Science.gov

Sample records for adult zebrafish hearts

  1. Preconditioning boosts regenerative programmes in the adult zebrafish heart

    PubMed Central

    de Preux Charles, Anne-Sophie; Bise, Thomas; Baier, Felix; Sallin, Pauline; Jaźwińska, Anna

    2016-01-01

    During preconditioning, exposure to a non-lethal harmful stimulus triggers a body-wide increase of survival and pro-regenerative programmes that enable the organism to better withstand the deleterious effects of subsequent injuries. This phenomenon has first been described in the mammalian heart, where it leads to a reduction of infarct size and limits the dysfunction of the injured organ. Despite its important clinical outcome, the actual mechanisms underlying preconditioning-induced cardioprotection remain unclear. Here, we describe two independent models of cardiac preconditioning in the adult zebrafish. As noxious stimuli, we used either a thoracotomy procedure or an induction of sterile inflammation by intraperitoneal injection of immunogenic particles. Similar to mammalian preconditioning, the zebrafish heart displayed increased expression of cardioprotective genes in response to these stimuli. As zebrafish cardiomyocytes have an endogenous proliferative capacity, preconditioning further elevated the re-entry into the cell cycle in the intact heart. This enhanced cycling activity led to a long-term modification of the myocardium architecture. Importantly, the protected phenotype brought beneficial effects for heart regeneration within one week after cryoinjury, such as a more effective cell-cycle reentry, enhanced reactivation of embryonic gene expression at the injury border, and improved cell survival shortly after injury. This study reveals that exposure to antecedent stimuli induces adaptive responses that render the fish more efficient in the activation of the regenerative programmes following heart damage. Our results open a new field of research by providing the adult zebrafish as a model system to study remote cardiac preconditioning. PMID:27440423

  2. Advanced Echocardiography in Adult Zebrafish Reveals Delayed Recovery of Heart Function after Myocardial Cryoinjury

    PubMed Central

    Kossack, Mandy; Juergensen, Lonny; Fuchs, Dieter; Katus, Hugo A.; Hassel, David

    2015-01-01

    Translucent zebrafish larvae represent an established model to analyze genetics of cardiac development and human cardiac disease. More recently adult zebrafish are utilized to evaluate mechanisms of cardiac regeneration and by benefiting from recent genome editing technologies, including TALEN and CRISPR, adult zebrafish are emerging as a valuable in vivo model to evaluate novel disease genes and specifically validate disease causing mutations and their underlying pathomechanisms. However, methods to sensitively and non-invasively assess cardiac morphology and performance in adult zebrafish are still limited. We here present a standardized examination protocol to broadly assess cardiac performance in adult zebrafish by advancing conventional echocardiography with modern speckle-tracking analyses. This allows accurate detection of changes in cardiac performance and further enables highly sensitive assessment of regional myocardial motion and deformation in high spatio-temporal resolution. Combining conventional echocardiography measurements with radial and longitudinal velocity, displacement, strain, strain rate and myocardial wall delay rates after myocardial cryoinjury permitted to non-invasively determine injury dimensions and to longitudinally follow functional recovery during cardiac regeneration. We show that functional recovery of cryoinjured hearts occurs in three distinct phases. Importantly, the regeneration process after cryoinjury extends far beyond the proposed 45 days described for ventricular resection with reconstitution of myocardial performance up to 180 days post-injury (dpi). The imaging modalities evaluated here allow sensitive cardiac phenotyping and contribute to further establish adult zebrafish as valuable cardiac disease model beyond the larval developmental stage. PMID:25853735

  3. Distinct effects of inflammation on preconditioning and regeneration of the adult zebrafish heart

    PubMed Central

    de Preux Charles, Anne-Sophie; Bise, Thomas; Baier, Felix; Marro, Jan; Jaźwińska, Anna

    2016-01-01

    The adult heart is able to activate cardioprotective programmes and modifies its architecture in response to physiological or pathological changes. While mammalian cardiac remodelling often involves hypertrophic expansion, the adult zebrafish heart exploits hyperplastic growth. This capacity depends on the responsiveness of zebrafish cardiomyocytes to mitogenic signals throughout their entire life. Here, we have examined the role of inflammation on the stimulation of cell cycle activity in the context of heart preconditioning and regeneration. We used thoracotomy as a cardiac preconditioning model and cryoinjury as a model of cardiac infarction in the adult zebrafish. First, we performed a spatio-temporal characterization of leucocytes and cycling cardiac cells after thoracotomy. This analysis revealed a concomitance between the infiltration of inflammatory cells and the stimulation of the mitotic activity. However, decreasing the immune response using clodronate liposome injection, PLX3397 treatment or anti-inflammatory drugs surprisingly had no effect on the re-entry of cardiac cells into the cell cycle. In contrast, reducing inflammation using the same strategies after cryoinjury strongly impaired cardiac cell mitotic activity and the regenerative process. Taken together, our results show that, while the immune response is not necessary to induce cell-cycle activity in intact preconditioned hearts, inflammation is required for the regeneration of injured hearts in zebrafish. PMID:27440424

  4. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice.

    PubMed

    Rubin, Nicole; Harrison, Michael R; Krainock, Michael; Kim, Richard; Lien, Ching-Ling

    2016-10-01

    Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models.

  5. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. PMID:27085002

  6. Regeneration of Zebrafish CNS: Adult Neurogenesis

    PubMed Central

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  7. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  8. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming.

  9. Dynamic focusing in the zebrafish beating heart

    NASA Astrophysics Data System (ADS)

    Andrés-Delgado, L.; Peralta, M.; Mercader, N.; Ripoll, J.

    2016-03-01

    Of the large amount of the animal models available for cardiac research, the zebrafish is extremely valuable due to its transparency during early stages of development. In this work a dual illumination laser sheet microscope with simultaneous dual camera imaging is used to image the beating heart at 200 fps, dynamically and selectively focusing inside the beating heart through the use of a tunable lens. This dual color dynamic focusing enables imaging with cellular resolution at unprecedented high frame rates, allowing 3D imaging of the whole beating heart of embryonic zebrafish.

  10. The zebrafish as a model of heart regeneration.

    PubMed

    Raya, Angel; Consiglio, Antonella; Kawakami, Yasuhiko; Rodriguez-Esteban, Concepcion; Izpisúa-Belmonte, Juan Carlos

    2004-01-01

    Regeneration is a complex biological process by which animals can restore the shape, structure and function of body parts lost after injury, or after experimental amputation. Only a few species of vertebrates display the capacity to regenerate body parts during adulthood. In the case of the heart, newts display a remarkable ability to regenerate large portions of myocardium after amputation, although the mechanisms underlying this process have not been addressed. Recently, it has been shown that adult zebrafish can also regenerate their hearts, thus offering new possibilities for experimentally approaching this fascinating biological phenomenon. The first insights into heart regeneration gained by studying this model organism are reviewed here. PMID:15671662

  11. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo

    PubMed Central

    Brönnimann, Daniel; Dellenbach, Christian; Saveljic, Igor; Rieger, Michael; Rohr, Stephan; Filipovic, Nenad; Djonov, Valentin

    2016-01-01

    Introduction Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo. Materials and Methods Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations. Results Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001). Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01) and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03). Discussion In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic

  12. Adult Congenital Heart Association

    MedlinePlus

    ... survivable, manageable, yet in the routine years between infancy and adulthood, sometimes forgettable. The Adult Congenital Heart ... understand the continuum of the disease from its infancy. The Adult Congential Heart Association brings together valuable ...

  13. Transcriptional Regulation of Heart Development in Zebrafish

    PubMed Central

    Lu, Fei; Langenbacher, Adam D.; Chen, Jau-Nian

    2016-01-01

    Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis. PMID:27148546

  14. Visualizing voltage dynamics in zebrafish heart.

    PubMed

    Tsutsui, Hidekazu; Higashijima, Shin-ichi; Miyawaki, Atsushi; Okamura, Yasushi

    2010-06-15

    The zebrafish heart provides a useful vertebrate cardiovascular model with outstanding advantages, including genetic manipulatability, optical accessibility and rapid development. In addition, an emerging topic in cardiotoxicity assay and drug discovery is its use in phenotype-based chemical screening. Here, we report a technique that allows non-invasive voltage mapping in beating heart using a genetically encoded probe for transmembrane potential. Application of the anti-allergy compound astemizole resulted in aberrant propagation of excitation, which accounted for a lack of ventricular contraction. This optical method will provide new opportunities in broad areas of physiological, developmental and pharmacological cardiovascular research. PMID:20421282

  15. Neocuproine ablates melanocytes in adult zebrafish.

    PubMed

    O'Reilly-Pol, Thomas; Johnson, Stephen L

    2008-12-01

    The simplest regeneration experiments involve the ablation of a single cell type. While methods exist to ablate the melanocytes of the larval zebrafish,(1,2) no convenient method exists to ablate melanocytes in adult zebrafish. Here, we show that the copper chelator neocuproine (NCP) causes fragmentation and disappearance of melanin in adult zebrafish melanocytes. Adult melanocytes expressing eGFP under the control of a melanocyte-specific promoter also lose eGFP fluorescence in the presence of NCP. We conclude that NCP causes melanocyte death. This death is independent of p53 and melanin, but can be suppressed by the addition of exogenous copper. NCP is ineffective at ablating larval melanocytes. This now provides a tool for addressing questions about stem cells and the maintenance of the adult pigment pattern in zebrafish.

  16. Macrophages modulate adult zebrafish tail fin regeneration.

    PubMed

    Petrie, Timothy A; Strand, Nicholas S; Yang, Chao-Tsung; Tsung-Yang, Chao; Rabinowitz, Jeremy S; Moon, Randall T

    2014-07-01

    Neutrophils and macrophages, as key mediators of inflammation, have defined functionally important roles in mammalian tissue repair. Although recent evidence suggests that similar cells exist in zebrafish and also migrate to sites of injury in larvae, whether these cells are functionally important for wound healing or regeneration in adult zebrafish is unknown. To begin to address these questions, we first tracked neutrophils (lyzC(+), mpo(+)) and macrophages (mpeg1(+)) in adult zebrafish following amputation of the tail fin, and detailed a migratory timecourse that revealed conserved elements of the inflammatory cell response with mammals. Next, we used transgenic zebrafish in which we could selectively ablate macrophages, which allowed us to investigate whether macrophages were required for tail fin regeneration. We identified stage-dependent functional roles of macrophages in mediating fin tissue outgrowth and bony ray patterning, in part through modulating levels of blastema proliferation. Moreover, we also sought to detail molecular regulators of inflammation in adult zebrafish and identified Wnt/β-catenin as a signaling pathway that regulates the injury microenvironment, inflammatory cell migration and macrophage phenotype. These results provide a cellular and molecular link between components of the inflammation response and regeneration in adult zebrafish. PMID:24961798

  17. Adult zebrafish model for pneumococcal pathogenesis.

    PubMed

    Saralahti, Anni; Piippo, Hannaleena; Parikka, Mataleena; Henriques-Normark, Birgitta; Rämet, Mika; Rounioja, Samuli

    2014-02-01

    Streptococcus pneumoniae (pneumococcus) is a leading cause of community acquired pneumonia, septicemia, and meningitis. Due to incomplete understanding of the host and bacterial factors contributing to these diseases optimal treatment and prevention methods are lacking. In the present study we examined whether the adult zebrafish (Danio rerio) can be used to investigate the pathophysiology of pneumococcal diseases. Here we show that both intraperitoneal and intramuscular injections of the pneumococcal strain TIGR4 cause a fulminant, dose-dependent infection in adult zebrafish, while isogenic mutant bacteria lacking the polysaccharide capsule, autolysin, or pneumolysin are attenuated in the model. Infection through the intraperitoneal route is characterized by rapid expansion of pneumococci in the bloodstream, followed by penetration of the blood-brain barrier and progression to meningitis. Using Rag1 mutant zebrafish, which are devoid of somatic recombination and thus lack adaptive immune responses, we show that clearance of pneumococci in adult zebrafish depends mainly on innate immune responses. In conclusion, this study provides evidence that the adult zebrafish can be used as a model for a pneumococcal infection, and that it can be used to study both host and bacterial factors involved in the pathogenesis. However, our results do not support the use of the zebrafish in studies on the role of adaptive immunity in pneumococcal disease or in the development of new pneumococcal vaccines.

  18. High-resolution tissue Doppler imaging of the zebrafish heart during its regeneration.

    PubMed

    Huang, Chih-Chung; Su, Ta-Han; Shih, Cho-Chiang

    2015-02-01

    The human heart cannot regenerate after injury, whereas the adult zebrafish can fully regenerate its heart even after 20% of the ventricle is amputated. Many studies have begun to reveal the cellular and molecular mechanisms underlying this regenerative process, which have exciting implications for human cardiac diseases. However, the dynamic functions of the zebrafish heart during regeneration are not yet understood. This study established a high-resolution echocardiography for tissue Doppler imaging (TDI) of the zebrafish heart to explore the cardiac functions during different regeneration phases. Experiments were performed on AB-line adult zebrafish (n=40) in which 15% of the ventricle was surgically removed. An 80-MHz ultrasound TDI based on color M-mode imaging technology was employed. The cardiac flow velocities and patterns from both the ventricular chamber and myocardium were measured at different regeneration phases relative to the day of amputation. The peak velocities of early diastolic inflow, early diastolic myocardial motion, late diastolic myocardial motion, early diastolic deceleration slope, and heart rate were increased at 3 days after the myocardium amputation, but these parameters gradually returned to close to their baseline values for the normal heart at 7 days after amputation. The peak velocities of late diastolic inflow, ventricular systolic outflow, and systolic myocardial motion did not significantly differ during the heart regeneration.

  19. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration.

