Science.gov

Sample records for adult worker bees

  1. Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition.

    PubMed

    Hoover, Shelley E R; Higo, Heather A; Winston, Mark L

    2006-01-01

    We examined the effect of larval and adult nutrition on worker honey bee (Apis mellifera L.) ovary development. Workers were fed high or low-pollen diets as larvae, and high or low-protein diets as adults. Workers fed low-protein diets at both life stages had the lowest levels of ovary development, followed by those fed high-protein diets as larvae and low- quality diets as adults, and then those fed diets poor in protein as larvae but high as adults. Workers fed high-protein diets at both life stages had the highest levels of ovary development. The increases in ovary development due to improved dietary protein in the larval and adult life stages were additive. Adult diet also had an effect on body mass. The results demonstrate that both carry-over of larval reserves and nutrients acquired in the adult life stage are important to ovary development in worker honey bees. Carry-over from larval development, however, appears to be less important to adult fecundity than is adult nutrition. Seasonal trends in worker ovary development and mass were examined throughout the brood rearing season. Worker ovary development was lowest in spring, highest in mid-summer, and intermediate in fall.

  2. Vanishing honey bees: Is the dying of adult worker bees a consequence of short telomeres and premature aging?

    PubMed

    Stindl, Reinhard; Stindl, Wolfgang

    2010-10-01

    Einstein is often quoted to have said that without the bee, mankind would have but 4years to live. It is highly unlikely that he made this comment, which was even mentioned in a Lancet article on honey bees. However, the current vanishing of the bees can have serious consequences for human health, because 35% of the human diet is thought to benefit from pollination. Colony collapse disorder (CCD) in honey bees is characterized by the rapid decline of the adult bee population, leaving the brood and the queen poorly or completely unattended, with no dead bodies in or around the hive. A large study found no evidence that the presence or amount of any individual pesticide or infectious agent occurred more frequently or abundantly in CCD-affected colonies. The growing consensus is that honey bees are suffering from comprised immune systems, which allow various infectious pathogens to invade. The question remains, what causes immunosuppression in many colonies of Apis mellifera in North America and Europe? Telomeres are protective DNA structures located at eukaryotic chromosome tips that shorten in the somatic tissues of animals with age. Lifelong tissue regeneration takes place in Apis mellifera, and worker bees have been shown to senesce. In humans, a vast amount of literature has accumulated on exhausted telomere reserves causing impaired tissue regeneration and age-associated diseases, specifically cancer and immunosuppression. Therefore, we propose a new causative mechanism for the vanishing of the bees: critically short telomeres in long-lived winter bees. We term this the telomere premature aging syndrome. PMID:20478660

  3. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.).

    PubMed

    Wang, Ying; Kaftanoglu, Osman; Brent, Colin S; Page, Robert E; Amdam, Gro V

    2016-04-01

    Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen-worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress. PMID:27030775

  4. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.).

    PubMed

    Wang, Ying; Kaftanoglu, Osman; Brent, Colin S; Page, Robert E; Amdam, Gro V

    2016-04-01

    Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen-worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress.

  5. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

    PubMed

    Scofield, Hailey N; Mattila, Heather R

    2015-01-01

    The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings

  6. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

    PubMed

    Scofield, Hailey N; Mattila, Heather R

    2015-01-01

    The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings

  7. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    PubMed

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species. PMID:24608542

  8. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    PubMed

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  9. Honey Bee Workers That Are Pollen Stressed as Larvae Become Poor Foragers and Waggle Dancers as Adults

    PubMed Central

    Scofield, Hailey N.; Mattila, Heather R.

    2015-01-01

    The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees’ access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings

  10. Negative correlation between Nosema ceranae spore loads and deformed wing virus infection levels in adult honey bee workers.

    PubMed

    Costa, Cecilia; Tanner, Gina; Lodesani, Marco; Maistrello, Lara; Neumann, Peter

    2011-11-01

    Interactions between pathogens might contribute to honey bee colony losses. Here we investigated if there is an association between the microsporidian Nosema ceranae and the deformed wing virus (DWV) in different body sections of individual honey bee workers (Apis mellifera ligustica) under exclusion of the vector Varroa destructor. Our data provide correlational evidence for antagonistic interactions between the two pathogens in the midgut of the bees.

  11. Worker honey bee pheromone regulation of foraging ontogeny

    NASA Astrophysics Data System (ADS)

    Pankiw, Tanya

    The evolution of sociality has configured communication chemicals, called primer pheromones, which play key roles in regulating the organization of social life. Primer pheromones exert relatively slow effects that fundamentally alter developmental, physiological, and neural systems. Here, I demonstrate how substances extracted from the surface of foraging and young pre-foraging worker bees regulated age at onset of foraging, a developmental process. Hexane-extractable compounds washed from foraging workers increased foraging age compared with controls, whereas extracts of young pre-foraging workers decreased foraging age. This represents the first known direct demonstration of primer pheromone activity derived from adult worker bees.

  12. Starvation stress during larval development reveals predictive adaptive response in adult worker honey bees (Apis mellifera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of organisms exhibit developmental plasticity that results in differences in adult morphology, physiology or behavior. This variation in the phenotype, called “Predictive Adaptive Response (PAR),” gives a selective advantage in an adult's environment if the adult experiences environments s...

  13. Caste-dependent sleep of worker honey bees.

    PubMed

    Klein, Barrett A; Olzsowy, Kathryn M; Klein, Arno; Saunders, Katharine M; Seeley, Thomas D

    2008-09-01

    Sleep is a dynamic phenomenon that changes throughout an organism's lifetime, relating to possible age- or task-associated changes in health, learning ability, vigilance and fitness. Sleep has been identified experimentally in many animals, including honey bees (Apis mellifera). As worker bees age they change castes, typically performing a sequence of different task sets (as 'cell cleaners', 'nurse bees', 'food storers' and 'foragers'). Belonging to a caste could differentially impact the duration, constitution and periodicity of a bee's sleep. We observed individually marked bees within observation hives to determine caste dependent patterns of sleep behavior. We conducted three studies to investigate the duration and periodicity of sleep when bees were outside comb cells, as well as duration of potential sleep when bees were immobile inside cells. All four worker castes we examined exhibited a sleep state. As bees aged and changed tasks, however, they spent more time and longer uninterrupted periods in a sleep state outside cells, but spent less time and shorter uninterrupted periods immobile inside cells. Although c cleaners and nurse bees exhibited no sleep:wake rhythmicity, food storers and foragers experienced a 24 h sleep:wake cycle, with more sleep and longer unbroken bouts of sleep during the night than during the day. If immobility within cells is an indicator of sleep, our study reveals that the youngest adult bees sleep the most, with all older castes sleeping the same amount. This in-cell potential sleep may compensate for what would otherwise indicate an exceptional increase of sleep in an aging animal. PMID:18775940

  14. Chronic Bee Paralysis Virus and Nosema ceranae Experimental Co-Infection of Winter Honey Bee Workers (Apis mellifera L.)

    PubMed Central

    Toplak, Ivan; Jamnikar Ciglenečki, Urška; Aronstein, Katherine; Gregorc, Aleš

    2013-01-01

    Chronic bee paralysis virus (CBPV) is an important viral disease of adult bees which induces significant losses in honey bee colonies. Despite comprehensive research, only limited data is available from experimental infection for this virus. In the present study winter worker bees were experimentally infected in three different experiments. Bees were first inoculated per os (p/o) or per cuticle (p/c) with CBPV field strain M92/2010 in order to evaluate the virus replication in individual bees. In addition, potential synergistic effects of co-infection with CBPV and Nosema ceranae (N. ceranae) on bees were investigated. In total 558 individual bees were inoculated in small cages and data were analyzed using quantitative real time RT-PCR (RT-qPCR). Our results revealed successful replication of CBPV after p/o inoculation, while it was less effective when bees were inoculated p/c. Dead bees harbored about 1,000 times higher copy numbers of the virus than live bees. Co-infection of workers with CBPV and N. ceranae using either method of virus inoculation (p/c or p/o) showed increased replication ability for CBPV. In the third experiment the effect of inoculation on bee mortality was evaluated. The highest level of bee mortality was observed in a group of bees inoculated with CBPV p/o, followed by a group of workers simultaneously inoculated with CBPV and N. ceranae p/o, followed by the group inoculated with CBPV p/c and the group with only N. ceranae p/o. The experimental infection with CBPV showed important differences after p/o or p/c inoculation in winter bees, while simultaneous infection with CBPV and N. ceranae suggesting a synergistic effect after inoculation. PMID:24056674

  15. Chronic bee paralysis virus and Nosema ceranae experimental co-infection of winter honey bee workers (Apis mellifera L.).

    PubMed

    Toplak, Ivan; Jamnikar Ciglenečki, Urška; Aronstein, Katherine; Gregorc, Aleš

    2013-09-01

    Chronic bee paralysis virus (CBPV) is an important viral disease of adult bees which induces significant losses in honey bee colonies. Despite comprehensive research, only limited data is available from experimental infection for this virus. In the present study winter worker bees were experimentally infected in three different experiments. Bees were first inoculated per os (p/o) or per cuticle (p/c) with CBPV field strain M92/2010 in order to evaluate the virus replication in individual bees. In addition, potential synergistic effects of co-infection with CBPV and Nosema ceranae (N. ceranae) on bees were investigated. In total 558 individual bees were inoculated in small cages and data were analyzed using quantitative real time RT-PCR (RT-qPCR). Our results revealed successful replication of CBPV after p/o inoculation, while it was less effective when bees were inoculated p/c. Dead bees harbored about 1,000 times higher copy numbers of the virus than live bees. Co-infection of workers with CBPV and N. ceranae using either method of virus inoculation (p/c or p/o) showed increased replication ability for CBPV. In the third experiment the effect of inoculation on bee mortality was evaluated. The highest level of bee mortality was observed in a group of bees inoculated with CBPV p/o, followed by a group of workers simultaneously inoculated with CBPV and N. ceranae p/o, followed by the group inoculated with CBPV p/c and the group with only N. ceranae p/o. The experimental infection with CBPV showed important differences after p/o or p/c inoculation in winter bees, while simultaneous infection with CBPV and N. ceranae suggesting a synergistic effect after inoculation.

  16. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure.

    PubMed

    Bernauer, Olivia M; Gaines-Day, Hannah R; Steffan, Shawn A

    2015-06-01

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  17. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure.

    PubMed

    Bernauer, Olivia M; Gaines-Day, Hannah R; Steffan, Shawn A

    2015-01-01

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems. PMID:26463198

  18. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure

    PubMed Central

    Bernauer, Olivia M.; Gaines-Day, Hannah R.; Steffan, Shawn A.

    2015-01-01

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems. PMID:26463198

  19. Distinctive Gut Microbiota of Honey Bees Assessed Using Deep Sampling from Individual Worker Bees

    PubMed Central

    Moran, Nancy A.; Hansen, Allison K.; Powell, J. Elijah; Sabree, Zakee L.

    2012-01-01

    Surveys of 16S rDNA sequences from the honey bee, Apis mellifera, have revealed the presence of eight distinctive bacterial phylotypes in intestinal tracts of adult worker bees. Because previous studies have been limited to relatively few sequences from samples pooled from multiple hosts, the extent of variation in this microbiota among individuals within and between colonies and locations has been unclear. We surveyed the gut microbiota of 40 individual workers from two sites, Arizona and Maryland USA, sampling four colonies per site. Universal primers were used to amplify regions of 16S ribosomal RNA genes, and amplicons were sequenced using 454 pyrotag methods, enabling analysis of about 330,000 bacterial reads. Over 99% of these sequences belonged to clusters for which the first blastn hits in GenBank were members of the known bee phylotypes. Four phylotypes, one within Gammaproteobacteria (corresponding to “Candidatus Gilliamella apicola”) one within Betaproteobacteria (“Candidatus Snodgrassella alvi”), and two within Lactobacillus, were present in every bee, though their frequencies varied. The same typical bacterial phylotypes were present in all colonies and at both sites. Community profiles differed significantly among colonies and between sites, mostly due to the presence in some Arizona colonies of two species of Enterobacteriaceae not retrieved previously from bees. Analysis of Sanger sequences of rRNA of the Snodgrassella and Gilliamella phylotypes revealed that single bees contain numerous distinct strains of each phylotype. Strains showed some differentiation between localities, especially for the Snodgrassella phylotype. PMID:22558460

  20. Social modulation of stress reactivity and learning in young worker honey bees.

    PubMed

    Urlacher, Elodie; Tarr, Ingrid S; Mercer, Alison R

    2014-01-01

    Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval.

  1. Social modulation of stress reactivity and learning in young worker honey bees.

    PubMed

    Urlacher, Elodie; Tarr, Ingrid S; Mercer, Alison R

    2014-01-01

    Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval. PMID:25470128

  2. Social Modulation of Stress Reactivity and Learning in Young Worker Honey Bees

    PubMed Central

    Mercer, Alison R.

    2014-01-01

    Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval. PMID:25470128

  3. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera

    PubMed Central

    Li, Zhiyong; Huang, Zachary Y.; Sharma, Dhruv B.; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Background Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. Methodology/Principal Findings We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. Conclusions/Significance We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices. PMID:26882104

  4. Egg viability and worker policing in honey bees.

    PubMed

    Pirk, Christian W W; Neumann, Peter; Hepburn, Randall; Moritz, Robin F A; Tautz, Jürgen

    2004-06-01

    In many species of social Hymenoptera, unmated workers can lay eggs that will produce males by parthenogenesis. Nevertheless, in queenright honey bee colonies (Apis mellifera), worker reproduction is low. One possible mechanism for this difference is worker policing, the removal of worker-laid eggs by other workers. This behavior can evolve in species in which queens are multiply mated, where workers are more closely related to the sons of their mother than those of their sisters. Another possible mechanism of the low level of worker reproduction is worker-laid eggs being less viable than queen-laid eggs. We show that this difference in quality is the case for honey bees.

  5. Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.).

    PubMed

    Rueppell, Olav; Bachelier, Cédric; Fondrk, M Kim; Page, Robert E

    2007-10-01

    Life expectancy of honey bees (Apis mellifera L.) is of general interest to gerontological research because its variability among different groups of bees is one of the most striking cases of natural plasticity of aging. Worker honey bees spend their first days of adult life working in the nest, then transition to foraging and die between 4 and 8 weeks of age. Foraging is believed to be primarily responsible for the early death of workers. Three large-scale experiments were performed to quantitatively assess the importance of flight activity, chronological age, extrinsic mortality factors and foraging specialization. Forager mortality was higher than in-hive bee mortality. Most importantly however, reducing the external mortality hazards and foraging activity did not lead to the expected strong extension of life. Most of the experimental effects were attributable to an earlier transition from hive tasks to foraging. This transition is accompanied by a significant mortality peak. The age at the onset of foraging is the central variable in worker life-history and behavioral state was found more important than chronological age for honey bee aging. However, mortality risk increased with age and the negative relation between pre-foraging and foraging lifespan indicate some senescence irrespective of behavioral state. Overall, honey bee workers exhibit a logistic mortality dynamic which is mainly caused by the age-dependent transition from a low mortality pre-foraging state to a higher mortality foraging state.

  6. Sub-Lethal Effects of Pesticide Residues in Brood Comb on Worker Honey Bee (Apis mellifera) Development and Longevity

    PubMed Central

    Wu, Judy Y.; Anelli, Carol M.; Sheppard, Walter S.

    2011-01-01

    Background Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. Methodology/Principal Findings Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment) or in relatively uncontaminated brood comb (control). Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8) of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. Conclusions/Significance This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor mites. The impact of

  7. Mapping Sleeping Bees within Their Nest: Spatial and Temporal Analysis of Worker Honey Bee Sleep

    PubMed Central

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns. PMID:25029445

  8. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    PubMed

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns. PMID:25029445

  9. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    PubMed

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.

  10. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers.

    PubMed

    Schwarz, Ryan S; Moran, Nancy A; Evans, Jay D

    2016-08-16

    Microbial symbionts living within animal guts are largely composed of resident bacterial species, forming communities that often provide benefits to the host. Gut microbiomes of adult honey bees (Apis mellifera) include core residents such as the betaproteobacterium Snodgrassella alvi, alongside transient parasites such as the protozoan Lotmaria passim To test how these species affect microbiome composition and host physiology, we administered S alvi and/or L passim inocula to newly emerged worker bees from four genetic backgrounds (GH) and reared them in normal (within hives) or stressed (protein-deficient, asocial) conditions. Microbiota acquired by normal bees were abundant but quantitatively differed across treatments, indicating treatment-associated dysbiosis. Pretreatment with S. alvi made normal bees more susceptible to L. passim and altered developmental and detoxification gene expression. Stressed bees were more susceptible to L. passim and were depauperate in core microbiota, yet supplementation with S. alvi did not alter this susceptibility. Microbiomes were generally more variable by GH in stressed bees, which also showed opposing and comparatively reduced modulation of gene expression responses to treatments compared with normal bees. These data provide experimental support for a link between altered gut microbiota and increased parasite and pathogen prevalence, as observed from honey bee colony collapse disorder. PMID:27482088

  11. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers.

    PubMed

    Schwarz, Ryan S; Moran, Nancy A; Evans, Jay D

    2016-08-16

    Microbial symbionts living within animal guts are largely composed of resident bacterial species, forming communities that often provide benefits to the host. Gut microbiomes of adult honey bees (Apis mellifera) include core residents such as the betaproteobacterium Snodgrassella alvi, alongside transient parasites such as the protozoan Lotmaria passim To test how these species affect microbiome composition and host physiology, we administered S alvi and/or L passim inocula to newly emerged worker bees from four genetic backgrounds (GH) and reared them in normal (within hives) or stressed (protein-deficient, asocial) conditions. Microbiota acquired by normal bees were abundant but quantitatively differed across treatments, indicating treatment-associated dysbiosis. Pretreatment with S. alvi made normal bees more susceptible to L. passim and altered developmental and detoxification gene expression. Stressed bees were more susceptible to L. passim and were depauperate in core microbiota, yet supplementation with S. alvi did not alter this susceptibility. Microbiomes were generally more variable by GH in stressed bees, which also showed opposing and comparatively reduced modulation of gene expression responses to treatments compared with normal bees. These data provide experimental support for a link between altered gut microbiota and increased parasite and pathogen prevalence, as observed from honey bee colony collapse disorder.

  12. Queens become workers: pesticides alter caste differentiation in bees.

    PubMed

    Dos Santos, Charles F; Acosta, André L; Dorneles, Andressa L; Dos Santos, Patrick D S; Blochtein, Betina

    2016-08-17

    Bees are important for the world biodiversity and economy because they provide key pollination services in forests and crops. However, pesticide use in crops has adversely affected (decreased) queen production because of increased mortality among larvae. Here, we demonstrated that in vitro-reared queens of a neotropical social bee species (Plebeia droryana) also showed high larval mortality after exposure to an organophosphate pesticide (chlorpyrifos) via larval food. Moreover, most of the surviving larvae that were destined to develop into queens became workers more likely because they ate less food than expected without pesticide skewing thus caste differentiation in this bee species. This adverse effect has not been previously reported for any other social insects, such as honeybees or bumblebees. Queens are essential for breeding and colony growth. Therefore, if our data are applicable to other pantropical social bee species across the globe, it is likely that these bees are at a serious risk of failure to form new colonies.

  13. Queens become workers: pesticides alter caste differentiation in bees

    PubMed Central

    dos Santos, Charles F.; Acosta, André L.; Dorneles, Andressa L.; dos Santos, Patrick D. S.; Blochtein, Betina

    2016-01-01

    Bees are important for the world biodiversity and economy because they provide key pollination services in forests and crops. However, pesticide use in crops has adversely affected (decreased) queen production because of increased mortality among larvae. Here, we demonstrated that in vitro-reared queens of a neotropical social bee species (Plebeia droryana) also showed high larval mortality after exposure to an organophosphate pesticide (chlorpyrifos) via larval food. Moreover, most of the surviving larvae that were destined to develop into queens became workers more likely because they ate less food than expected without pesticide skewing thus caste differentiation in this bee species. This adverse effect has not been previously reported for any other social insects, such as honeybees or bumblebees. Queens are essential for breeding and colony growth. Therefore, if our data are applicable to other pantropical social bee species across the globe, it is likely that these bees are at a serious risk of failure to form new colonies. PMID:27530246

  14. Queens become workers: pesticides alter caste differentiation in bees.

    PubMed

    Dos Santos, Charles F; Acosta, André L; Dorneles, Andressa L; Dos Santos, Patrick D S; Blochtein, Betina

    2016-01-01

    Bees are important for the world biodiversity and economy because they provide key pollination services in forests and crops. However, pesticide use in crops has adversely affected (decreased) queen production because of increased mortality among larvae. Here, we demonstrated that in vitro-reared queens of a neotropical social bee species (Plebeia droryana) also showed high larval mortality after exposure to an organophosphate pesticide (chlorpyrifos) via larval food. Moreover, most of the surviving larvae that were destined to develop into queens became workers more likely because they ate less food than expected without pesticide skewing thus caste differentiation in this bee species. This adverse effect has not been previously reported for any other social insects, such as honeybees or bumblebees. Queens are essential for breeding and colony growth. Therefore, if our data are applicable to other pantropical social bee species across the globe, it is likely that these bees are at a serious risk of failure to form new colonies. PMID:27530246

  15. Common and novel transcriptional routes to behavioral maturation in worker and male honey bees.

    PubMed

    Zayed, A; Naeger, N L; Rodriguez-Zas, S L; Robinson, G E

    2012-04-01

    Worker honey bees (Apis mellifera) undergo a process of behavioral maturation leading to their transition from in-hive tasks to foraging--a process which is associated with profound transcriptional changes in the brain. Changes in brain gene expression observed during worker behavioral maturation could represent either a derived program underlying division of labor or a general program unrelated to sociality. Male bees (drones) undergo a process of behavioral maturation associated with the onset of mating flights, but do not partake in division of labor. Drones thus provide an excellent reference point for polarizing transcriptional changes associated with behavioral maturation in honey bees. We assayed the brain transcriptomes of adult drones and workers to compare and contrast differences associated with behavioral maturation in the two sexes. Both behavioral maturation and sex were associated with changes in expression of thousands of genes in the brain. Many genes involved in neuronal development, behavior, and the biosynthesis of neurotransmitters regulating the perception of reward showed sex-biased gene expression. Furthermore, most of the transcriptional changes associated with behavioral maturation were common to drones and workers, consistent with common genetic and physiological regulation. Our study suggests that there is a common behavioral maturation program that has been co-opted and modified to yield the different behavioral and cognitive phenotypes of worker and drone bees.

  16. Physiology of reproductive worker honey bees (Apis mellifera): insights for the development of the worker caste.

    PubMed

    Peso, Marianne; Even, Naïla; Søvik, Eirik; Naeger, Nicholas L; Robinson, Gene E; Barron, Andrew B

    2016-02-01

    Reproductive and behavioural specialisations characterise advanced social insect societies. Typically, the honey bee (Apis mellifera) shows a pronounced reproductive division of labour between worker and queen castes, and a clear division of colony roles among workers. In a queenless condition, however, both of these aspects of social organisation break down. Queenless workers reproduce, forage and maintain their colony operating in a manner similar to communal bees, rather than as an advanced eusocial group. This plasticity in social organisation provides a natural experiment for exploring physiological mechanisms of division of labour. We measured brain biogenic amine (BA) levels and abdominal fat body vitellogenin gene expression levels of workers in queenright and queenless colonies. Age, ovary activation and social environment influenced brain BA levels in honey bees. BA levels were most influenced by ovary activation state in queenless bees. Vitellogenin expression levels were higher in queenless workers than queenright workers, but in both colony environments vitellogenin expression was lower in foragers than non-foragers. We propose this plasticity in the interacting signalling systems that influence both reproductive and behavioural development allows queenless workers to deviate significantly from the typical worker bee reaction norm and develop as reproductively active behavioural generalists.

  17. Physiology of reproductive worker honey bees (Apis mellifera): insights for the development of the worker caste.

    PubMed

    Peso, Marianne; Even, Naïla; Søvik, Eirik; Naeger, Nicholas L; Robinson, Gene E; Barron, Andrew B

    2016-02-01

    Reproductive and behavioural specialisations characterise advanced social insect societies. Typically, the honey bee (Apis mellifera) shows a pronounced reproductive division of labour between worker and queen castes, and a clear division of colony roles among workers. In a queenless condition, however, both of these aspects of social organisation break down. Queenless workers reproduce, forage and maintain their colony operating in a manner similar to communal bees, rather than as an advanced eusocial group. This plasticity in social organisation provides a natural experiment for exploring physiological mechanisms of division of labour. We measured brain biogenic amine (BA) levels and abdominal fat body vitellogenin gene expression levels of workers in queenright and queenless colonies. Age, ovary activation and social environment influenced brain BA levels in honey bees. BA levels were most influenced by ovary activation state in queenless bees. Vitellogenin expression levels were higher in queenless workers than queenright workers, but in both colony environments vitellogenin expression was lower in foragers than non-foragers. We propose this plasticity in the interacting signalling systems that influence both reproductive and behavioural development allows queenless workers to deviate significantly from the typical worker bee reaction norm and develop as reproductively active behavioural generalists. PMID:26715114

  18. Cytosine modifications in the honey bee (Apis mellifera) worker genome.

    PubMed

    Rasmussen, Erik M K; Amdam, Gro V

    2015-01-01

    Epigenetic changes enable genomes to respond to changes in the environment, such as altered nutrition, activity, or social setting. Epigenetic modifications, thereby, provide a source of phenotypic plasticity in many species. The honey bee (Apis mellifera) uses nutritionally sensitive epigenetic control mechanisms in the development of the royal caste (queens) and the workers. The workers are functionally sterile females that can take on a range of distinct physiological and/or behavioral phenotypes in response to environmental changes. Honey bees have a wide repertoire of epigenetic mechanisms which, as in mammals, include cytosine methylation, hydroxymethylated cytosines, together with the enzymatic machinery responsible for these cytosine modifications. Current data suggests that honey bees provide an excellent system for studying the "social repertoire" of the epigenome. In this review, we elucidate what is known so far about the honey bee epigenome and its mechanisms. Our discussion includes what may distinguish honey bees from other model animals, how the epigenome can influence worker behavioral task separation, and how future studies can answer central questions about the role of the epigenome in social behavior. PMID:25705215

  19. Starving honey bee (Apis mellifera) larvae signal pheromonally to worker bees

    PubMed Central

    He, Xu Jiang; Zhang, Xue Chuan; Jiang, Wu Jun; Barron, Andrew B.; Zhang, Jian Hui; Zeng, Zhi Jiang

    2016-01-01

    Cooperative brood care is diagnostic of animal societies. This is particularly true for the advanced social insects, and the honey bee is the best understood of the insect societies. A brood pheromone signaling the presence of larvae in a bee colony has been characterised and well studied, but here we explored whether honey bee larvae actively signal their food needs pheromonally to workers. We show that starving honey bee larvae signal to workers via increased production of the volatile pheromone E-β-ocimene. Analysis of volatile pheromones produced by food-deprived and fed larvae with gas chromatography-mass spectrometry showed that starving larvae produced more E-β-ocimene. Behavioural analyses showed that adding E-β-ocimene to empty cells increased the number of worker visits to those cells, and similarly adding E-β-ocimene to larvae increased worker visitation rate to the larvae. RNA-seq and qRT-PCR analysis identified 3 genes in the E-β-ocimene biosynthetic pathway that were upregulated in larvae following 30 minutes of starvation, and these genes also upregulated in 2-day old larvae compared to 4-day old larvae (2-day old larvae produce the most E-β-ocimene). This identifies a pheromonal mechanism by which brood can beg for food from workers to influence the allocation of resources within the colony. PMID:26924295

  20. Reproductive workers show queenlike gene expression in an intermediately eusocial insect, the buff-tailed bumble bee Bombus terrestris.

    PubMed

    Harrison, Mark C; Hammond, Robert L; Mallon, Eamonn B

    2015-06-01

    Bumble bees represent a taxon with an intermediate level of eusociality within Hymenoptera. The clear division of reproduction between a single founding queen and the largely sterile workers is characteristic for highly eusocial species, whereas the morphological similarity between the bumble bee queen and the workers is typical for more primitively eusocial hymenopterans. Also, unlike other highly eusocial hymenopterans, division of labour among worker subcastes is plastic and not predetermined by morphology or age. We conducted a differential expression analysis based on RNA-seq data from 11 combinations of developmental stage and caste to investigate how a single genome can produce the distinct castes of queens, workers and males in the buff-tailed bumble bee Bombus terrestris. Based on expression patterns, we found males to be the most distinct of all adult castes (2411 transcripts differentially expressed compared to nonreproductive workers). However, only relatively few transcripts were differentially expressed between males and workers during development (larvae: 71 and pupae: 162). This indicates the need for more distinct expression patterns to control behaviour and physiology in adults compared to those required to create different morphologies. Among female castes, reproductive workers and their nonreproductive sisters displayed differential expression in over ten times more transcripts compared to the differential expression found between reproductive workers and their mother queen. This suggests a strong shift towards a more queenlike behaviour and physiology when a worker becomes fertile. This contrasts with eusocial species where reproductive workers are more similar to nonreproductive workers than the queen.

  1. Exposure to cell phone radiations produces biochemical changes in worker honey bees.

    PubMed

    Kumar, Neelima R; Sangwan, Sonika; Badotra, Pooja

    2011-01-01

    The present study was carried out to find the effect of cell phone radiations on various biomolecules in the adult workers of Apis mellifera L. The results of the treated adults were analyzed and compared with the control. Radiation from the cell phone influences honey bees' behavior and physiology. There was reduced motor activity of the worker bees on the comb initially, followed by en masse migration and movement toward "talk mode" cell phone. The initial quiet period was characterized by rise in concentration of biomolecules including proteins, carbohydrates and lipids, perhaps due to stimulation of body mechanism to fight the stressful condition created by the radiations. At later stages of exposure, there was a slight decline in the concentration of biomolecules probably because the body had adapted to the stimulus.

  2. Reproduction of Varroa destructor in worker brood of Africanized honey bees (Apis mellifera).

    PubMed

    Medina, Luis Medina; Martin, Stephen J; Espinosa-Montaño, Laura; Ratnieks, Francis L W

    2002-01-01

    Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honey bee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 +/- 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 +/- 8.4%) and adult bees (3.5 +/- 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83-96%) than in AHB in Brazil (25-57%). and similar to that found in EHB (76-94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies.

  3. Notch signalling mediates reproductive constraint in the adult worker honeybee

    PubMed Central

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  4. Notch signalling mediates reproductive constraint in the adult worker honeybee.

    PubMed

    Duncan, Elizabeth J; Hyink, Otto; Dearden, Peter K

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  5. Field and semifield evaluation of impacts of transgenic canola pollen on survival and development of worker honey bees.

    PubMed

    Huang, Zachary Y; Hanley, Anne V; Pett, Walter L; Langenberger, Michael; Duan, Jian J

    2004-10-01

    A 2-yr field trial (2001 and 2002) and 1-yr semifield trial (2002) were conducted to evaluate the effect of transgenic herbicide (glyphosate) -tolerant canola Brassica napus L. pollen on larval and adult honey bee, Apis mellifera L., workers. In the field trial, colonies of honey bees were moved to transgenic or nontransgenic canola fields (each at least 40 hectares) during bloom and then sampled for larval survival and adult recovery, pupal weight, and hemolymph protein concentrations. No differences in larval survival, adult recovery, and pupal weight were detected between colonies placed in nontransgenic canola fields and those in transgenic canola fields. Colonies placed in the transgenic canola fields in the 2002 field experiment showed significantly higher hemolymph protein in newly emerged bees compared with those placed in nontransgenic canola field; however, this difference was not detected in the 2001 field experiment. In the semifield trial, bee larvae were artificially fed with bee-collected transgenic and nontransgenic canola pollen and returned to their original colonies. Larval survival, pupal survival, pupal weight, and hemolymph protein concentration of newly emerged adults were measured. There were no significant differences in any of the parameters measured between larvae that were fed transgenic canola pollen and those fed nontransgenic corn pollen. Results from this study suggest that transgenic canola pollen does not have adverse effects on honey bee development and that the use of transgenic canola dose not pose any threat to honey bees. PMID:15568338

  6. Juvenile hormone enhances aversive learning performance in 2-day old worker honey bees while reducing their attraction to queen mandibular pheromone.

    PubMed

    McQuillan, H James; Nakagawa, Shinichi; Mercer, Alison R

    2014-01-01

    Previous studies have shown that exposing young worker bees (Apis mellifera) to queen mandibular pheromone (QMP) reduces their aversive learning performance, while enhancing their attraction to QMP. As QMP has been found to reduce the rate of juvenile hormone (JH) synthesis in worker bees, we examined whether aversive learning in 2-day old workers exposed to QMP from the time of adult emergence could be improved by injecting JH (10 µg in a 2 µl volume) into the haemolymph. We examined in addition, the effects of JH treatment on worker attraction to QMP, and on the levels of expression of amine receptor genes in the antennae, as well as in the mushroom bodies of the brain. We found that memory acquisition and 1-hour memory recall were enhanced by JH. In contrast, JH treatment reduced the bees' attraction towards a synthetic strip impregnated with QMP (Bee Boost). Levels of expression of the dopamine receptor gene Amdop1 were significantly lower in the mushroom bodies of JH-treated bees than in bees treated with vehicle alone (acetone diluted with bee ringer). Expression of the octopamine receptor gene, Amoa1, in this brain region was also affected by JH treatment, and in the antennae, Amoa1 transcript levels were significantly lower in JH-treated bees compared to controls. The results of this study suggest that QMP's effects on JH synthesis may contribute to reducing aversive learning performance and enhancing attraction to QMP in young worker bees.

  7. Juvenile hormone enhances aversive learning performance in 2-day old worker honey bees while reducing their attraction to queen mandibular pheromone.

    PubMed

    McQuillan, H James; Nakagawa, Shinichi; Mercer, Alison R

    2014-01-01

    Previous studies have shown that exposing young worker bees (Apis mellifera) to queen mandibular pheromone (QMP) reduces their aversive learning performance, while enhancing their attraction to QMP. As QMP has been found to reduce the rate of juvenile hormone (JH) synthesis in worker bees, we examined whether aversive learning in 2-day old workers exposed to QMP from the time of adult emergence could be improved by injecting JH (10 µg in a 2 µl volume) into the haemolymph. We examined in addition, the effects of JH treatment on worker attraction to QMP, and on the levels of expression of amine receptor genes in the antennae, as well as in the mushroom bodies of the brain. We found that memory acquisition and 1-hour memory recall were enhanced by JH. In contrast, JH treatment reduced the bees' attraction towards a synthetic strip impregnated with QMP (Bee Boost). Levels of expression of the dopamine receptor gene Amdop1 were significantly lower in the mushroom bodies of JH-treated bees than in bees treated with vehicle alone (acetone diluted with bee ringer). Expression of the octopamine receptor gene, Amoa1, in this brain region was also affected by JH treatment, and in the antennae, Amoa1 transcript levels were significantly lower in JH-treated bees compared to controls. The results of this study suggest that QMP's effects on JH synthesis may contribute to reducing aversive learning performance and enhancing attraction to QMP in young worker bees. PMID:25390885

  8. Learning and memory in workers reared by nutritionally stressed honey bee (Apis mellifera L.) colonies.

    PubMed

    Mattila, Heather R; Smith, Brian H

    2008-12-15

    Chronic nutritional stress can have a negative impact on an individual's learning ability and memory. However, in social animals that share food among group members, such as the honey bee (Apis mellifera L.), it is unknown whether group-level nutritional stress is manifested in the learning performance of individuals. Accordingly, we examined learning and memory in honey bee workers reared by colonies exposed to varying degrees of long-term pollen stress. Pollen provides honey bee workers with almost all of the proteins, lipids, vitamins, and minerals that they require as larvae and adults. Colonies were created that were either chronically pollen poor or pollen rich, or were intermediate in pollen supply; treatments altered colonies' pollen stores and brood-rearing capacity. Workers from these colonies were put through a series of olfactory-conditioning assays using proboscis-extension response (PER). PER thresholds were determined, then workers learned in olfactory-conditioning trials to associate two floral odors (one novel and the other presented previously without reward) with stimulation with sucrose and a sucrose reward. The strength of the memory that was formed for the odor/sucrose association was tested after olfactory-conditioning assays ended. Colony-level nutritional status had no effect on worker learning or memory (response threshold of workers to sucrose, acquisition of the odor/sucrose association, occurrence of latent inhibition, or memory retention over 72 h). We conclude that potential effects of chronic, colony-wide nutrient deprivation on learning and memory are not found in workers, probably because colonies use brood-rearing capacity to buffer nutrient stress at the level of the individual.

  9. Learning and memory in workers reared by nutritionally stressed honey bee (Apis mellifera L.) colonies.

    PubMed

    Mattila, Heather R; Smith, Brian H

    2008-12-15

    Chronic nutritional stress can have a negative impact on an individual's learning ability and memory. However, in social animals that share food among group members, such as the honey bee (Apis mellifera L.), it is unknown whether group-level nutritional stress is manifested in the learning performance of individuals. Accordingly, we examined learning and memory in honey bee workers reared by colonies exposed to varying degrees of long-term pollen stress. Pollen provides honey bee workers with almost all of the proteins, lipids, vitamins, and minerals that they require as larvae and adults. Colonies were created that were either chronically pollen poor or pollen rich, or were intermediate in pollen supply; treatments altered colonies' pollen stores and brood-rearing capacity. Workers from these colonies were put through a series of olfactory-conditioning assays using proboscis-extension response (PER). PER thresholds were determined, then workers learned in olfactory-conditioning trials to associate two floral odors (one novel and the other presented previously without reward) with stimulation with sucrose and a sucrose reward. The strength of the memory that was formed for the odor/sucrose association was tested after olfactory-conditioning assays ended. Colony-level nutritional status had no effect on worker learning or memory (response threshold of workers to sucrose, acquisition of the odor/sucrose association, occurrence of latent inhibition, or memory retention over 72 h). We conclude that potential effects of chronic, colony-wide nutrient deprivation on learning and memory are not found in workers, probably because colonies use brood-rearing capacity to buffer nutrient stress at the level of the individual. PMID:18761030

  10. Molecular genetic analysis of Varroa destructor mites in brood, fallen injured mites and worker bee longevity in honey bees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two important traits that contribute to honey bee (Apis mellifera) colony survival are resistance to Varroa destructor and longevity of worker bees. We investigated the relationship between a panel of single nucleotide polymorphism (SNP) markers and three phenotypic measurements of colonies: a) perc...

  11. A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults.

    PubMed

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C

    2015-01-01

    Xenobiotics such as the neonicotinoid pesticide, imidacloprid, are used globally, but their effects on native bee species are poorly understood. We studied the effects of sublethal doses of imidacloprid on olfactory learning in the native honey bee species, Apis cerana, an important pollinator of agricultural and native plants throughout Asia. We provide the first evidence that imidacloprid can impair learning in A. cerana workers exposed as adults or as larvae. Adults that ingested a single imidacloprid dose as low as 0.1 ng/bee had significantly reduced olfactory learning acquisition, which was 1.6-fold higher in control bees. Longer-term learning (1-17 h after the last learning trial) was also impaired. Bees exposed as larvae to a total dose of 0.24 ng/bee did not have reduced survival to adulthood. However, these larval-treated bees had significantly impaired olfactory learning when tested as adults: control bees exhibited up to 4.8-fold better short-term learning acquisition, though longer-term learning was not affected. Thus, sublethal cognitive deficits elicited by neonicotinoids on a broad range of native bee species deserve further study. PMID:26086769

  12. A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults.

    PubMed

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C

    2015-06-18

    Xenobiotics such as the neonicotinoid pesticide, imidacloprid, are used globally, but their effects on native bee species are poorly understood. We studied the effects of sublethal doses of imidacloprid on olfactory learning in the native honey bee species, Apis cerana, an important pollinator of agricultural and native plants throughout Asia. We provide the first evidence that imidacloprid can impair learning in A. cerana workers exposed as adults or as larvae. Adults that ingested a single imidacloprid dose as low as 0.1 ng/bee had significantly reduced olfactory learning acquisition, which was 1.6-fold higher in control bees. Longer-term learning (1-17 h after the last learning trial) was also impaired. Bees exposed as larvae to a total dose of 0.24 ng/bee did not have reduced survival to adulthood. However, these larval-treated bees had significantly impaired olfactory learning when tested as adults: control bees exhibited up to 4.8-fold better short-term learning acquisition, though longer-term learning was not affected. Thus, sublethal cognitive deficits elicited by neonicotinoids on a broad range of native bee species deserve further study.

  13. A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults

    PubMed Central

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2015-01-01

    Xenobiotics such as the neonicotinoid pesticide, imidacloprid, are used globally, but their effects on native bee species are poorly understood. We studied the effects of sublethal doses of imidacloprid on olfactory learning in the native honey bee species, Apis cerana, an important pollinator of agricultural and native plants throughout Asia. We provide the first evidence that imidacloprid can impair learning in A. cerana workers exposed as adults or as larvae. Adults that ingested a single imidacloprid dose as low as 0.1 ng/bee had significantly reduced olfactory learning acquisition, which was 1.6-fold higher in control bees. Longer-term learning (1-17 h after the last learning trial) was also impaired. Bees exposed as larvae to a total dose of 0.24 ng/bee did not have reduced survival to adulthood. However, these larval-treated bees had significantly impaired olfactory learning when tested as adults: control bees exhibited up to 4.8-fold better short-term learning acquisition, though longer-term learning was not affected. Thus, sublethal cognitive deficits elicited by neonicotinoids on a broad range of native bee species deserve further study. PMID:26086769

  14. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees.

    PubMed

    Maxfield-Taylor, Sarah A; Mujic, Alija B; Rao, Sujaya

    2015-01-01

    Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen.

  15. First Detection of the Larval Chalkbrood Disease Pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in Adult Bumble Bees

    PubMed Central

    Maxfield-Taylor, Sarah A.; Mujic, Alija B.; Rao, Sujaya

    2015-01-01

    Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen. PMID:25885679

  16. Larval and nurse worker control of developmental plasticity and the evolution of honey bee queen-worker dimorphism.

    PubMed

    Linksvayer, T A; Kaftanoglu, O; Akyol, E; Blatch, S; Amdam, G V; Page, R E

    2011-09-01

    Social evolution in honey bees has produced strong queen-worker dimorphism for plastic traits that depend on larval nutrition. The honey bee developmental programme includes both larval components that determine plastic growth responses to larval nutrition and nurse components that regulate larval nutrition. We studied how these two components contribute to variation in worker and queen body size and ovary size for two pairs of honey bee lineages that show similar differences in worker body-ovary size allometry but have diverged over different evolutionary timescales. Our results indicate that the lineages have diverged for both nurse and larval developmental components, that rapid changes in worker body-ovary size allometry may disrupt queen development and that queen-worker dimorphism arises mainly from discrete nurse-provided nutritional environments, not from a developmental switch that converts variable nutritional environments into discrete phenotypes. Both larval and nurse components have likely contributed to the evolution of queen-worker dimorphism.

  17. Programmed Cell Death in the Honey Bee (Apis mellifera) (Hymenoptera: Apidae) Worker Brain Induced by Imidacloprid.

    PubMed

    Wu, Yan-Yan; Zhou, Ting; Wang, Qiang; Dai, Ping-Li; Xu, Shu-Fa; Jia, Hui-Ru; Wang, Xing

    2015-08-01

    Honey bees are at an unavoidable risk of exposure to neonicotinoid pesticides, which are used worldwide. Compared with the well-studied roles of these pesticides in nontarget site (including midgut, ovary, or salivary glands), little has been reported in the target sites, the brain. In the current study, laboratory-reared adult worker honey bees (Apis mellifera L.) were treated with sublethal doses of imidacloprid. Neuronal apoptosis was detected using the TUNEL technique for DNA labeling. We observed significantly increased apoptotic markers in dose- and time-dependent manners in brains of bees exposed to imidacloprid. Neuronal activated caspase-3 and mRNA levels of caspase-1, as detected by immunofluorescence and real-time quantitative PCR, respectively, were significantly increased, suggesting that sublethal doses of imidacloprid may induce the caspase-dependent apoptotic pathway. Additionally, the overlap of apoptosis and autophagy in neurons was confirmed by transmission electron microscopy. It further suggests that a relationship exists between neurotoxicity and behavioral changes induced by sublethal doses of imidacloprid, and that there is a need to determine reasonable limits for imidacloprid application in the field to protect pollinators. PMID:26470287

  18. Programmed Cell Death in the Honey Bee (Apis mellifera) (Hymenoptera: Apidae) Worker Brain Induced by Imidacloprid.

    PubMed

    Wu, Yan-Yan; Zhou, Ting; Wang, Qiang; Dai, Ping-Li; Xu, Shu-Fa; Jia, Hui-Ru; Wang, Xing

    2015-08-01

    Honey bees are at an unavoidable risk of exposure to neonicotinoid pesticides, which are used worldwide. Compared with the well-studied roles of these pesticides in nontarget site (including midgut, ovary, or salivary glands), little has been reported in the target sites, the brain. In the current study, laboratory-reared adult worker honey bees (Apis mellifera L.) were treated with sublethal doses of imidacloprid. Neuronal apoptosis was detected using the TUNEL technique for DNA labeling. We observed significantly increased apoptotic markers in dose- and time-dependent manners in brains of bees exposed to imidacloprid. Neuronal activated caspase-3 and mRNA levels of caspase-1, as detected by immunofluorescence and real-time quantitative PCR, respectively, were significantly increased, suggesting that sublethal doses of imidacloprid may induce the caspase-dependent apoptotic pathway. Additionally, the overlap of apoptosis and autophagy in neurons was confirmed by transmission electron microscopy. It further suggests that a relationship exists between neurotoxicity and behavioral changes induced by sublethal doses of imidacloprid, and that there is a need to determine reasonable limits for imidacloprid application in the field to protect pollinators.

  19. Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae).

    PubMed

    Basualdo, M; Barragán, S; Vanagas, L; García, C; Solana, H; Rodríguez, E; Bedascarrasbure, E

    2013-08-01

    Adequate protein levels are necessary to maintain strong honey bee [Apis mellifera (L.)] colonies. The aim of this study was to quantify how pollens with different crude protein contents influence protein stores within individual honey bees. Caged bees were fed one of three diets, consisting of high-protein-content pollen, low-protein-content pollen, or protein-free diet as control; measurements were made based on protein content in hemolymph and fat body, fat body weight, and body weight. Vitellogenin in hemolymph was also measured. Bees fed with high crude protein diet had significantly higher levels of protein in hemolymph and fat bodies. Caged bees did not increase pollen consumption to compensate for the lower protein in the diet, and ingesting approximately 4 mg of protein per bee could achieve levels of 20 microg/microl protein in hemolymph. Worker bees fed with low crude protein diet took more time in reaching similar protein content of the bees that were fed with high crude protein diet. The data showed that fat bodies and body weight were not efficient methods of measuring the protein status of bees. The determination of total protein or vitellogenin concentration in the hemolymph from 13-d-old bees and protein concentration of fat bodies from 9-d-old bees could be good indicators of nutritional status of honey bees. PMID:24020265

  20. Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae).

    PubMed

    Basualdo, M; Barragán, S; Vanagas, L; García, C; Solana, H; Rodríguez, E; Bedascarrasbure, E

    2013-08-01

    Adequate protein levels are necessary to maintain strong honey bee [Apis mellifera (L.)] colonies. The aim of this study was to quantify how pollens with different crude protein contents influence protein stores within individual honey bees. Caged bees were fed one of three diets, consisting of high-protein-content pollen, low-protein-content pollen, or protein-free diet as control; measurements were made based on protein content in hemolymph and fat body, fat body weight, and body weight. Vitellogenin in hemolymph was also measured. Bees fed with high crude protein diet had significantly higher levels of protein in hemolymph and fat bodies. Caged bees did not increase pollen consumption to compensate for the lower protein in the diet, and ingesting approximately 4 mg of protein per bee could achieve levels of 20 microg/microl protein in hemolymph. Worker bees fed with low crude protein diet took more time in reaching similar protein content of the bees that were fed with high crude protein diet. The data showed that fat bodies and body weight were not efficient methods of measuring the protein status of bees. The determination of total protein or vitellogenin concentration in the hemolymph from 13-d-old bees and protein concentration of fat bodies from 9-d-old bees could be good indicators of nutritional status of honey bees.

  1. Peritrophic membrane origin in adult bees (Hymenoptera): immunolocalization.

    PubMed

    Teixeira, Aparecida das Dores; Marques-Araújo, Solange; Zanuncio, José Cola; Serrão, José Eduado

    2015-01-01

    The midgut is a region of the digestive tract of bees with the lumen lined by a peritrophic membrane that is composed of chitin and proteins (peritrophins). The origin of the peritrophins in the midgut of adult bees is unknown. This study used an anti-peritrophin 55-kDa antibody to immunolocalize the sites of the peritrophic membrane synthesis in nine species of adult bees' representatives of different families and sociability levels. In all studied species the peritrophin-55 is produced by digestive cells in the entire midgut in the rough endoplasmic reticulum following transference to Golgi apparatus and released by secretory vesicles, which fuses with the plasma membrane and microvilli. Thus, in the representatives of different groups of bees, the PM is of type I.

  2. Differential gene expression in queen–worker caste determination in bumble-bees

    PubMed Central

    Pereboom, Jeffrey J. M; Jordan, William C; Sumner, Seirian; Hammond, Robert L; Bourke, Andrew F. G

    2005-01-01

    Investigating how differential gene expression underlies caste determination in the social Hymenoptera is central to understanding how variation in gene expression underlies adaptive phenotypic diversity. We investigated for the first time the association between differential gene expression and queen–worker caste determination in the bumble-bee Bombus terrestris. Using suppression subtractive hybridization we isolated 12 genes that were differentially expressed in queen- and worker-destined larvae. We found that the sets of genes underlying caste differences in larvae and adults failed to overlap greatly. We also found that B. terrestris shares some of the genes whose differential expression is associated with caste determination in the honeybee, Apis mellifera, but their expression patterns were not identical. Instead, we found B. terrestris to exhibit a novel pattern, whereby most genes upregulated (i.e. showing relatively higher levels of expression) in queen-destined larvae early in development were upregulated in worker-destined larvae late in development. Overall, our results suggest that caste determination in B. terrestris involves a difference not so much in the identity of genes expressed by queen- and worker-destined larvae, but primarily in the relative timing of their expression. This conclusion is of potential importance in the further study of phenotypic diversification via differential gene expression. PMID:16024376

  3. Spray Toxicity and Risk Potential of 42 Commonly Used Formulations of Row Crop Pesticides to Adult Honey Bees (Hymenoptera: Apidae).

