiniana, the productivity and competition of wild type cells and antenna size mutants were simulated. Cultivation was simulated in an outdoor microalgal raceway pond production system which was assumed to be limited by light only. Light conditions were based on a Mediterranean location (Tunisia) and a more temperate location (the Netherlands). Several wild type contamination levels were simulated in each mutant culture separately to predict the effect on the productivity over the cultivation time of a hypothetical summer season of 100days. The simulations demonstrate a good potential of antenna size reduction to increase the biomass productivity of microalgal cultures. However, it was also found that after a contamination with wild type cells the mutant cultures will be rapidly overgrown resulting in productivity loss.

  14. ID4 regulates transcriptional activity of wild type and mutant p53 via K373 acetylation.

    PubMed

    Morton, Derrick J; Patel, Divya; Joshi, Jugal; Hunt, Aisha; Knowell, Ashley E; Chaudhary, Jaideep

    2017-01-10

    Given that mutated p53 (50% of all human cancers) is over-expressed in many cancers, restoration of mutant p53 to its wild type biological function has been sought after as cancer therapy. The conformational flexibility has allowed to restore the normal biological function of mutant p53 by short peptides and small molecule compounds. Recently, studies have focused on physiological mechanisms such as acetylation of lysine residues to rescue the wild type activity of mutant p53. Using p53 null prostate cancer cell line we show that ID4 dependent acetylation promotes mutant p53 DNA-binding capabilities to its wild type consensus sequence, thus regulating p53-dependent target genes leading to subsequent cell cycle arrest and apoptosis. Specifically, by using wild type, mutant (P223L, V274F, R175H, R273H), acetylation mimics (K320Q and K373Q) and non-acetylation mimics (K320R and K373R) of p53, we identify that ID4 promotes acetylation of K373 and to a lesser extent K320, in turn restoring p53-dependent biological activities. Together, our data provides a molecular understanding of ID4 dependent acetylation that suggests a strategy of enhancing p53 acetylation at sites K373 and K320 that may serve as a viable mechanism of physiological restoration of mutant p53 to its wild type biological function.

  15. A positively gravitropic mutant mirrors the wild-type protonemal response in the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Wagner, T. A.; Cove, D. J.; Sack, F. D.

    1997-01-01

    Wild-type Ceratodon purpureus (Hedw.) Brid. protonemata grow up in the dark by negative gravitropism. When upright wild-type protonemata are reoriented 90 degrees, they temporarily grow down soon after reorientation ("initial reversal") and also prior to cytokinesis ("mitotic reversal"). A positively gravitropic mutant designated wrong- way response (wwr-1) has been isolated by screening ultraviolet light-mutagenized Ceratodon protonemata. Protonemata of wwr-l reoriented from the vertical to the horizontal grow down with kinetics comparable to those of the wild-type. Protonemata of wwr-1 also show initial and mitotic reversals where they temporarily grow up. Thus, the direction of gravitropism, initial reversal, and mitotic reversal are coordinated though each are opposite in wwr-1 compared to the wild-type. Normal plastid zonation is still maintained in dark-grown wwr-1 apical cells, but the plastids are more numerous and plastid sedimentation is more pronounced. In addition, wwr-1 apical cells are wider and the tips greener than in the wild-type. These data suggest that a functional WWR gene product is not necessary for the establishment of some gravitropic polarity, for gravitropism, or for the coordination of the reversals. Thus, the WWR protein may normally transduce information about cell orientation.

  16. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore

    NASA Astrophysics Data System (ADS)

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I.

  17. Effects of Mechanical Overloading on the Properties of Soleus Muscle Fibers, with or without Damage in MDX and Wild Type Mice

    NASA Astrophysics Data System (ADS)

    Terada, Masahiro; Kawano, Fuminori; Ohira, Takashi; Oke, Yoshihiko; Nakai, Naoya; Ohira, Yoshinobu

    2008-06-01

    Effects of mechanical overloading on the characteristics of regenerating or not-regenerating soleus muscle fibers were studied. The muscle fibers of mdx mice were characterized by the localization of myonuclei. Muscle damage was also induced in wild type (WT) mice by injection of cardiotoxin (CTX) into soleus muscle. Overloading was applied for 14 days to the left soleus muscle in mdx and intact and CTX-injected WT mice by removing the distal tendons of plantaris and gastrocnemius muscles. The contralateral muscle served as the normal control. These animals were then allowed ambulation recovery in the cage. Central myonuclei were noted in many fibers of mdx and CTX-injected mice with or without overloading. In general, the fibers with central nuclei were considered as regenerating fibers. The fibers with more central nuclei were increased in mdx mice, but the fibers with more peripheral nuclei were increased in CTX-injected WT mice by overloading. The muscle satellite cells, neuromuscular junctions (NMJ), and myonuclei were stained. Most of the properties, such as number of myonuclei and satellite cells, size of NMJ, and fiber length, were not influenced by mechanical overloading in all mice. Approximately 0.6% branched fibers were seen in the intact soleus of mdx mice, although these fibers were not detected in WT mice. However, the percentage of these fibers was increased by overloading especially in mdx mice (~50% vs. ~2.5% in WT). In CTX-injected WT mice, these fibers were ~15% with or without overloading. The fiber cross sectional area in normal WT, but not in mdx and CTX-injected WT mice, was increased by overloading (p<0.05). These results suggested that the functional overload induced muscle damage in mdx mice, but promoted the regeneration in CTX-injected WT mice.

  18. Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H.

    PubMed

    Vasylyev, Dmytro V; Han, Chongyang; Zhao, Peng; Dib-Hajj, Sulayman; Waxman, Stephen G

    2014-04-01

    The link between sodium channel Nav1.7 and pain has been strengthened by identification of gain-of-function mutations in patients with inherited erythromelalgia (IEM), a genetic model of neuropathic pain in humans. A firm mechanistic link to nociceptor dysfunction has been precluded because assessments of the effect of the mutations on nociceptor function have thus far depended on electrophysiological recordings from dorsal root ganglia (DRG) neurons transfected with wild-type (WT) or mutant Nav1.7 channels, which do not permit accurate calibration of the level of Nav1.7 channel expression. Here, we report an analysis of the function of WT Nav1.7 and IEM L858H mutation within small DRG neurons using dynamic-clamp. We describe the functional relationship between current threshold for action potential generation and the level of WT Nav1.7 conductance in primary nociceptive neurons and demonstrate the basis for hyperexcitability at physiologically relevant levels of L858H channel conductance. We demonstrate that the L858H mutation, when modeled using dynamic-clamp at physiological levels within DRG neurons, produces a dramatically enhanced persistent current, resulting in 27-fold amplification of net sodium influx during subthreshold depolarizations and even greater amplification during interspike intervals, which provide a mechanistic basis for reduced current threshold and enhanced action potential firing probability. These results show, for the first time, a linear correlation between the level of Nav1.7 conductance and current threshold in DRG neurons. Our observations demonstrate changes in sodium influx that provide a mechanistic link between the altered biophysical properties of a mutant Nav1.7 channel and nociceptor hyperexcitability underlying the pain phenotype in IEM.

  19. Osteopontin is an oncogenic Vav1- but not wild-type Vav1-responsive gene: implications for fibroblast transformation.

    PubMed

    Schapira, Vered; Lazer, Galit; Katzav, Shulamit

    2006-06-15

    Mammalian wild-type Vav1 (wtVav1) encodes a specific GDP/GTP nucleotide exchange factor that is exclusively expressed in the hematopoietic system. Despite numerous studies, the mechanism underlying transformation of fibroblasts by oncogenic Vav1 (oncVav1) is not well defined. We identified osteopontin, a marker for tumor aggressiveness, as an oncVav1-inducible gene. Osteopontin is highly expressed in oncVav1-transformed NIH3T3 cells (NIH/oncVav1) but is barely detected in NIH3T3 expressing wtVav1 (NIH/wtVav1) even following epidermal growth factor stimulation, which normally induces osteopontin. Depleting oncVav1 in NIH/oncVav1 using small interfering RNA led to a considerable decrease in osteopontin, whereas reducing osteopontin expression did not affect oncVav1 expression, suggesting that oncVav1 operates upstream of osteopontin. Vav1-depleted NIH/oncVav1 cells, but not osteopontin-depleted NIH/oncVav1 cells, exhibited impaired extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase phosphorylation. Inhibition of ERK phosphorylation in NIH/oncVav1 cells led to a decrease in osteopontin expression, implying that the elevated osteopontin expression in these cells is dependent on ERK phosphorylation. Vav1-depleted or osteopontin-depleted NIH/oncVav1 cells lost their tumorigenic properties as judged by the soft agar and invasion assays, although loss of osteopontin expression had a less dramatic effect. Suppression of Vav1 expression in NIH/oncVav1 cells led to reversion to "normal" morphology, whereas when only osteopontin expression was diminished cells retained their transformed morphology. This work strongly supports a role for oncVav1 as a master oncogene and provides clues to the molecular mechanism underlying oncVav1 transformation.

  20. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice

    PubMed Central

    Kennard, John A.; Harrison, Fiona E.

    2014-01-01

    The present study investigated the effects of a single intravenous (i.v.) dose of Vitamin C (ascorbate, ASC) on spatial memory in APP/PSEN1 mice, an Alzheimer's disease model. First, we confirmed the uptake time course in ASC-depleted gulo (−/−) mice, which cannot synthesize ASC. Differential tissue uptake was seen based on ASC transporter distribution. Liver (SVCT1 & SVCT2) ASC was elevated at 30, 60 and 120 min post-treatment (125 mg/kg, i.v.), whereas spleen (SVCT2) ASC increased at 60 and 120 min. There was no detectable change in cortical (SVCT2 at choroid plexus, and neurons) ASC within the 2-hour interval, although the cortex preferentially retained ASC. APP/PSEN1 and wild type (WT) mice at three ages (3, 9, or 20 months) were treated with ASC (125 mg/kg, i.v.) or saline 45 min before testing on the Modified Y-maze, a two-trial task of spatial memory. Memory declined with age and ASC treatment improved performance in 9 month-old APP/PSEN1 and WT mice. APP/PSEN1 mice displayed no behavioral impairment relative to WT controls. Although dopamine and metabolite DOPAC decreased in the nucleus accumbens with age, and improved spatial memory was correlated with increased dopamine in saline treated mice, acute ASC treatment did not alter monoamine levels in the nucleus accumbens. These data show that the Modified Y-maze is sensitive to age-related deficits, but not additional memory deficits due to amyloid pathology in APP/PSEN1 mice. They also suggest improvements in short-term spatial memory were not due to changes in the neuropathological features of AD or monoamine signaling. PMID:24508240

  1. Placental glucose and amino acid transport in calorie-restricted wild-type and Glut3 null heterozygous mice.

    PubMed

    Ganguly, Amit; Collis, Laura; Devaskar, Sherin U

    2012-08-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3(+/-)) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3(+/-) mice. In glut3(+/-) mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3(+/-) mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3(+/-) fetuses against maternal CR-imposed reduction of macromolecular nutrients.

  2. Placental Glucose and Amino Acid Transport in Calorie-Restricted Wild-Type and Glut3 Null Heterozygous Mice

    PubMed Central

    Ganguly, Amit; Collis, Laura

    2012-01-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3+/−) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3+/− mice. In glut3+/− mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3+/− mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3+/− fetuses against maternal CR-imposed reduction of macromolecular nutrients. PMID:22700768

  3. SDHA loss-of-function mutations in KIT-PDGFRA wild-type gastrointestinal stromal tumors identified by massively parallel sequencing.

    PubMed

    Pantaleo, Maria A; Astolfi, Annalisa; Indio, Valentina; Moore, Richard; Thiessen, Nina; Heinrich, Michael C; Gnocchi, Chiara; Santini, Donatella; Catena, Fausto; Formica, Serena; Martelli, Pier Luigi; Casadio, Rita; Pession, Andrea; Biasco, Guido

    2011-06-22

    Approximately 10%-15% of gastrointestinal stromal tumors (GISTs) in adults do not harbor any mutation in the KIT or PDGFRA genes (ie, KIT/PDGFRA wild-type GISTs). Recently, mutations in SDHB and SDHC (which encode succinate dehydrogenase subunits B and C, respectively) but not in SDHA and SDHD (which encode subunits A and D, respectively) were identified in KIT/PDGFRA wild-type GISTs. To search for novel pathogenic mutations, we sequenced the tumor transcriptome of two young adult patients who developed sporadic KIT/PDGFRA wild-type GISTs by using a massively parallel sequencing approach. The only variants identified as disease related by computational analysis were in SDHA. One patient carried the homozygous nonsense mutation p.Ser384X, the other patient was a compound heterozygote harboring a p.Arg31X nonsense mutation and a p.Arg589Trp missense mutation. The heterozygous nonsense mutations in both patients were present in germline DNA isolated from peripheral blood. Protein structure analysis indicates that all three mutations lead to functional inactivation of the protein. This is the first report, to our knowle dge, that identifies SDHA inactivation as a common oncogenic event in GISTs that lack a mutation in KIT and PDGFRA.

  4. Neuromuscular control of a single twitch muscle in wild type and mutant Drosophila, measured with an ergometer.

    PubMed

    Harvey, Jennifer; Brunger, Holly; Middleton, C Adam; Hill, Julia A; Sevdali, Maria; Sweeney, Sean T; Sparrow, John C; Elliott, Christopher J H

    2008-06-01

    How do deficits in neuronal growth, aging or synaptic function affect the final, mechanical output of a single muscle twitch? We address this in vivo (indeed in situ) with a novel ergometer that records the output of a large specialised muscle, the Drosophila jump muscle. Here, we describe in detail the ergometer, its construction and use. We evaluated the ergometer by showing that adult fly jump muscle output varies little between 3 h and 7 days; but newly eclosed flies produce only 65%. In a mutant with little octopamine (Tbetah), jump muscle performance is reduced by 28%. The initial responses of synaptic growth mutants (highwire and spinster) do not differ from wild type, as expected on the homeostatic hypothesis. However, responses in highwire mutations gradually decline following repeated stimuli, suggesting physiological as well as anatomical abnormalities. We conclude that the assay is robust, sensitive and reliable with a good throughput.

  5. The ΔF508-CFTR mutation inhibits wild-type CFTR processing and function when co-expressed in human airway epithelia and in mouse nasal mucosa

    PubMed Central

    2012-01-01

    Background Rescue or correction of CFTR function in native epithelia is the ultimate goal of CF therapeutics development. Wild-type (WT) CFTR introduction and replacement is also of particular interest. Such therapies may be complicated by possible CFTR self-assembly into an oligomer or multimer. Results Surprisingly, functional CFTR assays in native airway epithelia showed that the most common CFTR mutant, ΔF508-CFTR (ΔF-CFTR), inhibits WT-CFTR when both forms are co-expressed. To examine more mechanistically, both forms of CFTR were transfected transiently in varying amounts into IB3-1 CF human airway epithelial cells and HEK-293 human embryonic kidney cells null for endogenous CFTR protein expression. Increasing amounts of ΔF-CFTR inhibited WT-CFTR protein processing and function in CF human airway epithelial cells but not in heterologous HEK-293 cells. Stably expressed ΔF-CFTR in clones of the non-CF human airway epithelial cell line, CALU-3, also showed reduction in cAMP-stimulated anion secretion and in WT-CFTR processing. An ultimate test of this dominant negative-like effect of ΔF-CFTR on WT-CFTR was the parallel study of two different CF mouse models: the ΔF-CFTR mouse and the bitransgenic CFTR mouse corrected in the gut but null in the lung and airways. WT/ΔF heterozygotes had an intermediate phenotype with regard to CFTR agonist responses in in vivo nasal potential difference (NPD) recordings and in Ussing chamber recordings of short-circuit current (ISC) in vitro on primary tracheal epithelial cells isolated from the same mice. In contrast, CFTR bitransgenic +/− heterozygotes had no difference in their responses versus +/+ wild-type mice. Conclusions Taken altogether, these data suggest that ΔF-CFTR and WT-CFTR co-assemble into an oligomeric macromolecular complex in native epithelia and share protein processing machinery and regulation at the level of the endoplasmic reticulum (ER). As a consequence, ΔF-CFTR slows WT-CFTR protein processing

  6. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis.

    PubMed

    Moriwaki, Hiroshi; Koide, Remi; Yoshikawa, Ritsuko; Warabino, Yuya; Yamamoto, Hiroki

    2013-04-01

    The aim of this study is to investigate the potential of cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis 168 to adsorb rare earth ions. Freeze-dried cell powders prepared from both strains were used for the evaluation of adsorption ability for the rare earth ions, namely, La(III), Eu(III), and Tm(III). The rare earth ions were efficiently adsorbed onto powders of both wild-type strain (WT powder) and lipoteichoic acid-defective strain (∆LTA powder) at pH 3. The maximum adsorption capacities for Tm(III) by WT and ∆LTA powders were 43 and 37 mg g(-1), respectively. Removal (in percent) of Tm(III), La(III), and Eu(III) from aqueous solution by WT powder was greater than by ∆LTA powder. These results indicate that rare earth ions are adsorbed to functional groups, such as phosphate and carboxyl groups, of lipoteichoic acid. We observed coagulated ∆LTA powder in the removal of rare earth ions (1-20 mg L(-1)) from aqueous solution. In contrast, sedimentation of WT powder did not occur under the same conditions. This unique feature of ∆LTA powder may be caused by the difference of the distribution between lipoteichoic acid and wall teichoic acid. It appears that ∆LTA powder is useful for removal of rare earth ions by adsorption, because aggregation allows for rapid separation of the adsorbent by filtration.

  7. Assessment of bevacizumab resistance increased by expression of BCAT1 in IDH1 wild-type glioblastoma: application of DSC perfusion MR imaging.

    PubMed

    Cho, Hye Rim; Hong, Bora; Kim, Hyeonjin; Park, Chul-Kee; Park, Sung-Hye; Park, Sunghyouk; Choi, Seung Hong

    2016-10-25

    BCAT1 (branched-chain amino acid trasaminase1) expression is necessary for the progression of IDH1 wild-type (WT) glioblastoma multiforme (GBM), which is known to be associated with aggressive tumors. The purpose of our study is to investigate the bevacizumab resistance increased by the expression of BCAT1 in IDH1 WT GBM in a rat model, which was evaluated using DSC perfusion MRI. BCAT1 sh#1 inhibits cell proliferation and limits cell migration potential in vitro. In vivo MRI showed that the increase in both tumor volume and nCBV after bevacizumab treatment in IDH1 WT tumors was significantly higher compared with BCAT1 sh#1tumors. In a histological analysis, more micro-vessel reformation by bevacizumab resistance was observed in IDH1 WT tumors than BCAT1 sh#1 tumors. These findings indicate that BCAT1 expression in IDH1 WT GBM increases resistance to bevacizumab treatment, which could be assessed by DSC perfusion MRI, and that nCBV can be a surrogate imaging biomarker for the prediction of antiangiogenic treatment in GBM.

  8. Assessment of bevacizumab resistance increased by expression of BCAT1 in IDH1 wild-type glioblastoma: application of DSC perfusion MR imaging

    PubMed Central

    Cho, Hye Rim; Hong, Bora; Kim, Hyeonjin; Park, Chul-Kee; Park, Sung-Hye; Park, Sunghyouk; Choi, Seung Hong

    2016-01-01

    BCAT1 (branched-chain amino acid trasaminase1) expression is necessary for the progression of IDH1 wild-type (WT) glioblastoma multiforme (GBM), which is known to be associated with aggressive tumors. The purpose of our study is to investigate the bevacizumab resistance increased by the expression of BCAT1 in IDH1 WT GBM in a rat model, which was evaluated using DSC perfusion MRI. BCAT1 sh#1 inhibits cell proliferation and limits cell migration potential in vitro. In vivo MRI showed that the increase in both tumor volume and nCBV after bevacizumab treatment in IDH1 WT tumors was significantly higher compared with BCAT1 sh#1tumors. In a histological analysis, more micro-vessel reformation by bevacizumab resistance was observed in IDH1 WT tumors than BCAT1 sh#1 tumors. These findings indicate that BCAT1 expression in IDH1 WT GBM increases resistance to bevacizumab treatment, which could be assessed by DSC perfusion MRI, and that nCBV can be a surrogate imaging biomarker for the prediction of antiangiogenic treatment in GBM. PMID:27626306

  9. Rosuvastatin reduces microglia in the brain of wild type and ApoE knockout mice on a high cholesterol diet; implications for prevention of stroke and AD.

    PubMed

    Famer, D; Wahlund, L-O; Crisby, M

    2010-11-12

    We have previously shown that a high cholesterol (HC) diet results in increases in microglia load and levels of the pro-inflammatory cytokine interleukin-6 (IL-6) in the brains of wild type (WT) and apolipoprotein E knockout (ApoE-/-) mice. In the present investigation, we analyzed whether treatment with rosuvastatin, an inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, would prevent the increases in inflammatory microglia and IL-6 levels in the brain and plasma of WT and ApoE-/- mice. We report that a HC diet resulted in an increased microglia load in the brains of WT and ApoE-/- mice, in support of our previous study. Treatment with rosuvastatin significantly decreased the microglia load in the brains of WT and ApoE-/- mice on a HC diet. Rosuvastatin treatment resulted in lowered plasma IL-6 levels in WT mice on a HC diet. However, in the present study the number of IL-6 positive cells in the brain was not significantly affected by a HC diet. A recent clinical study has shown that rosuvastatin reduces risk of ischemic stroke in patients with high plasma levels of the inflammatory marker C-reactive protein by 50%. The results from our study show that rosuvastatin reduces inflammatory cells in the brain. This finding is essential for furthering the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and stroke.

  10. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion.

    PubMed

    Pokrishevsky, Edward; Grad, Leslie I; Cashman, Neil R

    2016-03-01

    Amyotrophic lateral sclerosis (ALS), which appears to spread through the neuroaxis in a spatiotemporally restricted manner, is linked to heritable mutations in genes encoding SOD1, TDP-43, FUS, C9ORF72, or can occur sporadically without recognized genetic mutations. Misfolded human wild-type (HuWt) SOD1 has been detected in both familial and sporadic ALS patients, despite mutations in SOD1 accounting for only 2% of total cases. We previously showed that accumulation of pathological TDP-43 or FUS coexist with misfolded HuWtSOD1 in patient motor neurons, and can trigger its misfolding in cultured cells. Here, we used immunocytochemistry and immunoprecipitation to demonstrate that TDP-43 or FUS-induced misfolded HuWtSOD1 can propagate from cell-to-cell via conditioned media, and seed cytotoxic misfolding of endogenous HuWtSOD1 in the recipient cells in a prion-like fashion. Knockdown of SOD1 using siRNA in recipient cells, or incubation of conditioned media with misfolded SOD1-specific antibodies, inhibits intercellular transmission, indicating that HuWtSOD1 is an obligate seed and substrate of propagated misfolding. In this system, intercellular spread of SOD1 misfolding is not accompanied by transmission of TDP-43 or FUS pathology. Our findings argue that pathological TDP-43 and FUS may exert motor neuron pathology in ALS through the initiation of propagated misfolding of SOD1.

  11. Opposite effects of the A2A receptor agonist CGS21680 in the striatum of Huntington's disease versus wild-type mice.

    PubMed

    Martire, Alberto; Calamandrei, Gemma; Felici, Fabio; Scattoni, Maria Luisa; Lastoria, Giusi; Domenici, Maria Rosaria; Tebano, Maria Teresa; Popoli, Patrizia

    2007-04-24

    Huntington's disease (HD) is an inherited neurodegenerative disorder. Adenosine A(2A) receptors (A(2A)Rs) are involved in excitotoxic/neurodegenerative processes, and A(2A)R ligands may be neuroprotective in models of HD. However, changes in the transcription, expression and function of A(2A)Rs have been reported to occur in HD models. The aim of the present work was to verify whether A(2A)R-mediated effects are altered in the striatum of transgenic HD (R6/2) versus wild-type (WT) mice. Extracellular field potentials (FPs) were recorded in corticostriatal slices from R6/2 mice in early (7-8 weeks) or frankly (12-13 weeks) symptomatic phases, and age-matched WT. In 12-13 weeks aged WT animals, the application of 75 microM NMDA induced a transient disappearance of the FP followed by an almost complete recovery at washout. In slices from HD mice, the mean FP recovery was significantly reduced (P<0.01 versus WT). A(2A)R activation oppositely modulated NMDA-induced toxicity in the striatum of HD versus WT mice. Indeed, the A(2A)R agonist CGS21680 reduced the FP recovery in slices from WT mice, while it significantly increased it in slices from R6/2 mice. In early symptomatic (7-8 weeks) mice, no differences were observed between WT and HD animals in terms of basal synaptic transmission and response to NMDA. At the same age, the behavioural effects elicited by CGS21680 were qualitatively identical in WT and HD mice. These findings may have very important implications for the neuroprotective potential of A(2A)R ligands in HD.

  12. Regulatory T cells in B-cell-deficient and wild-type mice differ functionally and in expression of cell surface markers

    PubMed Central

    Ellis, Jason S; Braley-Mullen, Helen

    2015-01-01

    NOD.H-2h4 mice develop spontaneous autoimmune thyroiditis (SAT) with chronic inflammation of thyroids by T and B cells. B-cell deficient (B–/–) mice are resistant to SAT but develop SAT if regulatory T (Treg) cells are transiently depleted. We established a transfer model using splenocytes from CD28–/– B–/– mice (effector cells and antigen-presenting cells) cultured with or without sorted Treg cells from Foxp3-GFP wild-type (WT) or B–/– mice. After transfer to mice lacking T cells, mice given Treg cells from B–/– mice had significantly lower SAT severity scores than mice given Treg cells from WT mice, indicating that Treg cells in B–/– mice are more effective suppressors of SAT than Treg cells in WT mice. Treg cells from B–/– mice differ from WT Treg cells in expression of CD27, tumour necrosis factor receptor (TNFR) II p75, and glucocorticoid-induced TNFR-related protein (GITR). After transient depletion using anti-CD25 or diphtheria toxin, the repopulating Treg cells in B–/– mice lack suppressor function, and expression of CD27, GITR and p75 is like that of WT Treg cells. If B–/– Treg cells develop with B cells in bone marrow chimeras, their phenotype is like that of WT Treg cells. Addition of B cells to cultures of B–/– Treg and T effector cells abrogates their suppressive function and their phenotype is like that of WT Treg cells. These results establish for the first time that Treg cells in WT and B–/– mice differ both functionally and in expression of particular cell surface markers. Both properties are altered after transient depletion and repopulation of B–/– Treg cells, and by the presence of B cells during Treg cell development or during interaction with effector T cells. PMID:25318356

  13. Competitive growth experiments with a high-lipid Chlamydomonas reinhardtii mutant strain and its wild-type to predict industrial and ecological risks.

    PubMed

    Russo, David A; Beckerman, Andrew P; Pandhal, Jagroop

    2017-12-01

    Key microalgal species are currently being exploited as biomanufacturing platforms using mass cultivation systems. The opportunities to enhance productivity levels or produce non-native compounds are increasing as genetic manipulation and metabolic engineering tools are rapidly advancing. Regardless of the end product, there are both environmental and industrial risks associated to open pond cultivation of mutant microalgal strains. A mutant escape could be detrimental to local biodiversity and increase the risk of algal blooms. Similarly, if the cultivation pond is invaded by a wild-type (WT) microalgae or the mutant reverts to WT phenotypes, productivity could be impacted. To investigate these potential risks, a response surface methodology was applied to determine the competitive outcome of two Chlamydomonas reinhardtii strains, a WT (CC-124) and a high-lipid accumulating mutant (CC-4333), grown in mixotrophic conditions, with differing levels of nitrogen and initial WT to mutant ratios. Results of the growth experiments show that mutant cells have double the exponential growth rate of the WT in monoculture. However, due to a slower transition from lag phase to exponential phase, mutant cells are outcompeted by the WT in every co-culture treatment. This suggests that, under the conditions tested, outdoor cultivation of the C. reinhardtii cell wall-deficient mutant strains does not carry a significant environmental risk to its WT in an escape scenario. Furthermore, lipid results show the mutant strain accumulates over 200% more TAGs per cell, at 50 mg L(-1) NH4Cl, compared to the WT, therefore, the fragility of the mutant strain could impact on overall industrial productivity.

  14. Genetic characterization of wild-type measles viruses isolated in China, 2006-2007

    PubMed Central

    2010-01-01

    Molecular characterization of wild-type measles viruses in China during 1995-2004 demonstrated that genotype H1 was endemic and widely distributed throughout the country. H1-associated cases and outbreaks caused a resurgence of measles beginning in 2005. A total of 210,094 measles cases and 101 deaths were reported by National Notifiable Diseases Reporting System (NNDRS) and Chinese Measles Laboratory Network (LabNet) from 2006 to 2007, and the incidences of measles were 6.8/100,000 population and 7.2/100,000 population in 2006 and 2007, respectively. Five hundred and sixty-five wild-type measles viruses were isolated from 24 of 31 provinces in mainland China during 2006 and 2007, and all of the wild type virus isolates belonged to cluster 1 of genotype H1. These results indicated that H1-cluster 1 viruses were the predominant viruses circulating in China from 2006 to 2007. This study contributes to previous efforts to generate critical baseline data about circulating wild-type measles viruses in China that will allow molecular epidemiologic studies to help measure the progress made toward China's goal of measles elimination by 2012. PMID:20500809

  15. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  16. Measuring cell wall elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    SciTech Connect

    Beckmann, Melissa; Venkataraman, Sankar; Doktycz, Mitchel John; Nataro, James P; Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P

    2006-07-01

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  17. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  18. Wild-type microglia arrest pathology in a mouse model of Rett syndrome.

    PubMed

    Derecki, Noël C; Cronk, James C; Lu, Zhenjie; Xu, Eric; Abbott, Stephen B G; Guyenet, Patrice G; Kipnis, Jonathan

    2012-03-18

    Rett syndrome is an X-linked autism spectrum disorder. The disease is characterized in most cases by mutation of the MECP2 gene, which encodes a methyl-CpG-binding protein. Although MECP2 is expressed in many tissues, the disease is generally attributed to a primary neuronal dysfunction. However, as shown recently, glia, specifically astrocytes, also contribute to Rett pathophysiology. Here we examine the role of another form of glia, microglia, in a murine model of Rett syndrome. Transplantation of wild-type bone marrow into irradiation-conditioned Mecp2-null hosts resulted in engraftment of brain parenchyma by bone-marrow-derived myeloid cells of microglial phenotype, and arrest of disease development. However, when cranial irradiation was blocked by lead shield, and microglial engraftment was prevented, disease was not arrested. Similarly, targeted expression of MECP2 in myeloid cells, driven by Lysm(cre) on an Mecp2-null background, markedly attenuated disease symptoms. Thus, through multiple approaches, wild-type Mecp2-expressing microglia within the context of an Mecp2-null male mouse arrested numerous facets of disease pathology: lifespan was increased, breathing patterns were normalized, apnoeas were reduced, body weight was increased to near that of wild type, and locomotor activity was improved. Mecp2(+/-) females also showed significant improvements as a result of wild-type microglial engraftment. These benefits mediated by wild-type microglia, however, were diminished when phagocytic activity was inhibited pharmacologically by using annexin V to block phosphatydilserine residues on apoptotic targets, thus preventing recognition and engulfment by tissue-resident phagocytes. These results suggest the importance of microglial phagocytic activity in Rett syndrome. Our data implicate microglia as major players in the pathophysiology of this devastating disorder, and suggest that bone marrow transplantation might offer a feasible therapeutic approach for it.

  19. The effect of 3-acetylpyridine on inferior olivary neuron degeneration in Lurcher mutant and wild-type mice.

    PubMed

    Caddy, K W; Vozeh, F

    1997-07-09

    Lurcher mutant and wild-type mice were given intraperitoneal injections of 3-acetylpyridine to look at the toxic effects of this drug on the inferior olivary neurons. Intraperitoneal administration of 3-acetylpyridine is characterized by the different sensitivity of inferior olivary neurons in Lurcher mutant and wild-type mice. Lurcher mutants suffered a destruction of these neurons while wild-type mice were unaffected. The results show that there is a different effect of 3-acetylpyridine between genetic mutations and wild-type mice on the same inbred strain of mice. The different affinity of 3-acetylpyridine for the inferior olivary neurons of this mutant is briefly discussed.

  20. Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study.

    PubMed

    Willasch, A M; Gruhn, B; Coliva, T; Kalinova, M; Schneider, G; Kreyenberg, H; Steinbach, D; Weber, G; Hollink, I H I M; Zwaan, C M; Biondi, A; van der Velden, V H J; Reinhardt, D; Cazzaniga, G; Bader, P; Trka, J

    2009-08-01

    A standardized, sensitive and universal method for minimal residual disease (MRD) detection in acute myeloid leukemia (AML) is still pending. Although hyperexpression of Wilms' tumor (WT1) gene transcript has been frequently proposed as an MRD marker in AML, wide comparability of the various methods used for evaluating WT1 expression has not been given. We established and standardized a multicenter approach for quantifying WT1 expression by quantitative reverse transcriptase PCR (qRT-PCR), on the basis of a primer/probe set combination at exons 6 and 7. In a series of quality-control rounds, we analyzed 69 childhood AML samples and 47 normal bone marrow (BM) samples from 4 participating centers. Differences in the individual WT1 expressions levels ranged within <0.5 log of the mean in 82% of the cases. In AML samples, the median WT1/1E+04 Abelson (ABL) expression was 3.5E+03 compared with that of 2.3E+01 in healthy BM samples. As 11.5% of childhood AML samples in this cohort harbored WT1 mutations in exon 7, the effect of mutations on WT1 expression has been investigated, showing that mutated cases expressed significantly higher WT1 levels than wild-type cases. Hence, our approach showed high reproducibility and applicability, even in patients with WT1 mutations; therefore, it can be widely used for the quantitation of WT1 expression in future clinical trials.

  1. DNA-binding dependent and independent functions of WT1 protein during human hematopoiesis

    SciTech Connect

    Svensson, Emelie; Eriksson, Helena; Gekas, Christos; Olofsson, Tor; Richter, Johan; Gullberg, Urban . E-mail: urban.gullberg@hematologi.lu.se

    2005-08-01

    The Wilms tumor gene 1 (WT1) encodes a zinc-finger-containing transcription factor highly expressed in immature hematopoietic progenitor cells. Overexpression and presence of somatic mutations in acute leukemia indicate a role for WT1 in the pathogenesis of leukemia. CD34{sup +} progenitor cells were transduced with one splice variant of human WT1 without the KTS insert in the zinc-finger domain, WT1(+/-), and with a deleted mutant of WT1 lacking the entire zinc-finger region, WT1(delZ), thus incapable of binding DNA. We show that inhibition of erythroid colony formation and differentiation is absolutely dependent on the DNA-binding zinc-finger domain of WT1. Unexpectedly, however, WT1(delZ) was equally effective as wild type protein in the reduction of myeloid clonogenic growth as well as in stimulation of myeloid differentiation, as judged by the expression of cell surface CD11b. Expression of neither WT1(+/-) nor WT1(delZ) upregulated mRNA for the cdk inhibitor p21{sup Waf1/Cip1} or p27{sup Kip1}. Our results demonstrate that WT1 affects proliferation and differentiation in erythroid and myeloid cells by different molecular mechanisms, and suggest that mutations affecting the zinc-finger domain of WT1 could interfere with normal differentiation in the pathogenesis of leukemia.

  2. Action Potentials and Ion Conductances in Wild-type and CALHM1-knockout Type II Taste Cells.

    PubMed

    Ma, Zhongming; Saung, Wint Thu; Foskett, J Kevin

    2017-02-15

    Taste bud type II cells fire action potentials in response to tastants, triggering non-vesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. Here, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1-knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1-KO mice, and their associated non-selective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1-KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na(+) currents either estimated from action potentials or recorded from steady-state voltage-pulses, or action potential threshold, overshoot peak, after-hyperpolarization and firing frequency. However, Calhm1-deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials.

  3. Overexpression of wild-type PKD2 leads to increased proliferation and invasion of BON endocrine cells

    SciTech Connect

    Jackson, Lindsey N.; Li Jing; Chen, L. Andy; Townsend, Courtney M.; Evers, B. Mark . E-mail: mevers@utmb.edu

    2006-09-29

    Carcinoid tumors are rare neuroendocrine tumors with a predilection for the gastrointestinal tract. Protein kinase D (PKD), a novel serine/threonine protein kinase, has been implicated in the regulation of transport processes in certain cell types. We have reported an important role for PKD in stimulated peptide secretion from a human (BON) carcinoid cell line; however, the role of PKD isoforms, including PKD2, in the proliferation and invasion of carcinoid tumors remains unclear. In the present study, we found that overexpression of PKD2 by stable transfection of BON cells with PKD2-wild type (PKD2{sub WT}) significantly increased proliferation and invasion compared to cells transfected with PKD2-kinase dead (PKD2{sub KD}) or pcDNA3 (control). Similarly, inhibition of PKD2 activity with small interfering RNA (siRNA) significantly decreased proliferation and invasion compared to cells transfected with non-targeting control (NTC) siRNA. These data support an important role for PKD2 in carcinoid tumor progression. Targeted inhibition of the PKD family may prove to be a novel treatment option for patients with carcinoid tumors.

  4. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function

    PubMed Central

    Aprile-Garcia, Fernando; Metzger, Michael W.; Paez-Pereda, Marcelo; Stadler, Herbert; Acuña, Matías; Liberman, Ana C.; Senin, Sergio A.; Gerez, Juan; Hoijman, Esteban; Refojo, Damian; Mitkovski, Mišo; Panhuysen, Markus; Stühmer, Walter; Holsboer, Florian; Deussing, Jan M.; Arzt, Eduardo

    2016-01-01

    The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations. PMID:26986975

  5. Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene.

    PubMed Central

    Werner, H; Karnieli, E; Rauscher, F J; LeRoith, D

    1996-01-01

    The insulin-like growth factor I receptor (IGF-I-R) plays a critical role in transformation events. It is highly overexpressed in most malignant tissues where it functions as an anti-apoptotic agent by enhancing cell survival. Tumor suppressor p53 is a nuclear transcription factor that blocks cell cycle progression and induces apoptosis. p53 is the most frequently mutated gene in human cancer. Cotransfection of Saos-2 (os-teosarcoma-derived cells) and RD (rhabdomyosarcoma-derived cells) cells with IGF-I-R promoter constructs driving luciferase reporter genes and with wild-type p53 expression vectors suppressed promoter activity in a dose-dependent manner. This effect of p53 is mediated at the level of transcription and it involves interaction with TBP, the TATA box-binding component of TFIID. On the other hand, three tumor-derived mutant forms of p53 (mut 143, mut 248, and mut 273) stimulated the activity of the IGF-I-R promoter and increased the levels of IGF-I-R/luciferase fusion mRNA. These results suggest that wild-type p53 has the potential to suppress the IGF-I-R promoter in the postmitotic, fully differentiated cell, thus resulting in low levels of receptor gene expression in adult tissues. Mutant versions of p53 protein, usually associated with malignant states, can derepress the IGF-I-R promoter, with ensuing mitogenic activation by locally produced or circulating IGFs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8710868

  6. Experimental Support for the Ecoimmunity Theory: Distinct Phenotypes of Nonlymphocytic Cells in SCID and Wild-Type Mice.

    PubMed

    Ochayon, David E; Baranovski, Boris M; Malkin, Peter; Schuster, Ronen; Kalay, Noa; Ben-Hamo, Rotem; Sloma, Ido; Levinson, Justin; Brazg, Jared; Efroni, Sol; Lewis, Eli C; Nevo, Uri

    2016-01-01

    Immune tolerance toward "self" is critical in multiple immune disorders. While there are several mechanisms to describe the involvement of immune cells in the process, the role of peripheral tissue cells in that context is not yet clear. The theory of ecoimmunity postulates that interactions between immune and tissue cells represent a predator-prey relationship. A lifelong interaction, shaped mainly during early ontogeny, leads to selection of nonimmune cell phenotypes. Normally, therefore, nonimmune cells that evolve alongside an intact immune system would be phenotypically capable of evading immune responses, and cells whose phenotype falls short of satisfying this steady state would expire under hostile immune responses. This view was supported until recently by experimental evidence showing an inferior endurance of severe combined immunodeficiency (SCID)-derived pancreatic islets when engrafted into syngeneic immune-intact wild-type (WT) mice, relative to islets from WT. Here we extend the experimental exploration of ecoimmunity by searching for the presence of the phenotypic changes suggested by the theory. Immune-related phenotypes of islets, spleen, and bone marrow immune cells were determined, as well as SCID and WT nonlymphocytic cells. Islet submass grafting was performed to depict syngeneic graft functionality. Islet cultures were examined under both resting and inflamed conditions for expression of CD40 and major histocompatibility complex (MHC) class I/II and release of interleukin-1α (IL-1α), IL-1β, IL-6, tumor necrosis factor-α (TNF-α), IL-10, and insulin. Results depict multiple pathways that appear to be related to the sculpting of nonimmune cells by immune cells; 59 SCID islet genes displayed relative expression changes compared with WT islets. SCID cells expressed lower tolerability to inflammation and higher levels of immune-related molecules, including MHC class I. Accordingly, islets exhibited a marked increase in insulin release upon

  7. Optimal voltage stimulation parameters for network-mediated responses in wild type and rd10 mouse retinal ganglion cells.

    PubMed

    Jalligampala, Archana; Sekhar, Sudarshan; Zrenner, Eberhart; Rathbun, Daniel L

    2017-04-01

    To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa-using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4-5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (-2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations of

  8. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d.

    PubMed

    Wan, Hua; Hu, Jian-ping; Tian, Xu-hong; Chang, Shan

    2013-01-28

    The interaction between human complement receptor type 2 (CR2) and antigen-bound C3d can bridge the innate and adaptive immune systems. The recently determined structure of the CR2(SCR1-2):C3d complex has revealed the expected binding interface of CR2-C3d. In this article, wild type (WT) and three mutants of the new structure are studied by molecular dynamics (MD) simulations. The differently decreased structural stabilities of the mutants relative to WT are shown to be consistent with the experimental data, which can be explained by the different hydrogen bond patterns at the interfaces. It is also found that two clusters of residues (D36/E37/E39 and E160/D163/E166) in the acidic pocket of C3d are important for CR2-C3d interactions, which is in good agreement with previous mutagenesis study. In addition, functional dynamics and the conformational change of CR2 are explored by using domain cross-correlation map (DCCM), principal component analysis (PCA), and free energy landscape (FEL) methods. The conformational change mainly corresponds to the opening of a V-shaped structure of CR2, which is consistent with the previously reported high interdomain flexibility of CR2. We further suppose that the opening of a V-shaped structure of CR2 may favor the binding stability of CR2(SCR1-2):C3d. This study would provide some new insights into the understanding of the CR2-C3d interaction mechanism.

  9. Glio-vascular changes during ageing in wild-type and Alzheimer's disease-like APP/PS1 mice.

    PubMed

    Janota, C S; Brites, D; Lemere, C A; Brito, M A

    2015-09-16

    Vascular and glial involvement in the development of neurodegenerative disorders, such as Alzheimer's disease (AD), and age-related brain vulnerabilities have been suggested. Therefore, we sought to: (i) investigate which vascular and glial events are evident in ageing and/or AD, (ii) to establish the temporal evolution of vascular and glial changes in AD-like and wild-type (WT) mice and (iii) to relate them to amyloid-β (Aβ) peptide accumulation. We examined immunohistochemically hippocampi and cortex from APP/PS1dE9 and WT C57BL/6 mice along ageing and disease progression (young-adulthood, middle- and old-age). Ageing resulted in the increase in receptor for advanced glycation endproducts expression, as well as the entrance of thrombin and albumin in hippocampal parenchyma. In contrast, the loss of platelet-derived growth factor receptor-β (PDGFR-β) positive cells, in both regions, was only related to AD pathogenesis. Hypovascularization was affected by both ageing and AD in the hippocampus, but resulted from the interaction between both factors in the cortex. Astrogliosis was a result of AD in hippocampus and of both factors in cortex, while microgliosis was associated with fibrillar amyloid plaques in AD-like mice and with the interaction between both factors in each of the studied regions. In sum, these data show that senile plaques precede vascular and glial alterations only in hippocampus, whereas in cortex, vascular and glial alterations, namely the loss of PDGFR-β-positive cells and astrogliosis, accompanied the first senile plaques. Hence, this study points to vascular and glial events that co-exist in AD pathogenesis and age-related brain vulnerabilities.

  10. Placenta passage of the thyroid hormone analog DITPA to male wild-type and Mct8-deficient mice.

    PubMed

    Ferrara, Alfonso Massimiliano; Liao, Xiao-Hui; Gil-Ibáñez, Pilar; Bernal, Juan; Weiss, Roy E; Dumitrescu, Alexandra M; Refetoff, Samuel

    2014-10-01

    Monocarboxylate transporter 8 (MCT8) deficiency causes severe X-linked intellectual and neuropsychological impairment associated with abnormal thyroid function tests (TFTs) producing thyroid hormone (TH) deprivation in brain and excess in peripheral tissues. The TH analog diiodothyropropionic acid (DITPA) corrected the TFTs abnormalities and hypermetabolism of MCT8-deficient children but did not improve the neurological phenotype. The latter result was attributed to the late initiation of treatment. Therefore, we gave DITPA to pregnant mice carrying Mct8-deficient embryos to determine whether DITPA, when given prenatally, crosses the placenta and affects the serum TFTs and cerebral cortex of embryos. After depletion of the endogenous TH, Mct8-heterozygous pregnant dams carrying both wild-type (Wt) and Mct8-deficient (Mct8KO) male embryos were given DITPA. Effects were compared with those treated with levothyroxine (L-T4). With DITPA treatment, serum DITPA concentration was not different in the two genotypes, which produced equal effect on serum TSH levels in both groups of pups. In contrast, with L-T4 treatment, TSH did not normalize in Mct8KO pups whereas it did in the Wt littermates and dams despite higher concentration of serum T4. Finally, both treatments similarly modulated the expression of the TH-dependent genes Shh, Klf9, and Aldh1a3 in brain. Thus, the ability of DITPA to cross the placenta, its thyromimetic action on the expression of TH-dependent genes in brain, and its better accessibility to the pituitary than L-T4, as assessed by serum TSH, make DITPA a candidate for the prenatal treatment of MCT8 deficiency.

  11. Placenta Passage of the Thyroid Hormone Analog DITPA to Male Wild-Type and Mct8-Deficient Mice

    PubMed Central

    Ferrara, Alfonso Massimiliano; Liao, Xiao-Hui; Gil-Ibáñez, Pilar; Bernal, Juan; Weiss, Roy E.; Dumitrescu, Alexandra M.

    2014-01-01

    Monocarboxylate transporter 8 (MCT8) deficiency causes severe X-linked intellectual and neuropsychological impairment associated with abnormal thyroid function tests (TFTs) producing thyroid hormone (TH) deprivation in brain and excess in peripheral tissues. The TH analog diiodothyropropionic acid (DITPA) corrected the TFTs abnormalities and hypermetabolism of MCT8-deficient children but did not improve the neurological phenotype. The latter result was attributed to the late initiation of treatment. Therefore, we gave DITPA to pregnant mice carrying Mct8-deficient embryos to determine whether DITPA, when given prenatally, crosses the placenta and affects the serum TFTs and cerebral cortex of embryos. After depletion of the endogenous TH, Mct8-heterozygous pregnant dams carrying both wild-type (Wt) and Mct8-deficient (Mct8KO) male embryos were given DITPA. Effects were compared with those treated with levothyroxine (L-T4). With DITPA treatment, serum DITPA concentration was not different in the two genotypes, which produced equal effect on serum TSH levels in both groups of pups. In contrast, with L-T4 treatment, TSH did not normalize in Mct8KO pups whereas it did in the Wt littermates and dams despite higher concentration of serum T4. Finally, both treatments similarly modulated the expression of the TH-dependent genes Shh, Klf9, and Aldh1a3 in brain. Thus, the ability of DITPA to cross the placenta, its thyromimetic action on the expression of TH-dependent genes in brain, and its better accessibility to the pituitary than L-T4, as assessed by serum TSH, make DITPA a candidate for the prenatal treatment of MCT8 deficiency. PMID:25051435

  12. Optimal voltage stimulation parameters for network-mediated responses in wild type and rd10 mouse retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Jalligampala, Archana; Sekhar, Sudarshan; Zrenner, Eberhart; Rathbun, Daniel L.

    2017-04-01

    To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa—using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4–5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (‑2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations

  13. Dehydrocostuslactone, a sesquiterpene lactone activates wild-type and ΔF508 mutant CFTR chloride channel.

    PubMed

    Wang, Xue; Zhang, Yao-Fang; Yu, Bo; Yang, Shuang; Luan, Jian; Liu, Xin; Yang, Hong

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) represents the main cAMP-activated Cl⁻ channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. The aim of this study was to identify natural compounds that are able to stimulate wild-type (wt) and ΔF508 mutant CFTR channel activities in CFTR-expressing Fischer rat thyroid (FRT) cells. We found that dehydrocostuslactone [DHC, (3aS, 6aR, 9aR, 9bS)-decahydro-3,6,9-tris (methylene) azuleno [4,5-b] furan-2(3H)-one)] dose dependently potentiates both wt and ΔF508 mutant CFTR-mediated iodide influx in cell-based fluorescent assays and CFTR-mediated Cl⁻ currents in short-circuit current studies, and the activations could be reversed by the CFTR inhibitor CFTRinh-172. Maximal CFTR-mediated apical Cl⁻ current secretion in CFTR-expressing FRT cells was stimulated by 100 μM DHC. Determination of intracellular cAMP content showed that DHC modestly but significantly increased cAMP level in FRT cells, but cAMP elevation effects contributed little to DHC-stimulated iodide influx. DHC also stimulated CFTR-mediated apical Cl⁻ current secretion in FRT cells expressing ΔF508-CFTR. Subsequent studies demonstrated that activation of CFTR by DHC is forskolin dependent. DHC represents a new class of CFTR potentiators that may have therapeutic potential in CFTR-related diseases.

  14. Differential effects of wild-type and A53T mutant isoform of alpha-synuclein on the mitochondrial proteome of differentiated SH-SY5Y cells.

    PubMed

    Pennington, Kyla; Peng, Jianhe; Hung, Chao-Chun; Banks, Rosamonde E; Robinson, Philip A

    2010-05-07

    Increased levels of wild-type (WT) alpha-synuclein (alpha-syn) and mutant A53T alpha-syn are associated with Parkinson's disease (PD), a disease linked to abnormal mitochondrial function. This study compared mitochondria prepared from differentiated SH-SY5Y cells overexpressing WT or A53T alpha-syn with control cells, using 2-D difference in-gel electrophoresis. Statistical analysis was carried out primarily using ANOVA (p < 0.01; Host:WT:A53T) and subsequently using independent t tests (host vs WT, host vs A53T). Of the protein spots found to be differentially expressed (n = 71; p < 0.01, >1.8/<-1.8 fold change), 63 proteins were identified by LC-MS/MS, with the majority (77%) significantly altered in WT samples only. Twenty-three proteins known to be integral components of the mitochondria were abnormally expressed including those with roles in ATP synthesis, oxidoreduction, motor activity, carbohydrate metabolism, protein transcription, and protein folding. Thirteen forms of cytoskeletal proteins were also found to be overexpressed in the mitochondrial preparations from WT alpha-syn cells, suggesting an increased interaction of mitochondria with the cytoskeletal network. Altered levels of four mitochondrial proteins (HSPA9 (mortalin), NDUFS1, DLAT, ATP5A1) were confirmed using Western blot analysis. Furthermore, a significant reduction in OXPHOS 1 activity was observed in the WT alpha-syn cells, suggesting that there are functional consequences of the observed altered protein expression changes in the mitochondria.