    PubMed

    Cao, Jingli; Navis, Adam; Cox, Ben D; Dickson, Amy L; Gemberling, Matthew; Karra, Ravi; Bagnat, Michel; Poss, Kenneth D

    2016-01-15

    In contrast to mammals, adult zebrafish have a high capacity to regenerate damaged or lost myocardium through proliferation of cardiomyocytes spared from damage. The epicardial sheet covering the heart is activated by injury and aids muscle regeneration through paracrine effects and as a multipotent cell source, and has received recent attention as a target in cardiac repair strategies. Although it is recognized that epicardium is required for muscle regeneration and itself has high regenerative potential, the extent of cellular heterogeneity within epicardial tissue is largely unexplored. Here, we performed transcriptome analysis on dozens of epicardial lineage cells purified from zebrafish harboring a transgenic reporter for the pan-epicardial gene tcf21. Hierarchical clustering analysis suggested the presence of at least three epicardial cell subsets defined by expression signatures. We validated many new pan-epicardial and epicardial markers by alternative expression assays. Additionally, we explored the function of the scaffolding protein and main component of caveolae, caveolin 1 (cav1), which was present in each epicardial subset. In BAC transgenic zebrafish, cav1 regulatory sequences drove strong expression in ostensibly all epicardial cells and in coronary vascular endothelial cells. Moreover, cav1 mutant zebrafish generated by genome editing showed grossly normal heart development and adult cardiac anatomy, but displayed profound defects in injury-induced cardiomyocyte proliferation and heart regeneration. Our study defines a new platform for the discovery of epicardial lineage markers, genetic tools, and mechanisms of heart regeneration.

  20. Adults with Congenital Heart Defects

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Web Booklet: Adults With Congenital Heart Defects Updated:Apr ... topic from the list below to learn more. Web Booklet: Adults With Congenital Heart Defects Introduction Introduction: ...

  1. Advances in the Study of Heart Development and Disease Using Zebrafish

    PubMed Central

    Brown, Daniel R.; Samsa, Leigh Ann; Qian, Li; Liu, Jiandong

    2016-01-01

    Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications. PMID:27335817

  2. Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation.

    PubMed

    Liu, Chi Chi; Li, Li; Lam, Yun Wah; Siu, Chung Wah; Cheng, Shuk Han

    2016-01-01

    The adult zebrafish has been used to model the electrocardiogram (ECG) for human cardiovascular studies. Nonetheless huge variations are observed among studies probably because of the lack of a reliable and reproducible recording method. In our study, an adult zebrafish surface ECG recording technique was improved using a multi-electrode method and by pre-opening the pericardial sac. A convenient ECG data analysis method without wavelet transform was also established. Intraperitoneal injection of KCl in zebrafish induced an arrhythmia similar to that of humans, and the arrhythmia was partially rescued by calcium gluconate. Amputation and cryoinjury of the zebrafish heart induced ST segment depression and affected QRS duration after injury. Only cryoinjury decelerated the heart rate. Different changes were also observed in the QT interval during heart regeneration in these two injury models. We also characterized the electrocardiophysiology of breakdance zebrafish mutant with a prolonged QT interval, that has not been well described in previous studies. Our study provided a reliable and reproducible means to record zebrafish ECG and analyse data. The detailed characterization of the cardiac electrophysiology of zebrafish and its mutant revealed that the potential of the zebrafish in modeling the human cardiovascular system exceeds expectations. PMID:27125643

  3. Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation

    PubMed Central

    Liu, Chi Chi; Li, Li; Lam, Yun Wah; Siu, Chung Wah; Cheng, Shuk Han

    2016-01-01

    The adult zebrafish has been used to model the electrocardiogram (ECG) for human cardiovascular studies. Nonetheless huge variations are observed among studies probably because of the lack of a reliable and reproducible recording method. In our study, an adult zebrafish surface ECG recording technique was improved using a multi-electrode method and by pre-opening the pericardial sac. A convenient ECG data analysis method without wavelet transform was also established. Intraperitoneal injection of KCl in zebrafish induced an arrhythmia similar to that of humans, and the arrhythmia was partially rescued by calcium gluconate. Amputation and cryoinjury of the zebrafish heart induced ST segment depression and affected QRS duration after injury. Only cryoinjury decelerated the heart rate. Different changes were also observed in the QT interval during heart regeneration in these two injury models. We also characterized the electrocardiophysiology of breakdance zebrafish mutant with a prolonged QT interval, that has not been well described in previous studies. Our study provided a reliable and reproducible means to record zebrafish ECG and analyse data. The detailed characterization of the cardiac electrophysiology of zebrafish and its mutant revealed that the potential of the zebrafish in modeling the human cardiovascular system exceeds expectations. PMID:27125643

  4. Zebrafish models in cardiac development and congenital heart birth defects

    PubMed Central

    Tu, Shu; Chi, Neil C.

    2014-01-01

    The zebrafish has become an ideal vertebrate animal system for investigating cardiac development due to its genetic tractability, external fertilization, early optical clarity and ability to survive without a functional cardiovascular system during development. In particular, recent advances in imaging techniques and the creation of zebrafish transgenics now permit the in vivo analysis of the dynamic cellular events that transpire during cardiac morphogenesis. As a result, the combination of these salient features provides detailed insight as to how specific genes may influence cardiac development at the cellular level. In this review, we will highlight how the zebrafish has been utilized to elucidate not only the underlying mechanisms of cardiac development and human congenital heart diseases (CHDs), but also potential pathways that may modulate cardiac regeneration. Thus, we have organized this review based on the major categories of CHDs – structural heart, functional heart, and vascular/great vessel defects, and will conclude with how the zebrafish may be further used to contribute to our understanding of specific human CHDs in the future. PMID:22704690

  5. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6

  6. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    PubMed

    Khodiyar, Varsha K; Howe, Doug; Talmud, Philippa J; Breckenridge, Ross; Lovering, Ruth C

    2013-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'.  'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.

  7. Kcnq1-5 (Kv7.1-5) potassium channel expression in the adult zebrafish

    PubMed Central

    2014-01-01

    Background KCNQx genes encode slowly activating-inactivating K+ channels, are linked to physiological signal transduction pathways, and mutations in them underlie diseases such as long QT syndrome (KCNQ1), epilepsy in adults (KCNQ2/3), benign familial neonatal convulsions in children (KCNQ3), and hearing loss or tinnitus in humans (KCNQ4, but not KCNQ5). Identification of kcnqx potassium channel transcripts in zebrafish (Danio rerio) remains to be fully characterized although some genes have been mapped to the genome. Using zebrafish genome resources as the source of putative kcnq sequences, we investigated the expression of kcnq1-5 in heart, brain and ear tissues. Results Overall expression of the kcnqx channel transcripts is similar to that found in mammals. We found that kcnq1 expression was highest in the heart, and also present in the ear and brain. kcnq2 was lowest in the heart, while kcnq3 was highly expressed in the brain, heart and ear. kcnq5 expression was highest in the ear. We analyzed zebrafish genomic clones containing putative kcnq4 sequences to identify transcripts and protein for this highly conserved member of the Kcnq channel family. The zebrafish appears to have two kcnq4 genes that produce distinct mRNA species in brain, ear, and heart tissues. Conclusions We conclude that the zebrafish is an attractive model for the study of the KCNQ (Kv7) superfamily of genes, and are important to processes involved in neuronal excitability, cardiac anomalies, epileptic seizures, and hearing loss or tinnitus. PMID:24555524

  8. Acute stress is detrimental to heart regeneration in zebrafish

    PubMed Central

    Sallin, Pauline; Jaźwińska, Anna

    2016-01-01

    Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, including igfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response. PMID:27030176

  9. A Methodology for Quantifying Heart Function in the Embryonic Zebrafish

    NASA Astrophysics Data System (ADS)

    Johnson, Brennan; Garrity, Deborah; Dasi, Lakshmi

    2012-11-01

    Several studies have linked epigenetic factors such as blood flow dynamics and cardiac function to proper heart development. To better understand this process, it is essential to develop robust quantitative methods to investigate the blood dynamics and wall kinematics in vivo. Here, we develop a methodology that can be used throughout the early stages of development which requires no specialized equipment other than a bright field microscope and high-speed camera. We use the embryonic zebrafish as our model due to its superb optical access and widespread acceptance as a powerful model for human heart development. Using these methods, we quantify blood flow rates, stroke volume, cardiac output, ejection fraction, and other important parameters related to heart function. We also investigate the pumping mechanics from heart tube to looped configuration. We show that although the mechanism changes fundamentally, it does so in a continuous fashion that can incorporate combined pumping mechanisms at intermediate stages. This work provides a basis for quantitatively comparing normal and abnormal heart development, and may help us gain a better understanding of congenital heart defects. Funded by NSF.

  10. Dynamic microRNA-101a and Fosab expression controls zebrafish heart regeneration.

    PubMed

    Beauchemin, Megan; Smith, Ashley; Yin, Viravuth P

    2015-12-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the Western world owing to the limited regenerative capacity of the mammalian cardiovascular system. In lieu of new muscle synthesis, the human heart replaces necrotic tissue with deposition of a noncontractile scar. By contrast, the adult zebrafish is endowed with a remarkable regenerative capacity, capable of de novo cardiomyocyte (CM) creation and scar tissue removal when challenged with an acute injury. In these studies, we examined the contributions of the dynamically regulated microRNA miR-101a during adult zebrafish heart regeneration. We demonstrate that miR-101a expression is rapidly depleted within 3 days post-amputation (dpa) but is highly upregulated by 7-14 dpa, before returning to uninjured levels at the completion of the regenerative process. Employing heat-inducible transgenic strains and antisense oligonucleotides, we demonstrate that decreases in miR-101a levels at the onset of cardiac injury enhanced CM proliferation. Interestingly, prolonged suppression of miR-101a activity stimulates new muscle synthesis but with defects in scar tissue clearance. Upregulation of miR-101a expression between 7 and 14 dpa is essential to stimulate removal of the scar. Through a series of studies, we identified the proto-oncogene fosab (cfos) as a potent miR-101a target gene, stimulator of CM proliferation, and inhibitor of scar tissue removal. Importantly, combinatorial depletion of fosab and miR-101a activity rescued defects in scar tissue clearance mediated by miR-101a inhibition alone. In summation, our studies indicate that the precise temporal modulation of the miR-101a/fosab genetic axis is crucial for coordinating CM proliferation and scar tissue removal during zebrafish heart regeneration.

  11. Dynamic microRNA-101a and Fosab expression controls zebrafish heart regeneration.

    PubMed

    Beauchemin, Megan; Smith, Ashley; Yin, Viravuth P

    2015-12-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the Western world owing to the limited regenerative capacity of the mammalian cardiovascular system. In lieu of new muscle synthesis, the human heart replaces necrotic tissue with deposition of a noncontractile scar. By contrast, the adult zebrafish is endowed with a remarkable regenerative capacity, capable of de novo cardiomyocyte (CM) creation and scar tissue removal when challenged with an acute injury. In these studies, we examined the contributions of the dynamically regulated microRNA miR-101a during adult zebrafish heart regeneration. We demonstrate that miR-101a expression is rapidly depleted within 3 days post-amputation (dpa) but is highly upregulated by 7-14 dpa, before returning to uninjured levels at the completion of the regenerative process. Employing heat-inducible transgenic strains and antisense oligonucleotides, we demonstrate that decreases in miR-101a levels at the onset of cardiac injury enhanced CM proliferation. Interestingly, prolonged suppression of miR-101a activity stimulates new muscle synthesis but with defects in scar tissue clearance. Upregulation of miR-101a expression between 7 and 14 dpa is essential to stimulate removal of the scar. Through a series of studies, we identified the proto-oncogene fosab (cfos) as a potent miR-101a target gene, stimulator of CM proliferation, and inhibitor of scar tissue removal. Importantly, combinatorial depletion of fosab and miR-101a activity rescued defects in scar tissue clearance mediated by miR-101a inhibition alone. In summation, our studies indicate that the precise temporal modulation of the miR-101a/fosab genetic axis is crucial for coordinating CM proliferation and scar tissue removal during zebrafish heart regeneration. PMID:26628091

  12. Contrast-Enhanced X-Ray Micro-Computed Tomography as a Versatile Method for Anatomical Studies of Adult Zebrafish.

    PubMed

    Babaei, Fatemeh; Hong, Tony Liu Chi; Yeung, Kelvin; Cheng, Shuk Han; Lam, Yun Wah

    2016-08-01

    One attractive quality of zebrafish as a model organism for biological research is that transparency at early developmental stages allows the optical imaging of cellular and molecular events. However, this advantage cannot be applied to adult zebrafish. In this study, we explored the use of contrast-enhanced X-ray micro-computed tomography (microCT) on adult zebrafish in which the organism was stained with iodine, a simple and economical contrasting agent, after fixation. Tomographic reconstruction of the microCT data allowed the three-dimensional (3D) volumetric analyses of individual organs in adult zebrafish. Adipose tissues showed a higher affinity to iodine and were more strongly contrasted in microCT. As traditional histological techniques often involve dehydration steps that remove tissue lipids, iodine-contrasted microCT offers a convenient method for visualizing fat deposition in fish. Utilizing this advantage, we discovered a transient accumulation of lipids around the heart after ventricular amputation, suggesting a correlation between lipid distribution and heart regeneration. Taken together, microCT is a versatile technique that enables the 3D visualization of zebrafish organs, as well as other fish models, in their anatomical context. This simple method is a valuable new addition to the arsenal of techniques available to this model organism. PMID:27058023

  13. Contrast-Enhanced X-Ray Micro-Computed Tomography as a Versatile Method for Anatomical Studies of Adult Zebrafish.

    PubMed

    Babaei, Fatemeh; Hong, Tony Liu Chi; Yeung, Kelvin; Cheng, Shuk Han; Lam, Yun Wah

    2016-08-01

    One attractive quality of zebrafish as a model organism for biological research is that transparency at early developmental stages allows the optical imaging of cellular and molecular events. However, this advantage cannot be applied to adult zebrafish. In this study, we explored the use of contrast-enhanced X-ray micro-computed tomography (microCT) on adult zebrafish in which the organism was stained with iodine, a simple and economical contrasting agent, after fixation. Tomographic reconstruction of the microCT data allowed the three-dimensional (3D) volumetric analyses of individual organs in adult zebrafish. Adipose tissues showed a higher affinity to iodine and were more strongly contrasted in microCT. As traditional histological techniques often involve dehydration steps that remove tissue lipids, iodine-contrasted microCT offers a convenient method for visualizing fat deposition in fish. Utilizing this advantage, we discovered a transient accumulation of lipids around the heart after ventricular amputation, suggesting a correlation between lipid distribution and heart regeneration. Taken together, microCT is a versatile technique that enables the 3D visualization of zebrafish organs, as well as other fish models, in their anatomical context. This simple method is a valuable new addition to the arsenal of techniques available to this model organism.