    PubMed

    Zhu, Yu Cheng; Adamczyk, John; Rinderer, Thomas; Yao, Jianxiu; Danka, Robert; Luttrell, Randall; Gore, Jeff

    2015-12-01

    To combat an increasing abundance of sucking insect pests, >40 pesticides are currently recommended and frequently used as foliar sprays on row crops, especially cotton. Foraging honey bees may be killed when they are directly exposed to foliar sprays, or they may take contaminated pollen back to hives that maybe toxic to other adult bees and larvae. To assess acute toxicity against the honey bee, we used a modified spray tower to simulate field spray conditions to include direct whole-body exposure, inhalation, and continuing tarsal contact and oral licking after a field spray. A total of 42 formulated pesticides, including one herbicide and one fungicide, were assayed for acute spray toxicity to 4-6-d-old workers. Results showed significantly variable toxicities among pesticides, with LC50s ranging from 25 to thousands of mg/liter. Further risk assessment using the field application concentration to LC1 or LC99 ratios revealed the risk potential of the 42 pesticides. Three pesticides killed less than 1% of the worker bees, including the herbicide, a miticide, and a neonicotinoid. Twenty-six insecticides killed more than 99% of the bees, including commonly used organophosphates and neonicotinoids. The remainder of the 13 chemicals killed from 1-99% of the bees at field application rates. This study reveals a realistic acute toxicity of 42 commonly used foliar pesticides. The information is valuable for guiding insecticide selection to minimize direct killing of foraging honey bees, while maintaining effective control of field crop pests. PMID:26352753

  4. Spray Toxicity and Risk Potential of 42 Commonly Used Formulations of Row Crop Pesticides to Adult Honey Bees (Hymenoptera: Apidae).

    PubMed

    Zhu, Yu Cheng; Adamczyk, John; Rinderer, Thomas; Yao, Jianxiu; Danka, Robert; Luttrell, Randall; Gore, Jeff

    2015-12-01

    To combat an increasing abundance of sucking insect pests, >40 pesticides are currently recommended and frequently used as foliar sprays on row crops, especially cotton. Foraging honey bees may be killed when they are directly exposed to foliar sprays, or they may take contaminated pollen back to hives that maybe toxic to other adult bees and larvae. To assess acute toxicity against the honey bee, we used a modified spray tower to simulate field spray conditions to include direct whole-body exposure, inhalation, and continuing tarsal contact and oral licking after a field spray. A total of 42 formulated pesticides, including one herbicide and one fungicide, were assayed for acute spray toxicity to 4-6-d-old workers. Results showed significantly variable toxicities among pesticides, with LC50s ranging from 25 to thousands of mg/liter. Further risk assessment using the field application concentration to LC1 or LC99 ratios revealed the risk potential of the 42 pesticides. Three pesticides killed less than 1% of the worker bees, including the herbicide, a miticide, and a neonicotinoid. Twenty-six insecticides killed more than 99% of the bees, including commonly used organophosphates and neonicotinoids. The remainder of the 13 chemicals killed from 1-99% of the bees at field application rates. This study reveals a realistic acute toxicity of 42 commonly used foliar pesticides. The information is valuable for guiding insecticide selection to minimize direct killing of foraging honey bees, while maintaining effective control of field crop pests.

  5. Fungicide tests on adult alfalfa leafcutting bees (Hymenoptera: Megachilidae).

    PubMed

    Huntzinger, C I; James, R R; Bosch, J; Kemp, W P

    2008-08-01

    Chalkbrood is a serious disease of alfalfa leafcutting bee Megachile rotundata (F.) (Hymenoptera: Megachilidae) larvae, causing upward of 20% infection in the field. The causative agent is the fungus Ascosphaera aggregata. This bee is used extensively for alfalfa seed pollination in the United States. Using laboratory bioassays, we previously demonstrated that fungicides can reduce chalkbrood levels in the larvae. Here, we evaluate the toxicity of four fungicides, Benlate, Captan, Orbit, and Rovral, to adult bees by using three different bioassays. In the first test, fungicides were applied to bees' thoraces. In the second test, mimicking foliage residue, a piece of filter paper soaked in fungicide was placed on the bottom of a container of bees. The third test evaluated oral toxicity by incorporating fungicides into a sugar-water solution that was fed to the bees. The filter paper test did not discriminate among the fungicides well, and the oral test resulted in the greatest mortality. Toxicity to males was greater than to females. The use of fungicides for chalkbrood control is a logical choice, but caution should be used in how they are applied in the presence of bees. PMID:18767714

  6. Hemolymph juvenile hormone titers in worker honey bees under normal and preswarming conditions.

    PubMed

    Zeng, Zhijiang; Huang, Zachary Y; Qin, Yuchuan; Pang, Huizhong

    2005-04-01

    Swarming is an important mechanism by which honey bee, Apis mellifera L., colonies reproduce, yet very little is known about the physiological changes in workers that are preparing to swarm. In this study, we determined the endocrine status of worker honey bees in preswarming colonies and in normal (nonswarming) colonies. Juvenile hormone (JH) titers in worker bees were similar in both groups before queen cells were present, but they became significantly lower in preswarming colonies compared with normal colonies when queen cells occurred in preswarming colonies. The lower JH titers in the preswarming colonies suggest that behavioral development is delayed in these colonies, consistent with previous reports that preswarming colonies have reduced foraging activities. Understanding the endocrine status of bees preparing for swarming will help us to better understand the biology of swarming. PMID:15889713

  7. Pheromonal regulation of starvation resistance in honey bee workers ( Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Fischer, Patrick; Grozinger, Christina M.

    2008-08-01

    Most animals can modulate nutrient storage pathways according to changing environmental conditions, but in honey bees nutrient storage is also modulated according to changing behavioral tasks within a colony. Specifically, bees involved in brood care (nurses) have higher lipid stores in their abdominal fat bodies than forager bees. Pheromone communication plays an important role in regulating honey bee behavior and physiology. In particular, queen mandibular pheromone (QMP) slows the transition from nursing to foraging. We tested the effects of QMP exposure on starvation resistance, lipid storage, and gene expression in the fat bodies of worker bees. We found that indeed QMP-treated bees survived much longer compared to control bees when starved and also had higher lipid levels. Expression of vitellogenin RNA, which encodes a yolk protein that is found at higher levels in nurses than foragers, was also higher in the fat bodies of QMP-treated bees. No differences were observed in expression of genes involved in insulin signaling pathways, which are associated with nutrient storage and metabolism in a variety of species; thus, other mechanisms may be involved in increasing the lipid stores. These studies demonstrate that pheromone exposure can modify nutrient storage pathways and fat body gene expression in honey bees and suggest that chemical communication and social interactions play an important role in altering metabolic pathways.

  8. Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (Apis mellifera).

    PubMed

    Feazel-Orr, Haley K; Catalfamo, Katelyn M; Brewster, Carlyle C; Fell, Richard D; Anderson, Troy D; Traver, Brenna E

    2016-01-01

    Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B(®), and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer) over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies. PMID:26938563

  9. Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (Apis mellifera)

    PubMed Central

    Feazel-Orr, Haley K.; Catalfamo, Katelyn M.; Brewster, Carlyle C.; Fell, Richard D.; Anderson, Troy D.; Traver, Brenna E.

    2016-01-01

    Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B®, and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer) over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies. PMID:26938563

  10. Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (Apis mellifera).

    PubMed

    Feazel-Orr, Haley K; Catalfamo, Katelyn M; Brewster, Carlyle C; Fell, Richard D; Anderson, Troy D; Traver, Brenna E

    2016-03-01

    Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B(®), and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer) over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies.

  11. The colony environment modulates sleep in honey bee workers.

    PubMed

    Eban-Rothschild, Ada; Bloch, Guy

    2015-02-01

    One of the most important and evolutionarily conserved roles of sleep is the processing and consolidation of information acquired during wakefulness. In both insects and mammals, environmental and social stimuli can modify sleep physiology and behavior, yet relatively little is known about the specifics of the wake experiences and their relative contribution to experience-dependent modulation of sleep. Honey bees provide an excellent model system in this regard because their behavioral repertoire is well characterized and the environment they experience during the day can be manipulated while keeping an ecologically and sociobiologically relevant context. We examined whether social experience modulates sleep in honey bees, and evaluated the relative contribution of different social signals. We exposed newly emerged bees to different components of their natural social environment and then monitored their sleep behavior in individual cages in a constant lab environment. We found that rich waking experience modulates subsequent sleep. Bees that experienced the colony environment for 1 or 2 days slept more than same-age sister bees that were caged individually or in small groups in the lab. Furthermore, bees placed in mesh-enclosures in the colony, that prevented direct contact with nestmates, slept similarly to bees freely moving in the colony. These results suggest that social signals that do not require direct or close distance interactions between bees are sufficiently rich to encompass almost the entire effect of the colony on sleep. Our findings provide a remarkable example of social experience-dependent modulation of an essential biological process. PMID:25524987

  12. Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees.

    PubMed

    Wang, Qing; Xu, Xinjian; Zhu, Xiangjie; Chen, Lin; Zhou, Shujing; Huang, Zachary Y; Zhou, Bingfeng

    2016-01-01

    Honey bees (Apis mellifera) are key pollinators, playing a vital role in ecosystem maintenance and stability of crop yields. Recently, reduced honey bee survival has attracted intensive attention. Among all other honey bee stresses, temperature is a fundamental ecological factor that has been shown to affect honey bee survival. Yet, the impact of low temperature stress during capped brood on brood mortality has not been systematically investigated. In addition, little was known about how low temperature exposure during capped brood affects subsequent adult longevity. In this study, capped worker broods at 12 different developmental stages were exposed to 20°C for 12, 24, 36, 48, 60, 72, 84 and 96 hours, followed by incubation at 35°C until emergence. We found that longer durations of low temperature during capped brood led to higher mortality, higher incidences of misorientation inside cells and shorter worker longevity. Capped brood as prepupae and near emergence were more sensitive to low-temperature exposure, while capped larvae and mid-pupal stages showed the highest resistance to low-temperature stress. Our results suggest that prepupae and pupae prior to eclosion are the most sensitive stages to low temperature stress, as they are to other stresses, presumably due to many physiological changes related to metamorphosis happening during these two stages. Understanding how low-temperature stress affects honey bee physiology and longevity can improve honey bee management strategies. PMID:27149383

  13. Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees

    PubMed Central

    Wang, Qing; Xu, Xinjian; Zhu, Xiangjie; Chen, Lin; Zhou, Shujing; Huang, Zachary Y.; Zhou, Bingfeng

    2016-01-01

    Honey bees (Apis mellifera) are key pollinators, playing a vital role in ecosystem maintenance and stability of crop yields. Recently, reduced honey bee survival has attracted intensive attention. Among all other honey bee stresses, temperature is a fundamental ecological factor that has been shown to affect honey bee survival. Yet, the impact of low temperature stress during capped brood on brood mortality has not been systematically investigated. In addition, little was known about how low temperature exposure during capped brood affects subsequent adult longevity. In this study, capped worker broods at 12 different developmental stages were exposed to 20°C for 12, 24, 36, 48, 60, 72, 84 and 96 hours, followed by incubation at 35°C until emergence. We found that longer durations of low temperature during capped brood led to higher mortality, higher incidences of misorientation inside cells and shorter worker longevity. Capped brood as prepupae and near emergence were more sensitive to low-temperature exposure, while capped larvae and mid-pupal stages showed the highest resistance to low-temperature stress. Our results suggest that prepupae and pupae prior to eclosion are the most sensitive stages to low temperature stress, as they are to other stresses, presumably due to many physiological changes related to metamorphosis happening during these two stages. Understanding how low-temperature stress affects honey bee physiology and longevity can improve honey bee management strategies. PMID:27149383

  14. Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees.

    PubMed

    Wang, Qing; Xu, Xinjian; Zhu, Xiangjie; Chen, Lin; Zhou, Shujing; Huang, Zachary Y; Zhou, Bingfeng

    2016-01-01

    Honey bees (Apis mellifera) are key pollinators, playing a vital role in ecosystem maintenance and stability of crop yields. Recently, reduced honey bee survival has attracted intensive attention. Among all other honey bee stresses, temperature is a fundamental ecological factor that has been shown to affect honey bee survival. Yet, the impact of low temperature stress during capped brood on brood mortality has not been systematically investigated. In addition, little was known about how low temperature exposure during capped brood affects subsequent adult longevity. In this study, capped worker broods at 12 different developmental stages were exposed to 20°C for 12, 24, 36, 48, 60, 72, 84 and 96 hours, followed by incubation at 35°C until emergence. We found that longer durations of low temperature during capped brood led to higher mortality, higher incidences of misorientation inside cells and shorter worker longevity. Capped brood as prepupae and near emergence were more sensitive to low-temperature exposure, while capped larvae and mid-pupal stages showed the highest resistance to low-temperature stress. Our results suggest that prepupae and pupae prior to eclosion are the most sensitive stages to low temperature stress, as they are to other stresses, presumably due to many physiological changes related to metamorphosis happening during these two stages. Understanding how low-temperature stress affects honey bee physiology and longevity can improve honey bee management strategies.

  15. Adult pollen diet essential for egg maturation by a solitary osmia bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reproduction is a nutritionally costly activity for many insects, as their eggs are rich in lipids and proteins. Non-social bees lay especially large eggs. Adult female bees visit flowers to collect pollen and nectar, or sometimes oils, to feed their progeny. For adult bees, benefits of pollen feedi...

  16. Low temperature stress during pupal development and its effects on adult performance in alfalfa leafcutting bees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Megachile rotundata, commonly known as the alfalfa leafcutting bee, is a key alternative pollinator. Farmers store pupal M. rotundata over the winter inside a 6°C incubator and then place the pupal bees into incubators at 29°C to initiate adult development. Their goal is to time adult bee emergenc...

  17. Reproduction of Varroa destructor and offspring mortality in worker and drone brood cells of Africanized honey bees.

    PubMed

    Calderón, R A; Ureña, S; van Veen, J W

    2012-04-01

    Varroa destructor is known to be the most serious parasite of Apis mellifera worldwide. In order to reproduce varroa females enter worker or drone brood shortly before the cell is sealed. From March to December 2008, the reproductive rate and offspring mortality (mature and immature stages), focusing on male absence and male mortality of V. destructor, was investigated in naturally infested worker and drone brood of Africanized honey bees (AHB) in Costa Rica. Data were obtained from 388 to 403 single infested worker and drone brood cells, respectively. Mite fertility in worker and drone brood cells was 88.9 and 93.1%, respectively. There was no difference between the groups (X(2) = 3.6, P = 0.06). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring in drone cells (64.8%) compared to worker cells (37.6%) (X(2) = 57.2, P < 0.05). A greater proportion of mites in worker brood cells produced non-viable female offspring. Mite offspring mortality in both worker and drone cells was high in the protonymph stage (mobile and immobile). A significant finding was the high rate of male mortality. The worker and drone brood revealed that 23.9 and 6.9%, respectively, of the adult male offspring was found dead. If the absence (missing) of the male and adult male mortality are taken together the percentage of cells increased to 40.0 and 21.3% in worker and drone cells, respectively (X(2) = 28.8, P < 0.05). The absence of the male or male mortality in a considerable number of worker cells naturally infested with varroa is the major factor in our study which reduces the production of viable daughters in AHB colonies in Costa Rica. PMID:22270116

  18. Reproduction of Varroa destructor and offspring mortality in worker and drone brood cells of Africanized honey bees.

    PubMed

    Calderón, R A; Ureña, S; van Veen, J W

    2012-04-01

    Varroa destructor is known to be the most serious parasite of Apis mellifera worldwide. In order to reproduce varroa females enter worker or drone brood shortly before the cell is sealed. From March to December 2008, the reproductive rate and offspring mortality (mature and immature stages), focusing on male absence and male mortality of V. destructor, was investigated in naturally infested worker and drone brood of Africanized honey bees (AHB) in Costa Rica. Data were obtained from 388 to 403 single infested worker and drone brood cells, respectively. Mite fertility in worker and drone brood cells was 88.9 and 93.1%, respectively. There was no difference between the groups (X(2) = 3.6, P = 0.06). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring in drone cells (64.8%) compared to worker cells (37.6%) (X(2) = 57.2, P < 0.05). A greater proportion of mites in worker brood cells produced non-viable female offspring. Mite offspring mortality in both worker and drone cells was high in the protonymph stage (mobile and immobile). A significant finding was the high rate of male mortality. The worker and drone brood revealed that 23.9 and 6.9%, respectively, of the adult male offspring was found dead. If the absence (missing) of the male and adult male mortality are taken together the percentage of cells increased to 40.0 and 21.3% in worker and drone cells, respectively (X(2) = 28.8, P < 0.05). The absence of the male or male mortality in a considerable number of worker cells naturally infested with varroa is the major factor in our study which reduces the production of viable daughters in AHB colonies in Costa Rica.

  19. Insulin-like peptide response to nutritional input in honey bee workers.

    PubMed

    Ihle, Kate E; Baker, Nicholas A; Amdam, Gro V

    2014-10-01

    The rise in metabolic disorders in the past decades has heightened focus on achieving a healthy dietary balance in humans. This is also an increasingly important issue in the management of honey bees (Apis mellifera) where poor nutrition has negative effects on health and productivity in agriculture, and nutrition is suggested as a contributing factor in the recent global declines in honey bee populations. As in other organisms, the insulin/insulin-like signaling (IIS) pathway is likely involved in maintaining nutrient homeostasis in honey bees. Honey bees have two insulin-like peptides (Ilps) with differing spatial expression patterns in the fat body suggesting that AmIlp1 potentially functions in lipid metabolism while AmIlp2 is a more general indicator of nutritional status. We fed caged worker bees artificial diets high in carbohydrates, proteins or lipids and measured expression of AmIlp1, AmIlp2, and the insulin receptor substrate (IRS) to test their responses to dietary macronutrients. We also measured lifespan, worker weight and gustatory sensitivity to sugar as measures of individual physical condition. We found that expression of AmIlp1 was affected by diet composition and was highest on a diet high in protein. Expression of AmIlp2 and AmIRS were not affected by diet. Workers lived longest on a diet high in carbohydrates and low in protein and lipids. However, bees fed this diet weighed less than those that received a diet high in protein and low in carbohydrates and lipids. Bees fed the high carbohydrates diet were also more responsive to sugar, potentially indicating greater levels of hunger. These results support a role for AmIlp1 in nutritional homeostasis and provide new insight into how unbalanced diets impact individual honey bee health. PMID:24952326

  20. Insulin-like peptide response to nutritional input in honey bee workers.

    PubMed

    Ihle, Kate E; Baker, Nicholas A; Amdam, Gro V

    2014-10-01

    The rise in metabolic disorders in the past decades has heightened focus on achieving a healthy dietary balance in humans. This is also an increasingly important issue in the management of honey bees (Apis mellifera) where poor nutrition has negative effects on health and productivity in agriculture, and nutrition is suggested as a contributing factor in the recent global declines in honey bee populations. As in other organisms, the insulin/insulin-like signaling (IIS) pathway is likely involved in maintaining nutrient homeostasis in honey bees. Honey bees have two insulin-like peptides (Ilps) with differing spatial expression patterns in the fat body suggesting that AmIlp1 potentially functions in lipid metabolism while AmIlp2 is a more general indicator of nutritional status. We fed caged worker bees artificial diets high in carbohydrates, proteins or lipids and measured expression of AmIlp1, AmIlp2, and the insulin receptor substrate (IRS) to test their responses to dietary macronutrients. We also measured lifespan, worker weight and gustatory sensitivity to sugar as measures of individual physical condition. We found that expression of AmIlp1 was affected by diet composition and was highest on a diet high in protein. Expression of AmIlp2 and AmIRS were not affected by diet. Workers lived longest on a diet high in carbohydrates and low in protein and lipids. However, bees fed this diet weighed less than those that received a diet high in protein and low in carbohydrates and lipids. Bees fed the high carbohydrates diet were also more responsive to sugar, potentially indicating greater levels of hunger. These results support a role for AmIlp1 in nutritional homeostasis and provide new insight into how unbalanced diets impact individual honey bee health.

  1. Cell death in ovarioles causes permanent sterility in Frieseomelitta varia worker bees.

    PubMed

    Boleli, I C; Paulino-Simões, Z L; Gentile Bitondi, M M

    1999-12-01

    Frieseomelitta varia worker bees do not lay eggs even when living in queenless colonies, a condition that favors ovary development and oviposition in the majority of highly social bees. The permanent sterility of these worker bees was initially attributed to a failure in ovary morphogenesis and differentiation. Using transmission electron microscopy we found that at the beginning of the pupal phase the ovaries of F. varia workers are formed by four ovarioles, each of them composed of 1) a terminal filament at the apex of the ovarioles, containing juxtaposed and irregularly shaped cells, 2) a germarium with clusters of cystocytes and prefollicular cells showing long cytoplasmic projections that envelop the cystocyte clusters, 3) fusiform interfollicular and basal stalk precursor cells, and 4) globular, irregularly contoured basal cells with large nuclei. However, during the pupal phase an accentuated and progressive process of cell death takes place in the ovarioles. The dying cells are characterized by large membrane bodies, electron-dense apoptotic bodies, vacuoles, vesiculation, secondary lysosomes, enlarged rough endoplasmic reticulum cisternae, swollen mitochondria, pycnotic nuclei, masses of chromatin adjacent to the convoluted nuclear envelope, and nucleoli showing signs of fragmentation. Cell death continues in ovarioles even after the emergence of the workers. Once they become nurse bees, the ovaries have become transformed into a cell mass in which structurally organized ovarioles can no longer be identified. In F. varia workers, ovariole cell death most certainly is part of the program of caste differentiation. PMID:10580265

  2. The queen is dead--long live the workers: intraspecific parasitism by workers in the stingless bee Melipona scutellaris.

    PubMed

    Alves, D A; Imperatriz-Fonseca, V L; Francoy, T M; Santos-Filho, P S; Nogueira-Neto, P; Billen, J; Wenseleers, T

    2009-10-01

    Insect societies are well known for their high degree of cooperation, but their colonies can potentially be exploited by reproductive workers who lay unfertilized, male eggs, rather than work for the good of the colony. Recently, it has also been discovered that workers in bumblebees and Asian honeybees can succeed in entering and parasitizing unrelated colonies to produce their own male offspring. The aim of this study was to investigate whether such intraspecific worker parasitism might also occur in stingless bees, another group of highly social bees. Based on a large-scale genetic study of the species Melipona scutellaris, and the genotyping of nearly 600 males from 45 colonies, we show that approximately 20% of all males are workers' sons, but that around 80% of these had genotypes that were incompatible with them being the sons of workers of the resident queen. By tracking colonies over multiple generations, we show that these males were not produced by drifted workers, but rather by workers that were the offspring of a previous, superseded queen. This means that uniquely, workers reproductively parasitize the next-generation workforce. Our results are surprising given that most colonies were sampled many months after the previous queen had died and that workers normally only have a life expectancy of approximately 30 days. It also implies that reproductive workers greatly outlive all other workers. We explain our results in the context of kin selection theory, and the fact that it pays workers more from exploiting the colony if costs are carried by less related individuals.

  3. Morphometric Identification of Queens, Workers and Intermediates in In Vitro Reared Honey Bees (Apis mellifera).

    PubMed

    De Souza, Daiana A; Wang, Ying; Kaftanoglu, Osman; De Jong, David; Amdam, Gro V; Gonçalves, Lionel S; Francoy, Tiago M

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates.

  4. Morphometric Identification of Queens, Workers and Intermediates in In Vitro Reared Honey Bees (Apis mellifera)

    PubMed Central

    A. De Souza, Daiana; Wang, Ying; Kaftanoglu, Osman; De Jong, David; V. Amdam, Gro; S. Gonçalves, Lionel; M. Francoy, Tiago

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates. PMID:25894528

  5. Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds

    PubMed Central

    Nunes, Túlio M.; Mateus, Sidnei; Favaris, Arodi P.; Amaral, Mônica F. Z. J.; von Zuben, Lucas G.; Clososki, Giuliano C.; Bento, José M. S.; Oldroyd, Benjamin P.; Silva, Ricardo; Zucchi, Ronaldo; Silva, Denise B.; Lopes, Norberto P.

    2014-01-01

    In most species of social insect the queen signals her presence to her workers via pheromones. Worker responses to queen pheromones include retinue formation around the queen, inhibition of queen cell production and suppression of worker ovary activation. Here we show that the queen signal of the Brazilian stingless bee Friesella schrottkyi is a mixture of cuticular hydrocarbons. Stingless bees are therefore similar to ants, wasps and bumble bees, but differ from honey bees in which the queen's signal mostly comprises volatile compounds originating from the mandibular glands. This shows that cuticular hydrocarbons have independently evolved as the queen's signal across multiple taxa, and that the honey bees are exceptional. We also report the distribution of four active queen-signal compounds by Matrix-assisted laser desorption/ionization (MALDI) imaging. The results indicate a relationship between the behavior of workers towards the queen and the likely site of secretion of the queen's pheromones. PMID:25502598

  6. Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds.

    PubMed

    Nunes, Túlio M; Mateus, Sidnei; Favaris, Arodi P; Amaral, Mônica F Z J; von Zuben, Lucas G; Clososki, Giuliano C; Bento, José M S; Oldroyd, Benjamin P; Silva, Ricardo; Zucchi, Ronaldo; Silva, Denise B; Lopes, Norberto P

    2014-12-12

    In most species of social insect the queen signals her presence to her workers via pheromones. Worker responses to queen pheromones include retinue formation around the queen, inhibition of queen cell production and suppression of worker ovary activation. Here we show that the queen signal of the Brazilian stingless bee Friesella schrottkyi is a mixture of cuticular hydrocarbons. Stingless bees are therefore similar to ants, wasps and bumble bees, but differ from honey bees in which the queen's signal mostly comprises volatile compounds originating from the mandibular glands. This shows that cuticular hydrocarbons have independently evolved as the queen's signal across multiple taxa, and that the honey bees are exceptional. We also report the distribution of four active queen-signal compounds by Matrix-assisted laser desorption/ionization (MALDI) imaging. The results indicate a relationship between the behavior of workers towards the queen and the likely site of secretion of the queen's pheromones.

  7. Effects of honey bee (Apis mellifera L.) queen insemination volume on worker behavior and physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bee colonies consist of tens of thousands of workers and a single reproductive queen that produces a pheromone blend which maintains colony organization. Previous studies indicated that the insemination quantity and volume alter queen mandibular pheromone profiles. In our 11-month long field s...

  8. Born to be bee, fed to be worker? The caste system of a primitively eusocial insect

    PubMed Central

    2012-01-01

    Introduction Primitively eusocial halictid bees are excellent systems to study the origin of eusociality, because all individuals have retained the ancestral ability to breed independently. In the sweat bee Halictus scabiosae, foundresses overwinter, establish nests and rear a first brood by mass-provisioning each offspring with pollen and nectar. The mothers may thus manipulate the phenotype of their offspring by restricting their food provisions. The first brood females generally help their mother to rear a second brood of males and gynes that become foundresses. However, the first brood females may also reproduce in their maternal or in other nests, or possibly enter early diapause. Here, we examined if the behavioural specialization of the first and second brood females was associated with between-brood differences in body size, energetic reserves and pollen provisions. Results The patterns of variation in adult body size, weight, fat content and food provisioned to the first and second brood indicate that H. scabiosae has dimorphic females. The first-brood females were significantly smaller, lighter and had lower fat reserves than the second-brood females and foundresses. The first-brood females were also less variable in size and fat content, and developed on homogeneously smaller pollen provisions. Foundresses were larger than gynes of the previous year, suggesting that small females were less likely to survive the winter. Conclusions The marked size dimorphism between females produced in the first and second brood and the consistently smaller pollen provisions provided to the first brood suggest that the first brood females are channelled into a helper role during their pre-imaginal development. As a large body size is needed for successful hibernation, the mother may promote helping in her first brood offspring by restricting their food provisions. This pattern supports the hypothesis that parental manipulation may contribute to promote worker behaviour in

  9. Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions.

    PubMed

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Beslay, Dominique; Costagliola, Guy; Soubeyrand, Samuel; Kretzchmar, André; Le Conte, Yves

    2013-05-01

    Parasites are known to cause the loss of individuals in social insects. In honey bee colonies the disappearance of foragers is a common factor of the wide extended colony losses. The emergent parasite of the European honey bee Nosema ceranae has been found to reduce homing and orientation skills and alter metabolism of forager bees. N. ceranae-infected bees also show changes in Ethyl Oleate (EO) levels, which is so far the only primer pheromone identified in workers that is involved in foraging behavior. Thus, we hypothesized that N. ceranae (i) modifies flight activity of honey bees and (ii) induces EO changes that can alter foraging behavior of nestmates. We compared flight activity of infected bees and non-infected bees in small colonies using an electronic optic bee counter during 28 days. We measured EO levels by gas chromatography-mass spectrometry and spore-counts. Bee mortality was estimated at the end of the experiment. Infected bees showed precocious and a higher flight activity than healthy bees, which agreed with the more elevated EO titers of infected bees and reduced lifespan. Our results suggest that the higher EO levels of infected bees might delay the behavioral maturation of same age healthy bees, which might explain their lower level of activity. We propose that delayed behavioral maturation of healthy bees might be a protective response to infection, as healthy bees would be performing less risky tasks inside the hive, thus extending their lifespan. We also discuss the potential of increased flight activity of infected bees to reduce pathogen transmission inside the hive. Further research is needed to understand the consequences of host behavioral changes on pathogen transmission. This knowledge may contribute to enhance natural colony defense behaviors through beekeeping practices to reduce probability of colony losses.

  10. Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris).

    PubMed

    Laycock, Ian; Lenthall, Kate M; Barratt, Andrew T; Cresswell, James E

    2012-10-01

    Bumble bees are important pollinators whose populations have declined over recent years, raising widespread concern. One conspicuous threat to bumble bees is their unintended exposure to trace residues of systemic neonicotinoid pesticides, such as imidacloprid, which are ingested when bees forage on the nectar and pollen of treated crops. However, the demographic consequences for bumble bees of exposure to dietary neonicotinoids have yet to be fully established. To determine whether environmentally realistic levels of imidacloprid are capable of making a demographic impact on bumble bees, we exposed queenless microcolonies of worker bumble bees, Bombus terrestris, to a range of dosages of dietary imidacloprid between zero and 125 μg L(-1) and examined the effects on ovary development and fecundity. Microcolonies showed a dose-dependent decline in fecundity, with environmentally realistic dosages in the range of 1 μg L(-1) capable of reducing brood production by one third. In contrast, ovary development was unimpaired by dietary imidacloprid except at the highest dosage. Imidacloprid reduced feeding on both syrup and pollen but, after controlling statistically for dosage, microcolonies that consumed more syrup and pollen produced more brood. We therefore speculate that the detrimental effects of imidacloprid on fecundity emerge principally from nutrient limitation imposed by the failure of individuals to feed. Our findings raise concern about the impact of neonicotinoids on wild bumble bee populations. However, we recognize that to fully evaluate impacts on wild colonies it will be necessary to establish the effect of dietary neonicotinoids on the fecundity of bumble bee queens.

  11. Effects of some insecticides on longevity of the foragers honey bee worker of local honey bee race Apis mellifera jemenatica

    PubMed Central

    Aljedani, Dalal Musleh; Almehmadi, Roqaya Mohammed

    2016-01-01

    Introduction Honeybees are constantly exposed to a wide range of vital and non-vital pressures that may interact with each other and affect the health or survival of the insects. Pesticides are the main danger for the insects, and they subsequently have impacts on human and environmental health. Methods Field research was conducted in the apiary of Hada Al Sham Research Station, where the worker honeybees forager Apis mellifera jemenatica were selected to examine the effect of pesticides on workers’ longevity. We used three insecticides, i.e., deltamethrin, malathion, and abamectin, in different concentrations. The longevity of worker honeybee foragers was calculated; the honeybees were supplied with water, food, natural protein, and sugar solution laced with selected insecticide by mouth under laboratory conditions. Results The longest period of insect longevity was 15.5 days when using deltamethrin concentrate at a concentration of 1.00 ppm; the lowest longevity was two days when using abamectin at a concentration 1.00 ppm. The longevity of the unexposed forager worker honeybees was 18 days, as the variation in the intensity of the effect of the insecticide on the bees appeared with the severity of the effect diminishing in the order of abamectin followed by malathion followed by deltamethrin. Conclusion The study found that the type and concentration of the insecticides that are found in the honeybees’ food had a significant impact on the time of survival of the insects. The longevity of a worker honeybee depends on the health and safety of all of the members of the beehive, and safe alternatives to insecticides must be used because of the danger imposed by the application of insecticides on the continuity of life of the entire society depends on the life of this layer bee community. PMID:26955457

  12. No facultative worker policing in the honey bee ( Apis mellifera L.)

    NASA Astrophysics Data System (ADS)

    Loope, Kevin J.; Seeley, Thomas D.; Mattila, Heather R.

    2013-05-01

    Kin selection theory predicts that in colonies of social Hymenoptera with multiply mated queens, workers should mutually inhibit ("police") worker reproduction, but that in colonies with singly mated queens, workers should favor rearing workers' sons instead of queens' sons. In line with these predictions, Mattila et al. (Curr Biol 22:2027-2031, 2012) documented increased ovary development among workers in colonies of honey bees with singly mated queens, suggesting that workers can detect and respond adaptively to queen mating frequency and raising the possibility that they facultative police. In a follow-up experiment, we test and reject the hypothesis that workers in single-patriline colonies prefer worker-derived males and are able to reproduce directly; we show that their eggs are policed as strongly as those of workers in colonies with multiply mated queens. Evidently, workers do not respond facultatively to a kin structure that favors relaxed policing and increased direct reproduction. These workers may instead be responding to a poor queen or preparing for possible queen loss.

  13. Worker piping in honey bee swarms and its role in preparing for liftoff.

    PubMed

    Seeley, T D; Tautz, J

    2001-10-01

    Worker piping, previously reported only in hives, was observed in swarms as they prepared to liftoff to fly to a new home. Pipers are excited bees which scramble through the swarm cluster, pausing every second or so to emit a pipe. Each pipe consists of a sound pulse which lasts 0.82 +/- 0.43 s and rises in fundamental frequency from 100-200 Hz to 200-250 Hz. Many. if not all, of the pipers are nest-site scouts. The scouts pipe when it is time to stimulate the non-scouts to warm themselves to a flight-ready temperature (35 degrees C) in preparation for liftoff. The time-course of worker piping matches that of swarm warming, both start at a low level, about an hour before liftoff, and both build to a climax at liftoff. When we excluded pipers from bees hanging in the cool, outermost layer of a swarm cluster, we found that these bees did not warm up. The form of worker piping that we have studied in swarms differs from the form of worker piping that others have studied in hives. We call the two forms "wings-together piping" (in swarms) and "wings-apart piping" (in hives). PMID:11763965

  14. [THE EFFECT OF HYPOXIA ON THE DEVELOPMENT OF HONEY BEE WORKERS AT PREPUPAL AND PUPAL STAGES].

    PubMed

    Eskov, E K; Eskova, M D

    2015-01-01

    The effect of different levels of hypoxia on viability, physiological condition and morphometric characters of the honey bee (Apis mellifera L.) workers at the prepupal and pupal stages was traced. A high tolerance of the honey bee brood to hypoxia was established. Excess CO2 by more than two orders of magnitude relative to its content in the atmosphere and beehive at the optimal temperature for a bee family exhibits a mimimum lethality. Morphological anomalies manifested as wing and proboscis hypoplasia were found at the CO2 concentration raised by 10-15 %. This leads to a reduction on the number of frenulum hooks on the hind wings and affects their asymmetry variability. The wing lengths and the number of frenulum books are in inverse while masses of the head, thorax and abdomen--in direct relationship with the CO2 concentration. PMID:26281221

  15. Methylation and worker reproduction in the bumble-bee (Bombus terrestris)

    PubMed Central

    Amarasinghe, Harindra E.; Clayton, Crisenthiya I.; Mallon, Eamonn B.

    2014-01-01

    Insects are at the dawn of an epigenetics era. Numerous social insect species have been found to possess a functioning methylation system, previously not thought to exist in insects. Methylation, an epigenetic tag, may be vital for the sociality and division of labour for which social insects are renowned. In the bumble-bee Bombus terrestris, we found methylation differences between the genomes of queenless reproductive workers and queenless non-reproductive workers. In a follow up experiment, queenless workers whose genomes had experimentally altered methylation were more aggressive and more likely to develop ovaries compared with control queenless workers. This shows methylation is important in this highly plastic reproductive division of labour. Methylation is an epigenetic tag for genomic imprinting (GI). It is intriguing that the main theory to explain the evolution of GI predicts that GI should be important in this worker reproduction behaviour. PMID:24523266

  16. Methylation and worker reproduction in the bumble-bee (Bombus terrestris).

    PubMed

    Amarasinghe, Harindra E; Clayton, Crisenthiya I; Mallon, Eamonn B

    2014-04-01

    Insects are at the dawn of an epigenetics era. Numerous social insect species have been found to possess a functioning methylation system, previously not thought to exist in insects. Methylation, an epigenetic tag, may be vital for the sociality and division of labour for which social insects are renowned. In the bumble-bee Bombus terrestris, we found methylation differences between the genomes of queenless reproductive workers and queenless non-reproductive workers. In a follow up experiment, queenless workers whose genomes had experimentally altered methylation were more aggressive and more likely to develop ovaries compared with control queenless workers. This shows methylation is important in this highly plastic reproductive division of labour. Methylation is an epigenetic tag for genomic imprinting (GI). It is intriguing that the main theory to explain the evolution of GI predicts that GI should be important in this worker reproduction behaviour.

  17. Aversive conditioning in honey bees (Apis mellifera anatolica): a comparison of drones and workers.

    PubMed

    Dinges, Christopher W; Avalos, Arian; Abramson, Charles I; Craig, David Philip Arthur; Austin, Zoe M; Varnon, Christopher A; Dal, Fatima Nur; Giray, Tugrul; Wells, Harrington

    2013-11-01

    Honey bees provide a model system to elucidate the relationship between sociality and complex behaviors within the same species, as females (workers) are highly social and males (drones) are more solitary. We report on aversive learning studies in drone and worker honey bees (Apis mellifera anatolica) in escape, punishment and discriminative punishment situations. In all three experiments, a newly developed electric shock avoidance assay was used. The comparisons of expected and observed responses were performed with conventional statistical methods and a systematic randomization modeling approach called object oriented modeling. The escape experiment consisted of two measurements recorded in a master-yoked paradigm: frequency of response and latency to respond following administration of shock. Master individuals could terminate an unavoidable shock triggered by a decrementing 30 s timer by crossing the shuttlebox centerline following shock activation. Across all groups, there was large individual response variation. When assessing group response frequency and latency, master subjects performed better than yoked subjects for both workers and drones. In the punishment experiment, individuals were shocked upon entering the shock portion of a bilaterally wired shuttlebox. The shock portion was spatially static and unsignalled. Only workers effectively avoided the shock. The discriminative punishment experiment repeated the punishment experiment but included a counterbalanced blue and yellow background signal and the side of shock was manipulated. Drones correctly responded less than workers when shock was paired with blue. However, when shock was paired with yellow there was no observable difference between drones and workers.

  18. Aversive conditioning in honey bees (Apis mellifera anatolica): a comparison of drones and workers.

    PubMed

    Dinges, Christopher W; Avalos, Arian; Abramson, Charles I; Craig, David Philip Arthur; Austin, Zoe M; Varnon, Christopher A; Dal, Fatima Nur; Giray, Tugrul; Wells, Harrington

    2013-11-01

    Honey bees provide a model system to elucidate the relationship between sociality and complex behaviors within the same species, as females (workers) are highly social and males (drones) are more solitary. We report on aversive learning studies in drone and worker honey bees (Apis mellifera anatolica) in escape, punishment and discriminative punishment situations. In all three experiments, a newly developed electric shock avoidance assay was used. The comparisons of expected and observed responses were performed with conventional statistical methods and a systematic randomization modeling approach called object oriented modeling. The escape experiment consisted of two measurements recorded in a master-yoked paradigm: frequency of response and latency to respond following administration of shock. Master individuals could terminate an unavoidable shock triggered by a decrementing 30 s timer by crossing the shuttlebox centerline following shock activation. Across all groups, there was large individual response variation. When assessing group response frequency and latency, master subjects performed better than yoked subjects for both workers and drones. In the punishment experiment, individuals were shocked upon entering the shock portion of a bilaterally wired shuttlebox. The shock portion was spatially static and unsignalled. Only workers effectively avoided the shock. The discriminative punishment experiment repeated the punishment experiment but included a counterbalanced blue and yellow background signal and the side of shock was manipulated. Drones correctly responded less than workers when shock was paired with blue. However, when shock was paired with yellow there was no observable difference between drones and workers. PMID:24133154

  19. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera)

    PubMed Central

    2012-01-01

    Background Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood) and allo-grooming (where workers remove ectoparasites from nestmates). We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli). Results While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. Conclusions These results demonstrate that honey bee genomic responses

  20. Queen pheromone regulates programmed cell death in the honey bee worker ovary.

    PubMed

    Ronai, I; Oldroyd, B P; Vergoz, V

    2016-10-01

    In social insect colonies the presence of a queen, secreting her pheromones, is a key environmental cue for regulating the reproductive state of workers. However, until recently the proximate molecular mechanisms underlying facultative worker sterility were unidentified. Studies into worker oogenesis in the honey bee (Apis mellifera) have indicated that programmed cell death is central to the regulation of oogenesis. Here we investigate how queen pheromone, age of the worker and ovary state affect both programmed cell death and cell number in worker ovaries. We describe a novel method to simultaneously measure programmed cell death (caspase activity) and live cell number (estimated from the amount of adenosine triphosphate) in an insect tissue. Workers exposed to queen pheromone have higher levels of caspase activity in the ovary than those not exposed. Our results suggest that queen pheromone triggers programmed cell death at the mid-oogenesis checkpoint causing the abortion of worker oocytes and reproductive inhibition of the worker caste. Nonetheless, high caspase activity is present in activated ovaries from workers not exposed to queen pheromone. This caspase activity is most likely to be from the nurse cells undergoing programmed cell death, in late oogenesis, for normal oocyte development. Our study shows that the social environment of an organism can influence programmed cell death within a tissue. PMID:27321063

  1. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age.

    PubMed

    Paoli, Pier P; Donley, Dion; Stabler, Daniel; Saseendranath, Anumodh; Nicolson, Susan W; Simpson, Stephen J; Wright, Geraldine A

    2014-06-01

    Dietary sources of essential amino acids (EAAs) are used for growth, somatic maintenance and reproduction. Eusocial insect workers such as honeybees are sterile, and unlike other animals, their nutritional needs should be largely dictated by somatic demands that arise from their role within the colony. Here, we investigated the extent to which the dietary requirements of adult worker honeybees for EAAs and carbohydrates are affected by behavioural caste using the Geometric Framework for nutrition. The nutritional optimum, or intake target (IT), was determined by confining cohorts of 20 young bees or foragers to liquid diets composed of specific proportions of EAAs and sucrose. The IT of young, queenless bees shifted from a proportion of EAAs-to-carbohydrates (EAA:C) of 1:50 towards 1:75 over a 2-week period, accompanied by a reduced lifespan on diets high in EAAs. Foragers required a diet high in carbohydrates (1:250) and also had low survival on diets high in EAA. Workers exposed to queen mandibular pheromone lived longer on diets high in EAA, even when those diets contained 5× their dietary requirements. Our data show that worker honeybees prioritize their intake of carbohydrates over dietary EAAs, even when overeating EAAs to obtain sufficient carbohydrates results in a shorter lifespan. Thus, our data demonstrate that even when young bees are not nursing brood and foragers are not flying, their nutritional needs shift towards a diet largely composed of carbohydrates when they make the transition from within-hive duties to foraging.

  2. Population genomics of the honey bee reveals strong signatures of positive selection on worker traits.

    PubMed

    Harpur, Brock A; Kent, Clement F; Molodtsova, Daria; Lebon, Jonathan M D; Alqarni, Abdulaziz S; Owayss, Ayman A; Zayed, Amro

    2014-02-18

    Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees.

  3. Population genomics of the honey bee reveals strong signatures of positive selection on worker traits.

    PubMed

    Harpur, Brock A; Kent, Clement F; Molodtsova, Daria; Lebon, Jonathan M D; Alqarni, Abdulaziz S; Owayss, Ayman A; Zayed, Amro

    2014-02-18

    Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees. PMID:24488971

  4. Population genomics of the honey bee reveals strong signatures of positive selection on worker traits

    PubMed Central

    Harpur, Brock A.; Kent, Clement F.; Molodtsova, Daria; Lebon, Jonathan M. D.; Alqarni, Abdulaziz S.; Owayss, Ayman A.; Zayed, Amro

    2014-01-01

    Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees. PMID:24488971

  5. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees.

    PubMed

    Laycock, Ian; Cotterell, Katie C; O'Shea-Wheller, Thomas A; Cresswell, James E

    2014-02-01

    Neonicotinoid pesticides are currently implicated in the decline of wild bee populations. Bumble bees, Bombus spp., are important wild pollinators that are detrimentally affected by ingestion of neonicotinoid residues. To date, imidacloprid has been the major focus of study into the effects of neonicotinoids on bumble bee health, but wild populations are increasingly exposed to alternative neonicotinoids such as thiamethoxam. To investigate whether environmentally realistic levels of thiamethoxam affect bumble bee performance over a realistic exposure period, we exposed queenless microcolonies of Bombus terrestris L. workers to a wide range of dosages up to 98 μgkg(-1) in dietary syrup for 17 days. Results showed that bumble bee workers survived fewer days when presented with syrup dosed at 98 μg thiamethoxamkg(-1), while production of brood (eggs and larvae) and consumption of syrup and pollen in microcolonies were significantly reduced by thiamethoxam only at the two highest concentrations (39, 98 μgkg(-1)). In contrast, we found no detectable effect of thiamethoxam at levels typically found in the nectars of treated crops (between 1 and 11 μgkg(-1)). By comparison with published data, we demonstrate that during an exposure to field-realistic concentrations lasting approximately two weeks, brood production in worker bumble bees is more sensitive to imidacloprid than thiamethoxam. We speculate that differential sensitivity arises because imidacloprid produces a stronger repression of feeding in bumble bees than thiamethoxam, which imposes a greater nutrient limitation on production of brood.

  6. Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species.

    PubMed

    Redhead, John W; Dreier, Stephanie; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2016-04-01

    Bumble bees (Bombus spp.) are important pollinators of both crops and wildflowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures, it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumble bees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics, and fine resolution remote sensing to estimate the locations of wild bumble bee nests and to infer foraging distances across a 20-km² agricultural landscape in southern England, UK. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius, and B. ruderatus exhibited significantly greater mean foraging distances (551, 536, and 501 m, respectively) than B. hortorum and B. pascuorum (336 and 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest

  7. Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species.

    PubMed

    Redhead, John W; Dreier, Stephanie; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2016-04-01

    Bumble bees (Bombus spp.) are important pollinators of both crops and wildflowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures, it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumble bees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics, and fine resolution remote sensing to estimate the locations of wild bumble bee nests and to infer foraging distances across a 20-km² agricultural landscape in southern England, UK. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius, and B. ruderatus exhibited significantly greater mean foraging distances (551, 536, and 501 m, respectively) than B. hortorum and B. pascuorum (336 and 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest

  8. The effects of dietary protein levels on the population growth, performance, and physiology of honey bee workers during early spring.

    PubMed

    Zheng, Benle; Wu, Zaifu; Xu, Baohua

    2014-01-01

    This study was conducted to investigate the effects of dietary protein levels on honey bee colonies, specifically the population growth, physiology, and longevity of honey bee workers during early spring. Diets containing four different levels of crude protein (25.0, 29.5, 34.0, or 38.5%) and pure pollen (control) were evaluated. Twenty-five colonies of honey bees with sister queens were used in the study. We compared the effects of the different bee diets by measuring population growth, emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland development, and survival. After 48 d, the cumulative number of workers produced by the colonies ranged from 22,420 to 29,519, providing a significant fit to a quadratic equation that predicts the maximum population growth when the diet contains 31.7% crude protein. Significantly greater emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland acini, and survival were observed in the colonies that were fed diets containing 34.0% crude protein compared with the other crude protein levels. Although higher emergent worker weight and survival were observed in the colonies that were fed the control diet, there were no significant differences between the control colonies and the colonies that were fed 34.0% crude protein. Based on these results, we concluded that a dietary crude protein content of 29.5-34.0% is recommended to maximize the reproduction rate of honey bee colonies in early spring.

  9. The effects of dietary protein levels on the population growth, performance, and physiology of honey bee workers during early spring.