  15. G551D-CFTR needs more bound actin than wild-type CFTR to maintain its presence in plasma membranes.

    PubMed

    Trouvé, Pascal; Kerbiriou, Mathieu; Teng, Ling; Benz, Nathalie; Taiya, Mehdi; Le Hir, Sophie; Férec, Claude

    2015-08-01

    Cystic Fibrosis is due to mutations in the CFTR gene. The missense mutation G551D (approx. 5% of cases) encodes a CFTR chloride channel with normal cell surface expression but with an altered chloride channel activity, leading to a severe phenotype. Our aim was to identify specific interacting proteins of G551D-CFTR which could explain the channel defect. Wild-type CFTR (Wt-CFTR) was co-immunoprecipitated from stably transfected HeLa cells and resolved by 2D gel electrophoresis. Among the detected spots, one was expressed at a high level. Mass Spectrometry revealed that it corresponded to actin which is known to be involved in the CFTR's channel function. To assess whether actin could be involved in the altered G551D-CFTR function, its basal expression was studied. Because actin expression was the same in wt- and in G551D-CFTR expressing cells, its interaction with both wt- and G551D-CFTR was studied by co-immunoprecipitation, and we found that a higher amount of actin was bound onto G551D-CFTR than onto Wt-CFTR. The role of actin upon wt- and G551D-CFTR function was further studied by patch-clamp experiments after cytochalasin D treatment of the cells. We found a decrease of the very weak currents in G551D-CFTR expressing cells. Because a higher amount of actin is bound onto G551D-CFTR than onto Wt-CFTR, it is likely to be not involved in the mutated CFTR's defect. Nevertheless, because actin is necessary to maintain the very weak global currents observed in G551D-CFTR expressing HeLa cells, we conclude that more actin is necessary to maintain G551D-CFTR in the plasma membrane than for Wt-CFTR.

  16. Wild Type p53 gene sensitizes rat C6 glioma cells to HSV-TK/ACV treatment in vitro and in vivo.

    PubMed

    Huang, Qiang; Xia, Zhibo; You, Yongping; Pu, Peiyu

    2010-12-01

    Suicide gene therapy using herpes simplex virus-thymidine kinase (HSV-TK)/ganciclovir (GCV), has been extensively tested for the treatment of glioma. Our previous study showed that exogenous wild type p53 (wt-p53) enhanced the anti-tumor effect of HSV-TK/GCV therapy. However, the use of GCV is hindered by its low penetration to the brain and its toxicity when used at higher dose. In the present study, we used another pro-drug, acyclovir (ACV), and examined the therapeutic efficacy of HSV-TK/ACV combining with wt-p53 in C6 glioma cells. We observed that wt-p53 combined with HSV-TK/ACV resulted in the super-additive anti-tumor effect in vitro. Exogenous wt-p53 significantly enhanced the sensitivity of TK positive C6 cells to ACV in vitro. Our in vivo experiment demonstrated that the effect of wt-p53 and HSV-TK/ACV combination therapy was better than that of HSV-TK/ACV alone. The survival time of tumor-bearing rats treated with wt-p53 in combination with HSV-TK/ACV was also significantly prolonged than those treated with HSV-TK/ACV alone. These results suggest that wt-p53 can enhance the therapeutic efficacy of HSV-TK/ACV both in vitro and in vivo. These findings are considerably valuable with the respect of using less toxic ACV as prodrug. This novel strategy could provide benefit to HSV-TK/prodrug gene therapy.

  17. Mobility and subcellular localization of endogenous, gene-edited Tau differs from that of over-expressed human wild-type and P301L mutant Tau

    PubMed Central

    Di Xia; Gutmann, Julia M.; Götz, Jürgen

    2016-01-01

    Alzheimer’s disease (AD) and a subset of frontotemporal dementia termed FTLD-Tau are characterized by a massive, yet incompletely characterized and understood redistribution of Tau. To establish a framework for understanding this pathology, we used the genome-editing tool TALEN and generated Tau-mEOS2 knock-in mice to determine the mobility and subcellular localization of endogenous Tau in hippocampal cultures. We analysed Tau in axons, dendrites and spines at three stages of maturation using live-cell imaging, photo-conversion and FRAP assays. Tau-mEOS2 cultures were compared with those over-expressing EGFP-tagged forms of human wild-type (hWT-Tau) and P301L mutant Tau (hP301L-Tau), modelling Tau accumulation in AD and FTLD-Tau, respectively. In developing neurons, Tau-mEOS2 followed a proximo-distal gradient in axons and a subcellular distribution similar to that of endogenous Tau in neurons obtained from wild-type mice, which were abolished, when either hWT-Tau or hP301L-Tau was over-expressed. For the three conditions, FRAP analysis revealed a similar mobility in dendrites compared with axons; however, Tau-mEOS2 was less mobile than hWT-Tau and hP301L-Tau and the mobile fraction was smaller, possibly reflecting less efficient microtubule binding of Tau when over-expressed. Together, our study presents Tau-mEOS2 mice as a novel tool for the study of Tau in a physiological and a pathological context. PMID:27378256

  18. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells.

    PubMed

    Han, Jianfeng; Chu, Jianhong; Keung Chan, Wing; Zhang, Jianying; Wang, Youwei; Cohen, Justus B; Victor, Aaron; Meisen, Walter H; Kim, Sung-hak; Grandi, Paola; Wang, Qi-En; He, Xiaoming; Nakano, Ichiro; Chiocca, E Antonio; Glorioso, Joseph C; Kaur, Balveen; Caligiuri, Michael A; Yu, Jianhua

    2015-07-09

    Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB.

  19. Transcriptomic Insights into the Response of Placenta and Decidua Basalis to the CpG Oligodeoxynucleotide Stimulation in Non-Obese Diabetic Mice and Wild-Type Controls

    PubMed Central

    Liu, Xiao-Rui; Guo, Yu-Na; Qin, Chuan-Mei; Qin, Xiao-Li; Tao, Fei; Su, Fei; Tian, Fu-Ju; Zhang, Yan; Lin, Yi

    2016-01-01

    Intrauterine infection is one of the most frequent causes of miscarriage. CpG oligodeoxynucleotide (CpG ODN) can mimic intrauterine infection. CpG ODN-induced embryo-resorption was observed consistently in the NK-cell deficient non-obese diabetic (NOD) mice but not in the wild-type (WT) mice. To elucidate the molecular mechanisms of differential pregnancy outcomes, differentially expressed genes (DEGs) in the placenta and decidua basalis was revealed by RNA-Seq with CpG ODN or control ODN treatment. Common DEGs in the WT and NOD mice were enriched in antimicrobial/antibacterial humoral responses that may be activated as a primary response to bacterial infection. The susceptibility to CpG ODN-induced embryo-resorption in the NOD mice might mainly be attributed to M1 macrophage polarization and the immunodeficient status, such as the down-regulation in antigen processing and presentation, allograft rejection, and natural killer cell mediated cytotoxicity. In contrast, the WT mice with normal immune systems could activate multiple immune responses and be resistant to CpG ODN-induced embryo-resorption, such as M2 macrophage differentiation and activation regulated by complement component C1q and peroxisome proliferation-activated receptor (PPAR) signaling pathways. Collectively, this study suggests that the immunodeficient status of NOD mice and the macrophage polarization regulated by C1q and PPAR signaling might be the basis for differential pregnancy outcomes between the NOD and WT mice. PMID:27527166

  20. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti.

    PubMed

    Bargielowski, Irka; Kaufmann, Christian; Alphey, Luke; Reiter, Paul; Koella, Jacob

    2012-12-01

    The ability of sterile males to survive, disperse, find, and mate with wild females is key to the success of sterile insect technique (SIT). The Release of Insects carrying a Dominant Lethal (RIDL) system is a genetics-based SIT strategy for Aedes aegypti. We examine two aspects of insect performance, flight potential (dispersal ability) and teneral energy reserves, by comparing wild-type (WT) males with genetically-modified lines carrying the tetracycline-repressible constructs OX513A and OX3604C. Our results show significant differences in the flight capacity of the modified lines. OX513A males bred with tetracycline covered 38% less distance, while OX3604C males reared without tetracycline spent 21% less time in flight than their WT counterparts. Such differences in flight performance should be considered when designing release programs (e.g., by placing release sites sufficiently close together to achieve adequate coverage). All mosquito lines had similar teneral carbohydrate contents, though males of the OX3604C line contained more lipids. The addition of tetracycline to the larval diet did not influence the flight potential of the males; however, it did change the teneral sugar reserves of the WT and the lipid reserves of both the WT and the OX3604C lines.

  1. FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast.

    PubMed

    Ishigami, Mari; Nakagawa, Youji; Hayakawa, Masayuki; Iimura, Yuzuru

    2006-03-01

    Some strains of Saccharomyces cerevisiae form a biofilm called a "flor" on the surface of wine after ethanolic fermentation, but the molecular mechanism of flor formation by the wild-type flor strain involved in wine making is not clear. Previously, we found that expression of the C-terminally truncated form of NRG1 (NRG1(1-470)) on a multicopy plasmid increases the hydrophobicity of the cell surface, conferring flor formation on the non-flor laboratory strain. Here we show that in Ar5-H12, a wild-type flor haploid strain, flor formation is regulated by NRG1(1-470). Moreover, the disruptant of the wild-type flor diploid strain (Deltaflo11/Deltaflo11) show a weak ability to form the flor. The expression of FLO11 is always high in the wild-type flor strain, regardless of carbon source. Thus FLO11 is primary factor for wild-type flor strains. Furthermore, the disruptant (Deltaflo11) shows lower hydrophobicity of cell surface than the wild type. However, the hydrophobicity of the wild-type flor strains grown in ethanol medium was much higher than those grown in glucose medium. These results indicate that cell surface hydrophobicity is closely related to flor formation in wild-type flor yeasts.

  2. Cytochemical Analysis of Pollen Development in Wild-Type Arabidopsis and a Male-Sterile Mutant.

    PubMed Central

    Regan, SM; Moffatt, BA

    1990-01-01

    Microsporogenesis has been examined in wild-type Arabidopsis thaliana and the nuclear male-sterile mutant BM3 by cytochemical staining. The mutant lacks adenine phosphoribosyltransferase, an enzyme of the purine salvage pathway that converts adenine to AMP. Pollen development in the mutant began to diverge from wild type just after meiosis, as the tetrads of microspores were released from their callose walls. The first indication of abnormal pollen development in the mutant was a darker staining of the microspore wall due to an incomplete synthesis of the intine. Vacuole formation was delayed and irregular in the mutant, and the majority of the mutant microspores failed to undergo mitotic divisions. Enzyme activities of alcohol dehydrogenase and esterases decreased in the mutant soon after meiosis and were undetectable in mature pollen grains of the mutant. RNA accumulation was also diminished. These results are discussed in relation to the possible role(s) of adenine salvage in pollen development. PMID:12354970

  3. Genomic sequence of temperate phage TEM126 isolated from wild type S. aureus.

    PubMed

    Lee, Young-Duck; Chang, Hyo-Ihl; Park, Jong-Hyun

    2011-04-01

    Bacteriophage TEM126, a newly isolated temperate phage from a mitomycin-C-induced lysate of wild-type Staphylococcus aureus isolated from food, has an isometric head, a noncontractile tail, and a double-stranded DNA genome with a length of 33,540 bp and a G+C content of 33.94%. Bioinformatics analysis of the phage genome revealed 44 putative open reading frames (ORFs). Predicted protein products of the ORFs were determined and described. Temperate phage TEM126 can be classified as a member of the family Siphoviridae by morphology and genome structure. Temperate phage TEM126 showed 84% similarity with Staphylococcus phage phiNM1. To our knowledge, this is the first report of genomic sequencing and characterization of temperate phage TEM126 from a wild-type S. aureus isolated from foods in Korea.

  4. In vitro permissivity of bovine cells for wild-type and vaccinal myxoma virus strains.

    PubMed

    Pignolet, Béatrice; Duteyrat, Jean-Luc; Allemandou, Aude; Gelfi, Jacqueline; Foucras, Gilles; Bertagnoli, Stéphane

    2007-09-27

    Myxoma virus (MYXV), a leporide-specific poxvirus, represents an attractive candidate for the generation of safe, non-replicative vaccine vector for non-host species. However, there is very little information concerning infection of non-laboratory animals species cells with MYXV. In this study, we investigated interactions between bovine cells and respectively a wild type strain (T1) and a vaccinal strain (SG33) of MYXV. We showed that bovine KOP-R, BT and MDBK cell lines do not support MYXV production. Electron microscopy observations of BT-infected cells revealed the low efficiency of viral entry and the production of defective virions. In addition, infection of bovine peripheral blood mononuclear cells (PBMC) occurred at a very low level, even following non-specific activation, and was always abortive. We did not observe significant differences between the wild type strain and the vaccinal strain of MYXV, indicating that SG33 could be used for new bovine vaccination strategies.

  5. Rule governing the division pattern in Escherichia coli minB and wild-type filaments.

    PubMed Central

    Jaffé, A; Boye, E; D'Ari, R

    1990-01-01

    Escherichia coli minB mutants form anucleate minicells and multinucleate filaments. We show here that the overwhelming majority of nucleate cells contain 2n (n = 0, 1, 2, ...) nucleoids, as determined by 4',6-diamidino-2-phenylindole staining, and 2n (n = 1, 2, 3, ...) copies of the replication origin, as determined by flow cytometry. This shows that division sites are not chosen randomly among the available sites in minB filaments. Similarly, wild-type cells contain 2n nucleoids, both during cell division inhibition and when furazlocillin-induced filaments are allowed to divide. We conclude that the min+ function is only to prevent septation only at polar sites; the placement of internal cell division sites must obey strict rules, which are the same in minB and wild-type cells. PMID:2188963

  6. Detection by PCR of wild-type canine parvovirus which contaminates dog vaccines.

    PubMed Central

    Senda, M; Parrish, C R; Harasawa, R; Gamoh, K; Muramatsu, M; Hirayama, N; Itoh, O

    1995-01-01

    A method for detecting wild-type canine parvovirus (CPV) strains which contaminate vaccines for dogs has been developed by PCR. PCR primers which distinguish vaccine strains from the most common, recent strains of wild-type CPV in many countries, including Japan and the United States, were developed. This PCR is based on the differences in nucleotide sequences which determine the two antigenic types of this virus. CPV vaccine strains derived from antigenically old-type virus prevalent in former times were not detected by PCR with differential primers. Detection sensitivity of PCR was 100- to 10,000-fold higher than that of the culture method in Crandell feline kidney cells. PMID:7699026

  7. Evaluation of MIC Strip Isavuconazole Test for Susceptibility Testing of Wild-Type and Non-Wild-Type Aspergillus fumigatus Isolates

    PubMed Central

    Verweij, Paul; Nielsen, Henrik Vedel

    2016-01-01

    ABSTRACT We evaluated the MIC Strip Isavuconazole test against EUCAST E.Def 9.3 by using 40 wild-type and 39 CYP51A mutant Aspergillus fumigatus strains. The strip full inhibition endpoint (FIE) and 80% growth inhibition endpoint were determined by two independent readers, reader 1 (R1) and R2. The essential (within ±0, ±1, and ±2 twofold dilutions) and categorical agreements were best with the FIE (for R1/R2, 42%/41%, 75%/73%, and 90%/89% for essential agreement, and 91.1%/92.4% categorical agreement, with 6.3/8.9% very major errors and 0/1.3% major errors, respectively). The MIC Strip Isavuconazole test with the FIE appears to be useful. PMID:27799223

  8. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis

    PubMed Central

    Rotunno, Melissa S.; Bosco, Daryl A.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that targets motor neurons, leading to paralysis and death within a few years of disease onset. While several genes have been linked to the inheritable, or familial, form of ALS, much less is known about the cause(s) of sporadic ALS, which accounts for ~90% of ALS cases. Due to the clinical similarities between familial and sporadic ALS, it is plausible that both forms of the disease converge on a common pathway and, therefore, involve common factors. Recent evidence suggests the Cu,Zn-superoxide dismutase (SOD1) protein to be one such factor that is common to both sporadic and familial ALS. In 1993, mutations were uncovered in SOD1 that represent the first known genetic cause of familial ALS. While the exact mechanism of mutant-SOD1 toxicity is still not known today, most evidence points to a gain of toxic function that stems, at least in part, from the propensity of this protein to misfold. In the wild-type SOD1 protein, non-genetic perturbations such as metal depletion, disruption of the quaternary structure, and oxidation, can also induce SOD1 to misfold. In fact, these aforementioned post-translational modifications cause wild-type SOD1 to adopt a “toxic conformation” that is similar to familial ALS-linked SOD1 variants. These observations, together with the detection of misfolded wild-type SOD1 within human post-mortem sporadic ALS samples, have been used to support the controversial hypothesis that misfolded forms of wild-type SOD1 contribute to sporadic ALS pathogenesis. In this review, we present data from the literature that both support and contradict this hypothesis. We also discuss SOD1 as a potential therapeutic target for both familial and sporadic ALS. PMID:24379756

  9. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    NASA Astrophysics Data System (ADS)

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.

    2014-11-01

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  10. Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila.

    PubMed

    Aragon, V; Kurtz, S; Flieger, A; Neumeister, B; Cianciotto, N P

    2000-04-01

    Legionella pneumophila, the agent of Legionnaires' disease, is an intracellular pathogen of protozoa and macrophages. Previously, we had determined that the Legionella pilD gene is involved in type IV pilus biogenesis, type II protein secretion, intracellular infection, and virulence. Since the loss of pili and a protease do not account for the infection defect exhibited by a pilD-deficient strain, we sought to define other secreted proteins absent in the mutant. Based upon the release of p-nitrophenol (pNP) from p-nitrophenyl phosphate, acid phosphatase activity was detected in wild-type but not in pilD mutant supernatants. Mutant supernatants also did not release either pNP from p-nitrophenyl caprylate and palmitate or free fatty acid from 1-monopalmitoylglycerol, suggesting that they lack a lipase-like activity. However, since wild-type samples failed to release free fatty acids from 1,2-dipalmitoylglycerol or to cleave a triglyceride derivative, this secreted activity should be viewed as an esterase-monoacylglycerol lipase. The mutant supernatants were defective for both release of free fatty acids from phosphatidylcholine and degradation of RNA, indicating that PilD-negative bacteria lack a secreted phospholipase A (PLA) and nuclease. Finally, wild-type but not mutant supernatants liberated pNP from p-nitrophenylphosphorylcholine (pNPPC). Characterization of a new set of mutants defective for pNPPC-hydrolysis indicated that this wild-type activity is due to a novel enzyme, as opposed to a PLC or another known enzyme. Some, but not all, of these mutants were greatly impaired for intracellular infection, suggesting that a second regulator or processor of the pNPPC hydrolase is critical for L. pneumophila virulence.

  11. Panitumumab as a radiosensitizing agent in KRAS wild-type locally advanced rectal cancer.

    PubMed

    Mardjuadi, Feby Ingriani; Carrasco, Javier; Coche, Jean-Charles; Sempoux, Christine; Jouret-Mourin, Anne; Scalliet, Pierre; Goeminne, Jean-Charles; Daisne, Jean-François; Delaunoit, Thierry; Vuylsteke, Peter; Humblet, Yves; Meert, Nicolas; van den Eynde, Marc; Moxhon, Anne; Haustermans, Karin; Canon, Jean-Luc; Machiels, Jean-Pascal

    2015-09-01

    Our goal was to optimize the radiosensitizing potential of anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, when given concomitantly with preoperative radiotherapy in KRAS wild-type locally advanced rectal cancer (LARC). Based on pre-clinical studies conducted by our group, we designed a phase II trial in which panitumumab (6 mg/kg/q2 weeks) was combined with preoperative radiotherapy (45 Gy in 25 fractions) to treat cT3-4/N + KRAS wild-type LARC. The primary endpoint was complete pathologic response (pCR) (H0 = 5%, H1 = 17%, α = 0.05, β = 0.2). From 19 enrolled patients, 17 (89%) were evaluable for pathology assessment. Although no pCR was observed, seven patients (41%) had grade 3 Dworak pathological tumor regression. The regimen was safe and was associated with 95% of sphincter-preservation rate. No NRAS, BRAF, or PI3KCA mutation was found in this study, but one patient (5%) showed loss of PTEN expression. The quantification of plasma EGFR ligands during treatment showed significant upregulation of plasma TGF-α and EGF following panitumumab administration (p < 0.05). At surgery, patients with important pathological regression (grade 3 Dworak) had higher plasma TGF-α (p = 0.03) but lower plasma EGF (p = 0.003) compared to those with grade 0-2 Dworak. Our study suggests that concomitant panitumumab and preoperative radiotherapy in KRAS wild-type LARC is feasible and results in some tumor regression. However, pCR rate remained modest. Given that the primary endpoint of our study was not reached, we remain unable to recommend the use of panitumumab as a radiosensitizer in KRAS wild-type LARC outside a research setting.

  12. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    SciTech Connect

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.

    2014-11-07

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  13. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain

    PubMed Central

    2014-01-01

    Background The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. Results In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell

  14. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    PubMed Central

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-01-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492

  15. Production of maltase by wild-type and a constitutive mutant of Saccharomyces italicus

    SciTech Connect

    Schaefer, E.J.; Cooney, C.L.

    1982-01-01

    The production of maltase, an inducible and repressible catabolic enzyme in Saccharomyces italicus, was studied and compared in batch, fed-batch, and continuous fermentations. Tight genetic controls on maltase synthesis limited the effect of environmental manipulations such as fed-batch or continuous culture in enhancement of maltase synthesis, and neither approach was able to improve the performance above the batch process for maltase production. Saccharomyces italicus was mutated, and a constitutive producer of maltase was isolated. The mutant was detected by its ability to grow on sucrose, which is a noninducing substrate that is hydrolyzed by maltase; Saccharomyces italicus does not possess invertase and will not normally grow on sucrose. Maltase production by this mutant was studied during growth on sucrose in batch and continuous cultures and marked improvement in enzyme productivity was observed. The specific activity of maltase produced by this mutant was more than twice that of the parent wild type: 2,210 and 1,370 U/g of cells for the mutant versus 890 and 510 U/g of cells for the wild type in batch and continuous cultures, respectively. Maltase specific productivity was increased from 74 to 288 U/g of cells per h by switching from batch growth of the wild type to continuous cultivation of the mutant. (Refs. 10).

  16. Effect of Fluorosis on Liver Cells of VC Deficient and Wild Type Mice

    PubMed Central

    Wei, Wei; Jiao, Yan; Ma, Yonghui; Stuart, John M.; Li, Xiudian; Zhao, Fusheng; Wang, Lishi; Sun, DianJun

    2014-01-01

    For decades, mouse and other rodents have been used for the study of oxidative or related studies such as the effect of fluoride. It is known that rodents normally synthesize their own vitamin C (VC) due to the presence of a key enzyme in ascorbic acid synthesis, l-gulono-lactone-γ-oxidase (Gulo), while humans do not have the capacity of VC synthesis due to the deletion of most parts of the GULO gene. The spontaneous fracture (sfx) mouse recently emerged as a model for study of VC deficiency. We investigated the effect of fluoride on liver cells from wild type Balb/c and sfx mice. We found that activities of SOD, GPx, and CAT were reduced in both wild type and sfx mice; however, the amount of reduction in the sfx cells is more than that in Balb/c cells. In addition, while both cells increased MDA, the increase in the sfx cells is greater than that in Balb/c cells. Gene networks of Sod, Gpx, and Cat in the liver of humans and mice are also different. Our study suggests that reaction to fluoride in vitamin C deficient mice might be different from that of wild type mice. PMID:24693236

  17. Overexpression of Wild-Type Murine Tau Results in Progressive Tauopathy and Neurodegeneration

    PubMed Central

    Adams, Stephanie J.; Crook, Richard J.P.; DeTure, Michael; Randle, Suzanne J.; Innes, Amy E.; Yu, Xin Z.; Lin, Wen-Lang; Dugger, Brittany N.; McBride, Melinda; Hutton, Mike; Dickson, Dennis W.; McGowan, Eileen

    2009-01-01

    Here, we describe the generation and characterization of a novel tau transgenic mouse model (mTau) that overexpresses wild-type murine tau protein by twofold compared with endogenous levels. Transgenic tau expression was driven by a BAC transgene containing the entire wild-type mouse tau locus, including the endogenous promoter and the regulatory elements associated with the tau gene. The mTau model therefore differs from other tau models in that regulation of the genomic mouse transgene mimics that of the endogenous gene, including normal exon splicing regulation. Biochemical data from the mTau mice demonstrated that modest elevation of mouse tau leads to tau hyperphosphorylation at multiple pathologically relevant epitopes and accumulation of sarkosyl-insoluble tau. The mTau mice show a progressive increase in hyperphosphorylated tau pathology with age up to 15 to 18 months, which is accompanied by gliosis and vacuolization. In contrast, older mice show a decrease in tau pathology levels, which may represent hippocampal neuronal loss occurring in this wild-type model. Collectively, these results describe a novel model of tauopathy that develops pathological changes reminiscent of early stage Alzheimer’s disease and other related neurodegenerative diseases, achieved without overexpression of a mutant human tau transgene. This model will provide an important tool for understanding the early events leading to the development of tau pathology and a model for analysis of potential therapeutic targets for sporadic tauopathies. PMID:19717642

  18. Energy cost of intracellular metal and metalloid detoxification in wild-type eukaryotic phytoplankton.

    PubMed

    Lavoie, Michel; Raven, John A; Jones, Oliver A H; Qian, Haifeng

    2016-10-01

    Microalgae use various cellular mechanisms to detoxify both non-essential and excess essential metals or metalloids. There exists however, a threshold in intracellular metal(loid) concentrations beyond which detoxification mechanisms are no longer effective and inhibition of cell division inevitably occurs. It is therefore important to determine whether the availability of energy in the cell could constrain metal(loid) detoxification capacity and to better define the thresholds beyond which a metal(loid) becomes toxic. To do this we performed the first extensive bioenergetics analysis of intracellular metal(loid) detoxification mechanisms (e.g., metal-binding peptides, polyphosphate granules, metal efflux, metal and metalloid reduction, metalloid methylation, enzymatic and non-enzymatic antioxidants) in wild-type eukaryotic phytoplankton based on the biochemical mechanisms of each detoxification strategy and on experimental measurements of detoxifying biomolecules in the literature. The results show that at the onset of metal(loid) toxicity to growth, all the detoxification strategies considered required only a small fraction of the total cellular energy available for growth indicating that intracellular detoxification ability in wild-type eukaryotic phytoplankton species is not constrained by the availability of cellular energy. The present study brings new insights into metal(loid) toxicity mechanisms and detoxification strategies in wild-type eukaryotic phytoplankton.

  19. Root graviresponsiveness and cellular differentiation in wild-type and a starchless mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1989-01-01

    Primary roots of a starchless mutant of Arabidopsis thaliana L. are strongly graviresponsive despite lacking amyloplasts in their columella cells. The ultrastructures of calyptrogen and peripheral cells in wild-type as compared to mutant seedlings are not significantly different. The largest difference in cellular differentiation in caps of mutant and wild-type roots is the relative volume of plastids in columella cells. Plastids occupy 12.3% of the volume of columella cells in wild-type seedlings, but only 3.69% of columella cells in mutant seedlings. These results indicate that: (1) amyloplasts and starch are not necessary for root graviresponsiveness; (2) the increase in relative volume of plastids that usually accompanies differentiation of columella cells is not necessary for root graviresponsiveness; and (3) the absence of starch and amyloplasts does not affect the structure of calyptrogen (i.e. meristematic) and secretory (i.e. peripheral) cells in root caps. These results are discussed relative to proposed models for root gravitropism.

  20. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants

    NASA Technical Reports Server (NTRS)

    Vitha, S.; Zhao, L.; Sack, F. D.

    2000-01-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  1. Self-association of the WT1 tumor suppressor gene product

    SciTech Connect

    Bruening, W.; Nakagama, H.: Bardessy, N.

    1994-09-01

    Wilms` tumor (WT), an embryonal malignancy of the kidney, occurs most frequently in children under the age of 5 years, affecting {approximately}1 in 10,000 individuals. The WT1 tumor suppressor gene, residing at 11p13, is structurally altered in {approximately}10-15% of WT cases. Individuals with germline mutations within the WT1 gene suffer from predisposition to WT and developmental defects of the urogenital system. Patients with heterozygous deletions of the WT1 gene, or mutations predicted to cause inactivation of one WT1 allele, suffer relatively mild genital system defects (notably hypospadias and cryptorchidism in males) and a predisposition to WT. These results suggest that developing genital system development is sensitive to the absolute concentrations of the WT1 gene products. Patients with missense mutations within the WT1 gene, however, can suffer from a much more severe disorder known as Denys-Drash syndrome (DDS). This syndrome is characterized by intersex disorders, renal nephropathy, and a predisposition to WTs. The increased severity of the developmental defects associated with DDS, compared to those individuals with mild genital system anomalies and WTs, suggests that mutations defined in patients with DDS behave in a dominant-negative fashion. We have identified a novel WT1 mutation in a patient with DDS. This mutation, predicted to produce a truncated WT1 polypeptide encompassing exons 1, 2, and 3, defines a domain capable of behaving as an antimorph. We have also demonstrated that WT1 can self-associate in vivo using yeast two-hybrid systems. Deletion analysis have mapped the interacting domains to the amino terminus of the WT1 polypeptide, within exons 1 and 2. These results provide a molecular mechanism to explain how WT1 mutations can function in a dominant-negative fashion to eliminate wild-type WT1 activity, leading to DDS.

  2. Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice.

    PubMed

    Richfield, Eric K; Thiruchelvam, Mona J; Cory-Slechta, Deborah A; Wuertzer, Charles; Gainetdinov, Raul R; Caron, Marc G; Di Monte, Donato A; Federoff, Howard J

    2002-05-01

    Human alpha-synuclein (halpha-SYN) is implicated in the Parkinson's disease phenotype (PDP) based on a variety of studies in man, animal models, and in vitro studies. The normal function of halpha-SYN and the mechanism by which it contributes to the PDP remains unclear. We created transgenic mice expressing either wild-type (hwalpha-SYN) or a doubly mutated (hm2alpha-SYN) form of halpha-SYN under control of the 9-kb rat tyrosine hydroxylase promoter. These mice expressed halpha-SYN in cell bodies, axons, and terminals of the nigrostriatal system. The expression of halpha-SYN in nigrostriatal terminals produced effects in both constructs resulting in increased density of the dopamine transporter and enhanced toxicity to the neurotoxin MPTP. Expression of hm2alpha-SYN reduced locomotor responses to repeated doses of amphetamine and blocked the development of sensitization. Adult hwalpha-SYN-5 transgenic mice had unremarkable dopaminergic axons and terminals, normal age-related measures on two motor coordination screens, and normal age-related measures of dopamine (DA) and its metabolites. Adult hm2alpha-SYN-39 transgenic mice had abnormal axons and terminals, age-related impairments in motor coordination, and age-related reductions in DA and its metabolites. Expression of hm2alpha-SYN adversely affects the integrity of dopaminergic terminals and leads to age-related declines in motor coordination and dopaminergic markers.

  3. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station.

    PubMed

    Scherer, G F E; Pietrzyk, P

    2014-01-01

    Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity.

  4. Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pre-treated by ABA.

    PubMed

    Hlavinka, Jan; Nožková-Hlaváčková, Vladimíra; Floková, Kristýna; Novák, Ondřej; Nauš, Jan

    2012-05-01

    Burning the terminal leaflet of younger tomato (Lycopersicon esculentum Mill.) leaf caused local and systemic changes in the surface electrical potential (SEP) and gas exchange (GE) parameters. The local and systemic accumulation of endogenous abscisic acid (ABA) and jasmonic acid (JA) was measured 85 min after burning. The experiments were conducted with wild type (WT) plants, ABA-deficient mutant sitiens (SIT) and ABA pre-treated SIT plants (SITA). First changes in SEP were detected within 1.5 min after burning and were followed by a decrease in GE parameters within 3-6 min in WT, SIT and SITA plants. GE and SEP time courses of SIT were different and wave amplitudes of SEP of SIT were lower compared to WT and SITA. ABA content in WT and SITA control plants was similar and substantially higher compared to SIT, JA content was similar among WT, SIT and SITA. While changes in the ABA content in systemic leaves have not been recorded after burning, the systemic JA content was substantially increased in WT and more in SIT and SITA. The results suggest that ABA content governs the systemic reaction of GE and the SEP shape upon local burning. ABA, JA and SEP participate in triggering the GE reaction. The ABA shortage in the SIT in the reaction to burning is partly compensated by an enhanced JA accumulation. This JA compensation is maintained even in SIT endogenously supplied with ABA. A correlation between the systemic JA content and changes in GE parameters or SEP was not found.

  5. Oxidation state specific analysis of arsenic species in tissues of wild-type and arsenic (+3 oxidation state) methyltransferase-knockout mice.

    PubMed

    Currier, Jenna M; Douillet, Christelle; Drobná, Zuzana; Stýblo, Miroslav

    2016-11-01

    Arsenic methyltransferase (As3mt) catalyzes the conversion of inorganic arsenic (iAs) to its methylated metabolites, including toxic methylarsonite (MAs(III)) and dimethylarsinite (DMAs(III)). Knockout (KO) of As3mt was shown to reduce the capacity to methylate iAs in mice. However, no data are available on the oxidation states of As species in tissues of these mice. Here, we compare the oxidation states of As species in tissues of male C57BL/6 As3mt-KO and wild-type (WT) mice exposed to arsenite (iAs(III)) in drinking water. WT mice were exposed to 50mg/L As and As3mt-KO mice that cannot tolerate 50mg/L As were exposed to 0, 15, 20, 25 or 30mg/L As. iAs(III) accounted for 53% to 74% of total As in liver, pancreas, adipose, lung, heart, and kidney of As3mt-KO mice; tri- and pentavalent methylated arsenicals did not exceed 10% of total As. Tissues of WT mice retained iAs and methylated arsenicals: iAs(III), MAs(III) and DMAs(III) represented 55%-68% of the total As in the liver, pancreas, and brain. High levels of methylated species, particularly MAs(III), were found in the intestine of WT, but not As3mt-KO mice, suggesting that intestinal bacteria are not a major source of methylated As. Blood of WT mice contained significantly higher levels of As than blood of As3mt-KO mice. This study is the first to determine oxidation states of As species in tissues of As3mt-KO mice. Results will help to design studies using WT and As3mt-KO mice to examine the role of iAs methylation in adverse effects of iAs exposure.

  6. Oxidation state specific analysis of arsenic species in tissues of wild-type and arsenic (+3 oxidation state) methyltransferase-knockout mice

    PubMed Central

    Currier, Jenna M.; Douillet, Christelle; Drobná, Zuzana; Stýblo, Miroslav

    2017-01-01

    Arsenic methyltransferase (As3mt) catalyzes the conversion of inorganic arsenic (iAs) to its methylated metabolites, including toxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII). Knockout (KO) of As3mt was shown to reduce the capacity to methylate iAs in mice. However, no data are available on the oxidation states of As species in tissues of these mice. Here, we compare the oxidation states of As species in tissues of male C57BL/6 As3mt-KO and wild-type (WT) mice exposed to arsenite (iAsIII) in drinking water. WT mice were exposed to 50 mg/L As and As3mt-KO mice that cannot tolerate 50 mg/L As were exposed to 0, 15, 20, 25 or 30 mg/L As. iAsIII accounted for 53% to 74% of total As in liver, pancreas, adipose, lung, heart, and kidney of As3mt-KO mice; tri- and pentavalent methylated arsenicals did not exceed 10% of total As. Tissues of WT mice retained iAs and methylated arsenicals: iAsIII, MAsIII and DMAsIII represented 55%–68% of the total As in the liver, pancreas, and brain. High levels of methylated species, particularly MAsIII, were found in the intestine of WT, but not As3mt-KO mice, suggesting that intestinal bacteria are not a major source of methylated As. Blood of WT mice contained significantly higher levels of As than blood of As3mt-KO mice. This study is the first to determine oxidation states of As species in tissues of As3mt-KO mice. Results will help to design studies using WT and As3mt-KO mice to examine the role of iAs methylation in adverse effects of iAs exposure. PMID:28007165

  7. Comparison of intestinal warm ischemic injury in PACAP knockout and wild-type mice.

    PubMed

    Ferencz, Andrea; Kiss, Peter; Weber, Gyorgy; Helyes, Zsuzsanna; Shintani, Norihito; Baba, Akemichi; Reglodi, Dora

    2010-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in the gastrointestinal tract and plays a central role in the intestinal physiology, mainly in the secretion and motility. The aim of our study was to compare the ischemic injury in wild-type and PACAP-38 knockout mice following warm mesenteric small bowel ischemia. Warm ischemia groups were designed with occlusion of superior mesenteric artery for 1, 3, and 6 h in wild-type (n = 10 in each group) and PACAP-38 knockout (n = 10 in each group) mice. Small bowel biopsies were collected after laparotomy (control) and at the end of the ischemia periods. To determine oxidative stress parameters, malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) were measured. Tissue damage was analyzed by qualitative and quantitative methods on hematoxylin/eosin-stained sections. In PACAP-38 knockout animals, tissue MDA increased significantly after 3 and 6 h ischemia (133.97 ± 6,2; 141.86 ± 5,8) compared to sham-operated (100.92 ± 3,6) and compared to wild-type results (112.8 ± 2,1; 118.4 ± 1.03 μmol/g, p < 0.05). Meanwhile, tissue concentration of GSH and activity of SOD decreased significantly in knockout mice compared to wild-type form (GSH, 795.97 ± 10.4; 665.1 ± 8,8 vs. 893.23 ± μmol/g; SOD, 94.4 ± 1.4; 81.2 ± 3.9 vs. 208.09 ± 3,7 IU/g). Qualitative and quantitative histological results showed destruction of the mucous, submucous layers, and crypts in knockout mice compared to wild-type tissues. These processes correlated with the warm ischemia periods. Our present results propose an important protective effect of endogenous PACAP-38 against intestinal warm ischemia, which provides basis for further investigation to elucidate the mechanism of this protective effect.

  8. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    SciTech Connect

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  9. Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom)

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Bartha, Richard; Aksoy, M.; Weissman, Joseph C.; Benemann, John

    2008-07-03

    Microalgae are expected to play a significant role in greenhouse gas mitigation because they can utilize CO2 from powerplant flue gases directly while producing a variety of renewable carbon-neutral biofuels. In order for such a microalgal climate change mitigation strategy to become economically feasible, it will be necessary to significantly improve biomass productivities. One approach to achieve this objective is to reduce, via mutagenesis, the number of light harvesting pigments, which, according to theory, should significantly improve the light utilization efficiency, primarily by increasing the light intensity at which photosynthesis saturates (Is). Employing chemical (ethylmethylsulfonate, EMS) and UV mutagenesis of a wild type strain of the diatom Cyclotella, approximately 10,000 pigment mutants were generated, and two of the most promising ones (CM1 and CM1-1) were subjected to further testing in both laboratory cultures and outdoor ponds. Measurements of photosynthetic oxygen production rates as a function of light intensity (i.e., P-I curves) of samples taken from laboratory batch cultures during the exponential and linear growth phase indicated that the light intensity at which photosynthesis saturates (Is) was two to three times greater in the pigment mutant CM1-1 than in the wild type, i.e., 355-443 versus 116-169 μmole/m2∙sec, respectively. While theory, i.e., the Bush equation, predicts that such a significant gain in Is should increase light utilization efficiencies and thus biomass productivities, particularly at high light intensities, no improvements in biomass productivities were observed in either semi-continuous laboratory cultures or outdoor ponds. In fact, the maximum biomass productivity in semi-continuous laboratory culture was always greater in the wild type than in the mutant, namely 883 versus 725 mg/L∙d, respectively at low light intensity (200 μmole/m2∙sec) and 1229 versus 1043 mg/L∙d, respectively at high light intensity

  10. Identification and Comparative Profiling of miRNAs in an Early Flowering Mutant of Trifoliate Orange and Its Wild Type by Genome-Wide Deep Sequencing

    PubMed Central

    Li, Wen-Yang; Guo, Wen-Wu; Deng, Xiu-Xin; Hu, Chun-Gen; Zhang, Jin-Zhi

    2012-01-01

    MicroRNAs (miRNAs) are a new class of small, endogenous RNAs that play a regulatory role in various biological and metabolic processes by negatively affecting gene expression at the post-transcriptional level. While the number of known Arabidopsis and rice miRNAs is continuously increasing, information regarding miRNAs from woody plants such as citrus remains limited. Solexa sequencing was performed at different developmental stages on both an early flowering mutant of trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf.) and its wild-type in this study, resulting in the obtainment of 141 known miRNAs belonging to 99 families and 75 novel miRNAs in four libraries. A total of 317 potential target genes were predicted based on the 51 novel miRNAs families, GO and KEGG annotation revealed that high ranked miRNA-target genes are those implicated in diverse cellular processes in plants, including development, transcription, protein degradation and cross adaptation. To characterize those miRNAs expressed at the juvenile and adult development stages of the mutant and its wild-type, further analysis on the expression profiles of several miRNAs through real-time PCR was performed. The results revealed that most miRNAs were down-regulated at adult stage compared with juvenile stage for both the mutant and its wild-type. These results indicate that both conserved and novel miRNAs may play important roles in citrus growth and development, stress responses and other physiological processes. PMID:22952759

  11. The Role of Wild-Type p53 in Cisplatin-Induced Chk2 Phosphorylation and the Inhibition of Platinum Resistance with a Chk2 Inhibitor.

    PubMed

    Liang, Xiaobing; Guo, Yi; Figg, William Douglas; Fojo, Antonio Tito; Mueller, Michael D; Yu, Jing Jie

    2011-01-01

    The major obstacle in platinum chemotherapy is the repair of platinum-damaged DNA that results in increased resistance, reduced apoptosis, and finally treatment failure. Our research goal is to determine and block the mechanisms of platinum resistance. Our recent studies demonstrate that several kinases in the DNA-repair pathway are activated after cells are exposed to cisplatin. These include ATM, p53, and Chk2. The increased Chk2 phosphorylation is modulated by p53 in a wild-type p53 model. Overexpression of p53 by cDNA transfection in wt-p53 (but not p53 deficient) cells doubled the amount of Chk2 phosphorylation 48 hours after cisplatin treatment. p53 knockdown by specific siRNA greatly reduced Chk2 phosphorylation. We conclude that wild-type p53, in response to cisplatin stimulation, plays a role in the upstream regulation of Chk2 phosphorylation at Thr-68. Cells without normal p53 function survive via an alternative pathway in response to the exogenous influence of cisplatin. We strongly suggest that it is very important to include the p53 mutational status in any p53 involved studies due to the functional differentiation of wt p53 and p53 mutant. Inhibition of Chk2 pathway with a Chk2 inhibitor (C3742) increased cisplatin efficacy, especially those with defective p53. Our findings suggest that inhibition of platinum resistance can be achieved with a small-molecule inhibitor of Chk2, thus improving the therapeutic indices for platinum chemotherapy.

  12. Inhibition of autophagy enhances the effects of the AKT inhibitor MK-2206 when combined with paclitaxel and carboplatin in BRAF wild-type melanoma

    PubMed Central

    Rebecca, Vito W.; Massaro, Renato R.; Fedorenko, Inna V.; Sondak, Vernon K.; Anderson, Alexander R.A.; Kim, Eunjung; Amavaradi, Ravi K.; Maria-Engler, Silvya Stuchi; Messina, Jane L.; Gibney, Geoffrey T.; Kudchadkar, Ragini R.; Smalley, Keiran S. M.

    2014-01-01

    Summary This study investigates the mechanism of action behind the long-term responses (12–16 months) of two BRAF WT melanoma patients to the AKT inhibitor MK-2206 in combination with paclitaxel and carboplatin. Although single agent MK-2206 inhibited phospho-AKT signaling, it did not impact in vitro melanoma growth or survival. The combination of MK-2206 with paclitaxel and carboplatin was cytotoxic in long-term colony formation and 3D spheroid assays, and induced autophagy. Autophagy was initially protective with autophagy inhibitors and deletion of ATG5 found to enhance cytotoxicity. Although prolonged autophagy induction (>6 days) led to caspase-dependent apoptosis, drug resistant clones still emerged. Autophagy inhibition enhanced the cell death response through reactive oxygen species and could be reversed by anti-oxidants. We demonstrate for the first time that AKT inhibition in combination with chemotherapy may have clinical activity in BRAF WT melanoma and show that an autophagy inhibitor may prevent resistance to these drugs. Significance Approximately 30% of all cutaneous melanomas are wild-type for both BRAF and NRAS. As yet, no targeted therapy strategies exist for this sub-set of tumors. Constitutive signaling through the PI3K/AKT pathway is a common occurrence in cutaneous melanoma, irrespective of the driver mutation. Here we report durable responses to the AKT inhibitor MK-2206 in combination with carboplatin and paclitaxel in two patients with BRAF wild-type melanoma. Through mechanistic studies, we demonstrate a role for autophagy induction in the response to the AKT inhibitor/chemotherapy combination and suggest that autophagy inhibitors may be one strategy to enhance efficacy in the clinical setting. PMID:24490764

  13. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35.

    PubMed

    Moretti, Marino; Grunau, Alexander; Minerdi, Daniela; Gehrig, Peter; Roschitzki, Bernd; Eberl, Leo; Garibaldi, Angelo; Gullino, Maria Lodovica; Riedel, Kathrin

    2010-09-01

    Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.

  14. Susceptibility of Different Mouse Wild Type Strains to Develop Diet-Induced NAFLD/AFLD-Associated Liver Disease

    PubMed Central

    Fengler, Vera H. I.; Macheiner, Tanja; Kessler, Sonja M.; Czepukojc, Beate; Gemperlein, Katja; Müller, Rolf; Kiemer, Alexandra K.; Magnes, Christoph; Haybaeck, Johannes; Lackner, Carolin; Sargsyan, Karine

    2016-01-01

    Although non-alcoholic and alcoholic fatty liver disease have been intensively studied, concerning pathophysiological mechanisms are still incompletely understood. This may be due to the use of different animal models and resulting model-associated variation. Therefore, this study aimed to compare three frequently used wild type mouse strains in their susceptibility to develop diet-induced features of non-alcoholic/alcoholic fatty liver disease. Fatty liver disease associated clinical, biochemical, and histological features in C57BL/6, CD-1, and 129Sv WT mice were induced by (i) high-fat diet feeding, (ii) ethanol feeding only, and (iii) the combination of high-fat diet and ethanol feeding. Hepatic and subcutaneous adipose lipid profiles were compared in CD-1 and 129Sv mice. Additionally hepatic fatty acid composition was determined in 129Sv mice. In C57BL/6 mice dietary regimens resulted in heterogeneous hepatic responses, ranging from pronounced steatosis and inflammation to a lack of any features of fatty liver disease. Liver-related serum biochemistry showed high deviations within the regimen groups. CD-1 mice did not exhibit significant changes in metabolic and liver markers and developed no significant steatosis or inflammation as a response to dietary regimens. Although 129Sv mice showed no weight gain, this strain achieved most consistent features of fatty liver disease, apparent from concentration alterations of liver-related serum biochemistry as well as moderate steatosis and inflammation as a result of all dietary regimens. Furthermore, the hepatic lipid profile as well as the fatty acid composition of 129Sv mice were considerably altered, upon feeding the different dietary regimens. Accordingly, diet-induced non-alcoholic/alcoholic fatty liver disease is most consistently promoted in 129Sv mice compared to C57BL/6 and CD-1 mice. As a conclusion, this study demonstrates the importance of genetic background of used mouse strains for modeling diet

  15. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Kelley, Jonathan B; Petkov, Martin

    2012-05-01

    Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice.

  16. Mouse model of human RPE65 P25L hypomorph resembles wild type under normal light rearing but is fully resistant to acute light damage

    PubMed Central

    Li, Yan; Yu, Shirley; Duncan, Todd; Li, Yichao; Liu, Pinghu; Gene, Erelda; Cortes-Pena, Yoel; Qian, Haohua; Dong, Lijin; Redmond, T. Michael

    2015-01-01

    Human RPE65 mutations cause a spectrum of blinding retinal dystrophies from severe early-onset disease to milder manifestations. The RPE65 P25L missense mutation, though having <10% of wild-type (WT) activity, causes relatively mild retinal degeneration. To better understand these mild forms of RPE65-related retinal degeneration, and their effect on cone photoreceptor survival, we generated an Rpe65/P25L knock-in (KI/KI) mouse model. We found that, when subject to the low-light regime (∼100 lux) of regular mouse housing, homozygous Rpe65/P25L KI/KI mice are morphologically and functionally very similar to WT siblings. While mutant protein expression is decreased by over 80%, KI/KI mice retinae retain comparable 11-cis-retinal levels with WT. Consistently, the scotopic and photopic electroretinographic (ERG) responses to single-flash stimuli also show no difference between KI/KI and WT mice. However, the recovery of a-wave response following moderate visual pigment bleach is delayed in KI/KI mice. Importantly, KI/KI mice show significantly increased resistance to high-intensity (20 000 lux for 30 min) light-induced retinal damage (LIRD) as compared with WT, indicating impaired rhodopsin regeneration in KI/KI. Taken together, the Rpe65/P25L mutant produces sufficient chromophore under normal conditions to keep opsins replete and thus manifests a minimal phenotype. Only when exposed to intensive light is this hypomorphic mutation manifested physiologically, as its reduced expression and catalytic activity protects against the successive cycles of opsin regeneration underlying LIRD. These data also help define minimal requirements of chromophore for photoreceptor survival in vivo and may be useful in assessing a beneficial therapeutic dose for RPE65 gene therapy in humans. PMID:25972377

  17. Bone Turnover in Wild Type and Pleiotrophin-Transgenic Mice Housed for Three Months in the International Space Station (ISS)

    PubMed Central

    Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity’s negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice. PMID:22438896

  18. Structural and Morphometric Comparison of Lower Incisors in PACAP-Deficient and Wild-Type Mice.

    PubMed

    Sandor, B; Fintor, K; Reglodi, D; Fulop, D B; Helyes, Z; Szanto, I; Nagy, P; Hashimoto, H; Tamas, A

    2016-06-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread distribution. PACAP plays an important role in the development of the nervous system, it has a trophic and protective effect, and it is also implicated in the regulation of various physiological functions. Teeth are originated from the mesenchyme of the neural crest and the ectoderm of the first branchial arch, suggesting similarities with the development of the nervous system. Earlier PACAP-immunoreactive fibers have been found in the odontoblastic and subodontoblastic layers of the dental pulp. Our previous examinations have shown that PACAP deficiency causes alterations in the morphology and structure of the developing molars of 7-day-old mice. In our present study, morphometric and structural comparison was performed on the incisors of 1-year-old wild-type and PACAP-deficient mice. Hard tissue density measurements and morphometric comparison were carried out on the mandibles and the lower incisors with micro-CT. For structural examination, Raman microscopy was applied on frontal thin sections of the mandible. With micro-CT morphometrical measurements, the size of the incisors and the relative volume of the pulp to dentin were significantly smaller in the PACAP-deficient group compared to the wild-type animals. The density of calcium hydroxyapatite in the dentin was reduced in the PACAP-deficient mice. No structural differences could be observed in the enamel with Raman microscopy. Significant differences were found in the dentin of PACAP-deficient mice with Raman microscopy, where increased carbonate/phosphate ratio indicates higher intracrystalline disordering. The evaluation of amide III bands in the dentin revealed higher structural diversity in wild-type mice. Based upon our present and previous results, it is obvious that PACAP plays an important role in tooth development with the regulation of morphogenesis, dentin, and enamel mineralization. Further studies are

  19. Efavirenz concentrations in CSF exceed IC50 for wild-type HIV

    PubMed Central

    Best, Brookie M.; Koopmans, Peter P.; Letendre, Scott L.; Capparelli, Edmund V.; Rossi, Steven S.; Clifford, David B.; Collier, Ann C.; Gelman, Benjamin B.; Mbeo, Gilbert; McCutchan, J. Allen; Simpson, David M.; Haubrich, Richard; Ellis, Ronald; Grant, Igor; Grant, Igor; McCutchan, J. Allen; Ellis, Ronald J.; Marcotte, Thomas D.; Franklin, Donald; Ellis, Ronald J.; McCutchan, J. Allen; Alexander, Terry; Letendre, Scott; Capparelli, Edmund; Heaton, Robert K.; Atkinson, J. Hampton; Woods, Steven Paul; Dawson, Matthew; Wong, Joseph K.; Fennema-Notestine, Christine; Taylor, Michael J.; Theilmann, Rebecca; Gamst, Anthony C.; Cushman, Clint; Abramson, Ian; Vaida, Florin; Marcotte, Thomas D.; von Jaeger, Rodney; McArthur, Justin; Smith, Mary; Morgello, Susan; Simpson, David; Mintz, Letty; McCutchan, J. Allen; Toperoff, Will; Collier, Ann; Marra, Christina; Jones, Trudy; Gelman, Benjamin; Head, Eleanor; Clifford, David; Al-Lozi, Muhammad; Teshome, Mengesha

    2011-01-01

    Objectives HIV-associated neurocognitive disorders remain common despite use of potent antiretroviral therapy (ART). Ongoing viral replication due to poor distribution of antivirals into the CNS may increase risk for HIV-associated neurocognitive disorders. This study's objective was to determine penetration of a commonly prescribed antiretroviral drug, efavirenz, into CSF. Methods CHARTER is an ongoing, North American, multicentre, observational study to determine the effects of ART on HIV-associated neurological disease. Single random plasma and CSF samples were drawn within 1 h of each other from subjects taking efavirenz between September 2003 and July 2007. Samples were assayed by HPLC or HPLC/mass spectrometry with detection limits of 39 ng/mL (plasma) and <0.1 ng/mL (CSF). Results Eighty participants (age 44 ± 8 years; 79 ± 15 kg; 20 females) had samples drawn 12.5 ± 5.4 h post-dose. The median efavirenz concentrations after a median of 7 months [interquartile range (IQR) 2–17] of therapy were 2145 ng/mL in plasma (IQR 1384–4423) and 13.9 ng/mL in CSF (IQR 4.1–21.2). The CSF/plasma concentration ratio from paired samples drawn within 1 h of each other was 0.005 (IQR 0.0026–0.0076; n = 69). The CSF/IC50 ratio was 26 (IQR 8–41) using the published IC50 for wild-type HIV (0.51 ng/mL). Two CSF samples had concentrations below the efavirenz IC50 for wild-type HIV. Conclusions Efavirenz concentrations in the CSF are only 0.5% of plasma concentrations but exceed the wild-type IC50 in nearly all individuals. Since CSF drug concentrations reflect those in brain interstitial fluids, efavirenz reaches therapeutic concentrations in brain tissue. PMID:21098541

  20. Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L

    PubMed Central

    2011-01-01

    Background The def mutant pea (Pisum sativum L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations. Findings Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants. Conclusions This study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (Def) controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat. PMID:22078070

  1. Acute intermittent porphyria: expression of mutant and wild-type porphobilinogen deaminase in COS-1 cells.

    PubMed Central

    Mustajoki, S.; Laine, M.; Lahtela, M.; Mustajoki, P.; Peltonen, L.; Kauppinen, R.