  14. Reactive gliosis in the adult zebrafish retina.

    PubMed

    Thomas, Jennifer L; Ranski, Alexandra H; Morgan, Gregory W; Thummel, Ryan

    2016-02-01

    In contrast to mammals, zebrafish posses the remarkable ability to regenerate retinal neurons. Damage to the zebrafish retina induces Müller glia to act as stem cells, generating retinal progenitors for regeneration. In contrast, injury in the mammalian retina results in Müller glial reactive gliosis, a characteristic gliotic response that is normally detrimental to vision. Understanding the signaling pathways that determine how Müller glia respond to injury is a critical step toward promoting regeneration in the mammalian retina. Here we report that zebrafish Müller glia exhibit signs of reactive gliosis even under normal regenerative conditions and that cell cycle inhibition increases this response. Persistently reactive Müller glia increase their neuroprotective functions, temporarily saving photoreceptors from a cytotoxic light lesion. However, the absence of a sustained proliferation response results in a significant inhibition of retinal regeneration. Interestingly, when cell cycle inhibition is released, a partial recovery of regeneration is observed. Together, these data demonstrate that zebrafish Müller glia possess both gliotic and regenerative potential. PMID:26492821

  15. Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish.

    PubMed

    Hess, Isabell; Boehm, Thomas

    2016-01-01

    Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-myb(I181N) mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development. PMID:26777855

  16. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    PubMed

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-01

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration.

  17. Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration

    PubMed Central

    McCampbell, Kristen K.; Springer, Kristin N.; Wingert, Rebecca A.

    2015-01-01

    The zebrafish is a useful animal model to study the signaling pathways that orchestrate kidney regeneration, as its renal nephrons are simple, yet they maintain the biological complexity inherent to that of higher vertebrate organisms including mammals. Recent studies have suggested that administration of the aminoglycoside antibiotic gentamicin in zebrafish mimics human acute kidney injury (AKI) through the induction of nephron damage, but the timing and details of critical phenotypic events associated with the regeneration process, particularly in existing nephrons, have not been characterized. Here, we mapped the temporal progression of cellular and molecular changes that occur during renal epithelial regeneration of the proximal tubule in the adult zebrafish using a platform of histological and expression analysis techniques. This work establishes the timing of renal cell death after gentamicin injury, identifies proliferative compartments within the kidney, and documents gene expression changes associated with the regenerative response of proliferating cells. These data provide an important descriptive atlas that documents the series of events that ensue after damage in the zebrafish kidney, thus availing a valuable resource for the scientific community that can facilitate the implementation of zebrafish research to delineate the mechanisms that control renal regeneration. PMID:26089919

  18. Identification and characterization of the pumilio-2 expressed in zebrafish embryos and adult tissues.

    PubMed

    Wang, Huan Nan; Xu, Yan; Tao, Ling Jie; Zhou, Jian; Qiu, Meng Xi; Teng, Yu Hang; Deng, Feng Jiao

    2012-03-01

    Pumilio proteins regulate the translation of specific proteins required for germ cell development and morphogenesis. In the present study, we have identified the pumilio-2 in zebrafish and analyze its expression in adult tissues and early embryos. Pumilio-2 codes for the full-length Pumilio-2 protein and contains a PUF-domain. When compared to the mammalian and avian Pumilio-2 proteins, zebrafish Pumilio-2 protein was found to contain an additional sequence of 24 amino acid residues within the PUF-domain. Zebrafish pumilio-2 mRNA is expressed in the ovary, testis, liver, kidney and brain but is absent in the heart and muscle as detected by RT-PCR. The results of in situ hybridization indicate that transcripts of pumilio-2 are distributed in all blastomeres from the 1-cell stage to the sphere stage and accumulate in the head and tail during the 60%-epiboly and 3-somite stages. Transcripts were also detected in the brain and neural tube of the 24 h post-fertilization (hpf) embryos. Western blot analyses indicate that the Pumilio-2 protein is strongly expressed in the ovary, testis and brain but not in other tissues. These data suggest that pumilio-2 plays an important role in the development of the zebrafish germ cells and nervous system.

  19. Embryonic oxidative stress results in reproductive impairment for adult zebrafish

    PubMed Central

    Newman, Trent A.C.; Carleton, Catherine R.; Leeke, Bryony; Hampton, Mark B.; Horsfield, Julia A.

    2015-01-01

    Exposure to environmental stressors during embryo development can have long-term effects on the adult organism. This study used the thioredoxin reductase inhibitor auranofin to investigate the consequences of oxidative stress during zebrafish development. Auranofin at low doses triggered upregulation of the antioxidant genes gstp1 and prdx1. As the dose was increased, acute developmental abnormalities, including cerebral hemorrhaging and jaw malformation, were observed. To determine whether transient disruption of redox homeostasis during development could have long-term consequences, zebrafish embryos were exposed to a low dose of auranofin from 6–24 hours post fertilization, and then raised to adulthood. The adult fish were outwardly normal in their appearance with no gross physical differences compared to the control group. However, these adult fish had reduced odds of breeding and a lower incidence of egg fertilization. This study shows that a suboptimal early life environment can reduce the chances of reproductive success in adulthood. PMID:26584358

  20. Analysis of Post-Embryonic Heart Development and Maturation in the Zebrafish, Danio rerio

    PubMed Central

    Singleman, Corinna; Holtzman, Nathalia G.

    2015-01-01

    Background Cardiac maturation is vital for animal survival and must occur throughout the animal’s life. Zebrafish are increasingly used to model cardiac disease; however, little is known about how the cardiovascular system matures. We conducted a systematic analysis of cardiac maturation from larvae though to adulthood and assessed cardiac features influenced by genetic and environmental factors. Results We identified a novel step in cardiac maturation, termed cardiac rotation, where the larval heart rotates into its final orientation within the thoracic cavity with the atrium placed behind the ventricle. This rotation is followed by linear ventricle growth and an increase in the angle between bulbous arteriosus and the ventricle. The ventricle transitions from a rectangle, to a triangle and ultimately a circle that is significantly enveloped by the atrium. In addition, trabeculae are similarly patterned in the zebrafish and humans with both muscular fingerlike projections and muscle bands that span the cardiac chamber. Interestingly, partial loss of atrial contraction in myosin heavy chain 6 (myh6/weahu423/+) mutants result in the adult maintaining a larval cardiac form. Conclusions These findings serve as a foundation for the study of defects in cardiovascular development from both genetic and environmental factors. PMID:23074141

  1. Whole-body multispectral photoacoustic imaging of adult zebrafish

    PubMed Central

    Huang, Na; Guo, Heng; Qi, Weizhi; Zhang, Zhiwei; Rong, Jian; Yuan, Zhen; Ge, Wei; Jiang, Huabei; Xi, Lei

    2016-01-01

    The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs. PMID:27699119

  2. Whole-body multispectral photoacoustic imaging of adult zebrafish

    PubMed Central

    Huang, Na; Guo, Heng; Qi, Weizhi; Zhang, Zhiwei; Rong, Jian; Yuan, Zhen; Ge, Wei; Jiang, Huabei; Xi, Lei

    2016-01-01

    The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs.

  3. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart.

    PubMed

    Matrone, Gianfranco; Wilson, Kathryn S; Mullins, John J; Tucker, Carl S; Denvir, Martin A

    2015-06-01

    Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart.

  4. In vivo cell tracking and quantification method in adult zebrafish

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Alt, Clemens; Li, Pulin; White, Richard M.; Zon, Leonard I.; Wei, Xunbin; Lin, Charles P.

    2012-03-01

    Zebrafish have become a powerful vertebrate model organism for drug discovery, cancer and stem cell research. A recently developed transparent adult zebrafish using double pigmentation mutant, called casper, provide unparalleled imaging power in in vivo longitudinal analysis of biological processes at an anatomic resolution not readily achievable in murine or other systems. In this paper we introduce an optical method for simultaneous visualization and cell quantification, which combines the laser scanning confocal microscopy (LSCM) and the in vivo flow cytometry (IVFC). The system is designed specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish casper, under physiological conditions in the same fish over time. The confocal imaging part in this system serves the dual purposes of imaging fish tissue microstructure and a 3D navigation tool to locate a suitable vessel for circulating cell counting. The multi-color, multi-channel instrument allows the detection of multiple cell populations or different tissues or organs simultaneously. We demonstrate initial testing of this novel instrument by imaging vasculature and tracking circulating cells in CD41: GFP/Gata1: DsRed transgenic casper fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. Circulating fluorescent cell incidents were recorded and counted repeatedly over time and in different types of vessels. Great application opportunities in cancer and stem cell researches are discussed.

  5. Targeted Electroporation in Embryonic, Larval, and Adult Zebrafish.

    PubMed

    Zou, Ming; Friedrich, Rainer W; Bianco, Isaac H

    2016-01-01

    This chapter describes three fast and straightforward methods to introduce nucleic acids, dyes, and other molecules into small numbers of cells of zebrafish embryos, larvae, and adults using electroporation. These reagents are delivered through a glass micropipette and electrical pulses are given through electrodes to permeabilize cell membranes and promote uptake of the reagent. This technique allows the experimenter to target cells of their choice at a particular time of development and at a particular location in the zebrafish with high precision and facilitates long-term noninvasive measurement of biological activities in vivo. Applications include cell fate mapping, neural circuit mapping, neuronal activity measurement, manipulation of activity, ectopic gene expression, and genetic knockdown experiments. PMID:27464813

  6. [Construction and assessment of heart-specific green fluorescence zebrafish line].

    PubMed

    Peng, Xi-Yang; Chen, Ting-Fang; Huang, Ting; Jiang, Zhi-Gang; Wu, Xiu-Shan; Deng, Yun

    2013-04-01

    Using the promoter for cardiac myosin light chain 2 (cmlc2) gene, an expression vector pTol2-cmlc2-IRES- EGFP for making heart-specific expression of exogenous gene in transgenic zebrafish was generated previously. Here, we reported the construction of a transgenic zebrafish line which stably expresses EGFP using this vector, and the effects of EGFP on the heart development and cardiac function of this transgenic zebrafish line were preliminarily analyzed. The results showed that the green fluorescence signal of cmlc2:EGFP line under fluorescence microscopy specifically expressed in heart and faithfully recapitulated both the spatial and temporal expression patterns of endogenous cmlc2 gene revealed by in situ hybridization in the early developmental stages. The cardiac morphology and development of this transgenic zebrafish line remained to be normal. Furthermore, the heart morphology and physiological function of this transgenic line have been analyzed using M-mode analysis. The results showed that there was no significant difference between the cmlc2:EGFP and the wild type lines with respect to heart period, heart rate, diastolic surface area and systolic surface area, and fractional area change. No tachyarrhythmia was observed in the embryos from either line. Thus, the excessive expression of EGFP in this transgenic line seemed to exert no detrimental effects on the function and development of zebrafish hearts during early stages. Our study laid a foundation for the construction of exogenous gene transgenic line using pTol2-cmlc2-IRES-EGFP vector to study the function of genes that expressed in heart.

  7. Myocardial NF-κB activation is essential for zebrafish heart regeneration.

    PubMed

    Karra, Ravi; Knecht, Anne K; Kikuchi, Kazu; Poss, Kenneth D

    2015-10-27

    Heart regeneration offers a novel therapeutic strategy for heart failure. Unlike mammals, lower vertebrates such as zebrafish mount a strong regenerative response following cardiac injury. Heart regeneration in zebrafish occurs by cardiomyocyte proliferation and reactivation of a cardiac developmental program, as evidenced by induction of gata4 regulatory sequences in regenerating cardiomyocytes. Although many of the cellular determinants of heart regeneration have been elucidated, how injury triggers a regenerative program through dedifferentiation and epicardial activation is a critical outstanding question. Here, we show that NF-κB signaling is induced in cardiomyocytes following injury. Myocardial inhibition of NF-κB activity blocks heart regeneration with pleiotropic effects, decreasing both cardiomyocyte proliferation and epicardial responses. Activation of gata4 regulatory sequences is also prevented by NF-κB signaling antagonism, suggesting an underlying defect in cardiomyocyte dedifferentiation. Our results implicate NF-κB signaling as a key node between cardiac injury and tissue regeneration.

  8. Myocardial NF-κB activation is essential for zebrafish heart regeneration

    PubMed Central

    Karra, Ravi; Knecht, Anne K.; Kikuchi, Kazu; Poss, Kenneth D.