    PubMed

    Zheng, Benle; Wu, Zaifu; Xu, Baohua

    2014-01-01

    This study was conducted to investigate the effects of dietary protein levels on honey bee colonies, specifically the population growth, physiology, and longevity of honey bee workers during early spring. Diets containing four different levels of crude protein (25.0, 29.5, 34.0, or 38.5%) and pure pollen (control) were evaluated. Twenty-five colonies of honey bees with sister queens were used in the study. We compared the effects of the different bee diets by measuring population growth, emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland development, and survival. After 48 d, the cumulative number of workers produced by the colonies ranged from 22,420 to 29,519, providing a significant fit to a quadratic equation that predicts the maximum population growth when the diet contains 31.7% crude protein. Significantly greater emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland acini, and survival were observed in the colonies that were fed diets containing 34.0% crude protein compared with the other crude protein levels. Although higher emergent worker weight and survival were observed in the colonies that were fed the control diet, there were no significant differences between the control colonies and the colonies that were fed 34.0% crude protein. Based on these results, we concluded that a dietary crude protein content of 29.5-34.0% is recommended to maximize the reproduction rate of honey bee colonies in early spring. PMID:25368092

  10. Honey Bee (Apis mellifera) Queen Reproductive Potential Affects Queen Mandibular Gland Pheromone Composition and Worker Retinue Response

    PubMed Central

    Böröczky, Katalin; Schal, Coby; Tarpy, David R.

    2016-01-01

    Reproductive division of labor is one of the defining traits of honey bees (Apis mellifera), with non-reproductive tasks being performed by workers while a single queen normally monopolizes reproduction. The decentralized organization of a honey bee colony is maintained in large part by a bouquet of queen-produced pheromones, the distribution of which is facilitated by contact among workers throughout the hive. Previous studies have shown that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures of reproductive potential compared to queens raised from older worker larvae. We investigated differences in the chemical composition of the mandibular glands and attractiveness to workers of “high-quality” queens (i.e., raised from first instar worker larvae; more queen-like) and “low-quality” queens (i.e., raised from third instar worker larvae; more worker-like). We characterized the chemical profiles of the mandibular glands of high-quality queens and low-quality queens using GC-MS and used the worker retinue response as a measure of the attractiveness to workers of high-quality queens vs. low-quality queens. We found that queen quality affected the chemical profiles of mandibular gland contents differently across years, showing significant differences in the production of the queen mandibular pheromone (“QMP”) components HVA and 9-HDA in 2010, but no significant differences of any glandular compound in 2012. We also found that workers were significantly more attracted to high-quality queens than to low-quality queens in 2012, possibly because of increased attractiveness of their mandibular gland chemical profiles. Our results indicate that the age at which honey bee larvae enter the “queen-specific” developmental pathway influences the chemical composition of queen mandibular glands and worker behavior. However, these changes are not consistent across years, suggesting

  11. Honey Bee (Apis mellifera) Queen Reproductive Potential Affects Queen Mandibular Gland Pheromone Composition and Worker Retinue Response.

    PubMed

    Rangel, Juliana; Böröczky, Katalin; Schal, Coby; Tarpy, David R

    2016-01-01

    Reproductive division of labor is one of the defining traits of honey bees (Apis mellifera), with non-reproductive tasks being performed by workers while a single queen normally monopolizes reproduction. The decentralized organization of a honey bee colony is maintained in large part by a bouquet of queen-produced pheromones, the distribution of which is facilitated by contact among workers throughout the hive. Previous studies have shown that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures of reproductive potential compared to queens raised from older worker larvae. We investigated differences in the chemical composition of the mandibular glands and attractiveness to workers of "high-quality" queens (i.e., raised from first instar worker larvae; more queen-like) and "low-quality" queens (i.e., raised from third instar worker larvae; more worker-like). We characterized the chemical profiles of the mandibular glands of high-quality queens and low-quality queens using GC-MS and used the worker retinue response as a measure of the attractiveness to workers of high-quality queens vs. low-quality queens. We found that queen quality affected the chemical profiles of mandibular gland contents differently across years, showing significant differences in the production of the queen mandibular pheromone ("QMP") components HVA and 9-HDA in 2010, but no significant differences of any glandular compound in 2012. We also found that workers were significantly more attracted to high-quality queens than to low-quality queens in 2012, possibly because of increased attractiveness of their mandibular gland chemical profiles. Our results indicate that the age at which honey bee larvae enter the "queen-specific" developmental pathway influences the chemical composition of queen mandibular glands and worker behavior. However, these changes are not consistent across years, suggesting that other external

  12. Ambient Air Temperature Does Not Predict whether Small or Large Workers Forage in Bumble Bees (Bombus impatiens)

    PubMed Central

    Couvillon, Margaret J.; Fitzpatrick, Ginny; Dornhaus, Anna

    2015-01-01

    Bumble bees are important pollinators of crops and other plants. However, many aspects of their basic biology remain relatively unexplored. For example, one important and unusual natural history feature in bumble bees is the massive size variation seen between workers of the same nest. This size polymorphism may be an adaptation for division of labor, colony economics, or be nonadaptive. It was also suggested that perhaps this variation allows for niche specialization in workers foraging at different temperatures: larger bees might be better suited to forage at cooler temperatures and smaller bees might be better suited to forage at warmer temperatures. This we tested here using a large, enclosed growth chamber, where we were able to regulate the ambient temperature. We found no significant effect of ambient or nest temperature on the average size of bees flying to and foraging from a suspended feeder. Instead, bees of all sizes successfully flew and foraged between 16°C and 36°C. Thus, large bees foraged even at very hot temperatures, which we thought might cause overheating. Size variation therefore could not be explained in terms of niche specialization for foragers at different temperatures. PMID:26005222

  13. Negligible uptake and transfer of diet-derived pollen microRNAs in adult honey bees.

    PubMed

    Masood, Maryam; Everett, Claire P; Chan, Stephen Y; Snow, Jonathan W

    2016-01-01

    The putative transfer and gene regulatory activities of diet-derived miRNAs in ingesting animals are still debated. Importantly, no study to date has fully examined the role of dietary uptake of miRNA in the honey bee, a critical pollinator in both agricultural and natural ecosystems. After controlled pollen feeding experiments in adult honey bees, we observed that midguts demonstrated robust increases in plant miRNAs after pollen ingestion. However, we found no evidence of biologically relevant delivery of these molecules to proximal or distal tissues of recipient honey bees. Our results, therefore, support the premise that pollen miRNAs ingested as part of a typical diet are not robustly transferred across barrier epithelia of adult honey bees under normal conditions. Key future questions include whether other small RNA species in honey bee diets behave similarly and whether more specialized and specific delivery mechanisms exist for more efficient transport, particularly in the context of stressed barrier epithelia.

  14. Recombination is associated with the evolution of genome structure and worker behavior in honey bees.

    PubMed

    Kent, Clement F; Minaei, Shermineh; Harpur, Brock A; Zayed, Amro

    2012-10-30

    The rise of insect societies, marked by the formation of reproductive and sterile castes, represents a major unsolved mystery in evolution. Across several independent origins of sociality, the genomes of social hymenopterans share two peculiar attributes: high recombination and low but heterogeneous GC content. For example, the genome of the honey bee, Apis mellifera, represents a mosaic of GC-poor and GC-rich regions with rates of recombination an order of magnitude higher than in humans. However, it is unclear how heterogeneity in GC content arises, and how it relates to the expression and evolution of worker traits. Using population genetic analyses, we demonstrate a bias in the allele frequency and fixation rate of derived C or G mutations in high-recombination regions, consistent with recombination's causal influence on GC-content evolution via biased gene conversion. We also show that recombination and biased gene conversion actively maintain the heterogeneous GC content of the honey bee genome despite an overall A/T mutation bias. Further, we found that GC-rich genes and intergenic regions have higher levels of genetic diversity and divergence relative to GC-poor regions, also consistent with recombination's causal influence on the rate of molecular evolution. Finally, we found that genes associated with behavior and those with worker-biased expression are found in GC-rich regions of the bee genome and also experience high rates of molecular evolution. Taken together, these findings suggest that recombination acts to maintain a genetically diverse and dynamic part of the genome where genes underlying worker behavior evolve more quickly.

  15. Anarchy Is a Molecular Signature of Worker Sterility in the Honey Bee.

    PubMed

    Ronai, Isobel; Oldroyd, Benjamin P; Barton, Deborah A; Cabanes, Guénaël; Lim, Julianne; Vergoz, Vanina

    2016-01-01

    Worker sterility is a defining characteristic of eusociality. The existence of the sterile worker caste remains a fundamental question for evolutionary biology as it requires the existence of genes that reduce personal reproduction. Currently, little is known about the proximate mechanisms underpinning worker sterility. Studies into a mutant "anarchistic" strain (in which workers can activate their ovaries) of honey bee, Apis mellifera, identified a list of candidate genes that regulate ovary activation. We quantified the expression of the four most promising candidate genes (Anarchy, Pdk1, S6k, and Ulk3) in nonactivated and activated ovaries of wild-type workers. Ovarian expression of Anarchy, a peroxisomal membrane protein, predicts the ovary state of workers with 88.2% accuracy. Increased expression of Anarchy in the ovary is strongly associated with suppression of oogenesis and its expression is sensitive to the presence of the queen. Therefore, Anarchy satisfies key criteria for a "gene underlying altruism". When we knocked down expression of Anarchy in the ovary using RNA interference (RNAi) we altered the expression of Buffy, a gene that regulates programmed cell death. Whole-mount multiplex fluorescent in situ hybridization (mFISH) shows Anarchy transcripts localize to degenerating oocytes within the ovary. Our results suggest that Anarchy is involved in the regulation of oogenesis through programmed cell death. The evolution of facultative worker sterility most likely occurred when the conserved mechanism of programmed cell death was co-opted to regulate ovary activation. Anarchy may therefore be the first example of a gene that has evolved through kin selection to regulate worker sterility. PMID:26416979

  16. Nosema ceranae Can Infect Honey Bee Larvae and Reduces Subsequent Adult Longevity.

    PubMed

    Eiri, Daren M; Suwannapong, Guntima; Endler, Matthew; Nieh, James C

    2015-01-01

    Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study.

  17. Nosema ceranae Can Infect Honey Bee Larvae and Reduces Subsequent Adult Longevity

    PubMed Central

    Eiri, Daren M.; Suwannapong, Guntima; Endler, Matthew; Nieh, James C.

    2015-01-01

    Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study. PMID:26018139

  18. In-depth proteomics characterization of embryogenesis of the honey bee worker (Apis mellifera ligustica).

    PubMed

    Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke

    2014-09-01

    Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24-48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48-72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during

  19. In-depth proteomics characterization of embryogenesis of the honey bee worker (Apis mellifera ligustica).

    PubMed

    Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke

    2014-09-01

    Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24-48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48-72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during

  20. In-depth Proteomics Characterization of Embryogenesis of the Honey Bee Worker (Apis mellifera ligustica) *

    PubMed Central

    Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke

    2014-01-01

    Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24–48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48–72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during

  1. Altruistic self-removal of health-compromised honey bee workers from their hive.

    PubMed

    Rueppell, O; Hayworth, M K; Ross, N P

    2010-07-01

    Social insect colonies represent distinct units of selection. Most individuals evolve by kin selection and forgo individual reproduction. Instead, they display altruistic food sharing, nest maintenance and self-sacrificial colony defence. Recently, altruistic self-removal of diseased worker ants from their colony was described as another important kin-selected behaviour. Here, we report corroborating experimental evidence from honey bee foragers and theoretical analyses. We challenged honey bee foragers with prolonged CO(2) narcosis or by feeding with the cytostatic drug hydroxyurea. Both treatments resulted in increased mortality but also caused the surviving foragers to abandon their social function and remove themselves from their colony, resulting in altruistic suicide. A simple model suggests that altruistic self-removal by sick social insect workers to prevent disease transmission is expected under most biologically plausible conditions. The combined theoretical and empirical support for altruistic self-removal suggests that it may be another important kin-selected behaviour and a potentially widespread mechanism of social immunity.

  2. Gene co-citation networks associated with worker sterility in honey bees

    PubMed Central

    2014-01-01

    Background The evolution of reproductive self-sacrifice is well understood from kin theory, yet our understanding of how actual genes influence the expression of reproductive altruism is only beginning to take shape. As a model in the molecular study of social behaviour, the honey bee Apis mellifera has yielded hundreds of genes associated in their expression with differences in reproductive status of females, including genes directly associated with sterility, yet there has not been an attempt to link these candidates into functional networks that explain how workers regulate sterility in the presence of queen pheromone. In this study we use available microarray data and a co-citation analysis to describe what gene interactions might regulate a worker’s response to ovary suppressing queen pheromone. Results We reconstructed a total of nine gene networks that vary in size and gene composition, but that are significantly enriched for genes of reproductive function. The networks identify, for the first time, which candidate microarray genes are of functional importance, as evidenced by their degree of connectivity to other genes within each of the inferred networks. Our study identifies single genes of interest related to oogenesis, including eggless, and further implicates pathways related to insulin, ecdysteroid, and dopamine signaling as potentially important to reproductive decision making in honey bees. Conclusions The networks derived here appear to be variable in gene composition, hub gene identity, and the overall interactions they describe. One interpretation is that workers use different networks to control personal reproduction via ovary activation, perhaps as a function of age or environmental circumstance. Alternatively, the multiple networks inferred here may represent segments of the larger, single network that remains unknown in its entirety. The networks generated here are provisional but do offer a new multi-gene framework for understanding how

  3. Workers make the queens in melipona bees: identification of geraniol as a caste determining compound from labial glands of nurse bees.

    PubMed

    Jarau, Stefan; van Veen, Johan W; Twele, Robert; Reichle, Christian; Gonzales, Eduardo Herrera; Aguilar, Ingrid; Francke, Wittko; Ayasse, Manfred

    2010-06-01

    Reproductive division of labor in advanced eusocial honey bees and stingless bees is based on the ability of totipotent female larvae to develop into either workers or queens. In nearly all species, caste is determined by larval nutrition. However, the mechanism that triggers queen development in Melipona bees is still unresolved. Several hypotheses have been proposed, ranging from the proximate (a genetic determination of caste development) to the ultimate (a model in which larvae have complete control over their own caste fate). Here, we showed that the addition of geraniol, the main compound in labial gland secretions of nurse workers, to the larval food significantly increases the number of larvae that develop into queens. Interestingly, the proportion of queens in treated brood exactly matched the value (25%) predicted by the two-locus, two-allele model of genetic queen determination, in which only females that are heterozygous at both loci are capable of developing into queens. We conclude that labial gland secretions, added to the food of some cells by nurse bees, trigger queen development, provided that the larvae are genetically predisposed towards this developmental pathway. In Melipona beecheii, geraniol acts as a primer pheromone representing the first caste determination substance identified to date.

  4. Bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bee, Claire Preston, is a book written generally for the layperson, but may be of interest to those working in entomology. This review seeks to help entomologists who may have interest in the subject to decide whether or not to invest time into reading the book. The review is generally positive an...

  5. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.).

    PubMed

    Wang, Ying; Campbell, Jacob B; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Harrison, Jon F

    2016-04-01

    Environmental changes during development have long-term effects on adult phenotypes in diverse organisms. Some of the effects play important roles in helping organisms adapt to different environments, such as insect polymorphism. Others, especially those resulting from an adverse developmental environment, have a negative effect on adult health and fitness. However, recent studies have shown that those phenotypes influenced by early environmental adversity have adaptive value under certain (anticipatory) conditions that are similar to the developmental environment, though evidence is mostly from morphological and behavioral observations and it is still rare at physiological and molecular levels. In the companion study, we applied a short-term starvation treatment to fifth instar honey bee larvae and measured changes in adult morphology, starvation resistance, hormonal and metabolic physiology and gene expression. Our results suggest that honey bees can adaptively respond to the predicted nutritional stress. In the present study, we further hypothesized that developmental starvation specifically improves the metabolic response of adult bees to starvation instead of globally affecting metabolism under well-fed conditions. Here, we produced adult honey bees that had experienced a short-term larval starvation, then we starved them for 12 h and monitored metabolic rate, blood sugar concentrations and metabolic reserves. We found that the bees that experienced larval starvation were able to shift to other fuels faster and better maintain stable blood sugar levels during starvation. However, developmental nutritional stress did not change metabolic rates or blood sugar levels in adult bees under normal conditions. Overall, our study provides further evidence that early larval starvation specifically improves the metabolic responses to adult starvation in honey bees. PMID:27030776

  6. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.).

    PubMed

    Wang, Ying; Campbell, Jacob B; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Harrison, Jon F

    2016-04-01

    Environmental changes during development have long-term effects on adult phenotypes in diverse organisms. Some of the effects play important roles in helping organisms adapt to different environments, such as insect polymorphism. Others, especially those resulting from an adverse developmental environment, have a negative effect on adult health and fitness. However, recent studies have shown that those phenotypes influenced by early environmental adversity have adaptive value under certain (anticipatory) conditions that are similar to the developmental environment, though evidence is mostly from morphological and behavioral observations and it is still rare at physiological and molecular levels. In the companion study, we applied a short-term starvation treatment to fifth instar honey bee larvae and measured changes in adult morphology, starvation resistance, hormonal and metabolic physiology and gene expression. Our results suggest that honey bees can adaptively respond to the predicted nutritional stress. In the present study, we further hypothesized that developmental starvation specifically improves the metabolic response of adult bees to starvation instead of globally affecting metabolism under well-fed conditions. Here, we produced adult honey bees that had experienced a short-term larval starvation, then we starved them for 12 h and monitored metabolic rate, blood sugar concentrations and metabolic reserves. We found that the bees that experienced larval starvation were able to shift to other fuels faster and better maintain stable blood sugar levels during starvation. However, developmental nutritional stress did not change metabolic rates or blood sugar levels in adult bees under normal conditions. Overall, our study provides further evidence that early larval starvation specifically improves the metabolic responses to adult starvation in honey bees.

  7. Colonies of bumble bees (Bombus impatiens) produce fewer workers, less bee biomass, and have smaller mother queens following fungicide exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing serious declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possib...

  8. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    PubMed

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing. PMID:22431987

  9. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age.

    PubMed

    Paoli, Pier P; Donley, Dion; Stabler, Daniel; Saseendranath, Anumodh; Nicolson, Susan W; Simpson, Stephen J; Wright, Geraldine A

    2014-06-01

    Dietary sources of essential amino acids (EAAs) are used for growth, somatic maintenance and reproduction. Eusocial insect workers such as honeybees are sterile, and unlike other animals, their nutritional needs should be largely dictated by somatic demands that arise from their role within the colony. Here, we investigated the extent to which the dietary requirements of adult worker honeybees for EAAs and carbohydrates are affected by behavioural caste using the Geometric Framework for nutrition. The nutritional optimum, or intake target (IT), was determined by confining cohorts of 20 young bees or foragers to liquid diets composed of specific proportions of EAAs and sucrose. The IT of young, queenless bees shifted from a proportion of EAAs-to-carbohydrates (EAA:C) of 1:50 towards 1:75 over a 2-week period, accompanied by a reduced lifespan on diets high in EAAs. Foragers required a diet high in carbohydrates (1:250) and also had low survival on diets high in EAA. Workers exposed to queen mandibular pheromone lived longer on diets high in EAA, even when those diets contained 5× their dietary requirements. Our data show that worker honeybees prioritize their intake of carbohydrates over dietary EAAs, even when overeating EAAs to obtain sufficient carbohydrates results in a shorter lifespan. Thus, our data demonstrate that even when young bees are not nursing brood and foragers are not flying, their nutritional needs shift towards a diet largely composed of carbohydrates when they make the transition from within-hive duties to foraging. PMID:24623119

  10. A comparison of the reproductive ability of Varroa destructor (Mesostigmata:Varroidae) in worker and drone brood of Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, Rafael A; Zamora, Luis G; Van Veen, Johan W; Quesada, Mariela V

    2007-01-01

    Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X(2)= 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X(2)= 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X(2)= 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood.

  11. A comparison of the reproductive ability of Varroa destructor (Mesostigmata:Varroidae) in worker and drone brood of Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, Rafael A; Zamora, Luis G; Van Veen, Johan W; Quesada, Mariela V

    2007-01-01

    Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X(2)= 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X(2)= 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X(2)= 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood. PMID:17828439

  12. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae.

    PubMed

    Chaimanee, Veeranan; Chantawannakul, Panuwan; Chen, Yanping; Evans, Jay D; Pettis, Jeffery S

    2012-08-01

    Nosema ceranae is a microsporidium parasite infecting adult honey bees (Apis mellifera) and is known to affects at both the individual and colony level. In this study, the expression levels were measured for four antimicrobial peptide encoding genes that are associated with bee humoral immunity (defensin, abaecin, apidaecin, and hymenoptaecin), eater gene which is a transmembrane protein involved cellular immunity and gene encoding female-specific protein (vitellogenin) in honey bees when inoculated by N. ceranae. The results showed that four of these genes, defensin, abaecin, apidaecin and hymenoptaecin were significantly down-regulated 3 and 6days after inoculations. Additionally, antimicrobial peptide expressions did not significantly differ between control and inoculated bees after 12days post inoculation. Moreover, our results revealed that the mRNA levels of eater and vitellogenin did not differ significantly following N. ceranae inoculation. Therefore, in this study we reaffirmed that N. ceranae infection induces host immunosuppression.

  13. Dimensions of Problem Drinking among Young Adult Restaurant Workers

    PubMed Central

    Moore, Roland S.; Cunradi, Carol B.; Duke, Michael R.; Ames, Genevieve M.

    2009-01-01

    Background Nationwide surveys identify food service workers as heavy alcohol users. Objectives This article analyzes dimensions and correlates of problem drinking among young adult food service workers. Methods A telephone survey of national restaurant chain employees yielded 1294 completed surveys. Results Hazardous alcohol consumption patterns were seen in 80% of men and 64% of women. Multivariate analysis showed that different dimensions of problem drinking measured by the AUDIT were associated with workers' demographic characteristics, smoking behavior and job category. Conclusions & Scientific Significance These findings offer evidence of extremely high rates of alcohol misuse among young adult restaurant workers. PMID:20180660

  14. Precocene-I inhibits juvenile hormone biosynthesis, ovarian activation, aggression and alters sterility signal production in bumble bee (Bombus terrestris) workers.

    PubMed

    Amsalem, E; Teal, P; Grozinger, C M; Hefetz, A

    2014-09-01

    Juvenile hormone (JH) is an important regulator of development and physiology in insects. While in many insect species, including bumble bees, JH functions as gonadotropin in adults, in some highly eusocial insects its role has shifted to regulate social behavior including division of labor, dominance and aggression. Studying JH functions across social insect species is important for understanding the evolution of sociality; however, these studies have been limited because of the inability to reduce JH levels without surgically removing its glandular source, the corpora allata. Precocene is known to inhibit JH biosynthesis in several non-social insects, but has been poorly studied in social insects. Here, we tested whether precocene-I can effectively reduce JH levels in Bombus terrestris workers, and examined its effects on their physiology and behavior. Precocene-I treatment of three-worker groups decreased JH titer and ovarian activation, irrespective of the bees' dominance rank within the group, and was remedied by JH replacement therapy. Precocene-I also decreased aggressiveness and increased ester-sterility signal production; these changes were rank-dependent, and affected mainly the most reproductive and the least aggressive workers, respectively, and could not be remedied by JH replacement therapy. These results clearly confirm the role of JH as a gonadotropin and mediator of aggression in B. terrestris, and indicate that JH effects are associated with worker dominance rank. The ability to chemically reduce JH titer provides us with a non-intrusive method to probe the evolutionary changes associated with JH and the hormonal mechanisms that are associated with reproduction and behavior in social insects.

  15. Low temperature stress during pupal development and its effects on adult performance in alfalfa leafcutting bees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Megachile rotundata develop in brood cells constructed in cavities by adult females. Pre-pupal bees diapause over winter and resume development as temperatures (Ta) increase in spring. While many insects are tolerant of suboptimal Ta in their overwintering stages, insects that initiate active develo...

  16. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid).

    PubMed

    Cresswell, James E; Page, Christopher J; Uygun, Mehmet B; Holmbergh, Marie; Li, Yueru; Wheeler, Jonathan G; Laycock, Ian; Pook, Christopher J; de Ibarra, Natalie Hempel; Smirnoff, Nick; Tyler, Charles R

    2012-12-01

    Currently, there is concern about declining bee populations and the sustainability of pollination services. One potential threat to bees is the unintended impact of systemic insecticides, which are ingested by bees in the nectar and pollen from flowers of treated crops. To establish whether imidacloprid, a systemic neonicotinoid and insect neurotoxin, harms individual bees when ingested at environmentally realistic levels, we exposed adult worker bumble bees, Bombus terrestris L. (Hymenoptera: Apidae), and honey bees, Apis mellifera L. (Hymenoptera: Apidae), to dietary imidacloprid in feeder syrup at dosages between 0.08 and 125μg l(-1). Honey bees showed no response to dietary imidacloprid on any variable that we measured (feeding, locomotion and longevity). In contrast, bumble bees progressively developed over time a dose-dependent reduction in feeding rate with declines of 10-30% in the environmentally relevant range of up to 10μg l(-1), but neither their locomotory activity nor longevity varied with diet. To explain their differential sensitivity, we speculate that honey bees are better pre-adapted than bumble bees to feed on nectars containing synthetic alkaloids, such as imidacloprid, by virtue of their ancestral adaptation to tropical nectars in which natural alkaloids are prevalent. We emphasise that our study does not suggest that honey bee colonies are invulnerable to dietary imidacloprid under field conditions, but our findings do raise new concern about the impact of agricultural neonicotinoids on wild bumble bee populations.

  17. Finding the Worker: Adult Education and Workers' Education

    ERIC Educational Resources Information Center

    Rose, Amy D.; Jeris, Laurel H.

    2011-01-01

    This article looks at how administrators and teachers who consider themselves adult educators but who find themselves in a union environment come to think about their role and their context. This article is based on research conducted with administrators and teachers working in a joint union-employer sponsored program. Joint programs were…

  18. Educational and Employment Experiences of the Younger Adult Worker.

    ERIC Educational Resources Information Center

    Mertens, Donna M.; Gardner, John A.

    The Younger Adult Worker (YAW) study examined the systematic long-term relationship between exposure to vocational education and various indices of educational and employment outcomes. A telephone survey of 1539 young adults between the ages of 20 and 34 supplemented information from the l966-78 National Longitudinal Surveys of Labor Market…

  19. Male meliponine bees (Scaptotrigona aff. depilis) produce alarm pheromones to which workers respond with fight and males with flight.

    PubMed

    Schorkopf, Dirk Louis P

    2016-10-01

    In highly social hymenopteran societies, males mainly serve reproductive purposes. Semiochemicals enable the different hymenopteran sexes and castes to communicate with each other and to coordinate important functions within colonies. I hereby show that sexual dimorphism in meliponine bees incorporates the alarm and defence communication system. I chemically analysed the mandibular glands of Scaptotrigona aff. depilis using GCMS methods and conducted behavioural experiments in both males and female workers using cephalic and mandibular gland extracts. In addition, behaviour studies with male cephalic extracts were also conducted in Scaptotrigona bipunctata and Partamona cupira. Males and female worker bees showed differences in the content of the mandibular glands, which are responsible for alarm communication in meliponines. Males never attacked but usually fled when confronted with the mandibular gland extract content of other conspecific males or females. Interestingly, however, meliponine males were still able to raise alarm and to induce substantial amounts of aggression at nest entrances, which is different from the much better known and studied honey bees. Potential reasons are briefly discussed. PMID:27380474

  20. Male meliponine bees (Scaptotrigona aff. depilis) produce alarm pheromones to which workers respond with fight and males with flight.

    PubMed

    Schorkopf, Dirk Louis P

    2016-10-01

    In highly social hymenopteran societies, males mainly serve reproductive purposes. Semiochemicals enable the different hymenopteran sexes and castes to communicate with each other and to coordinate important functions within colonies. I hereby show that sexual dimorphism in meliponine bees incorporates the alarm and defence communication system. I chemically analysed the mandibular glands of Scaptotrigona aff. depilis using GCMS methods and conducted behavioural experiments in both males and female workers using cephalic and mandibular gland extracts. In addition, behaviour studies with male cephalic extracts were also conducted in Scaptotrigona bipunctata and Partamona cupira. Males and female worker bees showed differences in the content of the mandibular glands, which are responsible for alarm communication in meliponines. Males never attacked but usually fled when confronted with the mandibular gland extract content of other conspecific males or females. Interestingly, however, meliponine males were still able to raise alarm and to induce substantial amounts of aggression at nest entrances, which is different from the much better known and studied honey bees. Potential reasons are briefly discussed.

  1. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids.

    PubMed

    Stabler, Daniel; Paoli, Pier P; Nicolson, Susan W; Wright, Geraldine A

    2015-03-01

    Animals carefully regulate the amount of protein that they consume. The quantity of individual essential amino acids (EAAs) obtained from dietary protein depends on the protein source, but how the proportion of EAAs in the diet affects nutrient balancing has rarely been studied. Recent research using the Geometric Framework for Nutrition has revealed that forager honeybees who receive much of their dietary EAAs from floral nectar and not from solid protein have relatively low requirements for dietary EAAs. Here, we examined the nutritional requirements for protein and carbohydrates of foragers of the buff-tailed bumblebee Bombus terrestris. By using protein (sodium caseinate) or an equimolar mixture of the 10 EAAs, we found that the intake target (nutritional optimum) of adult workers depended on the source and proportion of dietary EAAs. When bees consumed caseinate-containing diets in a range of ratios between 1:250 and 1:25 (protein to carbohydrate), they achieved an intake target (IT) of 1:149 (w/w). In contrast to those fed protein, bees fed the EAA diets had an IT more biased towards carbohydrates (1:560 w/w) but also had a greater risk of death than those fed caseinate. We also tested how the dietary source of EAAs affected free AAs in bee haemolymph. Bees fed diets near their IT had similar haemolymph AA profiles, whereas bees fed diets high in caseinate had elevated levels of leucine, threonine, valine and alanine in the haemolymph. We found that like honeybees, bumblebee workers prioritize carbohydrate intake and have a relatively low requirement for protein. The dietary source of EAAs influenced both the ratio of protein/EAA to carbohydrate and the overall amount of carbohydrate eaten. Our data support the idea that EAAs and carbohydrates in haemolymph are important determinants of nutritional state in insects. PMID:25617453

  2. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids.

    PubMed

    Stabler, Daniel; Paoli, Pier P; Nicolson, Susan W; Wright, Geraldine A

    2015-03-01

    Animals carefully regulate the amount of protein that they consume. The quantity of individual essential amino acids (EAAs) obtained from dietary protein depends on the protein source, but how the proportion of EAAs in the diet affects nutrient balancing has rarely been studied. Recent research using the Geometric Framework for Nutrition has revealed that forager honeybees who receive much of their dietary EAAs from floral nectar and not from solid protein have relatively low requirements for dietary EAAs. Here, we examined the nutritional requirements for protein and carbohydrates of foragers of the buff-tailed bumblebee Bombus terrestris. By using protein (sodium caseinate) or an equimolar mixture of the 10 EAAs, we found that the intake target (nutritional optimum) of adult workers depended on the source and proportion of dietary EAAs. When bees consumed caseinate-containing diets in a range of ratios between 1:250 and 1:25 (protein to carbohydrate), they achieved an intake target (IT) of 1:149 (w/w). In contrast to those fed protein, bees fed the EAA diets had an IT more biased towards carbohydrates (1:560 w/w) but also had a greater risk of death than those fed caseinate. We also tested how the dietary source of EAAs affected free AAs in bee haemolymph. Bees fed diets near their IT had similar haemolymph AA profiles, whereas bees fed diets high in caseinate had elevated levels of leucine, threonine, valine and alanine in the haemolymph. We found that like honeybees, bumblebee workers prioritize carbohydrate intake and have a relatively low requirement for protein. The dietary source of EAAs influenced both the ratio of protein/EAA to carbohydrate and the overall amount of carbohydrate eaten. Our data support the idea that EAAs and carbohydrates in haemolymph are important determinants of nutritional state in insects.

  3. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids

    PubMed Central

    Stabler, Daniel; Paoli, Pier P.; Nicolson, Susan W.; Wright, Geraldine A.

    2015-01-01

    ABSTRACT Animals carefully regulate the amount of protein that they consume. The quantity of individual essential amino acids (EAAs) obtained from dietary protein depends on the protein source, but how the proportion of EAAs in the diet affects nutrient balancing has rarely been studied. Recent research using the Geometric Framework for Nutrition has revealed that forager honeybees who receive much of their dietary EAAs from floral nectar and not from solid protein have relatively low requirements for dietary EAAs. Here, we examined the nutritional requirements for protein and carbohydrates of foragers of the buff-tailed bumblebee Bombus terrestris. By using protein (sodium caseinate) or an equimolar mixture of the 10 EAAs, we found that the intake target (nutritional optimum) of adult workers depended on the source and proportion of dietary EAAs. When bees consumed caseinate-containing diets in a range of ratios between 1:250 and 1:25 (protein to carbohydrate), they achieved an intake target (IT) of 1:149 (w/w). In contrast to those fed protein, bees fed the EAA diets had an IT more biased towards carbohydrates (1:560 w/w) but also had a greater risk of death than those fed caseinate. We also tested how the dietary source of EAAs affected free AAs in bee haemolymph. Bees fed diets near their IT had similar haemolymph AA profiles, whereas bees fed diets high in caseinate had elevated levels of leucine, threonine, valine and alanine in the haemolymph. We found that like honeybees, bumblebee workers prioritize carbohydrate intake and have a relatively low requirement for protein. The dietary source of EAAs influenced both the ratio of protein/EAA to carbohydrate and the overall amount of carbohydrate eaten. Our data support the idea that EAAs and carbohydrates in haemolymph are important determinants of nutritional state in insects. PMID:25617453

  4. Mitosis and cell death in the optic lobes of workers, queens and drones of the honey bee (Apis mellifera) during metamorphosis.

    PubMed

    Roat, Thaisa Cristina; Landim, Carminda da Cruz

    2010-09-01

    Colonies of the honey bee, Apis mellifera, consist of males and two female castes: workers and queens. The castes and males from A. mellifera have a distinct morphology, physiology and behaviour that correlate with their roles in the society and are characterized by some brain polymorphisms. Compound eyes are one of the characteristics that differ among the castes and sexes. A. mellifera is a holometabolous insect; therefore, the development of adult organs during metamorphosis, which will produce these differences, requires the precise coordination of three main programmed cellular processes: proliferation, differentiation and death. These processes take place simultaneously during pupation. Our purpose was to investigate cell division and death in the optic lobes (OL) of workers, queens and males during pupation to identify how the differences in the compound eyes in adults of these classes are achieved. The results showed that OL differentiation follows a similar pattern in the three classes of individuals studied, without structural differences in their development. The main non-structural differences involve cell division, mortality rates and timing. The results suggest a modelling of the brain during differentiation, which contributes to the specific functions of each individual class.

  5. Effects of extended prepupal storage duration on adult flight physiology of the alfalfa leafcutting bee (Hymenoptera: Megachilidae).

    PubMed

    Bennett, Meghan M; Petersen, Kelsey; Yocum, George; Rinehart, Joseph; Kemp, William; Greenlee, Kendra J

    2013-06-01

    The alfalfa leafcutting bee, Megachile rotundata (F.), is a solitary, cavity-nesting bee and is the primary pollinator for alfalfa seed production. Bee management practices include cold storage during the prepupal stage. Fluctuating thermal regimes during cold storage increases survival of cold storage and allows a doubling of the cold storage period with no decrease in survival. However, survival, characterized as successful adult emergence, is not qualitative. In this study, we determined whether extended storage affects adult bee respiration or flight physiology. We overwintered bees for a single winter (current management protocol) or for 12 mo longer (extended storage). We used resting and tethered flight metabolic rates and resting critical PO2 (the oxygen partial pressure below which metabolism can no longer be sustained) as indices of adult bee quality. We found no significant differences in body mass, resting or flight metabolic rates, or critical PO2 between the two groups. Together these data indicate that extended storage of M. rotundata produces bees of similar respiratory capacity and flight ability. These findings could increase the use of M. rotundata as an alternative pollinator, allowing for extended storage to time adult emergence with early blooming crops.

  6. Effects of extended prepupal storage duration on adult flight physiology of the alfalfa leafcutting bee (Hymenoptera: Megachilidae).

    PubMed

    Bennett, Meghan M; Petersen, Kelsey; Yocum, George; Rinehart, Joseph; Kemp, William; Greenlee, Kendra J

    2013-06-01

    The alfalfa leafcutting bee, Megachile rotundata (F.), is a solitary, cavity-nesting bee and is the primary pollinator for alfalfa seed production. Bee management practices include cold storage during the prepupal stage. Fluctuating thermal regimes during cold storage increases survival of cold storage and allows a doubling of the cold storage period with no decrease in survival. However, survival, characterized as successful adult emergence, is not qualitative. In this study, we determined whether extended storage affects adult bee respiration or flight physiology. We overwintered bees for a single winter (current management protocol) or for 12 mo longer (extended storage). We used resting and tethered flight metabolic rates and resting critical PO2 (the oxygen partial pressure below which metabolism can no longer be sustained) as indices of adult bee quality. We found no significant differences in body mass, resting or flight metabolic rates, or critical PO2 between the two groups. Together these data indicate that extended storage of M. rotundata produces bees of similar respiratory capacity and flight ability. These findings could increase the use of M. rotundata as an alternative pollinator, allowing for extended storage to time adult emergence with early blooming crops. PMID:23865171

  7. The four hexamerin genes in the honey bee: structure, molecular evolution and function deduced from expression patterns in queens, workers and drones

    PubMed Central

    2010-01-01

    Background Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens. Results The hexamerin genes of the honey bee (hex 70a, hex 70b, hex 70c and hex 110) diverge considerably in structure, so that the overall amino acid identity shared among their deduced protein subunits varies from 30 to 42%. Bioinformatics search for motifs in the respective upstream control regions (UCRs) revealed six overrepresented motifs including a potential binding site for Ultraspiracle (Usp), a target of juvenile hormone (JH). The expression of these genes was induced by topical application of JH on worker larvae. The four genes are highly transcribed by the larval fat body, although with significant differences in transcript levels, but only hex 110 and hex 70a are re-induced in the adult fat body in a caste- and sex-specific fashion, workers showing the highest expression. Transcripts for hex 110, hex 70a and hex70b were detected in developing ovaries and testes, and hex 110 was highly transcribed in the ovaries of egg-laying queens. A phylogenetic analysis revealed that HEX 110 is located at the most basal position among the holometabola hexamerins, and like HEX 70a and HEX 70c, it shares potential orthology relationship with hexamerins from other hymenopteran species. Conclusions Striking differences were found in the structure and developmental expression of the four hexamerin genes in the honey bee. The presence of a potential binding site for Usp in the respective 5' UCRs, and the results of experiments on JH level manipulation in vivo support the hypothesis of regulation by JH. Transcript levels and patterns in the fat body and gonads suggest that

  8. Compassion fatigue and the adult protective services social worker.

    PubMed

    Bourassa, Dara Bergel

    2009-04-01

    Compassion fatigue is a relatively new term that describes the symptoms that are experienced by social workers and other helping professionals who work with clients experiencing trauma. This article defines the concept of compassion fatigue and relates compassion fatigue to Adult Protective Services (APS) social workers. It is proposed that APS social workers may be susceptible to the deleterious effects of compassion fatigue due to the nature of their work and environment. Suggestions for avoidance of compassion fatigue are also discussed, including self-care strategies and the need for continuing education regarding this phenomenon.

  9. Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee

    PubMed Central

    Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather

    2016-01-01

    Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources. PMID:26943127

  10. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false When must adults and dislocated workers be... LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When must adults...

  11. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false When must adults and dislocated workers be... LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When must adults...

  12. A Strong Immune Response in Young Adult Honeybees Masks Their Increased Susceptibility to Infection Compared to Older Bees

    PubMed Central

    Bull, James C.; Ryabov, Eugene V.; Prince, Gill; Mead, Andrew; Zhang, Cunjin; Baxter, Laura A.; Pell, Judith K.; Osborne, Juliet L.; Chandler, Dave

    2012-01-01

    Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance (“housekeeping”) tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger “house” bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease

  13. Specific recognition of reproductive parasite workers by nest-entrance guards in the bumble bee Bombus terrestris

    PubMed Central

    2013-01-01

    Background The impact of social parasites on their hosts’ fitness is a strong selective pressure that can lead to the evolution of adapted defence strategies. Guarding the nest to prevent the intrusion of parasites is a widespread response of host species. If absolute rejection of strangers provides the best protection against parasites, more fine-tuned strategies can prove more adaptive. Guarding is indeed costly and not all strangers constitute a real threat. That is particularly true for worker reproductive parasitism in social insects since only a fraction of non-nestmate visitors, the fertile ones, can readily engage in parasitic reproduction. Guards should thus be more restrictive towards fertile than sterile non-nestmate workers. We here tested this hypothesis by examining the reaction of nest-entrance guards towards nestmate and non-nestmate workers with varying fertility levels in the bumble bee Bombus terrestris. Because social recognition in social insects mainly relies on cuticular lipids (CLs), chemical analysis was also conducted to examine whether workers’ CLs could convey the relevant information upon which guards could base their decision. We thus aimed to determine whether an adapted defensive strategy to worker reproductive parasitism has evolved in B. terrestris colonies. Results Chemical analysis revealed that the cuticular chemical profiles of workers encode information about both their colony membership and their current fertility, therefore providing potential recognition cues for a suitable adjustment of the guards’ defensive decisions. We found that guards were similarly tolerant towards sterile non-nestmate workers than towards nestmate workers. However, as predicted, guards responded more aggressively towards fertile non-nestmates. Conclusion Our results show that B. terrestris guards discriminate non-nestmates that differ in their reproductive potential and respond more strongly to the individuals that are a greatest threat for

  14. Effectiveness of Dysphagia Training for Adult Learning Disabilities Support Workers

    ERIC Educational Resources Information Center

    Tredinnick, Gerlind; Cocks, Naomi

    2014-01-01

    This study investigated the effectiveness of a 1-day dysphagia training package delivered to support workers who work with adults with a learning disability. Thirty-eight support staff took part in this study. Twenty-five support staff received training, and 13 did not receive training and therefore acted as a control group. Three questionnaires…

  15. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When...

  16. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When...

  17. 20 CFR 663.105 - When must adults and dislocated workers be registered?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When...

  18. Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers

    PubMed Central

    Richard, F-J; Aubert, A; Grozinger, CM

    2008-01-01

    Background Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent environment for pathogen or parasite transmission with controlled environmental conditions in the hive, high population densities, and frequent interactions. This suggests that honey bees may have developed complementary mechanisms, such as behavioral modifications, to deal with disease. Results Here, we demonstrate that activation of the immune system in honey bees (using bacterial lipopolysaccharides as a non-replicative pathogen) alters the social responses of healthy nestmates toward the treated individuals. Furthermore, treated individuals expressed significant differences in overall cuticular hydrocarbon profiles compared with controls. Finally, coating healthy individuals with extracts containing cuticular hydrocarbons of immunostimulated individuals significantly increased the agonistic responses of nestmates. Conclusion Since cuticular hydrocarbons play a critical role in nestmate recognition and other social interactions in a wide variety of insect species, modulation of such chemical profiles by the activation of the immune system could play a crucial role in the social regulation of pathogen dissemination within the colony. PMID:19014614

  19. Detection of Neural Activity in the Brains of Japanese Honeybee Workers during the Formation of a “Hot Defensive Bee Ball”

    PubMed Central

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a “hot defensive bee ball” by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing. PMID:22431987

  20. Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees.

    PubMed

    Withers, G S; Fahrbach, S E; Robinson, G E

    1995-01-01

    There is an age-related division of labor in the honey bee colony that is regulated by juvenile hormone. After completing metamorphosis, young workers have low titers of juvenile hormone and spend the first several weeks of their adult lives performing tasks within the hive. Older workers, approximately 3 weeks of age, have high titers of juvenile hormone and forage outside the hive for nectar and pollen. We have previously reported that changes in the volume of the mushroom bodies of the honey bee brain are temporally associated with the performance of foraging. The neuropil of the mushroom bodies is increased in volume, whereas the volume occupied by the somata of the Kenyon cells is significantly decreased in foragers relative to younger workers. To study the effect of flight experience and juvenile hormone on these changes within the mushroom bodies, young worker bees were treated with the juvenile hormone analog methoprene but a subset was prevented from foraging (big back bees). Stereological volume estimates revealed that, regardless of foraging experience, bees treated with methoprene had a significantly larger volume of neuropil in the mushroom bodies and a significantly smaller Kenyon cell somal region volume than did 1-day-old bees. The bees treated with methoprene did not differ on these volume estimates from untreated foragers (presumed to have high endogenous levels of juvenile hormone) of the same age sampled from the same colony. Bees prevented from flying and foraging nonetheless received visual stimulation as they gathered at the hive entrance. These results, coupled with a subregional analysis of the neuropil, suggest a potentially important role of visual stimulation, possibly interacting with juvenile hormone, as an organizer of the mushroom bodies. In an independent study, the brains of worker bees in which the transition to foraging was delayed (overaged nurse bees) were also studied. The mushroom bodies of overaged nurse bees had a Kenyon

  1. Honeybee (Apis mellifera L.) queen feces: Source of a pheromone that repels worker bees.

    PubMed

    Post, D C; Page, R E; Erickson, E H

    1987-03-01

    When placed in a small observation arena with workers, most young virgin honeybee queens released fecal (hindgut) material during agonistic interactions with workers and with each other. On release of this material, workers moved to the sides of the arena and groomed themselves. Bioassays of virgin queen fecal material demonstrated that it contains pheromone that repels workers and stimulates grooming behavior. Pheromone was present only in the feces of virgin queens that were more than 24 hr old and less than 2 weeks old. Feces of 2- to 4-day-old workers and virgin queens more than 2 weeks old did not elicit an avoidance response by workers. Moreover, the feces of young virgin queens had a strong fragrance, while that of older queens had a rancid odor and that of young workers had no detectable odor.

  2. Mandibular gland secretions of meliponine worker bees: further evidence for their role in interspecific and intraspecific defence and aggression and against their role in food source signalling.

    PubMed

    Schorkopf, Dirk Louis P; Hrncir, Michael; Mateus, Sidnei; Zucchi, Ronaldo; Schmidt, Veronika M; Barth, Friedrich G

    2009-04-01

    Like ants and termites some species of stingless bees (Meliponini), which are very important pollinators in the tropics, use pheromone trails to communicate the location of a food source. We present data on the communicative role of mandibular gland secretions of Meliponini that resolve a recent controversy about their importance in the laying of such trails. Volatile constituents of the mandibular glands have been erroneously thought both to elicit aggressive/defensive behaviour and to signal food source location. We studied Trigona spinipes and Scaptotrigona aff. depilis ('postica'), two sympatric species to which this hypothesis was applied. Using extracts of carefully dissected glands instead of crude cephalic extracts we analysed the substances contained in the mandibular glands of worker bees. Major components of the extracts were 2-heptanol (both species), nonanal (T. spinipes), benzaldehyde and 2-tridecanone (S. aff. depilis). The effect of mandibular gland extracts and of individual components thereof on the behaviour of worker bees near their nest and at highly profitable food sources was consistent. Independent of the amount of mandibular gland extract applied, the bees overwhelmingly reacted with defensive behaviour and were never attracted to feeders scented with mandibular gland extract or any of the synthetic chemicals tested. Both bee species are capable of using mandibular gland secretions for intra- and interspecific communication of defence and aggression and share 2-heptanol as a major pheromone compound. While confirming the role of the mandibular glands in nest defence, our experiments provide strong evidence against their role in food source signalling. PMID:19329748

  3. Common endocrine and genetic mechanisms of behavioral development in male and worker honey bees and the evolution of division of labor.

    PubMed

    Giray, T; Robinson, G E

    1996-10-15

    Temporal polyethism is a highly derived form of behavioral development displayed by social insects. Hormonal and genetic mechanisms regulating temporal polyethism in worker honey bees have been identified, but the evolution of these mechanisms is not well understood. We performed three experiments with male honey bees (drones) to investigate how mechanisms regulating temporal polyethism may have evolved because, relative to workers, drones display an intriguing combination of similarities and differences in behavioral development. We report that behavioral development in drones is regulated by mechanisms common to workers. In experiment 1, drones treated with the juvenile hormone (JH) analog methoprene started flying at significantly younger ages than did control drones, as is the case for workers. In experiment 2, there was an age-related increase in JH associated with the onset of drone flight, as in workers. In experiment 3, drones derived from workers with fast rates of behavioral development themselves started flying at younger ages than drones derived from workers with slower rates of behavioral development. These results suggest that endocrine and genetic mechanisms associated with temporal polyethism did not evolve strictly within the context of worker social behavior.

  4. Consumption of tyrosine in royal jelly increases brain levels of dopamine and tyramine and promotes transition from normal to reproductive workers in queenless honey bee colonies.

    PubMed

    Matsuyama, Syuhei; Nagao, Takashi; Sasaki, Ken

    2015-01-15

    Dopamine (DA) and tyramine (TA) have neurohormonal roles in the production of reproductive workers in queenless colonies of honey bees, but the regulation of these biogenic amines in the brain are still largely unclear. Nutrition is an important factor in promoting reproduction and might be involved in the regulation of these biogenic amines in the brain. To test this hypothesis, we examined the effect of oral treatments of tyrosine (Tyr; a common precursor of DA, TA and octopamine, and a component of royal jelly) in queenless workers and quantified the resulting production of biogenic amines. Tyrosine treatments enhanced the levels of DA, TA and their metabolites in the brain. Workers fed royal jelly had significantly larger brain levels of Tyr, DA, TA and the metabolites in the brains compared with those bees fed honey or sucrose (control). Treatment with Tyr also inhibited the behavior of workers outside of the hive and promoted ovarian development. These results suggest that there is a link between nutrition and the regulation of DA and TA in the brain to promote the production of reproductive workers in queenless honey bee colonies. PMID:25448251

  5. Consumption of tyrosine in royal jelly increases brain levels of dopamine and tyramine and promotes transition from normal to reproductive workers in queenless honey bee colonies.