    2000-01-01

    BACKGROUND: Acute intermittent porphyria (AIP) is an autosomal dominant disorder that results from the partial deficiency of porphobilinogen deaminase (PBGD) in the heme biosynthetic pathway. Patients with AIP can experience acute attacks consisting of abdominal pain and various neuropsychiatric symptoms. Although molecular biological studies on the porphobilinogen deaminase (PBGD) gene have revealed several mutations responsible for AIP, the properties of mutant PBGD in eukaryotic expression systems have not been studied previously. MATERIALS AND METHODS: Seven mutations were analyzed using transient expression of the mutated polypeptides in COS-1 cells. The properties of mutated polypeptides were studied by enzyme activity measurement, Western blot analysis, pulse-chase experiments, and immunofluorescence staining. RESULTS: Of the mutants studied, R26C, R167W, R173W, R173Q, and R225X resulted in a decreased enzyme activity (0-5%), but R225G and 1073delA (elongated protein) displayed a significant residual activity of 16% and 50%, respectively. In Western blot analysis, the polyclonal PBGD antibody detected all mutant polypeptides except R225X, which was predicted to result in a truncated protein. In the pulse-chase experiment, the mutant polypeptides were as stable as the wild-type enzyme. In the immunofluorescence staining both wild-type and mutant polypeptides were diffusely dispersed in the cytoplasm and, thus, no accumulation of mutated proteins in the cellular compartments could be observed. CONCLUSIONS: The results confirm the causality of mutations for the half normal enzyme activity measured in the patients' erythrocytes. In contrast to the decreased enzyme activity, the majority of the mutations produced a detectable polypeptide, and the stability and the intracellular processing of the mutated polypeptides were both comparable to that of the wild-type PBGD and independent of the cross-reacting immunological material (CRIM) class. PMID:11055586

  2. Ribitol dehydrogenase of Klebsiella aerogenes. Sequence and properties of wild-type and mutant strains.

    PubMed Central

    Dothie, J M; Giglio, J R; Moore, C B; Taylor, S S; Hartley, B S

    1985-01-01

    Evidence is presented for the sequence of 249 amino acids in ribitol dehydrogenase-A from Klebsiella aerogenes. Continuous culture on xylitol yields strains that superproduce 'wild-type' enzyme but mutations appear to have arisen in this process. Other strains selected by such continuous culture produce enzymes with increased specific activity for xylitol but without loss of ribitol activity. One such enzyme, ribitol dehydrogenase-D, has Pro-196 for Gly-196. Another, ribitol dehydrogenase-B, has a different mutation. PMID:3904726

  3. Survival differences among freeze-dried genetically engineered and wild-type bacteria.

    PubMed Central

    Israeli, E; Shaffer, B T; Hoyt, J A; Lighthart, B; Ganio, L M

    1993-01-01

    Because the death mechanisms of freeze-dried and air-dried bacteria are thought to be similar, freeze-drying was used to investigate the survival differences between potentially airborne genetically engineered microorganisms and their wild types. To this end, engineered strains of Escherichia coli and Pseudomonas syringae were freeze-dried and exposed to air, visible light, or both. The death rates of all engineered strains were significantly higher than those of their parental strains. Light and air exposure were found to increase the death rates of all strains. Application of death rate models to freeze-dried engineered bacteria to be released into the environment is discussed. PMID:8434925

  4. Long-lasting complete response to imatinib in a patient with systemic mastocytosis exhibiting wild type KIT

    PubMed Central

    Valent, Peter; Cerny-Reiterer, Sabine; Hoermann, Gregor; Sperr, Wolfgang R; Müllauer, Leonhard; Mannhalter, Christine; Pehamberger, Hubert

    2014-01-01

    Systemic mastocytosis (SM) is a hematopoietic disorder characterized by abnormal expansion of mast cells (MCs) in visceral organs. The skin is involved in most cases. In adult patients the transforming KIT mutation D816V is usually present and confers resistance against imatinib. Therefore, imatinib is not recommended for patients with KIT D816V+ SM. Nonetheless, imatinib may work in patients with SM lacking KIT D816V. However, little is known about long-term efficacy and safety of this drug in SM. We report on a 62-year-old female patient with indolent SM (ISM) who suffered from severe debilitating skin involvement despite therapy with anti-mediator-type drugs, psoralen and ultraviolet-A-radiation. Although multifocal MC infiltrates were detected in the bone marrow by immunohistochemistry, no KIT mutation was found by sequencing analysis. In 2003, treatment with imatinib (induction, 400 mg/day; maintenance, 200 mg/day) was initiated. During therapy, skin lesions and tryptase levels decreased. Treatment was well tolerated without any side effects. After 10 years, skin lesions have disappeared and the tryptase level is within normal range. This case-study confirms the long-term efficacy and safety of imatinib in patients with SM lacking activating KIT mutations. Imatinib should be considered in select cases of SM in whom MCs exhibit wild-type KIT. PMID:25755909

  5. Zika virus infection during the period of maximal brain growth causes microcephaly and corticospinal neuron apoptosis in wild type mice

    PubMed Central

    Huang, Wen-Chin; Abraham, Rachy; Shim, Byoung-Shik; Choe, Hyeryun; Page, Damon T.

    2016-01-01

    Zika virus (ZIKV) infection in pregnant women has been established as a cause of microcephaly in newborns. Here we test the hypothesis that neurodevelopmental stages when the brain is undergoing rapid growth are particularly vulnerable to the effects of ZIKV infection. We injected ZIKV intracranially into wild type C57BL/6 mice at two different time points: early postnatal development, when the brain is growing at its maximal rate, and at weaning, when the brain has largely reached adult size. Both time points showed widespread immunoreactivity for ZIKV and cleaved caspase 3 (CC3, a marker of apoptosis) throughout the brain. However, in early postnatal ZIKV injected mice, some brain areas and cell types display particularly large increases in apoptosis that we did not observe in older animals. Corticospinal pyramidal neurons, a cell type implicated in human microcephaly associated with ZIKV infection, are an example of one such cell type. Proliferating cells in the ventricular zone stem cell compartment are also depleted. These findings are consistent with the hypothesis that periods of rapid brain growth are especially susceptible to neurodevelopmental effects of ZIKV infection, and establish a valuable model to investigate mechanisms underlying neurodevelopmental effects of ZIKV infection and explore candidate therapeutics. PMID:27713505

  6. Does the early social environment affect structure and consistency of personality in wild-type male's rat?

    PubMed

    Gracceva, Giulia; Koolhaas, Jaap M; Groothuis, Ton G G

    2011-09-01

    Animal personality has been extensively studied from a functional and evolutionary point of view. Less attention has been paid to the development of personality, its phenotypic plasticity, and the influence of manipulation of early environmental factors. Here we describe the effects of manipulating the sex ratio of the litter, at postnatal day (pnd) 3, in wild-type rats, on personality traits in adulthood. We measured the treatment effects on aggression, defensive burying, and open field behavior at pnd 90 and 120, as well as on their contextual generality, and stability over time (differential and structural consistency). Main effects of litter composition were found on open field behavior at pnd 120 but not on the other behaviors. Since correlations between behaviors changed over time irrespective of the specific treatment, whereas in previous studies on unmanipulated litters this was not the case we suggest that early handling may disrupt adult personality traits. Overall the data indicate that personality is less stable over time that often assumed, having both proximate and ultimate implications.

  7. Rearing in Seawater Mesocosms Improves the Spawning Performance of Growth Hormone Transgenic and Wild-Type Coho Salmon

    PubMed Central

    Leggatt, Rosalind A.; Hollo, Tanya; Vandersteen, Wendy E.; McFarlane, Kassandra; Goh, Benjamin; Prevost, Joelle; Devlin, Robert H.

    2014-01-01

    Growth hormone (GH) transgenes can significantly accelerate growth rates in fish and cause associated alterations to their physiology and behaviour. Concern exists regarding potential environmental risks of GH transgenic fish, should they enter natural ecosystems. In particular, whether they can reproduce and generate viable offspring under natural conditions is poorly understood. In previous studies, GH transgenic salmon grown under contained culture conditions had lower spawning behaviour and reproductive success relative to wild-type fish reared in nature. However, wild-type salmon cultured in equal conditions also had limited reproductive success. As such, whether decreased reproductive success of GH transgenic salmon is due to the action of the transgene or to secondary effects of culture (or a combination) has not been fully ascertained. Hence, salmon were reared in large (350,000 L), semi-natural, seawater tanks (termed mesocosms) designed to minimize effects of standard laboratory culture conditions, and the reproductive success of wild-type and GH transgenic coho salmon from mesocosms were compared with that of wild-type fish from nature. Mesocosm rearing partially restored spawning behaviour and success of wild-type fish relative to culture rearing, but remained lower overall than those reared in nature. GH transgenic salmon reared in the mesocosm had similar spawning behaviour and success as wild-type fish reared in the mesocosm when in full competition and without competition, but had lower success in male-only competition experiments. There was evidence of genotype×environmental interactions on spawning success, so that spawning success of transgenic fish, should they escape to natural systems in early life, cannot be predicted with low uncertainty. Under the present conditions, we found no evidence to support enhanced mating capabilities of GH transgenic coho salmon compared to wild-type salmon. However, it is clear that GH transgenic salmon are

  8. Rearing in seawater mesocosms improves the spawning performance of growth hormone transgenic and wild-type coho salmon.

    PubMed

    Leggatt, Rosalind A; Hollo, Tanya; Vandersteen, Wendy E; McFarlane, Kassandra; Goh, Benjamin; Prevost, Joelle; Devlin, Robert H

    2014-01-01

    Growth hormone (GH) transgenes can significantly accelerate growth rates in fish and cause associated alterations to their physiology and behaviour. Concern exists regarding potential environmental risks of GH transgenic fish, should they enter natural ecosystems. In particular, whether they can reproduce and generate viable offspring under natural conditions is poorly understood. In previous studies, GH transgenic salmon grown under contained culture conditions had lower spawning behaviour and reproductive success relative to wild-type fish reared in nature. However, wild-type salmon cultured in equal conditions also had limited reproductive success. As such, whether decreased reproductive success of GH transgenic salmon is due to the action of the transgene or to secondary effects of culture (or a combination) has not been fully ascertained. Hence, salmon were reared in large (350,000 L), semi-natural, seawater tanks (termed mesocosms) designed to minimize effects of standard laboratory culture conditions, and the reproductive success of wild-type and GH transgenic coho salmon from mesocosms were compared with that of wild-type fish from nature. Mesocosm rearing partially restored spawning behaviour and success of wild-type fish relative to culture rearing, but remained lower overall than those reared in nature. GH transgenic salmon reared in the mesocosm had similar spawning behaviour and success as wild-type fish reared in the mesocosm when in full competition and without competition, but had lower success in male-only competition experiments. There was evidence of genotype×environmental interactions on spawning success, so that spawning success of transgenic fish, should they escape to natural systems in early life, cannot be predicted with low uncertainty. Under the present conditions, we found no evidence to support enhanced mating capabilities of GH transgenic coho salmon compared to wild-type salmon. However, it is clear that GH transgenic salmon are

  9. Use of SLAM and PVRL4 and identification of pro-HB-EGF as cell entry receptors for wild type phocine distemper virus.

    PubMed

    Melia, Mary M; Earle, John Philip; Abdullah, Haniah; Reaney, Katherine; Tangy, Frederic; Cosby, Sara Louise

    2014-01-01

    Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.

  10. Use of SLAM and PVRL4 and Identification of Pro-HB-EGF as Cell Entry Receptors for Wild Type Phocine Distemper Virus

    PubMed Central

    Reaney, Katherine; Tangy, Frederic; Cosby, Sara Louise

    2014-01-01

    Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation. PMID:25171206

  11. WT - WIND TUNNEL PERFORMANCE ANALYSIS

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    WT was developed to calculate fan rotor power requirements and output thrust for a closed loop wind tunnel. The program uses blade element theory to calculate aerodynamic forces along the blade using airfoil lift and drag characteristics at an appropriate blade aspect ratio. A tip loss model is also used which reduces the lift coefficient to zero for the outer three percent of the blade radius. The application of momentum theory is not used to determine the axial velocity at the rotor plane. Unlike a propeller, the wind tunnel rotor is prevented from producing an increase in velocity in the slipstream. Instead, velocities at the rotor plane are used as input. Other input for WT includes rotational speed, rotor geometry, and airfoil characteristics. Inputs for rotor blade geometry include blade radius, hub radius, number of blades, and pitch angle. Airfoil aerodynamic inputs include angle at zero lift coefficient, positive stall angle, drag coefficient at zero lift coefficient, and drag coefficient at stall. WT is written in APL2 using IBM's APL2 interpreter for IBM PC series and compatible computers running MS-DOS. WT requires a CGA or better color monitor for display. It also requires 640K of RAM and MS-DOS v3.1 or later for execution. Both an MS-DOS executable and the source code are provided on the distribution medium. The standard distribution medium for WT is a 5.25 inch 360K MS-DOS format diskette in PKZIP format. The utility to unarchive the files, PKUNZIP, is also included. WT was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation. PKUNZIP is a registered trademark of PKWare, Inc.

  12. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    PubMed

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection.

  13. Prolactin inhibits a major tumor-suppressive function of wild type BRCA1.

    PubMed

    Chen, Kuan-Hui Ethan; Walker, Ameae M

    2016-06-01

    Even though mutations in the tumor suppressor, BRCA1, markedly increase the risk of breast and ovarian cancer, most breast and ovarian cancers express wild type BRCA1. An important question is therefore how the tumor-suppressive function of normal BRCA1 is overcome during development of most cancers. Because prolactin promotes these and other cancers, we investigated the hypothesis that prolactin interferes with the ability of BRCA1 to inhibit the cell cycle. Examining six different cancer cell lines with wild type BRCA1, and making use of both prolactin and the growth-inhibiting selective prolactin receptor modulator, S179D PRL, we demonstrate that prolactin activation of Stat5 results in the formation of a complex between phospho-Stat5 and BRCA1. Formation of this complex does not interfere with nuclear translocation or binding of BRCA1 to the p21 promoter, but does interfere with the ability of BRCA1 to transactivate the p21 promoter. Overexpression of a dominant-negative Stat5 in prolactin-stimulated cells resulted in increased p21 expression. We conclude that prolactin inhibits a major tumor-suppressive function of BRCA1 by interfering with BRCA1's upregulation of expression of the cell cycle inhibitor, p21.

  14. Genetic recombination of tick-borne flaviviruses among wild-type strains.

    PubMed

    Norberg, Peter; Roth, Anette; Bergström, Tomas

    2013-06-05

    Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses.

  15. Physiological effects of fenpropimorph on wild-type Saccharomyces cerevisiae and fenpropimorph-resistant mutants.

    PubMed Central

    Lorenz, R T; Parks, L W

    1991-01-01

    Fenpropimorph-resistant mutants of Saccharomyces cerevisiae were isolated by a gradient selection procedure. The mutants were cross-resistant to other morpholines (fenpropidin, dodemorph, tridemorph) and 15-azasterol, but were susceptible to azoles (miconazole, clotrimazole, ketoconazole) and nystatin. In the absence of fenpropimorph, the major sterol produced by the mutants and the parental strain was ergosterol. In the presence of fenpropimorph, ignosterol (ergosta-8,14-dien-3 beta-ol) was the major sterol produced by the mutants and the parental strain. The resistance to fenpropimorph involves two recessive genes, each of which allows a semiresistance, when they are isolated apart from one another. Strain JR4 (erg3 erg11), which produces 14-methylfecosterol [14 alpha-methyl-ergosta-8,24(28)-dien- 3-beta-ol) as the major sterol in the presence or absence of fenpropimorph, was also found to be resistant to the drug. The growth inhibitory effect of fenpropimorph on wild-type cells appears to be linked to the production of ignosterol. The uptake of exogenous sterol by wild-type cells was greatly enhanced in the presence of fenpropimorph. The growth inhibition caused by fenpropimorph could only be overcome with bulk levels of exogenous C-5,6-unsaturated sterols. PMID:1929324

  16. In Vitro Root Development in Arabidopsis Thaliana Wild-Type and scr Mutants under Clinorotation

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.; Sarnatska, V. V.; Talalaiev, A. S.; Ovcharenko, Y. V.

    2008-06-01

    A task of our experiments was to study in vitro rhizogenesis in Arabidopsis thaliana wild type and scr mutants under slow horizontal clinorotation as a convenient model to clear up a question, whether root morphogenesis de novo will occur normally in simulated microgravity. Two methods for obtaining A. thaliana roots in vitro were used: 1) from the primary callus of leaf origin and 2) directly from leaf explants. Light and electron microscopy and RT-PCR were used for an analysis of the experimental materials. Graviperceptive cells differentiated in roots formed de novo from callus and leaf explants of wild type and scr mutants but did not function under clinorotation. Tissue and cell type patterning in a root proper as well as gene expression in all variants in the control and under clinorotation were similar that gives new evidence on normal morphogenesis in altered gravity. We proposed such model for performing the experiments on board the ISS to study morphogenesis in vitro, including differentiation of graviperceptive cells.

  17. Healthy and tumoral tissue resistivity in wild-type and sparc-/- animal models.

    PubMed

    Meroni, D; Mauri, G; Bovio, D; Bianchi, A M; Chiodoni, C; Colombo, M P; Meroni, E; Aliverti, A

    2016-12-01

    Despite the technological improvement of radiologic, endoscopic and nuclear imaging, the accuracy of diagnostic procedures for tumors can be limited whenever a mass-forming lesion is identified. This is true also because bioptical sampling cannot be properly guided into the lesions so as to puncture neoplastic tissue and to avoid necrotic areas. Under these circumstances, invasive and expensive procedures are still required to obtain diagnosis which is mandatory to plan the most appropriate therapeutic strategy. In order to test if electrical impedance spectroscopy may be helpful in providing further evidence for cancer detection, resistivity measurements were taken on 22 mice, 11 wild-type and 11 sparc-/- (knock out for the protein SPARC: secreted protein acidic and rich in cysteine), bearing mammary carcinomas, by placing a needle-probe into tumor, peritumoral and contralateral healthy fat areas. Tumor resistivity was significantly lower than both peritumoral fat and contralateral fat tissues. Resistivity in sparc-/- mice was lower than wild-type animals. A significant frequency dependence of resistivity was present in tissues analyzed. We conclude that accurate measurements of resistivity may allow to discriminate between tissues with different pathological and/or structural characteristics. Therefore, resistivity measurements could be considered for in vivo detection and differential diagnosis of tumor masses.

  18. Non-Covalent Wild-Type-Sparing Inhibitors of EGFR T790M

    PubMed Central

    Lee, Ho-June; Schaefer, Gabriele; Heffron, Timothy P.; Shao, Lily; Ye, Xiaofen; Sideris, Steve; Malek, Shiva; Chan, Emily; Merchant, Mark; La, Hank; Ubhayakar, Savita; Yauch, Robert L.; Pirazzoli, Valentina; Politi, Katerina; Settleman, Jeff

    2013-01-01

    Approximately half of EGFR mutant non-small cell lung cancer (NSCLC) patients treated with small molecule EGFR kinase inhibitors develop drug resistance associated with the EGFR T790M “gatekeeper” substitution, prompting efforts to develop covalent EGFR inhibitors, which can effectively suppress EGFR T790M in pre-clinical models. However, these inhibitors have yet to prove clinically efficacious, and their toxicity in skin, reflecting activity against wild-type EGFR, may limit dosing required to effectively suppress EGFR T790M in vivo. While profiling sensitivity to various kinase inhibitors across a large cancer cell line panel, we identified indolocarbazole compounds, including a clinically well-tolerated FLT3 inhibitor, as potent and reversible inhibitors of EGFR T790M, which spare wild-type EGFR. These findings demonstrate the utility of broad cancer cell profiling of kinase inhibitor efficacy to identify unanticipated novel applications, and they identify indolocarbazole compounds as potentially effective EGFR inhibitors in the context of T790M-mediated drug resistance in NSCLC. PMID:23229345

  19. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    PubMed Central

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  20. Wild-type macrophages reverse disease in heme oxygenase 1-deficient mice.

    PubMed

    Kovtunovych, Gennadiy; Ghosh, Manik C; Ollivierre, Wade; Weitzel, R Patrick; Eckhaus, Michael A; Tisdale, John F; Yachie, Akihiro; Rouault, Tracey A

    2014-08-28

    Loss-of-function mutation in the heme oxygenase 1 (Hmox1) gene causes a rare and lethal disease in children, characterized by severe anemia and intravascular hemolysis, with damage to endothelia and kidneys. Previously, we found that macrophages engaged in recycling of red cells were depleted from the tissues of Hmox1(-/-) mice, which resulted in intravascular hemolysis and severe damage to the endothelial system, kidneys, and other organs. Here, we report that subablative bone marrow transplantation (BMT) has a curative effect for disease in Hmox1(-/-) animals as a result of restoration of heme recycling by repopulation of the tissues with wild-type macrophages. Although engraftment was transient, BMT reversed anemia, normalized blood chemistries and iron metabolism parameters, and prevented renal damage. The largest proportion of donor-derived cells was observed in the livers of transplanted animals. These cells, identified as Kupffer cells with high levels of Hmox1 expression, persisted months after transient engraftment of the donor bone marrow and were responsible for the full restoration of heme-recycling ability in Hmox1(-/-) mice and reversing Hmox1-deficient phenotype. Our findings suggest that BMT or the development of specific cell therapies to repopulate patients' tissues with wild-type or reengineered macrophages represent promising approaches for HMOX1 deficiency treatment in humans.

  1. Isolation and characterization of plasma membranes from wild type Neurospora crassa.

    PubMed

    Bowman, E J; Bowman, B J; Slayman, C W

    1981-12-10

    A method has been developed to isolate plasma membranes with high ATPase activity from wild type Neurospora. Cells are treated with snail enzyme to weaken their cell walls, disrupted by gentle homogenization in a medium designed to keep mitochondria and other organelles intact, and fractionated by differential centrifugation. After removal of mitochondria, several higher speed particulate fractions (particularly one sedimenting at 40,000 X g) contain an ATPase that can be identified as the plasma membrane enzyme on the basis of sensitivity to vanadate and kinetic properties. Its [S]0.5 for Mg.ATP, specificity for nucleotides and divalent cations, and pH optimum are virtually identical with those reported previously for plasma membrane ATPase from the slime mutant of Neurospora (Bowman, B. J., and Slayman, C. W. (1977) J. Biol. Chem. 252, 3357-3363). By contrast, ATPase specific activities in the wild type plasma membranes are much higher than in slime, ranging up to 7.3 mumol/min/mg of protein (the highest value yet reported for Neurospora). The best preparations appear homogeneous upon sucrose density gradient centrifugation, and band at an equilibrium density of 1.15 g/cm3. Two other markers, chitin synthetase and [acetyl-3H] concanavalin A binding, show approximate co-purification with the plasma membrane ATPase through membrane fractionation and sucrose gradient centrifugation.

  2. Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Edelmann, R. E.; Wood, P. C.

    1999-01-01

    The major purpose of this spaceflight project was to investigate the starch-statolith hypothesis for gravity perception, and a secondary goal was to study plant growth and development under spaceflight conditions. This research was based on our ground studies of gravity perception in the wild type and three starch-deficient (one starchless and two reduced starch) mutants of Arabidopsis thaliana (L.) Heynh. Dark-grown seedlings that developed in microgravity were given one of several (30 min, 60 min, or 90 min) 1-g stimuli by an on-board centrifuge, and additional controls for seedling development also were performed. These latter control experiments included a morphological study of plants that developed in space in microgravity (F microg), in space on a centrifuge (F 1g), on the ground (G 1g), and on a rotating clinostat on the ground. Since elevated levels of ethylene were reported in the spacecraft atmosphere, additional controls for morphology and gravitropism with added ethylene also were performed. While exogenous ethylene reduced the absolute magnitude of the response in all four strains of Arabidopsis, this gas did not appear to change the relative graviresponsiveness among the strains. The relative response of hypocotyls of microgravity-grown seedlings to the stimuli provided by the in-flight centrifuge was: wild type > starch-deficient mutants. Although the protoplast pressure model for gravity perception cannot be excluded, these results are consistent with a statolith-based model for perception in plants.

  3. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor

    PubMed Central

    Aier, Imlimaong; Varadwaj, Pritish Kumar; Raj, Utkarsh

    2016-01-01

    Polycomb group (PcG) proteins have been observed to maintain the pattern of histone by methylation of the histone tail responsible for the gene expression in various cellular processes, of which enhancer of zeste homolog 2 (EZH2) acts as tumor suppressor. Overexpression of EZH2 results in hyper activation found in a variety of cancer. Point mutation on two important residues were induced and the results were compared between the wild type and mutant EZH2. The mutation of Y641 and A677 present in the active region of the protein alters the interaction of the top ranked compound with the newly modeled binding groove of the SET domain, giving a GLIDE score of −12.26 kcal/mol, better than that of the wild type at −11.664 kcal/mol. In depth analysis were carried out for understanding the underlying molecular mechanism using techniques viz. molecular dynamics, principal component analysis, residue interaction network and free energy landscape analysis, which showed that the mutated residues changed the overall conformation of the system along with the residue-residue interaction network. The insight from this study could be of great relevance while designing new compounds for EZH2 enzyme inhibition and the effect of mutation on the overall binding mechanism of the system. PMID:27713574

  4. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  5. Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host.

    PubMed

    Nielsen, Line; Søgaard, Mette; Jensen, Trine Hammer; Andersen, Mads Klindt; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-09-01

    The mechanisms behind the in vivo virulence of immunosuppressive wild-type morbillivirus infections are still not fully understood. To investigate lymphotropism and host responses, we have selected the natural host model of canine distemper virus (CDV) infection in mink. This model displays multisystemic infection, similar to measles virus and rinderpest virus infections in their susceptible natural hosts. The wild-type CDVs investigated provoked marked virulence differences, inducing mild versus marked to severe acute disease. The mildly virulent wild-type virus induced transient lymphopenia, despite the development of massive infection of peripheral blood mononuclear cells (PBMCs) exceeding that determined for the highly virulent wild-type virus, indicating an inverse relationship between acute virulence and the extent of viraemia in the investigated wild-type viruses. Single-cell cytokine production in PBMCs was investigated throughout the acute infections. We observed Th1- and Th2-type cytokine responses beginning in the prodromal phase, and late inflammatory responses were shared between the wild-type infections.

  6. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  7. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs

    PubMed Central

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude. PMID:23127366

  8. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs.

    PubMed

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude.

  9. Expression of the Prion Protein Family Member Shadoo Causes Drug Hypersensitivity That Is Diminished by the Coexpression of the Wild Type Prion Protein*

    PubMed Central

    Nyeste, Antal; Bencsura, Petra; Vida, István; Hegyi, Zoltán; Homolya, László; Fodor, Elfrieda; Welker, Ervin

    2016-01-01

    The prion protein (PrP) seems to exert both neuroprotective and neurotoxic activities. The toxic activities are associated with the C-terminal globular parts in the absence of the flexible N terminus, specifically the hydrophobic domain (HD) or the central region (CR). The wild type prion protein (PrP-WT), having an intact flexible part, exhibits neuroprotective qualities by virtue of diminishing many of the cytotoxic effects of these mutant prion proteins (PrPΔHD and PrPΔCR) when coexpressed. The prion protein family member Doppel, which possesses a three-dimensional fold similar to the C-terminal part of PrP, is also harmful to neuronal and other cells in various models, a phenotype that can also be eliminated by the coexpression of PrP-WT. In contrast, another prion protein family member, Shadoo (Sho), a natively disordered protein possessing structural features similar to the flexible N-terminal tail of PrP, exhibits PrP-WT-like protective properties. Here, we report that, contrary to expectations, Sho expression in SH-SY5Y or HEK293 cells induces the same toxic phenotype of drug hypersensitivity as PrPΔCR. This effect is exhibited in a dose-dependent manner and is also counteracted by the coexpression of PrP-WT. The opposing effects of Shadoo in different model systems revealed here may be explored to help discern the relationship of the various toxic activities of mutant PrPs with each other and the neurotoxic effects seen in neurodegenerative diseases, such as transmissible spongiform encephalopathy and Alzheimer disease. PMID:26721882

  10. Hepatic effects of repeated oral administration of diclofenac to hepatic cytochrome P450 reductase null (HRN™) and wild-type mice.

    PubMed

    Akingbasote, James A; Foster, Alison J; Wilson, Ian; Sarda, Sunil; Jones, Huw B; Kenna, J Gerry

    2016-04-01

    Hepatic NADPH-cytochrome P450 oxidoreductase null (HRN™) mice exhibit normal hepatic and extrahepatic biotransformation enzyme activities when compared to wild-type (WT) mice, but express no functional hepatic cytochrome P450 activities. When incubated in vitro with [(14)C]-diclofenac, liver microsomes from WT mice exhibited extensive biotransformation to oxidative and glucuronide metabolites and covalent binding to proteins was also observed. In contrast, whereas glucuronide conjugates and a quinone-imine metabolite were formed when [(14)C]-diclofenac was incubated with HRN™ mouse liver, only small quantities of P450-derived oxidative metabolites were produced in these samples and covalent binding to proteins was not observed. Livers from vehicle-treated HRN™ mice exhibited enhanced lipid accumulation, bile duct proliferation, hepatocellular degeneration and necrosis and inflammatory cell infiltration, which were not present in livers from WT mice. Elevated liver-derived alanine aminotransferase, glutamate dehydrogenase and alkaline phosphatase activities were also observed in plasma from HRN™ mice. When treated orally with diclofenac for 7 days, at 30 mg/kg/day, the severities of the abnormal liver histopathology and plasma liver enzyme findings in HRN™ mice were reduced markedly. Oral diclofenac administration did not alter the liver histopathology or elevate plasma enzyme activities of WT mice. These findings indicate that HRN™ mice are valuable for exploration of the role played by hepatic P450s in drug biotransformation, but poorly suited to investigations of drug-induced liver toxicity. Nevertheless, studies in HRN™ mice could provide novel insights into the role played by inflammation in liver injury and may aid the evaluation of new strategies for its treatment.

  11. Differential genotoxic effects of subchronic exposure to ethyl tertiary butyl ether in the livers of Aldh2 knockout and wild-type mice.

    PubMed

    Weng, Zuquan; Suda, Megumi; Ohtani, Katsumi; Mei, Nan; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2012-04-01

    Ethyl tertiary butyl ether (ETBE) is used as an additive to gasoline to reduce carbon monoxide emissions in some developed countries. So far, ETBE was not found with positive results in many genotoxic assays. This study is undertaken to investigate the modifying effects of deficiency of aldehyde dehydrogenase 2 (ALDH2) on the toxicity of ETBE in the livers of mice. Eight-week-old wild-type (WT) and Aldh2 knockout (KO) C57BL/6 mice of both sexes were exposed to 0, 500, 1,750, and 5,000 ppm ETBE for 6 h/day with 5 days per weeks for 13 weeks. Histopathology assessments and measurements of genetic effects in the livers were performed. Significantly increased accidences of centrilobular hypertrophy were observed in the livers of WT and KO mice of both sexes in 5,000 ppm group; there was a sex difference in centrilobular hypertrophy between male and female KO mice, with more severe damage in the males. In addition, DNA strand breaks, 8-hydroxyguanine DNA-glycosylase (hOGG1)-modified oxidative base modification, and 8-hydroxydeoxyguanosine as genetic damage endpoints were significantly increased in three exposure groups in KO male mice, while these genotoxic effects were only found in 5,000 ppm group of KO female mice. In WT mice, significant DNA damage was seen in 5,000 ppm group of male mice, but not in females. Thus, sex differences in DNA damage were found not only in KO mice, but also in WT mice. These results suggest that ALDH2 polymorphisms and sex should be taken into considerations in predicting human health effects of ETBE exposure.

  12. Experimental investigation of magneto-aerotaxis on wild-type magnetotactic bacteria in sediment

    NASA Astrophysics Data System (ADS)

    Mao, X.; Egli, R.

    2012-12-01

    Magnetotactic bacteria (MB) synthesize chains of magnetic particles, called magnetosomes, which provide a magnetic dipole that passively aligns the cells along the geomagnetic field. Flagellar propulsion allows MB to swim straight along field lines in what is known as magnetotaxis. The flagellum rotation sense is controlled by the chemical environment, so that MB can efficiently move across chemically stratified environments to reach the so-called oxic-anoxic interface (OAI). This combination of oriented swimming controlled by chemical (oxygen) sensing is called magneto-aerotaxis (Frankel 1997). Experiments with MB cultures show that magnetic spirilla can change instantaneously the swimming direction, while the behaviour of cocci depends on a sort of 'internal state' dictated by their original location with respect to the OAI. Here, we present first results the magneto-aerotactic behaviour of wild-type MB living in microcosms created with sediment retrieved from lake Chiemsee (Bavaria, Germany). In these microcosms, a stable population of MB (mainly unidentified strains of cocci, and Magnetobacterium Bavaricum) occur in the upmost few cm below the sediment surface, with maximum concentrations just below the OAI. We tested the reaction of this MB population to changes in chemical conditions by putting the microcosm inside a glove box with controlled oxygen-free atmospheres (N2 and CO2). A new equilibrium was reached within few weeks, with the OAI first moving upward and then disappearing. The depth distribution and swimming direction of MB was tested during and after the formation of a new equilibrium. We were never able to observe swimming directions consistent with bacteria moving upward in the sediment, as it was the case with cultured cocci in Frankel [1997], even long time after the entire sediment column became completely anoxic. Nevertheless, the disappearance of the OAI was accompanied by a slight but significant decrease of the total MB population

  13. Structural Insights into Conformational Stability of Wild-Type and Mutant β1-Adrenergic Receptor

    PubMed Central

    Balaraman, Gouthaman S.; Bhattacharya, Supriyo; Vaidehi, Nagarajan

    2010-01-01

    Abstract Recent experiments to derive a thermally stable mutant of turkey beta-1-adrenergic receptor (β1AR) have shown that a combination of six single point mutations resulted in a 20°C increase in thermal stability in mutant β1AR. Here we have used the all-atom force-field energy function to calculate a stability score to detect stabilizing point mutations in G-protein coupled receptors. The calculated stability score shows good correlation with the measured thermal stability for 76 single point mutations and 22 multiple mutants in β1AR. We have demonstrated that conformational sampling of the receptor for various mutants improve the prediction of thermal stability by 50%. Point mutations Y227A5.58, V230A5.61, and F338M7.48 in the thermally stable mutant m23-β1AR stabilizes key microdomains of the receptor in the inactive conformation. The Y227A5.58 and V230A5.61 mutations stabilize the ionic lock between R1393.50 on transmembrane helix3 and E2856.30 on transmembrane helix6. The mutation F338M7.48 on TM7 alters the interaction of the conserved motif NPxxY(x)5,6F with helix8 and hence modulates the interaction of TM2-TM7-helix8 microdomain. The D186-R317 salt bridge (in extracellular loops 2 and 3) is stabilized in the cyanopindolol-bound wild-type β1AR, whereas the salt bridge between D184-R317 is preferred in the mutant m23. We propose that this could be the surrogate to a similar salt bridge found between the extracellular loop 2 and TM7 in β2AR reported recently. We show that the binding energy difference between the inactive and active states is less in m23 compared to the wild-type, which explains the activation of m23 at higher norepinephrine concentration compared to the wild-type. Results from this work throw light into the mechanism behind stabilizing mutations. The computational scheme proposed in this work could be used to design stabilizing mutations for other G-protein coupled receptors. PMID:20643076

  14. Immunoproteasome-Deficiency Has No Effects on NK Cell Education, but Confers Lymphocytes into Targets for NK Cells in Infected Wild-Type Mice

    PubMed Central

    Bekker, Cornelis P. J.; Boog, Claire J. P.; Zaiss, Dietmar M. W.; Sijts, Alice J. A. M.

    2011-01-01

    Natural killer (NK) cells are part of the innate immune system and contribute to the eradication of virus infected cells and tumors. NK cells express inhibitory and activating receptors and their decision to kill a target cell is based on the balance of signals received through these receptors. MHC class I molecules are recognized by inhibitory receptors, and their presence during NK cell education influences the responsiveness of peripheral NK cells. We here demonstrate that mice with reduced MHC class I cell surface expression, due to deficiency of immunoproteasomes, have responsive NK cells in the periphery, indicating that the lower MHC class I levels do not alter NK cell education. Following adoptive transfer into wild-type (wt) recipients, immunoproteasome-deficient splenocytes are tolerated in naive but rejected in virus-infected recipients, in an NK cell dependent fashion. These results indicate that the relatively low MHC class I levels are sufficient to protect these cells from rejection by wt NK cells, but that this tolerance is broken in infection, inducing an NK cell-dependent rejection of immunoproteasome-deficient cells. PMID:21887316

  15. Differential apoptotic and proliferative activities of wild-type FOXL2 and blepharophimosis-ptosis-epicanthus inversus syndrome (BPES)-associated mutant FOXL2 proteins.

    PubMed

    Kim, Jae-Hong; Bae, Jeehyeon

    2014-03-07

    FOXL2 is an essential transcription factor that is required for proper development of the ovary and eyelid. Mutations in FOXL2 cause an autosomal dominant genetic disorder, blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). BPES type I patients have eyelid malformation and premature ovarian failure leading to infertility, whereas women with type II BPES are fertile or subfertile. In the present study, we evaluated and compared apoptotic and antiproliferative activities of wild-type (WT) and mutant FOXL2 proteins found in BPES type I and II in human granulosa cell tumor-derived KGN cells. Ectopic expression of WT FOXL2 induced apoptosis and inhibited cell cycle progression in human granulosa cells. In contrast, mutated FOXL2s found in BPES type I significantly reduced these activities, whereas mutated FOXL2s in BPES type II showed intermediate activities. Furthermore, mutant FOX L2 proteins were defective in activating transcription of target genes including Caspase 8, TNF-R1, FAS, p21, and BMP4, which regulate apoptosis, proliferation, and differentiation of granulosa cells. Thus, decreased apoptotic and antiproliferative activities caused by mutant forms of FOXL2 found in BPES patients may at least partially contribute to the pathophysiology of ovarian dysfunction.

  16. Differential Apoptotic and Proliferative Activities of Wild-type FOXL2 and Blepharophimosis-ptosis-epicanthus Inversus Syndrome (BPES)-associated Mutant FOXL2 Proteins

    PubMed Central

    KIM, Jae-Hong; BAE, Jeehyeon

    2013-01-01

    Abstract FOXL2 is an essential transcription factor that is required for proper development of the ovary and eyelid. Mutations in FOXL2 cause an autosomal dominant genetic disorder, blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). BPES type I patients have eyelid malformation and premature ovarian failure leading to infertility, whereas women with type II BPES are fertile or subfertile. In the present study, we evaluated and compared apoptotic and antiproliferative activities of wild-type (WT) and mutant FOXL2 proteins found in BPES type I and II in human granulosa cell tumor-derived KGN cells. Ectopic expression of WT FOXL2 induced apoptosis and inhibited cell cycle progression in human granulosa cells. In contrast, mutated FOXL2s found in BPES type I significantly reduced these activities, whereas mutated FOXL2s in BPES type II showed intermediate activities. Furthermore, mutant FOX L2 proteins were defective in activating transcription of target genes including Caspase 8, TNF-R1, FAS, p21, and BMP4, which regulate apoptosis, proliferation, and differentiation of granulosa cells. Thus, decreased apoptotic and antiproliferative activities caused by mutant forms of FOXL2 found in BPES patients may at least partially contribute to the pathophysiology of ovarian dysfunction. PMID:24240106

  17. Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild-type and MSC16 mutant grown under different light intensities.

    PubMed

    Florez-Sarasa, Igor; Ostaszewska, Monika; Galle, Alexander; Flexas, Jaume; Rychter, Anna M; Ribas-Carbo, Miquel

    2009-12-01

    In vitro studies demonstrated that alternative oxidase (AOX) is biochemically regulated by a sulfhydryl-disulfide system, interaction with alpha-ketoacids, ubiquinone pool redox state and protein content among others. However, there is still scarce information about the in vivo regulation of the AOX. Cucumis sativus wild-type (WT) and MSC16 mutant plants were grown under two different light intensities and were used to analyze the relationship between the amount of leaf AOX protein and its in vivo capacity and activity at night and day periods. WT and MSC16 plants presented lower total respiration (V(t)), cytochrome oxidase pathway (COP) activity (v(cyt)) and alternative oxidase pathway (AOP) activity (v(alt)) when grown at low light (LL), although growth light intensity did not change the amount of cytochrome oxidase (COX) nor AOX protein. Changes of v(cyt) related to growing light conditions suggested a substrate availability and energy demand control. On the other hand, the total amount of AOX protein present in the tissue does not play a role in the regulation neither of the capacity nor of the activity of the AOP in vivo. Soluble carbohydrates were directly related to the activity of the AOP. However, although differences in soluble sugar contents mostly regulate the capacity of the AOP at different growth light intensities, additional regulatory mechanisms are necessary to fully explain the observed results.

  18. Immunoproteasome-deficiency has no effects on NK cell education, but confers lymphocytes into targets for NK cells in infected wild-type mice.

    PubMed

    van Helden, Mary J G; de Graaf, Natascha; Bekker, Cornelis P J; Boog, Claire J P; Zaiss, Dietmar M W; Sijts, Alice J A M

    2011-01-01

    Natural killer (NK) cells are part of the innate immune system and contribute to the eradication of virus infected cells and tumors. NK cells express inhibitory and activating receptors and their decision to kill a target cell is based on the balance of signals received through these receptors. MHC class I molecules are recognized by inhibitory receptors, and their presence during NK cell education influences the responsiveness of peripheral NK cells. We here demonstrate that mice with reduced MHC class I cell surface expression, due to deficiency of immunoproteasomes, have responsive NK cells in the periphery, indicating that the lower MHC class I levels do not alter NK cell education. Following adoptive transfer into wild-type (wt) recipients, immunoproteasome-deficient splenocytes are tolerated in naive but rejected in virus-infected recipients, in an NK cell dependent fashion. These results indicate that the relatively low MHC class I levels are sufficient to protect these cells from rejection by wt NK cells, but that this tolerance is broken in infection, inducing an NK cell-dependent rejection of immunoproteasome-deficient cells.

  19. Comparative N-linked glycan analysis of wild-type and α1,3-galactosyltransferase gene knock-out pig fibroblasts using mass spectrometry approaches.

    PubMed

    Park, Hae-Min; Kim, Yoon-Woo; Kim, Kyoung-Jin; Kim, Young June; Yang, Yung-Hun; Jin, Jang Mi; Kim, Young Hwan; Kim, Byung-Gee; Shim, Hosup; Kim, Yun-Gon

    2015-01-31

    Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after α1,3-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identified and quantified totally 47 N-glycans from wild-type (WT) and GalT-KO pig fibroblasts using mass spectrometry. First, our results confirmed the absence of galactose-alpha-1,3-galactose (α-Gal) residue in the GalT-KO pig cells. Interestingly, we showed that the level of overall fucosylated N-glycans from GalT-KO pig fibroblasts is much higher than from WT pig fibroblasts. Moreover, the relative quantity of the N-glycolylneuraminic acid (NeuGc) antigen is slightly higher in the GalT-KO pigs. Thus, this study will contribute to a better understanding of cellular glycan alterations on GalT-KO pigs for successful xenotransplantation.

  20. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53.

    PubMed Central

    Forrester, K; Ambs, S; Lupold, S E; Kapust, R B; Spillare, E A; Weinberg, W C; Felley-Bosco, E; Wang, X W; Geller, D A; Tzeng, E; Billiar, T R; Harris, C C

    1996-01-01

    The tumor suppressor gene product p53 plays an important role in the cellular response to DNA damage from exogenous chemical and physical mutagens. Therefore, we hypothesized that p53 performs a similar role in response to putative endogenous mutagens, such as nitric oxide (NO). We report here that exposure of human cells to NO generated from an NO donor or from overexpression of inducible nitric oxide synthase (NOS2) results in p53 protein accumulation. In addition, expression of wild-type (WT) p53 in a variety of human tumor cell lines, as well as murine fibroblasts, results in down-regulation of NOS2 expression through inhibition of the NOS2 promoter. These data are consistent with the hypothesis of a negative feedback loop in which endogenous NO-induced DNA damage results in WT p53 accumulation and provides a novel mechanism by which p53 safeguards against DNA damage through p53-mediated transrepression of NOS2 gene expression, thus reducing the potential for NO-induced DNA damage. Images Fig. 1 Fig. 2 Fig. 3 PMID:8637893

  1. Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of arabidopsis.

    PubMed Central

    Lorenzen, M; Racicot, V; Strack, D; Chapple, C

    1996-01-01

    Sinapoylmalate is one of the major phenylpropanoid metabolites that is accumulated in the vegetative tissue of Arabidopsis thaliana. A thin-layer chromatography-based mutant screen identified two allelic mutant lines that accumulated sinapoylglucose in their leaves in place of sinapoylmalate. Both mutations were found to be recessive and segregated as single Mendelian genes. These mutants define a new locus called SNG1 for sinapoylglucose accumulator. Plants that are homozygous for the sng1 mutation accumulate normal levels of malate in their leaves but lack detectable levels of the final enzyme in sinapate ester biosynthesis, sinapoylglucose:malate sinapoyltransferase. A study of wild-type and sng1 seedlings found that sinapic acid ester biosynthesis in Arabidopsis is developmentally regulated and that the accumulation of sinapate esters is delayed in sng1 mutant seedlings. PMID:8972602

  2. Quantitative characterization of planarian wild-type behavior as a platform for screening locomotion phenotypes.

    PubMed

    Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Changes in animal behavior resulting from genetic or chemical intervention are frequently used for phenotype characterizations. The majority of these studies are qualitative in nature, especially in systems that go beyond the classical model organisms. Here, we introduce a quantitative method to characterize behavior in the freshwater planarian Schmidtea mediterranea. Wild-type locomotion in confinement was quantified using a wide set of parameters, and the influences of intrinsic intra-worm versus inter-worm variability on our measurements was studied. We also examined the effect of substrate, confinement geometry and the interactions with the boundary on planarian behavior. The method is based on a simple experimental setup, using automated center-of-mass tracking and image analysis, making it an easily implemented alternative to current methods for screening planarian locomotion phenotypes. As a proof of principle, two drug-induced behavioral phenotypes were generated to show the capacity of this method.

  3. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a.

    PubMed

    Vanderslice, P; Copeland, W C; Robertus, J D

    1986-11-15

    Prohistidine decarboxylase from Lactobacillus 30a is a protein that autoactivates to histidine decarboxylase by cleaving its peptide chain between serines 81 and 82 and converting Ser-82 to a pyruvoyl moiety. The pyruvoyl group serves as the prosthetic group for the decarboxylation reaction. We have cloned and determined the nucleotide sequence of the gene for this enzyme from a wild type strain and from a mutant with altered autoactivation properties. The nucleotide sequence modifies the previously determined amino acid sequence of the protein. A tripeptide missed in the chemical sequence is inserted, and three other amino acids show conservative changes. The activation mutant shows a single change of Gly-58 to an Asp. Sequence analysis up- and downstream from the gene suggests that histidine decarboxylase is part of a polycistronic message, and that the transcriptional promotor region is strongly homologous to those of other Gram-positive organisms.

  4. The Phenotypic Effects of Royal Jelly on Wild-Type D. melanogaster Are Strain-Specific

    PubMed Central

    Morgan, Stefanie L.; Seggio, Joseph A.; Hicks, Jasmin A.; Sharp, Katherine A.; Axelrod, Jeffrey D.; Wang, Kevin C.