    2015-01-01

    Heart regeneration offers a novel therapeutic strategy for heart failure. Unlike mammals, lower vertebrates such as zebrafish mount a strong regenerative response following cardiac injury. Heart regeneration in zebrafish occurs by cardiomyocyte proliferation and reactivation of a cardiac developmental program, as evidenced by induction of gata4 regulatory sequences in regenerating cardiomyocytes. Although many of the cellular determinants of heart regeneration have been elucidated, how injury triggers a regenerative program through dedifferentiation and epicardial activation is a critical outstanding question. Here, we show that NF-κB signaling is induced in cardiomyocytes following injury. Myocardial inhibition of NF-κB activity blocks heart regeneration with pleiotropic effects, decreasing both cardiomyocyte proliferation and epicardial responses. Activation of gata4 regulatory sequences is also prevented by NF-κB signaling antagonism, suggesting an underlying defect in cardiomyocyte dedifferentiation. Our results implicate NF-κB signaling as a key node between cardiac injury and tissue regeneration. PMID:26472034

  9. Histone methylations in heart development, congenital and adult heart diseases.

    PubMed

    Zhang, Qing-Jun; Liu, Zhi-Ping

    2015-01-01

    Heart development comprises myocyte specification, differentiation and cardiac morphogenesis. These processes are regulated by a group of core cardiac transcription factors in a coordinated temporal and spatial manner. Histone methylation is an emerging epigenetic mechanism for regulating gene transcription. Interplay among cardiac transcription factors and histone lysine modifiers plays important role in heart development. Aberrant expression and mutation of the histone lysine modifiers during development and in adult life can cause either embryonic lethality or congenital heart diseases, and influences the response of adult hearts to pathological stresses. In this review, we describe current body of literature on the role of several common histone methylations and their modifying enzymes in heart development, congenital and adult heart diseases.

  10. Histone methylations in heart development, congenital and adult heart diseases

    PubMed Central

    Zhang, Qing-Jun; Liu, Zhi-Ping

    2015-01-01

    Heart development comprises myocyte specification, differentiation and cardiac morphogenesis. These processes are regulated by a group of core cardiac transcription factors in a coordinated temporal and spatial manner. Histone methylation is an emerging epigenetic mechanism for regulating gene transcription. Interplay among cardiac transcription factors and histone lysine modifiers plays important role in heart development. Aberrant expression and mutation of the histone lysine modifiers during development and in adult life can cause either embryonic lethality or congenital heart diseases, and influences the response of adult hearts to pathological stresses. In this review, we describe current body of literature on the role of several common histone methylations and their modifying enzymes in heart development, congenital and adult heart diseases. PMID:25942538

  11. Photopic and scotopic spatiotemporal tuning of adult zebrafish vision

    PubMed Central

    Hollbach, Nadine; Tappeiner, Christoph; Jazwinska, Anna; Enzmann, Volker; Tschopp, Markus

    2015-01-01

    Sensitivity to spatial and temporal patterns is a fundamental aspect of vision. Herein, we investigated this sensitivity in adult zebrafish for a wide range of spatial (0.014 to 0.511 cycles/degree [c/d]) and temporal frequencies (0.025 to 6 cycles/s) to better understand their visual system. Measurements were performed at photopic (1.8 log cd m−2) and scotopic (−4.5 log cd m−2) light levels to assess the optokinetic response (OKR). The resulting spatiotemporal contrast sensitivity (CS) functions revealed that the OKR of zebrafish is tuned to spatial frequency and speed but not to temporal frequencies. Thereby, optimal test parameters for CS measurements were identified. At photopic light levels, a spatial frequency of 0.116 ± 0.01 c/d (mean ± SD) and a grating speed of 8.42 ± 2.15 degrees/second (d/s) was ideal; at scotopic light levels, these values were 0.110 ± 0.02 c/d and 5.45 ± 1.31 d/s, respectively. This study allows to better characterize zebrafish mutants with altered vision and to distinguish between defects of rod and cone photoreceptors as measurements were performed under different light conditions. PMID:25788878

  12. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish

    PubMed Central

    Saera-Vila, Alfonso; Kasprick, Daniel S.; Junttila, Tyler L.; Grzegorski, Steven J.; Louie, Ke'ale W.; Chiari, Estelle F.; Kish, Phillip E.; Kahana, Alon

    2015-01-01

    Purpose The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. Methods Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. Results Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2′-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. Conclusions EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular

  13. Influences of textured substrates on the heart rate of developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Chen, Chia-Yuan

    2013-07-01

    Identification of the effects of different textured substrates on zebrafish (Danio rerio) embryos provides insights into the influence of external stimuli on normal cardiovascular functions in the developmental stages of the embryos. This knowledge can be used in numerous genetic studies using zebrafish as an animal model as well as in bioanalytical assays using digital microfluidics. In this study, zebrafish embryos were systematically positioned and in vivo imaged on four types of silicon substrates. These substrates exhibited surface textures and surface wettability that were well modulated by wet chemical etching. The heart rate of the developing embryos significantly increased by 9.1% upon exposure to textured Si substrates with nanostructured surfaces compared with bare Si substrates. Modulation of surface wettability in the tested substrates also responded to the increase in the heart rate of the embryo; however, the effect of surface wettability on heart rate was slight compared with the effect of texture. In-depth experimental and statistical investigations of heart rate under the effects of substrate textures imply a pathway through which the inner mass of the embryo reacts to external stimuli. These findings contribute to zebrafish-related studies and suggest other factors to consider in the design of nanostructure-based microfluidics and other biomedical devices.

  14. Craniofacial skeletal defects of adult zebrafish glypican 4 (knypek) mutants

    PubMed Central

    LeClair, Elizabeth E.; Mui, Stephanie R.; Huang, Angela; Topczewska, Jolanta M.; Topczewski, Jacek

    2010-01-01

    The heparan sulfate proteoglycan Glypican 4 (Gpc4) is part of the Wnt/planar cell polarity pathway, which is required for convergence and extension during zebrafish gastrulation. To observe Glypican 4-deficient phenotypes at later stages, we rescued gpc4−/− (knypek) homozygotes and raised them for more than one year. Adult mutants showed diverse cranial malformations of both dermal and endochondral bones, ranging from shortening of the rostral-most skull to loss of the symplectic. Additionally, the adult palatoquadrate cartilage was disorganized, with abnormal chondrocyte orientation. To understand how the palatoquadrate cartilage normally develops, we examined a juvenile series of wild type and mutant specimens. This identified two novel domains of elongated chondrocytes in the larval palatoquadrate, which normally form prior to endochondral ossification. In contrast, gpc4−/− larvae never form these domains, suggesting a failure of chondrocyte orientation, though not differentiation. Our findings implicate Gpc4 in the regulation of zebrafish cartilage and bone morphogenesis. PMID:19777561

  15. Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart.

    PubMed

    Cavanaugh, Ann M; Huang, Jie; Chen, Jau-Nian

    2015-08-15

    Cardiac neural crest cells are essential for outflow tract remodeling in animals with divided systemic and pulmonary circulatory systems, but their contributions to cardiac development in animals with a single-loop circulatory system are less clear. Here we genetically labeled neural crest cells and examined their contribution to the developing zebrafish heart. We identified two populations of neural crest cells that contribute to distinct compartments of zebrafish cardiovascular system at different developmental stages. A stream of neural crest cells migrating through pharyngeal arches 1 and 2 integrates into the myocardium of the primitive heart tube between 24 and 30 h post fertilization and gives rise to cardiomyocytes. A second wave of neural crest cells migrating along aortic arch 6 envelops the endothelium of the ventral aorta and invades the bulbus arteriosus after three days of development. Interestingly, while inhibition of FGF signaling has no effect on the integration of neural crest cells to the primitive heart tube, it prevents these cells from contributing to the outflow tract, demonstrating disparate responses of neural crest cells to FGF signaling. Furthermore, neural crest ablation in zebrafish leads to multiple cardiac defects, including reduced heart rate, defective myocardial maturation and a failure to recruit progenitor cells from the second heart field. These findings add to our understanding of the contribution of neural crest cells to the developing heart and provide insights into the requirement for these cells in cardiac maturation.

  16. Collagen XII Contributes to Epicardial and Connective Tissues in the Zebrafish Heart during Ontogenesis and Regeneration

    PubMed Central

    Marro, Jan; Pfefferli, Catherine; de Preux Charles, Anne-Sophie; Bise, Thomas

    2016-01-01

    Zebrafish heart regeneration depends on cardiac cell proliferation, epicardium activation and transient reparative tissue deposition. The contribution and the regulation of specific collagen types during the regenerative process, however, remain poorly characterized. Here, we identified that the non-fibrillar type XII collagen, which serves as a matrix-bridging component, is expressed in the epicardium of the zebrafish heart, and is boosted after cryoinjury-induced ventricular damage. During heart regeneration, an intense deposition of Collagen XII covers the outer epicardial cap and the interstitial reparative tissue. Analysis of the activated epicardium and fibroblast markers revealed a heterogeneous cellular origin of Collagen XII. Interestingly, this matrix-bridging collagen co-localized with fibrillar type I collagen and several glycoproteins in the post-injury zone, suggesting its role in tissue cohesion. Using SB431542, a selective inhibitor of the TGF-β receptor, we showed that while the inhibitor treatment did not affect the expression of collagen 12 and collagen 1a2 in the epicardium, it completely suppressed the induction of both genes in the fibrotic tissue. This suggests that distinct mechanisms might regulate collagen expression in the outer heart layer and the inner injury zone. On the basis of this study, we postulate that the TGF-β signaling pathway induces and coordinates formation of a transient collagenous network that comprises fibril-forming Collagen I and fiber-associated Collagen XII, both of which contribute to the reparative matrix of the regenerating zebrafish heart. PMID:27783651

  17. Calretinin in the peripheral nervous system of the adult zebrafish

    PubMed Central

    Levanti, M B; Montalbano, G; Laurà, R; Ciriaco, E; Cobo, T; García-Suarez, O; Germanà, A; Vega, J A

    2008-01-01

    Calretinin is a calcium-binding protein found widely distributed in the central nervous system and chemosensory cells of the teleosts, but its presence in the peripheral nervous system of fishes is unknown. In this study we used Western blot analysis and immunohistochemistry to investigate the occurrence and distribution of calretinin in the cranial nerve ganglia, dorsal root ganglia, sympathetic ganglia, and enteric nervous system of the adult zebrafish. By Western blotting a unique and specific protein band with an estimated molecular weight of around 30 kDa was detected, and it was identified as calretinin. Immunohistochemistry revealed that calretinin is selectively present in the cytoplasm of the neurons and never in the satellite glial cells. In both sensory and sympathetic ganglia the density of neurons that were immunolabelled, their size and morphology, as well as the intensity of immunostaining developed within the cytoplasm, were heterogeneous. In the enteric nervous system calretinin immunoreactivity was detected in a subset of enteric neurons as well as in a nerve fibre plexus localized inside the muscular layers. The present results demonstrate that in addition to the central nervous system, calretinin is also present in the peripheral nervous system of zebrafish, and contribute to completing the map of the distribution of this protein in the nervous system of teleosts. PMID:18173770

  18. Rac1-PAK2 pathway is essential for zebrafish heart regeneration.

    PubMed

    Peng, Xiangwen; He, Quanze; Li, Guobao; Ma, Jinmin; Zhong, Tao P

    2016-04-15

    P-21 activated kinases, or PAKs, are serine-threonine kinases that play important roles in diverse heart functions include heart development, cardiovascular development and function in a range of models; however, the mechanisms by which PAKs mediate heart regeneration are unknown. Here, we demonstrate that PAK2 and PAK4 expression is induced in cardiomyocytes and vessels, respectively, following zebrafish heart injury. Inhibition of PAK2 and PAK4 using a specific small molecule inhibitor impedes cardiomyocyte proliferation/dedifferentiation and cardiovascular regeneration, respectively. Cdc42 is specifically expressed in the ventricle and may function upstream of PAK2 but not PAK4 under normal conditions and that cardiomyocyte proliferentation during heart regeneration relies on Rac1-mediated activation of Pak2. Our results indicate that PAKs play a key role in heart regeneration.

  19. Targeted Laser Ablation of the Zebrafish Larval Heart Induces Models of Heart Block, Valvular Regurgitation, and Outflow Tract Obstruction

    PubMed Central

    Matrone, Gianfranco; Maqsood, Sana; Taylor, Jonathan; Mullins, John J.; Tucker, Carl S.

    2014-01-01

    Abstract Mammalian models of cardiac disease have provided unique and important insights into human disease but have become increasingly challenging to produce. The zebrafish could provide inexpensive high-throughput models of cardiac injury and repair. We used a highly targeted laser, synchronized to fire at specific phases of the cardiac cycle, to induce regional injury to the ventricle, atrioventricular (AV) cushion, and bulbus arteriosus (BA). We assessed the impact of laser injury on hearts of zebrafish early larvae at 72 h postfertilization, to different regions, recording the effects on ejection fraction (EF), heart rate (HR), and blood flow at 2 and 24 h postinjury (hpi). Laser injury to the apex, midzone, and outflow regions of the ventricle resulted in reductions of the ventricle EF at 2 hpi with full recovery of function by 24 hpi. Laser injury to the ventricle, close to the AV cushion, was more likely to cause bradycardia and atrial–ventricular dysfunction, suggestive of an electrical conduction block. At 2 hpi, direct injury to the AV cushion resulted in marked regurgitation of blood from the ventricle to the atrium. Laser injury to the BA caused temporary outflow tract obstruction with cessation of ventricle contraction and circulation. Despite such damage, 80% of embryos showed complete recovery of the HR and function within 24 h of laser injury. Precision laser injury to key structures in the zebrafish developing heart provides a range of potentially useful models of hemodynamic overload, injury, and repair. PMID:25272304

  20. Directional and color preference in adult zebrafish: Implications in behavioral and learning assays in neurotoxicology studies.

    PubMed

    Bault, Zachary A; Peterson, Samuel M; Freeman, Jennifer L

    2015-12-01

    The zebrafish (Danio rerio) is a useful vertebrate model organism for neurological studies. While a number of behavior and learning assays are recently reported in the literature for zebrafish, many of these assays are still being refined. The initial purpose of this study was to apply a published T-maze assay for adult zebrafish that measures how quickly an organism can discriminate between different color stimuli after receiving reinforcement to measure learning in a study investigating the later life impacts of developmental Pb exposure. The original results were inconclusive as the control group showed a directional and color preference. To assess directional preference further, a three-chambered testing apparatus was constructed and rotated in several directions. The directional preference observed in males was alleviated by rotating the arms pointing west and east. In addition, color preference was investigated using all combinations of five different colors (orange, yellow, green, blue and purple). With directional preference alleviated results showed that both male and female zebrafish preferred colors of shorter wavelengths. An additional experiment tested changes in color preference due to developmental exposure to Pb in adult male zebrafish. Results revealed that Pb-exposed males gained and lost certain color preferences compared to control males and the preference for short wavelengths was decreased. Overall, these results show that consideration and pretesting should be completed before applying behavioral and learning assays involving adult zebrafish to avoid innate preferences and confounding changes in neurotoxicology studies and that developmental Pb exposure alters color preferences in adult male zebrafish.