    PubMed

    Matsuyama, Syuhei; Nagao, Takashi; Sasaki, Ken

    2015-01-15

    Dopamine (DA) and tyramine (TA) have neurohormonal roles in the production of reproductive workers in queenless colonies of honey bees, but the regulation of these biogenic amines in the brain are still largely unclear. Nutrition is an important factor in promoting reproduction and might be involved in the regulation of these biogenic amines in the brain. To test this hypothesis, we examined the effect of oral treatments of tyrosine (Tyr; a common precursor of DA, TA and octopamine, and a component of royal jelly) in queenless workers and quantified the resulting production of biogenic amines. Tyrosine treatments enhanced the levels of DA, TA and their metabolites in the brain. Workers fed royal jelly had significantly larger brain levels of Tyr, DA, TA and the metabolites in the brains compared with those bees fed honey or sucrose (control). Treatment with Tyr also inhibited the behavior of workers outside of the hive and promoted ovarian development. These results suggest that there is a link between nutrition and the regulation of DA and TA in the brain to promote the production of reproductive workers in queenless honey bee colonies.

  6. Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae - A morphology/differential gene expression analysis.

    PubMed

    Santos, Carolina Gonçalves; Hartfelder, Klaus

    2015-01-01

    Phenotypic plasticity is a hallmark of the caste systems of social insects, expressed in their life history and morphological traits. These are best studied in bees. In their co-evolution with angiosperm plants, the females of corbiculate bees have acquired a specialized structure on their hind legs for collecting pollen. In the highly eusocial bees (Apini and Meliponini), this structure is however only present in workers and absent in queens. By means of histological sections and cell proliferation analysis we followed the developmental dynamics of the hind legs of queens and workers in the fourth and fifth larval instars. In parallel, we generated subtractive cDNA libraries for hind leg discs of queen and worker larvae by means of a Representational Difference Analysis (RDA). From the total of 135 unique sequences we selected 19 for RT-qPCR analysis, where six of these were confirmed as differing significantly in their expression between the two castes in the larval spinning stage. The development of complex structures such as the bees' hind legs, requires diverse patterning mechanisms and signaling modules, as indicated by the set of differentially expressed genes related with cell adhesion and signaling pathways. PMID:26500430

  7. Ultrastructure of the intramandibular gland of workers and queens of the stingless bee, Melipona quadrifasciata.

    PubMed

    Da Cruz-Landim, Carminda; Gracioli-Vitti, Luciana F; Abdalla, Fábio C

    2011-01-01

    The intramandibular glands of workers and queens of Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae), at different ages and from different functional groups, were studied using light and transmission electron microscopy. The results demonstrated that these glands are composed of two types of secretory structures: 1.A hypertrophied epidermis on the dorsal side of the mandible that is an epithelial gland. 2. Free secretory cells filling the inner spaces of the appendices that constitute a unicellular gland. The epithelial gland is larger in the young (1-2-day-old workers), and the gland becomes involuted during the nurse worker stage. The unicellular glands of the workers posses some secretion during all of the studied phases, but secretory activity is more intensive in the foraging workers. Vesicles of secretion are absent in the unicellular glands of queens. These results demonstrate that these glands show functional adaptations in different castes corresponding to the functions of each caste.

  8. Ultrastructure of the Intramandibular Gland of Workers and Queens of the Stingless Bee, Melipona quadrifasciata

    PubMed Central

    Da Cruz-Landim, Carminda; Gracioli-Vitti, Luciana F.; Abdalla, Fábio C.

    2011-01-01

    The intramandibular glands of workers and queens of Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae), at different ages and from different functional groups, were studied using light and transmission electron microscopy. The results demonstrated that these glands are composed of two types of secretory structures: 1.A hypertrophied epidermis on the dorsal side of the mandible that is an epithelial gland. 2. Free secretory cells filling the inner spaces of the appendices that constitute a unicellular gland. The epithelial gland is larger in the young (1-2-day-old workers), and the gland becomes involuted during the nurse worker stage. The unicellular glands of the workers posses some secretion during all of the studied phases, but secretory activity is more intensive in the foraging workers. Vesicles of secretion are absent in the unicellular glands of queens. These results demonstrate that these glands show functional adaptations in different castes corresponding to the functions of each caste. PMID:22220493

  9. Seat Belt Use Among Adult Workers - 21 States, 2013.

    PubMed

    Boal, Winifred L; Li, Jia; Rodriguez-Acosta, Rosa L

    2016-06-17

    Roadway incidents involving motorized vehicles accounted for 24% of fatal occupational injuries in the United States during 2013 and were the leading cause of fatal injuries among workers.* In 2013, workers' compensation costs for serious, nonfatal injuries among work-related roadway incidents involving motorized land vehicles were estimated at $2.96 billion.(†) Seat belt use is a proven method to reduce injuries to motor vehicle occupants (1). Use of lap/shoulder seat belts reduces the risk for fatal injuries to front seat occupants of cars by 45% and the risk to light truck occupants by 60%.(§) To characterize seat belt use among adult workers by occupational group, CDC analyzed data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS) and found that not always using a seat belt was significantly associated with occupational group after controlling for factors known to influence seat belt use. Occupational groups with the highest prevalences of not always using a seat belt included construction and extraction; farming, fishing, and forestry; and installation, maintenance, and repair. To increase seat belt use among persons currently employed, states can enact and enforce primary seat belt laws, employers can set and enforce safety policies requiring seat belt use by all vehicle occupants, and seat belt safety advocates can target interventions to workers in occupational groups with lower reported seat belt use.

  10. Seat Belt Use Among Adult Workers - 21 States, 2013.

    PubMed

    Boal, Winifred L; Li, Jia; Rodriguez-Acosta, Rosa L

    2016-01-01

    Roadway incidents involving motorized vehicles accounted for 24% of fatal occupational injuries in the United States during 2013 and were the leading cause of fatal injuries among workers.* In 2013, workers' compensation costs for serious, nonfatal injuries among work-related roadway incidents involving motorized land vehicles were estimated at $2.96 billion.(†) Seat belt use is a proven method to reduce injuries to motor vehicle occupants (1). Use of lap/shoulder seat belts reduces the risk for fatal injuries to front seat occupants of cars by 45% and the risk to light truck occupants by 60%.(§) To characterize seat belt use among adult workers by occupational group, CDC analyzed data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS) and found that not always using a seat belt was significantly associated with occupational group after controlling for factors known to influence seat belt use. Occupational groups with the highest prevalences of not always using a seat belt included construction and extraction; farming, fishing, and forestry; and installation, maintenance, and repair. To increase seat belt use among persons currently employed, states can enact and enforce primary seat belt laws, employers can set and enforce safety policies requiring seat belt use by all vehicle occupants, and seat belt safety advocates can target interventions to workers in occupational groups with lower reported seat belt use. PMID:27309488

  11. Comparisons of Pollen Substitute Diets for Honey bees: Consumprion Rates by Colonies and Effects on Brood and Adult Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercially available pollen substitute diets for honey bees (Apis mellifera L.) were evaluated for consumption and colony growth (brood and adult populations) and compared with pollen cake and high fructose corn syrup (HFCS). Two trials were conducted; the first for 4 months during the fall and wi...

  12. Comparisons of pollen substitute diets for honey bees: consumption rates by colonies and effects on brood and adult populations.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercially available pollen substitute diets for honey bees (Apis mellifera L.) were evaluated for consumption and colony growth (brood and adult populations) and compared with pollen cake and high fructose corn syrup (HFCS). Two trials were conducted; the first for 3 months during the fall and w...

  13. Stingless bees: chemical differences and potential functions in Nannotrigona testaceicornis and Plebeia droryana males and workers.

    PubMed

    Pianaro, Adriana; Menezes, Cristiano; Kerr, Warwick Estevam; Singer, Rodrigo B; Patricio, Eda Flávia Lotufo R A; Marsaioli, Anita J

    2009-09-01

    Cuticular wax, abdominal and cephalic extracts of foraging workers and males of Nannotrigona testaceicornis and Plebeia droryana, from the "Aretuzina" farm in São Simão, SP, Brazil, were analyzed by GC-MS. The principal constituents were hydrocarbons, terpenes, aldehydes, esters, steroids, alcohols, and fatty acids. Interspecific differences for both cuticular wax and cephalic extracts were found. The composition of cuticular wax and cephalic extracts was similar at the intraspecific level, with minor component differences between males and workers. Abdominal extracts differentiated sexes (male and worker) at the intraspecific and interspecific levels. The main chemical components in abdominal extracts of N. testaceicornis workers and males were geranylgeranyl acetate and (Z)-9-nonacosene, respectively. The principal components of abdominal extracts from P. droryana workers and males were tetradecanal and unsaturated fatty acids (linoleic and linolenic acids), respectively. A secondary alcohol, (S)-2-nonanol, was detected in Plebeia droryana males only, but not in workers. Preliminary field experiments showed that (S)-(+)-2-heptanol and (S)-(+)-2-heptanol/(S)-(+)-2-nonanol (1:1) attracted workers of P. droryana, N. testaceicornis,and Frieseomelitta silvestrii. However, males did not respond suggesting that these compounds do not function as alarm or recruitment pheromones. In addition, racemic mixtures were inactive.

  14. Exposure to neonicotinoids influences the motor function of adult worker honeybees.

    PubMed

    Williamson, Sally M; Willis, Sarah J; Wright, Geraldine A

    2014-10-01

    Systemic pesticides such as neonicotinoids are commonly used on flowering crops visited by pollinators, and their use has been implicated in the decline of insect pollinator populations in Europe and North America. Several studies show that neonicotinoids affect navigation and learning in bees but few studies have examined whether these substances influence their basic motor function. Here, we investigated how prolonged exposure to sublethal doses of four neonicotinoid pesticides (imidacloprid, thiamethoxam, clothianidin, dinotefuran) and the plant toxin, nicotine, affect basic motor function and postural control in foraging-age worker honeybees. We used doses of 10 nM for each neonicotinoid: field-relevant doses that we determined to be sublethal and willingly consumed by bees. The neonicotinoids were placed in food solutions given to bees for 24 h. After the exposure period, bees were more likely to lose postural control during the motor function assay and fail to right themselves if exposed to imidacloprid, thiamethoxam, clothianidin. Bees exposed to thiamethoxam and nicotine also spent more time grooming. Other behaviours (walking, sitting and flying) were not significantly affected. Expression of changes in motor function after exposure to imidacloprid was dose-dependent and affected all measured behaviours. Our data illustrate that 24 h exposure to sublethal doses of neonicotinoid pesticides has a subtle influence on bee behaviour that is likely to affect normal function in a field setting.

  15. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers.

    PubMed

    Holman, Luke; Trontti, Kalevi; Helanterä, Heikki

    2016-01-01

    DNA methylation is emerging as an important regulator of polyphenism in the social insects. Research has concentrated on differences in methylation between queens and workers, though we hypothesized that methylation is involved in mediating other flexible phenotypes, including pheromone-dependent changes in worker behaviour and physiology. Here, we find that exposure to queen pheromone affects the expression of two DNA methyltransferase genes in Apis mellifera honeybees and in two species of Lasius ants, but not in Bombus terrestris bumblebees. These results suggest that queen pheromones influence the worker methylome, pointing to a novel proximate mechanism for these key social signals. PMID:26814223

  16. Characterization of quantitative trait loci for the age of first foraging in honey bee workers.

    PubMed

    Rueppell, Olav

    2009-09-01

    Identifying the basis of quantitative trait loci (QTL) remains challenging for the study of complex traits, such as behavior. The honey bee is a good model combining interesting social behavior with a high recombination rate that facilitates this identification. Several studies have focused on the pollen hoarding syndrome, identifying multiple QTL as the genetic basis of its behavioral components. One component, the age of first foraging, is central for colony organization and four QTL were previously described without identification of their genomic location. Enabled by the honey bee genome project, this study provides data from multiple experiments to scrutinize these QTL, including individual and pooled SNP mapping, sequencing of AFLP markers, and microsatellite genotyping. The combined evidence confirms and localizes two of the previous QTL on chromosome four and five, dismisses the other two, and suggests one novel genomic region on chromosome eleven to influence the age of first foraging. Among the positional candidates the Ank2, PKC, Erk7, and amontillado genes stand out due to corroborating functional evidence. This study thus demonstrates the power of combined, genome-based approaches to enable targeted studies of a manageable set of candidate genes for natural behavioral variation in the important, complex social trait "age of first foraging". PMID:19449161

  17. Environmental Education through Adult Education. A Manual for Adult Educators, Instructors, Teachers and Social Extension Workers.

    ERIC Educational Resources Information Center

    Rugumayo, Edward B., Comp.; Ibikunle-Johnson, Victor O., Comp.

    The purpose of this manual is to make available to adult educators and field extension workers in Kenya resource material that may be used in formal and nonformal training programs for the environmental education of a wide range of target groups. The document begins with a 26-item glossary, an introduction, a section on the document's use,…

  18. Social Workers' Attitudes toward Older Adults: A Review of the Literature

    ERIC Educational Resources Information Center

    Wang, Donna; Chonody, Jill

    2013-01-01

    Ageist attitudes toward older adults have been recognized as barriers to recruiting and training competent social workers. This article provides a systematic review of the literature that focused on social workers' and social work students' attitudes toward older adults and working with older adults. The authors sought empirical studies…

  19. 20 CFR 663.200 - What are intensive services for adults and dislocated workers?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What are intensive services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Intensive Services § 663.200 What are intensive services for adults and dislocated workers?...

  20. 20 CFR 663.200 - What are intensive services for adults and dislocated workers?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What are intensive services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Intensive Services § 663.200 What are intensive services for adults and dislocated workers?...

  1. 20 CFR 663.300 - What are training services for adults and dislocated workers?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What are training services for adults and..., DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Training Services § 663.300 What are training services for adults and dislocated workers? Training...

  2. 20 CFR 663.200 - What are intensive services for adults and dislocated workers?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What are intensive services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Intensive Services § 663.200 What are intensive services for adults and dislocated workers?...

  3. 20 CFR 663.800 - What are supportive services for adults and dislocated workers?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What are supportive services for adults and..., DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Supportive Services § 663.800 What are supportive services for adults and dislocated workers?...

  4. 20 CFR 663.200 - What are intensive services for adults and dislocated workers?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What are intensive services for adults and..., DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Intensive Services § 663.200 What are intensive services for adults and dislocated workers? (a)...

  5. 20 CFR 663.200 - What are intensive services for adults and dislocated workers?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What are intensive services for adults and..., DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Intensive Services § 663.200 What are intensive services for adults and dislocated workers? (a)...

  6. 20 CFR 663.300 - What are training services for adults and dislocated workers?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What are training services for adults and..., DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Training Services § 663.300 What are training services for adults and dislocated workers? Training...

  7. Precocene-I inhibits juvenile hormone biosynthesis, ovarian activation, aggression and alters sterility signal production in bumble bee (Bombus terrestris) workers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone (JH) is an important regulator of development and physiology in insects. While in many insect species, including bumble bees, JH function as gonadotropin in adults, in some highly eusocial insects its role has shifted to regulate social behavior including division of labor, dominanc...

  8. Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).

    PubMed

    Abramson, Charles I; Aquino, Italo S

    2002-01-01

    Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed.

  9. A new threat to honey bees, the parasitic phorid fly Apocephalus borealis.

    PubMed

    Core, Andrew; Runckel, Charles; Ivers, Jonathan; Quock, Christopher; Siapno, Travis; Denault, Seraphina; Brown, Brian; Derisi, Joseph; Smith, Christopher D; Hafernik, John

    2012-01-01

    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD. PMID:22235317

  10. A New Threat to Honey Bees, the Parasitic Phorid Fly Apocephalus borealis

    PubMed Central

    Core, Andrew; Runckel, Charles; Ivers, Jonathan; Quock, Christopher; Siapno, Travis; DeNault, Seraphina; Brown, Brian; DeRisi, Joseph; Smith, Christopher D.; Hafernik, John

    2012-01-01

    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD. PMID:22235317

  11. Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae - A morphology/differential gene expression analysis

    PubMed Central

    Santos, Carolina Gonçalves; Hartfelder, Klaus

    2015-01-01

    Phenotypic plasticity is a hallmark of the caste systems of social insects, expressed in their life history and morphological traits. These are best studied in bees. In their co-evolution with angiosperm plants, the females of corbiculate bees have acquired a specialized structure on their hind legs for collecting pollen. In the highly eusocial bees (Apini and Meliponini), this structure is however only present in workers and absent in queens. By means of histological sections and cell proliferation analysis we followed the developmental dynamics of the hind legs of queens and workers in the fourth and fifth larval instars. In parallel, we generated subtractive cDNA libraries for hind leg discs of queen and worker larvae by means of a Representational Difference Analysis (RDA). From the total of 135 unique sequences we selected 19 for RT-qPCR analysis, where six of these were confirmed as differing significantly in their expression between the two castes in the larval spinning stage. The development of complex structures such as the bees’ hind legs, requires diverse patterning mechanisms and signaling modules, as indicated by the set of differentially expressed genes related with cell adhesion and signaling pathways. PMID:26500430

  12. Observation of Varroa destructor behavior in capped worker brood of Africanized honey bees.

    PubMed

    Calderón, Rafael A; Chaves, Guisella; Sánchez, Luis A; Calderón, Rolando

    2012-11-01

    The behavioral activity of Varroa destructor was observed using transparent cells. Mite oviposition started at 45.0 ± 25.0 h post capping, followed by the next eggs laid at regular 27.3 ± 2.0 h intervals. On the prepupa, mites were found to feed often and there was no preference for a specific segment as a feeding site. During the pupal stage the mite fed less often and almost always at the same point. Varroa showed a preference for defecation in the posterior part of the cell. A significant association was observed between the position of the feeding point in the pupa and the defecation site on the cell wall. Displacement behavior was observed in 71 % of the infested bee larvae and a major change in the free space available for varroa in the cell occurred when the prepupa molted into a pupa.

  13. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker...

  14. A mid-cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality.

    PubMed

    Rehan, Sandra M; Leys, Remko; Schwarz, Michael P

    2012-01-01

    The origin of sterile worker castes, resulting in eusociality, represents one of the major evolutionary transitions in the history of life. Understanding how eusociality has evolved is therefore an important issue for understanding life on earth. Here we show that in the large bee subfamily Xylocopinae, a simple form of sociality was present in the ancestral lineage and there have been at least four reversions to purely solitary nesting. The ancestral form of sociality did not involve morphological worker castes and maximum colony sizes were very small. True worker castes, entailing a life-time commitment to non-reproductive roles, have evolved only twice, and only one of these resulted in discrete queen-worker morphologies. Our results indicate extremely high barriers to the evolution of eusociality. Its origins are likely to have required very unusual life-history and ecological circumstances, rather than the amount of time that selection can operate on more simple forms of sociality.

  15. Selecting honey bees for worker brood that reduces the reproduction of Varroa destructor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated an effect of Apis mellifera worker brood on the reproduction of Varroa destructor as a resistance trait by conducting seven generations of bidirectional selection. Initial tests showed two-fold differences in mite fecundity (progeny per foundress mites) between colonies of different...

  16. Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.).

    PubMed

    Fang, Yu; Song, Feifei; Zhang, Lan; Aleku, Dereje Woltedji; Han, Bin; Feng, Mao; Li, Jianke

    2012-01-01

    To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals.

  17. Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.).

    PubMed

    Fang, Yu; Song, Feifei; Zhang, Lan; Aleku, Dereje Woltedji; Han, Bin; Feng, Mao; Li, Jianke

    2012-01-01

    To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals. PMID:21982827

  18. Infectivity and virulence of Nosema ceranae and Nosema apis in commercially available North American honey bees.

    PubMed

    Huang, Wei-Fone; Solter, Leellen; Aronstein, Katherine; Huang, Zachary

    2015-01-01

    Nosema ceranae infection is ubiquitous in western honey bees, Apis mellifera, in the United States and the pathogen has apparently replaced Nosema apis in colonies nationwide. Displacement of N. apis suggests that N. ceranae has competitive advantages but N. ceranae was significantly less infective and less virulent than N. apis in commercially available lineages of honey bees in studies conducted in Illinois and Texas. At 5 days post eclosion, the most susceptible age of adult bees tested, the mean ID50 for N. apis was 359 spores compared to 3217 N. ceranae spores, a nearly 9-fold difference. Infectivity of N. ceranae was also lower than N. apis for 24-h and 14-day worker bees. N. ceranae was less infective than reported in studies using European strains of honey bees, while N. apis infectivity, tested in the same cohort of honey bees, corresponded to results reported globally from 1972 to 2010. Mortality of worker bees was similar for both pathogens at a dosage of 50 spores and was not different from the uninfected controls, but was significantly higher for N. apis than N. ceranae at dosages ⩾500 spores. Our results provide comparisons for evaluating research using different ages of bees and pathogen dosages and clarify some controversies. In addition, comparisons among studies suggest that the mixed lineages of US honey bees may be less susceptible to N. ceranae infections than are European bees or that the US isolates of the pathogen are less infective and less virulent than European isolates.

  19. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services...

  20. Examining Self-Protection Measures Guarding Adult Protective Services Social Workers against Compassion Fatigue

    ERIC Educational Resources Information Center

    Bourassa, Dara

    2012-01-01

    Little research has focused on the risk factors, effects, and experiences of compassion fatigue among gerontological social workers. This qualitative study explores the experiences and perspectives of nine Adult Protective Services (APS) social workers in relation to compassion fatigue. Results show that the APS social workers combined personal…

  1. Visible and near-infrared spectroscopy detects queen honey bee insemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abdomens of honey bee queens, the heads of worker bees, and the ventriculi of worker bees were analyzed by visible and near-infrared spectroscopy. Mated honey bee queens could be distinguished from virgin queens by their spectra with 100% accuracy. Also, the heads of worker bees taken from the...

  2. Visible and Near-Infrared Spectroscopy Detects Honey Bee Queen Insemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abdomens of honey bee queens, the heads of worker bees, and the ventriculi of worker bees were analyzed by visible and near-infrared spectroscopy. Mated honey bee queens could be distinguished from virgin queens by their spectra with 100% accuracy. Also, the heads of worker bees taken from the ...

  3. The Experiences of Older Adult Dislocated Workers in Community College Non-Credit Workforce Training Programs

    ERIC Educational Resources Information Center

    Williams, Stelfanie Sherrell

    2011-01-01

    The purpose of this qualitative study was to explore the experiences of older adult dislocated workers who participated in community college non-credit workforce training programs. The research questions guiding the study were: (a) what are the experiences of older adult dislocated workers who attend community college non-credit workforce…

  4. The alternative Pharaoh approach: stingless bees mummify beetle parasites alive

    NASA Astrophysics Data System (ADS)

    Greco, Mark K.; Hoffmann, Dorothee; Dollin, Anne; Duncan, Michael; Spooner-Hart, Robert; Neumann, Peter

    2010-03-01

    Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers ( Trigona carbonaria) immediately mummify invading adult small hive beetles ( Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.

  5. The alternative Pharaoh approach: stingless bees mummify beetle parasites alive.

    PubMed

    Greco, Mark K; Hoffmann, Dorothee; Dollin, Anne; Duncan, Michael; Spooner-Hart, Robert; Neumann, Peter

    2010-03-01

    Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers (Trigona carbonaria) immediately mummify invading adult small hive beetles (Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.

  6. Risk indicators for tooth loss in adult workers.

    PubMed

    Batista, Marília Jesus; Rihs, Lílian Berta; Sousa, Maria da Luz Rosário de

    2012-01-01

    Tooth loss continues to be a prevalent condition in Brazilian adults and elderly individuals. The aim of this cross-sectional study, conducted among workers in a wholesale grocery chain in the State of São Paulo, was to identify risk indicators for tooth loss in adults. The presence of caries and periodontal status were examined in 387 adults aged 20-64 years, according to World Health Organization criteria. Two outcomes were analyzed: loss of one or more teeth, and loss of four or more teeth. Independent variables analyzed were demographic and socioeconomic factors, clinical conditions, use of dental services, and self-perceived oral health. Poisson regression models were used for multivariate statistical analysis. Participants were missing a mean of 5.38 teeth, and 76.9% (n = 297) had lost at least one tooth; the most frequently lost teeth were permanent molars. Older age and the presence of visible dental biofilm were associated significantly with the two tooth loss outcomes (p < 0.05). Individuals who had visited the dentist 3 or more years previously showed a lower prevalence of tooth loss (prevalence ratio = 0.79; 95% confidence interval, 0.68-0.91). Those with lower household incomes were significantly more likely to have lost four or more teeth (prevalence ratio = 1.35; 95% confidence interval, 1.07-1.70). Study results indicated that age and dental biofilm were risk indicators for tooth loss, independently of socioeconomic factors. These risk indicators should be considered when planning oral health programs for adults.

  7. Risk indicators for tooth loss in adult workers.

    PubMed

    Batista, Marília Jesus; Rihs, Lílian Berta; Sousa, Maria da Luz Rosário de

    2012-01-01

    Tooth loss continues to be a prevalent condition in Brazilian adults and elderly individuals. The aim of this cross-sectional study, conducted among workers in a wholesale grocery chain in the State of São Paulo, was to identify risk indicators for tooth loss in adults. The presence of caries and periodontal status were examined in 387 adults aged 20-64 years, according to World Health Organization criteria. Two outcomes were analyzed: loss of one or more teeth, and loss of four or more teeth. Independent variables analyzed were demographic and socioeconomic factors, clinical conditions, use of dental services, and self-perceived oral health. Poisson regression models were used for multivariate statistical analysis. Participants were missing a mean of 5.38 teeth, and 76.9% (n = 297) had lost at least one tooth; the most frequently lost teeth were permanent molars. Older age and the presence of visible dental biofilm were associated significantly with the two tooth loss outcomes (p < 0.05). Individuals who had visited the dentist 3 or more years previously showed a lower prevalence of tooth loss (prevalence ratio = 0.79; 95% confidence interval, 0.68-0.91). Those with lower household incomes were significantly more likely to have lost four or more teeth (prevalence ratio = 1.35; 95% confidence interval, 1.07-1.70). Study results indicated that age and dental biofilm were risk indicators for tooth loss, independently of socioeconomic factors. These risk indicators should be considered when planning oral health programs for adults. PMID:23018226

  8. Expression analysis of putative vitellogenin and lipophorin receptors in honey bee (Apis mellifera L.) queens and workers.

    PubMed

    Guidugli-Lazzarini, Karina Rosa; do Nascimento, Adriana Mendes; Tanaka, Erica Donato; Piulachs, Maria Dolors; Hartfelder, Klaus; Bitondi, Márcia Gentile; Simões, Zilá Luz Paulino

    2008-07-01

    Two members of the low density lipoprotein receptor (LDLR) family were identified as putative orthologs for a vitellogenin receptor (Amvgr) and a lipophorin receptor (Amlpr) in the Apis mellifera genome. Both receptor sequences have the structural motifs characteristic of LDLR family members and show a high degree of similarity with sequences of other insects. RT-PCR analysis of Amvgr and Amlpr expression detected the presence of both transcripts in different tissues of adult female (ovary, fat body, midgut, head and specifically hypopharyngeal gland), as well as in embryos. In the head RNA samples we found two variant forms of AmLpR: a full length one and a shorter one lacking 29 amino acids in the O-linked sugar domain. In ovaries the expression levels of the two honey bee LDLR members showed opposing trends: whereas Amvgr expression was upregulated as the ovaries became activated, Amlpr transcript levels gradually declined. In situ hybridization analysis performed on ovaries detected Amvgr mRNA exclusively in germ line cells and corroborated the qPCR results showing an increase in Amvgr gene expression concomitant with follicle growth.

  9. Age and reproductive status of adult Varroa mites affect grooming success of honey bees.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated for the first time the grooming response of honey bees to different ages and reproductive statuses of varroa mites in the laboratory. Plastic cages containing a section of dark comb and about 200 bees were inoculated with groups of four different classes of mites: gravid, phoret...

  10. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and...

  11. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and...

  12. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and...

  13. Genomics of the honey bee microbiome

    PubMed Central

    Moran, Nancy A.

    2015-01-01

    The guts of honey bee workers contain a distinctive community of bacterial species. They are microaerophilic or anaerobic, and were not clearly deliniated by earlier studies relying on laboratory culture of isolates under atmospheric oxygen levels. Recently, a more complete picture of the potential metabolism and functions of these bacteria has been possible, using genomic approaches based on metagenomic samples, as well as cultured isolates. Of these, most are host-restricted and are generally absent outside adult guts. These species include both Gram negative groups, such as Gilliamella apicola and Snodgrassella alvi, and Gram positive groups such as certain Lactobacillus and Bifidobacterium species. These gut bacterial species appear to have undergone long term coevolution with honey bee and, in some cases, bumble bee hosts. Prediction of gene functions from genome sequences suggests roles in nutrition, digestion, and potentially in defense against pathogens. In particular, genes for sugar utilization and carbohydrate breakdown are enriched in G. apicola and the Lactobacillus species. PMID:26140264

  14. The ontogeny of immunity in the honey bee, Apis mellifera L. following an immune challenge.

    PubMed

    Laughton, Alice M; Boots, Michael; Siva-Jothy, Michael T

    2011-07-01

    The honey bee, Apis mellifera, is an ideal system for investigating ontogenetic changes in the immune system, because it combines holometabolous development within a eusocial caste system. As adults, male and female bees are subject to differing selective pressures: worker bees (females) exhibit temporal polyethism, while the male drones invest in mating. They are further influenced by changes in the threat of pathogen infection at different life stages. We investigated the immune response of workers and drones at all developmental phases, from larvae through to late stage adults, assaying both a constitutive (phenoloxidase, PO activity) and induced (antimicrobial peptide, AMP) immune response. We found that larval bees have low levels of PO activity. Adult workers produced stronger immune responses than drones, and a greater plasticity in immune investment. Immune challenge resulted in lower levels of PO activity in adult workers, which may be due to the rapid utilisation and a subsequent failure to replenish the constitutive phenoloxidase. Both adult workers and drones responded to an immune challenge by producing higher titres of AMPs, suggesting that the cost of this response prohibits its constant maintenance. Both castes showed signs of senescence in immune investment in the AMP response. Different sexes and life stages therefore alter their immune system management based on the combined factors of disease risk and life history.

  15. Gonadotropic and physiological functions of juvenile hormone in Bumblebee (Bombus terrestris) workers.

    PubMed

    Shpigler, Hagai; Amsalem, Etya; Huang, Zachary Y; Cohen, Mira; Siegel, Adam J; Hefetz, Abraham; Bloch, Guy

    2014-01-01

    The evolution of advanced sociality in bees is associated with apparent modifications in juvenile hormone (JH) signaling. By contrast to most insects in which JH is a gonadotropin regulating female fertility, in the highly eusocial honey bee (Apis mellifera) JH has lost its gonadotrophic function in adult females, and instead regulates age-related division of labor among worker bees. In order to shed light on the evolution of JH signaling in bees we performed allatectomy and replacement therapies to manipulate JH levels in workers of the "primitively eusocial" bumblebee Bombus terrestris. Allatectomized worker bees showed remarkable reduction in ovarian development, egg laying, Vitellogenin and Krüppel homolog 1 fat body transcript levels, hemolymph Vitellogenin protein abundance, wax secretion, and egg-cell construction. These effects were reverted, at least partially, by treating allatectomized bees with JH-III, the natural JH of bees. Allatectomy also affected the amount of ester component in Dufour's gland secretion, which is thought to convey a social signal relating to worker fertility. These findings provide a strong support for the hypothesis that in contrast to honey bees, JH is a gonadotropin in bumblebees and lend credence to the hypothesis that the evolution of advanced eusociality in honey bees was associated with major modifications in JH signaling.

  16. Gonadotropic and Physiological Functions of Juvenile Hormone in Bumblebee (Bombus terrestris) Workers

    PubMed Central

    Shpigler, Hagai; Amsalem, Etya; Huang, Zachary Y.; Cohen, Mira; Siegel, Adam J.; Hefetz, Abraham; Bloch, Guy

    2014-01-01

    The evolution of advanced sociality in bees is associated with apparent modifications in juvenile hormone (JH) signaling. By contrast to most insects in which JH is a gonadotropin regulating female fertility, in the highly eusocial honey bee (Apis mellifera) JH has lost its gonadotrophic function in adult females, and instead regulates age-related division of labor among worker bees. In order to shed light on the evolution of JH signaling in bees we performed allatectomy and replacement therapies to manipulate JH levels in workers of the "primitively eusocial" bumblebee Bombus terrestris. Allatectomized worker bees showed remarkable reduction in ovarian development, egg laying, Vitellogenin and Krüppel homolog 1 fat body transcript levels, hemolymph Vitellogenin protein abundance, wax secretion, and egg-cell construction. These effects were reverted, at least partially, by treating allatectomized bees with JH-III, the natural JH of bees. Allatectomy also affected the amount of ester component in Dufour's gland secretion, which is thought to convey a social signal relating to worker fertility. These findings provide a strong support for the hypothesis that in contrast to honey bees, JH is a gonadotropin in bumblebees and lend credence to the hypothesis that the evolution of advanced eusociality in honey bees was associated with major modifications in JH signaling. PMID:24959888

  17. 20 CFR 663.800 - What are supportive services for adults and dislocated workers?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What are supportive services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Supportive Services § 663.800 What are supportive services for adults and dislocated...

  18. 20 CFR 663.300 - What are training services for adults and dislocated workers?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What are training services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Training Services § 663.300 What are training services for adults and dislocated...

  19. 20 CFR 663.300 - What are training services for adults and dislocated workers?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What are training services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Training Services § 663.300 What are training services for adults and dislocated...

  20. 20 CFR 663.300 - What are training services for adults and dislocated workers?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What are training services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Training Services § 663.300 What are training services for adults and dislocated...

  1. 20 CFR 663.800 - What are supportive services for adults and dislocated workers?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What are supportive services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Supportive Services § 663.800 What are supportive services for adults and dislocated...

  2. 20 CFR 663.800 - What are supportive services for adults and dislocated workers?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What are supportive services for adults and..., DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Supportive Services § 663.800 What are supportive services for adults and dislocated...

  3. Gas chromatography-mass spectrometry metabolite profiling of worker honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection.

    PubMed

    Aliferis, Konstantinos A; Copley, Tanya; Jabaji, Suha

    2012-10-01

    Here, we are presenting a gas chromatography-mass spectrometry (GC/MS) approach for the study of infection of the worker honey bee (Apis mellifera L.) by the newly emerged obligate intracellular parasite Nosema ceranae based on metabolite profiling of hemolymph. Because of the severity of the disease, early detection is crucial for its efficient control. Results revealed that the parasite causes a general disturbance of the physiology of the honey bee affecting the mechanisms controlling the mobilization of energy reserves in infected individuals. The imposed nutritional and energetic stress to the host was depicted mainly in the decreased levels of the majority of carbohydrates and amino acids, including metabolites such as fructose, l-proline, and the cryoprotectants sorbitol and glycerol, which are implicated in various biochemical pathways. Interestingly, the level of glucose was detected at significantly higher levels in infected honey bees. Metabolomics analyses were in agreement with those of multiplex quantitative PCR analyses, indicating that it can be used as a complementary tool for the detection and the study of the physiology of the disease.

  4. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...

  5. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...

  6. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... services for adults in the adult and dislocated worker programs? 663.110 Section 663.110 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...

  7. Growth stimulating effect on queen bee larvae of histone deacetylase inhibitors.

    PubMed

    Huang, Chung-Yang; Chi, Li-Ling; Huang, Wei-Jan; Chen, Yue-Wen; Chen, Wei-Jung; Kuo, Yu-Cheng; Yuan, Cheng Mike; Chen, Chia-Nan

    2012-06-20

    Royal jelly (RJ) is a widely used natural food. It is also a major source of nutrition for queen bees and plays a key role in their development. RJ is secreted from the hypopharyngeal and mandibular glands of young adult worker bees. The regulation of gene expression in these two glands may influence the development of queen bees by affecting the content of RJ. This study investigated the epigenetic effects in these two glands in young adult worker bees treated with histone deacetylase inhibitors (HDACis), a U.S. Food and Drug Administration-approved drug, suberoylanilide hydroxamic acid (SAHA), and NBM-HD-1, a novel compound synthesized in this laboratory. Western blot analyses indicated that the levels of acetyl-histone 3 and p21 protein expression in MCF-7 cells increased markedly after treatment with NBM-HD-1. The data proved that NBM-HD-1 was a novel and potent HDACi. Furthermore, a method of affecting epigenetic regulation of the mrjp family gene in the hypopharyngeal and mandibular glands of young adult worker bees was developed by feeding young adult worker bees HDACi. Epigenetic regulation produced several important biological effects. A marked change in the protein composition of the RJ secreted from these treated bees was found. Only the ratio of specific major royal jelly protein 3 (MRJP3) was significantly altered in the treated bees versus the untreated controls. Other MRJP family proteins did not change. This alteration in the ratio of royal jelly proteins resulted in a significant increase in the body size of queen bee larvae. The data seem to suggest that HDACis may play an important role in the epigenetic regulation of the hypopharyngeal and mandibular glands of young adult worker bees. They appear to change mrjp3 gene expression and alter the ratio of MRJP3 protein in RJ. This study presents the first evidence that HDACis are capable of regulating the ratio of MRJP3 proteins in RJ, which has the potential to change the body size of queen bees

  8. 20 CFR 663.610 - Does the statutory priority for use of adult funds also apply to dislocated worker funds?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Does the statutory priority for use of adult... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE... adult funds also apply to dislocated worker funds? No, the statutory priority applies to adult funds...

  9. 20 CFR 663.610 - Does the statutory priority for use of adult funds also apply to dislocated worker funds?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Does the statutory priority for use of adult... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE... adult funds also apply to dislocated worker funds? No, the statutory priority applies to adult funds...

  10. Out with the garbage: the parasitic strategy of the mantisfly Plega hagenella mass-infesting colonies of the eusocial bee Melipona subnitida in northeastern Brazil.

    PubMed

    Maia-Silva, Camila; Hrncir, Michael; Koedam, Dirk; Machado, Renato Jose Pires; Imperatriz-Fonseca, Vera Lucia

    2013-01-01

    Between April and June of 2012 mantisflies (Plega hagenella) were found to be extensively parasitizing the nests of two groups of managed colonzies of eusocial stingless bees (Melipona subnitida) in the semi-arid region of northeastern Brazil. The mantisfly larvae developed inside closed brood cells of the bee comb, where each mantispid larva fed on the bee larva or pupa present in a single brood cell. Mature mantispid larvae pupated inside silken cocoons spun in place within their hosts' brood cells then emerged as pharate adults inside the bee colony. Pharate adults were never attacked and killed by host colony workers. Instead, colony workers picked up the pharates and removed them from the nest unharmed, treating them similar to the way that the general refuse is removed from the nest. Adult mantispids subsequently eclosed from their pupal exuviae outside the nest. Manipulative experiments showed that post-eclosion adult mantispids placed back within active bee colonies were quickly attacked and killed. These observations demonstrate that pharate and post-eclosion adults of P. hagenella are perceived differently by colony workers and that delayed adult eclosion is an important functional element in the parasitic life strategy of P. hagenella, allowing adults to escape without injury from the bee colonies they parasitize.

  11. Out with the garbage: the parasitic strategy of the mantisfly Plega hagenella mass-infesting colonies of the eusocial bee Melipona subnitida in northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Maia-Silva, Camila; Hrncir, Michael; Koedam, Dirk; Machado, Renato Jose Pires; Imperatriz-Fonseca, Vera Lucia

    2013-01-01

    Between April and June of 2012 mantisflies ( Plega hagenella) were found to be extensively parasitizing the nests of two groups of managed colonzies of eusocial stingless bees ( Melipona subnitida) in the semi-arid region of northeastern Brazil. The mantisfly larvae developed inside closed brood cells of the bee comb, where each mantispid larva fed on the bee larva or pupa present in a single brood cell. Mature mantispid larvae pupated inside silken cocoons spun in place within their hosts' brood cells then emerged as pharate adults inside the bee colony. Pharate adults were never attacked and killed by host colony workers. Instead, colony workers picked up the pharates and removed them from the nest unharmed, treating them similar to the way that the general refuse is removed from the nest. Adult mantispids subsequently eclosed from their pupal exuviae outside the nest. Manipulative experiments showed that post-eclosion adult mantispids placed back within active bee colonies were quickly attacked and killed. These observations demonstrate that pharate and post-eclosion adults of P. hagenella are perceived differently by colony workers and that delayed adult eclosion is an important functional element in the parasitic life strategy of P. hagenella, allowing adults to escape without injury from the bee colonies they parasitize.

  12. Out with the garbage: the parasitic strategy of the mantisfly Plega hagenella mass-infesting colonies of the eusocial bee Melipona subnitida in northeastern Brazil.

    PubMed

    Maia-Silva, Camila; Hrncir, Michael; Koedam, Dirk; Machado, Renato Jose Pires; Imperatriz-Fonseca, Vera Lucia

    2013-01-01

    Between April and June of 2012 mantisflies (Plega hagenella) were found to be extensively parasitizing the nests of two groups of managed colonzies of eusocial stingless bees (Melipona subnitida) in the semi-arid region of northeastern Brazil. The mantisfly larvae developed inside closed brood cells of the bee comb, where each mantispid larva fed on the bee larva or pupa present in a single brood cell. Mature mantispid larvae pupated inside silken cocoons spun in place within their hosts' brood cells then emerged as pharate adults inside the bee colony. Pharate adults were never attacked and killed by host colony workers. Instead, colony workers picked up the pharates and removed them from the nest unharmed, treating them similar to the way that the general refuse is removed from the nest. Adult mantispids subsequently eclosed from their pupal exuviae outside the nest. Manipulative experiments showed that post-eclosion adult mantispids placed back within active bee colonies were quickly attacked and killed. These observations demonstrate that pharate and post-eclosion adults of P. hagenella are perceived differently by colony workers and that delayed adult eclosion is an important functional element in the parasitic life strategy of P. hagenella, allowing adults to escape without injury from the bee colonies they parasitize. PMID:23179948

  13. Linguistic Problems of Adult Migrant Workers and Socio-linguistic Problems of Migrant Workers' Children Being Educated in the Host Country.

    ERIC Educational Resources Information Center

    Verdoodt, Albert

    This article examines the linguistic problems of adult migrant workers and sociolinguistic problems of their children. The introduction states provisions for migrant workers' ethnic and linguistic rights. An examination of the actual situation leads to the general statement that linguistic rights of migrant workers are passively tolerated and not…

  14. Age and reproductive status of adult Varroa mites affect grooming success of honey bees.

    PubMed

    Kirrane, Maria J; de Guzman, Lilia I; Rinderer, Thomas E; Frake, Amanda M; Wagnitz, Jeremy; Whelan, Pádraig M

    2012-12-01

    This study evaluated for the first time the grooming response of honey bees to Varroa mites of different ages and reproductive statuses in the laboratory. Plastic cages containing a section of dark comb and about 200 bees were inoculated with groups of four classes of mites: gravid, phoretic foundresses, phoretic daughters and a combination of gravid and phoretic foundress mites. Each cage received 20 mites belonging to one of these classes. Our results showed that, 1 day after mite inoculation, phoretic daughter mites were the most prone to grooming by honey bees with an average mite drop of 49.8 ± 2.6 %. The lowest mite drop was recorded for bees inoculated with phoretic foundresses (30.3 ± 3.6 %) but was comparable to bees inoculated with gravid mites (31.8 ± 3.8 %) and the combination of gravid and phoretic foundress mites (34.2 ± 3.2 %). No differences among mite types were detected during the second and third days of observation. Regardless of mite type, the highest mite drop was recorded on the first day (35 ± 2.1 %) compared to the drop for any subsequent day (<10 %). Because of the great reproductive potential of daughter mites, their inclusion in assessments of grooming behaviour may increase our insight into the importance of grooming in mite resistance.

  15. Transcript levels of ten caste-related genes in adult diploid males of Melipona quadrifasciata (Hymenoptera, Apidae) - A comparison with haploid males, queens and workers

    PubMed Central

    Borges, Andreia A.; Humann, Fernanda C.; Oliveira Campos, Lucio A.; Tavares, Mara G.; Hartfelder, Klaus

    2011-01-01

    In Hymenoptera, homozygosity at the sex locus results in the production of diploid males. In social species, these pose a double burden by having low fitness and drawing resources normally spent for increasing the work force of a colony. Yet, diploid males are of academic interest as they can elucidate effects of ploidy (normal males are haploid, whereas the female castes, the queens and workers, are diploid) on morphology and life history. Herein we investigated expression levels of ten caste-related genes in the stingless bee Melipona quadrifasciata, comparing newly emerged and 5-day-old diploid males with haploid males, queens and workers. In diploid males, transcript levels for dunce and paramyosin were increased during the first five days of adult life, while those for diacylglycerol kinase and the transcriptional co-repressor groucho diminished. Two general trends were apparent, (i) gene expression patterns in diploid males were overall more similar to haploid ones and workers than to queens, and (ii) in queens and workers, more genes were up-regulated after emergence until day five, whereas in diploid and especially so in haploid males more genes were down-regulated. This difference between the sexes may be related to longevity, which is much longer in females than in males. PMID:22215977

  16. 20 CFR 663.150 - What core services must be provided to adults and dislocated workers?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., all of the core services described in WIA section 134(d)(2) and 20 CFR 662.240 must be provided in... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What core services must be provided to adults... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF...

  17. 20 CFR 663.150 - What core services must be provided to adults and dislocated workers?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., all of the core services described in WIA section 134(d)(2) and 20 CFR 662.240 must be provided in... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What core services must be provided to adults... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF...

  18. 20 CFR 663.150 - What core services must be provided to adults and dislocated workers?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... core services described in WIA section 134(d)(2) and 20 CFR 662.240 must be provided in each local area... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What core services must be provided to adults... ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE...

  19. 20 CFR 663.150 - What core services must be provided to adults and dislocated workers?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., all of the core services described in WIA section 134(d)(2) and 20 CFR 662.240 must be provided in... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What core services must be provided to adults... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF...

  20. Evaluation of cage designs and feeding regimes for honey bee (Hymenoptera: Apidae) laboratory experiments.

    PubMed

    Huang, Shao Kang; Csaki, Tamas; Doublet, Vincent; Dussaubat, Claudia; Evans, Jay D; Gajda, Anna M; Gregorc, Alex; Hamilton, Michele C; Kamler, Martin; Lecocq, Antoine; Muz, Mustafa N; Neumann, Peter; Ozkirim, Asli; Schiesser, Aygün; Sohr, Alex R; Tanner, Gina; Tozkar, Cansu Ozge; Williams, Geoffrey R; Wu, Lyman; Zheng, Huoqing; Chen, Yan Ping

    2014-02-01

    The aim of this study was to improve cage systems for maintaining adult honey bee (Apis mellifera L.) workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Prevention of honey bee COlony LOSSes), on the physiology and survival of honey bees. We identified three cages that promoted good survival of honey bees. The bees from cages that exhibited greater survival had relatively lower titers of deformed wing virus, suggesting that deformed wing virus is a significant marker reflecting stress level and health status of the host. We also determined that a leak- and drip-proof feeder was an integral part of a cage system and a feeder modified from a 20-ml plastic syringe displayed the best result in providing steady food supply to bees. Finally, we also demonstrated that the addition of protein to the bees' diet could significantly increase the level ofvitellogenin gene expression and improve bees' survival. This international collaborative study represents a critical step toward improvement of cage designs and feeding regimes for honey bee laboratory experiments.

  1. 20 CFR 663.610 - Does the statutory priority for use of adult funds also apply to dislocated worker funds?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Does the statutory priority for use of adult... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE... priority for use of adult funds also apply to dislocated worker funds? No, the statutory priority...

  2. 20 CFR 663.610 - Does the statutory priority for use of adult funds also apply to dislocated worker funds?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Does the statutory priority for use of adult... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE... priority for use of adult funds also apply to dislocated worker funds? No, the statutory priority...

  3. 20 CFR 663.145 - What services are WIA title I adult and dislocated workers formula funds used to provide?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What services are WIA title I adult and... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the...

  4. 20 CFR 663.145 - What services are WIA title I adult and dislocated workers formula funds used to provide?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What services are WIA title I adult and... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the...

  5. 20 CFR 663.145 - What services are WIA title I adult and dislocated workers formula funds used to provide?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What services are WIA title I adult and... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the...

  6. 20 CFR 663.145 - What services are WIA title I adult and dislocated workers formula funds used to provide?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What services are WIA title I adult and... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop...

  7. 20 CFR 663.610 - Does the statutory priority for use of adult funds also apply to dislocated worker funds?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Does the statutory priority for use of adult... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE... priority for use of adult funds also apply to dislocated worker funds? No, the statutory priority...

  8. 20 CFR 663.145 - What services are WIA title I adult and dislocated workers formula funds used to provide?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What services are WIA title I adult and... TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop...

  9. The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees.

    PubMed

    Foley, Kirsten; Fazio, Géraldine; Jensen, Annette B; Hughes, William O H

    2014-03-14

    Stonebrood is a disease of honey bee larvae caused by fungi from the genus Aspergillus. As very few studies have focused on the epidemiological aspects of stonebrood and diseased brood may be rapidly discarded by worker bees, it is possible that a high number of cases go undetected. Aspergillus spp. fungi are ubiquitous and associated with disease in many insects, plants, animals and man. They are regarded as opportunistic pathogens that require immunocompromised hosts to establish infection. Microbiological studies have shown high prevalences of Aspergillus spp. in apiaries which occur saprophytically on hive substrates. However, the specific conditions required for pathogenicity to develop remain unknown. In this study, an apiary was screened to determine the prevalence and diversity of Aspergillus spp. fungi. A series of dose-response tests were then conducted using laboratory reared larvae to determine the pathogenicity and virulence of frequently occurring isolates. The susceptibility of adult worker bees to Aspergillus flavus was also tested. Three isolates (A. flavus, Aspergillus nomius and Aspergillus phoenicis) of the ten species identified were pathogenic to honey bee larvae. Moreover, adult honey bees were also confirmed to be highly susceptible to A. flavus infection when they ingested conidia. Neither of the two Aspergillus fumigatus strains used in dose-response tests induced mortality in larvae and were the least pathogenic of the isolates tested. These results confirm the ubiquity of Aspergillus spp. in the apiary environment and highlight their potential to infect both larvae and adult bees.

  10. Effects of environmentally-relevant mixtures of four common organophosphorus insecticides on the honey bee (Apis mellifera L.).