    2016-01-01

    The role for royal jelly (RJ) in promoting caste differentiation of honeybee larvae into queens rather than workers is well characterized. A recent study demonstrated that this poorly understood complex nutrition drives strikingly similar phenotypic effects in Drosophila melanogaster, such as increased body size and reduced developmental time, making possible the use of D. melanogaster as a model system for the genetic analysis of the cellular mechanisms underlying RJ and caste differentiation. We demonstrate here that RJ increases the body size of some wild-type strains of D. melanogaster but not others, and report significant delays in developmental time in all flies reared on RJ. These findings suggest that cryptic genetic variation may be a factor in the D. melanogaster response to RJ, and should be considered when attempting to elucidate response mechanisms to environmental changes in non-honeybee species. PMID:27486863

  5. Neurophysiology of Flight in Wild-Type and a Mutant Drosophila

    PubMed Central

    Levine, Jon D.; Wyman, Robert J.

    1973-01-01

    We report the flight motor output pattern in Drosophila melanogaster and the neural network responsible for it, and describe the bursting motor output pattern in a mutant. There are 26 singly-innervated muscle fibers. There are two basic firing patterns: phase progression, shown by units that receive a common input but have no cross-connections, and phase stability, in which synergic units, receiving a common input and inhibiting each other, fire in a repeating sequence. Flies carrying the mutation stripe cannot fly. Their motor output is reduced to a short duration, high-frequency burst, but the patterning within bursts shows many of the characteristics of the wild type. The mutation is restricted in its effect, as the nervous system has normal morphology by light microscopy and other behaviors of the mutant are normal. Images PMID:4197927

  6. Resistivity profiles of wild-type, rd1, and rd10 mouse retina.

    PubMed

    Boshuo Wang; Weiland, James D

    2015-08-01

    Electrical impedance of the retina is a critical factor in retinal prostheses, determining the intraretinal current flow and potential distribution of electrical stimulation. Previous resistivity measurements in retina were limited to healthy retina, and didn't include mouse models, a common and important animal model in retinal research. This experimental study measured the resistivity profiles of wild-type, rd1, and rd10 mice, providing basis for computational simulations and predictive modeling studies. The peak resistance frequency method has been utilized to measure the resistivity profiles of the retina cross section, and the results show agreement with previous studies in retina of normal rats and embryonic chicks. Retinal degeneration affects the width of the profile, which is in agreement with histological measurements. Degeneration also results in lower peak resistivity. The results indicate that, on the mesoscopic scale, resistivity is dominated by spatial factors, while influence of remodeling on the cellular level is not apparent under such scale.

  7. Intronic T-DNA insertion in Arabidopsis NBR1 conditionally affects wild-type transcript level

    PubMed Central

    Rodríguez, Milagros Collados; Wawrzyńska, Anna; Sirko, Agnieszka

    2014-01-01

    Abstract The SALK_135513 line of Arabidopsis thaliana is annotated by GenBank to have the T-DNA insertion in the fourth exon of NBR1 (At4g24690). Careful molecular analyses of the homozygous plants of SALK_135513 line indicated the place of T-DNA insertion in the fourth intron. Unexpectedly, 2 kinds of NBR1 transcripts, the wild-type and the mutated, resulting from alternative splicing events, were detected in those plants. Our findings explain the problems encountered by us with phenotypic evaluation of this line and emphasize the necessity for independent verification of the exact insertion site followed by careful expression studies when working with Arabidopsis T-DNA insertional mutants. PMID:25482782

  8. Intronic T-DNA insertion in Arabidopsis NBR1 conditionally affects wild-type transcript level.

    PubMed

    Rodríguez, Milagros Collados; Wawrzyńska, Anna; Sirko, Agnieszka

    2014-01-01

    The SALK_135513 line of Arabidopsis thaliana is annotated by GenBank to have the T-DNA insertion in the fourth exon of NBR1 (At4g24690). Careful molecular analyses of the homozygous plants of SALK_135513 line indicated the place of T-DNA insertion in the fourth intron. Unexpectedly, 2 kinds of NBR1 transcripts, the wild-type and the mutated, resulting from alternative splicing events, were detected in those plants. Our findings explain the problems encountered by us with phenotypic evaluation of this line and emphasize the necessity for independent verification of the exact insertion site followed by careful expression studies when working with Arabidopsis T-DNA insertional mutants.

  9. Modest increased sensitivity to radiation oncogenesis in ATM heterozygous versus wild-type mammalian cells

    NASA Technical Reports Server (NTRS)

    Smilenov, L. B.; Brenner, D. J.; Hall, E. J.

    2001-01-01

    Subpopulations that are genetically predisposed to radiation-induced cancer could have significant public health consequences. Individuals homozygous for null mutations at the ataxia telangiectasia gene are indeed highly radiosensitive, but their numbers are very small. Ataxia Telangiectasia heterozygotes (1-2% of the population) have been associated with somewhat increased radiosensitivity for some end points, but none directly related to carcinogenesis. Here, intralitter comparisons between wild-type mouse embryo fibroblasts and mouse embryo fibroblasts carrying ataxia telangiectasia mutated (ATM) null mutation indicate that the heterozygous cells are more sensitive to radiation oncogenesis than their normal, litter-matched, counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally-significant radiosensitive human subpopulation.

  10. Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types.

    PubMed

    De Witte, B; Devriese, L; Bekaert, K; Hoffman, S; Vandermeersch, G; Cooreman, K; Robbens, J

    2014-08-15

    This study compared species identity, microplastics, chemical and microbial contamination between consumption mussels and wild type mussels, collected at Belgian department stores and Belgian groynes and quaysides, respectively. Species identification based on genetic analysis showed a high number of Mytilus (M.) edulis compared to M. galloprovincialis and M. edulis/galloprovincialis hybrid mussels. The number of total microplastics varied from 2.6 to 5.1 fibres/10 g of mussel. A higher prevalence of orange fibres at quaysides is related to fisheries activities. Chemical contamination of polycyclic aromatic hydrocarbons and polychlorobiphenyls could be related to industrial activities and water turbidity, with maximum concentrations at the quayside of port Zeebrugge. The inverse was noted for Escherichia coli contamination, which was relatively low at Zeebrugge quayside with a total count of 3.9 × 10(2)CFU/100 g tissue, due to limited agricultural effluents. Results of this complementary analysis stress the importance of integrated monitoring and quality assessment.

  11. Comparation of enhanced green fluorescent protein gene transfected and wild-type porcine neural stem cells.

    PubMed

    Zheng, Yue-Mao; An, Zhi-Xing; Zhao, Xiao-E; Quan, Fu-Sheng; Zhao, Hui-Ying; Zhang, Ya-Rong; Liu, Jun; He, Xiao-Ying; He, Xiao-Ning

    2010-02-01

    The aim of this study was to transfect and express the enhanced green fluorescence protein (EGFP) gene into porcine neural stem cells (NSCs) to determine whether EGFP can be used as a marker to monitor NSCs. NSCs were isolated from embryonic day 30 fetal pig brain and transfected with EGFP gene using lipofection. Transfected and wild-type NSCs were induced to differentiate into cells of neuronal and myogenic lineages. Markers of passage three NSCs and their differentiated cells were tested by reverse transcription polymerase chain reaction. The results showed that EGFP could be expressed in NSCs and the differentiated cells. NSCs expressed Nestin, NogoA, DCX, Hes1, Oct4, CD-90 and Sox2. NSCs could differentiated into astrocyte (GFAP(+)), oligodendrocyte (GalC(+)), neuron (NF(+), NSE(+) and MAP2(+)) and myocyte (myf-6(+) and myoD(+)). We concluded that EGFP can be used as a marker in monitoring NSCs.

  12. Adeno-Associated Virus Enhances Wild-Type and Oncolytic Adenovirus Spread

    PubMed Central

    Laborda, Eduardo; Puig-Saus, Cristina; Cascalló, Manel; Chillón, Miguel

    2013-01-01

    Abstract The contamination of adenovirus (Ad) stocks with adeno-associated viruses (AAV) is usually unnoticed, and it has been associated with lower Ad yields upon large-scale production. During Ad propagation, AAV contamination needs to be detected routinely by polymerase chain reaction without symptomatic suspicion. In this study, we describe that the coinfection of either Ad wild type 5 or oncolytic Ad with AAV results in a large-plaque phenotype associated with an accelerated release of Ad from coinfected cells. This accelerated release was accompanied with the expected decrease in Ad yields in two out of three cell lines tested. Despite this lower Ad yield, coinfection with AAV accelerated cell death and enhanced the cytotoxicity mediated by Ad propagation. Intratumoral coinjection of Ad and AAV in two xenograft tumor models improved antitumor activity and mouse survival. Therefore, we conclude that accidental or intentional AAV coinfection has important implications for Ad-mediated virotherapy. PMID:24020980

  13. Molecular Dynamics Approach in the Comparison of Wild-Type and Mutant Paraoxonase-1 Apoenzyme Form.

    PubMed

    Amine, Khadija; Miri, Lamia; Naimi, Adil; Saile, Rachid; El Kharrim, Abderrahmane; Mikou, Afaf; Kettani, Anass

    2015-01-01

    There is some evidence linking the mammalian paraoxonase-1 (PON1) loops (L1 and L2) to an increased flexibility and reactivity of its active site with potential substrates. The aim of this work is to study the structural, dynamical, and functional effects of the most flexible regions close to the active site and to determine the impact of mutations on the protein. For both models, wild-type (PON1wild) and PON1 mutant (PON1mut) models, the L1 loop and Q/R and L/M mutations were constructed using MODELLER software. Molecular dynamics simulations of 20 ns at 300 K on fully modeled PON1wild and PON1mut apoenzyme have been done. Detailed analyses of the root-mean-square deviation and fluctuations, H-bonding pattern, and torsion angles have been performed. The PON1wild results were then compared with those obtained for the PON1mut. Our results show that the active site in the wild-type structure is characterized by two distinct movements of opened and closed conformations of the L1 and L2 loops. The alternating and repetitive movement of loops at specific times is consistent with the presence of 11 defined hydrogen bonds. In the PON1mut, these open-closed movements are therefore totally influenced and repressed by the Q/R and L/M mutations. In fact, these mutations seem to impact the PON1mut active site by directly reducing the catalytic core flexibility, while maintaining a significant mobility of the switch regions delineated by the loops surrounding the active site. The impact of the studied mutations on structure and dynamics proprieties of the protein may subsequently contribute to the loss of both flexibility and activity of the PON1 enzyme.

  14. Molecular Dynamics Approach in the Comparison of Wild-Type and Mutant Paraoxonase-1 Apoenzyme Form

    PubMed Central

    Amine, Khadija; Miri, Lamia; Naimi, Adil; Saile, Rachid; El Kharrim, Abderrahmane; Mikou, Afaf; Kettani, Anass

    2015-01-01

    There is some evidence linking the mammalian paraoxonase-1 (PON1) loops (L1 and L2) to an increased flexibility and reactivity of its active site with potential substrates. The aim of this work is to study the structural, dynamical, and functional effects of the most flexible regions close to the active site and to determine the impact of mutations on the protein. For both models, wild-type (PON1wild) and PON1 mutant (PON1mut) models, the L1 loop and Q/R and L/M mutations were constructed using MODELLER software. Molecular dynamics simulations of 20 ns at 300 K on fully modeled PON1wild and PON1mut apoenzyme have been done. Detailed analyses of the root-mean-square deviation and fluctuations, H-bonding pattern, and torsion angles have been performed. The PON1wild results were then compared with those obtained for the PON1mut. Our results show that the active site in the wild-type structure is characterized by two distinct movements of opened and closed conformations of the L1 and L2 loops. The alternating and repetitive movement of loops at specific times is consistent with the presence of 11 defined hydrogen bonds. In the PON1mut, these open-closed movements are therefore totally influenced and repressed by the Q/R and L/M mutations. In fact, these mutations seem to impact the PON1mut active site by directly reducing the catalytic core flexibility, while maintaining a significant mobility of the switch regions delineated by the loops surrounding the active site. The impact of the studied mutations on structure and dynamics proprieties of the protein may subsequently contribute to the loss of both flexibility and activity of the PON1 enzyme. PMID:26417201

  15. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    PubMed

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.

  16. Expression of catalytically active recombinant Helicobacter pylori urease at wild-type levels in Escherichia coli.

    PubMed Central

    Hu, L T; Mobley, H L

    1993-01-01

    The genes encoding Helicobacter pylori urease, a nickel metalloenzyme, have been cloned and expressed in Escherichia coli. Enzymatic activity, however, has been very weak compared with that in clinical isolates of H. pylori. Conditions under which near wild-type urease activity was achieved were developed. E. coli. SE5000 containing recombinant H. pylori urease genes was grown in minimal medium containing no amino acids, NiCl2 was added to 0.75 microM, and structural genes ureA and ureB (pHP902) were overexpressed in trans to the complete urease gene cluster (pHP808). Under these conditions, E. coli SE5000 pHP808/pHP902) expressed a urease activity up to 87 mumol of urea per min per mg of protein (87 U/mg of protein), a level approaching that of wild-type H. pylori UMAB41 (100 U/mg of protein), from which the genes were cloned. Poor catalytic activity of recombinant clones grown in Luria broth or M9 medium containing 0.5% Casamino Acids was due to chelation of nickel ions by medium components, particularly histidine and cysteine. In cultures containing these amino acids, 63Ni2+ was prevented from being transported into cells and was not incorporated into urease protein. As a consequence, M9 minimal medium cultures containing histidine or cysteine produced only 0.05 and 0.9%, respectively, of active urease produced by control cultures containing no amino acids. We conclude that recombinant H. pylori urease is optimally expressed when Ni2+ transport is not inhibited and when sufficient synthesis of urease subunits UreA and UreB is provided. Images PMID:8500893

  17. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis PlantsW⃞

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Deuerlein, Stephan; Griepink, Frans; de Kogel, Willem-Jan; Verstappen, Francel W. A.; Verhoeven, Harrie A.; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2003-01-01

    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. PMID:14630967

  18. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome

  19. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    SciTech Connect

    Lopez, Carlos A. Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-09-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G{sub 1} arrest, increase in sub-G{sub 1} fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios ({+-} SE) of 1.5 ({+-} 0.2) and 1.3 ({+-} 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53.

  20. Modafinil more effectively induces wakefulness in orexin-null mice than in wild-type littermates.

    PubMed

    Willie, J T; Renthal, W; Chemelli, R M; Miller, M S; Scammell, T E; Yanagisawa, M; Sinton, C M

    2005-01-01

    Narcolepsy-cataplexy, a disorder of excessive sleepiness and abnormalities of rapid eye movement (REM) sleep, results from deficiency of the hypothalamic orexin (hypocretin) neuropeptides. Modafinil, an atypical wakefulness-promoting agent with an unknown mechanism of action, is used to treat hypersomnolence in these patients. Fos protein immunohistochemistry has previously demonstrated that orexin neurons are activated after modafinil administration, and it has been hypothesized that the wakefulness-promoting properties of modafinil might therefore be mediated by the neuropeptide. Here we tested this hypothesis by immunohistochemical, electroencephalographic, and behavioral methods using modafinil at doses of 0, 10, 30 and 100 mg/kg i.p. in orexin-/- mice and their wild-type littermates. We found that modafinil produced similar patterns of neuronal activation, as indicated by Fos immunohistochemistry, in both genotypes. Surprisingly, modafinil more effectively increased wakefulness time in orexin-/- mice than in the wild-type mice. This may reflect compensatory facilitation of components of central arousal in the absence of orexin in the null mice. In contrast, the compound did not suppress direct transitions from wakefulness to REM sleep, a sign of narcolepsy-cataplexy in mice. Spectral analysis of the electroencephalogram in awake orexin-/- mice under baseline conditions revealed reduced power in the theta; band frequencies (8-9 Hz), an index of alertness or attention during wakefulness in the rodent. Modafinil administration only partly compensated for this attention deficit in the orexin null mice. We conclude that the presence of orexin is not required for the wakefulness-prolonging action of modafinil, but orexin may mediate some of the alerting effects of the compound.

  1. The value of molecular stratification for CEBPA(DM) and NPM1(MUT) FLT3(WT) genotypes in older patients with acute myeloid leukaemia.

    PubMed

    Dickson, Glenda J; Bustraan, Sophia; Hills, Robert K; Ali, Akbar; Goldstone, Anthony H; Burnett, Alan K; Linch, David C; Gale, Rosemary E

    2016-02-01

    Older adult patients (≥60 years) with acute myeloid leukaemia (AML) are generally considered to be poor-risk and there is limited information available regarding risk stratification based on molecular characterization in this age group, particularly for the double-mutant CEBPA (CEBPA(DM) ) genotype. To investigate whether a molecular favourable-risk genotype can be identified, we investigated CEBPA, NPM1 and FLT3 status and prognostic impact in a cohort of 301 patients aged 60 years or more with intermediate-risk cytogenetics, all treated intensively. Overall survival (OS) at 1 year was highest in the 12 patients (4%) that were CEBPA(DM) compared to the 76 (28%) with a mutant NPM1 and wild-type FLT3 (NPM1(MUT) FLT3(WT) ) genotype or all other patients (75%, 54%, 33% respectively), with median survival 15·2, 13·6 and 6·6 months, although the benefit was short-term (OS at 3 years 17%, 29%, 12% respectively). Combination of the CEBPA(DM) and NPM1(MUT) FLT3(WT) genotype patients defined a molecular group with favourable prognosis (P < 0·0001 in multivariate analysis), with 57% of patients alive at 1 year compared to 33% for all other patients. Knowledge of genotype in older cytogenetically intermediate-risk patients might influence therapy decisions.

  2. Identification of a new androgen receptor (AR) co-regulator BUD31 and related peptides to suppress wild-type and mutated AR-mediated prostate cancer growth via peptide screening and X-ray structure analysis

    PubMed Central

    Hsu, Cheng-Lung; Liu, Jai-Shin; Wu, Po-Long; Guan, Hong-Hsiang; Chen, Yuh-Ling; Lin, An-Chi; Ting, Huei-Ju; Pang, See-Tong; Yeh, Shauh-Der; Ma, Wen-Lung; Chen, Chung-Jung; Wu, Wen-Guey; Chang, Chawnshang

    2014-01-01

    Treatment with individual anti-androgens is associated with the development of hot-spot mutations in the androgen receptor (AR), including T877A (hydroxyflutamide [HF]) and W741(C/L) (bicalutamide [CDX]). Here, we found that anti-androgens bound mt-ARs (HF-T877A-AR-LBD and CDX-W741L-AR-LBD) have similar binary structure to the 5α-dihydrotestosterone (DHT) bound wild type (wt) AR (DHT-wt-AR-LBD). Phage display revealed that these ARs bound to similar peptides, including BUD31, containing an Fxx(F/H/L/W/Y)Y motif cluster with Tyr in the +5 position. Structural analyses of the AR-LBD-BUD31 complex at 2.1 Å resolution revealed formation of an extra hydrogen bond between the Tyr+5 residue of the peptide and Gln733 of the AR AF2 domain, suggesting that peptides with Fxx(F/H/L/W/Y)Y motifs can interact with wt or mutated ARs. Functional studies showed that BUD31-related peptides suppressed transactivation of both DHT-wt-AR and HF-T877A-AR by interrupting AR N- and C-terminal interactions, thereby inhibiting wt and mutant AR-mediated prostate cancer cell growth. Collectively, these results suggest the combination of peptide screening and X-ray structure analysis as a new strategy for developing anti-androgens that simultaneously suppress both wt and mutated AR function. PMID:25091737

  3. Toward the development of multi-epitope p53 cancer vaccines: an in vitro assessment of CD8(+) T cell responses to HLA class I-restricted wild-type sequence p53 peptides.

    PubMed

    Sakakura, Koichi; Chikamatsu, Kazuaki; Furuya, Nobuhiko; Appella, Ettore; Whiteside, Theresa L; Deleo, Albert B

    2007-10-01

    Wild-type sequence (wt) p53 peptides are attractive candidates for broadly applicable cancer vaccines. Six HLA-A2 or HLA-A24-restricted wt p53 peptides were evaluated for their ex vivo immunogenicity and their potential for use in cancer vaccines. Peripheral blood mononuclear cells (PBMC) obtained from HLA-A*0201(+) and/or HLA-A*2402(+) normal donors and subjects with squamous cell carcinoma of the head and neck (SCCHN) were analyzed for p53 peptide-specific reactivity in ELISPOT IFN-gamma assays. CD8(+) T cells in 7/10 normal donors (HD) and 11/23 subjects with SCCHN responded to at least one of the wt p53 peptides. CD8(+) T cell precursors responsive to wt p53 epitopes were detected in the circulation of most subjects with early disease, and an elevated blood Tc(1)/Tc(2) ratio distinguished wt p53 peptide responders from non-responders. The identification of multiple wt p53 peptides able to induce cytolytic T lymphocytes in most subjects with cancer promotes the development of multi-epitope p53 vaccines.

  4. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants.

    PubMed

    Schmidt, Ingo; van Spanning, Rob J M; Jetten, Mike S M

    2004-12-01

    The phenotypes of three different Nitrosomonas europaea strains--wild-type, nitrite reductase (NirK)-deficient and nitric oxide reductase (NorB)-deficient strains--were characterized in chemostat cell cultures, and the effect of nitric oxide (NO) on metabolic activities was evaluated. All strains revealed similar aerobic ammonia oxidation activities, but the growth rates and yields of the knock-out mutants were significantly reduced. Dinitrogen (N2) was the main gaseous product of the wild-type, produced via its denitrification activity. The mutants were unable to reduce nitrite to N2, but excreted more hydroxylamine leading to the formation of almost equal amounts of NO, nitrous oxide (N2O) and N2 by chemical auto-oxidation and chemodenitrification of hydroxylamine. Under anoxic conditions Nsm. europaea wild-type gains energy for growth via nitrogen dioxide (NO2)-dependent ammonia oxidation or hydrogen-dependent denitrification using nitrite as electron acceptor. The mutant strains were restricted to NO and/or N2O as electron acceptor and consequently their growth rates and yields were much lower compared with the wild-type. When cells were transferred from anoxic (denitrification) to oxic conditions, the wild-type strain endogenously produced NO and recovered ammonia oxidation within 8 h. In contrast, the mutant strains remained inactive. For recovery of ammonia oxidation activity the NO concentration had to be adjusted to about 10 p.p.m. in the aeration gas.

  5. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant.

    PubMed

    Plesofsky, Nora; Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies.

  6. Differential proteomic and behavioral effects of long-term voluntary exercise in wild-type and APP-overexpressing transgenics.

    PubMed

    Rao, Shailaja Kishan; Ross, Jordan M; Harrison, Fiona E; Bernardo, Alexandra; Reiserer, Randall S; Reiserer, Ronald S; Mobley, James A; McDonald, Michael P

    2015-06-01

    Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r(2)=.959), but uncorrelated in transgenics (r(2)=.013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways.

  7. Acquired transmissibility of sheep-passaged L-type bovine spongiform encephalopathy prion to wild-type mice.

    PubMed

    Okada, Hiroyuki; Masujin, Kentaro; Miyazawa, Kohtaro; Yokoyama, Takashi

    2015-07-13

    L-type bovine spongiform encephalopathy (L-BSE) is an atypical form of BSE that is transmissible to cattle and several lines of prion protein (PrP) transgenic mice, but not to wild-type mice. In this study, we examined the transmissibility of sheep-passaged L-BSE prions to wild-type mice. Disease-associated prion protein (PrP(Sc)) was detected in the brain and/or lymphoid tissues during the lifespan of mice that were asymptomatic subclinical carriers, indicating that wild-type mice were susceptible to sheep-passaged L-BSE. The morphological characteristics of the PrP(Sc) of sheep-passaged L-BSE included florid plaques that were distributed mainly in the cerebral cortex and hippocampus of subsequent passaged mice. The PrP(Sc) glycoform profiles of wild-type mice infected with sheep-passaged L-BSE were similar to those of the original isolate. The data indicate that sheep-passaged L-BSE has an altered host range and acquired transmissibility to wild-type mice.

  8. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant

    PubMed Central

    Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869

  9. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice

    PubMed Central

    Weyandt, Jamie D.; Carney, John M.; Pavlisko, Elizabeth N.; Xu, MengMeng; Counter, Christopher M.

    2016-01-01

    The gene KRAS is commonly mutated in lung cancer to encode a constitutively active and oncogenic protein that is well established to initiate and maintain lung tumorigenesis. However, the remaining wild-type KRAS protein, or the other family members HRAS and NRAS, can still be activated in the presence of oncogenic KRAS. Moreover, loss of any one of these three genes has been shown to increase the sensitivity of mice to the carcinogen urethane, which induces Kras mutation-positive early lung lesions. To determine the contribution of progressively disrupting Hras and Nras genes on urethane lung tumorigenesis, mice with different combinations of wild-type and null alleles of Hras and Nras were exposed with urethane and tumor burden was assessed. As previously reported, loss of one allele of Hras increased the sensitivity of mice to this carcinogen, and this effect was further exacerbated by the loss of the second Hras allele. However, loss of one or both alleles of Nras failed to alter tumor burden, either in the absence or presence of Hras, after exposure to urethane. Additionally, no obvious difference between lung lesions in mice with wild-type versus null alleles was detected, suggesting that wild-type Ras proteins may exert a tumor suppressive effects at the time of initiation, although other interpretations are certainly possible. In summary, these data suggest that in some genetic backgrounds inactivation of different wild-type Ras genes can have different effects on urethane-induced lung tumorigenesis. PMID:27911940

  10. Different age-dependent performance in Drosophila wild-type Canton-S and the white mutant w1118 flies.

    PubMed

    Qiu, Shuang; Xiao, Chengfeng; Meldrum Robertson, R

    2017-04-01

    Aging has significant effects on the locomotor performance of insects including Drosophila. Using a protocol for the high-throughput analysis of fly locomotion in a circular arena, we examined age-dependent behavioral characteristics in adult flies. There are widely used wild-type and genetically engineered background lines including the Canton-S strain and the w1118 strain, which has a null mutation of the white gene. Under standard rearing conditions, we found similar survival and median lifespans in Canton-S (50days) and w1118 (54days) strains, however, w1118 flies maintained stable body mass for up to 43days, whereas Canton-S flies gained body mass at young age, followed by a gradual decline. We also tested the behavioral performance of young and old flies. Compared with young w1118 flies (5-10days), old w1118 flies (40-45days) had an increased boundary preference during locomotion in small circular arenas, and increased speed of locomotor recovery from anoxia. Old Canton-S files, however, exhibited unchanged boundary preference and reduced recovery speed from anoxia relative to young flies. In addition, old w1118 flies showed decreased path length per minute and reduced 0.2s path increment compared with young flies, whereas old Canton-S flies displayed the same path length per minute and the same 0.2s path increment compared with young flies. We conclude that age-dependent behavioral and physiological changes differ between Canton-S and w1118 flies. These results illustrate that phenotypic differences between strains can change qualitatively, as well as quantitatively, as the animals age.

  11. Effect of kynurenic acid on development and aging in wild type and vermilion mutants of Drosophila melanogaster

    PubMed Central

    Navrotskaya, Valeriya; Oxenkrug, Gregory

    2017-01-01

    Background Up-regulation of tryptophan (Trp) conversion into kynurenine (Kyn) and increased formation of down-stream metabolites of Kyn is one of the mechanisms of aging and neurodegenerative disorders. Kyn is an immediate precursor of kynurenic acid (KYNA), an antagonist to NMDA and α7nAChR receptors and activator of aryl hydrocarbon receptor. Increased formation of KYNA ameliorates neurodegeneration and eclosion defect in Drosophila model of Huntington’s Disease. Aims Effect of KYNA on pupae viability and life span was evaluated in wild type (Canton-S, CS) and vermilion Drosophila mutants with deficient formation of Kyn due to mutation of vermilion gene (v) that encodes the Trp-2,3-dioxygenase (TDO), enzyme catalyzing Trp conversion into Kyn. Methods Vermilion mutants were transferred into the Canton-S genetic background (v-CS). KYNA effect on viability (number of filial generation pupae and %% of their lethality) was assessed in pupae maintained at standard temperature (23°C). KYNA effect on life span was evaluated in adult (imago) flies maintained at 28°C (accelerated aging). Results KYNA drastically increased (4 fold from 8.36 to 33.62) %% of dead pupae in Canton-S but not in v-CS flies (p=0.0001). KYNA did not affect life span of female Canton-S flies but decreased life span of v-CS female flies (from 17.15 to 14.29 days). KYNA increased life span of male Canton-S (from 17.92 to 19.96 days) and v-CS flies (14.52 to 17.75 days). Discussion This the first (to the best of our knowledge) observation of the toxic effect of KYNA in Drosophila pupae. KYNA effect on high-temperature induced aging acceleration was gender dependent. Present data support the role of downstream Kyn metabolites in aging mechanisms.

  12. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms

    PubMed Central

    Emmons-Bell, Maya; Durant, Fallon; Hammelman, Jennifer; Bessonov, Nicholas; Volpert, Vitaly; Morokuma, Junji; Pinet, Kaylinnette; Adams, Dany S.; Pietak, Alexis; Lobo, Daniel; Levin, Michael

    2015-01-01

    The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together

  13. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms.

    PubMed

    Emmons-Bell, Maya; Durant, Fallon; Hammelman, Jennifer; Bessonov, Nicholas; Volpert, Vitaly; Morokuma, Junji; Pinet, Kaylinnette; Adams, Dany S; Pietak, Alexis; Lobo, Daniel; Levin, Michael

    2015-11-24

    The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together

  14. Surgical Management of Wild-Type Gastrointestinal Stromal Tumors: A Report From the National Institutes of Health Pediatric and Wildtype GIST Clinic.

    PubMed

    Weldon, Christopher B; Madenci, Arin L; Boikos, Sosipatros A; Janeway, Katherine A; George, Suzanne; von Mehren, Margaret; Pappo, Alberto S; Schiffman, Joshua D; Wright, Jennifer; Trent, Jonathan C; Pacak, Karel; Stratakis, Constantine A; Helman, Lee J; La Quaglia, Michael P

    2016-12-28

    Purpose Wild-type gastrointestinal stromal tumors (WT-GISTs) that lack KIT or PDGFRA mutations represent a unique subtype of GIST that predominantly affects children. We sought to determine the effect on event-free survival (EFS) of staging variables, extent of resection, and repeat resection of tumors. Methods In 2008, a WT-GIST clinic was established at the National Cancer Institute, allowing the development of a large clinical database. We included participants who underwent resection of WT-GIST. Associations with EFS (ie, freedom from disease progression or recurrence) were evaluated using the Kaplan-Meier method and Cox proportional hazards modeling. Results Among 76 participants with WT-GISTs, the median follow-up was 4.1 years. Overall EFS (± SE) was 72.6 ± 5.4% at 1 year, 57.6 ± 6.2% at 2 years, 23.7 ± 6.0% at 5 years, and 16.3 ± 5.5% at 10 years postoperatively. Hazard of disease progression or recurrence was significantly increased for patients with metastatic disease (adjusted hazard ratio [AHR], 2.3; 95% CI, 1.0 to 5.1; P = .04) and > 5 mitoses per 50 high-power fields (AHR, 2.5; 95% CI, 1.1 to 6.0; P = .03), whereas there was no significant effect of negative microscopic resection margins (AHR, 0.9; 95% CI, 0.4 to 2.2; P = 0.86). There was no association between type of gastric resection (ie, anatomic v partial/wedge) and EFS ( P = .67). Repeated resection after the initial resection was significantly associated with decreasing postoperative EFS ( P < .01). Five patients (6%) died after initial enrollment in 2008. Conclusion WT-GIST is an indolent disease, and most patients survive with disease progression. We found no improvement in EFS with more extensive or serial resections. Disease progression or recurrence may be more closely related to tumor biology than surgical management. These data suggest that resections for WT-GISTs be restricted to the initial procedure and that subsequent resections be performed only to address symptoms such as

  15. High cholesterol diet results in increased expression of interleukin-6 and caspase-1 in the brain of apolipoprotein E knockout and wild type mice.

    PubMed

    Rahman, S M A; Van Dam, A-M; Schultzberg, M; Crisby, M

    2005-12-01

    Inflammation in the central nervous system is an early hallmark of many neurodegenerative diseases including Alzheimer's disease (AD). Recently, increasing evidence suggests that hypercholesterolemia during midlife and abnormalities in the cholesterol metabolism could have an important role in the pathogenesis of AD. In the present study, we have evaluated the effect of high cholesterol (HC) diet on the expression of interleukin-6 (IL-6), a cytokine involved in neurodegeneration, and caspase-1, that is responsible for the cleavage of the precursors of interleukin-1 beta (IL-1 beta) and interleukin-18 (IL-18) in the brain of apolipoprotein E (Apo E) knock-out (KO) and wild type (WT) mice. The density of IL-6-positive cells was increased in the hippocampus (p<0.0001) and the dorsal part of the cortex (p<0.001) of KO and WT mice on HC diet (KOHC and WTHC mice, respectively) compared to KO and WT mice on ND (KOND and WTND mice, respectively). KOHC mice had increased caspase-1 positive cells and staining intensity in the hippocampus in comparison with WTHC mice (p<0.01). In the hippocampus, the density of caspase-1 positive cells was also higher in KOHC compared to KOND mice (p<0.05) and KOHC compared with WTHC mice (p<0.01). There was a major increase in caspase-1 immunoreactivity and cell density in both the dosal part of the cortex (p<0.001) and the lateral part of the cortex (p<0.005) in KO and WT mice on HC diet compared to ND. The findings of the present study indicate that chronic exposure to HC diet increases the expression of the two important inflammatory mediators IL-6 and caspase-1 in the brain of KO and WT mice. In the case of caspase-1, we report a major difference in the effect of HC diet on the KO mice compared to WT mice in the hippocampus. Increased expression of inflammatory mediators involved in neurodegeneration could be a potential mechanism by which hypercholesterolemia and HC diet increase the risk of AD.

  16. 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin.

    PubMed Central

    Kemple, M D; Yuan, P; Nollet, K E; Fuchs, J A; Silva, N; Prendergast, F G

    1994-01-01

    The rotational motion of tryptophan side chains in oxidized and reduced wild-type (WT) Escherichia coli thioredoxin and in two single-tryptophan variants of E. coli thioredoxin was studied in solution in the temperature range 20-50 degrees C from 13C-NMR relaxation rate measurements at 75.4 and 125.7 MHz and at 20 degrees C from steady-state and time-resolved trp fluorescence anisotropy measurements. Tryptophan enriched with 13C at the delta 1 and epsilon 3 sites of the indole ring was incorporated into WT thioredoxin and into two single-trp mutants, W31F and W28F, in which trp-28 or trp-31 of WT thioredoxin was replaced, respectively, with phenylalanine. The NMR relaxation data were interpreted using the Lipari and Szabo "model-free" approach (G. Lipari and A. Szabo. 1982. J. Amer. Chem. Soc. 104:4546-4559) with trp steady-state anisotropy data included for the variants at 20 degrees C. Values for the correlation time for the overall rotational motion (tau m) from NMR of oxidized and reduced WT thioredoxin at 35 degrees C agree well with those given by Stone et al. (Stone, M. J., K. Chandrasekhar, A. Holmgren, P. E. Wright, and H. J. Dyson. 1993. Biochemistry. 32:426-435) from 15N NMR relaxation rates, and the dependence of tau m on viscosity and temperature was in accord with the Stokes-Einstein relationship. Order parameters (S2) near 1 were obtained for the trp side chains in the WT proteins even at 50 degrees C. A slight increase in the amplitude of motion (decrease in S2) of trp-31, which is near the protein surface, but not of trp-28, which is partially buried in the protein matrix, was observed in reduced relative to oxidized WT thioredoxin. For trp-28 in W31F, order parameters near 1 (S2 > or = 0.8) at 20 degrees C were found, whereas trp-31 in W28F yielded the smallest order parameters (S2 approximately 0.6) of any of the cases. Analysis of time-resolved anisotropy decays in W28F and W31F yielded S2 values in good agreement with NMR, but gave tau m values

  17. Clonal Rett Syndrome cell lines to test compounds for activation of wild-type MeCP2 expression.

    PubMed

    Yu, Dongbo; Sakurai, Fuminori; Corey, David R

    2011-09-15

    Rett Syndrome is an X-linked progressive neurological disorder caused by inactivation of one allele of the MECP2 gene. There are no curative treatments, and activation of wild-type MECP2 expression is one strategy for stabilizing or reversing the disease. We isolated fibroblast clones that express exclusively either the wild-type or a 32-bp-deletion mutant form of MECP2. We developed a sensitive assay for measuring wild-type MECP2 mRNA levels and tested small molecule epigenetic activators for their ability to activate gene expression. Although our pilot screen did not identify activators of MECP2 expression, it established the value of using clonal cells and defined challenges that must be overcome.

  18. Impact of peptide transporter 1 on the intestinal absorption and pharmacokinetics of valacyclovir after oral dose escalation in wild-type and PepT1 knockout mice.

    PubMed

    Yang, Bei; Hu, Yongjun; Smith, David E

    2013-10-01

    The primary objective of this study was to determine the in vivo absorption properties of valacyclovir, including the potential for saturable proton-coupled oligopeptide transporter 1 (PepT1)-mediated intestinal uptake, after escalating oral doses of prodrug within the clinical dose range. A secondary aim was to characterize the role of PepT1 on the tissue distribution of its active metabolite, acyclovir. [³H]Valacyclovir was administered to wild-type (WT) and PepT1 knockout (KO) mice by oral gavage at doses of 10, 25, 50, and 100 nmol/g. Serial blood samples were collected over 180 minutes, and tissue distribution studies were performed 20 minutes after a 25-nmol/g oral dose of valacyclovir. We found that the C(max) and area under the curve (AUC)₀₋₁₈₀ of acyclovir were 4- to 6-fold and 2- to 3-fold lower, respectively, in KO mice for all four oral doses of valacyclovir. The time to peak concentration of acyclovir was 3- to 10-fold longer in KO compared with WT mice. There was dose proportionality in the C(max) and AUC₀₋₁₈₀ of acyclovir in WT and KO mice over the valacyclovir oral dose range of 10-100 nmol/g (i.e., linear absorption kinetics). No differences were observed in the peripheral tissue distribution of acyclovir once these tissues were adjusted for differences in perfusing drug concentrations in the systemic circulation. In contrast, some differences were observed between genotypes in the concentrations of acyclovir in the distal intestine. Collectively, the findings demonstrate a critical role of intestinal PepT1 in improving the rate and extent of oral absorption for valacyclovir. Moreover, this study provides definitive evidence for the rational development of a PepT1-targeted prodrug strategy.

  19. Age-Related Changes in Pre- and Postsynaptic Partners of the Cholinergic C-Boutons in Wild-Type and SOD1G93A Lumbar Motoneurons.

    PubMed

    Milan, Léa; Courtand, Gilles; Cardoit, Laura; Masmejean, Frédérique; Barrière, Grégory; Cazalets, Jean-René; Garret, Maurice; Bertrand, Sandrine S

    2015-01-01

    Large cholinergic synaptic terminals known as C-boutons densely innervate the soma and proximal dendrites of motoneurons that are prone to neurodegeneration in amyotrophic lateral sclerosis (ALS). Studies using the Cu/Zn-superoxide dismutase (SOD1) mouse model of ALS have generated conflicting data regarding C-bouton alterations exhibited during ALS pathogenesis. In the present work, a longitudinal study combining immunohistochemistry, biochemical approaches and extra- and intra-cellular electrophysiological recordings revealed that the whole spinal cholinergic system is modified in the SOD1 mouse model of ALS compared to wild type (WT) mice as early as the second postnatal week. In WT motoneurons, both C-bouton terminals and associated M2 postsynaptic receptors presented a complex age-related dynamic that appeared completely disrupted in SOD1 motoneurons. Indeed, parallel to C-bouton morphological alterations, analysis of confocal images revealed a clustering process of M2 receptors during WT motoneuron development and maturation that was absent in SOD1 motoneurons. Our data demonstrated for the first time that the lamina X cholinergic interneurons, the neuronal source of C-boutons, are over-abundant in high lumbar segments in SOD1 mice and are subject to neurodegeneration in the SOD1 animal model. Finally, we showed that early C-bouton system alterations have no physiological impact on the cholinergic neuromodulation of newborn motoneurons. Altogether, these data suggest a complete reconfiguration of the spinal cholinergic system in SOD1 spinal networks that could be part of the compensatory mechanisms established during spinal development.

  20. Age-Related Changes in Pre- and Postsynaptic Partners of the Cholinergic C-Boutons in Wild-Type and SOD1G93A Lumbar Motoneurons

    PubMed Central

    Milan, Léa; Courtand, Gilles; Cardoit, Laura; Masmejean, Frédérique; Barrière, Grégory; Cazalets, Jean-René; Garret, Maurice; Bertrand, Sandrine S.

    2015-01-01

    Large cholinergic synaptic terminals known as C-boutons densely innervate the soma and proximal dendrites of motoneurons that are prone to neurodegeneration in amyotrophic lateral sclerosis (ALS). Studies using the Cu/Zn-superoxide dismutase (SOD1) mouse model of ALS have generated conflicting data regarding C-bouton alterations exhibited during ALS pathogenesis. In the present work, a longitudinal study combining immunohistochemistry, biochemical approaches and extra- and intra-cellular electrophysiological recordings revealed that the whole spinal cholinergic system is modified in the SOD1 mouse model of ALS compared to wild type (WT) mice as early as the second postnatal week. In WT motoneurons, both C-bouton terminals and associated M2 postsynaptic receptors presented a complex age-related dynamic that appeared completely disrupted in SOD1 motoneurons. Indeed, parallel to C-bouton morphological alterations, analysis of confocal images revealed a clustering process of M2 receptors during WT motoneuron development and maturation that was absent in SOD1 motoneurons. Our data demonstrated for the first time that the lamina X cholinergic interneurons, the neuronal source of C-boutons, are over-abundant in high lumbar segments in SOD1 mice and are subject to neurodegeneration in the SOD1 animal model. Finally, we showed that early C-bouton system alterations have no physiological impact on the cholinergic neuromodulation of newborn motoneurons. Altogether, these data suggest a complete reconfiguration of the spinal cholinergic system in SOD1 spinal networks that could be part of the compensatory mechanisms established during spinal development. PMID:26305672

  1. Similar mitochondrial activation kinetics in wild-type and creatine kinase-deficient fast-twitch muscle indicate significant Pi control of respiration.

    PubMed

    Jeneson, Jeroen A L; ter Veld, Frank; Schmitz, Joep P J; Meyer, Ronald A; Hilbers, Peter A J; Nicolay, Klaas

    2011-06-01

    Past simulations of oxidative ATP metabolism in skeletal muscle have predicted that elimination of the creatine kinase (CK) reaction should result in dramatically faster oxygen consumption dynamics during transitions in ATP turnover rate. This hypothesis was investigated. Oxygen consumption of fast-twitch (FT) muscle isolated from wild-type (WT) and transgenic mice deficient in the myoplasmic (M) and mitochondrial (Mi) CK isoforms (MiM CK(-/-)) were measured at 20°C at rest and during electrical stimulation. MiM CK(-/-) muscle oxygen consumption activation kinetics during a step change in contraction rate were 30% faster than WT (time constant 53 ± 3 vs. 69 ± 4 s, respectively; mean ± SE, n = 8 and 6, respectively). MiM CK(-/-) muscle oxygen consumption deactivation kinetics were 380% faster than WT (time constant 74 ± 4 s vs. 264 ± 4 s, respectively). Next, the experiments were simulated using a computational model of the oxidative ATP metabolic network in FT muscle featuring ADP and Pi feedback control of mitochondrial respiration (J. A. L. Jeneson, J. P. Schmitz, N. A. van den Broek, N. A. van Riel, P. A. Hilbers, K. Nicolay, J. J. Prompers. Am J Physiol Endocrinol Metab 297: E774-E784, 2009) that was reparameterized for 20°C. Elimination of Pi control via clamping of the mitochondrial Pi concentration at 10 mM reproduced past simulation results of dramatically faster kinetics in CK(-/-) muscle, while inclusion of Pi control qualitatively explained the experimental observations. On this basis, it was concluded that previous studies of the CK-deficient FT muscle phenotype underestimated the contribution of Pi to mitochondrial respiratory control.

  2. Complementation of the pina (null) allele with the wild type Pina sequence restores a soft phenotype in transgenic wheat.

    PubMed

    Martin, J M; Meyer, F D; Smidansky, E D; Wanjugi, H; Blechl, A E; Giroux, M J

    2006-11-01

    The tightly linked puroindoline genes, Pina and Pinb, control grain texture in wheat, with wild type forms of both giving soft, and a sequence alteration affecting protein expression or function in either giving rise to hard wheat. Previous experiments have shown that addition of wild type Pina in the presence of mutated Pinb gave intermediate grain texture but addition of wild type Pinb gave soft grain. This raises questions as to whether Pina may be less functional than Pinb. Our goal here was to develop and characterize wheat lines expressing the wild type Pina-D1a sequence in hard wheat with the null mutation (Pina-D1b) for Pina. Three transgenic lines plus Bobwhite were evaluated in two environments. Grain texture, grain protein, and kernel weight were determined for the transgenic lines and Bobwhite. The three transgenic lines had soft phenotype, and none of the transgenic lines differed from Bobwhite for grain protein or kernel weight. The soft phenotype was accompanied by increases in Pina transcript accumulation. Total Triton X-114 extractable PINA and PINB increased from 2.5 to 5.5 times those from a soft wheat reference sample, and friabilin, PINA and PINB bound to starch, increased from 3.8 to 7.8 times those of the soft wheat reference. Bobwhite showed no starch bound PINA, but transgenic lines had levels from 5.3 to 13.7 times those of the soft wheat reference sample. Starch bound PINB in transgenic lines also increased from 0.9 to 2.5 times that for the soft wheat reference sample. The transgenic expression of wild type Pina sequence in the Pina null genotype gave soft grain with the characteristics of soft wheat including increased starch bound friabilin. The results support the hypothesis that both wild type Pin genes need to be present for friabilin formation and soft grain.

  3. The mechanism of dehydration in chromophore maturation of wild-type green fluorescent protein: A theoretical study

    NASA Astrophysics Data System (ADS)

    Ma, Yingying; Yu, Jian-Guo; Sun, Qiao; Li, Zhen; Smith, Sean C.

    2015-07-01

    An interesting aspect of the green fluorescent protein (GFP) is its autocatalytic chromophore maturation. Numerous experimental studies have indicated that dehydration is the last step in the chromophore maturation process of wild-type GFP. Based on the crystal structure of wild-type GFP, the mechanism of the reverse reaction of dehydration was investigated by using density functional theory (DFT) in this study. Our results proposed that the dehydration is exothermic. Moreover, the rate-limiting step of the mechanism is the proton on guanidinium of Arg96 transferring to the β-carbon anion of Tyr66, which is consistent with the experimental observation.

  4. Complementation of a Clostridium perfringens spo0A mutant with wild-type spo0A from other Clostridium species.

    PubMed

    Huang, I-Hsiu; Sarker, Mahfuzur R

    2006-09-01

    To evaluate whether C. perfringens can be used as a model organism for studying the sporulation process in other clostridia, C. perfringens spo0A mutant IH101 was complemented with wild-type spo0A from four different Clostridium species. Wild-type spo0A from C. acetobutylicum or C. tetani, but not from C. botulinum or C. difficile, restored sporulation and enterotoxin production in IH101. The ability of spo0A from C. botulinum or C. difficile to complement the lack of spore formation in IH101 might be due, at least in part, to the low levels of spo0A transcription and Spo0A production.

  5. Development of a duplex PCR for rapid detection and differentiation of Erysipelothrix rhusiopathiae vaccine strains and wild type strains.

    PubMed

    Zhu, Weifeng; Wu, Chao; Kang, Chao; Cai, Chengzhi; Jin, Meilin

    2017-02-01

    The differentiation of vaccine strains from wild type strains is important for disease control. A duplex PCR for rapid detection and differentiation of Erysipelothrix rhusiopathiae vaccine strains and wild type strains was developed based on the DNA polymerase IV gene. This duplex PCR was sensitive and specific. The detection results were coincident with that of a single nucleotide polymorphisms based PCR but the detection process was more rapid. In conclusion, this duplex PCR was a useful tool for Erysipelothrix rhusiopathiae infections' differential diagnosis in China.

  6. Establishment of three cell lines from Chinese giant salamander and their sensitivities to the wild-type and recombinant ranavirus.

    PubMed

    Yuan, Jiang-Di; Chen, Zhong-Yuan; Huang, Xing; Gao, Xiao-Chan; Zhang, Qi-Ya

    2015-06-12

    Known as lethal pathogens, Ranaviruses have been identified in diseased fish, amphibians (including Chinese giant salamander Andrias davidianus, the world's largest amphibian) and reptiles, causing organ necrosis and systemic hemorrhage. Here, three Chinese giant salamander cell lines, thymus cell line (GSTC), spleen cell line (GSSC) and kidney cell line (GSKC) were initially established. Their sensitivities to ranaviruses, wild-type Andrias davidianus ranavirus (ADRV) and recombinant Rana grylio virus carrying EGFP gene (rRGV-EGFP) were tested. Temporal transcription pattern of ranavirus major capsid protein (MCP), fluorescence and electron microscopy observations showed that both the wild-type and recombinant ranavirus could replicate in the cell lines.

  7. Overexpression of wild-type p21Ras plays a prominent role in colorectal cancer

    PubMed Central

    Bai, Shuang; Feng, Qiang; Pan, Xin-Yan; Zou, Hong; Chen, Hao-Bin; Wang, Peng; Zhou, Xin-Liang; Hong, Yan-Ling; Song, Shu-Ling; Yang, Ju-Lun

    2017-01-01

    Colorectal cancer (CRC) is the most common gastrointestinal type of cancer. The overexpression of Ras proteins, particularly p21Ras, are involved in the development of CRC. However, the subtypes of the p21Ras proteins that are overexpressed and the mutation status remain unknown restricting the development of therapeutic antibodies targeting p21Ras proteins. The present study aimed to investigate the mutation status of ras genes associated with Ras proteins that are overexpressed in CRC and explore whether or not wild-type p21Ras could be a target for CRC therapy. p21Ras expression was examined immunohistochemically in normal colorectal epithelium, benign lesions and malignant colorectal tumor tissues by monoclonal antibody (Mab) KGH-R1 which is able to react with three types of p21Ras proteins: H-p21Ras, N-p21Ras and K-p21Ras. Then, the expression levels of p21Ras subtypes were determined in CRC by a specific Mab for each p21Ras subtype. Mutation status of ras genes in p21Ras-overexpressing CRC was detected by DNA sequencing. There was rare p21Ras expression in normal colorectal epithelium but a high level of p21Ras expression in CRC, with a significant increase from normal colorectal epithelium to inflammatory polyps, low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia and invasive colorectal adenocarcinoma, respectively. Overexpression of K-p21Ras was found in all CRC tissues tested, overexpression of N-p21Ras was found in 85.7% of the CRC tissues, while H-p21Ras expression was not found in any CRC tissue. DNA sequencing showed that there were no K-ras mutations in 60% of the K-p21Ras-overexpressing CRC, while 40% of the CRC tissues harbored K-ras mutations. N-ras mutations were not found in any N-p21Ras-overexpressing CRC. Our findings indicate that overexpression of wild-type p21Ras may play a prominent role in the development of CRC in addition to ras mutations and could be a promising target for CRC therapy. PMID:28259994

  8. Starter substrate specificities of wild-type and mutant polyketide synthases from Rutaceae.

    PubMed

    Lukacin, Richard; Schreiner, Stephan; Silber, Katrin; Matern, Ulrich

    2005-02-01

    Chalcone synthases (CHSs) and acridone synthases (ACSs) belong to the superfamily of type III polyketide synthases (PKSs) and condense the starter substrate 4-coumaroyl-CoA or N-methylanthraniloyl-CoA with three malonyl-CoAs to produce flavonoids and acridone alkaloids, respectively. ACSs which have been cloned exclusively from Ruta graveolens share about 75-85% polypeptide sequence homology with CHSs from other plant families, while 90% similarity was observed with CHSs from Rutaceae, i.e., R. graveolens, Citrus sinensis and Dictamnus albus. CHSs cloned from many plants do not accept N-methylanthraniloyl-CoA as a starter substrate, whereas ACSs were shown to possess some side activity with 4-coumaroyl-CoA. The transformation of an ACS to a functional CHS with 10% residual ACS activity was accomplished previously by substitution of three amino acids through the corresponding residues from Ruta-CHS1 (Ser132Thr, Ala133Ser and Val265Phe). Therefore, the reverse triple mutation of Ruta-CHS1 (mutant R2) was generated, which affected only insignificantly the CHS activity and did not confer ACS activity. However, competitive inhibition of CHS activity by N-methylanthraniloyl-CoA was observed for the mutant in contrast to wild-type CHSs. Homology modeling of ACS2 with docking of 1,3-dihydroxy-N-methylacridone suggested that the starter substrates for CHS or ACS reaction are placed in different topographies in the active site pocket. Additional site specific substitutions (Asp205Pro/Thr206Asp/His207Ala or Arg60Thr and Val100Ala/Gly218Ala, respectively) diminished the CHS activity to 75-50% of the wild-type CHS1 without promoting ACS activity. The results suggest that conformational changes in the periphery beyond the active site cavity volumes determine the product formation by ACSs vs. CHSs in R. graveolens. It is likely that ACS has evolved from CHS, but the sole enlargement of the active site pocket as in CHS1 mutant R2 is insufficient to explain this process.