  1. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    PubMed

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals. PMID:12223419

  2. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance.

    PubMed

    Cruz, Ivan A; Kappedal, Ryan; Mackenzie, Scott M; Hailey, Dale W; Hoffman, Trevor L; Schilling, Thomas F; Raible, David W

    2015-06-15

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity.

  3. New tools for the identification of developmentally regulated enhancer regions in embryonic and adult zebrafish.

    PubMed

    Levesque, Mitchell P; Krauss, Jana; Koehler, Carla; Boden, Cindy; Harris, Matthew P

    2013-03-01

    We have conducted a screen to identify developmentally regulated enhancers that drive tissue-specific Gal4 expression in zebrafish. We obtained 63 stable transgenic lines with expression patterns in embryonic or adult zebrafish. The use of a newly identified minimal promoter from the medaka edar locus resulted in a relatively unbiased set of expression patterns representing many tissue types derived from all germ layers. Subsequent detailed characterization of selected lines showed strong and reproducible Gal4-driven GFP expression in diverse tissues, including neurons from the central and peripheral nervous systems, pigment cells, erythrocytes, and peridermal cells. By screening adults for GFP expression, we also isolated lines expressed in tissues of the adult zebrafish, including scales, fin rays, and joints. The new and efficient minimal promoter and large number of transactivating driver-lines we identified will provide the zebrafish community with a useful resource for further enhancer trap screening, as well as precise investigation of tissue-specific processes in vivo.

  4. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance

    PubMed Central

    Cruz, Ivan A.; Kappedal, Ryan; Mackenzie, Scott M.; Hailey, Dale W.; Hoffman, Trevor L.; Schilling, Thomas F.; Raible, David W.

    2015-01-01

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity. PMID:25869855

  5. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  6. Cerebroventricular Microinjection (CVMI) into Adult Zebrafish Brain Is an Efficient Misexpression Method for Forebrain Ventricular Cells

    PubMed Central

    Kizil, Caghan; Brand, Michael

    2011-01-01

    The teleost fish Danio rerio (zebrafish) has a remarkable ability to generate newborn neurons in its brain at adult stages of its lifespan-a process called adult neurogenesis. This ability relies on proliferating ventricular progenitors and is in striking contrast to mammalian brains that have rather restricted capacity for adult neurogenesis. Therefore, investigating the zebrafish brain can help not only to elucidate the molecular mechanisms of widespread adult neurogenesis in a vertebrate species, but also to design therapies in humans with what we learn from this teleost. Yet, understanding the cellular behavior and molecular programs underlying different biological processes in the adult zebrafish brain requires techniques that allow manipulation of gene function. As a complementary method to the currently used misexpression techniques in zebrafish, such as transgenic approaches or electroporation-based delivery of DNA, we devised a cerebroventricular microinjection (CVMI)-assisted knockdown protocol that relies on vivo morpholino oligonucleotides, which do not require electroporation for cellular uptake. This rapid method allows uniform and efficient knockdown of genes in the ventricular cells of the zebrafish brain, which contain the neurogenic progenitors. We also provide data on the use of CVMI for growth factor administration to the brain – in our case FGF8, which modulates the proliferation rate of the ventricular cells. In this paper, we describe the CVMI method and discuss its potential uses in zebrafish. PMID:22076157

  7. Functional diversity of excitatory commissural interneurons in adult zebrafish

    PubMed Central

    Björnfors, E Rebecka; El Manira, Abdeljabbar

    2016-01-01

    Flexibility in the bilateral coordination of muscle contraction underpins variable locomotor movements or gaits. While the locomotor rhythm is generated by ipsilateral excitatory interneurons, less is known about the commissural excitatory interneurons. Here we examined how the activity of the V0v interneurons – an important commissural neuronal class – varies with the locomotor speed in adult zebrafish. Although V0v interneurons are molecularly homogenous, their activity pattern during locomotion is not uniform. They consist of two distinct types dependent on whether they display rhythmicity or not during locomotion. The rhythmic V0v interneurons were further subdivided into three sub-classes engaged sequentially, first at slow then intermediate and finally fast locomotor speeds. Their order of recruitment is defined by scaling their synaptic current with their input resistance. Thus we uncover, in an adult vertebrate, a novel organizational principle for a key class of commissural interneurons and their recruitment pattern as a function of locomotor speed. DOI: http://dx.doi.org/10.7554/eLife.18579.001 PMID:27559611

  8. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

    PubMed Central

    Hou, Jennifer H.; Kralj, Joel M.; Douglass, Adam D.; Engert, Florian; Cohen, Adam E.

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445

  9. [Evaluation of congenital heart disease in adults].

    PubMed

    Oliver Ruiz, José María; Mateos García, Marta; Bret Zurita, Montserrat

    2003-06-01

    Improvements in the diagnosis and surgical treatment of congenital heart disease during infancy and childhood have resulted in an outstanding increase in the prevalence of these entities during adulthood. Congenital heart disease in the adult represents a new diagnostic challenge to the consultant cardiologist, unfamiliar with the anatomical and functional complexities of cardiac malformations. Assessment of adult congenital heart disease with imaging techniques can be as accurate as in children. However, these techniques cannot substitute for a detailed clinical assessment. Physical examination, electrocardiography and chest x-rays remain the three main pillars of bedside diagnosis. Transthoracic echocardiography is undoubtedly the imaging technique which provides most information, and in many situations no additional studies are needed. Nevertheless, ultrasound imaging properties in adults are not as favorable as in children, and prior surgical procedures further impair image quality. Despite recent advances in ultrasound technologies such as harmonic or contrast imaging, other diagnostic procedures are sometimes required. Fortunately, transesophageal echocardiography and magnetic resonance imaging are easily performed in the adult, and do not require anaesthetic support, in contrast to pediatric patients. These techniques, together with nuclear cardiology and cardiac catheterization, complete the second tier of diagnostic techniques for congenital heart disease. To avoid unnecessary repetition of diagnostic procedures, the attending cardiologist should choose the sequence of diagnostic techniques carefully; although the information this yields is often redundant, it is also frequently complementary. This article aims to compare the diagnostic utility of different imaging techniques in adult patients with congenital heart disease, both with and without prior surgical repair.

  10. Analysis of the dynamic co-expression network of heart regeneration in the zebrafish.

    PubMed

    Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco

    2016-01-01

    The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration. PMID:27241320

  11. Analysis of the dynamic co-expression network of heart regeneration in the zebrafish

    PubMed Central

    Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco

    2016-01-01

    The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration. PMID:27241320

  12. Husbandry stress exacerbates mycobacterial infections in adult zebrafish, Danio rerio (Hamilton)

    USGS Publications Warehouse

    Ramsay, J.M.; Watral, V.; Schreck, C.B.; Kent, M.L.

    2009-01-01

    Mycobacteria are significant pathogens of laboratory zebrafish, Danio rerio (Hamilton). Stress is often implicated in clinical disease and morbidity associated with mycobacterial infections but has yet to be examined with zebrafish. The aim of this study was to examine the effects of husbandry stressors on zebrafish infected with mycobacteria. Adult zebrafish were exposed to Mycobacterium marinum or Mycobacterium chelonae, two species that have been associated with disease in zebrafish. Infected fish and controls were then subjected to chronic crowding and handling stressors and examined over an 8-week period. Whole-body cortisol was significantly elevated in stressed fish compared to non-stressed fish. Fish infected with M. marinum ATCC 927 and subjected to husbandry stressors had 14% cumulative mortality while no mortality occurred among infected fish not subjected to husbandry stressors. Stressed fish, infected with M. chelonae H1E2 from zebrafish, were 15-fold more likely to be infected than non-stressed fish at week 8 post-injection. Sub-acute, diffuse infections were more common among stressed fish infected with M. marinum or M. chelonae than non-stressed fish. This is the first study to demonstrate an effect of stress and elevated cortisol on the morbidity, prevalence, clinical disease and histological presentation associated with mycobacterial infections in zebrafish. Minimizing husbandry stress may be effective at reducing the severity of outbreaks of clinical mycobacteriosis in zebrafish facilities. ?? 2009 Blackwell Publishing Ltd.

  13. Radial glial cell-specific ablation in the adult Zebrafish brain.

    PubMed

    Shimizu, Yuki; Ito, Yoko; Tanaka, Hideomi; Ohshima, Toshio

    2015-07-01

    The zebrafish brain can continue to produce new neurons in widespread neurogenic brain regions throughout life. In contrast, neurogenesis in the adult mammalian brain is restricted to the subventricular zone (SVZ) and dentate gyrus (DG). In neurogenic regions in the adult brain, radial glial cells (RGCs) are considered to function as neural stem cells (NSCs). We generated a Tg(gfap:Gal4FF) transgenic zebrafish line, which enabled us to express specific genes in RGCs. To study the function of RGCs in neurogenesis in the adult zebrafish brain, we also generated a Tg(gfap: Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, which allowed us to induce cell death exclusively within RGCs upon addition of metronidazole (Mtz) to the media. RGCs expressing nitroreductase were specifically ablated by the Mtz treatment, decreasing the number of proliferative RGCs. Using the Tg(gfap:Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, we found that RGCs were specifically ablated in the adult zebrafish telencephalon. The Tg(gfap:Gal4FF) line could be useful to study the function of RGCs.

  14. Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies

    PubMed Central

    Dang, Michelle; Henderson, Rachel E.; Garraway, Levi A.

    2016-01-01

    ABSTRACT Zebrafish are a major model for chemical genetics, and most studies use embryos when investigating small molecules that cause interesting phenotypes or that can rescue disease models. Limited studies have dosed adults with small molecules by means of water-borne exposure or injection techniques. Challenges in the form of drug delivery-related trauma and anesthesia-related toxicity have excluded the adult zebrafish from long-term drug efficacy studies. Here, we introduce a novel anesthetic combination of MS-222 and isoflurane to an oral gavage technique for a non-toxic, non-invasive and long-term drug administration platform. As a proof of principle, we established drug efficacy of the FDA-approved BRAFV600E inhibitor, Vemurafenib, in adult zebrafish harboring BRAFV600E melanoma tumors. In the model, adult casper zebrafish intraperitoneally transplanted with a zebrafish melanoma cell line (ZMEL1) and exposed to daily sub-lethal dosing at 100 mg/kg of Vemurafenib for 2 weeks via oral gavage resulted in an average 65% decrease in tumor burden and a 15% mortality rate. In contrast, Vemurafenib-resistant ZMEL1 cell lines, generated in culture from low-dose drug exposure for 4 months, did not respond to the oral gavage treatment regimen. Similarly, this drug treatment regimen can be applied for treatment of primary melanoma tumors in the zebrafish. Taken together, we developed an effective long-term drug treatment system that will allow the adult zebrafish to be used to identify more effective anti-melanoma combination therapies and opens up possibilities for treating adult models of other diseases. PMID:27482819

  15. Analysis of nephron composition and function in the adult zebrafish kidney.

    PubMed

    McCampbell, Kristen K; Springer, Kristin N; Wingert, Rebecca A

    2014-08-09

    The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.

  16. Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish

    NASA Astrophysics Data System (ADS)

    Tong, Xiangjun; Zu, Yao; Li, Zengpeng; Li, Wenyuan; Ying, Lingxiao; Yang, Jing; Wang, Xin; He, Shuonan; Liu, Da; Zhu, Zuoyan; Chen, Jianming; Lin, Shuo; Zhang, Bo

    2014-01-01

    The T-box transcription factor Tbx5 (Tbx5a in zebrafish) plays a crucial role in the formation of cardiac chambers in a dose-dependent manner. Its deregulation leads to congenital heart disease. However, little is known regarding its regulation. Here we isolate a zebrafish mutant with heart malformations, called 34c. The affected gene is identified as kctd10, a member of the potassium channel tetramerization domain (KCTD)-containing family. In the mutant, the expressions of the atrioventricular canal marker genes, such as tbx2b, hyaluronan synthase 2 (has2), notch1b and bmp4, are changed. The knockdown of tbx5 rescues the ectopic expression of has2, and knockdown of either tbx5a or has2 alleviates the heart defects. We show that Kctd10 directly binds to Tbx5 to repress its transcriptional activity. Our results reveal a new essential factor for cardiac development and suggest that KCTD10 could be considered as a new causative gene of congenital heart disease.

  17. Pregnancy and adult congenital heart disease.

    PubMed

    Karamermer, Yusuf; Roos-Hesselink, Jolien W

    2007-09-01

    Increasing numbers of women with complex congenital heart disease are reaching childbearing age. Pregnancy is a major issue in the management of adult congenital heart disease. Cardiac disease is one of the most common causes of maternal morbidity and mortality. Complications, such as growth retardation, preterm and premature birth and even fetal and neonatal mortality, are more frequent among children of women with congenital heart disease. The risk of complications is determined by the severity of the cardiac lesion, the presence of cyanosis, the maternal functional class and the use of anticoagulation. However, the pathophysiology of these complications is not completely understood and may be related to a diminished increase in cardiac output and/or endothelial dysfunction. The management of pregnant cardiac patients is based on limited clinical information. This article reviews pre-pregnancy counseling and management during pregnancy in patients with congenital heart disease.

  18. Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy.

    PubMed

    Lafontant, Pascal J; Behzad, Ali R; Brown, Evelyn; Landry, Paul; Hu, Norman; Burns, Alan R

    2013-01-01

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.