    PubMed

    Al Naggar, Yahya; Wiseman, Steve; Sun, Jianxian; Cutler, G Christopher; Aboul-Soud, Mourad; Naiem, Elsaied; Mona, Mohamed; Seif, Amal; Giesy, John P

    2015-11-01

    We assessed whether exposure to environmentally-relevant mixtures of four organophosphorus insecticides (OPs) exerted adverse effects on honey bees. Adult and worker bees were orally exposed for five days under laboratory conditions to mixtures of four insecticides, diazinon, malathion, profenofos and chlorpyrifos at two concentrations. Concentration in the mixtures tested were equivalent to the median and 95th centile concentrations of the OPs in honey, as reported in the literature. Effects on survival, behavior, activity of acetylcholinesterase (AChE), and expression of genes important in detoxification of xenobiotics and immune response were examined. Survival of worker bees was not affected by exposure to median or 95th centile concentrations of the OPs. Activity of AChE was significantly greater in worker bees exposed to the 95th centile concentration mixture of OPs compared to the median concentration mixture. Expression of genes involved in detoxification of xenobiotics was not affected by treatment, but the abundance of transcripts of the antimicrobial peptide hymenoptaecin was significantly greater in worker honey bees exposed to the median concentration mixture. Results suggest that short-term exposure to environmentally relevant concentrations of a mixture of OPs do not adversely affect worker honey bees.

  11. Effects of environmentally-relevant mixtures of four common organophosphorus insecticides on the honey bee (Apis mellifera L.).

    PubMed

    Al Naggar, Yahya; Wiseman, Steve; Sun, Jianxian; Cutler, G Christopher; Aboul-Soud, Mourad; Naiem, Elsaied; Mona, Mohamed; Seif, Amal; Giesy, John P

    2015-11-01

    We assessed whether exposure to environmentally-relevant mixtures of four organophosphorus insecticides (OPs) exerted adverse effects on honey bees. Adult and worker bees were orally exposed for five days under laboratory conditions to mixtures of four insecticides, diazinon, malathion, profenofos and chlorpyrifos at two concentrations. Concentration in the mixtures tested were equivalent to the median and 95th centile concentrations of the OPs in honey, as reported in the literature. Effects on survival, behavior, activity of acetylcholinesterase (AChE), and expression of genes important in detoxification of xenobiotics and immune response were examined. Survival of worker bees was not affected by exposure to median or 95th centile concentrations of the OPs. Activity of AChE was significantly greater in worker bees exposed to the 95th centile concentration mixture of OPs compared to the median concentration mixture. Expression of genes involved in detoxification of xenobiotics was not affected by treatment, but the abundance of transcripts of the antimicrobial peptide hymenoptaecin was significantly greater in worker honey bees exposed to the median concentration mixture. Results suggest that short-term exposure to environmentally relevant concentrations of a mixture of OPs do not adversely affect worker honey bees. PMID:26403075

  12. Parasaccharibacter apium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The honey bee, Apis mellifera, is host to a variety of microorganisms. The bacterial community that occupies the adult worker gut contains a core group of approximately seven taxa, while the hive environment contains its own distribution of bacteria that is in many ways distinct from the gut. Parasa...

  13. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify ge...

  14. Characterization of gut bacteria at different developmental stages of Asian honey bees, Apis cerana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous surveys have shown that adult workers of the Asian honey bee Apis cerana harbor four major gut microbes (Bifidobacterium, Snodgrassella alvi, Gilliamella apicola, and Lactobacillus). Using quantitative PCR we characterized gut bacterial communities across the life cycle of A. cerana from la...

  15. Rescue of newborn ants by older Cataglyphis cursor adult workers.

    PubMed

    Nowbahari, Elise; Amirault, Céline; Hollis, Karen L

    2016-05-01

    Cataglyphis cursor worker ants are capable of highly sophisticated rescue behaviour in which individuals are able to identify what has trapped a nestmate and to direct their behaviour towards that obstacle. Nonetheless, rescue behaviour is constrained by workers' subcaste: whereas foragers, the oldest workers, are able both to give and to receive the most help, the youngest workers, inactives, neither give nor receive any help whatsoever; nurses give and receive intermediate levels of aid, reflecting their intermediate age. Such differences in rescue behaviour across subcastes suggest that age and experience play a critical role. In this species, as in many others in which a sensitive period for nestmate recognition exists, newly enclosed ants, called callows, are adopted by ants belonging not only to different colonies but also to different species; foreign callows receive nearly the same special care provided to resident newborns. Because callows are younger than inactives, which are incapable of soliciting rescue, we wondered whether entrapped callows would receive such aid. In the present study, we artificially ensnared individual callows from their own colony (homocolonial), from a different colony (heterocolonial), and from a different species (heterospecific), and tested each one with groups of five potential C. cursor rescuers, either all foragers or all nurses. Our results show that all three types of callows are able to elicit rescue behaviour from both foragers and nurses. Nonetheless, nurse rescuers are better able to discriminate between the three types of callow victims than are foragers.

  16. Rescue of newborn ants by older Cataglyphis cursor adult workers.

    PubMed

    Nowbahari, Elise; Amirault, Céline; Hollis, Karen L

    2016-05-01

    Cataglyphis cursor worker ants are capable of highly sophisticated rescue behaviour in which individuals are able to identify what has trapped a nestmate and to direct their behaviour towards that obstacle. Nonetheless, rescue behaviour is constrained by workers' subcaste: whereas foragers, the oldest workers, are able both to give and to receive the most help, the youngest workers, inactives, neither give nor receive any help whatsoever; nurses give and receive intermediate levels of aid, reflecting their intermediate age. Such differences in rescue behaviour across subcastes suggest that age and experience play a critical role. In this species, as in many others in which a sensitive period for nestmate recognition exists, newly enclosed ants, called callows, are adopted by ants belonging not only to different colonies but also to different species; foreign callows receive nearly the same special care provided to resident newborns. Because callows are younger than inactives, which are incapable of soliciting rescue, we wondered whether entrapped callows would receive such aid. In the present study, we artificially ensnared individual callows from their own colony (homocolonial), from a different colony (heterocolonial), and from a different species (heterospecific), and tested each one with groups of five potential C. cursor rescuers, either all foragers or all nurses. Our results show that all three types of callows are able to elicit rescue behaviour from both foragers and nurses. Nonetheless, nurse rescuers are better able to discriminate between the three types of callow victims than are foragers. PMID:26846232

  17. Adult Workforce Education Is Reaching Out to Displaced Workers

    ERIC Educational Resources Information Center

    Claypool, Christine Ryan

    2005-01-01

    It was the year 2002. Ohio was reeling from a decline in the manufacturing sector, which left thousands of northwestern Ohio workers unemployed. When the U.S. economy suffers from a recession, states like Ohio that rely heavily upon employment in manufacturing experience the impact first, according to Neal Eiber of Apollo Career Center Adult…

  18. Antibacterial immune competence of honey bees (Apis mellifera) is adapted to different life stages and environmental risks.

    PubMed

    Gätschenberger, Heike; Azzami, Klara; Tautz, Jürgen; Beier, Hildburg

    2013-01-01

    The development of all honey bee castes proceeds through three different life stages all of which encounter microbial infections to a various extent. We have examined the immune strength of honey bees across all developmental stages with emphasis on the temporal expression of cellular and humoral immune responses upon artificial challenge with viable Escherichia coli bacteria. We employed a broad array of methods to investigate defence strategies of infected individuals: (a) fate of bacteria in the haemocoel; (b) nodule formation and (c) induction of antimicrobial peptides (AMPs). Newly emerged adult worker bees and drones were able to activate efficiently all examined immune reactions. The number of viable bacteria circulating in the haemocoel of infected bees declined rapidly by more than two orders of magnitude within the first 4-6 h post-injection (p.i.), coinciding with the occurrence of melanised nodules. Antimicrobial activity, on the other hand, became detectable only after the initial bacterial clearance. These two temporal patterns of defence reactions very likely represent the constitutive cellular and the induced humoral immune response. A unique feature of honey bees is that a fraction of worker bees survives the winter season in a cluster mostly engaged in thermoregulation. We show here that the overall immune strength of winter bees matches that of young summer bees although nodulation reactions are not initiated at all. As expected, high doses of injected viable E.coli bacteria caused no mortality in larvae or adults of each age. However, drone and worker pupae succumbed to challenge with E.coli even at low doses, accompanied by a premature darkening of the pupal body. In contrast to larvae and adults, we observed no fast clearance of viable bacteria and no induction of AMPs but a rapid proliferation of E.coli bacteria in the haemocoel of bee pupae ultimately leading to their death.

  19. Antibacterial Immune Competence of Honey Bees (Apis mellifera) Is Adapted to Different Life Stages and Environmental Risks

    PubMed Central

    Gätschenberger, Heike; Azzami, Klara; Tautz, Jürgen; Beier, Hildburg

    2013-01-01

    The development of all honey bee castes proceeds through three different life stages all of which encounter microbial infections to a various extent. We have examined the immune strength of honey bees across all developmental stages with emphasis on the temporal expression of cellular and humoral immune responses upon artificial challenge with viable Escherichia coli bacteria. We employed a broad array of methods to investigate defence strategies of infected individuals: (a) fate of bacteria in the haemocoel; (b) nodule formation and (c) induction of antimicrobial peptides (AMPs). Newly emerged adult worker bees and drones were able to activate efficiently all examined immune reactions. The number of viable bacteria circulating in the haemocoel of infected bees declined rapidly by more than two orders of magnitude within the first 4–6 h post-injection (p.i.), coinciding with the occurrence of melanised nodules. Antimicrobial activity, on the other hand, became detectable only after the initial bacterial clearance. These two temporal patterns of defence reactions very likely represent the constitutive cellular and the induced humoral immune response. A unique feature of honey bees is that a fraction of worker bees survives the winter season in a cluster mostly engaged in thermoregulation. We show here that the overall immune strength of winter bees matches that of young summer bees although nodulation reactions are not initiated at all. As expected, high doses of injected viable E.coli bacteria caused no mortality in larvae or adults of each age. However, drone and worker pupae succumbed to challenge with E.coli even at low doses, accompanied by a premature darkening of the pupal body. In contrast to larvae and adults, we observed no fast clearance of viable bacteria and no induction of AMPs but a rapid proliferation of E.coli bacteria in the haemocoel of bee pupae ultimately leading to their death. PMID:23799099

  20. Antibacterial immune competence of honey bees (Apis mellifera) is adapted to different life stages and environmental risks.

    PubMed

    Gätschenberger, Heike; Azzami, Klara; Tautz, Jürgen; Beier, Hildburg

    2013-01-01

    The development of all honey bee castes proceeds through three different life stages all of which encounter microbial infections to a various extent. We have examined the immune strength of honey bees across all developmental stages with emphasis on the temporal expression of cellular and humoral immune responses upon artificial challenge with viable Escherichia coli bacteria. We employed a broad array of methods to investigate defence strategies of infected individuals: (a) fate of bacteria in the haemocoel; (b) nodule formation and (c) induction of antimicrobial peptides (AMPs). Newly emerged adult worker bees and drones were able to activate efficiently all examined immune reactions. The number of viable bacteria circulating in the haemocoel of infected bees declined rapidly by more than two orders of magnitude within the first 4-6 h post-injection (p.i.), coinciding with the occurrence of melanised nodules. Antimicrobial activity, on the other hand, became detectable only after the initial bacterial clearance. These two temporal patterns of defence reactions very likely represent the constitutive cellular and the induced humoral immune response. A unique feature of honey bees is that a fraction of worker bees survives the winter season in a cluster mostly engaged in thermoregulation. We show here that the overall immune strength of winter bees matches that of young summer bees although nodulation reactions are not initiated at all. As expected, high doses of injected viable E.coli bacteria caused no mortality in larvae or adults of each age. However, drone and worker pupae succumbed to challenge with E.coli even at low doses, accompanied by a premature darkening of the pupal body. In contrast to larvae and adults, we observed no fast clearance of viable bacteria and no induction of AMPs but a rapid proliferation of E.coli bacteria in the haemocoel of bee pupae ultimately leading to their death. PMID:23799099

  1. Examining self-protection measures guarding Adult Protective Services social workers against compassion fatigue.

    PubMed

    Bourassa, Dara

    2012-06-01

    Little research has focused on the risk factors, effects, and experiences of compassion fatigue among gerontological social workers. This qualitative study explores the experiences and perspectives of nine Adult Protective Services (APS) social workers in relation to compassion fatigue. Results show that the APS social workers combined personal characteristics and professional factors to develop boundary-setting mechanisms that protected them from experiencing the deleterious symptoms and effects of compassion fatigue. Implications center around the elements needed to implement boundaries in order to maintain a separation between the work and home environment. Suggestions for future research are provided.

  2. Polyvalent Adult Education Centre (An Integrated Approach to Adult Education for Workers).

    ERIC Educational Resources Information Center

    Koshy, T. A.; And Others

    A project to upgrade the vocational skills of Indian workers is presented. This project is designed to plan and develop integrated educational and training courses of various duration for workers and prospective workers, through the establishment of Polyvalent Centers. These centers are institutions providing opportunity for many-sided education…

  3. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    PubMed

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies.

  4. Measles Outbreak among Previously Immunized Adult Healthcare Workers, China, 2015.

    PubMed

    Zhang, Zhengyi; Zhao, Yuan; Yang, Lili; Lu, Changhong; Meng, Ying; Guan, Xiaoli; An, Hongjin; Zhang, Meizhong; Guo, Wenqin; Shang, Bo; Yu, Jing

    2016-01-01

    Measles is caused by measles virus belonging to genus Morbillivirus of the family Paramyxoviridae. Vaccination has played a critical role in controlling measles infection worldwide. However, in the recent years, outbreaks of measles infection still occur in many developing countries. Here, we report an outbreak of measles among healthcare workers and among the 60 measles infected patients 50 were healthcare workers including doctors, nurses, staff, and medics. Fifty-one patients (85%) tested positive for IgM antibodies against the measles virus and 50 patients (83.3%) tested positive for measles virus RNA. Surprisingly, 73.3% of the infected individuals had been previously immunized against measles. Since there is no infection division in our hospital, the fever clinics are located in the Emergency Division. In addition, the fever and rash were not recognized as measles symptoms at the beginning of the outbreak. These factors result in delay in isolation and early confirmation of the suspected patients and eventually a measles outbreak in the hospital. Our report highlights the importance of following a two-dose measles vaccine program in people including the healthcare workers. In addition, vigilant attention should be paid to medical staff with clinical fever and rash symptoms to avoid a possible nosocomial transmission of measles infection. PMID:27366157

  5. Measles Outbreak among Previously Immunized Adult Healthcare Workers, China, 2015

    PubMed Central

    Zhang, Zhengyi; Zhao, Yuan; Yang, Lili; Lu, Changhong; Meng, Ying; Guan, Xiaoli; An, Hongjin; Zhang, Meizhong; Guo, Wenqin; Shang, Bo; Yu, Jing

    2016-01-01

    Measles is caused by measles virus belonging to genus Morbillivirus of the family Paramyxoviridae. Vaccination has played a critical role in controlling measles infection worldwide. However, in the recent years, outbreaks of measles infection still occur in many developing countries. Here, we report an outbreak of measles among healthcare workers and among the 60 measles infected patients 50 were healthcare workers including doctors, nurses, staff, and medics. Fifty-one patients (85%) tested positive for IgM antibodies against the measles virus and 50 patients (83.3%) tested positive for measles virus RNA. Surprisingly, 73.3% of the infected individuals had been previously immunized against measles. Since there is no infection division in our hospital, the fever clinics are located in the Emergency Division. In addition, the fever and rash were not recognized as measles symptoms at the beginning of the outbreak. These factors result in delay in isolation and early confirmation of the suspected patients and eventually a measles outbreak in the hospital. Our report highlights the importance of following a two-dose measles vaccine program in people including the healthcare workers. In addition, vigilant attention should be paid to medical staff with clinical fever and rash symptoms to avoid a possible nosocomial transmission of measles infection. PMID:27366157

  6. Physiological correlates of division of labor among similarly aged honey bees.

    PubMed

    Huang, Z Y; Robinson, G E; Borst, D W

    1994-06-01

    Hormone analyses and exocrine gland measurements were made to probe for physiological correlates of division of labor among similarly aged adult worker honey bees (Apis mellifera L.). Middle-age bees (ca. 2 weeks old) performing different tasks showed significant differences in both juvenile hormone (JH) biosynthesis rates and hemolymph titers; guards and undertakers had high JH, and wax producers and food storers, low JH. Guards and undertakers had similar hormone levels to foragers, even though they were 10 days younger than foragers. No differences in JH were detected among young bees (1-week-old queen attendants and nurses) or older bees (3-4 week-old pollen foragers, non-pollen foragers, and soldiers). Hypopharyngeal gland size was inversely correlated with worker age and rate of JH biosynthesis, but soldiers had significantly larger hypopharyngeal glands than did foragers, despite their similar age and JH level. Results from soldiers indicate that exocrine gland development is not always linked with age-related behavior and endocrine development; they also support the recent claim that soldiers constitute a group of older bees that are distinct from foragers. Hormonal analyses indicate that the current model of JH's role in honey bee division of labor needs to be expanded because high levels of JH are associated with several other tasks besides foraging. JH may be involved in the regulation of division of labor among similarly aged workers in addition to its role in age-related division of labor.

  7. Accelerated behavioural development changes fine-scale search behaviour and spatial memory in honey bees (Apis mellifera L.).

    PubMed

    Ushitani, Tomokazu; Perry, Clint J; Cheng, Ken; Barron, Andrew B

    2016-02-01

    Normally, worker honey bees (Apis mellifera) begin foraging when more than 2 weeks old as adults, but if individual bees or the colony is stressed, bees often begin foraging precociously. Here, we examined whether bees that accelerated their behavioural development to begin foraging precociously differed from normal-aged foragers in cognitive performance. We used a social manipulation to generate precocious foragers from small experimental colonies and tested their performance in a free-flight visual reversal learning task, and a test of spatial memory. To assess spatial memory, bees were trained to learn the location of a small sucrose feeder within an array of three landmarks. In tests, the feeder and one landmark were removed and the search behaviour of the bees was recorded. Performance of precocious and normal-aged foragers did not differ in a visual reversal learning task, but the two groups showed a clear difference in spatial memory. Flight behaviour suggested normal-aged foragers were better able to infer the position of the removed landmark and feeder relative to the remaining landmarks than precocious foragers. Previous studies have documented the cognitive decline of old foragers, but this is the first suggestion of a cognitive deficit in young foragers. These data imply that worker honey bees continue their cognitive development during the adult stage. These findings may also help to explain why precocious foragers perform quite poorly as foragers and have a higher than normal loss rate.

  8. Allee effects and colony collapse disorder in honey bees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose a mathematical model to quantify the hypothesis that a major ultimate cause of Colony Collapse Disorder (CCD) in honey bees is the presence of an Allee effect in the growth dynamics of honey bee colonies. In the model, both recruitment of adult bees as well as mortality of adult bees have...

  9. Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers

    PubMed Central

    2014-01-01

    Background Honey bees (Apis mellifera) contribute substantially to the worldwide economy and ecosystem health as pollinators. Pollen is essential to the bee’s diet, providing protein, lipids, and micronutrients. The dramatic shifts in physiology, anatomy, and behavior that accompany normal worker development are highly plastic and recent work demonstrates that development, particularly the transition from nurse to foraging roles, is greatly impacted by diet. However, the role that diet plays in the developmental transition of newly eclosed bees to nurse workers is poorly understood. To further understand honey bee nutrition and the role of diet in nurse development, we used a high-throughput screen of the transcriptome of 3 day and 8 day old worker bees fed either honey and stored pollen (rich diet) or honey alone (poor diet) within the hive. We employed a three factor (age, diet, age x diet) analysis of the transcriptome to determine whether diet affected nurse worker physiology and whether poor diet altered the developmental processes normally associated with aging. Results Substantial changes in gene expression occurred due to starvation. Diet-induced changes in gene transcription occurring in younger bees were largely a subset of those occurring in older bees, but certain signatures of starvation were only evident 8 day old workers. Of the 18,542 annotated transcripts in the A. mellifera genome, 150 transcripts exhibited differential expression due to poor diet at 3d of age compared with 17,226 transcripts that differed due to poor diet at 8d of age, and poor diet caused more frequent down-regulation of gene expression in younger bees compared to older bees. In addition, the age-related physiological changes that accompanied early adult development differed due to the diet these young adult bees were fed. More frequent down-regulation of gene expression was observed in developing bees fed a poor diet compared to those fed an adequate diet. Functional

  10. 20 CFR 663.150 - What core services must be provided to adults and dislocated workers?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....150 What core services must be provided to adults and dislocated workers? (a) At a minimum, all of the core services described in WIA section 134(d)(2) and 20 CFR 662.240 must be provided in each local area... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What core services must be provided to...

  11. Unravelling the Lifelong Learning Process for Canadian Workers and Adult Learners Acquiring Higher Skills

    ERIC Educational Resources Information Center

    Taylor, Maurice; Trumpower, David; Pavic, Ivana

    2013-01-01

    This article reports on a mixed methods study that investigated aspects of formal, non-formal and informal learning for workers and adult high school learners seeking literacy and essential skills. Three key themes emerged from the qualitative data: motivations for participation in various forms of learning; seeking out informal learning…

  12. Interacting with Adults with Congenital Deafblindness: The Experiences of Disability Support Workers

    ERIC Educational Resources Information Center

    Prain, Meredith; McVilly, Keith R.; Ramcharan, Paul

    2012-01-01

    Background: This study aimed to gain greater insight into the perspectives of staff on their interactions with adults with congenital deafblindness in light of the research literature reporting these interactions to be lacking in quality and quantity. Method: Data from interviews with 8 disability support workers were analysed using the approach…

  13. Keeping the Doors of Learning Open for Adult Student-Workers within Higher Education?

    ERIC Educational Resources Information Center

    Walters, Shirley; Abrahams, Mark; Witbooi, Sally

    2015-01-01

    The Freedom Charter of the African National Congress (ANC), the triumphant South African liberation movement, proclaims that "the doors of learning shall be open" for all. Twenty years since coming to power, the doors of the universities are struggling to stay open for adult student-workers. An action research project into implementation…

  14. Relationships between Adult Workers' Spiritual Well-Being and Job Satisfaction: A Preliminary Study

    ERIC Educational Resources Information Center

    Robert, Tracey E.; Young, J. Scott; Kelly, Virginia A.

    2006-01-01

    The authors studied the relationships between adult workers' spiritual well-being and job satisfaction. Two hundred participants completed 2 instruments: the Spiritual Well-Being Scale (C. W. Ellison & R. F. Paloutzian, 1982) and the Minnesota Satisfaction Questionnaire Short Form (D. J. Weiss, R. V. Dawis, G. W. England, & L. H. Lofquist, 1967).…

  15. Biopesticide-induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata.

    PubMed

    Barbosa, Wagner F; Tomé, Hudson Vaner V; Bernardes, Rodrigo C; Siqueira, Maria Augusta L; Smagghe, Guy; Guedes, Raul Narciso C

    2015-09-01

    Because of their natural origin, biopesticides are assumed to be less harmful to beneficial insects, including bees, and therefore their use has been widely encouraged for crop protection. There is little evidence, however, to support this ingrained notion of biopesticide safety to pollinators. Because larval exposure is still largely unexplored in ecotoxicology and risk assessment on bees, an investigation was performed on the lethal and sublethal effects of a diet treated with 2 bioinsecticides, azadirachtin and spinosad, on the stingless bee, Melipona quadrifasciata, which is one of the most important pollinators in the Neotropics. Survival of stingless bee larvae was significantly compromised at doses above 210 ng a.i./bee for azadirachtin and 114 ng a.i./bee for spinosad. No sublethal effect was observed on larvae developmental time, but doses of both compounds negatively affected pupal body mass. Azadirachtin produced deformed pupae and adults as a result of its insect growth regulator properties, but spinosad was more harmful and produced greater numbers of deformed individuals. Only spinosad compromised walking activity of the adult workers at doses as low as 2.29 ng a.i./bee, which is 1/5000 of the maximum field recommended rate. In conclusion, the results demonstrated that bioinsecticides can pose significant risks to native pollinators with lethal and sublethal effects; future investigations are needed on the likelihood of such effects under field conditions.

  16. Biopesticide-induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata.

    PubMed

    Barbosa, Wagner F; Tomé, Hudson Vaner V; Bernardes, Rodrigo C; Siqueira, Maria Augusta L; Smagghe, Guy; Guedes, Raul Narciso C

    2015-09-01

    Because of their natural origin, biopesticides are assumed to be less harmful to beneficial insects, including bees, and therefore their use has been widely encouraged for crop protection. There is little evidence, however, to support this ingrained notion of biopesticide safety to pollinators. Because larval exposure is still largely unexplored in ecotoxicology and risk assessment on bees, an investigation was performed on the lethal and sublethal effects of a diet treated with 2 bioinsecticides, azadirachtin and spinosad, on the stingless bee, Melipona quadrifasciata, which is one of the most important pollinators in the Neotropics. Survival of stingless bee larvae was significantly compromised at doses above 210 ng a.i./bee for azadirachtin and 114 ng a.i./bee for spinosad. No sublethal effect was observed on larvae developmental time, but doses of both compounds negatively affected pupal body mass. Azadirachtin produced deformed pupae and adults as a result of its insect growth regulator properties, but spinosad was more harmful and produced greater numbers of deformed individuals. Only spinosad compromised walking activity of the adult workers at doses as low as 2.29 ng a.i./bee, which is 1/5000 of the maximum field recommended rate. In conclusion, the results demonstrated that bioinsecticides can pose significant risks to native pollinators with lethal and sublethal effects; future investigations are needed on the likelihood of such effects under field conditions. PMID:26190792

  17. Diverse Microbiota Identified in Whole Intact Nest Chambers of the Red Mason Bee Osmia bicornis (Linnaeus 1758)

    PubMed Central

    Keller, Alexander; Grimmer, Gudrun; Steffan-Dewenter, Ingolf

    2013-01-01

    Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics. PMID:24205188

  18. In vitro growth-inhibitory effect of plant-derived extracts and compounds against Paenibacillus larvae and their acute oral toxicity to adult honey bees.

    PubMed

    Flesar, Jaroslav; Havlik, Jaroslav; Kloucek, Pavel; Rada, Vojtech; Titera, Dalibor; Bednar, Michal; Stropnicky, Michal; Kokoska, Ladislav

    2010-09-28

    In total, 26 natural compounds of various chemical classes (flavonoids, alkaloids, terpenoids) and 19 crude extracts from selected plants were tested in vitro for antibacterial activity against three strains of P. larvae, the causal agent of American Foulbrood Disease of honey bees (AFB) by the broth microdilution method. Among the individual substances, sanguinarine (MIC 4 microg/ml), followed by thymoquinone, capsaicin, trans-2-hexenal and nordihydroguaiaretic acid (MIC 4-32 microg/ml) possessed the strongest antibacterial effect. In case of extracts, common hop (Humulus lupulus L.) and myrtle (Myrtus communis L.) methanolic-dichloromethane extracts exhibited the highest growth-inhibitory effect with MICs ranging from 2 to 8 microg/ml. Acute oral toxicity of the most active natural products was determined on adult honey bees, showing them as non-toxic at concentrations as high as 100 microg peer bee. Our study leads to identification of highly potent natural products effective against AFB in vitro with very low MICs compared to those reported in literature, low toxicity to adult honey bees and commercial availability suggesting them as perspective, low cost and consumer-acceptable agents for control of AFB.

  19. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests.

    PubMed

    Tan, Jianguo; Levine, Steven L; Bachman, Pamela M; Jensen, Peter D; Mueller, Geoffrey M; Uffman, Joshua P; Meng, Chen; Song, Zihong; Richards, Kathy B; Beevers, Michael H

    2016-02-01

    The honey bee (Apis mellifera L.) is the most important managed pollinator species worldwide and plays a critical role in the pollination of a diverse range of economically important crops. This species is important to agriculture and historically has been used as a surrogate species for pollinators to evaluate the potential adverse effects for conventional, biological, and microbial pesticides, as well as for genetically engineered plants that produce pesticidal products. As part of the ecological risk assessment of MON 87411 maize, which expresses a double-stranded RNA targeting the Snf7 ortholog (DvSnf7) in western corn rootworm (Diabrotica virgifera virgifera), dietary feeding studies with honey bee larvae and adults were conducted. Based on the mode of action of the DvSnf7 RNA in western corn rootworm, the present studies were designed to be of sufficient duration to evaluate the potential for adverse effects on larval survival and development through emergence and adult survival to a significant portion of the adult stage. Testing was conducted at concentrations of DvSnf7 RNA that greatly exceeded environmentally relevant exposure levels based on expression levels in maize pollen. No adverse effects were observed in either larval or adult honey bees at these high exposure levels, providing a large margin of safety between environmental exposure levels and no-observed-adverse-effect levels. PMID:26011006

  20. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests

    PubMed Central

    Bachman, Pamela M.; Jensen, Peter D.; Mueller, Geoffrey M.; Uffman, Joshua P.; Meng, Chen; Song, Zihong; Richards, Kathy B.; Beevers, Michael H.

    2015-01-01

    Abstract The honey bee (Apis mellifera L.) is the most important managed pollinator species worldwide and plays a critical role in the pollination of a diverse range of economically important crops. This species is important to agriculture and historically has been used as a surrogate species for pollinators to evaluate the potential adverse effects for conventional, biological, and microbial pesticides, as well as for genetically engineered plants that produce pesticidal products. As part of the ecological risk assessment of MON 87411 maize, which expresses a double‐stranded RNA targeting the Snf7 ortholog (DvSnf7) in western corn rootworm (Diabrotica virgifera virgifera), dietary feeding studies with honey bee larvae and adults were conducted. Based on the mode of action of the DvSnf7 RNA in western corn rootworm, the present studies were designed to be of sufficient duration to evaluate the potential for adverse effects on larval survival and development through emergence and adult survival to a significant portion of the adult stage. Testing was conducted at concentrations of DvSnf7 RNA that greatly exceeded environmentally relevant exposure levels based on expression levels in maize pollen. No adverse effects were observed in either larval or adult honey bees at these high exposure levels, providing a large margin of safety between environmental exposure levels and no‐observed–adverse‐effect levels. Environ Toxicol Chem 2016;35:287–294. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:26011006

  1. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests.

    PubMed

    Tan, Jianguo; Levine, Steven L; Bachman, Pamela M; Jensen, Peter D; Mueller, Geoffrey M; Uffman, Joshua P; Meng, Chen; Song, Zihong; Richards, Kathy B; Beevers, Michael H

    2016-02-01

    The honey bee (Apis mellifera L.) is the most important managed pollinator species worldwide and plays a critical role in the pollination of a diverse range of economically important crops. This species is important to agriculture and historically has been used as a surrogate species for pollinators to evaluate the potential adverse effects for conventional, biological, and microbial pesticides, as well as for genetically engineered plants that produce pesticidal products. As part of the ecological risk assessment of MON 87411 maize, which expresses a double-stranded RNA targeting the Snf7 ortholog (DvSnf7) in western corn rootworm (Diabrotica virgifera virgifera), dietary feeding studies with honey bee larvae and adults were conducted. Based on the mode of action of the DvSnf7 RNA in western corn rootworm, the present studies were designed to be of sufficient duration to evaluate the potential for adverse effects on larval survival and development through emergence and adult survival to a significant portion of the adult stage. Testing was conducted at concentrations of DvSnf7 RNA that greatly exceeded environmentally relevant exposure levels based on expression levels in maize pollen. No adverse effects were observed in either larval or adult honey bees at these high exposure levels, providing a large margin of safety between environmental exposure levels and no-observed-adverse-effect levels.

  2. Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann).

    PubMed

    Cizelj, Ivanka; Glavan, Gordana; Božič, Janko; Oven, Irena; Mrak, Vesna; Narat, Mojca

    2016-03-01

    The Carniolan honey bee, Apis mellifera carnica, is a Slovenian autochthonous subspecies of honey bee. In recent years, the country has recorded an annual loss of bee colonies through mortality of up to 35%. One possible reason for such high mortality could be the exposure of honey bees to xenobiotic residues that have been found in honey bee and beehive products. Acaricides are applied by beekeepers to control varroosis, while the most abundant common agricultural chemicals found in honey bee and beehive products are fungicides, which may enter the system when applied to nearby flowering crops and fruit plants. Acaricides and fungicides are not intrinsically highly toxic to bees but their action in combination might lead to higher honey bee sensitivity or mortality. In the present study we investigated the molecular immune response of honey bee workers at different developmental stages (prepupa, white-eyed pupa, adult) exposed to the acaricide coumaphos and the fungicide prochloraz individually and in combination. Expression of 17 immune-related genes was examined by quantitative RT-PCR. In treated prepupae downregulation of most immune-related genes was observed in all treatments, while in adults upregulation of most of the genes was recorded. Our study shows for the first time that negative impacts of prochloraz and a combination of coumaphos and prochloraz differ among the different developmental stages of honey bees. The main effect of the xenobiotic combination was found to be upregulation of the antimicrobial peptide genes abaecin and defensin-1 in adult honey bees. Changes in immune-related gene expression could result in depressed immunity of honey bees and their increased susceptibility to various pathogens. PMID:26969442

  3. Does the Spatial Distribution of the Parasitic Mite Varroa jacobsoni Oud. (Mesostigmata: Varroidae) in Worker Brood of Honey Bee Apis Mellifera L. (Hymenoptera: Apidae) Rely on an Aggregative Process?

    NASA Astrophysics Data System (ADS)

    Salvy, M.; Capowiez, Y.; Le Conte, Y.; Salvy, M.; Clément, J.-L.

    Varroa jacobsoni is an ectoparasite of honey bees which reproduces in capped brood cells. Multi-infestation is frequently observed in worker brood and can be interpreted as an aggregative phenomenon. The aim of this study was to determine whether the distribution of V. jacobsoni in worker brood cells relies on a random or an aggregative process. We studied the distribution of Varroa females in capped worker brood at similar age by comparing, by a Monte Carlo test, the observed frequency distribution of mites per cell to simulated distributions based on a random process. A complementary approach, using the "nearest neighbor distances" (NND) with Monte Carlo tests, was investigated to study the spatial distribution (a) between mites in different cells and (b) between infested cells in brood. The observed distributions did not differ significantly from that expected by a random process, and we conclude that there is no aggregation during invasion of V. jacobsoni in worker brood.

  4. Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide.

    PubMed

    Tomé, Hudson Vaner V; Barbosa, Wagner F; Martins, Gustavo F; Guedes, Raul Narciso C

    2015-04-01

    The risks imposed by novel insecticides, mainly bioinsecticides, are largely unknown despite their increased use and their perceived environmental safety, which is based on their natural origin. Furthermore, unlike honeybees, native pollinator species have received little attention. In the present study, the lethal and sublethal effects of the neonicotinoid imidacloprid and the bioinsecticide spinosad were assessed in the stingless bee species Meliponaquadrifasciata, an important native pollinator in the Neotropical region. The adult stingless bee workers exhibited high oral insecticide susceptibility, with LD50s of 23.54 and 12.07 ng a.i./bee for imidacloprid and spinosad, respectively. Imidacloprid also impaired worker respiration and overall group activity and flight, while spinosad significantly impaired only worker flight despite exhibiting higher oral toxicity to adult workers than imidacloprid. These findings indicate the hazardous nature not only of imidacloprid but also the bioinsecticide spinosad to adult workers of the native pollinator M. quadrifasciata. Therefore, bioinsecticides should not be exempted from risk assessment analysis due to their lethal and sublethal components.

  5. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides.

    PubMed

    Tomé, Hudson Vaner V; Martins, Gustavo F; Lima, Maria Augusta P; Campos, Lúcio Antonio O; Guedes, Raul Narciso C

    2012-01-01

    Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their

  6. Imidacloprid-Induced Impairment of Mushroom Bodies and Behavior of the Native Stingless Bee Melipona quadrifasciata anthidioides

    PubMed Central

    Tomé, Hudson Vaner V.; Martins, Gustavo F.; Lima, Maria Augusta P.; Campos, Lúcio Antonio O.; Guedes, Raul Narciso C.

    2012-01-01

    Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their

  7. Ecological succession in the honey bee gut: Shift in Lactobacillus strain dominance during early adult development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many vertebrates, social interactions and nutrition can affect the colonization of gut symbionts across generations. We used next generation sequencing to investigate the effect of nest materials and social environment on the colonization and succession of core hindgut microbiota in workers of t...

  8. 20 CFR 663.110 - What are the eligibility criteria for core services for adults in the adult and dislocated worker...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What are the eligibility criteria for core... the One-Stop Delivery System § 663.110 What are the eligibility criteria for core services for adults in the adult and dislocated worker programs? To be eligible to receive core services as an adult...

  9. The growing prevalence of Nosema ceranae in honey bees in Spain, an emerging problem for the last decade.

    PubMed

    Botías, Cristina; Martín-Hernández, Raquel; Garrido-Bailón, Encarna; González-Porto, Amelia; Martínez-Salvador, Amparo; De la Rúa, Pilar; Meana, Aránzazu; Higes, Mariano

    2012-08-01

    Microsporidiosis caused by infection with Nosema apis or Nosema ceranae has become one of the most widespread diseases of honey bees and can cause important economic losses for beekeepers. Honey can be contaminated by spores of both species and it has been reported as a suitable matrix to study the field prevalence of other honey bee sporulated pathogens. Historical honey sample collections from the CAR laboratory (Centro Apícola Regional) were analyzed by PCR to identify the earliest instance of emergence, and to determine whether the presence of Nosema spp. in honey was linked to the spread of these microsporidia in honey bee apiaries. A total of 240 frozen honey samples were analyzed by PCR and the results compared with rates of Nosema spp. infection in worker bee samples from different years and geographical areas. The presence of Nosema spp. in hive-stored honey from naturally infected honey bee colonies (from an experimental apiary) was also monitored, and although collected honey bees resulted in a more suitable sample to study the presence of microsporidian parasites in the colonies, a high probability of finding Nosema spp. in their hive-stored honey was observed. The first honey sample in which N. ceranae was detected dates back to the year 2000. In subsequent years, the number of samples containing N. ceranae tended to increase, as did the detection of Nosema spp. in adult worker bees. The presence of N. ceranae as early as 2000, long before generalized bee depopulation and colony losses in 2004 may be consistent with a long incubation period for nosemosis type C or related with other unknown factors. The current prevalence of nosemosis, primarily due to N. ceranae, has reached epidemic levels in Spain as confirmed by the analysis of worker honey bees and commercial honey.

  10. 20 CFR 664.500 - May youth participate in both youth and adult/dislocated worker programs concurrently?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false May youth participate in both youth and adult... Concurrent Enrollment § 664.500 May youth participate in both youth and adult/dislocated worker programs concurrently? (a) Yes, under the Act, eligible youth are 14 through 21 years of age. Adults are defined in...

  11. 20 CFR 664.500 - May youth participate in both youth and adult/dislocated worker programs concurrently?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false May youth participate in both youth and adult... Concurrent Enrollment § 664.500 May youth participate in both youth and adult/dislocated worker programs concurrently? (a) Yes, under the Act, eligible youth are 14 through 21 years of age. Adults are defined in...

  12. 20 CFR 664.500 - May youth participate in both youth and adult/dislocated worker programs concurrently?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false May youth participate in both youth and adult... Concurrent Enrollment § 664.500 May youth participate in both youth and adult/dislocated worker programs concurrently? (a) Yes, under the Act, eligible youth are 14 through 21 years of age. Adults are defined in...

  13. 20 CFR 664.500 - May youth participate in both youth and adult/dislocated worker programs concurrently?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false May youth participate in both youth and adult... Enrollment § 664.500 May youth participate in both youth and adult/dislocated worker programs concurrently? (a) Yes, under the Act, eligible youth are 14 through 21 years of age. Adults are defined in the...

  14. Production of workers, queens and males in Plebeia remota colonies (Hymenoptera, Apidae, Meliponini), a stingless bee with reproductive diapause.

    PubMed

    Alves, D A; Imperatriz-Fonseca, V L; Santos-Filho, P S

    2009-01-01

    Queen, male and worker production was studied during one year in three Plebeia remota colonies from Atlantic Rainforest in Cunha, São Paulo State, and two from a subtropical Araucaria forest in Prudentópolis, Paraná State. All the colonies were kept in São Paulo city during our study. Plebeia remota has reproductive diapause during autumn and winter, which makes its biology of special interest. Brood production begins before spring, renewing the colony cycle. We sampled brood combs monthly in these five colonies. The number of cells in each comb varied significantly with time of the year; the smallest brood combs appear to be a consequence of reduced food availability. However, worker, queen and male frequencies did not differ significantly in time, and this presumably is due to the fact that they all are necessary for the growth, maintenance and reproduction of the colony. Although some molecular, morphological and behavioral differences have been detected in several studies comparing populations from Cunha and from Prudentópolis, we did not find significant differences between the colonies from these two localities in number of brood cells and worker, queen and male production. PMID:19554766

  15. Timing and size of daily pollen meals eaten by adult females of a solitary bee (Nomia melanderi)(Apiformes: Halictidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solitary bees daily provision nest cells with pollen and nectar for their progeny, but little is known of their own eating habits for self-maintenance. The alimentary canals of nesting female alkali bees (Nomia melanderi) were dissected daily at different hours and days throughout their nesting live...

  16. The Prevalence of Childhood Adversity among Healthcare Workers and Its Relationship to Adult Life Events, Distress and Impairment

    ERIC Educational Resources Information Center

    Maunder, Robert G.; Peladeau, Nathalie; Savage, Diane; Lancee, William J.

    2010-01-01

    Objective: We investigated the prevalence of childhood adversity among healthcare workers and if such experiences affect responses to adult life stress. Methods: A secondary analysis was conducted of a 2003 study of 176 hospital-based healthcare workers, which surveyed lifetime traumatic events, recent life events, psychological distress, coping,…

  17. 20 CFR 663.115 - What are the eligibility criteria for core services for dislocated workers in the adult and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What are the eligibility criteria for core... Through the One-Stop Delivery System § 663.115 What are the eligibility criteria for core services for dislocated workers in the adult and dislocated worker programs? (a) To be eligible to receive core...

  18. Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt.

    PubMed

    Al Naggar, Yahya; Codling, Garry; Vogt, Anja; Naiem, Elsaied; Mona, Mohamed; Seif, Amal; Giesy, John P

    2015-04-01

    There is no clear single factor to date that explains colony loss in bees, but one factor proposed is the wide-spread application of agrochemicals. Concentrations of 14 organophosphorous insecticides (OPs) in honey bees (Apis mellifera) and hive matrices (honey and pollen) were measured to assess their hazard to honey bees. Samples were collected during spring and summer of 2013, from 5 provinces in the middle delta of Egypt. LC/MS-MS was used to identify and quantify individual OPs by use of a modified Quick Easy Cheap Effective Rugged Safe (QuEChERS) method. Pesticides were detected more frequently in samples collected during summer. Pollen contained the greatest concentrations of OPs. Profenofos, chlorpyrifos, malation and diazinon were the most frequently detected OPs. In contrast, ethoprop, phorate, coumaphos and chlorpyrifos-oxon were not detected. A toxic units approach, with lethality as the endpoint was used in an additive model to assess the cumulative potential for adverse effects posed by OPs. Hazard quotients (HQs) in honey and pollen ranged from 0.01-0.05 during spring and from 0.02-0.08 during summer, respectively. HQs based on lethality due to direct exposure of adult worker bees to OPs during spring and summer ranged from 0.04 to 0.1 for best and worst case respectively. It is concluded that direct exposure and/or dietary exposure to OPs in honey and pollen pose little threat due to lethality of bees in Egypt.

  19. Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt.

    PubMed

    Al Naggar, Yahya; Codling, Garry; Vogt, Anja; Naiem, Elsaied; Mona, Mohamed; Seif, Amal; Giesy, John P

    2015-04-01

    There is no clear single factor to date that explains colony loss in bees, but one factor proposed is the wide-spread application of agrochemicals. Concentrations of 14 organophosphorous insecticides (OPs) in honey bees (Apis mellifera) and hive matrices (honey and pollen) were measured to assess their hazard to honey bees. Samples were collected during spring and summer of 2013, from 5 provinces in the middle delta of Egypt. LC/MS-MS was used to identify and quantify individual OPs by use of a modified Quick Easy Cheap Effective Rugged Safe (QuEChERS) method. Pesticides were detected more frequently in samples collected during summer. Pollen contained the greatest concentrations of OPs. Profenofos, chlorpyrifos, malation and diazinon were the most frequently detected OPs. In contrast, ethoprop, phorate, coumaphos and chlorpyrifos-oxon were not detected. A toxic units approach, with lethality as the endpoint was used in an additive model to assess the cumulative potential for adverse effects posed by OPs. Hazard quotients (HQs) in honey and pollen ranged from 0.01-0.05 during spring and from 0.02-0.08 during summer, respectively. HQs based on lethality due to direct exposure of adult worker bees to OPs during spring and summer ranged from 0.04 to 0.1 for best and worst case respectively. It is concluded that direct exposure and/or dietary exposure to OPs in honey and pollen pose little threat due to lethality of bees in Egypt. PMID:25574845

  20. Bee Pollen

    MedlinePlus

    ... bee venom, honey, or royal jelly. People take bee pollen for nutrition; as an appetite stimulant; to improve stamina and athletic performance; and for premature aging, premenstrual syndrome (PMS), hay fever (allergic ... Bee pollen is also used for gastrointestinal (GI) problems ...

  1. Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.).

    PubMed

    Guzman-Novoa, Ernesto; Emsen, Berna; Unger, Peter; Espinosa-Montaño, Laura G; Petukhova, Tatiana

    2012-07-01

    The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed.

  2. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera).

    PubMed

    Retschnig, Gina; Williams, Geoffrey R; Mehmann, Marion M; Yañez, Orlando; de Miranda, Joachim R; Neumann, Peter

    2014-01-01

    Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels.

  3. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera).

    PubMed

    Retschnig, Gina; Williams, Geoffrey R; Mehmann, Marion M; Yañez, Orlando; de Miranda, Joachim R; Neumann, Peter

    2014-01-01

    Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels. PMID:24465518

  4. Sex-Specific Differences in Pathogen Susceptibility in Honey Bees (Apis mellifera)

    PubMed Central

    Retschnig, Gina; Williams, Geoffrey R.; Mehmann, Marion M.; Yañez, Orlando; de Miranda, Joachim R.; Neumann, Peter

    2014-01-01

    Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels. PMID:24465518

  5. Effects of host age on susceptibility to infection and immune-gene expression in honey bee queens (Apis mellifera) inoculated with Nosema ceranae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nosema ceranae is a microsporidium parasite infecting honey bees worldwide. All colony members including workers, drones and queens can become infected. In this study, we inoculated queens of age 1, 6 and 12 days post adult emergence, with N. ceranae spores of different doses and allowed them to age...

  6. Effects of insemination quantity on honey bee queen physiology.

    PubMed

    Richard, Freddie-Jeanne; Tarpy, David R; Grozinger, Christina M

    2007-10-03

    Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony.

  7. The plight of the bees

    USGS Publications Warehouse

    Spivak, Marla; Mader, Eric; Vaughan, Mace; Euliss, Ned H.

    2011-01-01

    Some environmental issues polarize people, producing weary political stalemates of indecision and inaction. Others, however, grab hold of our most primeval instincts, causing us to reach deeply into our memories of childhood, and our first direct experiences with nature: the bumble bee nest we poked at with a stick; the man at the county fair with the bee beard. Those memories expand backward in time to our barefoot ancestors who climbed trees and robbed honey. They help define the human experience and provide context to our own place in the world.And so the plight of the bees strikes a common chord. For a brief moment simple matters of politics, economics, and nationality seem irrelevant. Colony collapse disorder, the name for the syndrome causing honey bees (Apis mellifera) to suddenly and mysteriously disappear from their hives - thousands of individual worker bees literally flying off to die - captured public consciousness when it was first named in 2007 (1). Since then, the story of vanishing honey bees has become ubiquitous in popular consciousness - driving everything from ice cream marketing campaigns to plots for The Simpsons. The untold story is that these hive losses are simply a capstone to more than a half-century of more prosaic day-to-day losses that beekeepers already faced from parasites, diseases, poor nutrition, and pesticide poisoning (2). The larger story still is that while honey bees are charismatic and important to agriculture, other important bees are also suffering, and in some cases their fates are far worse (3). These other bees are a subset of the roughly 4000 species of wild bumble bees (Bombus), leafcutter bees (Megachile), and others that are native to North America. While the honey bee was originally imported from Europe by colonists in the early 17th century, it is these native bees that have evolved with our local ecosystems, and, along with honey bees, are valuable crop pollinators. People want to know why bees are dying and how

  8. Protein levels and colony development of Africanized and European honey bees fed natural and artificial diets.

    PubMed

    Morais, M M; Turcatto, A P; Pereira, R A; Francoy, T M; Guidugli-Lazzarini, K R; Gonçalves, L S; de Almeida, J M V; Ellis, J D; De Jong, D

    2013-12-19

    Pollen substitute diets are a valuable resource for maintaining strong and health honey bee colonies. Specific diets may be useful in one region or country and inadequate or economically unviable in others. We compared two artificial protein diets that had been formulated from locally-available ingredients in Brazil with bee bread and a non-protein sucrose diet. Groups of 100 newly-emerged, adult workers of Africanized honey bees in Brazil and European honey bees in the USA were confined in small cages and fed on one of four diets for seven days. The artificial diets included a high protein diet made of soy milk powder and albumin, and a lower protein level diet consisting of soy milk powder, brewer's yeast and rice bran. The initial protein levels in newly emerged bees were approximately 18-21 µg/µL hemolymph. After feeding on the diets for seven days, the protein levels in the hemolymph were similar among the protein diet groups (~37-49 µg/µL after seven days), although Africanized bees acquired higher protein levels, increasing 145 and 100% on diets D1 and D2, respectively, versus 83 and 60% in the European bees. All the protein diets resulted in significantly higher levels of protein than sucrose solution alone. In the field, the two pollen substitute diets were tested during periods of low pollen availability in the field in two regions of Brazil. Food consumption, population development, colony weight, and honey production were evaluated to determine the impact of the diets on colony strength parameters. The colonies fed artificial diets had a significant improvement in all parameters, while control colonies dwindled during the dearth period. We conclude that these two artificial protein diets have good potential as pollen substitutes during dearth periods and that Africanized bees more efficiently utilize artificial protein diets than do European honey bees.