  9. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.

    PubMed

    Lawford, Hugh G; Rousseau, Joyce D

    2003-01-01

    Iogen (Canada) is a major manufacturer of industrial cellulase and hemicellulase enzymes for the textile, pulp and paper, and poultry feed industries. Iogen has recently constructed a 40 t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. The integration of enzyme and ethanol plants results in significant reduction in production costs and offers an alternative use for the sugars generated during biomass conversion. Iogen has partnered with the University of Toronto to test the fermentation performance characteristics of metabolically engineered Zymomonas mobilis created at the National Renewable Energy Laboratory. This study focused on strain AX101, a xylose- and arabinose-fermenting stable genomic integrant that lacks the selection marker gene for antibiotic resistance. The "Iogen Process" for biomass depolymerization consists of a dilute-sulpfuric acid-catalyzed steam explosion, followed by enzymatic hydrolysis. This work examined two process design options for fermentation, first, continuous cofermentation of C5 and C6 sugars by Zm AX101, and second, separate continuous fermentations of prehydrolysate by Zm AX101 and cellulose hydrolysate by either wildtype Z. mobilis ZM4 or an industrial yeast commonly used in the production of fuel ethanol from corn. Iogen uses a proprietary process for conditioning the prehydrolysate to reduce the level of inhibitory acetic acid to at least 2.5 g/L. The pH was controlled at 5.5 and 5.0 for Zymomonas and yeast fermentations, respectively. Neither 2.5 g/L of acetic acid nor the presence of pentose sugars (C6:C5 = 2:1) appreciably affected the high-performance glucose fermentation of wild-type Z. mobilis ZM4. By contrast, 2.5 g/L of acetic acid significantly reduced the rate of pentose fermentation by strain AX101. For single-stage continuous fermentation of pure sugar synthetic cellulose hydrolysate (60 g/L of glucose), wild-type Zymomonas exhibited a four-fold higher volumetric productivity

  10. A Tool for Investigating Asthma and COPD Exacerbations: A Newly Manufactured and Well Characterised GMP Wild-Type Human Rhinovirus for Use in the Human Viral Challenge Model

    PubMed Central

    Fullen, Daniel J.; Murray, Bryan; Mori, Julie; Catchpole, Andrew; Borley, Daryl W.; Murray, Edward J.; Balaratnam, Ganesh; Gilbert, Anthony; Mann, Alex; Hughes, Fiona; Lambkin-Williams, Rob

    2016-01-01

    Background Human Rhinovirus infection is an important precursor to asthma and chronic obstructive pulmonary disease exacerbations and the Human Viral Challenge model may provide a powerful tool in studying these and other chronic respiratory diseases. In this study we have reported the production and human characterisation of a new Wild-Type HRV-16 challenge virus produced specifically for this purpose. Methods and Stock Development A HRV-16 isolate from an 18 year old experimentally infected healthy female volunteer (University of Virginia Children’s Hospital, USA) was obtained with appropriate medical history and consent. We manufactured a new HRV-16 stock by minimal passage in a WI-38 cell line under Good Manufacturing Practice conditions. Having first subjected the stock to rigorous adventitious agent testing and determining the virus suitability for human use, we conducted an initial safety and pathogenicity clinical study in adult volunteers in our dedicated clinical quarantine facility in London. Human Challenge and Conclusions In this study we have demonstrated the new Wild-Type HRV-16 Challenge Virus to be both safe and pathogenic, causing an appropriate level of disease in experimentally inoculated healthy adult volunteers. Furthermore, by inoculating volunteers with a range of different inoculum titres, we have established the minimum inoculum titre required to achieve reproducible disease. We have demonstrated that although inoculation titres as low as 1 TCID50 can produce relatively high infection rates, the optimal titre for progression with future HRV challenge model development with this virus stock was 10 TCID50. Studies currently underway are evaluating the use of this virus as a challenge agent in asthmatics. Trial Registration ClinicalTrials.gov NCT02522832 PMID:27936016

  11. Investigation on the mechanism for the binding and drug resistance of wild type and mutations of G86 residue in HIV-1 protease complexed with Darunavir by molecular dynamic simulation and free energy calculation.

    PubMed

    Li, Dan; Zhang, Ying; Zhao, Run-Ning; Fan, Song; Han, Ju-Guang

    2014-02-01

    Residue Gly86 is considered as the highly conversed residue in the HIV-1 protease. In our work, the detailed binding free energies for the wild-type (WT) and mutated proteases binding to the TMC-114 are estimated to investigate the protein-inhibitor binding and drug resistance mechanism by molecule dynamic simulations and molecular mechanics Poisson Boltzmann surface area (MM-PBSA) method. The binding affinities between the mutants and inhibitor are different than that in the wild-type complex and the major resistance to Darunavir (DRV) of G86A and G86S originate from the electrostatic energy and entropy, respectively. Furthermore, free energy decomposition analysis for the WT and mutated complexes on the basis of per-residue indicates that the mutagenesis influences the energy contribution of the residue located at three regions: active site region (residue 24-32), the flap region, and the region around the mutated residue G86 (residue 79-88), especially the flap region. Finally, further hydrogen bonds and structure analysis are carried out to detect the relationship between the energy and conformation. In all, the G86 mutations change the flap region's conformation. The experimental results are in good agreement with available results.

  12. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants.

    PubMed

    Kasemets, Kaja; Suppi, Sandra; Künnis-Beres, Kai; Kahru, Anne

    2013-03-18

    A suite of eight tentatively oxidative stress response-deficient Saccharomyces cerevisiae BY4741 single-gene mutants (sod1Δ, sod2Δ, yap1Δ, cta1Δ, ctt1Δ, gsh1Δ, glr1Δ, and ccs1Δ) and one copper-vulnerable mutant (cup2Δ) was used to elucidate weather the toxicity of CuO nanoparticles to S. cerevisiae is mediated by oxidative stress (OS). Specifically, sensitivity profiles of mutants' phenotypes and wild-type (wt) upon exposure to nano-CuO were compared. As controls, CuSO4 (solubility), bulk-CuO (size), H2O2, and menadione (OS) were used. Growth inhibition of wt and mutant strains was studied in rich YPD medium and cell viability in deionized water (DI). Dissolved Cu-ions were quantified by recombinant metal-sensing bacteria and chemical analysis. To wt strain nano-CuO was 32-fold more toxic than bulk-CuO: 24-h IC50 4.8 and 155 mg/L in DI and 643 and >20000 mg/L in YPD, respectively. In toxicant-free YPD medium, all mutants had practically similar growth patterns as wt. However, the mutant strains sod1Δ, sod2Δ, ccs1Δ, and yap1Δ showed up to 12-fold elevated sensitivity toward OS standard chemicals menadione and H2O2 but not to nano-CuO, indicating that CuO nanoparticles exerted toxicity to yeast cells via different mechanisms. The most vulnerable strain to all studied Cu compounds was the copper stress response-deficient strain cup2Δ (∼16-fold difference with wt), indicating that the toxic effect of CuO (nano)particles proceeds via dissolved Cu-ions. The dissolved copper solely explained the toxicity of nano-CuO in DI but not in YPD. Assumingly, in YPD nano-CuO acquired a coating of peptides/proteins and sorbed onto the yeast's outer surface, resulting in their increased solubility in the close vicinity of yeast cells and increased uptake of Cu-ions that was not registered by the assays used for the analysis of dissolved Cu-ions in the test medium. Lastly, as yeast retained its viability in DI even by 24th hour of incubation, the profiling of the acute

  13. Mutant huntingtin regulates EGF receptor fate in non-neuronal cells lacking wild-type protein.

    PubMed

    Melone, Mariarosa A B; Calarco, Anna; Petillo, Orsolina; Margarucci, Sabrina; Colucci-D'Amato, Luca; Galderisi, Umberto; Koverech, Guido; Peluso, Gianfranco

    2013-01-01

    Huntingtin (htt) is a scaffold protein localized at the subcellular level and is involved in coordinating the activity of several protein for signaling and intracellular transport. The emerging properties of htt in intracellular trafficking prompted us to study the role of mutant htt (polyQ-htt) in the intracellular fate of epidermal growth factor receptor (EGFR), whose activity seems to be strictly regulated by htt. In particular, to evaluate whether protein trafficking dysfunction occurs in non-neuronal cells in the absence of functional htt, we monitored the EGFR protein in fibroblasts from homozygotic HD patients and their healthy counterpart. We found that polyQ-htt controls EGFR degradation and recycling. Lack of wild-type htt caused alteration of the ubiquitination cycle, formation of EGFR-incorporating high-molecular weight protein aggregates and abnormal EGFR distribution in endosomes of the degradation and recycling pathways after EGF stimulation. PolyQ-htt-induced alteration of EGFR trafficking affected cell migration and proliferation, at least in part, through inhibition of ERK signaling. To our knowledge the data here reported represent the first signaling and phenotypic characterization of polyQ-htt involvement in the modulation of growth factor stimulation in non-neuronal cells.

  14. Fluorescent Trimethoprim Conjugate Probes To Assess Drug Accumulation in Wild Type and Mutant Escherichia coli

    PubMed Central

    2016-01-01

    Reduced susceptibility to antimicrobials in Gram-negative bacteria may result from multiple resistance mechanisms, including increased efflux pump activity or reduced porin protein expression. Up-regulation of the efflux pump system is closely associated with multidrug resistance (MDR). To help investigate the role of efflux pumps on compound accumulation, a fluorescence-based assay was developed using fluorescent derivatives of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that inhibits an intracellular target, dihydrofolate reductase (DHFR). Novel fluorescent TMP probes inhibited eDHFR activity with comparable potency to TMP, but did not kill or inhibit growth of wild type Escherichia coli. However, bactericidal activity was observed against an efflux pump deficient E. coli mutant strain (ΔtolC). A simple and quick fluorescence assay was developed to measure cellular accumulation of the TMP probe using either fluorescence spectroscopy or flow cytometry, with validation by LC-MS/MS. This fluorescence assay may provide a simple method to assess efflux pump activity with standard laboratory equipment. PMID:27737551

  15. Subcellular potassium and sodium distribution in Saccharomyces cerevisiae wild-type and vacuolar mutants.

    PubMed

    Herrera, Rito; Álvarez, María C; Gelis, Samuel; Ramos, José

    2013-09-15

    Living cells accumulate potassium (K⁺) to fulfil multiple functions. It is well documented that the model yeast Saccharomyces cerevisiae grows at very different concentrations of external alkali cations and keeps high and low intracellular concentrations of K⁺ and sodium (Na⁺) respectively. However less attention has been paid to the study of the intracellular distribution of these cations. The most widely used experimental approach, plasma membrane permeabilization, produces incomplete results, since it usually considers only cytoplasm and vacuoles as compartments where the cations are present in significant amounts. By isolating and analysing the main yeast organelles, we have determined the subcellular location of K⁺ and Na⁺ in S. cerevisiae. We show that while vacuoles accumulate most of the intracellular K⁺ and Na⁺, the cytosol contains relatively low amounts, which is especially relevant in the case of Na⁺. However K⁺ concentrations in the cytosol are kept rather constant during the K⁺-starvation process and we conclude that, for that purpose, vacuolar K⁺ has to be rapidly mobilized. We also show that this intracellular distribution is altered in four different mutants with impaired vacuolar physiology. Finally, we show that both in wild-type and vacuolar mutants, nuclei contain and keep a relatively constant and important percentage of total intracellular K⁺ and Na⁺, which most probably is involved in the neutralization of negative charges.

  16. Ultrastructural analysis of wild type and mutant Drosophila melanogaster using helium ion microscopy.

    PubMed

    Boseman, Adam; Nowlin, Kyle; Ashraf, Sarmadia; Yang, Jijin; Lajeunesse, Dennis

    2013-08-01

    Insects have evolved numerous adaptations to survive a variety of environmental conditions. Given that the primary interface between insects and the environment is mediated through their skin or cuticle, many of these adaptations are found in extraordinary cuticle diversity both in morphology and structure. Not all of these adaptions manifest themselves in changes in the chemical composition of the cuticle but rather as elaborations of the surface structures of the cuticle. Typically the examination of these micro- and nanoscale structures has been performed using scanning electron microscopy (SEM). Typically, in order to decrease surface charging and increase resolution, an obscuring conductive layer is applied to the sample surface, but this layer limits the ability to identify nanoscale surface structures. In this paper we use a new technology, helium ion microscopy (HIM) to examine surface structures on the cuticle of wild type and mutant Drosophila. Helium ion microscopy permits high resolution imaging of biological samples without the need for coating. We compare HIM to traditional SEM and demonstrate certain advantages of this type of microscopy, with our focus being high resolution characterization of nanostructures on the cuticle of Drosophila melanogaster and potentially other biological specimens.

  17. Functional interaction of hybrid response elements with wild-type and mutant steroid hormone receptors.

    PubMed Central

    Truss, M; Chalepakis, G; Slater, E P; Mader, S; Beato, M

    1991-01-01

    Steroid hormone receptors can be divided into two subfamilies according to the structure of their DNA binding domains and the nucleotide sequences which they recognize. The glucocorticoid receptor and the progesterone receptor (PR) recognize an imperfect palindrome (glucocorticoid responsive element/progesterone responsive element [GRE/PRE]) with the conserved half-sequence TGTYCY, whereas the estrogen receptor (ER) recognizes a palindrome (estrogen responsive element) with the half-sequence TGACC. A series of symmetric and asymmetric variants of these hormone responsive elements (HREs) have been tested for receptor binding and for the ability to mediate induction in vivo. High-resolution analysis demonstrates that the overall number and distribution of contacts with the N-7 position of guanines and with the phosphate backbone of various HREs are quite similar for PR and ER. However, PR and glucocorticoid receptor, but not ER, are able to contact the 5'-methyl group of thymines found in position 3 of HREs, as shown by potassium permanganate interference. The ER mutant HE84, which contains a single amino acid exchange, Glu-203 to Gly, in the knuckle of ER, creates a promiscuous ER that is able to bind to GRE/PREs by contacting this thymine. Elements with the sequence GGTCAcagTGTYCT that represent hybrids between an estrogen response element and a GRE/PRE respond to estrogens, glucocorticoids, and progestins in vivo and bind all three wild-type receptors in vitro. These hybrid HREs could serve to confer promiscuous gene regulation. Images PMID:2038329

  18. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion.

    PubMed

    Wang, Xinhe; McGovern, Gillian; Zhang, Yi; Wang, Fei; Zha, Liang; Jeffrey, Martin; Ma, Jiyan

    2015-07-01

    The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50/μg. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210-220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs.

  19. Two cellular proteins that bind to wild-type but not mutant p53.

    PubMed Central

    Iwabuchi, K; Bartel, P L; Li, B; Marraccino, R; Fields, S

    1994-01-01

    p53 is a tumor-suppressor protein that can activate and repress transcription. Using the yeast two-hybrid system, we identified two previously uncharacterized human proteins, designated 53BP1 and 53BP2, that bind to p53. 53BP1 shows no significant homology to proteins in available databases, whereas 53BP2 contains two adjacent ankyrin repeats and a Src homology 3 domain. In vitro binding analyses indicate that both of these proteins bind to the central domain of p53 (residues 80-320) required for site-specific DNA binding. Consistent with this finding, p53 cannot bind simultaneously to 53BP1 or 53BP2 and to a DNA fragment containing a consensus p53 binding site. Unlike other cellular proteins whose binding to p53 has been characterized, both 53BP1 and 53BP2 bind to the wild-type but not to two mutant p53 proteins identified in human tumors, suggesting that binding is dependent on p53 conformation. The characteristics of these interactions argue that 53BP1 and 53BP2 are involved in some aspect of p53-mediated tumor suppression. Images PMID:8016121

  20. Wild-type p53 controls cell motility and invasion by dual regulation of MET expression

    PubMed Central

    Hwang, Chang-Il; Matoso, Andres; Corney, David C.; Flesken-Nikitin, Andrea; Körner, Stefanie; Wang, Wei; Boccaccio, Carla; Thorgeirsson, Snorri S.; Comoglio, Paolo M.; Hermeking, Heiko; Nikitin, Alexander Yu.

    2011-01-01

    Recent observations suggest that p53 mutations are responsible not only for growth of primary tumors but also for their dissemination. However, mechanisms involved in p53-mediated control of cell motility and invasion remain poorly understood. By using the primary ovarian surface epithelium cell culture, we show that conditional inactivation of p53 or expression of its mutant forms results in overexpression of MET receptor tyrosine kinase, a crucial regulator of invasive growth. At the same time, cells acquire increased MET-dependent motility and invasion. Wild-type p53 negatively regulates MET expression by two mechanisms: (i) transactivation of MET-targeting miR-34, and (ii) inhibition of SP1 binding to MET promoter. Both mechanisms are not functional in p53 absence, but mutant p53 proteins retain partial MET promoter suppression. Accordingly, MET overexpression, cell motility, and invasion are particularly high in p53-null cells. These results identify MET as a critical effector of p53 and suggest that inhibition of MET may be an effective antimetastatic approach to treat cancers with p53 mutations. These results also show that the extent of advanced cancer traits, such as invasion, may be determined by alterations in individual components of p53/MET regulatory network. PMID:21831840

  1. Comprehensive model of wild-type and mutant HIV-1 reverse transciptases

    NASA Astrophysics Data System (ADS)

    Ballante, Flavio; Musmuca, Ira; Marshall, Garland R.; Ragno, Rino

    2012-08-01

    An enhanced version of COMBINE that uses both ligand-based and structure-based alignment of ligands has been used to build a comprehensive 3-D QSAR model of wild-type HIV-1 reverse transcriptase and drug-resistant mutants. The COMBINEr model focused on 7 different RT enzymes complexed with just two HIV-RT inhibitors, niverapine (NVP) and efavirenz (EFV); therefore, 14 inhibitor/enzyme complexes comprised the training set. An external test set of chiral 2-(alkyl/aryl)amino-6-benzylpyrimidin-4(3H)-ones (DABOs) was used to test predictability. The COMBINEr model MC4, although developed using only two inhibitors, predicted the experimental activities of the test set with an acceptable average absolute error of prediction (0.89 p K i). Most notably, the model was able to correctly predict the right eudismic ratio for two R/ S pairs of DABO derivatives. The enhanced COMBINEr approach was developed using only software freely available to academics.

  2. The pH-dependent stability of wild-type and mutant transthyretin oligomers.

    PubMed

    Skoulakis, S; Goodfellow, J M

    2003-05-01

    A reduction in pH is known to induce the disassociation of the tetrameric form of transthyretin and favor the formation of amyloid fibers. Using continuum electrostatic techniques, we calculate the titration curves and the stability of dimer and tetramer formation of transthyretin as a function of pH. We find that the tetramer and the dimer become less stable than the monomer as the pH is lowered. The free energy difference is 13.8 kcal/mol for dimer formation and 27 kcal/mol for tetramer formation, from the monomers, when the pH is lowered from 7 to 3.9. Similar behavior is observed for both the wild-type and the mutant protein. Certain residues (namely Glu-72, His-88, His-90, Glu-92, and Tyr-116), play an important role in the binding process, as seen by the considerable pK(1/2) change of these residues upon dimer formation.

  3. Profile of Cytokines and Chemokines Triggered by Wild-Type Strains of Rabies Virus in Mice

    PubMed Central

    Appolinário, Camila Michele; Allendorf, Susan Dora; Peres, Marina Gea; Ribeiro, Bruna Devidé; Fonseca, Clóvis R.; Vicente, Acácia Ferreira; de Paula Antunes, João Marcelo A.; Megid, Jane

    2016-01-01

    Rabies is a lethal infectious disease that causes 55,000 human deaths per year and is transmitted by various mammalian species, such as dogs and bats. The host immune response is essential for avoiding viral progression and promoting viral clearance. Cytokines and chemokines are crucial in the development of an immediate antiviral response; the rabies virus (RABV) attempts to evade this immune response. The virus's capacity for evasion is correlated with its pathogenicity and the host's inflammatory response, with highly pathogenic strains being the most efficient at hijacking the host's defense mechanisms and thereby decreasing inflammation. The purpose of this study was to evaluate the expression of a set of cytokine and chemokine genes that are related to the immune response in the brains of mice inoculated intramuscularly or intracerebrally with two wild-type strains of RABV, one from dog and the other from vampire bat. The results demonstrated that the gene expression profile is intrinsic to the specific rabies variant. The prompt production of cytokines and chemokines seems to be more important than their levels of expression for surviving a rabies infection. PMID:26711511

  4. Wild-type p53 binds to MYC promoter G-quadruplex

    PubMed Central

    Petr, Marek; Helma, Robert; Polášková, Alena; Krejčí, Aneta; Dvořáková, Zuzana; Kejnovská, Iva; Navrátilová, Lucie; Adámik, Matej; Vorlíčková, Michaela; Brázdová, Marie

    2016-01-01

    G-quadruplexes are four-stranded nucleic acid structures that are implicated in the regulation of transcription, translation and replication. Genome regions enriched in putative G-quadruplex motifs include telomeres and gene promoters. Tumour suppressor p53 plays a critical role in regulatory pathways leading to cell cycle arrest, DNA repair and apoptosis. In addition to transcriptional regulation mediated via sequence-specific DNA binding, p53 can selectively bind various non-B DNA structures. In the present study, wild-type p53 (wtp53) binding to G-quadruplex formed by MYC promoter nuclease hypersensitive element (NHE) III1 region was investigated. Wtp53 binding to MYC G-quadruplex is comparable to interaction with specific p53 consensus sequence (p53CON). Apart from the full-length wtp53, its isolated C-terminal region (aa 320–393) as well, is capable of high-affinity MYC G-quadruplex binding, suggesting its critical role in this type of interaction. Moreover, wtp53 binds to MYC promoter region containing putative G-quadruplex motif in two wtp53-expressing cell lines. The results suggest that wtp53 binding to G-quadruplexes can take part in transcriptional regulation of its target genes. PMID:27634752

  5. Polyamine Homeostasis in Wild Type and Phenolamide Deficient Arabidopsis thaliana Stamens

    PubMed Central

    Fellenberg, Christin; Ziegler, Jörg; Handrick, Vinzenz; Vogt, Thomas

    2012-01-01

    Polyamines (PAs) like putrescine, spermidine, and spermine are ubiquitous polycationic molecules that occur in all living cells and have a role in a wide variety of biological processes. High amounts of spermidine conjugated to hydroxycinnamic acids are detected in the tryphine of Arabidopsis thaliana pollen grains. Tapetum localized spermidine hydroxycinnamic acid transferase (SHT) is essential for the biosynthesis of these anther specific tris-conjugated spermidine derivatives. Sht knockout lines show a strong reduction of hydroxycinnamic acid amides (HCAAs). The effect of HCAA-deficient anthers on the level of free PAs was measured by a new sensitive and reproducible method using 9-fluorenylmethyl chloroformate (FMOC) and fluorescence detection by HPLC. PA concentrations can be accurately determined even when very limited amounts of plant material, as in the case of A. thaliana stamens, are available. Analysis of free PAs in wild type stamens compared to sht deficient mutants and transcript levels of key PA biosynthetic genes revealed a highly controlled regulation of PA homeostasis in A. thaliana anthers. PMID:22912643

  6. Function and membrane topology of wild-type and mutated cytochrome P-450c21.

    PubMed Central

    Hu, M C; Hsu, L C; Hsu, N C; Chung, B C

    1996-01-01

    We have studied membrane topology of cytochrome P-450c21 (P450c21) using the approaches of mutagenesis and protease digestion. P450c21 is located at the cytoplasm with an N-terminal hydrophobic domain integrated into microsomal membranes. When this hydrophobic domain was replaced by a secretory signal peptide, P450c21 was translocated into the lumen and lost enzymic activity. No other topogenic sequence was detected in the bulk of the P450c21 peptide. A mutant protein with Pro-30 replaced by Leu (L30) corresponding to the mutation found in the diseased state was created. L30 protein lost 90% of enzymic activity, while a double mutant (L30R32) with an additional Leu-32 to Arg mutation had slightly higher residual enzymic activity. Apart from lower activity, L30 was also present in the cell at a lower level than wild-type P450c21. This lower level is probably due to increased degradation, as L30 is synthesized at a normal rate. Both L30 and L30R32 proteins, however, were integrated into membranes normally. Therefore the Pro-30 --> Leu mutation did not affect membrane integration, but affected the abundance and enzymic activity of P450c21. PMID:8645225

  7. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics

    NASA Astrophysics Data System (ADS)

    Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong; Koman, Volodymyr B.; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S.

    2016-10-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors--single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal--embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  8. Wild-type p53 binds to MYC promoter G-quadruplex.

    PubMed

    Petr, Marek; Helma, Robert; Polášková, Alena; Krejčí, Aneta; Dvořáková, Zuzana; Kejnovská, Iva; Navrátilová, Lucie; Adámik, Matej; Vorlíčková, Michaela; Brázdová, Marie

    2016-10-01

    G-quadruplexes are four-stranded nucleic acid structures that are implicated in the regulation of transcription, translation and replication. Genome regions enriched in putative G-quadruplex motifs include telomeres and gene promoters. Tumour suppressor p53 plays a critical role in regulatory pathways leading to cell cycle arrest, DNA repair and apoptosis. In addition to transcriptional regulation mediated via sequence-specific DNA binding, p53 can selectively bind various non-B DNA structures. In the present study, wild-type p53 (wtp53) binding to G-quadruplex formed by MYC promoter nuclease hypersensitive element (NHE) III1 region was investigated. Wtp53 binding to MYC G-quadruplex is comparable to interaction with specific p53 consensus sequence (p53CON). Apart from the full-length wtp53, its isolated C-terminal region (aa 320-393) as well, is capable of high-affinity MYC G-quadruplex binding, suggesting its critical role in this type of interaction. Moreover, wtp53 binds to MYC promoter region containing putative G-quadruplex motif in two wtp53-expressing cell lines. The results suggest that wtp53 binding to G-quadruplexes can take part in transcriptional regulation of its target genes.

  9. Animal Personality Relates to Thermal Preference in Wild-Type Zebrafish, Danio rerio.

    PubMed

    Rey, Sonia; Digka, Nikoletta; MacKenzie, Simon

    2015-06-01

    It has been widely supported that individual animals express different strategies to cope with environmental challenge. In ectothermic species such as fish, individuals must use behavioral thermoregulation mechanisms to optimize physiological performance. In the present study, thermal preference was tested in groups of wild-type zebrafish, Danio rerio, screened for proactive and reactive animal personalities. Three replicate groups of proactive, reactive, and naive randomly sampled non-screened controls were used for the experiments. The frequency distribution of the animals was recorded in a custom-built multichamber tank under both constant temperature (temperature restricted conditions: TR) and a continuous thermal gradient profile (temperature choice: TCh ranging from 21°C to 35°C). Proactive and reactive animal personalities expressed significantly different thermal preferences and general activity within the temperature gradient. Our results show that proactive fish, generally characterized as being more aggressive, bold risk takers, and prone to routine formation, have a preference for higher temperature environments. Reactive fish, which are shy, less risk-prone, and more flexible, favor medium colder temperatures. This is the first report of thermopreferendum in zebrafish where individual animal personality coupled to freedom of thermal choice has been applied to understand variation in individual preferences within a population.

  10. Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin

    PubMed Central

    Fiaschi, Luigi; Di Palo, Benedetta; Scarselli, Maria; Pozzi, Clarissa; Tomaszewski, Kelly; Galletti, Bruno; Nardi-Dei, Vincenzo; Arcidiacono, Letizia; Mishra, Ravi P. N.; Mori, Elena; Pallaoro, Michele; Falugi, Fabiana; Torre, Antonina; Fontana, Maria Rita; Soriani, Marco; Bubeck Wardenburg, Juliane; Grandi, Guido; Rappuoli, Rino

    2016-01-01

    Staphylococcus aureus alpha-hemolysin (Hla) assembles into heptameric pores on the host cell membrane, causing lysis, apoptosis, and junction disruption. Herein, we present the design of a newly engineered S. aureus alpha-toxin, HlaPSGS, which lacks the predicted membrane-spanning stem domain. This protein is able to form heptamers in aqueous solution in the absence of lipophilic substrata, and its structure, obtained by transmission electron microscopy and single-particle reconstruction analysis, resembles the cap of the wild-type cytolytic Hla pore. HlaPSGS was found to be impaired in binding to host cells and to its receptor ADAM10 and to lack hemolytic and cytotoxic activity. Immunological studies using human sera as well as sera from mice convalescent from S. aureus infection suggested that the heptameric conformation of HlaPSGS mimics epitopes exposed by the cytolytic Hla pore during infection. Finally, immunization with this newly engineered Hla generated high protective immunity against staphylococcal infection in mice. Overall, this study provides unprecedented data on the natural immune response against Hla and suggests that the heptameric HlaPSGS is a highly valuable vaccine candidate against S. aureus. PMID:27030589

  11. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster.

    PubMed

    Mendes, César S; Bartos, Imre; Akay, Turgay; Márka, Szabolcs; Mann, Richard S

    2013-01-08

    Coordinated walking in vertebrates and multi-legged invertebrates [corrected] such as Drosophila melanogaster requires a complex neural network coupled to sensory feedback. An understanding of this network will benefit from systems such as Drosophila that have the ability to genetically manipulate neural activities. However, the fly's small size makes it challenging to analyze walking in this system. In order to overcome this limitation, we developed an optical method coupled with high-speed imaging that allows the tracking and quantification of gait parameters in freely walking flies with high temporal and spatial resolution. Using this method, we present a comprehensive description of many locomotion parameters, such as gait, tarsal positioning, and intersegmental and left-right coordination for wild type fruit flies. Surprisingly, we find that inactivation of sensory neurons in the fly's legs, to block proprioceptive feedback, led to deficient step precision, but interleg coordination and the ability to execute a tripod gait were unaffected.DOI:http://dx.doi.org/10.7554/eLife.00231.001.

  12. Functional analysis of mutant and wild-type Drosophila origin recognition complex

    PubMed Central

    Chesnokov, Igor; Remus, Dirk; Botchan, Michael

    2001-01-01

    The origin recognition complex (ORC) is the DNA replication initiator protein in eukaryotes. We have reconstituted a functional recombinant Drosophila ORC and compared activities of the wild-type and several mutant ORC variants. Drosophila ORC is an ATPase, and our studies show that the ORC1 subunit is essential for ATP hydrolysis and for ATP-dependent DNA binding. Moreover, DNA binding by ORC reduces its ATP hydrolysis activity. In vitro, ORC binds to chromatin in an ATP-dependent manner, and this process depends on the functional AAA+ nucleotide-binding domain of ORC1. Mutations in the ATP-binding domain of ORC1 are unable to support cell-free DNA replication. However, mutations in the putative ATP-binding domain of either the ORC4 or ORC5 subunits do not affect either of these functions. We also provide evidence that the Drosophila ORC6 subunit is directly required for all of these activities and that a large pool of ORC6 is present in the cytoplasm, cytologically proximal to the cell membrane. Studies reported here provide the first functional dissection of a metazoan initiator and highlight the basic conserved and divergent features among Drosophila and budding yeast ORC complexes. PMID:11593009

  13. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  14. Segregation distortion induced by wild-type RanGAP in Drosophila

    PubMed Central

    Kusano, Ayumi; Staber, Cynthia; Ganetzky, Barry

    2002-01-01

    Segregation Distorter (SD) is a meiotic drive system in Drosophila that causes preferential transmission of the SD chromosome from SD/SD+ males owing to the induced dysfunction of SD+ spermatids. The key distorter locus, Sd, is a dominant neomorphic allele encoding a truncated, but enzymatically active, RanGAP (RanGTPase-activating protein) whose nuclear mislocalization underlies distortion by disrupting the Ran signaling pathway. Here, we show that even wild-type RanGAP can cause segregation distortion when it is overexpressed in the male germ line or when the gene dosage of a particular modifier locus is increased. Both manipulations result in substantial nuclear accumulation of RanGAP. Distortion can be suppressed by overexpression of Ran or Ran guanine nucleotide exchange factor (RanGEF) in the male germ line, indicating that the primary consequence of nuclear mislocalization of RanGAP is reduction of intranuclear RanGTP levels. These results prove that segregation distortion does not depend on any unique properties of the mutant RanGAP encoded by Sd and provide a unifying explanation for the occurrence of distortion in a variety of experimental situations. PMID:11997467

  15. CO2 Uptake and Electron Transport Rates in Wild-Type and a Starchless Mutant of Nicotiana sylvestris (The Role and Regulation of Starch Synthesis at Saturating CO2 Concentrations).

    PubMed Central

    Eichelmann, H.; Laisk, A.

    1994-01-01

    CO2 uptake rate, chlorophyll fluorescence, and 830-nm absorbance were measured in wild-type (wt) Nicotiana sylvestris (Speg. et Comes) and starchless mutant NS 458 leaves at different light intensities and CO2 concentrations. Initial slopes of the relationships between CO2 uptake and light and CO2 were similar, but the maximum rate at CO2 and light saturation was only 30% in the mutant compared with the wt. O2 enhancement of photosynthesis at CO2 and light saturation was relatively much greater in the mutant than in the wt. In 21% O2, the electron transport rate (ETR) calculated from fluorescence peaked near the beginning of the CO2 saturation of photosynthesis. With the further increase of CO2 concentration ETR remained nearly constant or declined a little in the wt but drastically declined in the mutant. Absorbance measurements at 830 nm indicated photosystem I acceptor side reduction in both plants at saturating CO2 and light. Assimilatory charge (postillumination CO2 uptake) measurements indicated trapping of chloroplast inorganic phosphate, supposedly in hexose phosphates, in the mutant. It is concluded that starch synthesis gradually substitutes for photorespiration as electron acceptor with increasing CO2 concentration in the wt but not in the mutant. It is suggested that starch synthesis is co-controlled by the activity of the chloroplast fructose bisphosphatase. PMID:12232360

  16. Comparison of the wild-type alpha-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of bacillus alpha-amylase.

    PubMed

    Lee, Seunjae; Mouri, Yoshiki; Minoda, Masashi; Oneda, Hiroshi; Inouye, Kuniyo

    2006-06-01

    The starch hydrolysis activity and thermal stability of Bacillus amyloliquefaciens alpha-amylase (wild-type enzyme or WT) and its variant enzymes, designated as M77, M111, and 21B, were compared. All have an optimal pH at around 6, as well as almost the same reaction rates and Km and kcat values. The optimal temperature in the absence of Ca2+ ions is 60 degrees C for WT and M77 and 40 degrees C for M111 and 21B. Those of M111 and 21B rose to 50-60 degrees C upon the addition of 5 mM CaCl2, while those of WT and M77 did not change. The dissociation constants Kd for Ca2+ to WT and M77 are much lower than those of M111 and 21B. Asp233 in WT is replaced by Asn in M111 and 21B, while it is retained in M77, suggesting that Asp233 is involved in the thermal stability of the enzyme through Ca2+ ion binding. These findings provide insight into engineering the thermal stability of B. amyloliquefaciens alpha-amylase, which would be useful for its applications in the baking industry and in glucose manufacturing.

  17. Expression signature based on TP53 target genes doesn't predict response to TP53-MDM2 inhibitor in wild type TP53 tumors.

    PubMed

    Sonkin, Dmitriy

    2015-10-22

    A number of TP53-MDM2 inhibitors are currently under investigation as therapeutic agents in a variety of clinical trials in patients with TP53 wild type tumors. Not all wild type TP53 tumors are sensitive to such inhibitors. In an attempt to improve selection of patients with TP53 wild type tumors, an mRNA expression signature based on 13 TP53 transcriptional target genes was recently developed (Jeay et al. 2015). Careful reanalysis of TP53 status in the study validation data set of cancer cell lines considered to be TP53 wild type detected TP53 inactivating alterations in 23% of cell lines. The subsequent reanalysis of the remaining TP53 wild type cell lines clearly demonstrated that unfortunately the 13-gene signature cannot predict response to TP53-MDM2 inhibitor in TP53 wild type tumors.

  18. Spontaneous hepatic repopulation in transgenic mice expressing mutant human α1-antitrypsin by wild-type donor hepatocytes.

    PubMed

    Ding, Jianqiang; Yannam, Govardhana R; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I; Wong, Ronald J; Avsar, Yesim; Guha, Chandan; Perlmutter, David H; Fox, Ira J; Roy-Chowdhury, Jayanta

    2011-05-01

    α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z-expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%-98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z-expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals.

  19. Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain.

    PubMed

    Jeong, Bo-Young; Wittmann, Christoph; Kato, Tatsuya; Park, Enoch Y

    2015-01-01

    In the present study, we analyzed the central metabolic pathway of an Ashbya gossypii wild type strain and a riboflavin over-producing mutant strain developed in a previous study in order to characterize the riboflavin over-production pathway. (13)C-Metabolic flux analysis ((13)C-MFA) was carried out in both strains, and the resulting data were fit to a steady-state flux isotopomer model using OpenFLUX. Flux to pentose-5-phosphate (P5P) via the pentose phosphate pathway (PPP) was 9% higher in the mutant strain compared to the wild type strain. The flux from purine synthesis to riboflavin in the mutant strain was 1.6%, while that of the wild type strain was only 0.1%, a 16-fold difference. In addition, the flux from the cytoplasmic pyruvate pool to the extracellular metabolites, pyruvate, lactate, and alanine, was 2-fold higher in the mutant strain compared to the wild type strain. This result demonstrates that increased guanosine triphosphate (GTP) flux through the PPP and purine synthesis pathway (PSP) increased riboflavin production in the mutant strain. The present study provides the first insight into metabolic flux through the central carbon pathway in A. gossypii and sets the foundation for development of a quantitative and functional model of the A. gossypii metabolic network.

  20. A comparative study of cytokinins in caryopsis development in the maize miniature 1 seed mutant and its wild type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here a comparative developmental profile of cytokinins, both total quantity and diversity of various forms, in relation to cell size, cell number and endoreduplication in developing caryopses of a cell wall invertase-deficient miniature1 (mn1) seed mutant and its wild type, Mn1, genotype. ...

  1. Wild-type p53-mediated down-modulation of interleukin 15 and interleukin 15 receptors in human rhabdomyosarcoma cells.

    PubMed Central

    De Giovanni, C.; Nanni, P.; Sacchi, A.; Soddu, S.; Manni, I.; D'Orazi, G.; Bulfone-Paus, S.; Pohl, T.; Landuzzi, L.; Nicoletti, G.; Frabetti, F.; Rossi, I.; Lollini, P. L.

    1998-01-01

    We recently reported that rhabdomyosarcoma cell lines express and secrete interleukin 15 (IL-15), a tightly regulated cytokine with IL-2-like activity. To test whether the p53-impaired function that is frequently found in this tumour type could play a role in the IL-15 production, wild-type p53 gene was transduced in the human rhabdomyosarcoma cell line RD (which harbours a mutated p53 gene), and its effect on proliferation and expression of IL-15 was studied. Arrest of proliferation was induced by wild-type p53; increased proportions of G1-arrested cells and of apoptotic cells were observed. A marked down-modulation of IL-15 expression, at both the mRNA and protein level, was found in p53-transduced cells. Because a direct effect of IL-15 on normal muscle cells has been reported, the presence of IL-15 membrane receptors was studied by cytofluorometric analysis. Rhabdomyosarcoma cells showed IL-15 membrane receptors, which are down-modulated by wild-type p53 transfected gene. In conclusion, wild-type p53 transduction in human rhabdomyosarcoma cells induces the down-modulation of both IL-15 production and IL-15 receptor expression. Images Figure 3 PMID:9862562

  2. Wild-type p53 is not a negative regulator of simian virus 40 DNA replication in infected monkey cells.

    PubMed Central

    von der Weth, A; Deppert, W

    1993-01-01

    To analyze the proposed growth-inhibitory function of wild-type p53, we compared simian virus 40 (SV40) DNA replication in primary rhesus monkey kidney (PRK) cells, which express wild-type p53, and in the established rhesus monkey kidney cell line LLC-MK2, which expresses a mutated p53 that does not complex with large T antigen. SV40 DNA replication proceeded identically in both cell types during the course of infection. Endogenously expressed wild-type p53 thus does not negatively modulate SV40 DNA replication in vivo. We suggest that inhibition of SV40 DNA replication by wild-type p53 in in vitro replication assays is due to grossly elevated ratios of p53 to large T antigen, thus depleting the replication-competent free large T antigen in the assay mixtures by complex formation. In contrast, the ratio of p53 to large T antigen in in vivo replication is low, leaving the majority of large T antigen in a free, replication-competent state. Images PMID:8380470

  3. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces

    PubMed Central

    Zhao, Xiaomin; Daniels, Karla J.; Oh, Soon-Hwan; Green, Clayton B.; Yeater, Kathleen M.; Soll, David R.; Hoyer, Lois L.

    2007-01-01

    Candida albicans ALS3 encodes a large cell-surface glycoprotein that has adhesive properties. Immunostaining of cultured C. albicans germ tubes showed that Als3p is distributed diffusely across the germ tube surface. Two-photon laser scanning microscopy of model catheter biofilms grown using a PALS3-green fluorescent protein (GFP) reporter strain showed GFP production in hyphae throughout the biofilm structure while biofilms grown using a PTPI1-GFP reporter strain showed GFP in both hyphae and yeast-form cells. Model catheter biofilms formed by an als3Δ/als3Δ strain were weakened structurally and had approximately half the biomass of a wild-type biofilm. Reintegration of a wild-type ALS3 allele restored biofilm mass and wild-type biofilm structure. Production of an Als3p-Agα1p fusion protein under control of the ALS3 promoter in the als3Δ/als3Δ strain restored some of the wild-type biofilm structural features, but not the wild-type biofilm mass. Despite its inability to restore wild-type biofilm mass, the Als3p-Agα1p fusion protein mediated adhesion of the als3Δ/als3Δ C. albicans strain to human buccal epithelial cells (BECs). The adhesive role of the Als3p N-terminal domain was further demonstrated by blocking adhesion of C. albicans to BECs with immunoglobulin reactive against the Als3p N-terminal sequences. Together, these data suggest that portions of Als3p that are important for biofilm formation may be different from those that are important in BEC adhesion, and that Als3p may have multiple functions in biofilm formation. Overexpression of ALS3 in an efg1Δ/efg1Δ strain that was deficient for filamentous growth and biofilm formation resulted in growth of elongated C. albicans cells, even under culture conditions that do not favour filamentation. In the catheter biofilm model, the ALS3 overexpression strain formed biofilm with a mass similar to that of a wild-type control. However, C. albicans cells in the biofilm had yeast-like morphology. This

  4. Fluoroquinolone interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type and resistant gyrase.

    PubMed

    Aldred, Katie J; Blower, Tim R; Kerns, Robert J; Berger, James M; Osheroff, Neil

    2016-02-16

    Mycobacterium tuberculosis is a significant source of global morbidity and mortality. Moxifloxacin and other fluoroquinolones are important therapeutic agents for the treatment of tuberculosis, particularly multidrug-resistant infections. To guide the development of new quinolone-based agents, it is critical to understand the basis of drug action against M. tuberculosis gyrase and how mutations in the enzyme cause resistance. Therefore, we characterized interactions of fluoroquinolones and related drugs with WT gyrase and enzymes carrying mutations at GyrA(A90) and GyrA(D94). M. tuberculosis gyrase lacks a conserved serine that anchors a water-metal ion bridge that is critical for quinolone interactions with other bacterial type II topoisomerases. Despite the fact that the serine is replaced by an alanine (i.e., GyrA(A90)) in M. tuberculosis gyrase, the bridge still forms and plays a functional role in mediating quinolone-gyrase interactions. Clinically relevant mutations at GyrA(A90) and GyrA(D94) cause quinolone resistance by disrupting the bridge-enzyme interaction, thereby decreasing drug affinity. Fluoroquinolone activity against WT and resistant enzymes is enhanced by the introduction of specific groups at the C7 and C8 positions. By dissecting fluoroquinolone-enzyme interactions, we determined that an 8-methyl-moxifloxacin derivative induces high levels of stable cleavage complexes with WT gyrase and two common resistant enzymes, GyrA(A90V) and GyrA(D94G). 8-Methyl-moxifloxacin was more potent than moxifloxacin against WT M. tuberculosis gyrase and displayed higher activity against the mutant enzymes than moxifloxacin did against WT gyrase. This chemical biology approach to defining drug-enzyme interactions has the potential to identify novel drugs with improved activity against tuberculosis.

  5. Fluoroquinolone interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type and resistant gyrase

    PubMed Central

    Aldred, Katie J.; Kerns, Robert J.; Berger, James M.; Osheroff, Neil

    2016-01-01

    Mycobacterium tuberculosis is a significant source of global morbidity and mortality. Moxifloxacin and other fluoroquinolones are important therapeutic agents for the treatment of tuberculosis, particularly multidrug-resistant infections. To guide the development of new quinolone-based agents, it is critical to understand the basis of drug action against M. tuberculosis gyrase and how mutations in the enzyme cause resistance. Therefore, we characterized interactions of fluoroquinolones and related drugs with WT gyrase and enzymes carrying mutations at GyrAA90 and GyrAD94. M. tuberculosis gyrase lacks a conserved serine that anchors a water–metal ion bridge that is critical for quinolone interactions with other bacterial type II topoisomerases. Despite the fact that the serine is replaced by an alanine (i.e., GyrAA90) in M. tuberculosis gyrase, the bridge still forms and plays a functional role in mediating quinolone–gyrase interactions. Clinically relevant mutations at GyrAA90 and GyrAD94 cause quinolone resistance by disrupting the bridge–enzyme interaction, thereby decreasing drug affinity. Fluoroquinolone activity against WT and resistant enzymes is enhanced by the introduction of specific groups at the C7 and C8 positions. By dissecting fluoroquinolone–enzyme interactions, we determined that an 8-methyl-moxifloxacin derivative induces high levels of stable cleavage complexes with WT gyrase and two common resistant enzymes, GyrAA90V and GyrAD94G. 8-Methyl-moxifloxacin was more potent than moxifloxacin against WT M. tuberculosis gyrase and displayed higher activity against the mutant enzymes than moxifloxacin did against WT gyrase. This chemical biology approach to defining drug–enzyme interactions has the potential to identify novel drugs with improved activity against tuberculosis. PMID:26792518

  6. Research on the ultrafast fluorescence property of thylakoid membranes of the wild-type and mutant rice

    NASA Astrophysics Data System (ADS)

    Ren, Zhao-Yu; Xu, Xiao-Ming; Wang, Shui-Cai; Xin, Yue-Yong; He, Jun-Fang; Hou, Xun

    2003-10-01

    A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wild-type rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wild-type. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.

  7. Stimulus control by 5-methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice.

    PubMed

    Winter, J C; Amorosi, D J; Rice, Kenner C; Cheng, Kejun; Yu, Ai-Ming

    2011-09-01

    In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT.

  8. Disappearance of GFP-Positive Hepatocytes Transplanted into the Liver of Syngeneic Wild-Type Rats Pretreated with Retrorsine

    PubMed Central

    Maeda, Hiromichi; Shigoka, Masatoshi; Wang, Yongchun; Fu, Yingxin; Wesson, Russell N.; Lin, Qing; Montgomery, Robert A.; Enzan, Hideaki; Sun, Zhaoli

    2014-01-01

    Background and Aim Green fluorescent protein (GFP) is a widely used molecular tag to trace transplanted cells in rodent liver injury models. The differing results from various previously reported studies using GFP could be attributed to the immunogenicity of GFP. Methods Hepatocytes were obtained from GFP-expressing transgenic (Tg) Lewis rats and were transplanted into the livers of wild-type Lewis rats after they had undergone a partial hepatectomy. The proliferation of endogenous hepatocytes in recipient rats was inhibited by pretreatment with retrorsine to enhance the proliferation of the transplanted hepatocytes. Transplantation of wild-type hepatocytes into GFP-Tg rat liver was also performed for comparison. Results All biopsy specimens taken seven days after transplantation showed engraftment of transplanted hepatocytes, with the numbers of transplanted hepatocytes increasing until day 14. GFP-positive hepatocytes in wild-type rat livers were decreased by day 28 and could not be detected on day 42, whereas the number of wild-type hepatocytes steadily increased in GFP-Tg rat liver. Histological examination showed degenerative change of GFP-positive hepatocytes and the accumulation of infiltrating cells on day 28. PCR analysis for the GFP transgene suggested that transplanted hepatocytes were eliminated rather than being retained along with the loss of GFP expression. Both modification of the immunological response using tacrolimus and bone marrow transplantation prolonged the survival of GFP-positive hepatocytes. In contrast, host immunization with GFP-positive hepatocytes led to complete loss of GFP-positive hepatocytes by day 14. Conclusion GFP-positive hepatocytes isolated from GFP-Tg Lewis rats did not survive long term in the livers of retrorsine-pretreated wild-type Lewis rats. The mechanism underlying this phenomenon most likely involves an immunological reaction against GFP. The influence of GFP immunogenicity on cell transplantation models should be

  9. Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel.

    PubMed

    Holstead, Ryan G; Li, Man-Song; Linsdell, Paul

    2011-10-01

    Studies of the structure and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel have been advanced by the development of functional channel variants in which all 18 endogenous cysteine residues have been mutated ("cys-less" CFTR). However, cys-less CFTR has a slightly higher single-channel conductance than wild-type CFTR, raising questions as to the suitability of cys-less as a model of the wild-type CFTR pore. We used site-directed mutagenesis and patch-clamp recording to investigate the origin of this conductance difference and to determine the extent of functional differences between wild-type and cys-less CFTR channel permeation properties. Our results suggest that the conductance difference is the result of a single substitution, of C343: the point mutant C343S has a conductance similar to cys-less, whereas the reverse mutation, S343C in a cys-less background, restores wild-type conductance levels. Other cysteine substitutions (C128S, C225S, C376S, C866S) were without effect. Substitution of other residues for C343 suggested that conductance is dependent on amino acid side chain volume at this position. A range of other functional pore properties, including interactions with channel blockers (Au[CN] (2) (-) , 5-nitro-2-[3-phenylpropylamino]benzoic acid, suramin) and anion permeability, were not significantly different between wild-type and cys-less CFTR. Our results suggest that functional differences between these two CFTR constructs are of limited scale and scope and result from a small change in side chain volume at position 343. These results therefore support the use of cys-less as a model of the CFTR pore region.