  19. Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart.

    PubMed

    Perjés, Ábel; Kilpiö, Teemu; Ulvila, Johanna; Magga, Johanna; Alakoski, Tarja; Szabó, Zoltán; Vainio, Laura; Halmetoja, Eveliina; Vuolteenaho, Olli; Petäjä-Repo, Ulla; Szokodi, István; Kerkelä, Risto

    2016-01-01

    The G protein-coupled apelin receptor regulates important processes of the cardiovascular homeostasis, including cardiac development, cardiac contractility, and vascular tone. Most recently, a novel endogenous peptide ligand for the apelin receptor was identified in zebrafish, and it was named apela/elabela/toddler. The peptide was originally considered as an exclusively embryonic regulator, and so far its function in the adult organism remains elusive. We show here that apela is predominantly expressed in the non-cardiomyocyte fraction in the adult rodent heart. We also provide evidence that apela binds to apelin receptors in the heart. Using isolated adult rat hearts, we demonstrate, that just like the fellow receptor agonist apelin, apela increases cardiac contractility and induces coronary vasodilation already in the nanomolar level. The inotropic effect, as revealed by Western blot analysis, is accompanied by a significant increase in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Pharmacological inhibition of ERK1/2 activation markedly attenuates the apela-induced inotropy. Analysis of samples from infarcted mouse hearts showed that expression of both apela and apelin receptor is induced in failing mouse hearts and correlate with left ventricular ejection fraction. Hence, we conclude that apela is present in the adult heart, is upregulated in post-infarction cardiac remodeling, and increases cardiac contractility in an ERK1/2-dependent manner.

  20. A dual epimorphic and compensatory mode of heart regeneration in zebrafish.

    PubMed

    Sallin, Pauline; de Preux Charles, Anne-Sophie; Duruz, Vincent; Pfefferli, Catherine; Jaźwińska, Anna

    2015-03-01

    Zebrafish heart regeneration relies on the capacity of cardiomyocytes to proliferate upon injury. To understand the principles of this process after cryoinjury-induced myocardial infarction, we established a spatio-temporal map of mitotic cardiomyocytes and their differentiation dynamics. Immunodetection of phosphohistone H3 and embryonic ventricular heavy chain myosin highlighted two distinct regenerative processes during the early phase of regeneration. The injury-abutting zone comprises a population of cardiac cells that reactivates the expression of embryo-specific sarcomeric proteins and it displays a 10-fold higher mitotic activity in comparison to the injury-remote zone. The undifferentiated cardiomyocytes resemble a blastema-like structure between the original and wound tissues. They integrate with the fibrotic tissue through the fibronectin-tenascin C extracellular matrix, and with the mature cardiomyocytes through upregulation of the tight junction marker, connexin 43. During the advanced regenerative phase, the population of undifferentiated cardiomyocytes disperses within the regenerating myocardium and it is not detected after the termination of regeneration. Although the blastema represents a transient landmark of the regenerating ventricle, the remaining mature myocardium also displays an enhanced mitotic index when compared to uninjured hearts. This suggests an unexpected contribution of a global proliferative activity to restore the impaired cardiac function. Based on these findings, we propose a new model of zebrafish heart regeneration that involves a combination of blastema-dependent epimorphosis and a compensatory organ-wide response.

  1. Normal anatomy and histology of the adult zebrafish.

    PubMed

    Menke, Aswin L; Spitsbergen, Jan M; Wolterbeek, Andre P M; Woutersen, Ruud A

    2011-08-01

    The zebrafish has been shown to be an excellent vertebrate model for studying the roles of specific genes and signaling pathways. The sequencing of its genome and the relative ease with which gene modifications can be performed have led to the creation of numerous human disease models that can be used for testing the potential and the toxicity of new pharmaceutical compounds. Many pharmaceutical companies already use the zebrafish for prescreening purposes. So far, the focus has been on ecotoxicity and the effects on embryonic development, but there is a trend to expand the use of the zebrafish with acute, subchronic, and chronic toxicity studies that are currently still carried out with the more conventional test animals such as rodents. However, before we can fully realize the potential of the zebrafish as an animal model for understanding human development, disease, and toxicology, we must first greatly advance our knowledge of normal zebrafish physiology, anatomy, and histology. To further this knowledge, we describe, in the present article, location and histology of the major zebrafish organ systems with a brief description of their function.

  2. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    SciTech Connect

    Yan, Lifeng; Zhou, Yong; Yu, Shanhe; Ji, Guixiang; Liu, Wei; Gu, Aihua

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  3. Origin of Cardiomyocytes in the Adult Heart

    PubMed Central

    Leri, Annarosa; Rota, Marcello; Pasqualini, Francesco S.; Goichberg, Polina; Anversa, Piero

    2014-01-01

    This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the reentry of cardiomyocytes into the cell cycle; dedifferentiation of preexisting cardiomyocytes which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge. PMID:25552694

  4. Rhodopsin expression in the zebrafish pineal gland from larval to adult stage.

    PubMed

    Magnoli, Domenico; Zichichi, Rosalia; Laurà, Rosaria; Guerrera, Maria Cristina; Campo, Salvatore; de Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-01

    The zebrafish pineal gland plays an important role in different physiological functions including the regulation of the circadian clock. In the fish pineal gland the pinealocytes are made up of different segments: outer segment, inner segment and basal pole. Particularly, in the outer segment the rhodopsin participates in the external environment light reception that represents the first biochemical step in the melatonin production. It is well known that the rhodopsin in the adult zebrafish is well expressed in the pineal gland but both the expression and the cellular localization of this protein during development remain still unclear. In this study using qRT-PCR, sequencing and immunohistochemistry the expression as well as the protein localization of the rhodopsin in the zebrafish from larval (10 dpf) to adult stage (90 dpf) were demonstrated. The rhodopsin mRNA expression presents a peak of expression at 10 dpf, a further reduction to 50 dpf before increasing again in the adult stage. Moreover, the cellular localization of the rhodopsin-like protein was always localized in the pinealocyte at all ages examined. Our results demonstrated the involvement of the rhodopsin in the zebrafish pineal gland physiology particularly in the light capture during the zebrafish lifespan.

  5. Limb Regeneration is Impaired in an Adult Zebrafish Model of Diabetes Mellitus

    PubMed Central

    Olsen, Ansgar S.; Sarras, Michael P.; Intine, Robert V.

    2010-01-01

    The zebrafish (Danio Rerio) is an established model organism for the study of developmental processes, human disease and tissue regeneration. We report that limb regeneration is severely impaired in our newly developed adult zebrafish model of type I diabetes. Intraperitoneal streptozocin injection of adult, wild type zebrafish results in a sustained hyperglycemic state as determined by elevated fasting blood glucose values and increased glycation of serum protein. Serum insulin levels are also decreased and pancreas immunohistochemisty revealed a lesser amount of insulin signal in hyperglycemic fish. Additionally, the diabetic complications of retinal thinning and glomerular basement membrane thickening (early signs of retinopathy and nephropathy) resulting from the hyperglycemic state were evident in streptozocin injected fish at three weeks. Most significantly, limb regeneration, following caudal fin amputation, is severely impaired in diabetic zebrafish. Nonspecific toxic effects outside the pancreas were not found to contribute to impaired limb regeneration. This experimental system using adult zebrafish facilitates a broad spectrum of genetic and molecular approaches to study regeneration in the diabetic background. PMID:20840523

  6. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: neuron number, location, and cotransmitters.

    PubMed

    Sundvik, Maria; Panula, Pertti

    2012-12-01

    Histamine is an essential factor in the ascending arousal system (AAS) during motivated behaviors. Histamine and hypocretin/orexin (hcrt) are proposed to be responsible for different aspects of arousal and wakefulness, histamine mainly for cognitive and motivated behaviors. In this study we visualized the entire histaminergic neuron population in adult male and female zebrafish brain and quantified the histaminergic neuron numbers. There were 40-45 histaminergic neurons in both male and female zebrafish brain. Further, we identified cotransmitters of histaminergic neurons in the ventrocaudal hypothalamus, i.e., around the posterior recess (PR) in adult zebrafish. Galanin, γ-aminobutyric acid (GABA), and thyrotropin-releasing hormone (TRH) were colocalized with histamine in some but not all neurons, a result that was verified by intracerebroventricular injections of colchicine into adult zebrafish. Fibers immunoreactive (ir) for galanin, GABA, TRH, or methionine-enkephalin (mENK) were dense in the ventrocaudal hypothalamus around the histaminergic neurons. In histamine-ir fibers TRH and galanin immunoreactivities were also detected in the ventral telencephalon. All these neurotransmitters are involved in maintaining the equilibrium of the sleep-wake state. Our results are in accordance with results from rats, further supporting the use of zebrafish as a tool to study molecular mechanisms underlying complex behaviors.

  7. The photoreceptive cells of the pineal gland in adult zebrafish (Danio rerio).

    PubMed

    Laurà, Rosaria; Magnoli, Domenico; Zichichi, Rosalia; Guerrera, Maria Cristina; De Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-01

    The zebrafish pineal gland plays a fundamental role in the regulation of the circadian rhythm through the melatonin secretion. The pinealocytes, also called photoreceptive cells, are considered the morphofunctional unit of pineal gland. In literature, the anatomical features, the cellular characteristics, and the pinealocytes morphology of zebrafish pineal gland have not been previously described in detail. Therefore, this study was undertaken to analyze the structure and ultrastructure, as well as the immunohistochemical profile of the zebrafish pineal gland with particular reference to the pinealocytes. Here, we demonstrated, using RT-PCR, immunohistochemistry and transmission electron microscopy, the expression of the mRNA for rhodopsin in the pineal gland of zebrafish, as well as its cellular localization exclusively in the pinealocytes of adult zebrafish. Moreover, the ultrastructural observations demonstrated that the pinealocytes were constituted by an outer segment with numerous lamellar membranes, an inner segment with many mitochondria, and a basal pole with the synapses. Our results taken together demonstrated a central role of zebrafish pinealocytes in the control of pineal gland functions.

  8. Reducing the Noise in Behavioral Assays: Sex and Age in Adult Zebrafish Locomotion

    PubMed Central

    Philpott, Catelyn; Donack, Corey J.; Cousin, Margot A.

    2012-01-01

    Abstract Many assays are used in animal model systems to measure specific human disease-related behaviors. The use of both adult and larval zebrafish as a behavioral model is gaining popularity. As this work progresses and potentially translates into new treatments, we must do our best to improve the sensitivity of these assays by reducing confounding factors. Scientists who use the mouse model system have demonstrated that sex and age can influence a number of behaviors. As a community, they have moved to report the age and sex of all animals used in their studies. Zebrafish work does not yet carry the same mandate. In this study, we evaluated sex and age differences in locomotion behavior. We found that age was a significant factor in locomotion, as was sex within a given age group. In short, as zebrafish age, they appear to show less base level locomotion. With regard to sex, younger (10 months) zebrafish showed more locomotion in males, while older zebrafish (22 months) showed more movement in females. These findings have led us to suggest that those using the zebrafish for behavioral studies control for age and sex within their experimental design and report these descriptors in their methods. PMID:23244690

  9. Reducing the noise in behavioral assays: sex and age in adult zebrafish locomotion.

    PubMed

    Philpott, Catelyn; Donack, Corey J; Cousin, Margot A; Pierret, Chris

    2012-12-01

    Many assays are used in animal model systems to measure specific human disease-related behaviors. The use of both adult and larval zebrafish as a behavioral model is gaining popularity. As this work progresses and potentially translates into new treatments, we must do our best to improve the sensitivity of these assays by reducing confounding factors. Scientists who use the mouse model system have demonstrated that sex and age can influence a number of behaviors. As a community, they have moved to report the age and sex of all animals used in their studies. Zebrafish work does not yet carry the same mandate. In this study, we evaluated sex and age differences in locomotion behavior. We found that age was a significant factor in locomotion, as was sex within a given age group. In short, as zebrafish age, they appear to show less base level locomotion. With regard to sex, younger (10 months) zebrafish showed more locomotion in males, while older zebrafish (22 months) showed more movement in females. These findings have led us to suggest that those using the zebrafish for behavioral studies control for age and sex within their experimental design and report these descriptors in their methods.

  10. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio

    PubMed Central

    Kovrižnych, Jevgenij A.; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena

    2014-01-01

    Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems. PMID:26038672

  11. Identifying proteins in zebrafish embryos using spectral libraries generated from dissected adult organs and tissues.

    PubMed

    van der Plas-Duivesteijn, Suzanne J; Mohammed, Yassene; Dalebout, Hans; Meijer, Annemarie; Botermans, Anouk; Hoogendijk, Jordy L; Henneman, Alex A; Deelder, André M; Spaink, Herman P; Palmblad, Magnus

    2014-03-01

    Spectral libraries provide a sensitive and accurate method for identifying peptides from tandem mass spectra, complementary to searching genome-derived databases or sequencing de novo. Their application requires comprehensive libraries including peptides from low-abundant proteins. Here we describe a method for constructing such libraries using biological differentiation to "fractionate" the proteome by harvesting adult organs and tissues and build comprehensive libraries for identifying proteins in zebrafish (Danio rerio) embryos and larvae (an important and widely used model system). Hierarchical clustering using direct comparison of spectra was used to prioritize organ selection. The resulting and publicly available library covers 14,164 proteins, significantly improved the number of peptide-spectrum matches in zebrafish developmental stages, and can be used on data from different instruments and laboratories. The library contains information on tissue and organ expression of these proteins and is also applicable for adult experiments. The approach itself is not limited to zebrafish but would work for any model system.