  9. Metatranscriptomic analyses of honey bee colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World’s most important centers...

  10. Bee a Reader.

    ERIC Educational Resources Information Center

    Hayes, Holly, Ed.; Marmolejo, Jill, Ed.

    This publication is a tutor's guide to teaching basic literacy using The Fresno Bee, a California newspaper, as the primary "textbook." The course is aimed at English-speaking adults and is designed to teach reading in an interesting and entertaining way that promotes self-motivated study, both in the classroom and at home. The guide is divided…

  11. Parasaccharibacter apium, gen. nov., sp. nov., Improves Honey Bee (Hymenoptera: Apidae) Resistance to Nosema.

    PubMed

    Corby-Harris, V; Snyder, L; Meador, C A D; Naldo, R; Mott, B; Anderson, K E

    2016-04-01

    The honey bee, Apis mellifera L., is host to a variety of microorganisms. The bacterial community that occupies the adult worker gut contains a core group of approximately seven taxa, while the hive environment contains its own distribution of bacteria that is in many ways distinct from the gut. Parasaccharibacter apium, gen. nov., sp. nov., is a hive bacterium found in food stores and in larvae, worker jelly, worker hypopharyngeal glands, and queens. Parasaccharibacter apium increases larval survival under laboratory conditions. To determine if this benefit is extended to colonies in the field, we tested if P. apium 1) survives and reproduces in supplemental pollen patty, 2) is distributed throughout the hive when added to pollen patty, 3) benefits colony health, and 4) increases the ability of bees to resist Nosema. Parasaccharibacter apium survived in supplemental diet and was readily consumed by bees. It was distributed throughout the hive under field conditions, moving from the pollen patty to hive larvae. While P. apium did not significantly increase colony brood production, food stores, or foraging rates, it did increase resistance to Nosema infection. Our data suggest that P. apium may positively impact honey bee health.

  12. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera)

    PubMed Central

    Johnson, Reed M.; Dahlgren, Lizette; Siegfried, Blair D.; Ellis, Marion D.

    2013-01-01

    Background Chemical analysis shows that honey bees (Apis mellifera) and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects. Methodology/Principal Findings Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17) while amitraz toxicity was mostly unchanged (1 of 15). The sterol biosynthesis inhibiting (SBI) fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested. Conclusions/Significance Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication appears to play an

  13. Lower Virus Infections in Varroa destructor-Infested and Uninfested Brood and Adult Honey Bees (Apis mellifera) of a Low Mite Population Growth Colony Compared to a High Mite Population Growth Colony

    PubMed Central

    Emsen, Berna; Hamiduzzaman, Mollah Md.; Goodwin, Paul H.; Guzman-Novoa, Ernesto

    2015-01-01

    A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection. PMID:25723540

  14. Lower virus infections in Varroa destructor-infested and uninfested brood and adult honey bees (Apis mellifera) of a low mite population growth colony compared to a high mite population growth colony.

    PubMed

    Emsen, Berna; Hamiduzzaman, Mollah Md; Goodwin, Paul H; Guzman-Novoa, Ernesto

    2015-01-01

    A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection.

  15. Monogamy in large bee societies: a stingless paradox

    NASA Astrophysics Data System (ADS)

    Jaffé, Rodolfo; Pioker-Hara, Fabiana C.; dos Santos, Charles F.; Santiago, Leandro R.; Alves, Denise A.; de M. P. Kleinert, Astrid; Francoy, Tiago M.; Arias, Maria C.; Imperatriz-Fonseca, Vera L.

    2014-03-01

    High genetic diversity is important for the functioning of large insect societies. Across the social Hymenoptera (ants, bees, and wasps), species with the largest colonies tend to have a high colony-level genetic diversity resulting from multiple queens (polygyny) or queens that mate with multiple males (polyandry). Here we studied the genetic structure of Trigona spinipes, a stingless bee species with colonies an order of magnitude larger than those of polyandrous honeybees. Genotypes of adult workers and pupae from 43 nests distributed across three Brazilian biomes showed that T. spinipes colonies are usually headed by one singly mated queen. Apart from revealing a notable exception from the general incidence of high genetic diversity in large insect societies, our results reinforce previous findings suggesting the absence of polyandry in stingless bees and provide evidence against the sperm limitation hypothesis for the evolution of polyandry. Stingless bee species with large colonies, such as T. spinipes, thus seem promising study models to unravel alternative mechanisms to increase genetic diversity within colonies or understand the adaptive value of low genetic diversity in large insect societies.

  16. Monogamy in large bee societies: a stingless paradox.

    PubMed

    Jaffé, Rodolfo; Pioker-Hara, Fabiana C; Dos Santos, Charles F; Santiago, Leandro R; Alves, Denise A; de M P Kleinert, Astrid; Francoy, Tiago M; Arias, Maria C; Imperatriz-Fonseca, Vera L

    2014-03-01

    High genetic diversity is important for the functioning of large insect societies. Across the social Hymenoptera (ants, bees, and wasps), species with the largest colonies tend to have a high colony-level genetic diversity resulting from multiple queens (polygyny) or queens that mate with multiple males (polyandry). Here we studied the genetic structure of Trigona spinipes, a stingless bee species with colonies an order of magnitude larger than those of polyandrous honeybees. Genotypes of adult workers and pupae from 43 nests distributed across three Brazilian biomes showed that T. spinipes colonies are usually headed by one singly mated queen. Apart from revealing a notable exception from the general incidence of high genetic diversity in large insect societies, our results reinforce previous findings suggesting the absence of polyandry in stingless bees and provide evidence against the sperm limitation hypothesis for the evolution of polyandry. Stingless bee species with large colonies, such as T. spinipes, thus seem promising study models to unravel alternative mechanisms to increase genetic diversity within colonies or understand the adaptive value of low genetic diversity in large insect societies.

  17. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    PubMed

    Wang, Ying; Brent, Colin S; Fennern, Erin; Amdam, Gro V

    2012-06-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  18. Testing Dose-Dependent Effects of the Nectar Alkaloid Anabasine on Trypanosome Parasite Loads in Adult Bumble Bees

    PubMed Central

    Anthony, Winston E.; Palmer-Young, Evan C.; Leonard, Anne S.; Irwin, Rebecca E.; Adler, Lynn S.

    2015-01-01

    The impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators. However, the effect of compound dose on bee survival and parasite loads has not been assessed. To determine how secondary compound consumption affects survival and pathogen load in Bombus impatiens, we manipulated the presence of a common gut parasite, Crithidia bombi, and dietary concentration of anabasine, a nectar alkaloid produced by Nicotiana spp. using four concentrations naturally observed in floral nectar. We hypothesized that increased consumption of secondary compounds at concentrations found in nature would decrease survival of uninfected bees, but improve survival and ameliorate parasite loads in infected bees. We found medicinal effects of anabasine in infected bees; the high-anabasine diet decreased parasite loads and increased the probability of clearing the infection entirely. However, survival time was not affected by any level of anabasine concentration, or by interactive effects of anabasine concentration and infection. Crithidia infection reduced survival time by more than two days, but this effect was not significant. Our results support a medicinal role for anabasine at the highest concentration; moreover, we found no evidence for a survival-related cost of anabasine consumption across the concentration range found in nectar. Our results suggest that consuming anabasine at the higher levels of the natural range could reduce or clear pathogen loads without incurring costs for healthy bees. PMID:26545106

  19. Testing Dose-Dependent Effects of the Nectar Alkaloid Anabasine on Trypanosome Parasite Loads in Adult Bumble Bees.

    PubMed

    Anthony, Winston E; Palmer-Young, Evan C; Leonard, Anne S; Irwin, Rebecca E; Adler, Lynn S

    2015-01-01

    The impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators. However, the effect of compound dose on bee survival and parasite loads has not been assessed. To determine how secondary compound consumption affects survival and pathogen load in Bombus impatiens, we manipulated the presence of a common gut parasite, Crithidia bombi, and dietary concentration of anabasine, a nectar alkaloid produced by Nicotiana spp. using four concentrations naturally observed in floral nectar. We hypothesized that increased consumption of secondary compounds at concentrations found in nature would decrease survival of uninfected bees, but improve survival and ameliorate parasite loads in infected bees. We found medicinal effects of anabasine in infected bees; the high-anabasine diet decreased parasite loads and increased the probability of clearing the infection entirely. However, survival time was not affected by any level of anabasine concentration, or by interactive effects of anabasine concentration and infection. Crithidia infection reduced survival time by more than two days, but this effect was not significant. Our results support a medicinal role for anabasine at the highest concentration; moreover, we found no evidence for a survival-related cost of anabasine consumption across the concentration range found in nectar. Our results suggest that consuming anabasine at the higher levels of the natural range could reduce or clear pathogen loads without incurring costs for healthy bees.

  20. Ants, Wasps, and Bees (Hymenoptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stinging wasps, bees, and ants are a problem for farm workers, particularly at harvest when these insects are attracted to ripe fruits. Researchers at the USDA-ARS Yakima Agricultural Research Laboratory, Wapato, WA, together with personnel at Oral Roberts University compiled available information o...

  1. Nurses' and care workers' attitudes toward death and caring for dying older adults in Japan.

    PubMed

    Matsui, Miho; Braun, Kathryn

    2010-12-01

    Registered nurses (RNs) and care workers (CWs) have important roles in providing end-of-life care to older adults, but little is known about the attitudes of RNs and CWs in Japan. In this study, 464 RNs and CWs working in facilities in Japan were asked to complete a self-administered questionnaire that included the Frommelt Attitude Toward Care of the Dying Scale, Form B, Japanese version (FATCOD-Form B-J) and the Death Attitude Profile (DAP), Japanese version. A total of 388 (83.6%) questionnaires were returned, and 367 (79.1%) were fully completed. The final sample included 190 RNs and 177 CWs. Multiple regression analysis showed that better attitudes toward caring for the dying were positively associated with seminar attendance and negatively associated with fear of death.

  2. Neurologic effects of solvents in older adults. (UW retired worker study). Final performance report

    SciTech Connect

    Daniell, W.E.

    1993-11-12

    The possibility that previous occupational exposure to solvents might be associated with clinically significant neurological dysfunction in older adults was investigated in a cross-sectional study. Subjects included 67 painters, 22 aerospace painters and fuel cell sealers, and a comparison group of 126 carpenters. All subjects had retired from regular employment at least 1 year prior to the study. As measured by semiquantitative exposure index, the cumulative histories of lifetime occupational solvent exposure were on the average comparable in the two exposed study groups, painters and aerospace workers. The carpenters differed from the other groups in solvent exposure by several orders of magnitude. The painters had a significantly higher history of consuming alcoholic beverages than did the other two study groups. The painters had a significantly higher score on the Beck Depression Inventory, a measure of current depressive symptoms. The painters reported significantly more general neurologic symptoms than did the other two groups. The aerospace workers showed much greater evidence of possible adverse effects from former solvent exposure on current neuropsychological function than did the painters when determined by reasoning and memory tests, memory visual motor speed and motor tests. No evidence of persistent effects on liver or renal excretory function was seen in solvent exposed subjects.

  3. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... partners described in 20 CFR part 662. Consistent with those provisions: (1) Core services for adults and... worker programs in the One-Stop delivery system? 663.100 Section 663.100 Employees' Benefits EMPLOYMENT... the One-Stop Delivery System § 663.100 What is the role of the adult and dislocated worker programs...

  4. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... partners described in 20 CFR part 662. Consistent with those provisions: (1) Core services for adults and... worker programs in the One-Stop delivery system? 663.100 Section 663.100 Employees' Benefits EMPLOYMENT... the One-Stop Delivery System § 663.100 What is the role of the adult and dislocated worker programs...

  5. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 CFR part 662. Consistent with those provisions: (1) Core services for adults and dislocated... worker programs in the One-Stop delivery system? 663.100 Section 663.100 Employees' Benefits EMPLOYMENT... OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the...

  6. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... partners described in 20 CFR part 662. Consistent with those provisions: (1) Core services for adults and... worker programs in the One-Stop delivery system? 663.100 Section 663.100 Employees' Benefits EMPLOYMENT... the One-Stop Delivery System § 663.100 What is the role of the adult and dislocated worker programs...

  7. Classical conditioning of proboscis extension in harnessed Africanized honey bee queens (Apis mellifera L.).

    PubMed

    Aquino, Italo S; Abramson, Charles I; Soares, Ademilson E E; Fernandes, Andrea Cardoso; Benbassat, Danny

    2004-06-01

    Experiments are reported on learning in virgin Africanized honey bee queens (Apis mellifera L.). Queens restrained in a "Pavlovian harness" received a pairing of hexanal odor with a 1.8-M feeding of sucrose solution. Compared to explicitly unpaired controls, acquisition was rapid in reaching about 90%. Acquisition was also rapid in queens receiving an unconditioned stimulus of "bee candy" or an unconditioned stimulus administered by worker bees. During extinction the conditioned response declines. The steepest decline was observed in queens receiving an unconditioned stimulus of bee candy. These findings extend previous work on learning of Afrianized honey bee workers to a population of queen bees.

  8. Classical conditioning of proboscis extension in harnessed Africanized honey bee queens (Apis mellifera L.).

    PubMed

    Aquino, Italo S; Abramson, Charles I; Soares, Ademilson E E; Fernandes, Andrea Cardoso; Benbassat, Danny

    2004-06-01

    Experiments are reported on learning in virgin Africanized honey bee queens (Apis mellifera L.). Queens restrained in a "Pavlovian harness" received a pairing of hexanal odor with a 1.8-M feeding of sucrose solution. Compared to explicitly unpaired controls, acquisition was rapid in reaching about 90%. Acquisition was also rapid in queens receiving an unconditioned stimulus of "bee candy" or an unconditioned stimulus administered by worker bees. During extinction the conditioned response declines. The steepest decline was observed in queens receiving an unconditioned stimulus of bee candy. These findings extend previous work on learning of Afrianized honey bee workers to a population of queen bees. PMID:15362396

  9. Nest Initiation in Three North American Species of Bumble Bees (Bombus): Effects of Gyne Number and Worker Helpers on Colony Size and Establishment Success

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three species of bumble bees, Bombus appositus, B. bifarius, and B. centralis (Hymenoptera: Apidae) were evaluated for nest initiation success under three sets of initial conditions. In the spring, queens of each species were caught in the wild and introduced to nest boxes in one of three ways. Qu...

  10. 20 CFR 664.500 - May youth participate in both youth and adult/dislocated worker programs concurrently?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false May youth participate in both youth and adult/dislocated worker programs concurrently? 664.500 Section 664.500 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR YOUTH ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT...

  11. Is it possible to use the honey bee adult as a bioindicator for the detection of pesticide residues in plants?

    PubMed

    Mansour, S A

    1987-01-01

    Pesticide residues are usually determined by physical, chemical and biological methods. The simplicity and adaptability of bioassay methods have won their acceptance in the field of residue analysis. Theoretically, any organism that is susceptible to a pesticide may be used for its bioassay in any environmental sample. This means that such organism may serve as a bioindicator for the detection of certain pollutants. The susceptibility of honey bees (Apis melifera L.) to many insecticides commonly used in crop protection led to an attempt to use it as a bioindicator for the determination of residues of some insecticides in plant materials, as well as to detect toxicity hazards to honey bees of some commonly used insecticides. Results of this work which have been recently published may suggest "Yes" to answer the question posed in the title of this subject.

  12. Bee poison

    MedlinePlus

    ... stings contain a substance called venom. Africanized bee colonies are very sensitive to being disturbed. When they ... and blood vessels Severe decrease in blood pressure Collapse * Lungs: Difficulty breathing * Skin Hives * Itching Swelling and ...

  13. Honey bee drones maintain humoral immune competence throughout all life stages in the absence of vitellogenin production.

    PubMed

    Gätschenberger, Heike; Gimple, Olaf; Tautz, Jürgen; Beier, Hildburg

    2012-04-15

    Drones are haploid male individuals whose major social function in honey bee colonies is to produce sperm and mate with a queen. In spite of their limited tasks, the vitality of drones is of utmost importance for the next generation. The immune competence of drones - as compared to worker bees - is largely unexplored. Hence, we studied humoral and cellular immune reactions of in vitro reared drone larvae and adult drones of different age upon artificial bacterial infection. Haemolymph samples were collected after aseptic and septic injury and subsequently employed for (1) the identification of immune-responsive peptides and/or proteins by qualitative proteomic analyses in combination with mass spectrometry and (2) the detection of antimicrobial activity by inhibition-zone assays. Drone larvae and adult drones responded with a strong humoral immune reaction upon bacterial challenge, as validated by the expression of small antimicrobial peptides. Young adult drones exhibited a broader spectrum of defence reactions than drone larvae. Distinct polypeptides including peptidoglycan recognition protein-S2 and lysozyme 2 were upregulated in immunized adult drones. Moreover, a pronounced nodulation reaction was observed in young drones upon bacterial challenge. Prophenoloxidase zymogen is present at an almost constant level in non-infected adult drones throughout the entire lifespan. All observed immune reactions in drones were expressed in the absence of significant amounts of vitellogenin. We conclude that drones - like worker bees - have the potential to activate multiple elements of the innate immune response.

  14. First Complete Genome Sequence of Chronic Bee Paralysis Virus Isolated from Honey Bees (Apis mellifera) in China.

    PubMed

    Li, Beibei; Hou, Chunsheng; Deng, Shuai; Zhang, Xuefeng; Chu, Yanna; Yuan, Chunying; Diao, Qingyun

    2016-01-01

    Chronic bee paralysis virus (CBPV) is a serious viral disease affecting adult bees. We report here the complete genome sequence of CBPV, which was isolated from a honey bee colony with the symptom of severe crawling. The genome of CBPV consists of two segments, RNA 1 and RNA 2, containing respective overlapping fragments. PMID:27491983

  15. First Complete Genome Sequence of Chronic Bee Paralysis Virus Isolated from Honey Bees (Apis mellifera) in China

    PubMed Central

    Li, Beibei; Deng, Shuai; Zhang, Xuefeng; Chu, Yanna; Yuan, Chunying

    2016-01-01

    Chronic bee paralysis virus (CBPV) is a serious viral disease affecting adult bees. We report here the complete genome sequence of CBPV, which was isolated from a honey bee colony with the symptom of severe crawling. The genome of CBPV consists of two segments, RNA 1 and RNA 2, containing respective overlapping fragments. PMID:27491983

  16. What adult worker model? A critical look at recent social policy reform in Europe from a gender and family perspective.

    PubMed

    Daly, Mary

    2011-01-01

    Analyses regularly feature claims that European welfare states are in the process of creating an adult worker model. The theoretical and empirical basis of this argument is examined here by looking first at the conceptual foundations of the adult worker model formulation and then at the extent to which social policy reform in western Europe fits with the argument. It is suggested that the adult worker formulation is under-specified. A framework incorporating four dimensions—the treatment of individuals vis-à-vis their family role and status for the purposes of social rights, the treatment of care, the treatment of the family as a social institution, and the extent to which gender inequality is problematized—is developed and then applied. The empirical analysis reveals a strong move towards individualization as social policy promotes and valorizes individual agency and self-sufficiency and shifts some childcare from the family. Yet evidence is also found of continued (albeit changed) familism. Rather than an unequivocal move to an individualized worker model then, a dual earner, gender-specialized, family arrangement is being promoted. The latter is the middle way between the old dependencies and the new “independence.” This makes for complexity and even ambiguity in policy, a manifestation of which is that reform within countries involves concurrent moves in several directions. PMID:21692242

  17. Imidacloprid alters foraging and decreases bee avoidance of predators.

    PubMed

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species.

  18. Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators

    PubMed Central

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species. PMID:25025334

  19. Expansion of the neuropil of the mushroom bodies in male honey bees is coincident with initiation of flight.

    PubMed

    Fahrbach, S E; Giray, T; Farris, S M; Robinson, G E

    1997-11-01

    The mushroom bodies (MB), the insect brain structures most often associated with learning, have previously been shown to exhibit structural plasticity during the adult behavioral development of female worker and queen honey bees. We now show that comparable morphological changes occur in the brains of male honey bees (drones). The volume of the MB in the brains of drones was estimated from tissue sections using the Cavalieri method. Brains were obtained from six groups of drones that differed in age and flight experience. Circulating levels of juvenile hormone (JH) in these drones were determined by radioimmunoassay (RIA). There was an expansion of the neuropil of the MB that was temporally associated with drone behavioral development, as in female queens and workers. The observed changes in drones were maintained in the presence of low levels of JH, also as in females. These results suggest that expansion of the neuropil of the MB in honey bees is associated with learning the location of the nest, because this learning is the most prominent aspect of behavioral development common to all members (workers, drones, queen) of the honey bee colony.

  20. Partial ovary development is widespread in honey bees and comparable to other eusocial bees and wasps

    PubMed Central

    Smith, Michael L.; Mattila, Heather R.; Reeve, H. Kern

    2013-01-01

    Honey bee workers have few opportunities for direct reproduction because their ovary development is chemically suppressed by queens and worker-laid eggs are destroyed by workers. While workers with fully developed ovaries are rare in honey bee colonies, we show that partial ovary development is common. Across nine studies, an average of 6% to 43% of workers had partially developed ovaries in queenright colonies with naturally mated queens. This shift by workers toward potential future reproduction is linked to lower productivity, which suggests that even small investments in reproductive physiology by selfish workers reduce cooperation below a theoretical maximum. Furthermore, comparisons across 26 species of bees and wasps revealed that the level of partial ovary development in honey bees is similar to that of other eusocial Hymenoptera where there is reproductive conflict among colony members. Natural variation in the extent of partial ovary development in honey bee colonies calls for an exploration of the genetic and ecological factors that modulate shifts in cooperation within animal societies. PMID:24255737

  1. Parasitized honey bees are less likely to forage and carry less pollen.

    PubMed

    Lach, Lori; Kratz, Madlen; Baer, Boris

    2015-09-01

    Research into loss of pollination capacity has focused primarily on documenting pollinator declines and their causes with comparatively little attention paid to how stressors may affect pollinating behavior of surviving pollinators. The European honey bee, Apis mellifera is one of the world's most important generalist pollinators, and Nosema apis is a widespread microsporidian gut parasite of adult A. mellifera. We individually fed 960 newly eclosed A. mellifera workers either a sucrose solution or 400 N. apis spores in a sucrose solution and tagged them with a unique radio frequency identification (RFID) tag to monitor their foraging behavior. We found spore-fed bees were less likely to forage than those fed sugar only. Those that did forage started foraging when they were older and stopped foraging when they were younger than bees fed sugar only. However, inoculated and non-inoculated bees did not significantly differ in the number of foraging trips taken per day, the total hours foraged over their lifetime, or homing ability. Inoculated returning foragers were 4.3 times less likely to be carrying available pollen than non-inoculated returning foragers and the number of pollen grains carried was negatively correlated with the number of N. apis spores. In an arena of artificial flowers, inoculated bees had a tendency (p=0.061) to choose sugar flowers over pollen flowers, compared to non-inoculated bees which visited pollen and sugar flowers equally. These results demonstrate that even a relatively low dose of a widespread disease of A. mellifera may adversely affect bees' ability to pollinate. PMID:26149824

  2. Parasitized honey bees are less likely to forage and carry less pollen.

    PubMed

    Lach, Lori; Kratz, Madlen; Baer, Boris

    2015-09-01

    Research into loss of pollination capacity has focused primarily on documenting pollinator declines and their causes with comparatively little attention paid to how stressors may affect pollinating behavior of surviving pollinators. The European honey bee, Apis mellifera is one of the world's most important generalist pollinators, and Nosema apis is a widespread microsporidian gut parasite of adult A. mellifera. We individually fed 960 newly eclosed A. mellifera workers either a sucrose solution or 400 N. apis spores in a sucrose solution and tagged them with a unique radio frequency identification (RFID) tag to monitor their foraging behavior. We found spore-fed bees were less likely to forage than those fed sugar only. Those that did forage started foraging when they were older and stopped foraging when they were younger than bees fed sugar only. However, inoculated and non-inoculated bees did not significantly differ in the number of foraging trips taken per day, the total hours foraged over their lifetime, or homing ability. Inoculated returning foragers were 4.3 times less likely to be carrying available pollen than non-inoculated returning foragers and the number of pollen grains carried was negatively correlated with the number of N. apis spores. In an arena of artificial flowers, inoculated bees had a tendency (p=0.061) to choose sugar flowers over pollen flowers, compared to non-inoculated bees which visited pollen and sugar flowers equally. These results demonstrate that even a relatively low dose of a widespread disease of A. mellifera may adversely affect bees' ability to pollinate.

  3. Adult Higher Education. A Case Study on the Workers' Colleges in the People's Republic of China.

    ERIC Educational Resources Information Center

    Bo, Yu; Yan, Xu Hong

    A case study of the workers' colleges in China was undertaken by the Central Institute for Educational Research in Beijing and the Unesco International Institute for Educational Planning in Paris. Workers' colleges provide formal higher education for inservice workers with either full-time or diverse patterns of part-time studies, and the study…

  4. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms

    NASA Astrophysics Data System (ADS)

    Hum Na, Yong; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F.; Xu, X. George

    2010-07-01

    Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte

  5. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms.

    PubMed

    Na, Yong Hum; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F; Xu, X George

    2010-07-01

    Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms--modeled entirely in mesh surfaces--of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte Carlo

  6. Hot spots in the bee hive

    NASA Astrophysics Data System (ADS)

    Bujok, Brigitte; Kleinhenz, Marco; Fuchs, Stefan; Tautz, Jürgen

    2002-06-01

    Honeybee colonies (Apis mellifera) maintain temperatures of 35-36°C in their brood nest because the brood needs high and constant temperature conditions for optimal development. We show that incubation of the brood at the level of individual honeybees is done by worker bees performing a particular and not yet specified behaviour: such bees raise the brood temperature by pressing their warm thoraces firmly onto caps under which the pupae develop. The bees stay motionless in a characteristic posture and have significantly higher thoracic temperatures than bees not assuming this posture in the brood area. The surface of the brood caps against which warm bees had pressed their thorax were up to 3.2°C warmer than the surrounding area, confirming that effective thermal transfer had taken place.

  7. 20 CFR 663.100 - What is the role of the adult and dislocated worker programs in the One-Stop delivery system?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 CFR part 662. Consistent with those provisions: (1) Core services for adults and dislocated... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What is the role of the adult and dislocated... AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE...

  8. Beyond the antipredatory defence: honey bee venom function as a component of social immunity.

    PubMed

    Baracchi, David; Francese, Simona; Turillazzi, Stefano

    2011-11-01

    The honey bee colonies, with the relevant number of immature brood and adults, and stable, high levels of humidity and temperatures of their nests, result in suitable environments for the development of microorganisms including pathogens. In response, honey bees evolved several adaptations to face the increased risks of epidemic diseases. As the antimicrobial venom peptides of Apis mellifera are present both on the cuticle of adult bees and on the nest wax it has been recently suggested that these substances act as a social antiseptic device. Since the use of venom by honey bees in the context of social immunity needs to be more deeply investigated, we extended the study of this potential role of the venom to different species of the genus Apis (A. mellifera, Apis dorsata, Apis cerana and Apis andreniformis) using MALDI-TOF mass spectrometry techniques. In particular we investigated whether (similarly to A. mellifera) the venom is spread over the body cuticle and on the comb wax of these three Asian species. Our results confirm the idea that the venom functions are well beyond the classical stereotype of defence against predators, and suggest that the different nesting biology of these species may be related to the use of the venom in a social immunity context. The presence of antimicrobial peptides on the comb wax of the cavity-dwelling species and on the cuticle of workers of all the studied species represents a good example of "collective immunity" and a component of the "social immunity " respectively.

  9. The role of the social worker in the adult critical care unit: a systematic review of the literature.

    PubMed

    Hartman-Shea, Katherine; Hahn, Anne P; Fritz Kraus, Joanne; Cordts, Grace; Sevransky, Jonathan

    2011-01-01

    Social workers provide care to patients and families in the adult critical care unit. We conducted a systematic review of the literature to more clearly identify the role of the social worker practicing in the intensive care unit. We conducted a comprehensive search of the literature using the Pubmed, Embase, ISI, Scopus, and Social Work Abstracts databases using the terms "intensive care," "critical care," and "social work." Articles were selected for review if they met the following criteria: formal studies or opinion papers whose primary focus was the role or scope of practice of the social worker in the adult critical care unit. Articles were selected and reviewed independently by two social work investigators. Our search retrieved 550 potentially relevant articles. Twelve full-text articles were deemed eligible for abstracting. Three of the articles were studies that examined different aspects of social work practice including implementation of a family assistance program, social work response to anxiety levels of families in critical care and common activities of critical care social workers. Nine articles were primarily opinion pieces. All of the opinion articles described psychosocial support and counseling as a primary role of critical care social work. Other frequently identified roles were crisis intervention, psychosocial assessment, facilitating communication, end-of-life care, and practical assistance. There is little empiric data describing the role of the critical care social worker. Consistent themes from the articles identified include the role of social workers as counseling professionals, facilitators of communication, and resource agents. Further research to identify formal assessment tools and outcome studies of specific counseling techniques will provide important information for best practice guidelines in this area.

  10. Promoting safer sexual practices among young adults: a survey of health workers in Moshi Rural District, Tanzania.

    PubMed

    Ngomuo, E T; Klepp, K I; Rise, J; Mnyika, K S

    1995-01-01

    As part of the national effort to prevent further spread of HIV/AIDS, rural health workers in Tanzania are asked to promote safer sex practices among the sexually active population. We conducted a survey among health workers in Moshi Rural District, Kilimanjaro, designed to assess their attitudes, perceived norms and self-efficacy with respect to the promotion of safer sexual practices among young adults 15-35 years old. Health workers at all private and governmental health facilities were included (n = 342; participation rate of 68.4%). We observed relatively strong associations between the frequency and quality of reported counselling behaviour and perceived norms, attitudes and self-efficacy (standardized regression coefficients (beta) of 0.329, 0.252 and 0.159 respectively). In addition, exposure to behaviour change strategies during formal training and marital status of the health workers were associated with counselling behaviour (beta of 0.133 and 0.118 respectively). Overall, these factors accounted for 40.8% of the observed variance in reported counselling behaviour. It is recommended that continued education for health workers focus on providing normative support for promoting safer sex, provide information which may help foster positive attitudes and teach practical counselling skills to further increase the self-efficacy regarding counselling young people.

  11. Bee Stings & Their Consequences.

    ERIC Educational Resources Information Center

    Rupp, Robert M.

    1991-01-01

    Relevant information concerning bee stings is provided. Possible reactions to a bee sting and their symptoms, components of bee venom, diagnosis of hypersensitivity, and bee sting prevention and treatment are topics of discussion. The possibility of bee stings occurring during field trips and the required precautions are discussed. (KR)

  12. Bee Weekend.

    ERIC Educational Resources Information Center

    Beidler, Peter G.

    1987-01-01

    Recounts weekend at a bee farm, an activity for a required Lehigh University freshman English composition course designed to facilitate socialization and exchange of ideas and to provide experiences for students to write about. Uses excerpts from journals of nine students. (NEC)

  13. Endopolyploidy Changes with Age-Related Polyethism in the Honey Bee, Apis mellifera

    PubMed Central

    Rangel, Juliana; Strauss, Kim; Seedorf, Kaileah; Hjelmen, Carl E.; Johnston, J. Spencer

    2015-01-01

    Honey bees (Apis mellifera) exhibit age polyethism, whereby female workers assume increasingly complex colony tasks as they age. While changes in DNA methylation accompany age polyethism, other DNA modifications accompanying age polyethism are less known. Changes in endopolyploidy (DNA amplification in the absence of cell division) with increased larval age are typical in many insect cells and are essential in adults for creating larger cells, more copies of essential loci, or greater storage capacity in secretory cells. However, changes in endopolyploidy with increased adult worker age and polyethism are unstudied. In this study, we examined endopolyploidy in honey bee workers ranging in age from newly emerged up to 55 days old. We found a nonsignificant increase in ploidy levels with age (P < 0.1) in the most highly endopolyploid secretory cells, the Malpighian tubules. All other cell types decreased ploidy levels with age. Endopolyploidy decreased the least amount (nonsignificant) in neural (brain) cells and the stinger (P < 0.1). There was a significant reduction of endopolyploidy with age in leg (P < 0.05) and thoracic (P < 0.001) muscles. Ploidy in thoracic muscle dropped from an average of 0.5 rounds of replication in newly emerged workers to essentially no rounds of replication (0.125) in the oldest workers. Ploidy reduction in flight muscle cells is likely due to the production of G1 (2C) nuclei by amitotic division in the multinucleate striated flight muscles that are essential to foragers, the oldest workers. We suggest that ploidy is constrained by the shape, size and makeup of the multinucleate striated muscle cells. Furthermore, the presence of multiple 2C nuclei might be optimal for cell function, while higher ploidy levels might be a dead-end strategy of some aging adult tissues, likely used to increase cell size and storage capacity in secretory cells. PMID:25881205

  14. Unique Honey Bee (Apis mellifera) Hive Component-Based Communities as Detected by a Hybrid of Phospholipid Fatty-Acid and Fatty-Acid Methyl Ester Analyses

    PubMed Central

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components. PMID:25849080

  15. Nutritional status influences socially regulated foraging ontogeny in honey bees.

    PubMed

    Toth, Amy L; Kantarovich, Sara; Meisel, Adam F; Robinson, Gene E

    2005-12-01

    In many social insects, including honey bees, worker energy reserve levels are correlated with task performance in the colony. Honey bee nest workers have abundant stored lipid and protein while foragers are depleted of these reserves; this depletion precedes the shift from nest work to foraging. The first objective of this study was to test the hypothesis that lipid depletion has a causal effect on the age at onset of foraging in honey bees (Apis mellifera L.). We found that bees treated with a fatty acid synthesis inhibitor (TOFA) were more likely to forage precociously. The second objective of this study was to determine whether there is a relationship between social interactions, nutritional state and behavioral maturation. Since older bees are known to inhibit the development of young bees into foragers, we asked whether this effect is mediated nutritionally via the passage of food from old to young bees. We found that bees reared in social isolation have low lipid stores, but social inhibition occurs in colonies in the field, whether young bees are starved or fed. These results indicate that although social interactions affect the nutritional status of young bees, social and nutritional factors act independently to influence age at onset of foraging. Our findings suggest that mechanisms linking internal nutritional physiology to foraging in solitary insects have been co-opted to regulate altruistic foraging in a social context.

  16. Breaking New Ground: The Development of Adult and Workers' Education in North America. Proceedings from the Syracuse University Kellogg Project's Visiting Scholar Conference in the History of Adult Education (1st, Syracuse, New York, March 1989).

    ERIC Educational Resources Information Center

    Rohfield, Rae Wahl, Ed.

    The 19 papers in this conference report examine the formative period of the field of adult education, the development of workers' education, and the interrelationships of the two fields. The four papers in Section I, on defining adult education are: "Challenging the System: The Adult Education Movement and the Educational Bureaucracy of the 1920s"…

  17. Prevalence and determinants of asthma in adult male leather tannery workers in Karachi, Pakistan: A cross sectional study

    PubMed Central

    Shahzad, Khurram; Akhtar, Saeed; Mahmud, Sadia

    2006-01-01

    Background This study aimed to estimate the prevalence and to identify some risk factors of adult asthma in male leather tannery workers in Karachi, Pakistan. Methods A cross sectional study was conducted from August 2003 to March 2004 on leather tannery workers of Karachi, Pakistan. Data were collected from 641 workers engaged in 95 different tanneries in Korangi industrial area selected as sample of convenience. Face to face interviews were performed using a structured pre-tested questionnaire by trained data collectors. Results Prevalence of adult asthma was 10.8% (69/641) in this study population. The prevalence of perceived work-related asthma was 5.3% (34/641). Multivariable logistic regression model showed that after taking into account the age effect, the leather tannery worker were more likely to be asthmatic, if they were illiterate (adjusted OR = 2.13, 95% CI: 1.17–3.88), of Pathan ethnicity (adjusted OR = 2.69; 95% CI: 1.35–5.36), ever-smoked (adjusted OR = 2.22, 95% CI: 1.16–4.26), reportedly never used gloves during different tanning tasks (OR = 3.28; 95% CI : 1.72–6.26). Also, the final model showed a significant interaction between perceived allergy and duration of work. Those who perceived to have allergy were more likely to have asthma if their duration of work was 8 years (adjusted OR = 2.26; 95% CI: 1.19 – 4.29) and this relationship was even stronger if duration was 13 years (adjusted OR = 3.67; 95% CI: 1.98–6.79). Conclusion Prevalence of asthma in leather tannery workers appears to be high and is associated with educational status, ethnicity, smoking, glove use, perceived to have allergy and duration of work. PMID:17144930

  18. Adult Education in a Workplace Context: Recognising Production Workers' Responses and Partnership Challenges

    ERIC Educational Resources Information Center

    Wärvik, Gun-Britt

    2016-01-01

    This article is about a larger regional Swedish partnership programme that was established to develop site-based education for production workers. A partnership is seen as composed of different practice architectures. The actors involved represented larger transnational as well as smaller manufacturing companies, employers, the metal workers'…

  19. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes.

    PubMed

    Bomtorin, Ana Durvalina; Mackert, Aline; Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution.

  20. Juvenile Hormone Biosynthesis Gene Expression in the corpora allata of Honey Bee (Apis mellifera L.) Female Castes

    PubMed Central

    Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution. PMID:24489805

  1. Go East for Better Honey Bee Health: Apis cerana Is Faster at Hygienic Behavior than A. mellifera

    PubMed Central

    Li, Li; Qin, Yao; Zhang, Yingying; Hu, Fuliang; Neumann, Peter; Zheng, Huoqing; Dietemann, Vincent

    2016-01-01

    The poor health status of the Western honey bee, Apis mellifera, compared to its Eastern counterpart, Apis cerana, is remarkable. This has been attributed to lower pathogen prevalence in A. cerana colonies and to their ability to survive infestations with the ectoparasitic mite, Varroa destructor. These properties have been linked to an enhanced removal of dead or unhealthy immature bees by adult workers in this species. Although such hygienic behavior is known to contribute to honey bee colony health, comparative data of A. mellifera and A. cerana in performing this task are scarce. Here, we compare for the first time the removal of freeze-killed brood in one population of each species and over two seasons in China. Our results show that A. cerana was significantly faster than A. mellifera at both opening cell caps and removing freeze-killed brood. The fast detection and removal of diseased brood is likely to limit the proliferation of pathogenic agents. Given our results can be generalized to the species level, a rapid hygienic response could contribute to the better health of A. cerana. Promoting the fast detection and removal of worker brood through adapted breeding programs could further improve the social immunity of A. mellifera colonies and contribute to a better health status of the Western honey bee worldwide. PMID:27606819

  2. Go East for Better Honey Bee Health: Apis cerana Is Faster at Hygienic Behavior than A. mellifera.

    PubMed

    Lin, Zheguang; Page, Paul; Li, Li; Qin, Yao; Zhang, Yingying; Hu, Fuliang; Neumann, Peter; Zheng, Huoqing; Dietemann, Vincent

    2016-01-01

    The poor health status of the Western honey bee, Apis mellifera, compared to its Eastern counterpart, Apis cerana, is remarkable. This has been attributed to lower pathogen prevalence in A. cerana colonies and to their ability to survive infestations with the ectoparasitic mite, Varroa destructor. These properties have been linked to an enhanced removal of dead or unhealthy immature bees by adult workers in this species. Although such hygienic behavior is known to contribute to honey bee colony health, comparative data of A. mellifera and A. cerana in performing this task are scarce. Here, we compare for the first time the removal of freeze-killed brood in one population of each species and over two seasons in China. Our results show that A. cerana was significantly faster than A. mellifera at both opening cell caps and removing freeze-killed brood. The fast detection and removal of diseased brood is likely to limit the proliferation of pathogenic agents. Given our results can be generalized to the species level, a rapid hygienic response could contribute to the better health of A. cerana. Promoting the fast detection and removal of worker brood through adapted breeding programs could further improve the social immunity of A. mellifera colonies and contribute to a better health status of the Western honey bee worldwide.

  3. Go East for Better Honey Bee Health: Apis cerana Is Faster at Hygienic Behavior than A. mellifera.

    PubMed

    Lin, Zheguang; Page, Paul; Li, Li; Qin, Yao; Zhang, Yingying; Hu, Fuliang; Neumann, Peter; Zheng, Huoqing; Dietemann, Vincent

    2016-01-01

    The poor health status of the Western honey bee, Apis mellifera, compared to its Eastern counterpart, Apis cerana, is remarkable. This has been attributed to lower pathogen prevalence in A. cerana colonies and to their ability to survive infestations with the ectoparasitic mite, Varroa destructor. These properties have been linked to an enhanced removal of dead or unhealthy immature bees by adult workers in this species. Although such hygienic behavior is known to contribute to honey bee colony health, comparative data of A. mellifera and A. cerana in performing this task are scarce. Here, we compare for the first time the removal of freeze-killed brood in one population of each species and over two seasons in China. Our results show that A. cerana was significantly faster than A. mellifera at both opening cell caps and removing freeze-killed brood. The fast detection and removal of diseased brood is likely to limit the proliferation of pathogenic agents. Given our results can be generalized to the species level, a rapid hygienic response could contribute to the better health of A. cerana. Promoting the fast detection and removal of worker brood through adapted breeding programs could further improve the social immunity of A. mellifera colonies and contribute to a better health status of the Western honey bee worldwide. PMID:27606819

  4. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes

    PubMed Central

    Appler, R. Holden; Frank, Steven D.; Tarpy, David R.

    2015-01-01

    Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health. PMID:26529020

  5. Variable effects of nicotine, anabasine, and their interactions on parasitized bumble bees

    PubMed Central

    Thorburn, Lukas P.; Adler, Lynn S.; Irwin, Rebecca E.; Palmer-Young, Evan C.

    2015-01-01

    Secondary metabolites in floral nectar have been shown to reduce parasite load in two common bumble bee species. Previous studies on the effects of nectar secondary metabolites on parasitized bees have focused on single compounds in isolation; however, in nature, bees are simultaneously exposed to multiple compounds. We tested for interactions between the effects of two alkaloids found in the nectar of Nicotiana spp. plants, nicotine and anabasine, on parasite load and mortality in bumble bees ( Bombus impatiens) infected with the intestinal parasite Crithidia bombi. Adult worker bees inoculated with C. bombi were fed nicotine and anabasine diet treatments in a factorial design, resulting in four nectar treatment combinations:  2 ppm nicotine, 5 ppm anabasine, 2ppm nicotine and 5 ppm anabasine together, or a control alkaloid-free solution. We conducted the experiment twice: first, with bees incubated under variable environmental conditions (‘Variable’; temperatures varied from 10-35°C with ambient lighting); and second, under carefully controlled environmental conditions (‘Stable’; 27°C incubator, constant darkness). In ‘Variable’, each alkaloid alone significantly decreased parasite loads, but this effect was not realized with the alkaloids in combination, suggesting an antagonistic interaction. Nicotine but not anabasine significantly increased mortality, and the two compounds had no interactive effects on mortality. In ‘Stable’, nicotine significantly increased parasite loads, the opposite of its effect in ‘Variable’. While not significant, the relationship between anabasine and parasite loads was also positive. Interactive effects between the two alkaloids on parasite load were non-significant, but the pattern of antagonistic interaction was similar to that in the variable experiment. Neither alkaloid, nor their interaction, significantly affected mortality under controlled conditions. Our results do not indicate synergy between Nicotiana

  6. Metatranscriptomic analyses of honey bee colonies.

    PubMed

    Tozkar, Cansu Ö; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees. PMID:25852743

  7. Metatranscriptomic analyses of honey bee colonies.

    PubMed

    Tozkar, Cansu Ö; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees.

  8. Metatranscriptomic analyses of honey bee colonies

    PubMed Central

    Tozkar, Cansu Ö.; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D.

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9–10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees. PMID:25852743

  9. Modeling Honey Bee Populations.

    PubMed

    Torres, David J; Ricoy, Ulises M; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

  10. Modeling Honey Bee Populations

    PubMed Central

    Torres, David J.; Ricoy, Ulises M.; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population. PMID:26148010

  11. Modeling Honey Bee Populations.

    PubMed

    Torres, David J; Ricoy, Ulises M; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population. PMID:26148010

  12. Rearing Africanized honey bee (Apis mellifera L.) brood under laboratory conditions.

    PubMed

    Silva, I C; Message, D; Cruz, C D; Campos, L A O; Sousa-Majer, M J

    2009-01-01

    We developed a method for rearing larvae of Africanized bees under laboratory conditions to determine the amount of diet needed during larval development to obtain a worker bee. We started with larvae 18-24 h old, which were transferred to polyethylene cell cups and fed for five days. We found that the amount of diet needed for successful larval development was: 4, 15, 25, 50, and 70 microl during the first to fifth days, respectively. The survival rate to the adult stage was 88.6% when the larvae received the daily amount of diet divided into two feedings, and 80% when they received only one feeding per day. The adult weight obtained in the laboratory, when the larvae received the daily amount of diet in a single dose, did not differ from those that were developed under field conditions (our control). All adults that we obtained in laboratory appeared to be normal. This technique has the potential to facilitate studies on brood pathogens, resistance mechanisms to diseases and also might be useful to test the impacts of transgenic products on honey bee brood. PMID:19551650

  13. Characters that differ between diploid and haploid honey bee (Apis mellifera) drones.

    PubMed

    Herrmann, Matthias; Trenzcek, Tina; Fahrenhorst, Hartmut; Engels, Wolf

    2005-12-30

    Diploid males have long been considered a curiosity contradictory to the haplo-diploid mode of sex determination in the Hymenoptera. In Apis mellifera, 'false' diploid male larvae are eliminated by worker cannibalism immediately after hatching. A 'cannibalism substance' produced by diploid drone larvae to induce worker-assisted suicide has been hypothesized, but it has never been detected. Diploid drones are only removed some hours after hatching. Older larvae are evidently not regarded as 'false males' and instead are regularly nursed by the brood-attending worker bees. As the pheromonal cues presumably are located on the surface of newly hatched bee larvae, we extracted the cuticular secretions and analyzed their chemical composition by gas chromatograph-mass spectrometry (GC-MS) analyses. Larvae were sexed and then reared in vitro for up to three days. The GC-MS pattern that was obtained, with alkanes as the major compounds, was compared between diploid and haploid drone larvae. We also examined some physical parameters of adult drones. There was no difference between diploid and haploid males in their weight at the day of emergence. The diploid adult drones had fewer wing hooks and smaller testes. The sperm DNA content was 0.30 and 0.15 pg per nucleus, giving an exact 2:1 ratio for the gametocytes of diploid and haploid drones, respectively. Vitellogenin was found in the hemolymph of both types of imaginal drones at 5 to 6 days, with a significantly lower titer in the diploids.

  14. Global information sampling in the honey bee

    NASA Astrophysics Data System (ADS)

    Johnson, Brian R.

    2008-06-01

    Central to the question of task allocation in social insects is how workers acquire information. Patrolling is a curious behavior in which bees meander over the face of the comb inspecting cells. Several authors have suggested it allows bees to collect global information, but this has never been formally evaluated. This study explores this hypothesis by answering three questions. First, do bees gather information in a consistent manner as they patrol? Second, do they move far enough to get a sense of task demand in distant areas of the nest? And third, is patrolling a commonly performed task? Focal animal observations were used to address the first two predictions, while a scan sampling study was used to address the third. The results were affirmative for each question. While patrolling, workers collected information by performing periodic clusters of cell inspections. Patrolling bees not only traveled far enough to frequently change work zone; they often visited every part of the nest. Finally, the majority of the bees in the middle-age caste were shown to move throughout the nest over the course of a few hours in a manner suggestive of patrolling. Global information collection is contrary to much current theory, which assumes that workers respond to local information only. This study thus highlights the nonmutually exclusive nature of various information collection regimes in social insects.

  15. Neonicotinoid pesticides severely affect honey bee queens.

    PubMed

    Williams, Geoffrey R; Troxler, Aline; Retschnig, Gina; Roth, Kaspar; Yañez, Orlando; Shutler, Dave; Neumann, Peter; Gauthier, Laurent

    2015-01-01

    Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances. PMID:26459072

  16. Neonicotinoid pesticides severely affect honey bee queens.

    PubMed

    Williams, Geoffrey R; Troxler, Aline; Retschnig, Gina; Roth, Kaspar; Yañez, Orlando; Shutler, Dave; Neumann, Peter; Gauthier, Laurent

    2015-10-13

    Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances.

  17. Neonicotinoid pesticides severely affect honey bee queens

    PubMed Central

    Williams, Geoffrey R.; Troxler, Aline; Retschnig, Gina; Roth, Kaspar; Yañez, Orlando; Shutler, Dave; Neumann, Peter; Gauthier, Laurent

    2015-01-01

    Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances. PMID:26459072

  18. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities.

    PubMed

    Genersch, Elke; Yue, Constanze; Fries, Ingemar; de Miranda, Joachim R

    2006-01-01

    Honey bees (Apis mellifera) productively infected with Deformed wing virus (DWV) through Varroa destructor (V. destructor) during pupal stages develop into adults showing wing and other morphological deformities. Here, we report for the first time the occurrence of bumble bees (Bombus terrestris, Bombus pascuorum) exhibiting wing deformities resembling those seen in clinically DWV-infected honey bees. Using specific RT-PCR protocols for the detection of DWV followed by sequencing of the PCR products we could demonstrate that the bumble bees were indeed infected with DWV. Since such deformed bumble bees are not viable DWV infection may pose a serious threat to bumble bee populations.