  10. Time course and progression of wild type α-Synuclein accumulation in a transgenic mouse model

    PubMed Central

    2013-01-01

    Background Progressive accumulation of α-synuclein (α-Syn) protein in different brain regions is a hallmark of synucleinopathic diseases, such as Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. α-Syn transgenic mouse models have been developed to investigate the effects of α-Syn accumulation on behavioral deficits and neuropathology. However, the onset and progression of pathology in α-Syn transgenic mice have not been fully characterized. For this purpose we investigated the time course of behavioral deficits and neuropathology in PDGF-β human wild type α-Syn transgenic mice (D-Line) between 3 and 12 months of age. Results These mice showed progressive impairment of motor coordination of the limbs that resulted in significant differences compared to non-transgenic littermates at 9 and 12 months of age. Biochemical and immunohistological analyses revealed constantly increasing levels of human α-Syn in different brain areas. Human α-Syn was expressed particularly in somata and neurites of a subset of neocortical and limbic system neurons. Most of these neurons showed immunoreactivity for phosphorylated human α-Syn confined to nuclei and perinuclear cytoplasm. Analyses of the phenotype of α-Syn expressing cells revealed strong expression in dopaminergic olfactory bulb neurons, subsets of GABAergic interneurons and glutamatergic principal cells throughout the telencephalon. We also found human α-Syn expression in immature neurons of both the ventricular zone and the rostral migratory stream, but not in the dentate gyrus. Conclusion The present study demonstrates that the PDGF-β α-Syn transgenic mouse model presents with early and progressive accumulation of human α-Syn that is accompanied by motor deficits. This information is essential for the design of therapeutical studies of synucleinopathies. PMID:23302418

  11. Neutral carotenoid radicals in photoprotection of wild-type Arabidopsis thaliana.

    PubMed

    Magyar, Adam; Bowman, Michael K; Molnár, Péter; Kispert, L

    2013-02-28

    The deprotonation of naturally occurring zeaxanthin (Zea) radical cations (Zea(•+)) to form neutral radicals (#Zea(•)) and their involvement in the qE portion of nonphotochemical quenching (NPQ) was examined. The radical cations are weak acids, and readily deprotonate to a long-lived neutral radical (#Zea(•)) that could serve as long-lived quenching sites. When #Zea(•) is eventually neutralized and Zea is reformed in the presence of D2O, the Zea has an opportunity to undergo H/D exchange. This paper examines evidence for H/D exchange specific to qE activity in Arabidopsis thaliana . We demonstrate that Zea(•+) formed chemically via oxidation of Zea by Fe(III) in the presence of D2O undergoes H/D exchange with a significant intensity increase of the M+1 (d1Zea) and M+2 (d2Zea) mass peaks in the mass spectrum. Then leaves from wild-type A. thaliana were infiltrated with either D2O or H2O and exposed to light. The carotenoids were extracted and analyzed via electrospray ionization liquid chromatography/mass spectrometry (LC/MS) to examine the mass peak distribution of Zea. Only leaves exposed to light intensity that triggers qE in A. thaliana (>300 μE m(-2)s(-1)) showed H/D exchange. This result suggests that #Zea(•) can form by the deprotonation of the weak acid Zea(•+) during qE, and its possible impact on qE must be considered.

  12. Internal binding sites for MSH: Analyses in wild-type and variant Cloudman melanoma cells

    SciTech Connect

    Orlow, S.J.; Hotchkiss, S.; Pawelek, J.M. )

    1990-01-01

    Cloudman S91 mouse melanoma cells express both external (plasma membrane) and internal binding sites for MSH. Using 125I-beta melanotropin (beta-MSH) as a probe, we report here an extensive series of studies on the biological relevance of these internal sites. Cells were swollen in a hypotonic buffer and lysed, and a particulate fraction was prepared by high-speed centrifugation. This fraction was incubated with 125I-beta-MSH with or without excess nonradioactive beta-MSH in the cold for 2 hours. The material was then layered onto a step-wise sucrose gradient and centrifuged; fractions were collected and counted in a gamma counter or assayed for various enzymatic activities. The following points were established: (1) Specific binding sites for MSH were observed sedimenting at an average density of 50% sucrose in amelanotic cells and at higher densities in melanotic cells. (2) These sites were similar in density to those observed when intact cells were labeled externally with 125I-beta-MSH and then warmed to promote internalization of the hormone. (3) Most of the internal binding sites were not as dense as fully melanized melanosomes. (4) In control experiments, the MSH binding sites were not found in cultured hepatoma cells. (5) Variant melanoma cells, which differed from the wild-type in their responses to MSH, had reduced expression of internal binding sites even though their ability to bind MSH to the outer cell surface appeared normal. (MSH-induced responses included changes in tyrosinase, dopa oxidase, and dopachrome conversion factor activities, melanization, proliferation, and morphology.) (6) Isobutylmethylxanthine, which enhanced cellular responsiveness to MSH, also enhanced expression of internal binding sites. The results indicate that expression of internal binding sites for MSH is an important criterion for cellular responsiveness to the hormone.

  13. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ.

    PubMed

    Peng, Cheng; Arthur, Dionne M; Sichani, Homa Teimouri; Xia, Qing; Ng, Jack C

    2013-11-01

    Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005-5 μM) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater.

  14. MicroRNA-based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer

    PubMed Central

    Sharma, Sriganesh B.; Ruppert, J. Michael

    2015-01-01

    MicroRNAs (miRs) have been causally implicated in the progression and development of a wide variety of cancers. miRs modulate the activity of key cell signaling networks by regulating the translation of pathway component proteins. Thus, the pharmacological targeting of miRs that regulate cancer cell signaling networks, either by promoting (using miR-supplementation) or by suppressing (using anti-sense oligonucleotide based strategies) miR activity is an area of intense research. The RAS-Extracellular signal regulated kinase (ERK) pathway represents a major miR-regulated signaling network that endows cells with some of the classical hallmarks of cancer, and is often inappropriately activated in malignancies by somatic genetic alteration through point mutation or alteration of gene copy number. In addition, recent progress indicates that many tumors may be deficient in GTPase activating proteins (GAPs) due to the collaborative action of oncogenic microRNAs. Recent studies also suggest that in tumors harboring a mutant RAS allele there is a critical role for wild type RAS proteins in determining overall RAS-ERK pathway activity. Together, these two advances comprise a new opportunity for therapeutic intervention. In this review, we evaluate miR-based therapeutic strategies for modulating RAS-ERK signaling in cancers, in particular for more direct modulation of RAS-GTP levels, with the potential to complement current strategies in order to yield more durable treatment responses. To this end, we discuss the potential for miR-based therapies focused on three prominent miRs including the pan-RAS regulator let-7 and the GAP regulator comprised of miR-206 and miR-21 (miR-206/21). PMID:26284568

  15. Profiling the RNA editomes of wild-type C. elegans and ADAR mutants.

    PubMed

    Zhao, Han-Qing; Zhang, Pan; Gao, Hua; He, Xiandong; Dou, Yanmei; Huang, August Y; Liu, Xi-Ming; Ye, Adam Y; Dong, Meng-Qiu; Wei, Liping

    2015-01-01

    RNA editing increases transcriptome diversity through post-transcriptional modifications of RNA. Adenosine deaminases that act on RNA (ADARs) catalyze the adenosine-to-inosine (A-to-I) conversion, the most common type of RNA editing in higher eukaryotes. Caenorhabditis elegans has two ADARs, ADR-1 and ADR-2, but their functions remain unclear. Here, we profiled the RNA editomes of C. elegans at different developmental stages of wild-type and ADAR mutants. We developed a new computational pipeline with a "bisulfite-seq-mapping-like" step and achieved a threefold increase in identification sensitivity. A total of 99.5% of the 47,660 A-to-I editing sites were found in clusters. Of the 3080 editing clusters, 65.7% overlapped with DNA transposons in noncoding regions and 73.7% could form hairpin structures. The numbers of editing sites and clusters were highest at the L1 and embryonic stages. The editing frequency of a cluster positively correlated with the number of editing sites within it. Intriguingly, for 80% of the clusters with 10 or more editing sites, almost all expressed transcripts were edited. Deletion of adr-1 reduced the editing frequency but not the number of editing clusters, whereas deletion of adr-2 nearly abolished RNA editing, indicating a modulating role of ADR-1 and an essential role of ADR-2 in A-to-I editing. Quantitative proteomics analysis showed that adr-2 mutant worms altered the abundance of proteins involved in aging and lifespan regulation. Consistent with this finding, we observed that worms lacking RNA editing were short-lived. Taken together, our results reveal a sophisticated landscape of RNA editing and distinct modes of action of different ADARs.

  16. Differential Response to Trichloroethylene-Induced Hepatosteatosis in Wild-Type and PPARα-Humanized Mice

    PubMed Central

    Ramdhan, Doni Hikmat; Kamijima, Michihiro; Wang, Dong; Ito, Yuki; Naito, Hisao; Yanagiba, Yukie; Hayashi, Yumi; Tanaka, Naoki; Aoyama, Toshifumi; Gonzalez, Frank J.; Nakajima, Tamie

    2010-01-01

    Background Trichloroacetic acid, an oxidative metabolite of trichloroethylene (TRI), is a ligand of the peroxisome proliferator-activated receptor α (PPAR) α, which is involved in lipid homeostasis and anti-inflammation. Objective We examined the role of mouse and human PPARα in TRI-induced hepatic steatosis and toxicity. Methods Male wild-type (mPPARα), Pparα-null, and humanized PPARα (hPPARα) mice on an Sv/129 background were exposed via inhalation to 0, 1,000, and 2,000 ppm TRI for 8 hr/day for 7 days. We assessed TRI-induced steatosis or hepatic damage through biochemical and histopathological measurements. Results Plasma alanine aminotransferase and aspartate aminotransferase activities increased in all mouse lines after exposure to 1,000 and 2,000 ppm TRI. Exposure induced hepatocyte necrosis and inflammatory cells in all mouse lines, but hepatic lipid accumulation was observed only in Pparα-null and hPPARα mice. No differences were observed in TRI-mediated induction of hepatic PPARα target genes except for a few genes that differed between mPPARα and hPPARα mice. However, TRI significantly increased expression of triglyceride (TG)-synthesizing enzymes, diacylglicerol acyltransferases, and PPARγ in Pparα-null and hPPARα mice, which may account for the increased TG in their livers. TRI exposure elevated nuclear factor-kappa B (NFκB) p52 mRNA and protein in all mice regardless of PPARα genotype. Conclusions NFκB-p52 is a candidate molecular marker for inflammation caused by TRI, and PPARα may be involved in TRI-induced hepatosteatosis. However, human PPARα may afford only weak protection against TRI-mediated effects compared with mouse PPARα. PMID:20709644

  17. Staurosporine scaffold-based rational discovery of the wild-type sparing reversible inhibitors of EGFR T790M gatekeeper mutant in lung cancer with analog-sensitive kinase technology.

    PubMed

    Song, Xiaoyun; Liu, Xingcai; Ding, Xi

    2017-04-01

    The human epidermal growth factor receptor (EGFR) has been established as an attractive target for lung cancer therapy. However, an acquired EGFR T790M gatekeeper mutation is frequently observed in patients treated with first-line anticancer agents such as gefitinib and erlotinib to cause drug resistance, largely limiting the application of small-molecule kinase inhibitors in EGFR-targeted chemotherapy. Previously, the reversible pan-kinase inhibitor staurosporine and its several analogs such as Gö6976 and K252a have been reported to selectively inhibit the EGFR T790M mutant (EGFR(T790M) ) over wild-type kinase (EGFR(WT) ), suggesting that the staurosporine scaffold is potentially to develop the wild-type sparing reversible inhibitors of EGFR(T790M) . Here, we systematically evaluated the inhibitor response of 28 staurosporine scaffold-based compounds to EGFR T790M mutation at structural, energetic, and molecular levels by using an integrated in silico-in vitro analog-sensitive (AS) kinase technology. With the strategy, we were able to identify 4 novel wild-type sparing inhibitors UCN-01, UCN-02, AFN941, and SB-218078 with high or moderate selectivity of 30-, 45-, 5-, and 8-fold for EGFR(T790M) over EGFR(WT) , respectively, which are comparable with or even better than that of the parent compound staurosporine (24-fold). Molecular modeling and structural analysis revealed that van der Waals contacts and hydrophobic forces can form between the side chain of mutated residue Met790 and the pyrrolidinone moiety of inhibitor ligand UCN-02, which may simultaneously improve the favorable interaction energy between the kinase and inhibitor, and reduce the unfavorable desolvation penalty upon the kinase-inhibitor binding. A hydroxyl group of UCN-02 additional to staurosporine locates at the pyrrolidinone moiety, which can largely alter the electronic distribution of pyrrolidinone moiety and thus promote the intermolecular interaction with Met790 residue. This can well

  18. Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato Sw-5 resistance-breaking and pepper Tsw resistance-breaking) from Spain.

    PubMed

    Debreczeni, Diana E; López, Carmelo; Aramburu, José; Darós, José Antonio; Soler, Salvador; Galipienso, Luis; Falk, Bryce W; Rubio, Luis

    2015-08-01

    Tomato spotted wilt virus (TSWV) occurs worldwide and causes production losses in many important horticultural crops such as tomato and pepper. Breeding resistant cultivars has been the most successful method so far for TSWV disease control, but only two genes have been found to confer resistance against a wide spectrum of TSWV isolates: Sw-5 in tomato and Tsw in pepper. However, TSWV resistance-breaking isolates have emerged in different countries a few years after using resistant cultivars. In this paper, we report the first complete nucleotide sequences of three Spanish TSWV isolates with different biotypes according to their abilities to overcome resistance: LL-N.05 (wild type, WT), Pujol1TL3 (Sw-5 resistance breaking, SBR) and PVR (Tsw resistance-breaking, TBR). The genome of these TSWV isolates consisted of three segments: L (8913-8914 nt), M (4752-4825 nt) and (S 2924-2961 nt). Variations in nucleotide sequences and genomic RNA lengths among the different virus biotypes are reported here. Phylogenetic analysis of the five TSWV open reading frames showed evidence of reassortment between genomic segments of LL-N.05 and Pujol1TL3, which was supported by analysis with different recombination-detecting algorithms.

  19. Stereological investigation of the CA1 pyramidal cell layer in untreated and lithium-treated 3xTg-AD and wild-type mice.

    PubMed

    Schaeffer, Evelin L; Catanozi, Sergio; West, Mark J; Gattaz, Wagner F

    2017-01-01

    Pyramidal neuron loss in the hippocampal CA1 region is a very early hallmark of Alzheimer disease (AD). Lithium might be a therapeutic strategy for AD due to its neuroprotective and neurotrophic properties. This study used modern stereological techniques to investigate possible CA1 pyramidal neuron loss in 11-month-old triple transgenic AD (3xTg-AD) mice, and also the effects of therapeutic and subtherapeutic lithium doses on the number and density of CA1 pyramidal neurons and volume of CA1 pyramidal layer in 3xTg-AD and wild-type mice treated from 3 to 11 months of age. 3xTg-AD mice displayed CA1 pyramidal layer atrophy that is likely due to reduced neuronal volume because of the absence of neuronal loss. Both lithium treatments of 3xTg-AD mice, which already expressed AD-like pathology, had no effect on CA1 atrophy. However, lithium treatment of wild-type mice, at low (subtherapeutic) doses, induced a significant increase in total CA1 pyramidal neuron number that led to a significant increase in total CA1 pyramidal layer volume. The lithium-induced increase in CA1 neuron number is highly consistent with previous evidence that adult neurogenesis can be exogenously induced in the CA1 pyramidal layer with impact on total CA1 neuron number, thus raising the possibility of the chronic use of low-dose lithium as a strategy to help compensate for neuronal loss in CA1 and perhaps other typically non-neurogenic brain regions in various neurological diseases. With regard to AD, low-dose lithium intervention must be initiated as early as possible in the course of neuropathology for beneficial effects to occur.

  20. Binding of Cu(II) to human alpha-synucleins: comparison of wild type and the point mutations associated with the familial Parkinson's disease.

    PubMed

    Hong, Lian; Simon, John D

    2009-07-16

    The Cu(II)-alpha-synuclein interaction has been invoked as an important process in the pathogenesis of Parkinson's disease. Herein, we report binding constants and stoichiometry under near-physiological conditions for the binding of Cu(II) to human alpha-synuclein. Specifically, we compare the binding of Cu(II) to wild-type (WT) protein and two separate single mutation proteins that are associated with familial Parkinson's diseases: A30P and A53T. Cu(II) binds to all three alpha-synuclein proteins with a 1:1 stoichiometry. The Cu(II) binding constants, however, vary among the proteins studied. Cu(II) binding to WT and A53T at 37 degrees C is similar with a pH-dependent binding constant (K) of approximately 2.4 x 10(9) and approximately 4.8 x 10(9) M(-1) at pH 7.2 and 7.4, respectively. Cu(II) binding to A30P, however, exhibits two binding constants. The major binding site of A30P, characteristic of >90% of the bound Cu(II), has binding constants of 1.6 x 10(9) and 3.6 x 10(9) M(-1) at pH 7.2 and 7.4, respectively, slightly lower ( approximately 70%) than that characteristic of WT or A53T at the corresponding pH. The second less populated binding exhibited by A30P has a large binding constant, approximately 10(10) M(-1). Our size exclusion analysis ruled out the contribution of protofibrils to the strong Cu(II) binding. Previous studies indicated that A30P had a larger proportion of intermediate species (e.g., small oligomeric species, such as dimers and trimers) relative to WT and A53T. Thus, we propose that the high affinity site is attributed to the binding of Cu(II) to those small oligomeric species.

  1. Infectivity and expression of the early adenovirus proteins are important regulators of wild-type and DeltaE1B adenovirus replication in human cells.

    PubMed

    Steegenga, W T; Riteco, N; Bos, J L

    1999-09-09

    An adenovirus mutant lacking the expression of the large E1B protein (DeltaE1B) has been reported to replicate selectively in cells lacking the expression of functionally wild-type (wt) p53. Based on these results the DeltaE1B or ONYX-015 virus has been proposed to be an oncolytic virus which might be useful to treat p53-deficient tumors. Recently however, contradictory results have been published indicating that p53-dependent cell death is required for productive adenovirus infection. Since there is an urgent need for new methods to treat aggressive, mutant p53-expressing primary tumors and their metastases we carefully examined adenovirus replication in human cells to determine whether or not the DeltaE1B virus can be used for tumor therapy. The results we present here show that not all human tumor cell lines take up adenovirus efficiently. In addition, we observed inhibition of the expression of adenovirus early proteins in tumor cells. We present evidence that these two factors rather than the p53 status of the cell determine whether adenovirus infection results in lytic cell death. Furthermore, the results we obtained by infecting a panel of different tumor cell lines show that viral spread of the DeltaE1B is strongly inhibited in almost all p53-proficient and -deficient cell lines compared to the wt virus. We conclude that the efficiency of the DeltaE1B virus to replicate efficiently in tumor cells is determined by the ability to infect cells and to express the early adenovirus proteins rather than the status of p53.

  2. Melatonin administration to wild-type mice and non-treated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis.

    PubMed

    Rahim, Ibtissem; Djerdjouri, Bahia; Sayed, Ramy K; Fernández-Ortiz, Marisol; Fernández-Gil, Beatriz; Hidalgo-Gutiérrez, Agustín; López, Luis C; Escames, Germaine; Reiter, Russel J; Acuna-Castroviejo, Dario

    2017-03-31

    The NLRP3 inflammasome is involved in the innate immune response during inflammation. Moreover, melatonin blunts the NF-κB/NLRP3 connection during sepsis. Thus, we compared the roles of the NLRP3 inflammasome and/or melatonin treatment in the septic response of wild-type and NLRP3(-/-) mice. Mouse myocardial tissue was used for this purpose. The nuclear turnover of NF-κB was enhanced during sepsis, with an increase in TNFα, iNOS, and pro-IL-1β. The lack of inflammasome in NLRP3(-/-) mice significantly reduced that response and blunted IL-1β maturation due to the lack of caspase-1. Clock and Bmal1 did not change in both mouse strains, enhancing Chrono expression in mutants. RORα, which positively regulates Bmal1 was enhanced at a similar extend in both mouse strains, whereas the expression of the Bmal1 repressor, Rev-NDASH-Erbα increased in WT but was depressed in NLRP3(-/-) mice. Nampt, transcriptionally controlled by Bmal1, increased in WT mice together with Sirt1, whereas they remained unchanged in NLRP3(-/-) mice. Melatonin treatment reduced the septic response in a comparable manner as did the lack of NLRP3, but unlike the latter, it normalized the clock genes turnover through the induction of RORα and repression of Rev-NDASH-Erbα and Per2, leading to enhanced Nampt and Sirt1. The lack of NLRP3 inflammasome converts sepsis to a moderate inflammatory disease, and identifies NLRP3 as a main target for the treatment of sepsis. The efficacy of melatonin in counteracting the NLRP3 inflammasome activation further confirms the indoleamine as a useful therapeutic drug against this serious condition. This article is protected by copyright. All rights reserved.

  3. Genome-wide Analysis of Human Constitutive Androstane Receptor (CAR) Transcriptome in Wild-type and CAR-knockout HepaRG cells

    PubMed Central

    Li, Daochuan; Mackowiak, Bryan; Brayman, Timothy G.; Mitchell, Michael; Zhang, Lei; Huang, Shiew-Mei; Wang, Hongbing

    2015-01-01

    The constitutive androstane receptor (CAR) modulates the transcription of numerous genes involving drug metabolism, energy homeostasis, and cell proliferation. Most functions of CAR however were defined from animal studies. Given the known species difference of CAR and the significant cross-talk between CAR and the pregnane X receptor (PXR), it is extremely difficult to decipher the exact role of human CAR (hCAR) in gene regulation, relying predominantly on pharmacological manipulations. Here, utilizing a newly generated hCAR-knockout (KO) HepaRG cell line, we carried out RNA-seq analysis of the global transcriptomes in wild-type (WT) and hCAR-KO HepaRG cells treated with CITCO, a selective hCAR agonist, phenobarbital (PB), a dual activator of hCAR and hPXR, or vehicle control. Real-time PCR assays in separate experiments were used to validate RNA-seq findings. Our results indicate that genes encoding drug-metabolizing enzymes are among the main clusters altered by both CITCO and PB. Specifically, CITCO significantly changed the expression of 135 genes in an hCAR-dependent manner, while PB altered the expression of 227 genes in WT cells of which 94 were simultaneously modulated in both cell lines reflecting dual effects of PB on hCAR/PXR. Notably, we found that many genes promoting cell proliferation and tumorigenesis were up-regulated in hCAR-KO cells, suggesting that hCAR may play an important role in cell growth that differs from mouse CAR. Together, our results reveal both novel and known targets of hCAR and support the role of hCAR in maintaining the homeostasis of metabolism and cell proliferation in the liver. PMID:26275810

  4. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance[S

    PubMed Central

    Grimpo, Kirsten; Völker, Maximilian N.; Heppe, Eva N.; Braun, Steve; Heverhagen, Johannes T.; Heldmaier, Gerhard

    2014-01-01

    We used noninvasive magnetic resonance imaging (MRI) and magnetic resonance spectroscopy to compare interscapular brown adipose tissue (iBAT) of wild-type (WT) and uncoupling protein 1 (UCP1)-knockout mice lacking UCP1-mediated nonshivering thermogenesis (NST). Mice were sequentially acclimated to an ambient temperature of 30°C, 18°C, and 5°C. We detected a remodeling of iBAT and a decrease in its lipid content in all mice during cold exposure. Ratios of energy-rich phosphates (ATP/ADP, phosphocreatine/ATP) in iBAT were maintained stable during noradrenergic stimulation of thermogenesis in cold- and warm-adapted mice and no difference between the genotypes was observed. As free fatty acids (FFAs) serve as fuel for thermogenesis and activate UCP1 for uncoupling of oxidative phosphorylation, brown adipose tissue is considered to be a main acceptor and consumer of FFAs. We measured a major loss of FFAs from iBAT during noradrenergic stimulation of thermogenesis. This mobilization of FFAs was observed in iBAT of WT mice as well as in mice lacking UCP1. The high turnover and the release of FFAs from iBAT suggests an enhancement of lipid metabolism, which in itself contributes to the sympathetically activated NST and which is independent from uncoupled respiration mediated by UCP1. Our study demonstrates that MRI, besides its potential for visualizing and quantification of fat tissue, is a valuable tool for monitoring functional in vivo processes like lipid and phosphate metabolism during NST. PMID:24343897

  5. Clinical validation of prospective liquid biopsy monitoring in patients with wild-type RAS metastatic colorectal cancer treated with FOLFIRI-cetuximab.

    PubMed

    Toledo, Rodrigo A; Cubillo, Antonio; Vega, Estela; Garralda, Elena; Alvarez, Rafael; de la Varga, Lisardo U; Pascual, Jesús R; Sánchez, Gema; Sarno, Francesca; Prieto, Susana H; Perea, Sofía; Lopéz-Casas, Pedro P; López-Ríos, Fernando; Hidalgo, Manuel

    2016-11-11

    Cancer genomics and translational medicine rely on the molecular profiling of patient's tumor obtained during surgery or biopsy. Alternatively, blood is a less invasive source of tumor DNA shed, amongst other ways, as cell-free DNA (cfDNA). Highly-sensitive assays capable to detect cancer genetic events from patient's blood plasma became popularly known as liquid biopsy (LqB). Importantly, retrospective studies including small number of selected patients with metastatic colorectal cancer (mCRC) patients treated with anti-EGFR therapy have shown LqB capable to detect the acquired clonal mutations in RAS genes leading to therapy resistance. However, the usefulness of LqB in the real-life clinical monitoring of these patients still lack additional validation on controlled studies. In this context, we designed a prospective LqB clinical trial to monitor newly diagnosed KRAS wild-type (wt) mCRC patients who received a standard FOLFIRI-cetuximab regimen. We used BEAMing technique for evaluate cfDNA mutations in KRAS, NRAS, BRAF, and PIK3CA in twenty-five patients during a 2-y period. A total of 2,178 cfDNA mutation analyses were performed and we observed that: a) continued wt circulating status was correlated with a prolonged response; b) smoldering increases in mutant cfDNA were correlated with acquired resistance; while c) mutation upsurge/explosion anticipated a remarkable clinical deterioration. The current study provides evidences, obtained for the first time in an unbiased and prospective manner, that reinforces the utility of LqB for monitoring mCRC patients.

  6. Effects of long-term treatment with pioglitazone on cognition and glucose metabolism of PS1-KI, 3xTg-AD, and wild-type mice

    PubMed Central

    Masciopinto, F; Di Pietro, N; Corona, C; Bomba, M; Pipino, C; Curcio, M; Di Castelnuovo, A; Ciavardelli, D; Silvestri, E; Canzoniero, L MT; Sekler, I; Pandolfi, A; Sensi, S L

    2012-01-01

    In this study, we investigated the effects of long-term (9-month) treatment with pioglitazone (PIO; 20 mg/kg/d) in two animal models of Alzheimer's disease (AD)-related neural dysfunction and pathology: the PS1-KIM146V (human presenilin-1 M146V knock-in mouse) and 3xTg-AD (triple transgenic mouse carrying AD-linked mutations) mice. We also investigated the effects on wild-type (WT) mice. Mice were monitored for body mass changes, fasting glycemia, glucose tolerance, and studied for changes in brain mitochondrial enzyme activity (complexes I and IV) as well as energy metabolism (lactate dehydrogenase (LDH)). Cognitive effects were investigated with the Morris water maze (MWM) test and the object recognition task (ORT). Behavioral analysis revealed that PIO treatment promoted positive cognitive effects in PS1-KI female mice. These effects were associated with normalization of peripheral gluco-regulatory abnormalities that were found in untreated PS1-KI females. PIO-treated PS1-KI females also showed no statistically significant alterations in brain mitochondrial enzyme activity but significantly increased reverse LDH activity.PIO treatment produced no effects on cognition, glucose metabolism, or mitochondrial functioning in 3xTg-AD mice. Finally, PIO treatment promoted enhanced short-term memory performance in WT male mice, a group that did not show deregulation of glucose metabolism but that showed decreased activity of complex I in hippocampal and cortical mitochondria. Overall, these results indicate metabolically driven cognitive-enhancing effects of PIO that are differentially gender-related among specific genotypes. PMID:23254291

  7. Genome-wide analysis of human constitutive androstane receptor (CAR) transcriptome in wild-type and CAR-knockout HepaRG cells.

    PubMed

    Li, Daochuan; Mackowiak, Bryan; Brayman, Timothy G; Mitchell, Michael; Zhang, Lei; Huang, Shiew-Mei; Wang, Hongbing

    2015-11-01

    The constitutive androstane receptor (CAR) modulates the transcription of numerous genes involving drug metabolism, energy homeostasis, and cell proliferation. Most functions of CAR however were defined from animal studies. Given the known species difference of CAR and the significant cross-talk between CAR and the pregnane X receptor (PXR), it is extremely difficult to decipher the exact role of human CAR (hCAR) in gene regulation, relying predominantly on pharmacological manipulations. Here, utilizing a newly generated hCAR-knockout (KO) HepaRG cell line, we carried out RNA-seq analysis of the global transcriptomes in wild-type (WT) and hCAR-KO HepaRG cells treated with CITCO, a selective hCAR agonist, phenobarbital (PB), a dual activator of hCAR and hPXR, or vehicle control. Real-time PCR assays in separate experiments were used to validate RNA-seq findings. Our results indicate that genes encoding drug-metabolizing enzymes are among the main clusters altered by both CITCO and PB. Specifically, CITCO significantly changed the expression of 135 genes in an hCAR-dependent manner, while PB altered the expression of 227 genes in WT cells of which 94 were simultaneously modulated in both cell lines reflecting dual effects of PB on hCAR/PXR. Notably, we found that many genes promoting cell proliferation and tumorigenesis were up-regulated in hCAR-KO cells, suggesting that hCAR may play an important role in cell growth that differs from mouse CAR. Together, our results reveal both novel and known targets of hCAR and support the role of hCAR in maintaining the homeostasis of metabolism and cell proliferation in the liver.

  8. Expression pattern of immediate early genes in the cerebellum of D1R KO, D2R KO, and wild type mice under vestibular-controlled activity.

    PubMed

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Sasaoka, Toshikuni; Yamamori, Tetsuo

    2015-01-01

    We previously reported the different motor abilities of D1R knockout (KO), D2R KO and wild-type (WT) mice. To understand the interaction between the cerebellum and the striatal direct and indirect pathways, we examined the expression patterns of immediate early genes (IEG) in the cerebellum of these three genotypes of mice. In the WT naive mice, there was little IEG expression. However, we observed a robust expression of c-fos mRNA in the vermis and hemisphere after running rota-rod tasks. In the vermis, c-fos was expressed throughout the lobules except lobule 7, and also in crus 1 of the ansiform lobule (Crus1), copula of the pyramis (Cop) and most significantly in the flocculus in the hemisphere. jun-B was much less expressed but more preferentially expressed in Purkinje cells. In addition, we observed significant levels of c-fos and jun-B expressions after handling mice, and after the stationary rota-rod task in naive mice. Surprisingly, we observed significant expression of c-fos and jun-B even 30 min after single weighing. Nonetheless, certain additional c-fos and jun-B expressions were observed in three genotypes of the mice that experienced several sessions of motor tasks 24 h after stationary rota-rod task and on days 1 and 5 after rota-rod tasks, but no significant differences in expressions after the running rota-rod tasks were observed among the three genotypes. In addition, there may be some differences 24 h after the stationary rota-rod task between the naive mice and the mice that experienced several sessions of motor tasks.

  9. Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray.

    PubMed

    Zhang, Jin-Zhi; Li, Zhi-Min; Yao, Jia-Ling; Hu, Chun-Gen

    2009-02-01

    To gain a better understanding of gene expression in early flowering trifoliate orange mutant (precocious trifoliate orange, Poncirus trifoliata L. Raf.), we performed suppression subtractive hybridization, which allowed identification of flowering-related genes in the mutant and the wild type in the juvenile phase. Using macroarray analysis, we identified 125 and 149 non-redundant expressed sequence tags (ESTs) in the forward-subtracted and the reverse-subtracted library. These cDNAs covered a broad repertoire of flowering development related genes, provided helpful information for understanding genetic mechanism underlying the signaling and regulation in transition from the vegetative to reproductive phase. We have investigated the temporal and spatial expression pattern of some SSH-enriched flowering-related genes in the mutant and the wild type. Of these genes, three genes (BARELY ANY MERITED, FLOWERING LOCUS T and TERMINAL FLOWER1) encoding proteins previously reported to be associated with, or involved in, developmental processes in other species were identified and further investigated by in situ hybridization. Specific spatial and/or temporal patterns were detected, and differences were observed between the mutant and the wild type during flower development. Meanwhile, the temporal expression of these genes was further examined by real-time PCR, the results showed that FT and BAM transcripts accumulated to higher levels and TFL1 transcripts accumulated to lower levels in mutant juvenile tissues relative to wild-type juvenile tissues. In the adult stage, FT, BAM and TFL1 expression patterns were closely correlated with flowering development, suggesting that these three genes may play a critical role in the early flowering process of precocious trifoliate orange.

  10. Functional Recovery of AQP2 Recessive Mutations Through Hetero-Oligomerization with Wild-Type Counterpart

    PubMed Central

    El Tarazi, Abdulah; Lussier, Yoann; Da Cal, Sandra; Bissonnette, Pierre; Bichet, Daniel G.

    2016-01-01

    Aquaporin-2 (AQP2) is a homotetrameric water channel responsible for the final water reuptake in the kidney. Mutations in the protein induce nephrogenic diabetes insipidus (NDI), which challenges the water balance by producing large urinary volumes. Although recessive AQP2 mutations are believed to generate non-functional and monomeric proteins, the literature identifies several mild mutations which suggest the existence of mixed wt/mut tetramers likely to carry function in heterozygotes. Using Xenopus oocytes, we tested this hypothesis and found that mild mutants (V24A, D150E) can associate with wt-AQP2 in mixed heteromers, providing clear functional gain in the process (62 ± 17% and 63 ± 17% increases, respectively), conversely to the strong monomeric R187C mutant which fails to associate with wt-AQP2. In kidney cells, both V24A and D150E display restored targeting while R187C remains in intracellular stores. Using a collection of mutations to expand recovery analyses, we demonstrate that inter-unit contacts are central to this recovery process. These results not only present the ground data for the functional recovery of recessive AQP2 mutants through heteromerization, which prompt to revisit the accepted NDI model, but more importantly describe a general recovery process that could impact on all multimeric systems where recessive mutations are found. PMID:27641679

  11. Wild-type measles virus infection upregulates poliovirus receptor-related 4 and causes apoptosis in brain endothelial cells by induction of tumor necrosis factor-related apoptosis-inducing ligand.

    PubMed

    Abdullah, Hani'ah; Brankin, Brenda; Brady, Clare; Cosby, Sara Louise

    2013-07-01

    Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.

  12. Time-dependent profiling of metabolites from Snf1 mutant and wild type yeast cells.

    PubMed

    Humston, Elizabeth M; Dombek, Kenneth M; Hoggard, Jamin C; Young, Elton T; Synovec, Robert E

    2008-11-01

    The effect of sampling time in the context of growth conditions on a dynamic metabolic system was investigated in order to assess to what extent a single sampling time may be sufficient for general application, as well as to determine if useful kinetic information could be obtained. A wild type yeast strain (W) was compared to a snf1Delta mutant yeast strain (S) grown in high-glucose medium (R) and in low-glucose medium containing ethanol (DR). Under these growth conditions, different metabolic pathways for utilizing the different carbon sources are expected to be active. Thus, changes in metabolite levels relating to the carbon source in the growth medium were anticipated. Furthermore, the Snf1 protein kinase complex is required to adapt cellular metabolism from fermentative R conditions to oxidative DR conditions. So, differences in intracellular metabolite levels between the W and S yeast strains were also anticipated. Cell extracts were collected at four time points (0.5, 2, 4, 6 h) after shifting half of the cells from R to DR conditions, resulting in 16 sample classes (WR, WDR, SR, SDR) x (0.5, 2, 4, 6 h). The experimental design provided time course data, so temporal dependencies could be monitored in addition to carbon source and strain dependencies. Comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOFMS) was used with discovery-based data mining algorithms ( Anal. Chem. 2006, 78, 5068-5075 (ref 1); J. Chromatogr., A 2008, 1186, 401-411 (ref 2)) to locate regions within the 2D chromatograms (i.e., metabolites) that provided chemical selectivity between the 16 sample classes. These regions were mathematically resolved using parallel factor analysis to positively identify the metabolites and to acquire quantitative results. With these tools, 51 unique metabolites were identified and quantified. Various time course patterns emerged from these data, and principal component analysis (PCA) was utilized as

  13. Phospholamban mutants compete with wild type for SERCA binding in living cells

    SciTech Connect

    Gruber, Simon J.; Haydon, Suzanne; Thomas, David D.

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer PLB phosphorylation in HEK cells increased FRET between YFP-PLB and CFP-SERCA. Black-Right-Pointing-Pointer Competition: Expressing loss-of-function PLB mutants in the system decreased FRET. Black-Right-Pointing-Pointer The FRET assay could screen potential therapeutic PLB mutants to activate SERCA. -- Abstract: We have used fluorescent fusion proteins stably expressed in HEK cells to detect directly the interaction between the sarcoplasmic reticulum Ca-ATPase (SERCA) and phospholamban (PLB) in living cells, in order to design PLB mutants for gene therapy. Ca{sup 2+} cycling in muscle cells depends strongly on SERCA. Heart failure (HF), which contributes to 12% of US deaths, typically exhibits decreased SERCA activity, and several potential therapies for HF aim to increase SERCA activity. We are investigating the use of LOF-PLB mutants (PLB{sub M}) as gene therapy vectors to increase SERCA activity. Active SERCA1a and WT-PLB, tagged at their N termini with fluorescent proteins (CFP and YFP), were coexpressed in stable HEK cell lines, and fluorescence resonance energy transfer (FRET) was used to detect their interaction directly. Phosphorylation of PLB, induced by forskolin, caused an increase in FRET from CFP-SERCA to YFP-PLB, indicating that SERCA inhibition can be relieved without dissociation of the complex. This suggests that a LOF mutant might bind to SERCA with sufficient affinity to complete effectively with WT-PLB, thus relieving SERCA inhibition. Therefore, we transiently expressed a series of PLB{sub M} in the CFP-SERCA/YFP-PLB cell line, and found decreased FRET, implying competition between PLB{sub M} and WT-PLB for binding to SERCA. These results establish this FRET assay as a rapid and quantitative means of screening PLB{sub M} for optimization of gene therapy to activate SERCA, as needed for gene therapy in HF.

  14. EXAFS of Klebsiella pneumoniae nitrogenase MoFe protein from wild-type and nif V mutant strains

    SciTech Connect

    Eidsness, M.K.; Flank, A.M.; Smith, B.E.; Flood, A.C.; Garner, C.D.; Cramer. S.P.

    1986-05-14

    The enzyme nitrogenase catalyzes the biological reduction of N/sub 2/ to NH/sub 3/. In Klebsiella pneumoniae a cluster of 17 genes in seven transcriptional units has been associated with nitrogen fixation. The nitrogenase enzyme from the nif V mutants is relatively ineffective at dinitrogen reduction, is more efficient than the wild-type enzyme at HCN reduction, and has its hydrogen evolution activity inhibited up to 80% by CO. This altered substrate specificity has been shown to be associated with the iron-molybdenum cofactor, FeMo-co, of the enzyme. X-ray absorption spectroscopy has been a valuable tool for probing the molybdenum environment of wild-type nitrogenase, and the authors report here similar studies on the Nif V/sup -/ enzyme.

  15. Molecular dynamics studies on the NMR structures of rabbit prion protein wild type and mutants: surface electrostatic charge distributions.

    PubMed

    Zhang, Jiapu; Wang, Feng; Zhang, Yuanli

    2015-01-01

    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep and goats, cattle, deer and elk, and humans. But for rabbits, studies have shown that they have a low susceptibility to be infected by prion diseases. This paper does molecular dynamics (MD) studies of rabbit NMR structures (of the wild type and its two mutants of two surface residues), in order to understand the specific mechanism of rabbit prion proteins (RaPrP(C)). Protein surface electrostatic charge distributions are specially focused to analyze the MD trajectories. This paper can conclude that surface electrostatic charge distributions indeed contribute to the structural stability of wild-type RaPrP(C); this may be useful for the medicinal treatment of prion diseases.

  16. Penicillin-binding protein 2 is essential in wild-type Escherichia coli but not in lov or cya mutants.

    PubMed Central

    Ogura, T; Bouloc, P; Niki, H; D'Ari, R; Hiraga, S; Jaffé, A

    1989-01-01

    Penicillin-binding protein 2 (PBP2), target of the beta-lactam mecillinam, is required for rod morphology and cell wall elongation in Escherichia coli. A new temperature-sensitive PBP2 allele and an in vitro-constructed insertion deletion allele were shown to be lethal in wild-type strains, establishing that the activity of this protein is essential. Mutations in the lov or cya genes, conferring mecillinam resistance, compensated for the deleterious effect of the absence of PBP2. The resulting double mutants grew as spheres. In a cya mutant lacking PBP2, the restoration of a Cya+ phenotype by addition of cyclic AMP caused lethality and a block in cell division. These results show that in wild-type cells, PBP2 is essential for growth and division. PMID:2656638

  17. Stability of wild-type and mutant RTEM-1 beta-lactamases: effect of the disulfide bond.

    PubMed

    Schultz, S C; Dalbadie-McFarland, G; Neitzel, J J; Richards, J H

    1987-01-01

    Uniquely among class A beta-lactamases, the RTEM-1 and RTEM-2 enzymes contain a single disulfide bond between Cys 77 and Cys 123. To study the possible role of this naturally occurring disulfide in stabilizing RTEM-1 beta-lactamase and its mutants at residue 71, this bond was removed by introducing a Cys 77----Ser mutation. Both the wild-type enzyme and the single mutant Cys 77----Ser confer the same high levels of resistance to ampicillin in vivo to Escherichia coli; at 30 degrees C the specific activity of purified Cys 77----Ser mutant is also the same as that of the wild-type enzyme. Also, neither wild-type enzyme nor the Cys 77----Ser mutant is inactivated by brief exposure to p-hydroxymercuribenzoate. However, above 40 degrees C the mutant enzyme is less stable than wild-type enzyme. After introduction of the Cys 77----Ser mutation, none of the double mutants (containing the second mutations at residue 71) confer resistance to ampicillin in vivo at 37 degrees C; proteins with Ala, Val, Leu, Ile, Met, Pro, His, Cys, and Ser at residue 71 confer low levels of resistance to ampicillin in vivo at 30 degrees C. The use of electrophoretic blots stained with antibodies against beta-lactamase to analyze the relative quantities of mutant proteins in whole-cell extracts of E. coli suggests that all 19 of the doubly mutant enzymes are proteolyzed much more readily than their singly mutant analogues (at Thr 71) that contain a disulfide bond.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Pharmacologic Treatment Assigned for Niemann Pick Type C1 Disease Partly Changes Behavioral Traits in Wild-Type Mice

    PubMed Central

    Schlegel, Victoria; Thieme, Markus; Holzmann, Carsten; Witt, Martin; Grittner, Ulrike; Rolfs, Arndt; Wree, Andreas

    2016-01-01

    Niemann-Pick Type C1 (NPC1) is an autosomal recessive inherited disorder characterized by accumulation of cholesterol and glycosphingolipids. Previously, we demonstrated that BALB/c-npc1nihNpc1−/− mice treated with miglustat, cyclodextrin and allopregnanolone generally performed better than untreated Npc1−/− animals. Unexpectedly, they also seemed to accomplish motor tests better than their sham-treated wild-type littermates. However, combination-treated mutant mice displayed worse cognition performance compared to sham-treated ones. To evaluate effects of these drugs in healthy BALB/c mice, we here analyzed pharmacologic effects on motor and cognitive behavior of wild-type mice. For combination treatment mice were injected with allopregnanolone/cyclodextrin weekly, starting at P7. Miglustat injections were performed daily from P10 till P23. Starting at P23, miglustat was embedded in the chow. Other mice were treated with miglustat only, or sham-treated. The battery of behavioral tests consisted of accelerod, Morris water maze, elevated plus maze, open field and hot-plate tests. Motor capabilities and spontaneous motor behavior were unaltered in both drug-treated groups. Miglustat-treated wild-type mice displayed impaired spatial learning compared to sham- and combination-treated mice. Both combination- and miglustat-treated mice showed enhanced anxiety in the elevated plus maze compared to sham-treated mice. Additionally, combination treatment as well as miglustat alone significantly reduced brain weight, whereas only combination treatment reduced body weight significantly. Our results suggest that allopregnanolone/cyclodextrin ameliorate most side effects of miglustat in wild-type mice. PMID:27834854

  19. Discrimination of wild types and hybrids of Duboisia myoporoides and Duboisia leichhardtii at different growth stages using (1)H NMR-based metabolite profiling and tropane alkaloids-targeted HPLC-MS analysis.

    PubMed

    Ullrich, Sophie Friederike; Averesch, Nils J H; Castellanos, Leonardo; Choi, Young Hae; Rothauer, Andreas; Kayser, Oliver

    2016-11-01

    Duboisia species, which belong to the family of Solanaceae, are commercially cultivated in large scale, as they are main source of the pharmaceutically-used active compound scopolamine. In this study, (1)H NMR-based metabolite profiling linking primary with secondary metabolism and additional quantification via HPCL-MS with special focus on the tropane alkaloids were applied to compare leaf and root extracts of three wild types and two hybrids of Duboisia myoporoides and D. leichhardtii at different developmental stages grown under controlled conditions in climate chambers and under agricultural field plantation. Based on the leaf extracts, a clear distinction between the Duboisia hybrids and the wild types Duboisia myoporoides and D. leichhardtii using principal component analysis of (1)H NMR data was observed. The average content in scopolamine in the hybrids of Duboisia cultivated in climate chambers increased significantly from month 3-6 after potting of the rooted cuttings, however not so for the examined wild types. The Duboisia hybrids grown in climate chambers showed higher growth and contained more sugars and amino acids than Duboisia hybrids grown in the field, which in contrast showed an enhanced flux towards tropane alkaloids as well as flavonoids. For a more detailed analysis of tropane alkaloids, an appropriate HPLC-MS method was developed and validated. The measurements revealed large differences in the alkaloid pattern within the different genotypes under investigation, especially regarding the last enzymatic step, the conversion from hyoscamine to scopolamine by the hyoscyamine 6β-hydroxylase. Scopolamine was found in highest concentrations in Duboisia hybrids (20.04 ± 4.05 and 17.82 ± 3.52 mg/g dry wt) followed by Duboisia myoporoides (12.71 ± 2.55 mg/g dry wt), both showing a high selectivity for scopolamine in contrast to Duboisia leichhardtii (3.38 ± 0.59 and 5.09 ± 1.24 mg/g dry wt) with hyoscyamine being the

  20. Assessment of 5-HT(7) Receptor Agonists Selectivity Using Nociceptive and Thermoregulation Tests in Knockout versus Wild-Type Mice.

    PubMed

    Brenchat, Alex; Rocasalbas, Maria; Zamanillo, Daniel; Hamon, Michel; Vela, José Miguel; Romero, Luz

    2012-01-01

    No study has ever examined the effect of 5-HT(7) receptor agonists on nociception by using 5-HT(7) receptor knockout mice. Basal sensitivity to noxious heat stimuli and formalin-induced nociception in both phase I and II of the formalin test did not differ in 5-HT(7) receptor knockout mice and paired wild-type controls. Similarly, there was no significant difference in basal body temperature between both genotypes. Subcutaneous administration of 5-HT(7) receptor agonists AS-19 (10 mg/kg), E-57431 (10 mg/kg), and E-55888 (20 mg/kg) significantly reduced formalin-induced licking/biting behavior during the phase II of the test in wild-type but not in 5-HT(7) receptor knockout mice. At these active analgesic doses, none of the three 5-HT(7) receptor agonists modified the basal body temperature neither in wild-type nor in 5-HT(7) receptor knockout mice. However, a significant decrease in body temperature was observed at a higher dose (20 mg/kg) of AS-19 and E-57431 in both genotypes. Our data strongly suggest that the 5-HT(7) receptor agonists AS-19, E-57431, and E-55888 produce antinociception in the formalin test by activating 5-HT(7) receptors. These results also strengthen the idea that the 5-HT(7) receptor plays a role in thermoregulation, but by acting in concert with other receptors.

  1. A Caenorhabditis elegans wild type defies the temperature-size rule owing to a single nucleotide polymorphism in tra-3.

    PubMed

    Kammenga, Jan E; Doroszuk, Agnieszka; Riksen, Joost A G; Hazendonk, Esther; Spiridon, Laurentiu; Petrescu, Andrei-Jose; Tijsterman, Marcel; Plasterk, Ronald H A; Bakker, Jaap

    2007-03-02

    Ectotherms rely for their body heat on surrounding temperatures. A key question in biology is why most ectotherms mature at a larger size at lower temperatures, a phenomenon known as the temperature-size rule. Since temperature affects virtually all processes in a living organism, current theories to explain this phenomenon are diverse and complex and assert often from opposing assumptions. Although widely studied, the molecular genetic control of the temperature-size rule is unknown. We found that the Caenorhabditis elegans wild-type N2 complied with the temperature-size rule, whereas wild-type CB4856 defied it. Using a candidate gene approach based on an N2 x CB4856 recombinant inbred panel in combination with mutant analysis, complementation, and transgenic studies, we show that a single nucleotide polymorphism in tra-3 leads to mutation F96L in the encoded calpain-like protease. This mutation attenuates the ability of CB4856 to grow larger at low temperature. Homology modelling predicts that F96L reduces TRA-3 activity by destabilizing the DII-A domain. The data show that size adaptation of ectotherms to temperature changes may be less complex than previously thought because a subtle wild-type polymorphism modulates the temperature responsiveness of body size. These findings provide a novel step toward the molecular understanding of the temperature-size rule, which has puzzled biologists for decades.

  2. Response to metal stress of Nicotiana langsdorffii plants wild-type and transgenic for the rat glucocorticoid receptor gene.

    PubMed

    Fuoco, Roger; Bogani, Patrizia; Capodaglio, Gabriele; Del Bubba, Massimo; Abollino, Ornella; Giannarelli, Stefania; Spiriti, Maria Michela; Muscatello, Beatrice; Doumett, Saer; Turetta, Clara; Zangrando, Roberta; Zelano, Vincenzo; Buiatti, Marcello

    2013-05-01

    Recently our findings have shown that the integration of the gene coding for the rat gluco-corticoid receptor (GR receptor) in Nicotiana langsdorffii plants induced morphophysiological effects in transgenic plants through the modification of their hormonal pattern. Phytohormones play a key role in plant responses to many different biotic and abiotic stresses since a modified hormonal profile up-regulates the activation of secondary metabolites involved in the response to stress. In this work transgenic GR plants and isogenic wild type genotypes were exposed to metal stress by treating them with 30ppm cadmium(II) or 50ppm chromium(VI). Hormonal patterns along with changes in key response related metabolites were then monitored and compared. Heavy metal up-take was found to be lower in the GR plants. The transgenic plants exhibited higher values of S-abscisic acid (S-ABA) and 3-indole acetic acid (IAA), salicylic acid and total polyphenols, chlorogenic acid and antiradical activity, compared to the untransformed wild type plants. Both Cd and Cr treatments led to an increase in hormone concentrations and secondary metabolites only in wild type plants. Analysis of the results suggests that the stress responses due to changes in the plant's hormonal system may derive from the interaction between the GR receptor and phytosteroids, which are known to play a key role in plant physiology and development.