  12. Subdivisions of the adult zebrafish pallium based on molecular marker analysis

    PubMed Central

    Ganz, Julia; Kroehne, Volker; Freudenreich, Dorian; Machate, Anja; Geffarth, Michaela; Braasch, Ingo; Kaslin, Jan; Brand, Michael

    2015-01-01

    Background: The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the pallium of ray-finned fishes and the pallial nuclei of all other vertebrates. Various models of homology between pallial subdivisions in ray-finned fishes and the pallial nuclei in tetrapods have been proposed based on connectional, neurochemical, gene expression and functional data. However, no consensus has been reached so far. In recent years, the analysis of conserved developmental marker genes has assisted the identification of homologies for different parts of the telencephalon among several tetrapod species. Results: We have investigated the gene expression pattern of conserved marker genes in the adult zebrafish ( Danio rerio) pallium to identify pallial subdivisions and their homology to pallial nuclei in tetrapods. Combinatorial expression analysis of ascl1a, eomesa, emx1, emx2, emx3, and Prox1 identifies four main divisions in the adult zebrafish pallium. Within these subdivisions, we propose that Dm is homologous to the pallial amygdala in tetrapods and that the dorsal subdivision of Dl is homologous to part of the hippocampal formation in mouse. We have complemented this analysis be examining the gene expression of emx1, emx2 and emx3 in the zebrafish larval brain. Conclusions: Based on our gene expression data, we propose a new model of subdivisions in the adult zebrafish pallium and their putative homologies to pallial nuclei in tetrapods. Pallial nuclei control sensory, motor, and cognitive functions, like memory, learning and emotion. The identification of pallial subdivisions in the adult zebrafish and their homologies to pallial nuclei in tetrapods will contribute to the use of the zebrafish system as a model

  13. Nonhatching Decapsulated Artemia Cysts As a Replacement to Artemia Nauplii in Juvenile and Adult Zebrafish Culture.

    PubMed

    Tye, Marc; Rider, Dana; Duffy, Elizabeth A; Seubert, Adam; Lothert, Brogen; Schimmenti, Lisa A

    2015-12-01

    Feeding Artemia nauplii as the main nutrition source for zebrafish is a common practice for many research facilities. Culturing live feed can be time-consuming and requires additional equipment to be purchased, maintained, and cleaned. Nonhatching decapsulated Artemia cysts (decaps) are a commercially available product that can be fed directly to fish. Several other ornamental fish species have been successfully cultured using decaps. Replacing Artemia nauplii with decaps could reduce the overall time and costs associated with the operation of a zebrafish facility. The objective of this study was to determine if decaps could be a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture. Wild-type zebrafish were fed one of three dietary treatments: decaps only, nauplii only, or a standard consisting of nauplii plus a commercially prepared pellet food. Survival, growth (length and weight), and embryo production were analyzed between the treatments. Fish receiving the decap diet demonstrated a significantly higher growth and embryo production when compared to the fish receiving the nauplii-only diet. When comparing the decap fish to the standard fish, no significant difference was found in mean survival, mean weight at 90 days postfertilization, or mean embryo production. It was determined that nonhatching decapsulated Artemia cysts can be used as a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture.

  14. Nonhatching Decapsulated Artemia Cysts As a Replacement to Artemia Nauplii in Juvenile and Adult Zebrafish Culture.

    PubMed

    Tye, Marc; Rider, Dana; Duffy, Elizabeth A; Seubert, Adam; Lothert, Brogen; Schimmenti, Lisa A

    2015-12-01

    Feeding Artemia nauplii as the main nutrition source for zebrafish is a common practice for many research facilities. Culturing live feed can be time-consuming and requires additional equipment to be purchased, maintained, and cleaned. Nonhatching decapsulated Artemia cysts (decaps) are a commercially available product that can be fed directly to fish. Several other ornamental fish species have been successfully cultured using decaps. Replacing Artemia nauplii with decaps could reduce the overall time and costs associated with the operation of a zebrafish facility. The objective of this study was to determine if decaps could be a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture. Wild-type zebrafish were fed one of three dietary treatments: decaps only, nauplii only, or a standard consisting of nauplii plus a commercially prepared pellet food. Survival, growth (length and weight), and embryo production were analyzed between the treatments. Fish receiving the decap diet demonstrated a significantly higher growth and embryo production when compared to the fish receiving the nauplii-only diet. When comparing the decap fish to the standard fish, no significant difference was found in mean survival, mean weight at 90 days postfertilization, or mean embryo production. It was determined that nonhatching decapsulated Artemia cysts can be used as a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture. PMID:25495227

  15. Radial glia and neural progenitors in the adult zebrafish central nervous system.

    PubMed

    Than-Trong, Emmanuel; Bally-Cuif, Laure

    2015-08-01

    The adult central nervous system (CNS) of the zebrafish, owing to its enrichment in constitutive neurogenic niches, is becoming an increasingly used model to address fundamental questions pertaining to adult neural stem cell (NSC) biology, adult neurogenesis and neuronal repair. Studies conducted in several CNS territories (notably the telencephalon, retina, midbrain, cerebellum and spinal cord) highlighted the presence, in these niches, of progenitor cells displaying NSC-like characters. While pointing to radial glial cells (RG) as major long-lasting, constitutively active and/or activatable progenitors in most domains, these studies also revealed a high heterogeneity in the progenitor subtypes used at the top of neurogenic hierarchies, including the persistence of neuroepithelial (NE) progenitors in some areas. Likewise, dissecting the molecular pathways underlying RG maintenance and recruitment under physiological conditions and upon repair in the zebrafish model revealed shared processes but also specific cascades triggering or sustaining reparative NSC recruitment. Together, the zebrafish adult brain reveals an extensive complexity of adult NSC niches, properties and control pathways, which extends existing understanding of adult NSC biology and gives access to novel mechanisms of efficient NSC maintenance and recruitment in an adult vertebrate brain. PMID:25976648

  16. Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish.

    PubMed

    Kishimoto, Norihito; Alfaro-Cervello, Clara; Shimizu, Kohei; Asakawa, Kazuhide; Urasaki, Akihiro; Nonaka, Shigenori; Kawakami, Koichi; Garcia-Verdugo, Jose Manuel; Sawamoto, Kazunobu

    2011-12-01

    In the brain of adult mammals, neuronal precursors are generated in the subventricular zone in the lateral wall of the lateral ventricles and migrate into the olfactory bulbs (OBs) through a well-studied route called the rostral migratory stream (RMS). Recent studies have revealed that a comparable neural stem cell niche is widely conserved at the ventricular wall of adult vertebrates. However, little is known about the migration route of neuronal precursors in nonmammalian adult brains. Here, we show that, in the adult zebrafish, a cluster of neuronal precursors generated in the telencephalic ventricular zone migrates into the OB via a route equivalent to the mammalian RMS. Unlike the mammalian RMS, these neuronal precursors are not surrounded by glial tubes, although radial glial cells with a single cilium lined the telencephalic ventricular wall, much as in embryonic and neonatal mammals. To observe the migrating neuronal precursors in living brain tissue, we established a brain hemisphere culture using a zebrafish line carrying a GFP transgene driven by the neurogenin1 (ngn1) promoter. In these fish, GFP was observed in the neuronal precursors migrating in the RMS, some of which were aligned with blood vessels. Numerous ngn1:gfp-positive cells were observed migrating tangentially in the RMS-like route medial to the OB. Taken together, our results suggest that the RMS in the adult zebrafish telencephalon is a functional migratory pathway. This is the first evidence for the tangential migration of neuronal precursors in a nonmammalian adult telencephalon.

  17. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Cortés-Campos, Christian; Letelier, Joaquín; Ceriani, Ricardo; Whitlock, Kathleen E.

    2015-01-01

    ABSTRACT Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons. PMID:26209533

  18. Sex Suffers for Younger Adults After Heart Attack

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160722.html Sex Suffers for Younger Adults After Heart Attack Lack ... who don't talk to their doctors about sex in the first few weeks after a heart ...

  19. [Approach to congenital heart disease in adults].

    PubMed

    Alva Espinosa, Carlos

    2006-01-01

    After a few decades treating patients with congenital heart disease during childhood, we now face the problem of dealing with many of them as adults and few cases with disorders detected in adult life. The number of patients, with and without surgery is growing up rapidly. Conservatively speaking, there are in Mexico approximately 300 thousands patients with this condition, increasing by 15 thousands patients per year. In addition to the complexity of the congenital pathology, the knowledge of acquired diseases should be incorporated as well as the genetic advise, pregnancy care and specialized psychological support. The approach to these patients begins with stratification; diagnosis and treatment requiring a multidisciplinary, well informed and an capable to perform together medical team.

  20. Whole adult organism transcriptional profiling of acute metal exposures in male Zebrafish

    PubMed Central

    2014-01-01

    Background A convergence of technological breakthroughs in the past decade has facilitated the development of rapid screening tools for biomarkers of toxicant exposure and effect. Platforms using the whole adult organism to evaluate the genome-wide response to toxicants are especially attractive. Recent work demonstrates the feasibility of this approach in vertebrates using the experimentally robust zebrafish model. In the present study, we evaluated gene expression changes in whole adult male zebrafish following an acute 24 hr high dose exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride or sodium dichromate concentrations corresponding to their respective 96 hr LC20, LC40 and LC60. Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal. Results Comparative analysis identified subsets of differentially expressed transcripts both overlapping and unique to each metal. Application of gene ontology (GO) and transcription factor (TF) enrichment algorithms revealed a number of key biological processes perturbed by metal poisonings and the master transcriptional regulators mediating gene expression changes. Metal poisoning differentially activated biological processes associated with ribosome biogenesis, proteosomal degradation, and p53 signaling cascades, while repressing oxygen-generating pathways associated with amino acid and lipid metabolism. Despite appreciable effects on gene regulation, nickel poisoning did not induce any morphological alterations in male zebrafish organs and tissues. Histopathological effects of cobalt remained confined to the olfactory system, while chromium targeted the gills, pharynx, and intestinal mucosa. A number of enriched transcription factors mediated the observed gene response to metal poisoning, including known targets such as p53, HIF1α, and the myc oncogene, and novel

  1. Heart Disease, Stroke, or Other Cardiovascular Disease and Adult Vaccination

    MedlinePlus

    ... Disease, Stroke, or Other Cardiovascular Disease and Adult Vaccination Language: English Español (Spanish) Recommend on Facebook Tweet ... more about health insurance options. Learn about adult vaccination and other health conditions Asplenia Diabetes Heart Disease, ...

  2. Time-Gated Optical Projection Tomography Allows Visualization of Adult Zebrafish Internal Structures

    PubMed Central

    Foglia, Efrem Alessandro; Pistocchi, Anna; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio; Cotelli, Franco

    2012-01-01

    Optical imaging through biological samples is compromised by tissue scattering and currently various approaches aim to overcome this limitation. In this paper we demonstrate that an all optical technique, based on non-linear upconversion of infrared ultrashort laser pulses and on multiple view acquisition, allows the reduction of scattering effects in tomographic imaging. This technique, namely Time-Gated Optical Projection Tomography (TGOPT), is used to reconstruct three dimensionally the internal structure of adult zebrafish without staining or clearing agents. This method extends the use of Optical Projection Tomography to optically diffusive samples yielding reconstructions with reduced artifacts, increased contrast and improved resolution with respect to those obtained with non-gated techniques. The paper shows that TGOPT is particularly suited for imaging the skeletal system and nervous structures of adult zebrafish. PMID:23185643

  3. Kainate administered to adult zebrafish causes seizures similar to those in rodent models.

    PubMed

    Alfaro, Juan M; Ripoll-Gómez, Jorge; Burgos, Javier S

    2011-04-01

    Glutamate is the major excitatory neurotransmitter of the central nervous system in vertebrates. Excitotoxicity, caused by over-stimulation of the glutamate receptors, is a major cause of neuron death in several brain diseases, including epilepsy. We describe here how behavioural seizures can be triggered in adult zebrafish by the administration of kainate and are very similar to those observed in rodent models. Kainate induced a dose-dependent sequence of behavioural changes culminating in clonus-like convulsions. Behavioural seizures were suppressed by DNQX (6,7-dinitroquinoxaline-2,3-dione) dose-dependently, whilst MK-801 (a non-competitive NMDA receptor antagonist) had a lesser effect. Kainate triggers seizures in adult zebrafish, and thus this species can be considered as a new model for studying seizures and subsequent excitotoxic brain injury.

  4. The Behavioral Effects of Single Housing and Environmental Enrichment on Adult Zebrafish (Danio rerio).

    PubMed

    Collymore, Chereen; Tolwani, Ravi J; Rasmussen, Skye

    2015-05-01

    Environmental enrichment provides laboratory-housed species the opportunity to express natural behavior and exert control over their home environment, thereby minimizing stress. We sought to determine whether providing an artificial plant in the holding tank as enrichment influenced anxiety-like behaviors and place-preference choice in adult zebrafish. Fish were housed singly or in social groups of 5 for 3 wk in 1 of 4 experimental housing environments: single-housed enriched (n = 30), single-housed barren (n = 30), group-housed enriched (n = 30), and group-housed barren (n = 30). On week 4, individual fish were selected randomly from each of the experimental housing environments and tested by using novel-tank, light-dark, and place-preference tests. Housing fish singly in a barren environment increased anxiety-like behaviors in the novel-tank and light-dark behavioral tests. Single-housed zebrafish in barren tanks as well as zebrafish group-housed with conspecifics, both with and without plant enrichment, spent more time associating with conspecifics than with the artificial plant enrichment device during the place-preference test. Single-housed fish maintained in enriched tanks displayed no preference between a compartment with conspecifics or an artificial plant. Our results suggest the addition of an artificial plant as enrichment may benefit single-housed zebrafish when social housing is not possible.