  19. Use of flax oil to influence honey bee nestmate recognition.

    PubMed

    Breed, Michael D; Lyon, Cecily A; Sutherland, Anna; Buchwald, Robert

    2012-08-01

    Fatty acids, normally found in comb wax, have a strong influence on nestmate recognition in honey bees, Apis mellifera L. Previous work has shown that bees from different colonies, when treated with 16- or 18-carbon fatty acids, such as oleic, linoleic, or linolenic acids, are much less likely to fight than bees from two colonies when only one of the two is treated. Previous work also shows that the influence of comb wax on recognition has practical applications; transfer of empty comb between colonies, before merger of those colonies, reduces fighting among workers within the merged colony. Flax oil contains many of the same fatty acids as beeswax. Here, we tested the hypothesis that treatment of individual bees with flax oil affects nestmate recognition; the results proved to be consistent with this hypothesis and showed that treated bees from different colonies were less likely to fight than untreated bees. These results suggest that flax oil may be useful in facilitating colony mergers.

  20. Soldiers in a Stingless Bee.

    PubMed

    Hammel, Benedikt; Vollet-Neto, Ayrton; Menezes, Cristiano; Nascimento, Fabio S; Engels, Wolf; Grüter, Christoph

    2016-01-01

    The differentiation of workers into morphological subcastes (e.g., soldiers) represents an important evolutionary transition and is thought to improve division of labor in social insects. Soldiers occur in many ant and termite species, where they make up a small proportion of the workforce. A common assumption of worker caste evolution is that soldiers are behavioral specialists. Here, we report the first test of the "rare specialist" hypothesis in a eusocial bee. Colonies of the stingless bee Tetragonisca angustula are defended by a small group of morphologically differentiated soldiers. Contrary to the rare specialist hypothesis, we found that soldiers worked more (+34%-41%) and performed a greater variety of tasks (+23%-34%) than other workers, particularly early in life. Our results suggest a "rare elite" function of soldiers in T. angustula, that is, that they perform a disproportionately large amount of the work. Division of labor was based on a combination of temporal and physical castes, but soldiers transitioned faster from one task to the next. We discuss why the rare specialist assumption might not hold in species with a moderate degree of worker differentiation.

  1. Soldiers in a Stingless Bee.

    PubMed

    Hammel, Benedikt; Vollet-Neto, Ayrton; Menezes, Cristiano; Nascimento, Fabio S; Engels, Wolf; Grüter, Christoph

    2016-01-01

    The differentiation of workers into morphological subcastes (e.g., soldiers) represents an important evolutionary transition and is thought to improve division of labor in social insects. Soldiers occur in many ant and termite species, where they make up a small proportion of the workforce. A common assumption of worker caste evolution is that soldiers are behavioral specialists. Here, we report the first test of the "rare specialist" hypothesis in a eusocial bee. Colonies of the stingless bee Tetragonisca angustula are defended by a small group of morphologically differentiated soldiers. Contrary to the rare specialist hypothesis, we found that soldiers worked more (+34%-41%) and performed a greater variety of tasks (+23%-34%) than other workers, particularly early in life. Our results suggest a "rare elite" function of soldiers in T. angustula, that is, that they perform a disproportionately large amount of the work. Division of labor was based on a combination of temporal and physical castes, but soldiers transitioned faster from one task to the next. We discuss why the rare specialist assumption might not hold in species with a moderate degree of worker differentiation. PMID:27277408

  2. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    PubMed

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  3. Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L)

    PubMed Central

    Berry, Jennifer A.; Hood, W. Michael; Pietravalle, Stéphane; Delaplane, Keith S.

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals. PMID:24204638

  4. Emergence success and sex ratio of commercial alfalfa leafcutting bees from the United States and Canada.

    PubMed

    Pitts-Singer, Theresa L; James, Rosalind R

    2005-12-01

    Samples of overwintering alfalfa leafcutting bee, Megachile rotundata (F.) (Hymenoptera: Megachilidae), cells were sent to the laboratory as loose cells or in nesting boards from bee managers in the United States and in Canada. X-radiographs of cells were used for determining cell contents. Cells containing live prepupae were incubated, and the sex of emerging adults was recorded daily. Cells from which no adult emerged were dissected to determine the developmental stage of dead bees and sex of dead pupae or adults. Bee cells incubated in commercial settings and placed in alfalfa fields by the same bee managers described above also were evaluated to determine adult emergence success. The proportion of live bees in wood nesting boards from the United States was much lower than the live proportion in polystyrene nesting boards from Canada and loose cells overwintered in the United States. For laboratory-incubated loose cells, survival and sex ratios of bees from Canadian sources were statistically higher than those of U.S. bees, but the onset and duration of emergence times were similar. Fewer bees survived in the commercial setting than in the laboratory. Prepupal mortality was significantly higher than pupal or adult mortality, but there was no significant difference between the sexes in the likelihood of survival during incubation. This study supports the commonly held belief that alfalfa leafcutting bees raised in Canada and then sold to the United States represent a more viable source of bees than most bees produced in the United States. PMID:16539094

  5. Examining a Proposed Job Retention Model for Adult Workers with Mental Retardation

    ERIC Educational Resources Information Center

    Fornes, Sandra L.

    2008-01-01

    This research provides an analysis of factors predicting job retention (JR), job satisfaction (JS), and job performance (JP) of workers with mental retardation (MR). The findings highlight self-determination as a critical skill in influencing three important employee's outcomes, JR, JS, and JP. The intent of the study was to develop job retention…

  6. Reframing the Public in Public Education: The Landless Workers Movement (MST) and Adult Education in Brazil

    ERIC Educational Resources Information Center

    Thapliyal, Nisha

    2013-01-01

    Education for rural Brazilians has historically been dominated by two imperatives: human capital and political patronage. For the last four decades, the Landless Workers Movement (MST) have maintained a struggle to democratise public education and democracy itself. In this article, I make a situated analysis of the educational politics of the MST…

  7. A non-policing honey bee colony (Apis mellifera capensis)

    NASA Astrophysics Data System (ADS)

    Beekman, Madeleine; Good, Gregory; Allsopp, Mike; Radloff, Sarah; Pirk, Chris; Ratnieks, Francis

    2002-09-01

    In the Cape honey bee Apis mellifera capensis, workers lay female eggs without mating by thelytokous parthenogenesis. As a result, workers are as related to worker-laid eggs as they are to queen-laid eggs and therefore worker policing is expected to be lower, or even absent. This was tested by transferring worker- and queen-laid eggs into three queenright A. m. capensis discriminator colonies and monitoring their removal. Our results show that worker policing is variable in A. m. capensis and that in one colony worker-laid eggs were not removed. This is the first report of a non-policing queenright honey bee colony. DNA microsatellite and morphometric analysis suggests that the racial composition of the three discriminator colonies was different. The variation in policing rates could be explained by differences in degrees of hybridisation between A. m. capensis and A. m. scutellata, although a larger survey is needed to confirm this.

  8. Assessing an Untapped Supply of Information Technology Workers: Adult Women and Underrepresented Minorities.

    ERIC Educational Resources Information Center

    Spahn, Karen

    This paper presents the results of a research study (Spring 2001 completion) on adult women and minority students returning to a non-traditional four-year university designed for working adults over a five-year period (1995-2000). The study analyzed several unique student populations--graduates (recent and alumni), still enrolled, and not enrolled…

  9. Context affects nestmate recognition errors in honey bees and stingless bees.

    PubMed

    Couvillon, Margaret J; Segers, Francisca H I D; Cooper-Bowman, Roseanne; Truslove, Gemma; Nascimento, Daniela L; Nascimento, Fabio S; Ratnieks, Francis L W

    2013-08-15

    Nestmate recognition studies, where a discriminator first recognises and then behaviourally discriminates (accepts/rejects) another individual, have used a variety of methodologies and contexts. This is potentially problematic because recognition errors in discrimination behaviour are predicted to be context-dependent. Here we compare the recognition decisions (accept/reject) of discriminators in two eusocial bees, Apis mellifera and Tetragonisca angustula, under different contexts. These contexts include natural guards at the hive entrance (control); natural guards held in plastic test arenas away from the hive entrance that vary either in the presence or absence of colony odour or the presence or absence of an additional nestmate discriminator; and, for the honey bee, the inside of the nest. For both honey bee and stingless bee guards, total recognition errors of behavioural discrimination made by guards (% nestmates rejected + % non-nestmates accepted) are much lower at the colony entrance (honey bee: 30.9%; stingless bee: 33.3%) than in the test arenas (honey bee: 60-86%; stingless bee: 61-81%; P<0.001 for both). Within the test arenas, the presence of colony odour specifically reduced the total recognition errors in honey bees, although this reduction still fell short of bringing error levels down to what was found at the colony entrance. Lastly, in honey bees, the data show that the in-nest collective behavioural discrimination by ca. 30 workers that contact an intruder is insufficient to achieve error-free recognition and is not as effective as the discrimination by guards at the entrance. Overall, these data demonstrate that context is a significant factor in a discriminators' ability to make appropriate recognition decisions, and should be considered when designing recognition study methodologies.

  10. Social apoptosis in honey bee superorganisms.

    PubMed

    Page, Paul; Lin, Zheguang; Buawangpong, Ninat; Zheng, Huoqing; Hu, Fuliang; Neumann, Peter; Chantawannakul, Panuwan; Dietemann, Vincent

    2016-01-01

    Eusocial insect colonies form superorganisms, in which nestmates cooperate and use social immunity to combat parasites. However, social immunity may fail in case of emerging diseases. This is the case for the ectoparasitic mite Varroa destructor, which switched hosts from the Eastern honeybee, Apis cerana, to the Western honey bee, Apis mellifera, and currently is the greatest threat to A. mellifera apiculture globally. Here, we show that immature workers of the mite's original host, A. cerana, are more susceptible to V. destructor infestations than those of its new host, thereby enabling more efficient social immunity and contributing to colony survival. This counterintuitive result shows that susceptible individuals can foster superorganism survival, offering empirical support to theoretical arguments about the adaptive value of worker suicide in social insects. Altruistic suicide of immature bees constitutes a social analogue of apoptosis, as it prevents the spread of infections by sacrificing parts of the whole organism, and unveils a novel form of transgenerational social immunity in honey bees. Taking into account the key role of susceptible immature bees in social immunity will improve breeding efforts to mitigate the unsustainably high colony losses of Western honey bees due to V. destructor infestations worldwide. PMID:27264643

  11. Social apoptosis in honey bee superorganisms

    PubMed Central

    Page, Paul; Lin, Zheguang; Buawangpong, Ninat; Zheng, Huoqing; Hu, Fuliang; Neumann, Peter; Chantawannakul, Panuwan; Dietemann, Vincent

    2016-01-01

    Eusocial insect colonies form superorganisms, in which nestmates cooperate and use social immunity to combat parasites. However, social immunity may fail in case of emerging diseases. This is the case for the ectoparasitic mite Varroa destructor, which switched hosts from the Eastern honeybee, Apis cerana, to the Western honey bee, Apis mellifera, and currently is the greatest threat to A. mellifera apiculture globally. Here, we show that immature workers of the mite’s original host, A. cerana, are more susceptible to V. destructor infestations than those of its new host, thereby enabling more efficient social immunity and contributing to colony survival. This counterintuitive result shows that susceptible individuals can foster superorganism survival, offering empirical support to theoretical arguments about the adaptive value of worker suicide in social insects. Altruistic suicide of immature bees constitutes a social analogue of apoptosis, as it prevents the spread of infections by sacrificing parts of the whole organism, and unveils a novel form of transgenerational social immunity in honey bees. Taking into account the key role of susceptible immature bees in social immunity will improve breeding efforts to mitigate the unsustainably high colony losses of Western honey bees due to V. destructor infestations worldwide. PMID:27264643

  12. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    PubMed

    Youngsteadt, Elsa; Appler, R Holden; López-Uribe, Margarita M; Tarpy, David R; Frank, Steven D

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.

  13. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    PubMed

    Youngsteadt, Elsa; Appler, R Holden; López-Uribe, Margarita M; Tarpy, David R; Frank, Steven D

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators. PMID:26536606

  14. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees

    PubMed Central

    López-Uribe, Margarita M.; Tarpy, David R.; Frank, Steven D.

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators. PMID:26536606

  15. Bee-Wild about Pollinators!

    ERIC Educational Resources Information Center

    Johnson, Bonnie; Kil, Jenny; Evans, Elaine; Koomen, Michele Hollingsworth

    2014-01-01

    With their sunny stripes and fuzzy bodies, bees are beloved--but unfortunately, they are in trouble. Bee decline, of both wild bees as well as managed bees like honey bees, has been in the news for the last several years. Habitat loss, diseases, pests, and pesticides have made it difficult for bees to survive in many parts of our world (Walsh…

  16. The burden of traumatic brain injury among adolescent and young adult workers in Washington State

    PubMed Central

    Graves, Janessa M.; Sears, Jeanne M.; Vavilala, Monica S.; Rivara, Frederick P.

    2012-01-01

    Objective This study describes injury characteristics and costs of work-related traumatic brain injury (WRTBI) among 16–24 year olds in Washington State between 1998 and 2008. Methods WRTBIs were identified in the Washington Trauma Registry (WTR) and linked to workers’ compensation (WC) claims data. Medical and time-loss compensation costs were compared between workers with isolated TBI and TBI with other trauma. Results Of 273 WRTBI cases identified, most (61.5%) were TBI with other trauma. One-third of WRTBI did not link to a WC claim. Medical costs averaged $88,307 (median $16,426) for isolated TBI cases, compared to $73,669 (median $41,167) for TBI with other trauma. Conclusions Results highlight the financial impact of WRTBI among young workers. Multiple data sources provided a more comprehensive picture than a single data source alone. This linked-data approach holds great potential for future traumatic occupational injury research. PMID:23710080

  17. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera.

    PubMed

    Bloch, Guy; Cohen, Mira

    2014-06-01

    Small cysteine-rich peptides have diverse functions in insects including antimicrobial defense, phenoloxidase activity regulation, and toxic inhibition of ion channels of prey or predator. We combined bioinformatics and measurements of transcript abundance to start characterizing AmOCLP1, a recently discovered Inhibitor Cysteine Knot peptide in the honey bee Apis mellifera. We found that the genomes of ants, bees, and the wasp Nasonia vitripennis encode orthologous sequences indicating that OCLP1 is a conserved peptide and not unique to the honey bee. Search of available EST libraries and quantitative real time PCR analyses indicate that the transcript of AmOCLP1 is ubiquitous with expression in life stages ranging from embryos to adults and in all tested tissues. In worker honey bees AmOCLP1 expression was not associated with age or task and did not show clear enrichment in any of the tested tissues. There was however a consistent trend toward higher transcript levels in the abdomen of foragers relative to levels in the head or thorax, and compared to levels in the abdomen of younger worker bees. By contrast, in drones AmOCLP1 transcript levels appeared higher in the head relative to the abdomen. Finer analyses of the head and abdomen indicated that the AmOCLP1 transcript is not enriched in the stinger and the associated venom sac or in cephalic exocrine glands. The evolutionary conservation in the Hymenoptera, the ubiquitous expression, and the lack of enrichment in the venom gland, stinger, exocrine glands, and the brain are not consistent with the hypotheses that OCLP1 is a secreted honeybee toxin or an endotoxin acting in the central nervous system. Rather we hypothesize that OCLP1 is a conserved antimicrobial or phenoloxidase inhibitor peptide.

  18. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera.

    PubMed

    Bloch, Guy; Cohen, Mira

    2014-06-01

    Small cysteine-rich peptides have diverse functions in insects including antimicrobial defense, phenoloxidase activity regulation, and toxic inhibition of ion channels of prey or predator. We combined bioinformatics and measurements of transcript abundance to start characterizing AmOCLP1, a recently discovered Inhibitor Cysteine Knot peptide in the honey bee Apis mellifera. We found that the genomes of ants, bees, and the wasp Nasonia vitripennis encode orthologous sequences indicating that OCLP1 is a conserved peptide and not unique to the honey bee. Search of available EST libraries and quantitative real time PCR analyses indicate that the transcript of AmOCLP1 is ubiquitous with expression in life stages ranging from embryos to adults and in all tested tissues. In worker honey bees AmOCLP1 expression was not associated with age or task and did not show clear enrichment in any of the tested tissues. There was however a consistent trend toward higher transcript levels in the abdomen of foragers relative to levels in the head or thorax, and compared to levels in the abdomen of younger worker bees. By contrast, in drones AmOCLP1 transcript levels appeared higher in the head relative to the abdomen. Finer analyses of the head and abdomen indicated that the AmOCLP1 transcript is not enriched in the stinger and the associated venom sac or in cephalic exocrine glands. The evolutionary conservation in the Hymenoptera, the ubiquitous expression, and the lack of enrichment in the venom gland, stinger, exocrine glands, and the brain are not consistent with the hypotheses that OCLP1 is a secreted honeybee toxin or an endotoxin acting in the central nervous system. Rather we hypothesize that OCLP1 is a conserved antimicrobial or phenoloxidase inhibitor peptide. PMID:24721445

  19. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    PubMed Central

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies. PMID:22393496

  20. Management increases genetic diversity of honey bees via admixture.

    PubMed

    Harpur, Brock A; Minaei, Shermineh; Kent, Clement F; Zayed, Amro

    2012-09-01

    The process of domestication often brings about profound changes in levels of genetic variation in animals and plants. The honey bee, Apis mellifera, has been managed by humans for centuries for both honey and wax production and crop pollination. Human management and selective breeding are believed to have caused reductions in genetic diversity in honey bee populations, thereby contributing to the global declines threatening this ecologically and economically important insect. However, previous studies supporting this claim mostly relied on population genetic comparisons of European and African (or Africanized) honey bee races; such conclusions require reassessment given recent evidence demonstrating that the honey bee originated in Africa and colonized Europe via two independent expansions. We sampled honey bee workers from two managed populations in North America and Europe as well as several old-world progenitor populations in Africa, East and West Europe. Managed bees had highly introgressed genomes representing admixture between East and West European progenitor populations. We found that managed honey bees actually have higher levels of genetic diversity compared with their progenitors in East and West Europe, providing an unusual example whereby human management increases genetic diversity by promoting admixture. The relationship between genetic diversity and honey bee declines is tenuous given that managed bees have more genetic diversity than their progenitors and many viable domesticated animals.

  1. Longevity of microwave-treated (2. 45 GHz continuous wave) honey bees in observation hives

    SciTech Connect

    Gary, N.E.; Westerdahl, B.B.

    1981-12-15

    Adult honey bees were exposed for 30 min to 2.45 GHz of continuous wave microwave radiation at power densities ranging from 3 to 50 mW/cm/sup 2/. After exposure, bees were returned to glass-walled observation hives, and their longevity was compared with that of control bees. No significant differences were found between microwave- and sham-treated bees at any of the power densities tested.

  2. Prevalence of cytomegalovirus infection among health care workers in pediatric and immunosuppressed adult units.

    PubMed

    Sobaszek, A; Fantoni-Quinton, S; Frimat, P; Leroyer, A; Laynat, A; Edme, J L

    2000-11-01

    The prevalence of cytomegalovirus (CMV) infection varies not only from one country to another, but also with social, economic, and environmental conditions and with professional activity. Health care workers in contact with the main vectors of the CMV (i.e., children and immunosuppressed patients) are particularly exposed to the infection. We assessed the prevalence of the virus among health care personnel in light of CMV epidemiology and the recent shift in living conditions and family size. Our study was included in a broader program evaluating the risk of infection among female hospital workers of childbearing age. The goal of the program was to implement appropriate preventive measures for personnel who were not immune to the infection. Consequently, we included only female caregivers who worked with children or immunosuppressed patients. The study was based on a clinical examination, a medical and occupational questionnaire, the assessment of tasks performed; and CMV serologic testing. The overall seroprevalence was 44.25% in our population (n = 400) and was comparable regardless of the place of work. Prevalence differed significantly with age and parity, and we also found that it was higher among personnel who worked in closer contact with the patients (nurse's aides, pediatric nurse's aides) than among those whose tasks required more technical skills (nurses, pediatric nurses) (57.3% vs 34.5%, P < 0.01). The logistic regression analysis between prevalence of CMV antibodies, age, parity, and type of job showed that "contact job" was as significant a factor as parity to explain immunization in our population (odds ratio, 2.2). We also determined a correlation between the prevalence of CMV antibodies and tasks performed. In addition, we found a non-negligible group of non-immune personnel (55.75%) and young workers (mean age: 33.4) who were potentially exposed to infection. This points to the need to establish a prevention program. PMID:11094790

  3. New Dimensions of Workers' Education

    ERIC Educational Resources Information Center

    Whitehouse, John R. W.

    1978-01-01

    The author suggests that labor education, by its organization through trade unions, is clearly distinguished from general adult education activities, although workers obviously participate in adult education. He discusses various ILO workers' education programs around the world. (MF)

  4. Comb wax mediates the acquisition of nest-mate recognition cues in honey bees.

    PubMed

    Breed, M D; Williams, K R; Fewell, J H

    1988-11-01

    Honey bees, Apis mellifera, acquire nest-mate recognition cues from wax, the predominant material used in nest construction. Exposure of a newly emerged worker bee to wax-comb substrate significantly reduced the acceptability of that worker to sister bees. Cues acquired from the comb provided colony-specific information about the identity of worker bees; moreover, the effect of comb exposure has been previously shown to override individually produced cues. Food odors (anise oil), when dissolved in paraffin wax, affected worker-recognition characteristics but food odors did not affect these characteristics when fed to bees in sugar candy. Paraffin wax alone did not affect the recognition cues of bees, showing that the wax can be a neutral medium for the transmission of cues. The wax comb in the colony and the hydrocarbon outer layer of the bee cuticle may be a continuous medium for any hydrocarbon-soluble substances used by honey bees in nest-mate recognition; if so, a mechanism by which environmental cues are acquired by honey bees is provided.

  5. Repression and recuperation of brood production in Bombus terrestris bumble bees exposed to a pulse of the neonicotinoid pesticide imidacloprid.

    PubMed

    Laycock, Ian; Cresswell, James E

    2013-01-01

    Currently, there is concern about declining bee populations and some blame the residues of neonicotinoid pesticides in the nectar and pollen of treated crops. Bumble bees are important wild pollinators that are widely exposed to dietary neonicotinoids by foraging in agricultural environments. In the laboratory, we tested the effect of a pulsed exposure (14 days 'on dose' followed by 14 days 'off dose') to a common neonicotinoid, imidacloprid, on the amount of brood (number of eggs and larvae) produced by Bombus terrestris L. bumble bees in small, standardised experimental colonies (a queen and four adult workers). During the initial 'on dose' period we observed a dose-dependent repression of brood production in colonies, with productivity decreasing as dosage increased up to 98 µg kg(-1) dietary imidacloprid. During the following 'off dose' period, colonies showed a dose-dependent recuperation such that total brood production during the 28-day pulsed exposure was not correlated with imidacloprid up to 98 µg kg(-1). Our findings raise further concern about the threat to wild bumble bees from neonicotinoids, but they also indicate some resilience to a pulsed exposure, such as that arising from the transient bloom of a treated mass-flowering crop.

  6. Repression and Recuperation of Brood Production in Bombus terrestris Bumble Bees Exposed to a Pulse of the Neonicotinoid Pesticide Imidacloprid

    PubMed Central

    Laycock, Ian; Cresswell, James E.

    2013-01-01

    Currently, there is concern about declining bee populations and some blame the residues of neonicotinoid pesticides in the nectar and pollen of treated crops. Bumble bees are important wild pollinators that are widely exposed to dietary neonicotinoids by foraging in agricultural environments. In the laboratory, we tested the effect of a pulsed exposure (14 days ‘on dose’ followed by 14 days ‘off dose’) to a common neonicotinoid, imidacloprid, on the amount of brood (number of eggs and larvae) produced by Bombus terrestris L. bumble bees in small, standardised experimental colonies (a queen and four adult workers). During the initial ‘on dose’ period we observed a dose-dependent repression of brood production in colonies, with productivity decreasing as dosage increased up to 98 µg kg−1 dietary imidacloprid. During the following ‘off dose’ period, colonies showed a dose-dependent recuperation such that total brood production during the 28-day pulsed exposure was not correlated with imidacloprid up to 98 µg kg−1. Our findings raise further concern about the threat to wild bumble bees from neonicotinoids, but they also indicate some resilience to a pulsed exposure, such as that arising from the transient bloom of a treated mass-flowering crop. PMID:24224015

  7. Differentially expressed regulatory genes in honey bee caste development

    NASA Astrophysics Data System (ADS)

    Hepperle, C.; Hartfelder, K.

    2001-03-01

    In the honey bee, an eminently fertile queen with up to 200 ovarioles per ovary monopolizes colony level reproduction. In contrast, worker bees have only few ovarioles and are essentially sterile. This phenotype divergence is a result of caste-specifically modulated juvenile hormone and ecdysteroid titers in larval development. In this study we employed a differential-display reverse transcription (DDRT)-PCR protocol to detect ecdysteroid-regulated gene expression during a critical phase of caste development. We identified a Ftz-F1 homolog and a Cut-like transcript. Ftz-F1 could be a putative element of the metamorphic ecdysone response cascade of bees, whereas Cut-like proteins are described as transcription factors involved in maintaining cellular differentiation states. The downregulation of both factors can be interpreted as steps in the metamorphic degradation of ovarioles in worker-bee ovaries.

  8. Living 'a life like ours': support workers' accounts of substitute decision-making in residential care homes for adults with intellectual disabilities.

    PubMed

    Dunn, M C; Clare, I C H; Holland, A J

    2010-02-01

    In England and Wales, the Mental Capacity Act 2005 (MCA) provides a new legal framework to regulate substitute decision-making relating to the welfare of adults who lack the capacity to make one or more autonomous decisions about their care and support. Any substitute decision made on behalf of an adult lacking capacity must be in his/her 'best interests'. However, the value of adopting established principles and procedures for substitute decision-making in practice is uncertain, and little is known about the legal or ethical dynamics of social care support, including the day-to-day residential support provided to adults with intellectual disabilities (ID). Methods This paper reports a qualitative, grounded theory analysis of 21 interviews with support workers working in residential care homes for adults with ID, and observations of care practices. Results In contrast to the narrow legal responsibilities placed upon them, it is argued that support workers interpret substitute decision-making within a broad moral account of their care role, orientating their support towards helping residents to live 'a life like ours'. In so doing, support workers describe how they draw on their own values and life experiences to shape the substitute decisions that they make on behalf of residents. Conclusions Support workers' accounts reveal clear discrepancies between the legal regulation of substitute decision-making and the ways that these support workers make sense of their work. Such discrepancies have implications both for the implementation of the MCA, and for the role of support workers' values in the conceptualisation and delivery of 'good' care.

  9. Correlation between mandibular gland secretion and cuticular hydrocarbons in the stingless bee Melipona quadrifasciata.

    PubMed

    Cruz-Landim, C; Ferreira-Caliman, M J; Gracioli-Vitti, L F; Zucchi, R

    2012-04-19

    We investigated whether Melipona quadrifasciata worker mandibular gland secretions contribute directly to their cuticular hydrocarbon profile. The mandibular gland secretion composition and cuticular surface compounds of newly emerged worker bees, nurse bees, and foragers were determined by gas chromatography and mass spectrometry and compared. Both the mandibular gland secretions and the cuticular surface compounds of all worker stages were found to be composed almost exclusively of hydrocarbons. Although the relative proportion of hydrocarbons from the cuticular surface and gland secretion was statistically different, there was a high similarity in the qualitative composition between these structures in all groups of bees.

  10. Spray toxicity and risk potential of 42 commonly used formulations of row crop pesticides to adult honey bees (Hymenoptera:Apidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To combat an increasing abundance of sucking insect pests, more than 40 pesticides are currently recommended and frequently used as foliar sprays on row crops, especially cotton. Foraging honey bees may be killed when they are directly exposed to foliar sprays, or they may take contaminated pollen b...

  11. Cost-Effectiveness Analysis of a Community Health Worker Intervention for Low-Income Hispanic Adults with Diabetes

    PubMed Central

    Brown, H. Shelton; Pagán, José A.; Arcari, Christine M.; Martinez, Martha; Smith, Kirk; Reininger, Belinda

    2012-01-01

    Introduction The objective of our study was to estimate the long-term cost-effectiveness of a lifestyle modification program led by community health workers (CHWs) for low-income Hispanic adults with type 2 diabetes. Methods We forecasted disease outcomes, quality-adjusted life years (QALYs) gained, and lifetime costs associated with attaining different hemoglobin A1c (A1c) levels. Outcomes were projected 20 years into the future and discounted at a 3.0% rate. Sensitivity analyses were conducted to assess the extent to which our results were dependent on assumptions related to program effectiveness, projected years, discount rates, and costs. Results The incremental cost-effectiveness ratio of the intervention ranged from $10,995 to $33,319 per QALY gained when compared with usual care. The intervention was particularly cost-effective for adults with high glycemic levels (A1c > 9%). The results are robust to changes in multiple parameters. Conclusion The CHW program was cost-effective. This study adds to the evidence that culturally sensitive lifestyle modification programs to control diabetes can be a cost-effective way to improve health among Hispanics with diabetes, particularly among those with high A1c levels. PMID:22916995

  12. Farm Activities and Agricultural Injuries in Youth and Young Adult Workers.

    PubMed

    DeWit, Yvonne; Pickett, William; Lawson, Joshua; Dosman, James

    2015-01-01

    Youth and young adults who work in the agricultural sector experience high rates of injury. This study aimed to investigate relations between high-risk farm activities and the occurrence of agricultural injuries in these vulnerable groups. A cross-sectional analysis was conducted using written questionnaire data from 1135 youth and young adults from the Saskatchewan Farm Injury Cohort. The prevalence of agricultural injury was estimated at 4.9%/year (95% confidence interval [CI]: 3.7, 6.2). After adjustment for important covariates, duration of farm work was strongly associated with the occurrence of injury (risk ratio [RR] = 8.0 [95% CI: 1.7, 36.7] for 10-34 vs. <10 hours/week; RR = 10.3 [95% CI: 2.2, 47.5] for those working 35+ hours/week). Tractor maintenance, tractor operation, chores with large animals, herd maintenance activities, and veterinary activities were identified as risk factors for agricultural injury. Risks for agricultural injury among youth and young adults on farms relate directly to the amounts and types of farm work exposures that young people engage in. PMID:26237722

  13. How Do You Spell Friendship? An Intergenerational Spelling Bee.

    ERIC Educational Resources Information Center

    Connolly, Michael R., Jr.

    1993-01-01

    Describes a plan for a spelling bee in which both sixth graders and senior citizens participate. Argues that such an activity impresses students with the idea that school learning has practical applications in the lives of adults. (HB)

  14. Pathogen webs in collapsing honey bee colonies.

    PubMed

    Cornman, R Scott; Tarpy, David R; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S; vanEngelsdorp, Dennis; Evans, Jay D

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.

  15. Pathogen Webs in Collapsing Honey Bee Colonies

    PubMed Central

    Cornman, R. Scott; Tarpy, David R.; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S.; vanEngelsdorp, Dennis; Evans, Jay D.

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees. PMID:22927991

  16. Range and Frequency of Africanized Honey Bees in California (USA)

    PubMed Central

    Kono, Yoshiaki; Kohn, Joshua R.

    2015-01-01

    Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California’s central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee. PMID:26361047

  17. Range and Frequency of Africanized Honey Bees in California (USA).

    PubMed

    Kono, Yoshiaki; Kohn, Joshua R

    2015-01-01

    Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California's central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee.

  18. Range and Frequency of Africanized Honey Bees in California (USA).

    PubMed

    Kono, Yoshiaki; Kohn, Joshua R

    2015-01-01

    Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California's central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee. PMID:26361047

  19. An improved marriage in honey bees optimization algorithm for single objective unconstrained optimization.

    PubMed

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.

  20. Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight.

    PubMed

    Lutz, Claudia C; Robinson, Gene E

    2013-06-01

    The natural history of adult worker honey bees (Apis mellifera) provides an opportunity to study the molecular basis of learning in an ecological context. Foragers must learn to navigate between the hive and floral locations that may be up to miles away. Young pre-foragers prepare for this task by performing orientation flights near the hive, during which they begin to learn navigational cues such as the appearance of the hive, the position of landmarks, and the movement of the sun. Despite well-described spatial learning and navigation behavior, there is currently limited information on the neural basis of insect spatial learning. We found that Egr, an insect homolog of Egr-1, is rapidly and transiently upregulated in the mushroom bodies in response to orientation. This result is the first example of an Egr-1 homolog acting as a learning-related immediate-early gene in an insect and also demonstrates that honey bee orientation uses a molecular mechanism that is known to be involved in many other forms of learning. This transcriptional response occurred both in naïve bees and in foragers induced to re-orient. Further experiments suggest that visual environmental novelty, rather than exercise or memorization of specific visual cues, acts as the stimulus for Egr upregulation. Our results implicate the mushroom bodies in spatial learning and emphasize the deep conservation of Egr-related pathways in experience-dependent plasticity.

  1. Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata.

    PubMed

    Koethe, Sebastian; Bossems, Jessica; Dyer, Adrian G; Lunau, Klaus

    2016-10-01

    The colour vision of bees has been extensively analysed in honeybees and bumblebees, but few studies consider the visual perception of stingless bees (Meliponini). In a five-stage experiment the preference for colour intensity and purity, and the preference for the dominant wavelength were tested by presenting four colour stimuli in each test to freely flying experienced workers of two stingless bee species, Melipona mondury and Melipona quadrifasciata. The results with bee-blue, bee-UV-blue and bee-green colours offered in four combinations of varying colour intensity and purity suggest a complex interaction between these colour traits for the determination of colour choice. Specifically, M. mondury preferred bee-UV-blue colours over bee-green, bee-blue and bee-blue-green colours while M. quadrifasciata preferred bee-green colour stimuli. Moreover in M. mondury the preferences were different if the background colour was changed from grey to green. There was a significant difference between species where M. mondury preferred UV-reflecting over UV-absorbing bee-blue-green colour stimuli, whereas M. quadrifasciata showed an opposite preference. The different colour preferences of the free flying bees in identical conditions may be caused by the bees' experience with natural flowers precedent to the choice tests, suggesting reward partitioning between species. PMID:27480640

  2. Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata.

    PubMed

    Koethe, Sebastian; Bossems, Jessica; Dyer, Adrian G; Lunau, Klaus

    2016-10-01

    The colour vision of bees has been extensively analysed in honeybees and bumblebees, but few studies consider the visual perception of stingless bees (Meliponini). In a five-stage experiment the preference for colour intensity and purity, and the preference for the dominant wavelength were tested by presenting four colour stimuli in each test to freely flying experienced workers of two stingless bee species, Melipona mondury and Melipona quadrifasciata. The results with bee-blue, bee-UV-blue and bee-green colours offered in four combinations of varying colour intensity and purity suggest a complex interaction between these colour traits for the determination of colour choice. Specifically, M. mondury preferred bee-UV-blue colours over bee-green, bee-blue and bee-blue-green colours while M. quadrifasciata preferred bee-green colour stimuli. Moreover in M. mondury the preferences were different if the background colour was changed from grey to green. There was a significant difference between species where M. mondury preferred UV-reflecting over UV-absorbing bee-blue-green colour stimuli, whereas M. quadrifasciata showed an opposite preference. The different colour preferences of the free flying bees in identical conditions may be caused by the bees' experience with natural flowers precedent to the choice tests, suggesting reward partitioning between species.

  3. Stingless Bees as Alternative Pollinators of Canola.

    PubMed

    Witter, Sidia; Nunes-Silva, Patrícia; Lisboa, Bruno B; Tirelli, Flavia P; Sattler, Aroni; Both Hilgert-Moreira, Suzane; Blochtein, Betina

    2015-06-01

    Alternative pollinators can ensure pollination services if the availability of the managed or most common pollinator is compromised. In this study, the behavior and pollination efficiency of Apis mellifera L. and two species of stingless bees, Plebeia emerina Friese and Tetragonisca fiebrigi Schwarz, were evaluated and compared in flowers of Brassica napus L. 'Hyola 61'. A. mellifera was an efficient pollinator when collecting nectar because it effectively touched the reproductive organs of the flower. In contrast, stingless bees were efficient pollinators only when collecting pollen. The number of pollen grains deposited on the stigma after a single visit by worker bees of the three species was greater than the number of grains resulting from pollination without the bee visits. On average, the three species deposited enough pollen grains to fertilize all of the flower ovules. A. mellifera and P. emerina had similar pollination efficiency because no significant differences were observed in the characteristics of the siliques produced. Although T. fiebrigi is also an effective pollinator, the seed mass produced by their pollination was lower. Native bees promoted similar rates of fruit set compared with A. mellifera. Thus, P. emerina has potential to be used for pollination in canola crops. PMID:26470207

  4. Stingless Bees as Alternative Pollinators of Canola.

    PubMed

    Witter, Sidia; Nunes-Silva, Patrícia; Lisboa, Bruno B; Tirelli, Flavia P; Sattler, Aroni; Both Hilgert-Moreira, Suzane; Blochtein, Betina

    2015-06-01

    Alternative pollinators can ensure pollination services if the availability of the managed or most common pollinator is compromised. In this study, the behavior and pollination efficiency of Apis mellifera L. and two species of stingless bees, Plebeia emerina Friese and Tetragonisca fiebrigi Schwarz, were evaluated and compared in flowers of Brassica napus L. 'Hyola 61'. A. mellifera was an efficient pollinator when collecting nectar because it effectively touched the reproductive organs of the flower. In contrast, stingless bees were efficient pollinators only when collecting pollen. The number of pollen grains deposited on the stigma after a single visit by worker bees of the three species was greater than the number of grains resulting from pollination without the bee visits. On average, the three species deposited enough pollen grains to fertilize all of the flower ovules. A. mellifera and P. emerina had similar pollination efficiency because no significant differences were observed in the characteristics of the siliques produced. Although T. fiebrigi is also an effective pollinator, the seed mass produced by their pollination was lower. Native bees promoted similar rates of fruit set compared with A. mellifera. Thus, P. emerina has potential to be used for pollination in canola crops.

  5. Roles of individual honeybee workers and drones in colonial thermogenesis.

    PubMed

    Harrison, J M

    1987-05-01

    The individual roles of honeybee workers and drones in heat regulation were investigated using single combs of bees and brood (about 1,000 individuals) placed in boxes at 15 degrees C. After 1 h and before cluster formation, I measured the elevation of bee thoracic surface temperature (Tths) above local ambient temperature (Ta). Bees were then left overnight at 15 degrees C. During the preclustering period, the density of bees over the brood slowly increased. In the clusters left overnight, bees in the innermost layer were significantly younger than bees in the outermost layer. One-day-old bees and drones were always located in the innermost cluster layer. 89% of all workers measured had Tths - Ta greater than or equal to 2 degrees C, indicating that most workers contribute to colonial thermogenesis. Average Tths - Ta was 4.1 degrees C. Drones measured had the same average Tths - Ta as unmarked workers. Tths - Ta did not differ among bees 2 days of age and older. Location on or off the brood did not affect Tths - Ta. Cooling constants of dead bees placed near the comb in the box averaged 1.036 min-1 and were independent of location on the comb. Calculated average thoracic conductance was 0.829 cal g-1 degree C-1 min-1. Average calculated heat production per worker was 0.095 cal min-1, less than 15% of the maximal oxygen consumption of 4-day-old bees. Calculations indicate that the larger drones contribute more heat per bee than do the workers.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Not Only Single Mating in Stingless Bees

    NASA Astrophysics Data System (ADS)

    Paxton, Robert J.; Weißschuh, Nicole; Engels, Wolf; Hartfelder, Klaus; Quezada-Euan, J. Javier G.

    Queens of the large, pantropical and fully eusocial taxon Meliponinae (stingless bees) are generally considered to be singly mated. We indirectly estimated queen mating frequency in two meliponids, Melipona beecheii and Scaptotrigona postica, by examining genotypes of workers at microsatellite DNA loci. Microsatellites were highly variable, providing suitable markers with which to assign patrilinial origin of workers within colonies headed by single queens. Queen mating frequency varied between 1 and 3 (M. beecheii) and 1 and 6 (S. postica), representing the first clear documentation of polyandry in the Meliponinae. Effective paternity frequency, me, was lower, although above 2 for S. postica. Stingless bees may provide suitable subjects for the testing of recent inclusive fitness arguments describing intracolony kin conflict in social Hymenoptera.

  7. A metagenomic survey of microbes in honey bee colony collapse disorder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Colony Collapse Disorder (CCD), honey bee colonies inexplicably lose all of their workers. CCD has resulted in a loss of 50-90% of colonies in beekeeping operations across the United States. The observation that irradiated combs from affected colonies can be repopulated with naïve bees suggests a...

  8. Response diversity of wild bees to overwintering temperatures.

    PubMed

    Fründ, Jochen; Zieger, Sarah L; Tscharntke, Teja

    2013-12-01

    Biodiversity can provide insurance against environmental change, but only if species differ in their response to environmental conditions (response diversity). Wild bees provide pollination services to wild and crop plants, and response diversity might insure this function against changing climate. To experimentally test the hypothesis that bee species differ in their response to increasing winter temperature, we stored cocoons of nine bee species at different temperatures during the winter (1.5-9.5 °C). Bee species differed significantly in their responses (weight loss, weight at emergence and emergence date). The developmental stage during the winter explained some of these differences. Bee species overwintering as adults generally showed decreased weight and earlier emergence with increasing temperature, whereas bee species overwintering in pre-imaginal stages showed weaker or even opposite responses. This means that winter warming will likely affect some bee species negatively by increasing energy expenditure, while others are less sensitive presumably due to different physiology. Likewise, species phenologies will respond differently to winter warming, potentially affecting plant-pollinator interactions. Responses are not independent of current flight periods: bees active in spring will likely show the strongest phenological advances. Taken together, wild bee diversity provides response diversity to climate change, which may be the basis for an insurance effect.

  9. The sound and the fury--bees hiss when expecting danger.

    PubMed

    Wehmann, Henja-Niniane; Gustav, David; Kirkerud, Nicholas H; Galizia, C Giovanni

    2015-01-01

    Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.

  10. Studies on Bee Venom and Its Medical Uses

    NASA Astrophysics Data System (ADS)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  11. Widespread occurrence of honey bee pathogens in solitary bees.

    PubMed

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens.

  12. Chronic Bee Paralysis Virus in Honeybee Queens: Evaluating Susceptibility and Infection Routes

    PubMed Central

    Amiri, Esmaeil; Meixner, Marina; Büchler, Ralph; Kryger, Per

    2014-01-01

    Chronic bee paralysis virus (CBPV) is known as a disease of worker honey bees. To investigate pathogenesis of the CBPV on the queen, the sole reproductive individual in a colony, we conducted experiments regarding the susceptibility of queens to CBPV. Results from susceptibility experiment showed a similar disease progress in the queens compared to worker bees after infection. Infected queens exhibit symptoms by Day 6 post infection and virus levels reach 1011 copies per head. In a transmission experiment we showed that social interactions may affect the disease progression. Queens with forced contact to symptomatic worker bees acquired an overt infection with up to 1011 virus copies per head in six days. In contrast, queens in contact with symptomatic worker bees, but with a chance to receive food from healthy bees outside the cage appeared healthy. The virus loads did not exceed 107 in the majority of these queens after nine days. Symptomatic worker bees may transmit sufficient active CBPV particles to the queen through trophallaxis, to cause an overt infection. PMID:24618857

  13. Kin discrimination within honey bee (Apis mellifera) colonies: An analysis of the evidence.

    PubMed

    Breed, M D; Welch, C K; Cruz, R

    1994-12-01

    Compelling evolutionary arguments lead to the prediction that honey bee workers should discriminate between supersisters and half-sisters within colonies. We review the theoretical support for discrimination during swarming, queen rearing, feeding, and grooming. A survey of the data that tests whether such discrimination takes place shows that, despite substantial effort in a number of laboratories, there is no conclusive evidence for intracolony discrimination in any of the postulated contexts. The strongest suggestive data is in the critical context of queen rearing, but flaws in experimental design or analysis make the best available tests inconclusive. We present new data that shows that cues exist on which discriminations can be made among adult workers in nestmate recognition interactions and in feeding interactions, but our data does not differentiate between subfamily recognition and recognition associated with color phenotypes. We conclude that while selection may favor discrimination between supersisters and half-sisters, as a practical matter such discriminations play no role, or only a minor role, in the biology of the honey bee.

  14. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially.

    PubMed

    Yañez, Orlando; Gauthier, Laurent; Chantawannakul, Panuwan; Neumann, Peter

    2016-07-01

    Intracellular endosymbiotic bacteria are common and can play a crucial role for insect pathology. Therefore, such bacteria could be a potential key to our understanding of major losses of Western honey bees (Apis mellifera) colonies. However, the transmission and potential effects of endosymbiotic bacteria in A. mellifera and other Apis spp. are poorly understood. Here, we explore the prevalence and transmission of the genera Arsenophonus, Wolbachia, Spiroplasma and Rickettsia in Apis spp. Colonies of A. mellifera (N = 33, with 20 eggs from worker brood cells and 100 adult workers each) as well as mated honey bee queens of A. cerana, A. dorsata and A. florea (N = 12 each) were screened using PCR. While Wolbachia, Spiroplasma and Rickettsia were not detected, Arsenophonus spp. were found in 24.2% of A. mellifera colonies and respective queens as well as in queens of A. dorsata (8.3%) and A. florea (8.3%), but not in A. cerana The absence of Arsenophonus spp. from reproductive organs of A. mellifera queens and surface-sterilized eggs does not support transovarial vertical transmission. Instead, horizontal transmission is most likely. PMID:27279628

  15. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially.

    PubMed

    Yañez, Orlando; Gauthier, Laurent; Chantawannakul, Panuwan; Neumann, Peter

    2016-07-01

    Intracellular endosymbiotic bacteria are common and can play a crucial role for insect pathology. Therefore, such bacteria could be a potential key to our understanding of major losses of Western honey bees (Apis mellifera) colonies. However, the transmission and potential effects of endosymbiotic bacteria in A. mellifera and other Apis spp. are poorly understood. Here, we explore the prevalence and transmission of the genera Arsenophonus, Wolbachia, Spiroplasma and Rickettsia in Apis spp. Colonies of A. mellifera (N = 33, with 20 eggs from worker brood cells and 100 adult workers each) as well as mated honey bee queens of A. cerana, A. dorsata and A. florea (N = 12 each) were screened using PCR. While Wolbachia, Spiroplasma and Rickettsia were not detected, Arsenophonus spp. were found in 24.2% of A. mellifera colonies and respective queens as well as in queens of A. dorsata (8.3%) and A. florea (8.3%), but not in A. cerana The absence of Arsenophonus spp. from reproductive organs of A. mellifera queens and surface-sterilized eggs does not support transovarial vertical transmission. Instead, horizontal transmission is most likely.

  16. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially

    PubMed Central

    Yañez, Orlando; Gauthier, Laurent; Chantawannakul, Panuwan; Neumann, Peter

    2016-01-01

    Intracellular endosymbiotic bacteria are common and can play a crucial role for insect pathology. Therefore, such bacteria could be a potential key to our understanding of major losses of Western honey bees (Apis mellifera) colonies. However, the transmission and potential effects of endosymbiotic bacteria in A. mellifera and other Apis spp. are poorly understood. Here, we explore the prevalence and transmission of the genera Arsenophonus, Wolbachia, Spiroplasma and Rickettsia in Apis spp. Colonies of A. mellifera (N = 33, with 20 eggs from worker brood cells and 100 adult workers each) as well as mated honey bee queens of A. cerana, A. dorsata and A. florea (N = 12 each) were screened using PCR. While Wolbachia, Spiroplasma and Rickettsia were not detected, Arsenophonus spp. were found in 24.2% of A. mellifera colonies and respective queens as well as in queens of A. dorsata (8.3%) and A. florea (8.3%), but not in A. cerana. The absence of Arsenophonus spp. from reproductive organs of A. mellifera queens and surface-sterilized eggs does not support transovarial vertical transmission. Instead, horizontal transmission is most likely. PMID:27279628

  17. Methods for comparing nutrients in beebread made by Africanized and European honey bees and the effects on hemolymph protein titers.

    PubMed

    Degrandi-Hoffman, Gloria; Eckholm, Bruce; Huang, Ming

    2015-03-17

    Honey bees obtain nutrients from pollen they collect and store in the hive as beebread. We developed methods to control the pollen source that bees collect and convert to beebread by placing colonies in a specially constructed enclosed flight area. Methods were developed to analyze the protein and amino acid composition of the pollen and beebread. We also describe how consumption of the beebread was measured and methods used to determine adult worker bee hemolymph protein titers after feeding on beebread for 4, 7 and 11 days after emergence. Methods were applied to determine if genotype affects the conversion of pollen to beebread and the rate that bees consume and acquire protein from it. Two subspecies (European and Africanized honey bees; EHB and AHB respectively) were provided with the same pollen source. Based on the developed methods, beebread made by both subspecies had lower protein concentrations and pH values than the pollen. In general, amino acid concentrations in beebread made by either EHB or AHB were similar and occurred at higher levels in beebread than in pollen. Both AHB and EHB consumed significantly more of the beebread made by AHB than by EHB. Though EHB and AHB consumed similar amounts of each type of beebread, hemolymph protein concentrations in AHB were higher than in EHB. Differences in protein acquisition between AHB and EHB might reflect environmental adaptations related to the geographic region where each subspecies evolved. These differences could contribute to the successful establishment of AHB populations in the New World because of the effects on brood rearing and colony growth.