  3. Differential regulated microRNA by wild type and mutant p53 in induced pluripotent stem cells

    PubMed Central

    Grespi, Francesca; Landré, Vivien; Molchadsky, Alina; Di Daniele, Nicola; Marsella, Luigi Tonino; Melino, Gerry; Rotter, Varda

    2016-01-01

    The tumour suppressor p53 plays an important role in somatic cell reprogramming. While wild-type p53 reduces reprogramming efficiency, mutant p53 exerts a gain of function activity that leads to increased reprogramming efficiency. Furthermore, induced pluripotent stem cells expressing mutant p53 lose their pluripotency in vivo and form malignant tumours when injected in mice. It is therefore of great interest to identify targets of p53 (wild type and mutant) that are responsible for this phenotype during reprogramming, as these could be exploited for therapeutic use, that is, formation of induced pluripotent stem cells with high reprogramming efficiency, but no oncogenic potential. Here we studied the transcriptional changes of microRNA in a series of mouse embryonic fibroblasts that have undergone transition to induced pluripotent stem cells with wild type, knock out or mutant p53 status in order to identify microRNAs whose expression during reprogramming is dependent on p53. We identified a number of microRNAs, with known functions in differentiation and carcinogenesis, the expression of which was dependent on the p53 status of the cells. Furthermore, we detected several uncharacterised microRNAs that were regulated differentially in the different p53 backgrounds, suggesting a novel role of these microRNAs in reprogramming and pluripotency. PMID:28032868

  4. Nucleotide sequence of the wild-type RAD4 gene of Saccharomyces cerevisiae and characterization of mutant rad4 alleles.

    PubMed Central

    Couto, L B; Friedberg, E C

    1989-01-01

    Shuttle plasmids carrying the wild-type RAD4 gene of Saccharomyces cerevisiae cannot be propagated in Escherichia coli (R. Fleer, W. Siede, and E. C. Friedberg, J. Bacteriol. 169:4884-4892, 1987). In order to determine the nucleotide sequence of the cloned gene, we used a plasmid carrying a mutant allele that allows plasmid propagation in E. coli. The wild-type sequence in the region of this mutation was determined from a second plasmid carrying a different mutant rad4 allele. We established the locations and characteristics of a number of spontaneously generated plasmid-borne RAD4 mutations that alleviate the toxicity of the wild-type gene in E. coli and of several mutagen-induced chromosomal mutations that inactivate the excision repair function of RAD4. These mutations are situated in very close proximity to each other, and all are expected to result in the expression of truncated polypeptides missing the carboxy-terminal one-third of the Rad4 polypeptide. This region of the gene may be important both for the toxic effect of the Rad4 protein in E. coli and for its role in DNA repair in S. cerevisiae. PMID:2649477

  5. Immunogenicity of Structurally Perturbed Hen Egg Lysozyme Adsorbed to Silicone Oil Microdroplets in Wild-Type and Transgenic Mouse Models.

    PubMed

    Chisholm, Carly F; Soucie, Kaitlin R; Song, Jane S; Strauch, Pamela; Torres, Raul M; Carpenter, John F; Ragheb, Jack A; Randolph, Theodore W

    2017-02-16

    Silicone oil microdroplets may act as adjuvants, promoting unwanted immune responses against both foreign and self-proteins. Proteins often unfold upon adsorption to silicone oil microdroplets, but it is unclear how such unfolding might affect the immune response. In this study, we found that hen egg lysozyme (HEL) readily adsorbed to silicone oil microdroplets and perturbed the conformation of HEL. We compared the immune response to injections of HEL formulated in the presence and absence of silicone oil microdroplets in both wild-type mice and transgenic littermates that express a soluble form of HEL (sHEL), thus rendering them immunologically tolerant to this nominal self-antigen. Following 2 subcutaneous injections of a HEL formulation containing silicone oil microdroplets, wild-type mice exhibited a stronger IgG1 antibody response against HEL compared to the response in wild-type mice that administered an oil-free HEL formulation. However, when HEL was subcutaneously administered to sHEL-transgenic mice, immunological tolerance to sHEL was not broken in the presence of silicone oil microdroplets. Thus, although structural perturbations in proteins adsorbed to silicone oil microdroplets may augment the immune response, in the case of endogenously expressed proteins, such structural perturbations may not be sufficient to result in a breach of immunological tolerance.

  6. Assessment of 5-HT7 Receptor Agonists Selectivity Using Nociceptive and Thermoregulation Tests in Knockout versus Wild-Type Mice

    PubMed Central

    Brenchat, Alex; Rocasalbas, Maria; Zamanillo, Daniel; Hamon, Michel; Vela, José Miguel; Romero, Luz

    2012-01-01

    No study has ever examined the effect of 5-HT7 receptor agonists on nociception by using 5-HT7 receptor knockout mice. Basal sensitivity to noxious heat stimuli and formalin-induced nociception in both phase I and II of the formalin test did not differ in 5-HT7 receptor knockout mice and paired wild-type controls. Similarly, there was no significant difference in basal body temperature between both genotypes. Subcutaneous administration of 5-HT7 receptor agonists AS-19 (10 mg/kg), E-57431 (10 mg/kg), and E-55888 (20 mg/kg) significantly reduced formalin-induced licking/biting behavior during the phase II of the test in wild-type but not in 5-HT7 receptor knockout mice. At these active analgesic doses, none of the three 5-HT7 receptor agonists modified the basal body temperature neither in wild-type nor in 5-HT7 receptor knockout mice. However, a significant decrease in body temperature was observed at a higher dose (20 mg/kg) of AS-19 and E-57431 in both genotypes. Our data strongly suggest that the 5-HT7 receptor agonists AS-19, E-57431, and E-55888 produce antinociception in the formalin test by activating 5-HT7 receptors. These results also strengthen the idea that the 5-HT7 receptor plays a role in thermoregulation, but by acting in concert with other receptors. PMID:22761612

  7. Loss of wild-type carrier-mediated L-carnitine transport activity in hepatocytes of juvenile visceral steatosis mice.

    PubMed

    Yokogawa, K; Yonekawa, M; Tamai, I; Ohashi, R; Tatsumi, Y; Higashi, Y; Nomura, M; Hashimoto, N; Nikaido, H; Hayakawa, J; Nezu, J; Oku, A; Shimane, M; Miyamoto, K; Tsuji, A

    1999-10-01

    Juvenile visceral steatosis (JVS) mice, which show systemic L-carnitine deficiency, may be an animal model of Reye's syndrome because of its phenotype of fat deposition and mitochondrial abnormalities in the liver. In this study, we compared the characteristics of the L-carnitine transport in isolated hepatocytes from wild-type and JVS mice. The uptake of L-carnitine by wild-type hepatocytes was saturable and the Eadie-Hofstee plot showed 2 distinct components. The apparent Michaelis constant (K(m)) and the maximum transport rate (V(max)) were 4.6 micromol/L and 59.5 pmol/15 min/10(6) cells, respectively, for the high-affinity component, and 404 micromol/L and 713 pmol/15 min/10(6) cells, respectively, for the low-affinity component. The high-affinity L-carnitine uptake occurred via an active carrier-mediated transport mechanism, which is characterized by Na(+)-, energy-, and pH-dependency. On the other hand, the high-affinity uptake was absent in JVS hepatocytes, and the values of K(m) and V(max) for the low-affinity uptake were 475 micromol/L and 557 pmol/15 min/10(6) cells, respectively. The hepatic carnitine transport properties in wild-type hepatocytes were similar to those of high-affinity mouse Octn2-transfected HEK293 cells. This study suggests that Octn2-type carnitine transporter is dysfunctional in hepatocytes of JVS mice.

  8. Determination of mutated genes in the presence of wild-type DNA by using molecular beacons as probe

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghua; Ai, Junjie; Gu, Qiaorong; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2017-03-01

    Low-abundance mutations in the presence of wild-type DNA can be determined using molecular beacon (MB) as probe. A MB is generally used as DNA probe because it can distinguish single-base mismatched target DNA from fully matched target DNA. However, the probe can not determine low-abundance mutations in the presence of wild-type DNA. In this study, this limitation is addressed by enhancing the stability of unpaired base-containing dsDNA with a hydrogen-bonding ligand, which was added after hybridization of the MB to the target DNA. The ligand formed hydrogen bonds with unpaired bases and stabilized the unpaired base-containing dsDNA if target DNA is mutated one. As a result, more MBs were opened by the mutant genes in the presence of the ligand and a further increase in the fluorescence intensity was obtained. By contrast, fluorescence intensity did not change if target DNA is wild-type one. Consequent increase in the fluorescence intensity of the MB was regarded as a signal derived from mutant genes. The proposed method was applied in synthetic template systems to determine point mutation in DNA obtained from PCR analysis. The method also allows rapid and simple discrimination of a signal if it is originated in the presence of mutant gene or alternatively by a lower concentration of wild gene.

  9. Activation of ganglion cells in wild-type and rd1 mouse retinas with monophasic and biphasic current pulses

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F. III

    2009-06-01

    We and other research groups are designing an electronic retinal prosthesis to provide vision for patients who are blind due to photoreceptor degeneration. In this study, we examined the effect of stimulus waveform on the amount of current needed to activate retinal ganglion cells (RGCs) when the retinal neural network is stimulated. Isolated retinas of wild-type and rd1 mice were stimulated with cathodal and anodal monophasic current pulses of 1 ms duration and symmetric biphasic current pulses (1 ms per phase) delivered through an electrode that was located subretinally. For both wild-type and rd1 mouse retinas, cathodal current pulses were least effective in activating most RGCs. The median threshold current for a cathodal current pulse was 2.0-4.4 fold higher than the median threshold current for either an anodal or a biphasic current pulse. In wild-type mouse retinas, the median threshold current for activating RGCs with anodal current pulses was 23% lower than that with biphasic current pulses. In rd1 mouse retinas, the median threshold currents for anodal and biphasic current pulses were about the same. However, the variance in thresholds of rd1 RGCs for biphasic pulse stimulation was much smaller than for anodal pulse stimulation. Thus, a symmetric biphasic current pulse may be the best stimulus for activating the greatest number of RGCs in retinas devoid of photoreceptors.

  10. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses.

    PubMed

    Cameron, Morven A; Barnard, Alun R; Hut, Roelof A; Bonnefont, Xavier; van der Horst, Gijsbertus T J; Hankins, Mark W; Lucas, Robert J

    2008-12-01

    Attempts to understand circadian organization in the mammalian retina have concentrated increasingly on the mouse. However, rather little is known regarding circadian control of retinal light responses in this species. Here, the authors address this deficit using electroretinogram (ERG) recordings in C57BL/6 mice to evaluate rhythmicity in the wild-type retina and to identify the consequences of circadian clock loss in Cry1(- /-)Cry2(-/-) mice. They observe a circadian rhythm in the ERG waveform under light-adapted, cone-isolating conditions in wild-type mice, with b-wave speed and amplitude and the total power of oscillatory potentials all enhanced during the day. Wild types also exhibited a circadian dependence to ERG amplitude under dark-adapted conditions, but only when the flash stimulus was sufficiently bright to lie within the response range of cones. Cry1(-/ -)Cry2(-/-) mice lacked rhythmicity but retained superficially normal ERGs under all conditions suggesting that circadian clocks are dispensable for general retinal function. However, clock loss was associated with subtle abnormalities in retinal responses, with the amplitude of cone and mixed rod + cone ERGs constitutively enhanced. These data suggest that circadian clocks drive a fundamental fine-tuning of retinal pathways that is particularly apparent under conditions in which vision relies upon either cones alone or mixed rod + cone photoreception.

  11. Enhancing a search for traditional medicinal plants with anthelmintic action by using wild type and stress reporter Caenorhabditis elegans strains as screening tools.

    PubMed

    Kumarasingha, R; Palombo, E A; Bhave, M; Yeo, T C; Lim, D S L; Tu, C L; Shaw, J M; Boag, P R

    2014-04-01

    Traditional healers in Sarawak, Malaysia, use plants such as Picria fel-terrae, Linariantha bicolor and Lansium domesticum to treat gastrointestinal infections. This study aimed to test whether their nematocidal activities could be confirmed in vitro using highly standardised Caenorhabditis elegans models. We applied eight different ethanol solubilised plant extracts and two commercial anthelmintic drugs to larval and adult stages of C. elegans in vitro. Seven C. elegans strains were evaluated, one wild type and six strains with GFP-tagged stress response pathways to help characterise and compare the pathways affected by plant extracts. Our in vitro screen confirmed that both of the commercial anthelmintic drugs and five of the eight traditionally used plant extracts had significant nematocidal activity against both larval and adult C. elegans. The most effective extracts were from P. fel-terrae. The plant extracts triggered different stress response pathways from the commercial anthelmintic drugs. This study showed that using traditional knowledge of plant medicinal properties in combination with a C. elegans in vitro screen provided a rapid and economical test with a high hit rate compared with the random screening of plants for nematocidal activities. The use of transgenic C. elegans strains may allow this approach to be refined further to investigate the mode of action of active extracts.

  12. Homo- and hetero-dimerization of human UDP-glucuronosyltransferase 2B7 (UGT2B7) wild type and its allelic variants affect zidovudine glucuronidation activity.

    PubMed

    Yuan, Lingmin; Qian, Sainan; Xiao, Yongsheng; Sun, Hongying; Zeng, Su

    2015-05-01

    Most human UDP-glucuronosyltransferase (UGT; EC 2.4.1.17) genes contain non-synonymous single nucleotide polymorphisms (nsSNPs) which cause amino acid substitutions. Allelic variants caused by nsSNPs may exhibit absent or reduced enzyme activity. UGT2B7 is one of the most important UGTs that glucuronidates abundant endobiotics and xenobiotics, such as estriol, morphine, and anticancer drugs. Three nsSNPs, UGT2B7*71S (211G>T), UGT2B7*2 (802C>T) and UGT2B7*5 (1192G>A) are observed in the UGT2B7 gene, and they code for allozymes UGT2B7*71S (A71S), UGT2B7*2 (H268Y), and UGT2B7*5 (D398N). UGT2B7 has been observed to form oligomers that affect its enzymatic activity and in this study, we investigated protein-protein interactions among UGT2B7 allozymes wild type (WT), A71S, H268Y and D398N, by performing a systematic quantitative fluorescence resonance energy transfer (FRET) analysis in combination with co-immunoprecipitation assay. Quantitative FRET analysis revealed that UGT2B7 allozymes formed homo- and hetero-dimers and showed distinct features in donor-acceptor distances. Both codon 71 and codon 268 in the N-terminal domain were involved in the dimeric interaction. Co-immunoprecipitation experiments also proved that UGT2B7 allozymes formed stable dimers. The glucuronidation activities of homo- and hetero-dimers were further tested with zidovudine as the substrate. An increase in activity was observed when WT hetero-dimerized with A71S compared with homo-dimers, while both H268Y and D398N impaired the activity of WT and A71S by forming hetero-dimers. In addition, zidovudine glucuronidation activity is associated with FRET distance. These findings provide insights into the consequences of amino acid substitution in UGT2B7 on zidovudine glucuronidation and the association between protein-protein interaction and glucuronidation activity.

  13. Efficacy of Carboplatin Alone and in Combination with ABT888 in Intracranial Murine Models of BRCA-Mutated and BRCA-Wild-Type Triple-Negative Breast Cancer.

    PubMed

    Karginova, Olga; Siegel, Marni B; Van Swearingen, Amanda E D; Deal, Allison M; Adamo, Barbara; Sambade, Maria J; Bazyar, Soha; Nikolaishvili-Feinberg, Nana; Bash, Ryan; O'Neal, Sara; Sandison, Katie; Parker, Joel S; Santos, Charlene; Darr, David; Zamboni, William; Lee, Yueh Z; Miller, C Ryan; Anders, Carey K

    2015-04-01

    Patients with breast cancer brain metastases have extremely limited survival and no approved systemic therapeutics. Triple-negative breast cancer (TNBC) commonly metastasizes to the brain and predicts poor prognosis. TNBC frequently harbors BRCA mutations translating to platinum sensitivity potentially augmented by additional suppression of DNA repair mechanisms through PARP inhibition. We evaluated brain penetrance and efficacy of carboplatin ± the PARP inhibitor ABT888, and investigated gene-expression changes in murine intracranial TNBC models stratified by BRCA and molecular subtype status. Athymic mice were inoculated intracerebrally with BRCA-mutant: SUM149 (basal), MDA-MB-436 (claudin-low); or BRCA-wild-type (wt): MDA-MB-468 (basal), MDA-MB-231BR (claudin-low). TNBC cells were treated with PBS control [intraperitoneal (IP), weekly], carboplatin (50 mg/kg/wk, IP), ABT888 (25 mg/kg/d, oral gavage), or their combination. DNA damage (γ-H2AX), apoptosis (cleaved caspase-3, cC3), and gene expression were measured in intracranial tumors. Carboplatin ± ABT888 significantly improved survival in BRCA-mutant intracranial models compared with control, but did not improve survival in BRCA-wt intracranial models. Carboplatin + ABT888 revealed a modest survival advantage versus carboplatin in BRCA-mutant models. ABT888 yielded a marginal survival benefit in the MDA-MB-436, but not in the SUM149 model. BRCA-mutant SUM149 expression of γ-H2AX and cC3 proteins was elevated in all treatment groups compared with control, whereas BRCA-wt MDA-MB-468 cC3 expression did not increase with treatment. Carboplatin treatment induced common gene-expression changes in BRCA-mutant models. Carboplatin ± ABT888 penetrates the brain and improves survival in BRCA-mutant intracranial TNBC models with corresponding DNA damage and gene-expression changes. Combination therapy represents a potential promising treatment strategy for patients with TNBC brain metastases warranting further

  14. Dietary vitamin D inadequacy accelerates calcification and osteoblast-like cell formation in the vascular system of LDL receptor knockout and wild-type mice.

    PubMed

    Schmidt, Nadine; Brandsch, Corinna; Schutkowski, Alexandra; Hirche, Frank; Stangl, Gabriele I

    2014-05-01

    Vitamin D insufficiency is highly associated with cardiovascular morbidity and mortality. We have demonstrated enhanced vascular calcification in LDL receptor knockout (LDLR(-/-)) mice fed a diet low in vitamin D. This study aimed to investigate the impact of a diet low in vitamin D on vascular calcification in wild-type (WT) mice lacking atherosclerotic plaques and the effects of a persistent and discontinuous vitamin D insufficiency on atherosclerotic plaque composition in LDLR(-/-) mice. The study was performed with 4-wk-old male WT and LDLR(-/-) mice that were fed a normal calcium/phosphate Western diet (210 g/kg fat, 1.5 g/kg cholesterol) containing either adequate (+D; 1000 IU/kg) or low (-D; 50 IU/kg) amounts of vitamin D-3 for 16 wk. Four groups of LDLR(-/-) mice received 1 of the 2 diets for additional 16 wk (total 32 wk) and were compared with mice fed the diets for only 16 wk. WT and LDLR(-/-) mice that were fed the -D diet for 16 wk tended to develop more calcified spots in the aortic valve than mice fed the +D diet (+50% and +56%, respectively; P < 0.10). In LDLR(-/-) mice, the extent of calcification increased from week 16 to week 32 and was higher in the -D than in the +D group (P < 0.05). The calcification, owing to the -D diet, was accompanied by highly expressed osteoblast differentiation factors, indicating a transdifferentiation of vascular cells to osteoblast-like cells. Feeding the +D diet subsequent to the -D diet reduced the vascular calcification (P < 0.05). LDLR(-/-) mice fed the -D diet for 32 wk had higher plaque lipid depositions (+48%, P < 0.05) and a higher expression of cluster of differentiation 68 (+31%, P < 0.05) and tumor necrosis factor α (+134%, P < 0.001) than the +D group. Collectively, the findings imply low vitamin D status as a causal factor for vascular calcification and atherosclerosis.

  15. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone.

    PubMed

    Moore, Kelsey; Madularu, Dan; Iriah, Sade; Yee, Jason R; Kulkarni, Praveen; Darcq, Emmanuel; Kieffer, Brigitte L; Ferris, Craig F

    2016-01-01

    Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high μ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus), and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and preoptic areas). This result indicates that most effects of OXY on positive BOLD are mediated by the μ opioid receptor (on-target effects). OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum), and in some case intensified (hippocampus). Negative BOLD analysis therefore shows activation and deactivation events in the absence of the μ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects). Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY brain

  16. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    PubMed Central

    Moore, Kelsey; Madularu, Dan; Iriah, Sade; Yee, Jason R.; Kulkarni, Praveen; Darcq, Emmanuel; Kieffer, Brigitte L.; Ferris, Craig F.

    2016-01-01

    Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high μ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus), and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and preoptic areas). This result indicates that most effects of OXY on positive BOLD are mediated by the μ opioid receptor (on-target effects). OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum), and in some case intensified (hippocampus). Negative BOLD analysis therefore shows activation and deactivation events in the absence of the μ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects). Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY brain

  17. Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Strains of Synechocystis PCC 6803 for Maximal, 24-Hour Production of Hydrogen Gas

    SciTech Connect

    Ely, Roger L.; Chaplen, Frank W.R.

    2014-03-11

    This project used the cyanobacterial species Synechocystis PCC 6803 to pursue two lines of inquiry, with each line addressing one of the two main factors affecting hydrogen (H2) production in Synechocystis PCC 6803: NADPH availability and O2 sensitivity. H2 production in Synechocystis PCC 6803 requires a very high NADPH:NADP+ ratio, that is, the NADP pool must be highly reduced, which can be problematic because several metabolic pathways potentially can act to raise or lower NADPH levels. Also, though the [NiFe]-hydrogenase in PCC 6803 is constitutively expressed, it is reversibly inactivated at very low O2 concentrations. Largely because of this O2 sensitivity and the requirement for high NADPH levels, a major portion of overall H2 production occurs under anoxic conditions in the dark, supported by breakdown of glycogen or other organic substrates accumulated during photosynthesis. Also, other factors, such as N or S limitation, pH changes, presence of other substances, or deletion of particular respiratory components, can affect light or dark H2 production. Therefore, in the first line of inquiry, under a number of culture conditions with wild type (WT) Synechocystis PCC 6803 cells and a mutant with impaired type I NADPH-dehydrogenase (NDH-1) function, we used H2 production profiling and metabolic flux analysis, with and without specific inhibitors, to examine systematically the pathways involved in light and dark H2 production. Results from this work provided rational bases for metabolic engineering to maximize photobiological H2 production on a 24-hour basis. In the second line of inquiry, we used site-directed mutagenesis to create mutants with hydrogenase enzymes exhibiting greater O2 tolerance. The research addressed the following four tasks: 1. Evaluate the effects of various culture conditions (N, S, or P limitation; light/dark; pH; exogenous organic carbon) on H2 production profiles of WT cells and an NDH-1 mutant; 2. Conduct metabolic flux analyses for

  18. Development of a High-Yield Live Attenuated H7N9 Influenza Virus Vaccine That Provides Protection against Homologous and Heterologous H7 Wild-Type Viruses in Ferrets

    PubMed Central

    Baz, Mariana; Lu, Janine; Paskel, Myeisha; Santos, Celia; Subbarao, Kanta; Jin, Hong; Matsuoka, Yumiko

    2014-01-01

    ABSTRACT Live attenuated H7N9 influenza vaccine viruses that possess the hemagglutinin (HA) and neuraminidase (NA) gene segments from the newly emerged wild-type (wt) A/Anhui/1/2013 (H7N9) and six internal protein gene segments from the cold-adapted influenza virus A/Ann Arbor/6/60 (AA ca) were generated by reverse genetics. The reassortant virus containing the original wt A/Anhui/1/2013 HA and NA sequences replicated poorly in eggs. Multiple variants with amino acid substitutions in the HA head domain that improved viral growth were identified by viral passage in eggs and MDCK cells. The selected vaccine virus containing two amino acid changes (N133D/G198E) in the HA improved viral titer by more than 10-fold (reached a titer of 108.6 fluorescent focus units/ml) without affecting viral antigenicity. Introduction of these amino acid changes into an H7N9 PR8 reassortant virus also significantly improved viral titers and HA protein yield in eggs. The H7N9 ca vaccine virus was immunogenic in ferrets. A single dose of vaccine conferred complete protection of ferrets from homologous wt A/Anhui/1/2013 (H7N9) and nearly complete protection from heterologous wt A/Netherlands/219/2003 (H7N7) challenge infection. Therefore, this H7N9 live attenuated influenza vaccine (LAIV) candidate has been selected for vaccine manufacture and clinical evaluation to protect humans from wt H7N9 virus infection. IMPORTANCE In response to the recent avian H7N9 influenza virus infection in humans, we developed a live attenuated H7N9 influenza vaccine (LAIV) with two amino acid substitutions in the viral HA protein that improved vaccine yield by 10-fold in chicken embryonated eggs, the substrate for vaccine manufacture. The two amino acids also improved the antigen yield for inactivated H7N9 vaccines, demonstrating that this finding could great facilitate the efficiency of H7N9 vaccine manufacture. The candidate H7N9 LAIV was immunogenic and protected ferrets against homologous and heterologous

  19. Ratio of mutated versus wild-type coat protein sequences in Pepino mosaic virus determines the nature and severity of yellowing symptoms on tomato plants.

    PubMed

    Hasiów-Jaroszewska, Beata; Paeleman, Anneleen; Ortega-Parra, Nelia; Borodynko, Natasza; Minicka, Julia; Czerwoniec, Anna; Thomma, Bart P H J; Hanssen, Inge M

    2013-12-01

    Recently, Pepino mosaic virus (PepMV) infections causing severe yellowing symptoms in tomato plants have been reported in glasshouse tomato crops. When studying this phenomenon in commercial glasshouses, two different types of yellowing symptoms, occurring in adjacent plants, were distinguished: interveinal leaf yellowing and yellow mosaics. After several weeks, the interveinal leaf yellowing symptoms gradually disappeared and the plant heads became green again, with yellow mosaic patterns on the leaves as an intermediate stage. The sequencing of multiple isolates causing interveinal leaf yellowing identified two point mutations, occurring in positions 155 and 166 of the coat protein (CP), as unique to the yellowing pathotype. Site-directed mutagenesis of infectious clones confirmed that both CP mutations are determinants of the interveinal leaf yellowing symptoms. Sequencing of CP clones from plants or plant parts with the yellow mosaic symptoms resulted in a mixture of wild-type and mutated sequences, whereas sequencing of CP clones from the green heads of recovered plants resulted in only wild-type sequences. Yellow mosaic symptoms could be reproduced by inoculation of an artificial 1:1 mixture of RNA transcripts from the wild-type and mutated infectious clones. These results show that the ratio of mutated versus wild-type sequences can determine the nature and severity of symptom development. The gradual recovery of the plants, which coincides with the disappearance of the yellowing mutations, suggests that selection pressure acts to the advantage of the wild-type virus. Experiments with wild-type and mutated infectious clones showed that reverse mutation events from mutant to wild-type occur and that the wild-type virus does not have a replicative advantage over the mutant. These results suggest that reverse mutation events occur, with subsequent selection pressure acting in favour of the wild-type virus in the growing plant parts, possibly related to a lower

  20. Analysis of Dibenzo[def,p]chrysene-Deoxyadenosine Adducts in Wild-Type and Cytochrome P450 1b1 Knockout Mice using Stable-Isotope Dilution UHPLC-MS/MS

    PubMed Central

    Harper, Tod A.; Morré, Jeff; Lauer, Fredine T.; McQuistan, Tammie J.; Hummel, Jessica M.; Burchiel, Scott W.; Williams, David E.

    2015-01-01

    The polycyclic aromatic hydrocarbon (PAH), dibenzo[def,p]chrysene (DBC; also known as dibenzo[a,l]pyrene), is a potent carcinogen in animal models and a class 2A human carcinogen. Recent investigations into DBC-mediated toxicity identified DBC as a potent immunosuppressive agent similar to the well-studied immunotoxicant 7,12-dimethylbenz[a]anthracene (DMBA). DBC, like DMBA, is bioactivated by cytochrome P450 (CYP) 1B1 and forms the reactive metabolite DBC-11,12-diol-13,14-epoxide (DBCDE). DBCDE is largely responsible for the genotoxicity associated with DBC exposure. The immunosuppressive properties of several PAHs are also linked to genotoxic mechanisms. Therefore, this study was designed to identify DBCDE-DNA adduct formation in the spleen and thymus of wild-type and cytochrome P450 1b1 (Cyp1b1) knockout (KO) mice using a highly sensitive stable-isotope dilution UHPLC-MS/MS method. Stable-isotope dilution UHPLC-MS/MS identified the major DBC adducts (±)-anti-cis-DBCDE-dA and (±)-anti-trans-DBCDE-dA in the lung, liver, and spleen of both WT and Cyp1b1 KO mice. However, adduct formation in the thymus was below the level of quantitation for our method. Additionally, adduct formation in Cyp1b1 KO mice was significantly reduced compared to wild-type (WT) mice receiving DBC via oral gavage. In conclusion, the current study identifies for the first time DBCDE-dA adducts in the spleen of mice supporting the link between genotoxicity and immunosuppression, in addition to supporting previous studies identifying Cyp1b1 as the primary CYP involved in DBC bioactivation to DBCDE. The high levels of DBC-DNA adducts identified in the spleen, along with the known high levels of Cyp1b1 expression in this organ, supports further investigation into DBC-mediated immunotoxicity. PMID:25868132

  1. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice

    PubMed Central

    Liu, Min-Tsai; Kuan, Yung-Hui; Wang, Jingwen; Hen, René; Gershon, Michael D.

    2009-01-01

    Although the mature enteric nervous system (ENS) has been shown to retain stem cells, enteric neurogenesis has not previously been demonstrated in adults. The relative number of enteric neurons in wild-type (WT) mice and those lacking 5-HT4 receptors (KO) was found to be similar at birth; however, the abundance of ENS neurons increased during the first 4 months after birth in WT but not KO littermates. Enteric neurons subsequently decreased in both WT and KO but at 12 months were significantly more numerous in WT. We tested the hypothesis that stimulation of the 5-HT4 receptor promotes enteric neuron survival and/or neurogenesis. In vitro, 5-HT4 agonists increased enteric neuronal development/survival, decreased apoptosis, and activated CREB. In vivo, in WT but not KO mice, 5-HT4 agonists induced bromodeoxyuridine (BrdU) incorporation into cells that expressed markers of neurons (HuC/D, doublecortin), neural precursors (Sox10, nestin, Phox2b), or stem cells (Musashi-1). This is the first demonstration of adult enteric neurogenesis; our results suggest that 5-HT4 receptors are required postnatally for ENS growth and maintenance. PMID:19657021

  2. The Effects of Dark Incubation on Cellular Metabolism of the Wild Type Cyanobacterium Synechocystis sp. PCC 6803 and a Mutant Lacking the Transcriptional Regulator cyAbrB2.

    PubMed

    Hanai, Masamitsu; Sato, Yusuke; Miyagi, Atsuko; Kawai-Yamada, Maki; Tanaka, Kyoko; Kaneko, Yasuko; Nishiyama, Yoshitaka; Hihara, Yukako

    2014-11-21

    The cyAbrB2 transcriptional regulator is essential for active sugar catabolism in Synechocystis sp. PCC 6803 grown under light conditions. In the light-grown cyabrB2-disrupted mutant, glycogen granules and sugar phosphates corresponding to early steps in the glycolytic pathway accumulated to higher levels than those in the wild-type (WT) strain, whereas the amounts of 3-phosphoglycerate, phosphoenolpyruvate and ribulose 1,5-bisphosphate were significantly lower. We further determined that accumulated glycogen granules in the mutant could be actively catabolized under dark conditions. Differences in metabolite levels between WT and the mutant became less substantial during dark incubation due to a general quantitative decrease in metabolite levels. Notable exceptions, however, were increases in 2-oxoglutarate, histidine, ornithine and citrulline in the WT but not in the mutant. The amounts of cyAbrBs were highly responsive to the availability of light both in transcript and protein levels. When grown under light-dark cycle conditions, diurnal oscillatory pattern of glycogen content of the mutant was lost after the second dark period. These observations indicate that cyAbrB2 is dispensable for activation of sugar catabolism under dark conditions but involved in the proper switching between day and night metabolisms.

  3. Phytoextraction potential of wild type and 35S-gshI transgenic poplar trees (Populus x Canescens) for environmental pollutants herbicide paraquat, salt sodium, zinc sulfate and nitric oxide in vitro.

    PubMed

    Gyulai, G; Bittsánszky, A; Szabó, Z; Waters, L; Gullner, G; Kampfl, G; Heltai, G; Komíves, T

    2014-01-01

    Phytoextraction potentials of two transgenic (TR) poplar (Populus x canescens) clones TRggs11 and TRlgl6 were compared with that of wild-type (WT) following exposure to paraquat, zinc sulfate, common salt and nitric oxide (NO), using a leaf-disc system incubated for 21 days on EDTA-containing nutritive WPM media in vitro. Glutathione (GSH) contents of leaf discs of TRlgl6 and TRggs11 showed increments to 296% and 190%, respectively, compared with WT. NO exposure led to a twofold GSH content in TRlgl6, which was coupled with a significantly increased sulfate uptake when exposed to 10(-3) M ZnSO4. The highest mineral contents of Na, Zn, Mn, Cu, and Mo was observed in the TRggs11 clone. Salt-induced activity of catalase enzyme increased in both TR clones significantly compared with WT under NaCl (0.75% and 1.5%) exposure. The in silico sequence analyses of gsh1 genes revealed that P. x canadensis and Salix sachalinensis show the closest sequence similarity to that of P. x canescens, which predicted an active GSH production with high phytoextraction potentials of these species with indication for their use where P. x canescens can not be grown.

  4. The Inability of Wild-Type Rabies Virus To Activate Dendritic Cells Is Dependent on the Glycoprotein and Correlates with Its Low Level of the De Novo-Synthesized Leader RNA

    PubMed Central

    Yang, Yang; Huang, Ying; Gnanadurai, Clement W.; Cao, Shengbo; Liu, Xueqin

    2014-01-01

    ABSTRACT Dendritic cells (DCs) are the most efficient antigen-presenting cells, playing a key role in the adaptive immune responses to viral infections. Our studies demonstrate that wild-type (wt) rabies virus (RABV) does not activate DCs. Adoptive transfer of DCs primed with wt RABV did not activate DCs, stimulate virus neutralizing antibodies (VNA), or protect recipients against challenge. However, adoptive transfer of DCs primed with laboratory-attenuated RABV resulted in DC activation, production of VNA, and protection against challenge. In vitro studies with recombinant RABV (laboratory-attenuated RABV expressing the glycoprotein or the phosphoprotein from wt RABV) demonstrate that DC activation is dependent on the glycoprotein and involves the IPS-1 pathway. Furthermore, binding to and entry into DCs by wt RABV is severely blocked, and the copy number of de novo-synthesized leader RNA was two logs lower in DCs infected with the wt than in DCs treated with laboratory-attenuated RABV. However, transient transfection of DCs with synthesized leader RNA from either wt or attenuated RABV is capable of activating DCs in a dose-dependent manner. Thus, the inability of wt RABV to activate DCs correlates with its low level of the de novo-synthesized leader RNA. IMPORTANCE Rabies remains a public health threat, with more than 55,000 fatalities each year around the world. Since DCs play a key role in the adaptive immune responses to viral infections, we investigated the ability of rabies virus (RABV) to activate DCs. It was found that the adoptive transfer of DCs primed with wt RABV did not activate DCs, stimulate VNA, or protect mice against lethal challenge. However, laboratory-attenuated RABV mediates the activation of DCs via the IPS-1 pathway and is glycoprotein dependent. We further show that wt RABV evades DC-mediated immune activation by inefficient binding/entry into DCs and as a result of a reduced level of de novo-synthesized leader RNA. These findings may

  5. Methylation of arsenic by recombinant human wild-type arsenic (+ 3 oxidation state) methyltransferase and its methionine 287 threonine (M287T) polymorph: Role of glutathione

    SciTech Connect

    Ding, Lan; Saunders, R. Jesse; Drobná, Zuzana; Walton, Felecia S.; Xun, Pencheng; Thomas, David J.; Stýblo, Miroslav

    2012-10-01

    Arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency of about 10% among populations worldwide. Here, we compared catalytic properties of recombinant human wild-type (wt) AS3MT and AS3MT/M287T in reaction mixtures containing S-adenosylmethionine, arsenite (iAs{sup III}) or methylarsonous acid (MAs{sup III}) as substrates and endogenous or synthetic reductants, including glutathione (GSH), a thioredoxin reductase (TR)/thioredoxin (Trx)/NADPH reducing system, or tris (2-carboxyethyl) phosphine hydrochloride (TCEP). With either TR/Trx/NADPH or TCEP, wtAS3MT or AS3MT/M287T catalyzed conversion of iAs{sup III} to MAs{sup III}, methylarsonic acid (MAs{sup V}), dimethylarsinous acid (DMAs{sup III}), and dimethylarsinic acid (DMAs{sup V}); MAs{sup III} was converted to DMAs{sup III} and DMAs{sup V}. Although neither enzyme required GSH to support methylation of iAs{sup III} or MAs{sup III}, addition of 1 mM GSH decreased K{sub m} and increased V{sub max} estimates for either substrate in reaction mixtures containing TR/Trx/NADPH. Without GSH, V{sub max} and K{sub m} values were significantly lower for AS3MT/M287T than for wtAS3MT. In the presence of 1 mM GSH, significantly more DMAs{sup III} was produced from iAs{sup III} in reactions catalyzed by the M287T variant than in wtAS3MT-catalyzed reactions. Thus, 1 mM GSH modulates AS3MT activity, increasing both methylation rates and yield of DMAs{sup III}. AS3MT genotype exemplified by differences in regulation of wtAS3MT and AS3MT/M287T-catalyzed reactions by GSH may contribute to differences in the phenotype for arsenic methylation and, ultimately, to differences in the disease susceptibility in individuals chronically exposed to inorganic arsenic. -- Highlights: ► Human AS3MT and AS3MT(M287T) require a dithiol

  6. Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins

    SciTech Connect

    Nayak, Jaladhi; Gastonguay, Adam J.; Talipov, Marat R.; Vakeel, Padmanabhan; Span, Elise A.; Kalous, Kelsey S.; Kutty, Raman G.; Jensen, Davin R.; Pokkuluri, Phani Raj; Sem, Daniel S.; Rathore, Rajendra; Ramchandran, Ramani

    2014-12-18

    Background: The mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function. Results: In this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria. Light scattering analysis, circular dichroism, enzymatic assays and molecular modeling approaches have been performed to extensively characterize the protein form and function. We demonstrate that both proteins are active and, interestingly, the S147P protein is hypoactive as compared to the DUSP5 WT protein in two distinct biochemical substrate assays. Furthermore, due to the novel positioning of the S147P mutation, we utilize computational modeling to reconstruct full-length DUSP5 and S147P to predict a possible mechanism for the reduced activity of S147P. Conclusion: Taken together, this is the first evidence of the generation and characterization of an active, full-length, mutant DUSP5 protein which will facilitate future structure-function and drug development-based studies.

  7. Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins

    DOE PAGES

    Nayak, Jaladhi; Gastonguay, Adam J.; Talipov, Marat R.; ...

    2014-12-18

    Background: The mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function. Results: In this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria. Light scattering analysis, circular dichroism, enzymatic assays and molecular modeling approaches have been performed to extensively characterize the protein form and function.more » We demonstrate that both proteins are active and, interestingly, the S147P protein is hypoactive as compared to the DUSP5 WT protein in two distinct biochemical substrate assays. Furthermore, due to the novel positioning of the S147P mutation, we utilize computational modeling to reconstruct full-length DUSP5 and S147P to predict a possible mechanism for the reduced activity of S147P. Conclusion: Taken together, this is the first evidence of the generation and characterization of an active, full-length, mutant DUSP5 protein which will facilitate future structure-function and drug development-based studies.« less

  8. Flipping in the pore: discovery of dual inhibitors that bind in different orientations to the wild-type versus the amantadine-resistant S31N mutant of the influenza A virus M2 proton channel.

    PubMed

    Wu, Yibing; Canturk, Belgin; Jo, Hyunil; Ma, Chunlong; Gianti, Eleonora; Klein, Michael L; Pinto, Lawrence H; Lamb, Robert A; Fiorin, Giacomo; Wang, Jun; DeGrado, William F

    2014-12-31

    Influenza virus infections lead to numerous deaths and millions of hospitalizations each year. One challenge facing anti-influenza drug development is the heterogeneity of the circulating influenza viruses, which comprise several strains with variable susceptibility to antiviral drugs. For example, the wild-type (WT) influenza A viruses, such as the seasonal H1N1, tend to be sensitive to antiviral drugs, amantadine and rimantadine, while the S31N mutant viruses, such as the pandemic 2009 H1N1 (H1N1pdm09) and seasonal H3N2, are resistant to this class of drugs. Thus, drugs targeting both WT and the S31N mutant are highly desired. We report our design of a novel class of dual inhibitors along with their ion channel blockage and antiviral activities. The potency of the most active compound 11 in inhibiting WT and the S31N mutant influenza viruses is comparable with that of amantadine in inhibiting WT influenza virus. Solution NMR studies and molecular dynamics (MD) simulations of drug-M2 interactions supported our design hypothesis: namely, the dual inhibitor binds in the WT M2 channel with an aromatic group facing down toward the C-terminus, while the same drug binds in the S31N M2 channel with its aromatic group facing up toward the N-terminus. The flip-flop mode of drug binding correlates with the structure-activity relationship (SAR) and has paved the way for the next round of rational design of broad-spectrum antiviral drugs.

  9. Effects of ascorbic acid on carcinogenicity and acute toxicity of nickel subsulfide, and on tumor transplants growth in gulonolactone oxidase knock-out mice and wild-type C57BL mice.

    PubMed

    Kasprzak, Kazimierz S; Diwan, Bhalchandra A; Kaczmarek, Monika Z; Logsdon, Daniel L; Fivash, Mathew J; Salnikow, Konstantin

    2011-11-15

    The aim of this study was to test a hypothesis that ascorbate depletion could enhance carcinogenicity and acute toxicity of nickel. Homozygous L-gulono--lactone oxidase gene knock-out mice (Gulo-/- mice) unable to produce ascorbate and wild-type C57BL mice (WT mice) were injected intramuscularly with carcinogenic nickel subsulfide (Ni₃S₂), and observed for the development of injection site tumors for 57 weeks. Small pieces of one of the induced tumors were transplanted subcutaneously into separate groups of Gulo-/- and WT mice and the growth of these tumors was measured for up to 3 months. The two strains of mice differed significantly with regard to (1) Ni₃S₂ carcinogenesis: Gulo-/- mice were 40% more susceptible than WT mice; and (2) transplanted tumors development: Gulo-/- mice were more receptive to tumor growth than WT mice, but only in terms of a much shorter tumor latency; later in the exponential phase of growth, the growth rates were the same. And, with adequate ascorbate supplementation, the two strains were equally susceptible to acute toxicity of Ni₃S₂. Statistically significant effects of dietary ascorbate dosing levels were the following: (1) reduction in ascorbate supplementation increased acute toxicity of Ni₃S₂ in Gulo-/- mice; (2) ascorbate supplementation extended the latency of transplanted tumors in WT mice. In conclusion, the lack of endogenous ascorbate synthesis makes Gulo-/- mice more susceptible to Ni₃S₂ carcinogenesis. Dietary ascorbate tends to attenuate acute toxicity of Ni₃S₂ and to extend the latency of transplanted tumors. The latter effects may be of practical importance to humans and thus deserve further studies.

  10. A synthetic codon-optimized hepatitis C virus nonstructural 5A DNA vaccine primes polyfunctional CD8+ T cell responses in wild-type and NS5A-transgenic mice.

    PubMed

    Holmström, Fredrik; Pasetto, Anna; Nähr, Veronica; Brass, Anette; Kriegs, Malte; Hildt, Eberhard; Broderick, Kate E; Chen, Margaret; Ahlén, Gustaf; Frelin, Lars

    2013-02-01

    The hepatitis C virus (HCV) nonstructural (NS) 5A protein has been shown to promote viral persistence by interfering with both innate and adaptive immunity. At the same time, the HCV NS5A protein has been suggested as a target for antiviral therapy. In this study, we performed a detailed characterization of HCV NS5A immunogenicity in wild-type (wt) and immune tolerant HCV NS5A-transgenic (Tg) C57BL/6J mice. We evaluated how efficiently HCV NS5A-based genetic vaccines could activate strong T cell responses. Truncated and full-length wt and synthetic codon-optimized NS5A genotype 1b genes were cloned into eukaryotic expression plasmids, and the immunogenicity was determined after i.m. immunization in combination with in vivo electroporation. The NS5A-based genetic vaccines primed high Ab levels, with IgG titers of >10(4) postimmunization. With respect to CD8(+) T cell responses, the coNS5A gene primed more potent IFN-γ-producing and lytic cytotoxic T cells in wt mice compared with NS5A-Tg mice. In addition, high frequencies of NS5A-specific CD8(+) T cells were found in wt mice after a single immunization. To test the functionality of the CTL responses, the ability to inhibit growth of NS5A-expressing tumor cells in vivo was analyzed after immunization. A single dose of coNS5A primed tumor-inhibiting responses in both wt and NS5A-Tg mice. Finally, immunization with the coNS5A gene primed polyfunctional NS5A-specific CD8(+) T cell responses. Thus, the coNS5A gene is a promising therapeutic vaccine candidate for chronic HCV infections.

  11. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function.

    PubMed

    de Vries, Annemieke; Flores, Elsa R; Miranda, Barbara; Hsieh, Harn-Mei; van Oostrom, Conny Th M; Sage, Julien; Jacks, Tyler

    2002-03-05

    The p53 tumor suppressor gene is the most frequently mutated gene in human cancers, and germ-line p53 mutations cause a familial predisposition for cancer. Germ-line or sporadic p53 mutations are usually missense and typically affect the central DNA-binding domain of the protein. Because p53 functions as a tetrameric transcription factor, mutant p53 is thought to inhibit the function of wild-type p53 protein. Here, we studied the possible dominant-negative inhibition of wild-type p53 protein by two different, frequently occurring point mutations. The R270H and P275S mutations were targeted into the genome of mouse embryonic stem cells to allow the analysis of the effects of the mutant proteins expressed in normal cells at single-copy levels. In embryonic stem cells, the presence of a heterozygous point-mutated allele resulted in delayed transcriptional activation of several p53 downstream target genes on exposure to gamma irradiation. Doxorubicin-induced apoptosis was severely affected in the mutant embryonic stem cells compared with wild-type cells. Heterozygous mutant thymocytes had a severe defect in p53-dependent apoptotic pathways after treatment with gamma irradiation or doxorubicin, whereas p53-independent apoptotic pathways were intact. Together these data demonstrate that physiological expression of point-mutated p53 can strongly limit overall cellular p53 function, supporting the dominant-negative action of such mutants. Also, cells heterozygous for such mutations may be compromised in terms of tumor suppression and response to chemotherapeutic agents.

  12. An exo-poly-alpha-D-galacturonosidase, PehB, is required for wild-type virulence of Ralstonia solanacearum.

    PubMed Central

    Huang, Q; Allen, C

    1997-01-01

    Ralstonia solanacearum, which causes bacterial wilt disease of many plant species, produces several extracellular plant cell wall-degrading enzymes that are suspected virulence factors. These include a previously described endopolygalacturonase (PG), PehA, and two exo-PGs. A gene encoding one of the exo-PGs, pehB, was cloned from R. solanacearum K60. The DNA fragment specifying PehB contained a 2,103-bp open reading frame that encodes a protein of 74.2 kDa with a typical N-terminal signal sequence. The cloned pehB gene product cleaves polygalacturonic acid into digalacturonic acid units. The amino acid sequence of pehB resembles that of pehX, an exo-PG gene from Erwinia chrysanthemi, with 47.2% identity at the amino acid level. PehB also has limited similarity to plant exo-PGs from Zea mays and Arabidopsis thaliana. The chromosomal pehB genes in R. solanacearum wild-type strain K60 and in an endo-PG PehA- strain were replaced with an insertionally inactivated copy of pehB. The resulting mutants were deficient in the production of PehB and of both PehA and PehB, respectively. The pehB mutant was significantly less virulent than the wild-type strain in eggplant virulence assays using a soil inoculation method. However, the pehA mutant was even less virulent, and the pehA pehB double mutant was the least virulent of all. These results suggest that PehB is required for a wild-type level of virulence in R. solanacearum although its individual role in wilt disease development may be minor. Together with endo-PG PehA, however, PehB contributes substantially to the virulence of R. solanacearum. PMID:9393701

  13. Impact of sex and ozone exposure on the course of pneumonia in wild type and SP-A (-/-) mice.

    PubMed

    Mikerov, Anatoly N; Hu, Sanmei; Durrani, Faryal; Gan, Xiaozhuang; Wang, Guirong; Umstead, Todd M; Phelps, David S; Floros, Joanna

    2012-04-01

    Female mice exhibited higher survival rate than males after pneumonia, with a reversal of this pattern following ozone exposure. Surfactant protein A (SP-A) plays an important role in innate immunity and SP-A (-/-) mice were more susceptible to pneumonia than wild type mice. Here, we investigated underlying mechanisms of the differential susceptibility of mice to pneumonia. Wild type and SP-A (-/-) C57BL/6J male and female mice were exposed to ozone or filtered air (FA) and then infected intratracheally with Klebsiella pneumoniae. Blood, spleen, and lung were analyzed for bacterial counts, lung and spleen weights, and sex hormone and cortisol levels were measured in plasma within two days post-infection. We found: 1) in the absence of ozone-induced oxidative stress, males had higher level of bacterial dissemination compared to females; ozone exposure decreased pulmonary clearance in both sexes and ozone-exposed females were more affected than males; 2) ozone exposure increased lung weight, but decreased spleen weight in both sexes, and in both cases ozone-exposed females were affected the most; 3) plasma cortisol levels in infected mice changed: ozone-exposed>FA-exposed, females>males, and infected>non-infected; 4) no major sex hormone differences were observed in the studied conditions; 5) differences between wild type and SP-A (-/-) mice were observed in some of the studied conditions. We concluded that reduced pulmonary clearance, compromised spleen response to infection, and increased cortisol levels in ozone-exposed females, and the higher level of lung bacterial dissemination in FA-exposed males, contribute to the previously observed survival outcomes.

  14. General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels.

    PubMed

    Marcet, Brice; Becq, Frédéric; Norez, Caroline; Delmas, Patrick; Verrier, Bernard

    2004-03-01

    1. Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is defective during cystic fibrosis (CF). Activators of the CFTR Cl(-) channel may be useful for therapy of CF. Here, we demonstrate that a range of general anesthetics like normal-alkanols (n-alkanols) and related compounds can stimulate the Cl(-) channel activity of wild-type CFTR and delF508-CFTR mutant. 2. The effects of n-alkanols like octanol on CFTR activity were measured by iodide ((125)I) efflux and patch-clamp techniques on three distinct cellular models: (1). CFTR-expressing Chinese hamster ovary cells, (2). human airway Calu-3 epithelial cells and (3). human airway JME/CF15 epithelial cells which express the delF508-CFTR mutant. 3. Our data show for the first time that n-alkanols activate both wild-type CFTR and delF508-CFTR mutant. Octanol stimulated (125)I efflux in a dose-dependent manner in CFTR-expressing cells (wild-type and delF508) but not in cell lines lacking CFTR. (125)I efflux and Cl(-) currents induced by octanol were blocked by glibenclamide but insensitive to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, as expected for a CFTR Cl(-) current. 4. CFTR activation by octanol was neither due to cell-to-cell uncoupling properties of octanol nor to an intracellular cAMP increase. CFTR activation by octanol requires phosphorylation by protein kinase-A (PKA) since it was prevented by H-89, a PKA inhibitor. 5. n-Alkanols chain length was an important determinant for channel activation, with rank order of potencies: 1-heptanol<1-octanol<2-octanol<1-decanol. Our findings may be of valuable interest for developing novel therapeutic strategies for CF.