  18. Methods for Comparing Nutrients in Beebread Made by Africanized and European Honey Bees and the Effects on Hemolymph Protein Titers

    PubMed Central

    Degrandi-Hoffman, Gloria; Eckholm, Bruce; Huang, Ming

    2015-01-01

    Honey bees obtain nutrients from pollen they collect and store in the hive as beebread. We developed methods to control the pollen source that bees collect and convert to beebread by placing colonies in a specially constructed enclosed flight area. Methods were developed to analyze the protein and amino acid composition of the pollen and beebread. We also describe how consumption of the beebread was measured and methods used to determine adult worker bee hemolymph protein titers after feeding on beebread for 4, 7 and 11 days after emergence. Methods were applied to determine if genotype affects the conversion of pollen to beebread and the rate that bees consume and acquire protein from it. Two subspecies (European and Africanized honey bees; EHB and AHB respectively) were provided with the same pollen source. Based on the developed methods, beebread made by both subspecies had lower protein concentrations and pH values than the pollen. In general, amino acid concentrations in beebread made by either EHB or AHB were similar and occurred at higher levels in beebread than in pollen. Both AHB and EHB consumed significantly more of the beebread made by AHB than by EHB. Though EHB and AHB consumed similar amounts of each type of beebread, hemolymph protein concentrations in AHB were higher than in EHB. Differences in protein acquisition between AHB and EHB might reflect environmental adaptations related to the geographic region where each subspecies evolved. These differences could contribute to the successful establishment of AHB populations in the New World because of the effects on brood rearing and colony growth. PMID:25867246

  19. Participation in the Women, Infants, and Children (WIC) Program as Reported by Documented and Undocumented Farm Worker Adults in the Households.

    PubMed

    Leigh, J Paul; Medel-Herrero, Alvaro

    2015-01-01

    Debate surrounds the provision of Women, Infants, and Children (WIC) benefits to undocumented immigrants. Few studies are available to estimate use of WIC services by documented and undocumented households using nationally representative data. The authors analyzed data from the National Agricultural Workers Survey (NAWS) annual cross-sections from 1993 through 2009 (N = 40,896 person-years). Household documentation status is defined by the status of the adults in the household, not children. Simple mean differences, logistic regressions, and time charts described household participation in WIC over 2-year intervals. Without adjustments for covariates, 10.7% of undocumented farm workers' households and 12.4% of documented households received WIC benefits, yielding an odds ratio of 0.84 (95% confidence interval [CI]: 0.76-0.94). Logistic regressions revealed that for the same number of children in the household, participation by undocumented persons was higher than participation by documented persons. Time charts and logistic regressions with interaction terms showed a stronger correspondence between participation in WIC and number of children <6 years old in undocumented households than documented households. Undocumented farm workers' households were only a little less likely to participate in WIC than documented farm workers' households, and undocumented households' participation was especially responsive to the presence of children. These results are consistent with the legal requirements for WIC participation, which do not distinguish between documented and undocumented households. These results may be helpful in the debate surrounding the effects of undocumented workers on WIC participation and costs. PMID:26471950

  20. The formulation makes the honey bee poison.

    PubMed

    Mullin, Christopher A; Chen, Jing; Fine, Julia D; Frazier, Maryann T; Frazier, James L

    2015-05-01

    Dr. Fumio Matsumura's legacy embraced a passion for exploring environmental impacts of agrochemicals on non-target species such as bees. Why most formulations are more toxic to bees than respective active ingredients and how pesticides interact to cause pollinator decline cannot be answered without understanding the prevailing environmental chemical background to which bees are exposed. Modern pesticide formulations and seed treatments, particularly when multiple active ingredients are blended, require proprietary adjuvants and inert ingredients to achieve high efficacy for targeted pests. Although we have found over 130 different pesticides and metabolites in beehive samples, no individual pesticide or amount correlates with recent bee declines. Recently we have shown that honey bees are sensitive to organosilicone surfactants, nonylphenol polyethoxylates and the solvent N-methyl-2-pyrrolidone (NMP), widespread co-formulants used in agrochemicals and frequent pollutants within the beehive. Effects include learning impairment for adult bees and chronic toxicity in larval feeding bioassays. Multi-billion pounds of formulation ingredients like NMP are used and released into US environments. These synthetic organic chemicals are generally recognized as safe, have no mandated tolerances, and residues remain largely unmonitored. In contrast to finding about 70% of the pesticide active ingredients searched for in our pesticide analysis of beehive samples, we have found 100% of the other formulation ingredients targeted for analysis. These 'inerts' overwhelm the chemical burden from active pesticide, drug and personal care ingredients with which they are formulated. Honey bees serve as an optimal terrestrial bioindicator to determine if 'the formulation and not just the dose makes the poison'. PMID:25987217

  1. The formulation makes the honey bee poison.

    PubMed

    Mullin, Christopher A; Chen, Jing; Fine, Julia D; Frazier, Maryann T; Frazier, James L

    2015-05-01

    Dr. Fumio Matsumura's legacy embraced a passion for exploring environmental impacts of agrochemicals on non-target species such as bees. Why most formulations are more toxic to bees than respective active ingredients and how pesticides interact to cause pollinator decline cannot be answered without understanding the prevailing environmental chemical background to which bees are exposed. Modern pesticide formulations and seed treatments, particularly when multiple active ingredients are blended, require proprietary adjuvants and inert ingredients to achieve high efficacy for targeted pests. Although we have found over 130 different pesticides and metabolites in beehive samples, no individual pesticide or amount correlates with recent bee declines. Recently we have shown that honey bees are sensitive to organosilicone surfactants, nonylphenol polyethoxylates and the solvent N-methyl-2-pyrrolidone (NMP), widespread co-formulants used in agrochemicals and frequent pollutants within the beehive. Effects include learning impairment for adult bees and chronic toxicity in larval feeding bioassays. Multi-billion pounds of formulation ingredients like NMP are used and released into US environments. These synthetic organic chemicals are generally recognized as safe, have no mandated tolerances, and residues remain largely unmonitored. In contrast to finding about 70% of the pesticide active ingredients searched for in our pesticide analysis of beehive samples, we have found 100% of the other formulation ingredients targeted for analysis. These 'inerts' overwhelm the chemical burden from active pesticide, drug and personal care ingredients with which they are formulated. Honey bees serve as an optimal terrestrial bioindicator to determine if 'the formulation and not just the dose makes the poison'.

  2. Impact of electric fields on honey bees

    SciTech Connect

    Bindokas, V.P.

    1985-01-01

    Biological effects in honey bee colonies under a 765-kV, 60-Hz transmission line (electric (E) field = 7 kV/m) were confirmed using controlled dosimetry and treatment reversal to replicate findings within the same season. Hives in the same environment but shielded from E field are normal, suggesting effects are caused by interaction of E field with the hive. Bees flying through the ambient E field are not demonstrably affected. Different thresholds and severity of effects were found in colonies exposed to 7, 5.5, 4.1, 1.8, and 0.65 to 0.85 kV/m at incremental distances from the line. Most colonies exposed at 7 kV/m failed in 8 weeks and failed to overwinter at greater than or equal to4.1 kV/m. Data suggest the limit of a biological effects corridor lies between 15 and 27 m (4.1 and 1.8 kV/m) beyond the outer phase of the transmission line. Mechanisms to explain colony disturbance fall into two categories, direct perception of enhanced in-hive E fields, and perception of shock from induced currents. The same effects induced in colonies with total-hive E-field exposure can be reproduced with shock or E-field exposure of worker bees in extended hive entranceways (= porches). Full-scale experiments demonstrate bee exposure to E fields including 100 kV/m under moisture-free conditions within a non-conductive porch causes no detectable effect on colony behavior. Exposure of bees on a conductive (e.g. wet) substrate produces been disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. Thresholds for effects caused by step-potential-induced currents are: 275-350 nA - disturbance of single bees; 600 nA - onset of abnormal propolization; and 900 nA - sting.

  3. Why do Varroa mites prefer nurse bees?

    PubMed Central

    Xie, Xianbing; Huang, Zachary Y.; Zeng, Zhijiang

    2016-01-01

    The Varroa mite, Varroa destructor, is an acarine ecto-parasite on Apis mellifera. It is the worst pest of Apis mellifera, yet its reproductive biology on the host is not well understood. In particular, the significance of the phoretic stage, when mites feed on adult bees for a few days, is not clear. In addition, it is not clear whether the preference of mites for nurses observed in the laboratory also happens inside real colonies. We show that Varroa mites prefer nurses over both newly emerged bees and forgers in a colony setting. We then determined the mechanism behind this preference. We show that this preference maximizes Varroa fitness, although due to the fact that each mite must find a second host (a pupa) to reproduce, the fitness benefit to the mites is not immediate but delayed. Our results suggest that the Varroa mite is a highly adapted parasite for honey bees. PMID:27302644

  4. Heat shielding: A novel method of colonial thermoregulation in honey bees.

    PubMed

    Starks, P T; Gilley, D C

    1999-09-01

    Honey bees, Apis mellifera, maintain constant colony temperatures throughout the year. Honey bees fan their wings to cool the colony, and often spread fluid in conjunction with this behavior to induce evaporative cooling. We present an additional, previously undescribed mechanism used by the honey bee to maintain constant colony temperature in response to localized temperature increases. Worker bees shield the comb from external heat sources by positioning themselves on hot interior regions of the hive's walls. Although honey comb and brood comb were both shielded, the temperature-sensitive brood received a greater number of heat shielders and was thus better protected from overheating. Heat shielding appears to be a context-dependent adaptive behavior performed by worker bees who would previously have been considered "unemployed.

  5. Heat Shielding: A Novel Method of Colonial Thermoregulation in Honey Bees

    NASA Astrophysics Data System (ADS)

    Starks, Philip T.; Gilley, David C.

    Honey bees, Apis mellifera, maintain constant colony temperatures throughout the year. Honey bees fan their wings to cool the colony, and often spread fluid in conjunction with this behavior to induce evaporative cooling. We present an additional, previously undescribed mechanism used by the honey bee to maintain constant colony temperature in response to localized temperature increases. Worker bees shield the comb from external heat sources by positioning themselves on hot interior regions of the hive's walls. Although honey comb and brood comb were both shielded, the temperature-sensitive brood received a greater number of heat shielders and was thus better protected from overheating. Heat shielding appears to be a context-dependent adaptive behavior performed by worker bees who would previously have been considered "unemployed."

  6. Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers.

    PubMed

    Rahimi, A; Mirmoayedi, A; Kahrizi, D; Zarei, L; Jamali, S

    2016-01-01

    Honey bee is one of the most important insects considering its role in agriculture,ecology and economy as a whole. In this study, the genetic diversity of different Iranian honey bee populations was evaluated using inter simple sequence repeat (ISSR) markers. During May to September 2014, 108 young worker honey bees were collected from six different populations in 30 different geoclimatic locations from Golestan, Mazendaran, Guilan, West Azerbaijan, East Azerbaijan, Ardebil provinces of Iran. DNA was extracted from the worker honey bees. The quality and quantity of extracted DNA were measured. A set of ten primers were screened with the laboratory populations of honey bees. The number of fragments produced in the different honey bee populations varied from 3 to 10, varying within 150 to 1500 bp. The used ten ISSR primers generated 40 polymorphic fragments, and the average heterozygosity for each primer was 0.266. Maximum numbers of bands were recorded for primer A1. A dendrogram based on the Unweighted Pair Group Method with Arithmetic mean (UPGMA) method generated two sub-clusters. Honey bee populations of Golestan, Mazendaran, Guilan provinces were located in the first group. The second group included honey bee populations of Ardebil, West Azerbaijan, East Azerbaijan provinces, but this group showed a close relationship with other populations. The results showed obviously the ability of the ISSR marker technique to detect the genetic diversity among the honey bee populations. PMID:27188735

  7. Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers.

    PubMed

    Rahimi, A; Mirmoayedi, A; Kahrizi, D; Zarei, L; Jamali, S

    2016-04-30

    Honey bee is one of the most important insects considering its role in agriculture,ecology and economy as a whole. In this study, the genetic diversity of different Iranian honey bee populations was evaluated using inter simple sequence repeat (ISSR) markers. During May to September 2014, 108 young worker honey bees were collected from six different populations in 30 different geoclimatic locations from Golestan, Mazendaran, Guilan, West Azerbaijan, East Azerbaijan, Ardebil provinces of Iran. DNA was extracted from the worker honey bees. The quality and quantity of extracted DNA were measured. A set of ten primers were screened with the laboratory populations of honey bees. The number of fragments produced in the different honey bee populations varied from 3 to 10, varying within 150 to 1500 bp. The used ten ISSR primers generated 40 polymorphic fragments, and the average heterozygosity for each primer was 0.266. Maximum numbers of bands were recorded for primer A1. A dendrogram based on the Unweighted Pair Group Method with Arithmetic mean (UPGMA) method generated two sub-clusters. Honey bee populations of Golestan, Mazendaran, Guilan provinces were located in the first group. The second group included honey bee populations of Ardebil, West Azerbaijan, East Azerbaijan provinces, but this group showed a close relationship with other populations. The results showed obviously the ability of the ISSR marker technique to detect the genetic diversity among the honey bee populations.

  8. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  9. RNAi and Antiviral Defense in the Honey Bee.

    PubMed

    Brutscher, Laura M; Flenniken, Michelle L

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  10. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  11. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  12. RNAi and Antiviral Defense in the Honey Bee.

    PubMed

    Brutscher, Laura M; Flenniken, Michelle L

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  13. RNAi and Antiviral Defense in the Honey Bee

    PubMed Central

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  14. One World: Service Bees

    ERIC Educational Resources Information Center

    Thomason, Rhonda

    2009-01-01

    Bees are a vital part of the ecology. People of conscience are a vital part of society. In Nina Frenkel's "One World" poster, the bee is also a metaphor for the role of the individual in a diverse society. This article presents a lesson that uses Frenkel's poster to help early-grades students connect these ideas and explore both the importance of…

  15. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection.

    PubMed

    Goblirsch, Mike; Huang, Zachary Y; Spivak, Marla

    2013-01-01

    Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg), and endocrine factor, juvenile hormone (JH), functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands. PMID:23483987

  16. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection.

    PubMed

    Goblirsch, Mike; Huang, Zachary Y; Spivak, Marla

    2013-01-01

    Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg), and endocrine factor, juvenile hormone (JH), functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands.

  17. Honey bee toxicology.

    PubMed

    Johnson, Reed M

    2015-01-01

    Insecticides are chemicals used to kill insects, so it is unsurprising that many insecticides have the potential to harm honey bees (Apis mellifera). However, bees are exposed to a great variety of other potentially toxic chemicals, including flavonoids and alkaloids that are produced by plants; mycotoxins produced by fungi; antimicrobials and acaricides that are introduced by beekeepers; and fungicides, herbicides, and other environmental contaminants. Although often regarded as uniquely sensitive to toxic compounds, honey bees are adapted to tolerate and even thrive in the presence of toxic compounds that occur naturally in their environment. The harm caused by exposure to a particular concentration of a toxic compound may depend on the level of simultaneous exposure to other compounds, pathogen levels, nutritional status, and a host of other factors. This review takes a holistic view of bee toxicology by taking into account the spectrum of xenobiotics to which bees are exposed. PMID:25341092

  18. Honey bee toxicology.

    PubMed

    Johnson, Reed M

    2015-01-01

    Insecticides are chemicals used to kill insects, so it is unsurprising that many insecticides have the potential to harm honey bees (Apis mellifera). However, bees are exposed to a great variety of other potentially toxic chemicals, including flavonoids and alkaloids that are produced by plants; mycotoxins produced by fungi; antimicrobials and acaricides that are introduced by beekeepers; and fungicides, herbicides, and other environmental contaminants. Although often regarded as uniquely sensitive to toxic compounds, honey bees are adapted to tolerate and even thrive in the presence of toxic compounds that occur naturally in their environment. The harm caused by exposure to a particular concentration of a toxic compound may depend on the level of simultaneous exposure to other compounds, pathogen levels, nutritional status, and a host of other factors. This review takes a holistic view of bee toxicology by taking into account the spectrum of xenobiotics to which bees are exposed.

  19. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.).

    PubMed

    Fleming, James C; Schmehl, Daniel R; Ellis, James D

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts. PMID:26226229

  20. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.).

    PubMed

    Fleming, James C; Schmehl, Daniel R; Ellis, James D

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  1. Career Services for Adults: Worker Access to Educational Opportunities. Final Report, October 1, 1978-September 30, 1979.

    ERIC Educational Resources Information Center

    College Entrance Examination Board, New York, NY. Future Directions for a Learning Society.

    A Project designed, demonstrated, and disseminated a Study Organizer Center (SOC) for United Auto Workers (UAW) employees. This SOC was to provide information and services to help the workers better understand their tuition refund program, formulate personal occupational objectives, and pursue their interest through existing educational…

  2. Chalkbrood transmission in the alfalfa leafcutting bee: the impact of disinfecting bee cocoons in loose cell management systems.

    PubMed

    James, R R

    2011-08-01

    Understanding pathogen transmission could illuminate new methods for disease prevention. A case in point is chalkbrood in the alfalfa leafcutting bee [Megachile rotundata (F.)]. Propagation of this solitary bee is severely hampered by chalkbrood, a larval disease caused by Ascosphaera aggregata (Ascomycota). Alfalfa leafcutting bees nest in existing cavities in wood or hollow reeds and overwinter as larvae. In the early summer, emerging adults frequently must chew through dead, diseased siblings that block their exit, becoming contaminated with chalkbrood spores in the process. When alfalfa leafcutting bees are used as a commercial pollinator, the cocoons are removed from nesting boards to reduce chalkbrood transmission, but the disease is still common. To determine if these removed cocoons (called loose cells) are an important source of disease transmission, they were disinfected with a fungicide before bees were incubated, and released in the field. Chalkbrood prevalence among the progeny of the treated bees was reduced up to 50% in one field trial, but not significantly when tested in an on-farm trial. Thus, substantial disease transmission still occurred when the loose cells were disinfected, and even when clean nesting materials were used. In conclusion, pathogen transmission must still be occurring from another source that has yet to be identified. Another possible source of transmission could arise from bees that emerge midsummer in populations with a high percent of multivoltinism, but dirty nesting boards and feral bees also may be minor sources of transmission. PMID:22251678

  3. A Mathematical Model for the Bee Hive of Apis Mellifera

    NASA Astrophysics Data System (ADS)

    Antonioni, Alberto; Bellom, Fabio Enrici; Montabone, Andrea; Venturino, Ezio

    2010-09-01

    In this work we introduce and discuss a model for the bee hive, in which only adult bees and drones are modeled. The role that the latter have in the system is interesting, their population can retrieve even if they are totally absent from the bee hive. The feasibility and stability of the equilibria is studied numerically. A simplified version of the model shows the importance of the drones' role, in spite of the fact that it allows only a trivial equilibrium. For this simplified system, no Hopf bifurcations are shown to arise.

  4. The prevalence and effects of Adult Attention-Deficit/hyperactivity Disorder (ADHD) on the performance of workers: Results from the WHO World Mental Health Survey Initiative

    PubMed Central

    de Graaf, Ron; Kessler, Ronald C.; Fayyad, John; ten Have, Margreet; Alonso, Jordi; Angermeyer, Matthias; Borges, Guilherme; Demyttenaere, Koen; Gasquet, Isabelle; de Girolamo, Giovanni; Haro, Josep Maria; Jin, Robert; Karam, Elie G; Ormel, Johan; Posada-Villa, José

    2009-01-01

    Objectives To estimate the prevalence and workplace consequences of adult attention-deficit/hyperactivity disorder (ADHD). Methods Ann ADHD screen was administered to 18–44 year-old respondents in ten national surveys in the WHO World Mental Health (WMH) Survey Initiative (n = 7075 in paid or self employment; response rate 45.9–87.7% across countries). Blinded clinical reappraisal interviews were administered in the US to calibrate the screen. Days out of role were measured in the WHO Disability Assessment Schedule (WHO-DAS). Questions were also asked about ADHD treatment. Results An average of 3.5% of workers in the ten countries was estimated to meet DSM-IV criteria for adult ADHD (inter-quartile range: 1.3–4.9%). ADHD was more common among males than females and less common among professionals than other workers. ADHD was associated with a statistically significant 22.1 annual days of excess lost role performance compared to otherwise similar respondents without ADHD. No difference in the magnitude of this effect was found by occupation, education, age, gender, or partner status. This effect was most pronounced in Colombia, Italy, Lebanon, and the US. Although only a small minority of workers with ADHD ever received treatment for this condition, higher proportions were treated for comorbid mental-substance disorders. Conclusions ADHD is a relatively common condition among working people in the countries studied and is associated with high work impairment in these countries. This impairment, in conjunction with the low treatment rate and the availability of cost-effective therapies, suggests that ADHD would be a good candidate for targeted workplace screening and treatment programs. Main messages A high proportion of childhood ADHD persists into adulthood. An average of 3.5% of workers in nationally representative surveys carried out in 10 countries met criteria for current DSM-IV adult ADHD. Workers with ADHD have an average 8.4 excess sickness absence

  5. Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut.

    PubMed

    Stoner, Kimberly A; Eitzer, Brian D

    2013-01-01

    Analysis of pollen trapped from honey bees as they return to their hives provides a method of monitoring fluctuations in one route of pesticide exposure over location and time. We collected pollen from apiaries in five locations in Connecticut, including urban, rural, and mixed agricultural sites, for periods from two to five years. Pollen was analyzed for pesticide residues using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography/mass spectrometric analysis. Sixty pesticides or metabolites were detected. Because the dose lethal to 50% of adult worker honey bees (LD50) is the only toxicity parameter available for a wide range of pesticides, and among our pesticides there were contact LD50 values ranging from 0.006 to >1000 μg per bee (range 166,000X), and even among insecticides LD50 values ranged from 0.006 to 59.8 μg/bee (10,000X); therefore we propose that in studies of honey bee exposure to pesticides that concentrations be reported as Hazard Quotients as well as in standard concentrations such as parts per billion. We used both contact and oral LD50 values to calculate Pollen Hazard Quotients (PHQ = concentration in ppb ÷ LD50 as μg/bee) when both were available. In this study, pesticide Pollen Hazard Quotients ranged from over 75,000 to 0.01. The pesticides with the greatest Pollen Hazard Quotients at the maximum concentrations found in our study were (in descending order): phosmet, Imidacloprid, indoxacarb, chlorpyrifos, fipronil, thiamethoxam, azinphos-methyl, and fenthion, all with at least one Pollen Hazard Quotient (using contact or oral LD50) over 500. At the maximum rate of pollen consumption by nurse bees, a Pollen Hazard Quotient of 500 would be approximately equivalent to consuming 0.5% of the LD50 per day. We also present an example of a Nectar Hazard Quotient and the percentage of LD50 per day at the maximum nectar consumption rate.

  6. Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut.

    PubMed

    Stoner, Kimberly A; Eitzer, Brian D

    2013-01-01

    Analysis of pollen trapped from honey bees as they return to their hives provides a method of monitoring fluctuations in one route of pesticide exposure over location and time. We collected pollen from apiaries in five locations in Connecticut, including urban, rural, and mixed agricultural sites, for periods from two to five years. Pollen was analyzed for pesticide residues using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography/mass spectrometric analysis. Sixty pesticides or metabolites were detected. Because the dose lethal to 50% of adult worker honey bees (LD50) is the only toxicity parameter available for a wide range of pesticides, and among our pesticides there were contact LD50 values ranging from 0.006 to >1000 μg per bee (range 166,000X), and even among insecticides LD50 values ranged from 0.006 to 59.8 μg/bee (10,000X); therefore we propose that in studies of honey bee exposure to pesticides that concentrations be reported as Hazard Quotients as well as in standard concentrations such as parts per billion. We used both contact and oral LD50 values to calculate Pollen Hazard Quotients (PHQ = concentration in ppb ÷ LD50 as μg/bee) when both were available. In this study, pesticide Pollen Hazard Quotients ranged from over 75,000 to 0.01. The pesticides with the greatest Pollen Hazard Quotients at the maximum concentrations found in our study were (in descending order): phosmet, Imidacloprid, indoxacarb, chlorpyrifos, fipronil, thiamethoxam, azinphos-methyl, and fenthion, all with at least one Pollen Hazard Quotient (using contact or oral LD50) over 500. At the maximum rate of pollen consumption by nurse bees, a Pollen Hazard Quotient of 500 would be approximately equivalent to consuming 0.5% of the LD50 per day. We also present an example of a Nectar Hazard Quotient and the percentage of LD50 per day at the maximum nectar consumption rate. PMID:24143241

  7. Using a Hazard Quotient to Evaluate Pesticide Residues Detected in Pollen Trapped from Honey Bees (Apis mellifera) in Connecticut

    PubMed Central

    Stoner, Kimberly A.; Eitzer, Brian D.

    2013-01-01

    Analysis of pollen trapped from honey bees as they return to their hives provides a method of monitoring fluctuations in one route of pesticide exposure over location and time. We collected pollen from apiaries in five locations in Connecticut, including urban, rural, and mixed agricultural sites, for periods from two to five years. Pollen was analyzed for pesticide residues using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography/mass spectrometric analysis. Sixty pesticides or metabolites were detected. Because the dose lethal to 50% of adult worker honey bees (LD50) is the only toxicity parameter available for a wide range of pesticides, and among our pesticides there were contact LD50 values ranging from 0.006 to >1000 μg per bee (range 166,000X), and even among insecticides LD50 values ranged from 0.006 to 59.8 μg/bee (10,000X); therefore we propose that in studies of honey bee exposure to pesticides that concentrations be reported as Hazard Quotients as well as in standard concentrations such as parts per billion. We used both contact and oral LD50 values to calculate Pollen Hazard Quotients (PHQ = concentration in ppb ÷ LD50 as μg/bee) when both were available. In this study, pesticide Pollen Hazard Quotients ranged from over 75,000 to 0.01. The pesticides with the greatest Pollen Hazard Quotients at the maximum concentrations found in our study were (in descending order): phosmet, Imidacloprid, indoxacarb, chlorpyrifos, fipronil, thiamethoxam, azinphos-methyl, and fenthion, all with at least one Pollen Hazard Quotient (using contact or oral LD50) over 500. At the maximum rate of pollen consumption by nurse bees, a Pollen Hazard Quotient of 500 would be approximately equivalent to consuming 0.5% of the LD50 per day. We also present an example of a Nectar Hazard Quotient and the percentage of LD50 per day at the maximum nectar consumption rate. PMID:24143241

  8. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirica...

  9. Weighing risk factors associated with bee colony collapse disorder by classification and regression tree analysis.

    PubMed

    VanEngelsdorp, Dennis; Speybroeck, Niko; Evans, Jay D; Nguyen, Bach Kim; Mullin, Chris; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Tarpy, David R; Haubruge, Eric; Pettis, Jeffrey S; Saegerman, Claude

    2010-10-01

    Colony collapse disorder (CCD), a syndrome whose defining trait is the rapid loss of adult worker honey bees, Apis mellifera L., is thought to be responsible for a minority of the large overwintering losses experienced by U.S. beekeepers since the winter 2006-2007. Using the same data set developed to perform a monofactorial analysis (PloS ONE 4: e6481, 2009), we conducted a classification and regression tree (CART) analysis in an attempt to better understand the relative importance and interrelations among different risk variables in explaining CCD. Fifty-five exploratory variables were used to construct two CART models: one model with and one model without a cost of misclassifying a CCD-diagnosed colony as a non-CCD colony. The resulting model tree that permitted for misclassification had a sensitivity and specificity of 85 and 74%, respectively. Although factors measuring colony stress (e.g., adult bee physiological measures, such as fluctuating asymmetry or mass of head) were important discriminating values, six of the 19 variables having the greatest discriminatory value were pesticide levels in different hive matrices. Notably, coumaphos levels in brood (a miticide commonly used by beekeepers) had the highest discriminatory value and were highest in control (healthy) colonies. Our CART analysis provides evidence that CCD is probably the result of several factors acting in concert, making afflicted colonies more susceptible to disease. This analysis highlights several areas that warrant further attention, including the effect of sublethal pesticide exposure on pathogen prevalence and the role of variability in bee tolerance to pesticides on colony survivorship.

  10. Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees.

    PubMed

    Gregorc, Ales; Silva-Zacarin, Elaine C M; Carvalho, Stephan Malfitano; Kramberger, Doris; Teixeira, Erica W; Malaspina, Osmar

    2016-03-01

    Multiple stressors, such as chemicals and pathogens, are likely to be detrimental for the health and lifespan of Apis mellifera, a bee species frequently exposed to both factors in the field and inside hives. The main objective of the present study was to evaluate comparatively the health of Carniolan and Africanized honey bees (AHB) co-exposed to thiamethoxam and Nosema ceranae (N. ceranae) spores. Newly-emerged worker honey bees were exposed solely with different sublethal doses of thiamethoxam (2% and 0.2% of LD50 for AHB), which could be consumed by bees under field conditions. Toxicity tests for the Carniolan bees were performed, and the LD50 of thiamethoxam for Carniolan honey bees was 7.86 ng bee(-1). Immunohistological analyses were also performed to detect cell death in the midgut of thiamethoxam and/or N. ceranae treated bees. Thiamethoxam exposure had no negative impact on Nosema development in experimental conditions, but it clearly inhibited cell death in the midgut of thiamethoxam and Nosema-exposed bees, as demonstrated by immunohistochemical data. Indeed, thiamethoxam exposure only had a minor synergistic toxic effect on midgut tissue when applied as a low dose simultaneously with N. ceranae to AHB and Carniolan honey bees, in comparison with the effect caused by both stressors separately. Our data provides insights into the effects of the neonicotenoid thiamethoxam on the AHB and Carniolan honey bee life span, as well as the effects of simultaneous application of thiamethoxam and N. ceranae spores to honey bees.

  11. Functional flexibility of the honey bee hypopharyngeal gland in a dequeened colony.

    PubMed

    Ohashi, K; Sasaki, M; Sasagawa, H; Nakamura, J; Natori, S; Kubo, T

    2000-11-01

    The role of the worker honey bee Apis mellifera L. changes depending on age after eclosion (age polyethism): young workers (nurse bees) take care of their brood by synthesizing and secreting brood food (royal jelly), while older workers (foragers) forage for nectar and process it into honey. Previously, we showed that the major proteins synthesized in the hypopharyngeal gland of the worker change from brood food proteins to alpha-glucosidase at the single secretory cell level in parallel with this age polyethism [Kubo et al., J. Biochem. 119, 291-295 (1996); Ohashi et al., Eur. J. Biochem. 249, 797-802 (1997)]. Here, we examined whether the function of the hypopharyngeal gland has flexibility depending on the colony conditions, by creating a dequeened colony in which the older workers were compelled to feed the drone larvae. It was found that most of the older workers in the dequeened colony synthesized brood food proteins as did nurse bees. Furthermore, the percentage of workers that synthesized brood food proteins was maintained at 80-90% of the total workers for at least two months, as in a normal colony. These results indicate that the function of the hypopharyngeal gland cells of the worker has flexibility and can, if necessary, be maintained as that of the nurse bee, depending on the condition of the colony.

  12. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees

    PubMed Central

    Simone-Finstrom, Michael; Li-Byarlay, Hongmei; Huang, Ming H.; Strand, Micheline K.; Rueppell, Olav; Tarpy, David R.

    2016-01-01

    Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Concerns have been raised about whether such “migratory management” causes bees undue stress; however to date there have been no longer-term studies rigorously addressing whether migratory management is detrimental to bee health. To address this issue, we conducted field experiments comparing bees from commercial and experimental migratory beekeeping operations to those from stationary colonies to quantify effects on lifespan, colony health and productivity, and levels of oxidative damage for individual bees. We detected a significant decrease in lifespan of migratory adult bees relative to stationary bees. We also found that migration affected oxidative stress levels in honey bees, but that food scarcity had an even larger impact; some detrimental effects of migration may be alleviated by a greater abundance of forage. In addition, rearing conditions affect levels of oxidative damage incurred as adults. This is the first comprehensive study on impacts of migratory management on the health and oxidative stress of honey bees. PMID:27554200

  13. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees.

    PubMed

    Simone-Finstrom, Michael; Li-Byarlay, Hongmei; Huang, Ming H; Strand, Micheline K; Rueppell, Olav; Tarpy, David R

    2016-01-01

    Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Concerns have been raised about whether such "migratory management" causes bees undue stress; however to date there have been no longer-term studies rigorously addressing whether migratory management is detrimental to bee health. To address this issue, we conducted field experiments comparing bees from commercial and experimental migratory beekeeping operations to those from stationary colonies to quantify effects on lifespan, colony health and productivity, and levels of oxidative damage for individual bees. We detected a significant decrease in lifespan of migratory adult bees relative to stationary bees. We also found that migration affected oxidative stress levels in honey bees, but that food scarcity had an even larger impact; some detrimental effects of migration may be alleviated by a greater abundance of forage. In addition, rearing conditions affect levels of oxidative damage incurred as adults. This is the first comprehensive study on impacts of migratory management on the health and oxidative stress of honey bees. PMID:27554200

  14. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees.

    PubMed

    Simone-Finstrom, Michael; Li-Byarlay, Hongmei; Huang, Ming H; Strand, Micheline K; Rueppell, Olav; Tarpy, David R

    2016-01-01

    Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Concerns have been raised about whether such "migratory management" causes bees undue stress; however to date there have been no longer-term studies rigorously addressing whether migratory management is detrimental to bee health. To address this issue, we conducted field experiments comparing bees from commercial and experimental migratory beekeeping operations to those from stationary colonies to quantify effects on lifespan, colony health and productivity, and levels of oxidative damage for individual bees. We detected a significant decrease in lifespan of migratory adult bees relative to stationary bees. We also found that migration affected oxidative stress levels in honey bees, but that food scarcity had an even larger impact; some detrimental effects of migration may be alleviated by a greater abundance of forage. In addition, rearing conditions affect levels of oxidative damage incurred as adults. This is the first comprehensive study on impacts of migratory management on the health and oxidative stress of honey bees.

  15. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema.

    PubMed

    Pettis, Jeffery S; vanEngelsdorp, Dennis; Johnson, Josephine; Dively, Galen

    2012-02-01

    Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.

  16. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema

    NASA Astrophysics Data System (ADS)

    Pettis, Jeffery S.; Vanengelsdorp, Dennis; Johnson, Josephine; Dively, Galen

    2012-02-01

    Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.

  17. Identification, genomic organization, and oxidative stress response of a sigma class glutathione S-transferase gene (AccGSTS1) in the honey bee, Apis cerana cerana.

    PubMed

    Yan, Huiru; Jia, Haihong; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-07-01

    Glutathione S-transferases (GSTs) are members of a multifunctional antioxidant enzyme superfamily that play pivotal roles in both detoxification and protection against oxidative damage caused by reactive oxygen species. In this study, a complementary DNA (cDNA) encoding a sigma class GST was identified in the Chinese honey bee, Apis cerana cerana (AccGSTS1). AccGSTS1 was constitutively expressed in all tissues of adult worker bees, including the brain, fat body, epidermis, muscle, and midgut, with particularly robust transcription in the fat body. Relative messenger RNA expression levels of AccGSTS1 at different developmental stages varied, with the highest levels of expression observed in adults. The potential function of AccGSTS1 in cellular defenses against abiotic stresses (cold, heat, UV, H2O2, HgCl2, and insecticides) was investigated. AccGSTS1 was significantly upregulated in response to all of the treatment conditions examined, although the induction levels were varied. Recombinant AccGSTS1 protein showed characteristic glutathione-conjugating catalytic activity toward 1-chloro-2,4-dinitrobenzene. Functional assays revealed that AccGSTS1 could remove H2O2, thereby protecting DNA from oxidative damage. Escherichia coli overexpressing AccGSTS1 showed long-term resistance under conditions of oxidative stress. Together, these results suggest that AccGSTS1 is a crucial antioxidant enzyme involved in cellular antioxidant defenses and honey bee survival.

  18. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    PubMed

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. PMID:26919127

  19. The Sound and the Fury—Bees Hiss when Expecting Danger

    PubMed Central

    Galizia, C. Giovanni

    2015-01-01

    Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees’ sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees’ hissing remain to be investigated. PMID:25747702

  20. A Buzzing Bee.

    ERIC Educational Resources Information Center

    Donovan, Edward P.; Barnes, Eb

    1996-01-01

    Presents an activity enabling students of grades four to nine to construct a "Buzzing Bee" model using simple materials. Provides students with the opportunity to explore the concepts of sound and the Doppler effect. (MKR)

  1. Reliability of the Non-Communicating Adult Pain Checklist (NCAPC), Assessed by Different Groups of Health Workers

    ERIC Educational Resources Information Center

    Lotan, M.; Moe-Nilssen, R.; Ljunggren, A. E.; Strand, L. I.

    2009-01-01

    Evaluating pain in adults with intellectual and developmental disability (IDD) is a challenge. The Non-Communicating Adults Pain Checklist (NCAPC) was recently developed from the Non-Communicating Children's Pain Checklist (NCCPC) and examined in a group of adults with IDD (N = 228) and found to hold satisfactory construct validity, internal…

  2. Limited direct effects of a massive wildfire on its sagebrush steppe bee community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire can affect bees directly, through exposure to heating and smoke during the combustion phase. Direct effects include mortality, injury and displacement affecting at most two generations of bees—adults and any progeny produced prior to the fire event. To study the direct effects of fire on a bee ...

  3. How hives collapse: Allee effects, ecological resilience, and the honey bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We construct a mathematical model to quantify the loss of resilience in collapsing honey bee colonies due to the presence of a strong Allee effect. In the model, recruitment and mortality of adult bees have substantial social components, with recruitment enhanced and mortality reduced by additional ...

  4. Parasitic and immune modulation of flight activity in honey bees tracked with optical counters.

    PubMed

    Alaux, Cédric; Crauser, Didier; Pioz, Maryline; Saulnier, Cyril; Le Conte, Yves

    2014-10-01

    Host-parasite interactions are often characterized by changes in the host behaviour, which are beneficial to either the parasite or the host, or are a non-adaptive byproduct of parasitism. These interactions are further complicated in animal society because individual fitness is associated with group performance. However, a better understanding of host-parasite interaction in animal society first requires the identification of individual host behavioural modification. Therefore, we challenged honey bee (Apis mellifera) workers with the parasite Nosema ceranae or an immune stimulation and tracked their flight activity over their lifetime with an optic counter. We found that bees responded differently to each stress: both Nosema-infected and immune-challenged bees performed a lower number of daily flights compared with control bees, but the duration of their flights increased and decreased over time, respectively. Overall, parasitized bees spent more time in the field each day than control bees, and the inverse was true for immune-challenged bees. Despite the stress of immune challenge, bees had a survival similar to that of control bees likely because of their restricted activity. We discuss how those different behavioural modifications could be adaptive phenotypes. This study provides new insights into how biological stress can affect the behaviour of individuals living in society and how host responses have evolved.

  5. Pathogenesis of varroosis at the level of the honey bee (Apis mellifera) colony.

    PubMed

    Wegener, J; Ruhnke, H; Scheller, K; Mispagel, S; Knollmann, U; Kamp, G; Bienefeld, K

    2016-01-01

    The parasitic mite Varroa destructor, in interaction with different viruses, is the main cause of honey bee colony mortality in most parts of the world. Here we studied how effects of individual-level parasitization are reflected by the bee colony as a whole. We measured disease progression in an apiary of 24 hives with differing degree of mite infestation, and investigated its relationship to 28 biometrical, physiological and biochemical indicators. In early summer, when the most heavily infested colonies already showed reduced growth, an elevated ratio of brood to bees, as well as a strong presence of phenoloxidase/prophenoloxidase in hive bees were found to be predictors of the time of colony collapse. One month later, the learning performance of worker bees as well as the activity of glucose oxidase measured from head extracts were significantly linked to the timing of colony collapse. Colonies at the brink of collapse were characterized by reduced weight of winter bees and a strong increase in their relative body water content. Our data confirm the importance of the immune system, known from studies of individually-infested bees, for the pathogenesis of varroosis at colony level. However, they also show that single-bee effects cannot always be extrapolated to the colony as a whole. This fact, together with the prominent role of colony-level factors like the ratio between brood and bees for disease progression, stress the importance of the superorganismal dimension of Varroa research. PMID:27296894

  6. Pathogenesis of varroosis at the level of the honey bee (Apis mellifera) colony.

    PubMed

    Wegener, J; Ruhnke, H; Scheller, K; Mispagel, S; Knollmann, U; Kamp, G; Bienefeld, K

    2016-01-01

    The parasitic mite Varroa destructor, in interaction with different viruses, is the main cause of honey bee colony mortality in most parts of the world. Here we studied how effects of individual-level parasitization are reflected by the bee colony as a whole. We measured disease progression in an apiary of 24 hives with differing degree of mite infestation, and investigated its relationship to 28 biometrical, physiological and biochemical indicators. In early summer, when the most heavily infested colonies already showed reduced growth, an elevated ratio of brood to bees, as well as a strong presence of phenoloxidase/prophenoloxidase in hive bees were found to be predictors of the time of colony collapse. One month later, the learning performance of worker bees as well as the activity of glucose oxidase measured from head extracts were significantly linked to the timing of colony collapse. Colonies at the brink of collapse were characterized by reduced weight of winter bees and a strong increase in their relative body water content. Our data confirm the importance of the immune system, known from studies of individually-infested bees, for the pathogenesis of varroosis at colony level. However, they also show that single-bee effects cannot always be extrapolated to the colony as a whole. This fact, together with the prominent role of colony-level factors like the ratio between brood and bees for disease progression, stress the importance of the superorganismal dimension of Varroa research.

  7. Evaluation of apicultural characteristics of first-year colonies initiated from packaged honey bees (Hymenoptera: Apidae).

    PubMed

    Strange, James P; Calderone, Nicholas W

    2009-04-01

    We evaluated the performance of six named types of package honey bees, Apis mellifera L (Hymenoptera: Apidae), from four commercial producers. We examined the effects of levels of the parasitic mite Varroa destructor Anderson & Trueman, the endoparasitic mite Acarapis woodi (Rennie), the gut parasite Nosema (species not determined) in samples from bees in 48 packages, and levels of adult drones in the same packages on corresponding levels of those same traits in the fall in colonies that developed from those 48 packages. After package installation, we measured the rate of queen failure, the removal of freeze-killed brood (an assay to assess hygienic behavior), varroa-sensitive hygiene, and short-term weight gain in all colonies. We examined the correlations among these traits and the effect of initial package conditions and package-type on the expression of these traits. In general, differences among sources were not significant, except that we did observe significant differences in the proportion of mite infected worker brood in the fall. There was no significant difference in weight gain in colonies established from nosema-infected packages versus those established from noninfected packages. Freeze-killed hygienic behavior and varroa-sensitive hygienic behavior were positively correlated, suggesting that both traits could be selected simultaneously. Neither trait was correlated with colony weight gain, suggesting that both traits could be selected without compromising honey production. PMID:19449626

  8. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.)

    PubMed Central

    Fleming, James C.; Schmehl, Daniel R.; Ellis, James D.

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony’s nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees’ consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees’ midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts. PMID:26226229

  9. Magnetic effect on dancing bees

    NASA Technical Reports Server (NTRS)

    Lindauer, M.; Martin, H.

    1972-01-01

    Bee sensitivity to the earth's magnetic field is studied. Data cover sensitivity range and the use of magnetoreception for orientation purposes. Experimental results indicate bee orientation is aided by gravity fields when the magnetic field is compensated.

  10. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera.

    PubMed

    Harpur, Brock A; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro

    2014-01-01

    Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.

  11. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera.

    PubMed

    Aronstein, Katherine A; Saldivar, Eduardo; Vega, Rodrigo; Westmiller, Stephanie; Douglas, Angela E

    2012-06-27

    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa.

  12. Antioxidant enzymes status and reproductive health of adult male workers exposed to brick kiln pollutants in Pakistan.

    PubMed

    Jahan, Sarwat; Falah, Samreen; Ullah, Hizb; Ullah, Asad; Rauf, Naveed

    2016-07-01

    The present study was designed to study the effect of brick kilns emissions on the reproductive health and biochemical status of brick kiln workers and people living in the area near brick kilns. Body mass index (BMI) was significantly reduced in brick makers, carriers, and bakers compared to the control. Red blood cells count and hematocrit (%) were significantly high in brick bakers while MCH was significantly reduced in brick makers and brick bakers. Heavy metals (lead, cadmium, and chromium) concentration in whole blood of the brick kiln workers were significantly higher as compared to the control. Antioxidant enzymes (CAT, SOD, POD, GSH, and GR) were significantly reduced in brick kiln workers as compared to the control while TBARS level were significantly high in brick bakers as compared to the control. Plasma leutinizing hormone (LH) was significantly high in brick bakers while testosterone concentrations were significantly reduced in brick makers, carriers, and bakers. The present study shows that brick kiln workers and people living in the brick kiln vicinity are exposed to heavy metals and other pollutants that is a serious threat to their health. Alternate technology is needed to be developed and brick kilns should be replaced.

  13. Antioxidant enzymes status and reproductive health of adult male workers exposed to brick kiln pollutants in Pakistan.

    PubMed

    Jahan, Sarwat; Falah, Samreen; Ullah, Hizb; Ullah, Asad; Rauf, Naveed

    2016-07-01

    The present study was designed to study the effect of brick kilns emissions on the reproductive health and biochemical status of brick kiln workers and people living in the area near brick kilns. Body mass index (BMI) was significantly reduced in brick makers, carriers, and bakers compared to the control. Red blood cells count and hematocrit (%) were significantly high in brick bakers while MCH was significantly reduced in brick makers and brick bakers. Heavy metals (lead, cadmium, and chromium) concentration in whole blood of the brick kiln workers were significantly higher as compared to the control. Antioxidant enzymes (CAT, SOD, POD, GSH, and GR) were significantly reduced in brick kiln workers as compared to the control while TBARS level were significantly high in brick bakers as compared to the control. Plasma leutinizing hormone (LH) was significantly high in brick bakers while testosterone concentrations were significantly reduced in brick makers, carriers, and bakers. The present study shows that brick kiln workers and people living in the brick kiln vicinity are exposed to heavy metals and other pollutants that is a serious threat to their health. Alternate technology is needed to be developed and brick kilns should be replaced. PMID:26996903

  14. Bee Line BR-1 Racer

    NASA Technical Reports Server (NTRS)

    1926-01-01

    Bee Line BR-1 Racer: The Bee Line BR-1 was a racing aircraft used to compete in the 1922 Pulitzer Air Race. The aircraft and its sister ship, the Bee Line BR-2, came to Langley and the NACA in 1926. The BR-1 is shown in the NACA hangar at Langley Field in early 1926.

  15. Exposure scheme separates effects of electric shock and electric field for honey bees, Apis mellifera L

    SciTech Connect

    Bindokas, V.P.; Gauger, J.R.; Greenberg, B.

    1988-01-01

    Mechanisms to explain disturbance of honey bee colonies under a 765-kV, 60-Hz transmission line (electric (E) field = 7 kV/m) fall into two categories: direct bee perception of enhanced in-hive E fields, and perception of shock from induced currents. The same adverse biological effects previously observed in honey bee colonies exposed under a 765-kV transmission line can be reproduced by exposing worker bees to shock or E field within elongated hive entranceways (= tunnels). Exposure to intense E field caused disturbance only if bees were in contact with a conductive substrate. E-field and shock exposure can be separated and precisely defined within tunnels, eliminating dosimetric vagaries that occur when entire hives are exposed to E field.

  16. The oldest fossil bee: Apoid history, evolutionary stasis, and antiquity of social behavior

    PubMed Central

    Michener, Charles D.; Grimaldi, David A.

    1988-01-01

    Trigona prisca, a stingless honey bee (Apidae; Meliponinae), is reported from Cretaceous New Jersey amber (96-74 million years before present). This is about twice the age of the oldest previously known fossil bee, although Trigona is one of the most derived bee genera. T. prisca is closely similar to modern neotropical species. Most of bee evolution probably occurred during the ≈50 million years between the beginning of the Cretaceous when flowering plants (on which bees depend) appeared and the time of T. prisca. Since then, in this phyletic line of Meliponinae, there has been almost no morphological evolution. Since the fossil is a worker, social organization had arisen by its time. Images PMID:16593976

  17. New insights into the roles of juvenile hormone and ecdysteroids in honey bee reproduction.

    PubMed

    Wegener, Jakob; Huang, Zachary Y; Lorenz, Matthias W; Lorenz, Judith I; Bienefeld, Kaspar

    2013-07-01

    In workers of the Western honeybee, Apis mellifera, juvenile hormone (JH) and ecdysteroids regulate many aspects of age polyphenism. Here we investigated whether these derived functions in workers have developed by an uncoupling of endocrine mechanisms in adult queens and workers, or whether parallels can be found between the roles of the two hormones in both castes. We looked at yolk protein metabolism as a process central to the physiology of both queens and workers, and at sperm storage as a feature of the queen alone. Queens of differing fertility status (virgin, virgin but CO2-treated, inseminated, freshly laying and 1-2 years-old) were compared regarding vitellogenin (Vg), JH and ecdysteroid-titers in their hemolymph, as well as ovarian yolk protein and spermathecal gland composition. Our results showed that hormone titres were unrelated to the composition of spermathecal glands. JH-concentrations in the hemolymph were low in the groups of queens characterized by yolk uptake into the ovaries, and high in pre-vitellogenic queens or animals that were forced to interrupt egg-laying by caging. Ecdysteroid-concentrations were higher in untreated virgins than after insemination or during egg-laying. They were not affected by the caging of queens. These patterns of hormone changes were parallel to those known from worker bees. Together, these findings suggest a conserved role for JH as repressor of vitellogenin uptake into tissues, and for ecdysteroids in preparing tissues for this process. An involvement of the two hormones in the regulation of sperm storage seems unlikely. Our results add to the view that JH and ecdysteroids act similarly on the yolk protein metabolism of both castes of A. mellifera. This may imply that it was the biochemical versatility of Vg rather than that of hormonal regulatory circuits that allowed for the functional separation of the two castes.

  18. Rapid behavioral maturation accelerates failure of stressed honey bee colonies

    PubMed Central

    Perry, Clint J.; Myerscough, Mary R.; Barron, Andrew B.

    2015-01-01

    Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience. PMID:25675508

  19. Rapid behavioral maturation accelerates failure of stressed honey bee colonies.

    PubMed

    Perry, Clint J; Søvik, Eirik; Myerscough, Mary R; Barron, Andrew B

    2015-03-17

    Many complex