  15. Novel software for analysis of root gravitropism: comparative response patterns of Arabidopsis wild-type and axr1 seedlings

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1997-01-01

    In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.

  16. Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2 amplified and TP53 wild-type glioblastomas

    PubMed Central

    Verreault, Maite; Schmitt, Charlotte; Goldwirt, Lauriane; Pelton, Kristine; Haidar, Samer; Levasseur, Camille; Guehennec, Jeremy; Knoff, David; Labussiere, Marianne; Marie, Yannick; Ligon, Azra H.; Mokhtari, Karima; Hoang-Xuan, Khe; Sanson, Marc; Alexander, Brian M; Wen, Patrick Y.; Delattre, Jean-Yves; Ligon, Keith L.; Idbaih, Ahmed

    2016-01-01

    Rationale p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However, this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. Methods We performed a preclinical evaluation of RG7112 MDM2 inhibitor, across a panel of 36 patient-derived GBM cell lines (PDCLs), each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. Results MDM2-amplified PDCLs were 44 times more sensitive than TP53 mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 μM vs 21.9 μM). MDM4 amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 μM), whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 μM). In MDM2-amplified lines, RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly, treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth, was cytotoxic, and significantly increased survival. Conclusion These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover, significant efficacy in a subset of non-MDM2 amplified models suggests that additional markers of response to MDM2 inhibitors must be identified. PMID:26482041

  17. Genetic Evidence That Nonhomologous Disjunction and Meiotic Drive Are Properties of Wild-Type Drosophila melanogaster Male Meiosis

    PubMed Central

    Boschi, Manuela; Belloni, Massimo; Robbins, Leonard G.

    2006-01-01

    We have followed sex and second chromosome disjunction, and the effects of these chromosomes on sperm function, in four genotypes: wild-type males, males deficient for the Y-linked crystal locus, males with an X chromosome heterochromatic deficiency that deletes all X–Y pairing sites, and males with both deficiencies. Both mutant situations provoke chromosome misbehavior, but the disjunctional defects are quite different. Deficiency of the X heterochromatin, consonant with the lack of pairing sites, mostly disrupts X–Y disjunction with a decidedly second-level effect on major autosome behavior. Deleting crystal, consonant with the cytological picture of postpairing chromatin-condensation problems, disrupts sex and autosome disjunction equally. Even when the mutant-induced nondisjunction has very different mechanics, however, and even more importantly, even in the wild type, there is strong, and similar, meiotic drive. The presence of meiotic drive when disjunction is disrupted by distinctly different mechanisms supports the notion that drive is a normal cellular response to meiotic problems rather than a direct effect of particular mutants. Most surprisingly, in both wild-type and crystal-deficient males the Y chromosome moves to the opposite pole from a pair of nondisjoined second chromosomes nearly 100% of the time. This nonhomologous interaction is, however, absent when the X heterochromatin is deleted. The nonhomologous disjunction of the sex and second chromosomes may be the genetic consequence of the chromosomal compartmentalization seen by deconvolution microscopy, and the absence of Y–2 disjunction when the X heterochromatin is deleted suggests that XY pairing itself, or a previously unrecognized heterochromatic function, is prerequisite to this macrostructural organization of the chromosomes. PMID:16219792

  18. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    PubMed

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  19. Accumulation of wild-type p53 protein in astrocytomas is not mediated by MDM2 gene amplification

    SciTech Connect

    Rubio, M.P.; Louis, D.N. Harvard Medical School, Boston, MA )

    1993-05-01

    The authors have previously described ten cases of astrocytoma (three WHO grade II, four grade III and four grade IV) with seemingly contradictory results on immunohistochemical analysis of the p53 protein and molecular genetic analysis of the p53 gene. Fixed, embedded tissues from these cases were immunohistochemically positive with the PAb 1801 antibody, which supposedly implies the presence of mutant protein. These ten cases, however, did not have mutations in exons 5 through 8 of the p53 gene, the conserved regions in which almost all human mutations have been described. The authors suggested that these cases might either represent overexpression of wild-type p53 protein (since the PAb 1801 antibody reacts with both wild-type and mutant p53 protein) or mutations in less conserved regions of the gene. To investigate these possibilities further, they performed single strand conformational polymorphism analysis and DNA sequencing on p53 exons 4, 9 and 10 in the nine cases with available DNA, since rare mutations have been noted at these loci. None of the cases showed alterations, making it highly unlikely that these tumors harbor mutations in exons of the p53 gene. They also performed immunohistochemistry on frozen sections from seven available tumors, using the mutant-specific antibody PAb 240 in addition to PAb 1801. All tumors continued to show positive staining with PAb 1801, but only one tumor reacted with PAb 240. The results support the hypothesis that the accumulated p53 protein in most cases is wild-type. Because the product of the MDM2 oncogene can bind to wild-type p53 protein, and because MDM2 amplification has recently been demonstrated in human tumors, the authors evaluated MDM2 amplification in the nine astrocytomas with available DNA. Using slot blot analysis with a 96-base pair, PCR-generated probe to the first exon of the MDM2 gene, they were unable to show MDM2 gene amplification in these tumors or in other assayed astrocytomas.

  20. Crystal structures of wild-type Trichoderma reesei Cel7A catalytic domain in open and closed states.

    PubMed

    Bodenheimer, Annette M; Meilleur, Flora

    2016-12-01

    Trichoderma reesei Cel7A efficiently hydrolyses cellulose. We report here the crystallographic structures of the wild-type TrCel7A catalytic domain (CD) in an open state and, for the first time, in a closed state. Molecular dynamics (MD) simulations indicate that the loops along the CD tunnel move in concerted motions. Together, the crystallographic and MD data suggest that the CD cycles between the tense and relaxed forms that are characteristic of work producing enzymes. Analysis of the interactions formed by R251 provides a structural rationale for the concurrent decrease in product inhibition and catalytic efficiency measured for product-binding site mutants.

  1. [Wild-type transthyretin-related cardiac amyloidosis and degenerative aortic stenosis: Two inter-related pathologies in the elderly].

    PubMed

    Calero Núñez, Sofía; Tercero Martínez, Antonia; García López, Juan Carlos; Jiménez-Mazuecos, Jesús

    2016-06-09

    Wild-type transthyretin-related cardiac amyloidosis (ATTRwt) and degenerative aortic stenosis share a common demographic and clinical profile. It was recently suggested that some of the complications arising during and after transcatheter aortic valve replacement (TAVR) could be due to a co-existing cardiac amyloidosis. In a series of autopsies of patients who had undergone TAVR, researchers found ATTR amyloidosis in one third of the cases. A report is presented on two patients with aortic stenosis who were diagnosed with ATTRwt when they were about to undergo a TAVI. ATTRwt is a slowly progressing disease so we need to review the decisions on the therapeutic approach in these patients.

  2. Different dynamic movements of wild-type and pathogenic VCPs and their cofactors to damaged mitochondria in a Parkin-mediated mitochondrial quality control system.

    PubMed

    Kimura, Yoko; Fukushi, Junpei; Hori, Seiji; Matsuda, Noriyuki; Okatsu, Kei; Kakiyama, Yukie; Kawawaki, Junko; Kakizuka, Akira; Tanaka, Keiji

    2013-12-01

    VCP/p97 is a hexameric ring-shaped AAA(+) ATPase that participates in various ubiquitin-associated cellular functions. Mis-sense mutations in VCP gene are associated with the pathogenesis of two inherited diseases: inclusion body myopathy associated with Paget's disease of the bone and front-temporal dementia (IBMPFD) and familial amyotrophic lateral sclerosis (ALS). These pathogenic VCPs have higher affinities for several cofactors, including Npl4, Ufd1 and p47. In Parkin-dependent mitochondrial quality control systems, VCP migrates to damaged mitochondria (e.g., those treated with uncouplers) to aid in the degradation of mitochondrial outer membrane proteins and to eliminate mitochondria. We showed that endogenous Npl4 and p47 also migrate to mitochondria after uncoupler treatment, and Npl4, Ufd1 or p47 silencing causes defective mitochondria clearance after uncoupler treatment. Moreover, pathogenic VCPs show impaired migration to mitochondria, and the exogenous pathogenic VCP expression partially inhibits Npl4 and p47 localization to mitochondria. These results suggest that the increased affinities of pathogenic VCPs for these cofactors cause the impaired movement of pathogenic VCPs. In adult flies, exogenous expression of wild-type VCP, but not pathogenic VCPs, reduces the number of abnormal mitochondria in muscles. Failure of pathogenic VCPs to function on damaged mitochondria may be related to the pathogenesis of IBMPFD and ALS.

  3. Vitamin D2-Enriched Button Mushroom (Agaricus bisporus) Improves Memory in Both Wild Type and APPswe/PS1dE9 Transgenic Mice

    PubMed Central

    Bennett, Louise; Kersaitis, Cindy; Macaulay, Stuart Lance; Münch, Gerald; Niedermayer, Garry; Nigro, Julie; Payne, Matthew; Sheean, Paul; Vallotton, Pascal; Zabaras, Dimitrios; Bird, Michael

    2013-01-01

    Vitamin D deficiency is widespread, affecting over 30% of adult Australians, and increasing up to 80% for at-risk groups including the elderly (age>65). The role for Vitamin D in development of the central nervous system is supported by the association between Vitamin D deficiency and incidence of neurological and psychiatric disorders including Alzheimer’s disease (AD). A reported positive relationship between Vitamin D status and cognitive performance suggests that restoring Vitamin D status might provide a cognitive benefit to those with Vitamin D deficiency. Mushrooms are a rich source of ergosterol, which can be converted to Vitamin D2 by treatment with UV light, presenting a new and convenient dietary source of Vitamin D2. We hypothesised that Vitamin D2-enriched mushrooms (VDM) could prevent the cognitive and pathological abnormalities associated with dementia. Two month old wild type (B6C3) and AD transgenic (APPSwe/PS1dE9) mice were fed a diet either deficient in Vitamin D2 or a diet which was supplemented with VDM, containing 1±0.2 µg/kg (∼54 IU/kg) vitamin D2, for 7 months. Effects of the dietary intervention on memory were assessed pre- and post-feeding. Brain sections were evaluated for amyloid β (Aβ) plaque loads and inflammation biomarkers using immuno-histochemical methods. Plasma vitamin D metabolites, Aβ40, Aβ42, calcium, protein and cholesterol were measured using biochemical assays. Compared with mice on the control diet, VDM-fed wild type and AD transgenic mice displayed improved learning and memory, had significantly reduced amyloid plaque load and glial fibrillary acidic protein, and elevated interleukin-10 in the brain. The results suggest that VDM might provide a dietary source of Vitamin D2 and other bioactives for preventing memory-impairment in dementia. This study supports the need for a randomised clinical trial to determine whether or not VDM consumption can benefit cognitive performance in the wider population. PMID

  4. Cryptococcus neoformans-Cryptococcus gattii Species Complex: an International Study of Wild-Type Susceptibility Endpoint Distributions and Epidemiological Cutoff Values for Fluconazole, Itraconazole, Posaconazole, and Voriconazole

    PubMed Central

    Aller, A. I.; Canton, E.; Castañón-Olivares, L. R.; Chowdhary, A.; Cordoba, S.; Cuenca-Estrella, M.; Fothergill, A.; Fuller, J.; Govender, N.; Hagen, F.; Illnait-Zaragozi, M. T.; Johnson, E.; Kidd, S.; Lass-Flörl, C.; Lockhart, S. R.; Martins, M. A.; Meis, J. F.; Melhem, M. S. C.; Ostrosky-Zeichner, L.; Pelaez, T.; Pfaller, M. A.; Schell, W. A.; St-Germain, G.; Trilles, L.; Turnidge, J.

    2012-01-01

    Epidemiological cutoff values (ECVs) for the Cryptococcus neoformans-Cryptococcus gattii species complex versus fluconazole, itraconazole, posaconazole, and voriconazole are not available. We established ECVs for these species and agents based on wild-type (WT) MIC distributions. A total of 2,985 to 5,733 CLSI MICs for C. neoformans (including isolates of molecular type VNI [MICs for 759 to 1,137 isolates] and VNII, VNIII, and VNIV [MICs for 24 to 57 isolates]) and 705 to 975 MICs for C. gattii (including 42 to 260 for VGI, VGII, VGIII, and VGIV isolates) were gathered in 15 to 24 laboratories (Europe, United States, Argentina, Australia, Brazil, Canada, Cuba, India, Mexico, and South Africa) and were aggregated for analysis. Additionally, 220 to 359 MICs measured using CLSI yeast nitrogen base (YNB) medium instead of CLSI RPMI medium for C. neoformans were evaluated. CLSI RPMI medium ECVs for distributions originating from at least three laboratories, which included ≥95% of the modeled WT population, were as follows: fluconazole, 8 μg/ml (VNI, C. gattii nontyped, VGI, VGIIa, and VGIII), 16 μg/ml (C. neoformans nontyped, VNIII, and VGIV), and 32 μg/ml (VGII); itraconazole, 0.25 μg/ml (VNI), 0.5 μg/ml (C. neoformans and C. gattii nontyped and VGI to VGIII), and 1 μg/ml (VGIV); posaconazole, 0.25 μg/ml (C. neoformans nontyped and VNI) and 0.5 μg/ml (C. gattii nontyped and VGI); and voriconazole, 0.12 μg/ml (VNIV), 0.25 μg/ml (C. neoformans and C. gattii nontyped, VNI, VNIII, VGII, and VGIIa,), and 0.5 μg/ml (VGI). The number of laboratories contributing data for other molecular types was too low to ascertain that the differences were due to factors other than assay variation. In the absence of clinical breakpoints, our ECVs may aid in the detection of isolates with acquired resistance mechanisms and should be listed in the revised CLSI M27-A3 and CLSI M27-S3 documents. PMID:22948877

  5. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole.

    PubMed

    Espinel-Ingroff, A; Aller, A I; Canton, E; Castañón-Olivares, L R; Chowdhary, A; Cordoba, S; Cuenca-Estrella, M; Fothergill, A; Fuller, J; Govender, N; Hagen, F; Illnait-Zaragozi, M T; Johnson, E; Kidd, S; Lass-Flörl, C; Lockhart, S R; Martins, M A; Meis, J F; Melhem, M S C; Ostrosky-Zeichner, L; Pelaez, T; Pfaller, M A; Schell, W A; St-Germain, G; Trilles, L; Turnidge, J

    2012-11-01

    Epidemiological cutoff values (ECVs) for the Cryptococcus neoformans-Cryptococcus gattii species complex versus fluconazole, itraconazole, posaconazole, and voriconazole are not available. We established ECVs for these species and agents based on wild-type (WT) MIC distributions. A total of 2,985 to 5,733 CLSI MICs for C. neoformans (including isolates of molecular type VNI [MICs for 759 to 1,137 isolates] and VNII, VNIII, and VNIV [MICs for 24 to 57 isolates]) and 705 to 975 MICs for C. gattii (including 42 to 260 for VGI, VGII, VGIII, and VGIV isolates) were gathered in 15 to 24 laboratories (Europe, United States, Argentina, Australia, Brazil, Canada, Cuba, India, Mexico, and South Africa) and were aggregated for analysis. Additionally, 220 to 359 MICs measured using CLSI yeast nitrogen base (YNB) medium instead of CLSI RPMI medium for C. neoformans were evaluated. CLSI RPMI medium ECVs for distributions originating from at least three laboratories, which included ≥95% of the modeled WT population, were as follows: fluconazole, 8 μg/ml (VNI, C. gattii nontyped, VGI, VGIIa, and VGIII), 16 μg/ml (C. neoformans nontyped, VNIII, and VGIV), and 32 μg/ml (VGII); itraconazole, 0.25 μg/ml (VNI), 0.5 μg/ml (C. neoformans and C. gattii nontyped and VGI to VGIII), and 1 μg/ml (VGIV); posaconazole, 0.25 μg/ml (C. neoformans nontyped and VNI) and 0.5 μg/ml (C. gattii nontyped and VGI); and voriconazole, 0.12 μg/ml (VNIV), 0.25 μg/ml (C. neoformans and C. gattii nontyped, VNI, VNIII, VGII, and VGIIa,), and 0.5 μg/ml (VGI). The number of laboratories contributing data for other molecular types was too low to ascertain that the differences were due to factors other than assay variation. In the absence of clinical breakpoints, our ECVs may aid in the detection of isolates with acquired resistance mechanisms and should be listed in the revised CLSI M27-A3 and CLSI M27-S3 documents.

  6. Formation of DNA adducts in wild-type and transgenic mice expressing human sulfotransferases 1A1 and 1A2 after oral exposure to furfuryl alcohol

    PubMed Central

    Høie, Anja Hortemo; Monien, Bernhard Hans; Sakhi, Amrit Kaur; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2015-01-01

    Furfuryl alcohol (FFA) is present in many heat-treated foods as a result of its formation via dehydration of pentoses. It is also used legally as a flavouring agent. In an inhalation study conducted in the National Toxicology Program, FFA showed some evidence of carcinogenic activity in rats and mice. FFA was generally negative in conventional genotoxicity assays, which suggests that it may be a non-genotoxic carcinogen. However, it was recently found that FFA is mutagenic in Salmonella strains expressing appropriate sulfotransferases (SULTs), such as human or mouse SULT1A1. The same DNA adducts that were formed by FFA in these strains, mainly N 2-((furan-2-yl)methyl)-2′-deoxyguanosine (N 2-MF-dG), were also detected in tissues of FFA-exposed mice and even in human lung specimens. In the present study, a single oral dose of FFA (250mg/kg body weight) or saline was administered to FVB/N mice and transgenic mice expressing human SULT1A1/1A2 on the FVB/N background. The transgenic mice were used, since human and mouse SULT1A1 substantially differ in substrate specificity and tissue distribution. DNA adducts were studied in liver, kidney, proximal and distal small intestine as well as colon, using isotope-dilution ultra performance liquid chromatography (UPLC–MS/MS). Surprisingly, low levels of adducts that may represent N 2-MF-dG were detected even in tissues of untreated mice. FFA exposure enhanced the adduct levels in colon and liver, but not in the remaining investigated tissues of wild-type (wt) mice. The situation was similar in transgenic mice, except that N 2-MF-dG levels were also strongly enhanced in the proximal small intestine. These different results between wt and transgenic mice may be attributed to the fact that human SULT1A1, but not the orthologous mouse enzyme, is strongly expressed in the small intestine. PMID:25904584

  7. Formation of DNA adducts in wild-type and transgenic mice expressing human sulfotransferases 1A1 and 1A2 after oral exposure to furfuryl alcohol.

    PubMed

    Høie, Anja Hortemo; Monien, Bernhard Hans; Sakhi, Amrit Kaur; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2015-09-01

    Furfuryl alcohol (FFA) is present in many heat-treated foods as a result of its formation via dehydration of pentoses. It is also used legally as a flavouring agent. In an inhalation study conducted in the National Toxicology Program, FFA showed some evidence of carcinogenic activity in rats and mice. FFA was generally negative in conventional genotoxicity assays, which suggests that it may be a non-genotoxic carcinogen. However, it was recently found that FFA is mutagenic in Salmonella strains expressing appropriate sulfotransferases (SULTs), such as human or mouse SULT1A1. The same DNA adducts that were formed by FFA in these strains, mainly N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were also detected in tissues of FFA-exposed mice and even in human lung specimens. In the present study, a single oral dose of FFA (250 mg/kg body weight) or saline was administered to FVB/N mice and transgenic mice expressing human SULT1A1/1A2 on the FVB/N background. The transgenic mice were used, since human and mouse SULT1A1 substantially differ in substrate specificity and tissue distribution. DNA adducts were studied in liver, kidney, proximal and distal small intestine as well as colon, using isotope-dilution ultra performance liquid chromatography (UPLC-MS/MS). Surprisingly, low levels of adducts that may represent N (2)-MF-dG were detected even in tissues of untreated mice. FFA exposure enhanced the adduct levels in colon and liver, but not in the remaining investigated tissues of wild-type (wt) mice. The situation was similar in transgenic mice, except that N (2)-MF-dG levels were also strongly enhanced in the proximal small intestine. These different results between wt and transgenic mice may be attributed to the fact that human SULT1A1, but not the orthologous mouse enzyme, is strongly expressed in the small intestine.

  8. Compatibility of a wild type and its genetically modified Sinorhizobium strain with two mycorrhizal fungi on Medicago species as affected by drought stress.

    PubMed

    Vázquez, M M.; Azcón, R; Barea, J M.

    2001-07-01

    The effect of double inoculation with two strains of Sinorhizobium meliloti [the wild type (WT) strain GR4 and its genetically modified (GM) derivative GR4(pCK3)], and two species of arbuscular mycorrhizal (AM) fungi (Glomus deserticola and Glomus intraradices) was examined in a microcosm system on three species of Medicago (M. nolana, M. rigidula, M. rotata). Two water regimes (80 and 100% water holding capacity, WHC) were assayed. The efficiency of each AM fungus increasing plant growth, nutrient content, nodulation and water-stress tolerance was related to the Sinorhizobium strains and Medicago species. This indicates selective and specific compatibilities between microsymbionts and the common host plant. Differential effects of the mycorrhizal isolates were not associated with their colonizing ability. Nodulation and mycorrhizal dependency (MD) changed in each plant genotype in accordance with the Sinorhizobium strain and AM fungi involved. Generally, Medicago sp. MD decreased under water-stress conditions even when these conditions did not affect AM colonization (%). Proline accumulation in non-mycorrhizal plant leaves was increased by water stress, except in M. rotata plants. Differences in proline accumulation in AM-colonized plants suggest that both the AM fungus and the Sinorhizobium strain were able to induce different degrees of osmotic adjustment. Mycorrhizal plants nodulated by the WT strain accumulated more proline in M. rigidula and M. rotata under water stress than non-mycorrhizal plants. Conversely, mycorrhizal plants nodulated by the GM strain accumulated less proline in response to both AM colonization and drought. These results indicated changes in the synthesis of this nitrogenous osmoregulator product associated with microbial inoculation and drought tolerance. Mycorrhizal plants nodulated by the GM Sinorhizobium strain seem to suffer less from the detrimental effect of water stress, since under water limitation relative plant growth

  9. Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal.

    PubMed Central

    Gottlieb, E; Haffner, R; von Rüden, T; Wagner, E F; Oren, M

    1994-01-01

    Overexpression of wild-type p53 in p53-deficient leukemic cells induces apoptosis, which can be inhibited by hematopoietic survival factors. This suggests that p53 may contribute to survival factor dependence. To assess the role of wild-type p53 in mediating apoptosis following survival factor withdrawal, we interfered with endogenous p53 activity in interleukin-3 (IL-3)-dependent cells. Extended survival without IL-3 was conferred by recombinant retroviruses encoding either a full-length p53 mutant or a C-terminal p53 miniprotein, both of which can act as negative-dominant inhibitors of wild-type p53. On the other hand, excess wild-type p53 activity failed to elicit apoptosis as long as IL-3 was present. We propose that p53 is a positive, though not exclusive, mediator of survival factor dependence in hematopoietic cells. Images PMID:8137820

  10. Effect of Trehalose and Trehalose Transport on the Tolerance of Clostridium perfringens to Environmental Stress in a Wild Type Strain and Its Fluoroquinolone-Resistant Mutant

    PubMed Central

    Park, Miseon; Mitchell, Wilfrid J.

    2016-01-01

    Trehalose has been shown to protect bacterial cells from environmental stress. Its uptake and osmoprotective effect in Clostridium perfringens were investigated by comparing wild type C. perfringens ATCC 13124 with a fluoroquinolone- (gatifloxacin-) resistant mutant. In a chemically defined medium, trehalose and sucrose supported the growth of the wild type but not that of the mutant. Microarray data and qRT-PCR showed that putative genes for the phosphorylation and transport of sucrose and trehalose (via phosphoenolpyruvate-dependent phosphotransferase systems, PTS) and some regulatory genes were downregulated in the mutant. The wild type had greater tolerance than the mutant to salts and low pH; trehalose and sucrose further enhanced the osmotolerance of the wild type to NaCl. Expression of the trehalose-specific PTS was lower in the fluoroquinolone-resistant mutant. Protection of C. perfringens from environmental stress could therefore be correlated with the ability to take up trehalose. PMID:28058047

  11. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells

    PubMed Central

    Ables, Jessica L.; DeCarolis, Nathan A.; Johnson, Madeleine A.; Rivera, Phillip D.; Gao, Zhengliang; Cooper, Don C.; Radtke, Freddy; Hsieh, Jenny; Eisch, Amelia J.

    2010-01-01

    Notch1 regulates neural stem cell (NSC) number during development, but its role in adult neurogenesis is unclear. We generated nestin-CreERT2/R26R-YFP/Notch1loxP/loxP (Notch1 iKO) mice to allow tamoxifen (TAM)-inducible elimination of Notch1 and concomitant expression of yellow fluorescent protein (YFP) in nestin-expressing Type-1 NSCs and their progeny in the adult hippocampal subgranular zone (SGZ). Consistent with previous research, YFP+ cells in all stages of neurogenesis were evident in the subgranular zone (SGZ) of wild type mice (WT; nestin-CreERT2/R26R-YFP/Notch1wt/wt) after tamoxifen (post-TAM), producing adult-generated YFP+ dentate gyrus neurons. Compared to WT littermates, Notch1 iKO mice had similar numbers of total SGZ YFP+ cells 13 and 30 days post-TAM but had significantly fewer SGZ YFP+ cells 60 and 90 days post-TAM. Significantly fewer YFP+ Type-1 NSCs and transiently-amplifying progenitors (TAPs) resulted in generation of fewer YFP+ granule neurons in Notch1 iKO mice. Strikingly, 30 days of running rescued this deficit, as the total YFP+ cell number in Notch iKO mice was equivalent to WT levels. This was even more notable given the persistent deficits in the Type-1 NSC and TAP reservoirs. Our data show that Notch1 signaling is required to maintain a reservoir of undifferentiated cells and ensure continuity of adult hippocampal neurogenesis, but that alternative Notch1- and Type-1 NSC-independent pathways compensate in response to physical activity. These data shed light on the complex relationship between Type-1 NSCs, adult neurogenesis, the neurogenic niche, and environmental stimuli. PMID:20685991

  12. A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer

    PubMed Central

    Kim, Tae Won; Elme, Anneli; Kusic, Zvonko; Park, Joon Oh; Udrea, Anghel Adrian; Kim, Sun Young; Ahn, Joong Bae; Valencia, Ricardo Villalobos; Krishnan, Srinivasan; Bilic, Ante; Manojlovic, Nebojsa; Dong, Jun; Guan, Xuesong; Lofton-Day, Catherine; Jung, A Scott; Vrdoljak, Eduard

    2016-01-01

    Background: We assessed the treatment effect of panitumumab plus best supportive care (BSC) vs BSC on overall survival (OS) in patients with chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer (mCRC) and report the first prospective extended RAS analysis in a phase 3 trial. Methods: Patients with wild-type KRAS exon 2 mCRC were randomised 1 : 1 to panitumumab (6 mg kg−1 Q2W) plus BSC or BSC. On-study crossover was prohibited. RAS mutation status was determined by central laboratory testing. The primary endpoint was OS in wild-type KRAS exon 2 mCRC; OS in wild-type RAS mCRC (KRAS and NRAS exons 2, 3, and 4) was a secondary endpoint. Results: Three hundred seventy seven patients with wild-type KRAS exon 2 mCRC were randomised. Median OS was 10.0 months with panitumumab plus BSC vs 7.4 months with BSC (HR=0.73; 95% CI=0.57–0.93; P=0.0096). RAS ascertainment was 86%. In wild-type RAS mCRC, median OS for panitumumab plus BSC was 10.0 vs 6.9 months for BSC (HR=0.70; 95% CI=0.53–0.93; P=0.0135). Patients with RAS mutations did not benefit from panitumumab (OS HR=0.99; 95% CI=0.49–2.00). No new safety signals were observed. Conclusions: Panitumumab significantly improved OS in wild-type KRAS exon 2 mCRC. The effect was more pronounced in wild-type RAS mCRC, validating previous retrospective analyses. PMID:27736842

  13. Crystal Structures and Functional Characterization of Wild Type and Active Sites Mutants of CYP101D1

    PubMed Central

    Batabyal, Dipanwita; Poulos, Thomas L.

    2014-01-01

    Although CYP101D1 and P450cam catayze the same reaction at a similar rate and share strikingly similar active site architectures, there are significance functional differences. CYP101D1 thus provides an opportunity to probe what structural and functional features must be shared and what can differ yet maintain high catalytic efficiency. Crystal structures of the cyanide complex of wild type CYP101D1 and it active site mutants, D259N and T260A, have been solved. The conformational changes in CYP101D1 upon cyanide binding are very similar to P450cam indicating a similar mechanism for proton delivery during oxygen activation using solvent assisted proton transfer. The D259N-CN− complex shows a perturbed solvent structure compared to wild type which is similar to what was observed in the oxy-complex of the corresonding D251N mutant in P450cam. As in P450cam the T260A mutant is highly uncoupled while the D259N gives barely detectable activity. Despite these similarities, CYP101D1 is able to use the P450cam redox partners while P450cam cannot use the CYP101D1 redox partners. Thus the strict requirement of P450cam for its own redox partner is relaxed in CYP101D1. Differences in the local environment of the essential Asp (Asp259 in CYP101D1) provides a strucutral basis for understanding these functional differences. PMID:24261604

  14. Targeting wild-type and mutationally activated FGFR4 in rhabdomyosarcoma with the inhibitor ponatinib (AP24534).

    PubMed

    Li, Samuel Q; Cheuk, Adam T; Shern, Jack F; Song, Young K; Hurd, Laura; Liao, Hongling; Wei, Jun S; Khan, Javed

    2013-01-01

    Rhabdomyosarcoma (RMS) is the most common childhood soft tissue sarcoma. Despite advances in modern therapy, patients with relapsed or metastatic disease have a very poor clinical prognosis. Fibroblast Growth Factor Receptor 4 (FGFR4) is a cell surface tyrosine kinase receptor that is involved in normal myogenesis and muscle regeneration, but not commonly expressed in differentiated muscle tissues. Amplification and mutational activation of FGFR4 has been reported in RMS and promotes tumor progression. Therefore, FGFR4 is a tractable therapeutic target for patients with RMS. In this study, we used a chimeric Ba/F3 TEL-FGFR4 construct to test five tyrosine kinase inhibitors reported to specifically inhibit FGFRs in the nanomolar range. We found ponatinib (AP24534) to be the most potent FGFR4 inhibitor with an IC50 in the nanomolar range. Ponatinib inhibited the growth of RMS cells expressing wild-type or mutated FGFR4 through increased apoptosis. Phosphorylation of wild-type and mutated FGFR4 as well as its downstream target STAT3 was also suppressed by ponatinib. Finally, ponatinib treatment inhibited tumor growth in a RMS mouse model expressing mutated FGFR4. Therefore, our data suggests that ponatinib is a potentially effective therapeutic agent for RMS tumors that are driven by a dysregulated FGFR4 signaling pathway.

  15. Natural-Based Indirubins Display Potent Cytotoxicity toward Wild-Type and T315I-Resistant Leukemia Cell Lines.

    PubMed

    Gaboriaud-Kolar, Nicolas; Myrianthopoulos, Vasillios; Vougogiannopoulou, Konstantina; Gerolymatos, Panagiotis; Horne, David A; Jove, Richard; Mikros, Emmanuel; Nam, Sangkil; Skaltsounis, Alexios-Leandros

    2016-10-28

    Drug resistance in chronic myelogenous leukemia (CML) requires the development of new CML chemotherapeutic drugs. Indirubin, a well-known mutikinase inhibitor, is the major active component of "Danggui Longhui Wan", a Chinese traditional medicine used for the treatment of CML symptoms. An in-house collection of indirubin derivatives was screened at 1 μM on wild-type and imatinib-resistant T315I mutant CML cells. Herein are reported that only 15 analogues of the natural 6-bromoindirubin displayed potent cytotoxicity in the submicromolar range. Kinase assays in vitro show that eight out of the 15 active molecules strongly inhibited both c-Src and Abl oncogenic kinases in the nanomolar range. Most importantly, these eight molecules blocked the activity of T315I mutant Abl kinase at the submicromolar level and with analogue 22 exhibiting inhibitory activity at the low nanomolar range. Docking calculations suggested that active indirubins might inhibit T315I Abl kinase through an unprecedented binding to both active and Src-like inactive conformations. Analogue 22 is the first derivative of a natural product identified as an inhibitor of wild-type and imatinib-resistant T315I mutant Abl kinases.

  16. Ablation of the Locus Coeruleus Increases Oxidative Stress in Tg-2576 Transgenic but Not Wild-Type Mice

    PubMed Central

    Hurko, Orest; Boudonck, Kurt; Gonzales, Cathleen; Hughes, Zoe A.; Jacobsen, J. Steve; Reinhart, Peter H.; Crowther, Daniel

    2010-01-01

    Mice transgenic for production of excessive or mutant forms of beta-amyloid differ from patients with Alzheimer's disease in the degree of inflammation, oxidative damage, and alteration of intermediary metabolism, as well as the paucity or absence of neuronal atrophy and cognitive impairment. Previous observers have suggested that differences in inflammatory response reflect a discrepancy in the state of the locus coeruleus (LC), loss of which is an early change in Alzheimer's disease but which is preserved in the transgenic mice. In this paper, we extend these observations by examining the effects of the LC on markers of oxidative stress and intermediary metabolism. We compare four groups: wild-type or Tg2576 Aβ transgenic mice injected with DSP4 or vehicle. Of greatest interest were metabolites different between ablated and intact transgenics, but not between ablated and intact wild-type animals. The Tg2576_DSP4 mice were distinguished from the other three groups by oxidative stress and altered energy metabolism. These observations provide further support for the hypothesis that Tg2576 Aβ transgenic mice with this ablation may be a more congruent model of Alzheimer's disease than are transgenics with an intact LC. PMID:20981353

  17. Effects of Pyrogallol on Growth and Cytotoxicity of Wild-Type and katG Mutant Strains of Vibrio vulnificus

    PubMed Central

    Lim, Ju Young; Kim, Choon-Mee; Rhee, Joon Haeng; Kim, Young Ran

    2016-01-01

    Vibrio vulnificus is a causative agent of fatal septicemia and necrotic wound infection and the pathogen infection became an important public health problem in many counties. Vibrio vulnificus causes RtxA1 toxin-induced acute cell death. We tried to identify natural products that inhibit the acute cytotoxicity of V. vulnificus using a lactate hydrogenase assay. A polyphenol pyrogallol protected HeLa cells from V. vulnificus-induced cytotoxicity. Pyrogallol also decreased the growth of V. vulnificus; this inhibitory effect was more significant during log phase than stationary phase. To further elucidate the inhibitory mechanism, pyrogallol-induced toxicity was compared between a V. vulnificus catalase-peroxidase mutant (katG−) and the isogenic wild-type MO6-24/O strains. No growth was observed for the katG− mutant in the presence of pyrogallol (50 μg/mL) even after 24 h, whereas the wild-type strain demonstrated growth recovery following a prolonged lag phase. Pyrogallol-mediated growth inhibition of the katG− mutant strain was partially rescued by exogenous catalase treatment. These results indicate that the mechanism by which pyrogallol inhibits the growth and cytotoxicity of V. vulnificus likely involves polyphenol-induced prooxidant damage. Taken together, these results suggest that pyrogallol has potential for development as a new paradigm drug to treat infectious diseases. PMID:27936080

  18. Phylogenetic analysis of the haemagglutinin gene of current wild-type canine distemper viruses from South Africa: lineage Africa.

    PubMed

    Woma, Timothy Y; van Vuuren, Moritz; Bosman, Ana-Mari; Quan, Melvyn; Oosthuizen, Marinda

    2010-07-14

    There are no reports of CDV isolations in southern Africa, and although CDV is said to have geographically distinct lineages, molecular information of African strains has not yet been documented. Viruses isolated in cell cultures were subjected to reverse transcription-polymerase chain reaction (RT-PCR), and the complete H gene was sequenced and phylogenetically analysed with other strains from GenBank. Phylogenetic comparisons of the complete H gene of CDV isolates from different parts of the world (available in GenBank) with wild-type South African isolates revealed nine clades. All South African isolates form a separate African clade of their own and thus are clearly separated from the American, European, Asian, Arctic and vaccine virus clades. It is likely that only the 'African lineage' of CDV may be circulating in South Africa currently, and the viruses isolated from dogs vaccinated against CDV are not the result of reversion to virulence of vaccine strains, but infection with wild-type strains.

  19. Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells

    PubMed Central

    Morkunas, Bernardas; Gal, Balint; Galloway, Warren R J D; Hodgkinson, James T; Ibbeson, Brett M; Sing Tan, Yaw; Welch, Martin

    2016-01-01

    Summary Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell–cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable. PMID:27559393

  20. Screening and Expression of a Silicon Transporter Gene (Lsi1) in Wild-Type Indica Rice Cultivars

    PubMed Central

    Abiri, Rambod; Kalhori, Nahid; Atabaki, Narges

    2017-01-01

    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties. PMID:28191468

  1. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    SciTech Connect

    Huang Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.

  2. Physcomitrella patens auxin conjugate synthetase (GH3) double knockout mutants are more resistant to Pythium infection than wild type.

    PubMed

    Mittag, Jennifer; Šola, Ivana; Rusak, Gordana; Ludwig-Müller, Jutta

    2015-07-01

    Auxin homeostasis is involved in many different plant developmental and stress responses. The auxin amino acid conjugate synthetases belonging to the GH3 family play major roles in the regulation of free indole-3-acetic acid (IAA) levels and the moss Physcomitrella patens has two GH3 genes in its genome. A role for IAA in several angiosperm--pathogen interactions was reported, however, in a moss--oomycete pathosystem it had not been published so far. Using GH3 double knockout lines we have investigated the role of auxin homeostasis during the infection of P. patens with the two oomycete species, Pythium debaryanum and Pythium irregulare. We show that infection with P. debaryanum caused stronger disease symptoms than with P. irregulare. Also, P. patens lines harboring fusion constructs of an auxin-inducible promoter from soybean (GmGH3) with a reporter (ß-glucuronidase) showed higher promoter induction after P. debaryanum infection than after P. irregulare, indicating a differential induction of the auxin response. Free IAA was induced upon P. debaryanum infection in wild type by 1.6-fold and in two GH3 double knockout (GH3-doKO) mutants by 4- to 5-fold. All GH3-doKO lines showed a reduced disease symptom progression compared to wild type. Since P. debaryanum can be inhibited in growth on medium containing IAA, these data might indicate that endogenous high auxin levels in P. patens GH3-doKO mutants lead to higher resistance against the oomycete.

  3. Screening and Expression of a Silicon Transporter Gene (Lsi1) in Wild-Type Indica Rice Cultivars.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Rafii, M Y; Azizi, Parisa; Abiri, Rambod; Kalhori, Nahid; Atabaki, Narges

    2017-01-01

    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.

  4. An antibody raised against a pathogenic serpin variant induces mutant-like behaviour in the wild-type protein

    PubMed Central

    Irving, James A.; Miranda, Elena; Haq, Imran; Perez, Juan; Kotov, Vadim R.; Faull, Sarah V.; Motamedi-Shad, Neda; Lomas, David A.

    2015-01-01

    A monoclonal antibody (mAb) that binds to a transient intermediate may act as a catalyst for the corresponding reaction; here we show this principle can extend on a macro molecular scale to the induction of mutant-like oligomerization in a wild-type protein. Using the common pathogenic E342K (Z) variant of α1-antitrypsin as antigen–whose native state is susceptible to the formation of a proto-oligomeric intermediate–we have produced a mAb (5E3) that increases the rate of oligomerization of the wild-type (M) variant. Employing ELISA, gel shift, thermal stability and FRET time-course experiments, we show that mAb5E3 does not bind to the native state of α1-antitrypsin, but recognizes a cryptic epitope in the vicinity of the post-helix A loop and strand 4C that is revealed upon transition to the polymerization intermediate, and which persists in the ensuing oligomer. This epitope is not shared by loop-inserted monomeric conformations. We show the increased amenity to polymerization by either the pathogenic E342K mutation or the binding of mAb5E3 occurs without affecting the energetic barrier to polymerization. As mAb5E3 also does not alter the relative stability of the monomer to intermediate, it acts in a manner similar to the E342K mutant, by facilitating the conformational interchange between these two states. PMID:25738741

  5. Response of wild-type and high pigment-1 tomato fruit to UV-B depletion: flavonoid profiling and gene expression.

    PubMed

    Calvenzani, Valentina; Martinelli, Moira; Lazzeri, Valerio; Giuntini, Deborah; Dall'Asta, Chiara; Galaverna, Gianni; Tonelli, Chiara; Ranieri, Annamaria; Petroni, Katia

    2010-02-01

    The tomato high pigment-1 (hp-1) mutant is characterised by exaggerated photoresponsiveness and increased fruit pigmentation, and carries a mutation in the HP1/LeDDB1 gene, encoding the tomato homologue of the negative regulator of the light signal transduction DDB1a from Arabidopsis. Here, we investigated the molecular events underlying flavonoid accumulation in flesh and peel of wild-type and hp-1 fruits in presence or absence of UV-B light. In hp-1 peel, a twofold higher level of rutin and an earlier accumulation of flavonoids than in wild-type were observed, which correlated to the earlier activation of most flavonoid biosynthetic genes compared to wild-type. In hp-1 flesh, flavonoid content was up to 8.5-fold higher than in wild-type and correlated to the higher transcript level of flavonoid genes compared to wild-type. In both tissues, the expression of flavonoid genes was correlated with the anticipated and/or enhanced activation of the light signal transduction genes: LeCOP1LIKE, LeCOP1 and LeHY5. In wild-type, flavonoid content was severely reduced by UV-B depletion mostly in peel, whereas in hp-1 it was significantly increased in flesh. The activation of flavonoid and light signal transduction genes was UV-B dependent mostly at the mature green stage, whereas LeDDB1 expression was not regulated by UV-B.

  6. Hydroxycinnamic acids and UV-B depletion: Profiling and biosynthetic gene expression in flesh and peel of wild-type and hp-1.

    PubMed

    Calvenzani, Valentina; Castagna, Antonella; Ranieri, Annamaria; Tonelli, Chiara; Petroni, Katia

    2015-06-01

    Hydroxycinnamic acids (HCAs) are phenolic compounds widely found in most plant families. Aim of the present work was to investigate their accumulation and biosynthetic gene expression in presence or absence of UV-B radiation in tomato fruits of wild-type and hp-1, a mutant characterized by exaggerated photoresponsiveness and increased fruit pigmentation. Gene expression and HCAs content were higher in hp-1 than in wild type peel and UV-B depletion determined a decrease in HCAs accumulation in wild-type and an increase in hp-1 fruits, generally in accordance with biosynthetic gene expression. In flesh, despite a similar transcript level of most genes between the two genotypes, HCAs content was generally higher in wild type than in hp-1, although remaining at a lower level with respect to wild type peel. Under UV-B depletion, a general reduction of HCAs content was observed in wild-type flesh, whereas an increase in the content of p-coumaric acid and caffeic acid was observed in hp-1 flesh.

  7. Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice.

    PubMed

    Martin, Paul T; Xu, Rui; Rodino-Klapac, Louise R; Oglesbay, Elaine; Camboni, Marybeth; Montgomery, Chrystal L; Shontz, Kim; Chicoine, Louis G; Clark, K Reed; Sahenk, Zarife; Mendell, Jerry R; Janssen, Paul M L

    2009-03-01

    The cytotoxic T cell (CT) GalNAc transferase, or Galgt2, is a UDP-GalNAc:beta1,4-N-acetylgalactosaminyltransferase that is localized to the neuromuscular synapse in adult skeletal muscle, where it creates the synaptic CT carbohydrate antigen {GalNAcbeta1,4[NeuAc(orGc)alpha2, 3]Galbeta1,4GlcNAcbeta-}. Overexpression of Galgt2 in the skeletal muscles of transgenic mice inhibits the development of muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy. Here, we provide physiological evidence as to how Galgt2 may inhibit the development of muscle pathology in mdx animals. Both Galgt2 transgenic wild-type and mdx skeletal muscles showed a marked improvement in normalized isometric force during repetitive eccentric contractions relative to nontransgenic littermates, even using a paradigm where nontransgenic muscles had force reductions of 95% or more. Muscles from Galgt2 transgenic mice, however, showed a significant decrement in normalized specific force and in hindlimb and forelimb grip strength at some ages. Overexpression of Galgt2 in muscles of young adult mdx mice, where Galgt2 has no effect on muscle size, also caused a significant decrease in force drop during eccentric contractions and increased normalized specific force. A comparison of Galgt2 and microdystrophin overexpression using a therapeutically relevant intravascular gene delivery protocol showed Galgt2 was as effective as microdystrophin at preventing loss of force during eccentric contractions. These experiments provide a mechanism to explain why Galgt2 overexpression inhibits muscular dystrophy in mdx muscles. That overexpression also prevents loss of force in nondystrophic muscles suggests that Galgt2 is a therapeutic target with broad potential applications.

  8. Liposome-mediated transfection of wild-type P53 DNA into human prostate cancer cells is improved by low-frequency ultrasound combined with microbubbles

    PubMed Central

    BAI, WEN-KUN; ZHANG, WEI; HU, BING; YING, TAO

    2016-01-01

    Prostate cancer is a common type of cancer in elderly men. The aim of the present study was to evaluate the effects of ultrasound exposure in combination with SonoVue microbubbles on liposome-mediated transfection of wild-type P53 genes into human prostate cancer cells. PC-3 human prostate cancer cells were exposed to ultrasound; duty cycle was controlled at 20% (2 sec on, 8 sec off) for 5 min with and without SonoVue microbubble echo-contrast agent using a digital sonifier (frequency, 21 kHz; intensity, 46 mW/cm2). The cells were divided into eight groups, as follows: Group A (SonoVue + wild-type P53), group B (ultrasound + wild-type P53), group C (SonoVue + ultrasound + wild-type P53), group D (liposome + wild-type P53), group E (liposome + SonoVue + wild-type P53), group F (liposome + wild-type P53 + ultrasound), group G (liposome + wild-type P53 + ultrasound + SonoVue) and the control group (wild-type P53). Following treatment, a hemocytometer was used to measure cell lysis, reverse transcription-quantitative polymerase chain reaction and western blotting were performed to detect P53 gene transfection efficiency, Cell Counting Kit-8 was employed to reveal cell proliferation and Annexin V/propidium iodide staining was used to determine cell apoptosis. Cell lysis was minimal in each group. Wild-type P53 gene and protein expression were significantly increased in the PC-3 cells in group G compared with the control and all other groups (P<0.01). Cell proliferation was significantly suppressed in group G compared with the control group and all other groups (P<0.01). Cell apoptosis levels in group G were significantly improved compared with the control group and all other groups (P<0.01). Thus, the results of the present study indicate that the use of low-frequency and low-energy ultrasound in combination with SonoVue microbubbles may be a potent physical method for increasing liposome gene delivery efficiency. PMID:27313702

  9. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice.

    PubMed

    Cui, Min; Li, Qiang; Johnson, Robert; Fleet, James C

    2012-10-01

    Transient receptor potential cation channel, subfamily V, member 6 (TRPV6) is an apical membrane calcium (Ca) channel in the small intestine proposed to be essential for vitamin D-regulated intestinal Ca absorption. Recent studies have challenged the proposed role for TRPV6 in Ca absorption. We directly tested intestinal TRPV6 function in Ca and bone metabolism in wild-type (WT) and vitamin D receptor knockout (VDRKO) mice. TRPV6 transgenic mice (TG) were made with intestinal epithelium-specific expression of a 3X Flag-tagged human TRPV6 protein. TG and VDRKO mice were crossed to make TG-VDRKO mice. Ca and bone metabolism was examined in WT, TG, VDRKO, and TG-VDRKO mice. TG mice developed hypercalcemia and soft tissue calcification on a chow diet. In TG mice fed a 0.25% Ca diet, Ca absorption was more than three-fold higher and femur bone mineral density (BMD) was 26% higher than WT. Renal 1α hydroxylase (CYP27B1) mRNA and intestinal expression of the natural mouse TRPV6 gene were reduced to <10% of WT but small intestine calbindin-D(9k) expression was elevated >15 times in TG mice. TG-VDRKO mice had high Ca absorption that prevented the low serum Ca, high renal CYP27B1 mRNA, low BMD, and abnormal bone microarchitecture seen in VDRKO mice. In addition, small intestinal calbindin D(9K) mRNA and protein levels were elevated in TG-VDRKO. Transgenic TRPV6 expression in intestine is sufficient to increase Ca absorption and bone density, even in VDRKO mice. VDR-independent upregulation of intestinal calbindin D(9k) in TG-VDRKO suggests this protein may buffer intracellular Ca during Ca absorption. © 2012 American Society for Bone and Mineral Research.

  10. An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild-type and endothelial NO synthase knockout mice

    PubMed Central

    Brandes, Ralf P.; Schmitz-Winnenthal, Friedrich-Hubertus; Félétou, Michel; Gödecke, Axel; Huang, Paul L.; Vanhoutte, Paul M.; Fleming, Ingrid; Busse, Rudi

    2000-01-01

    In addition to nitric oxide (NO) and prostacyclin (PGI2), the endothelium generates the endothelium-derived hyperpolarizing factor (EDHF). We set out to determine whether an EDHF-like response can be detected in wild-type (WT) and endothelial NO synthase knockout mice (eNOS −/−) mice. Vasodilator responses to endothelium-dependent agonists were determined in vivo and in vitro. In vivo, bradykinin induced a pronounced, dose-dependent decrease in mean arterial pressure (MAP) which did not differ between WT and eNOS −/− mice and was unaffected by treatment with Nω-nitro-l-arginine methyl ester and diclofenac. In the saline-perfused hindlimb of WT and eNOS −/− mice, marked Nω-nitro-l-arginine (l-NA, 300 μmol/liter)- and diclofenac-insensitive vasodilations in response to both bradykinin and acetylcholine (ACh) were observed, which were more pronounced than the agonist-induced vasodilation in the hindlimb of WT in the absence of l-NA. This endothelium-dependent, NO/PGI2-independent vasodilatation was sensitive to KCl (40 mM) and to the combination of apamin and charybdotoxin. Gap junction inhibitors (18α-glycyrrhetinic acid, octanol, heptanol) and CB-1 cannabinoid-receptor agonists (Δ9-tetrahydrocannabinol, HU210) impaired EDHF-mediated vasodilation, whereas inhibition of cytochrome P450 enzymes, soluble guanylyl cyclase, or adenosine receptors had no effect on EDHF-mediated responses. These results demonstrate that in murine resistance vessels the predominant agonist-induced endothelium-dependent vasodilation in vivo and in vitro is not mediated by NO, PGI2, or a cytochrome P450 metabolite, but by an EDHF-like principle that requires functional gap junctions. PMID:10944233

  11. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells.

    PubMed

    Cremers, Niels A J; Lundvig, Ditte M S; van Dalen, Stephanie C M; Schelbergen, Rik F; van Lent, Peter L E M; Sz