  5. The Behavioral Effects of Single Housing and Environmental Enrichment on Adult Zebrafish (Danio rerio)

    PubMed Central

    Collymore, Chereen; Tolwani, Ravi J; Rasmussen, Skye

    2015-01-01

    Environmental enrichment provides laboratory-housed species the opportunity to express natural behavior and exert control over their home environment, thereby minimizing stress. We sought to determine whether providing an artificial plant in the holding tank as enrichment influenced anxiety-like behaviors and place-preference choice in adult zebrafish. Fish were housed singly or in social groups of 5 for 3 wk in 1 of 4 experimental housing environments: single-housed enriched (n = 30), single-housed barren (n = 30), group-housed enriched (n = 30), and group-housed barren (n = 30). On week 4, individual fish were selected randomly from each of the experimental housing environments and tested by using novel-tank, light–dark, and place-preference tests. Housing fish singly in a barren environment increased anxiety-like behaviors in the novel-tank and light–dark behavioral tests. Single-housed zebrafish in barren tanks as well as zebrafish group-housed with conspecifics, both with and without plant enrichment, spent more time associating with conspecifics than with the artificial plant enrichment device during the place-preference test. Single-housed fish maintained in enriched tanks displayed no preference between a compartment with conspecifics or an artificial plant. Our results suggest the addition of an artificial plant as enrichment may benefit single-housed zebrafish when social housing is not possible. PMID:26045453

  6. S100 protein-like immunoreactivity in the crypt olfactory neurons of the adult zebrafish.

    PubMed

    Germanà, A; Montalbano, G; Laurà, R; Ciriaco, E; del Valle, M E; Vega, José A

    2004-11-23

    The olfactory epithelium of some teleosts, including zebrafish, contains three types of olfactory sensory neurons. Because zebrafish has become an ideal model for the study of neurogenesis in the olfactory system, it is of capital importance the identification of specific markers for different neuronal populations. In this study we used immunohistochemistry to analyze the distribution of S100 protein-like in the adult zebrafish olfactory epithelium. Surprisingly, specific S100 protein-like immunostaining was detected exclusively in crypt neurons, whereas ciliated and microvillous neurons were not reactive, and the supporting glial cells as well. The pattern of immunostaining was exclusively cytoplasmic without apparent polarity within the soma, and the intensity of immunostaining was not related with the maturative stage of the neurons. The role of S100 protein in crypt olfactory neurons is unknown, although it is probably associated with the capacity of these cells to respond to chemical stimuli. In any case, it represents an excellent marker to identify crypt olfactory neurons in zebrafish.

  7. In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio).

    PubMed

    Krishnaraj, Chandran; Harper, Stacey L; Yun, Soon-Il

    2016-01-15

    The present study examines the deleterious effect of biologically synthesized silver nanoparticles in adult zebrafish. Silver nanoparticles (AgNPs) used in the study were synthesized by treating AgNO3 with aqueous leaves extract of Malva crispa Linn., a medicinal herb as source of reductants. LC50 concentration of AgNPs at 96 h was observed as 142.2 μg/l. In order to explore the underlying toxicity mechanisms of AgNPs, half of the LC50 concentration (71.1 μg/l) was exposed to adult zebrafish for 14 days. Cytological changes and intrahepatic localization of AgNPs were observed in gills and liver tissues respectively, and the results concluded a possible sign for oxidative stress. In addition to oxidative stress the genotoxic effect was observed in peripheral blood cells like presence of micronuclei, nuclear abnormalities and also loss in cell contact with irregular shape was observed in liver parenchyma cells. Hence to confirm the oxidative stress and genotoxic effects the mRNA expression of stress related (MTF-1, HSP70) and immune response related (TLR4, NFKB, IL1B, CEBP, TRF, TLR22) genes were analyzed in liver tissues and the results clearly concluded that the plant extract mediated synthesis of AgNPs leads to oxidative stress and immunotoxicity in adult zebrafish.

  8. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    DOE PAGES

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less

  9. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  10. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification.

    PubMed

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D'Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  11. Multiphoton light-sheet microscopy using wavelength mixing: fast multicolor imaging of the beating Zebrafish heart with low photobleaching

    NASA Astrophysics Data System (ADS)

    Mahou, Pierre; Vermot, Julien; Beaurepaire, Emmanuel; Supatto, Willy

    2015-03-01

    Two-photon laser scanning microscopy has become a standard to map thick and live tissues. However, its application for fast and multicolor imaging remains challenging. To address this issue, we report on the implementation of mixed wavelength excitation in a two-photon light-sheet microscope. We illustrate the potential of the technique by recording sustained multicolor two-photon movies of the beating heart in zebrafish embryos with negligible photobleaching at 28 million pixels/second. In particular, 3D reconstructions of the heart periodic motion are obtained with sufficient spatiotemporal resolution to track the fast movements of individual cells during a cardiac cycle.

  12. Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio).

    PubMed

    Ampatzis, Konstantinos; Dermon, Catherine R

    2016-10-01

    Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior.

  13. Ketamine induces anxiolytic effects in adult zebrafish: A multivariate statistics approach.

    PubMed

    De Campos, Eduardo Geraldo; Bruni, Aline Thais; De Martinis, Bruno Spinosa

    2015-10-01

    Ketamine inappropriate use has been associated with serious consequences for human health. Anesthetic properties of ketamine are well-known, but its side effects are poorly described, including the effects on anxiety. In this context, animal models are a safe way to conduct this neurobehavioral research and zebrafish (Danio rerio) is an interesting model which has several advantages. The validation and interpretation of results of behavioral assays requires a suitable statistical approach, and the use of multivariate statistical methods has been little explored, especially in zebrafish behavioral models. Here, we investigated the anxiolytic-induced effects of ketamine in adult zebrafish, using Light-Dark Test and proposing the Multivariate Statistics methods (PCA, HCA and SIMCA) to analyze the results. In addition, we compared the processing of data to the one carried out by analysis of variance (ANOVA) ketamine produced significant concentration of exposure-dependent anxiolytic effects, increasing time in white area and number of crossings and decreasing latency to first access to white area. Average entry duration behavior resulted in a slight decrease from control to treatment groups, with an observed concentration-dependent increase among the exposed groups. PCA results indicated that two principal components represent 88.74% of all the system information. HCA and PCA results showed a higher similarity among control and treatment groups exposed to lower concentrations of ketamine and among treatment groups exposed to concentrations of 40 and 60 mg L(-1). In SIMCA results, interclasses distances were concentration of exposure-dependent increased and misclassifications and interclasses residues results also support these findings. These findings confirm the anxiolytic potential of ketamine and zebrafish sensibility to this drug. In summary, our study confirms that zebrafish and multivariate statistics data validation are an appropriate and viable behavioral model

  14. Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio).

    PubMed

    Ampatzis, Konstantinos; Dermon, Catherine R

    2016-10-01

    Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior. PMID:27363927

  15. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  16. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation.

    PubMed

    Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V; Beg, Mirza Faisal; Tibbits, Glen F

    2015-05-01

    Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented.

  17. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation

    PubMed Central

    Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V.; Beg, Mirza Faisal

    2015-01-01

    Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented. PMID:25740339

  18. Acquired heart conditions in adults with congenital heart disease: a growing problem.

    PubMed

    Tutarel, Oktay

    2014-09-01

    The number of adults with congenital heart disease is increasing due to the great achievements in the field of paediatric cardiology, congenital heart surgery and intensive care medicine over the last decades. Mortality has shifted away from the infant and childhood period towards adulthood. As congenital heart disease patients get older, a high prevalence of cardiovascular risk factors is encountered similar to the general population. Consequently, the contribution of acquired morbidities, especially acquired heart conditions to patient outcome, is becoming increasingly important. Therefore, to continue the success story of the last decades in the treatment of congenital heart disease and to further improve the outcome of these patients, more attention has to be given to the prevention, detection and adequate therapy of acquired heart conditions. The aim of this review is to give an overview about acquired heart conditions that may be encountered in adults with congenital heart disease.

  19. A New Anaesthetic Protocol for Adult Zebrafish (Danio rerio): Propofol Combined with Lidocaine

    PubMed Central

    Valentim, Ana M.; Félix, Luís M.; Carvalho, Leonor; Diniz, Enoque; Antunes, Luís M.

    2016-01-01

    Background The increasing use of zebrafish model has not been accompanied by the evolution of proper anaesthesia for this species in research. The most used anaesthetic in fishes, MS222, may induce aversion, reduction of heart rate, and consequently high mortality, especially during long exposures. Therefore, we aim to explore new anaesthetic protocols to be used in zebrafish by studying the quality of anaesthesia and recovery induced by different concentrations of propofol alone and in combination with different concentrations of lidocaine. Material and Methods In experiment A, eighty-three AB zebrafish were randomly assigned to 7 different groups: control, 2.5 (2.5P), 5 (5P) or 7.5 μg/ml (7.5P) of propofol; and 2.5 μg/ml of propofol combined with 50, (P/50L), 100 (P/100L) or 150 μg/ml (P/150L) of lidocaine. Zebrafish were placed in an anaesthetic water bath and time to lose the equilibrium, reflex to touch, reflex to a tail pinch, and respiratory rate were measured. Time to gain equilibrium was also assessed in a clean tank. Five and 24 hours after anaesthesia recovery, zebrafish were evaluated concerning activity and reactivity. Afterwards, in a second phase of experiments (experiment B), the best protocol of the experiment A was compared with a new group of 8 fishes treated with 100 mg/L of MS222 (100M). Results In experiment A, only different concentrations of propofol/lidocaine combination induced full anaesthesia in all animals. Thus only these groups were compared with a standard dose of MS222 in experiment B. Propofol/lidocaine induced a quicker loss of equilibrium, and loss of response to light and painful stimuli compared with MS222. However zebrafish treated with MS222 recovered quickly than the ones treated with propofol/lidocaine. Conclusion In conclusion, propofol/lidocaine combination and MS222 have advantages in different situations. MS222 is ideal for minor procedures when a quick recovery is important, while propofol/lidocaine is best to

  20. A review of the economics of adult congenital heart disease.

    PubMed

    Seckeler, Michael D; Thomas, Ian D; Andrews, Jennifer; Joiner, Keith; Klewer, Scott E

    2016-01-01

    Adults living with congenital heart disease (CHD) now outnumber children with the disease. Thanks to medical advances over the past 75 years, many of these fatal childhood heart problems have changed to chronic medical conditions. As the population of adults with CHD increases, they will require increasingly complex medical, surgical and catheter-based therapies. In addition, social burdens including education, employment and insurability, which increase the societal costs of adult CHD, are now being recognized for adults living with CHD. This review summarizes the available literature on the economics of adult CHD.

  1. Changes in gravitational force induce alterations in gene expression that can be monitored in the live, developing zebrafish heart

    NASA Astrophysics Data System (ADS)

    Gillette-Ferguson, I.; Ferguson, D. G.; Poss, K. D.; Moorman, S. J.

    2003-10-01

    Little is known about the effect of microgravity on gene expression, particularly in vivo during embryonic development. Using transgenic zebrafish that express the gfp gene under the influence of a β-actin promoter, we examined the affect of simulated-microgravity on GFP expression in the heart. Zebrafish embryos, at the 18-20 somite-stage, were exposed to simulated-microgravity for 24 hours. The intensity of GFP fluorescence associated with the heart was then determined using fluorescence microscopy. Our measurements indicated that simulated-microgravity induced a 23.9% increase in GFP-associated fluorescence in the heart. In contrast, the caudal notochord showed a 17.5% increase and the embryo as a whole showed only an 8.5% increase in GFP-associated fluorescence. This suggests that there are specific effects on the heart causing the more dramatic increase. These studies indicate that microgravity can influence gene expression and demonstrate the usefulness of this in vivo model of "reporter-gene" expression for studying the effects of microgravity.

  2. Identification, Characterization, and Mapping of Expressed Sequence Tags from an Embryonic Zebrafish Heart cDNA Library

    PubMed Central

    Ton, Christopher; Hwang, David M.; Dempsey, Adam A.; Tang, Hong-Chang; Yoon, Jennifer; Lim, Mindy; Mably, John D.; Fishman, Mark C.; Liew, Choong-Chin

    2000-01-01

    The generation of expressed sequence tags (ESTs) has proven to be a rapid and economical approach by which to identify and characterize expressed genes. We generated 5102 ESTs from a 3-d-old embryonic zebrafish heart cDNA library. Of these, 57.6% matched to known genes, 14.2% matched only to other ESTs, and 27.8% showed no match to any ESTs or known genes. Clustering of all ESTs identified 359 unique clusters comprising 1771 ESTs, whereas the remaining 3331 ESTs did not cluster. This estimates the number of unique genes identified in the data set to be approximately 3690. A total of 1242 unique known genes were used to analyze the gene expression patterns in the zebrafish embryonic heart. These were categorized into seven categories on the basis of gene function. The largest class of genes represented those involved in gene/protein expression (25.9% of known transcripts). This class was followed by genes involved in metabolism (18.7%), cell structure/motility (16.4%), cell signaling and communication (9.6%), cell/organism defense (7.1%), and cell division (4.4%). Unclassified genes constituted the remaining 17.91%. Radiation hybrid mapping was performed for 102 ESTs and comparison of map positions between zebrafish and human identified new synteny groups. Continued comparative analysis will be useful in defining the boundaries of conserved chromosome segments between zebrafish and humans, which will facilitate the transfer of genetic information between the two organisms and improve our understanding of vertebrate evolution. [The sequence data described in this paper have been submitted to the GenBank data library under accession nos. BE693120–BE693210 and BE704450.] PMID:11116087

  3. Retinal Vasculature of Adult Zebrafish: In Vivo Imaging Using Confocal Scanning Laser Ophthalmoscopy

    PubMed Central

    Bell, Brent A.; Xie, Jing; Yuan, Alex; Kaul, Charles; Hollyfield, Joe G.; Anand-Apte, Bela

    2014-01-01

    Over the past 3 decades the zebrafish (Danio rerio) has become an important biomedical research species. As their use continues to grow additional techniques and tools will be required to keep pace with ongoing research using this species. In this paper we describe a novel method for in vivo imaging of the retinal vasculature in adult animals using a commercially available confocal scanning laser ophthalmoscope (SLO). With this instrumentation, we demonstrate the ability to distinguish diverse vascular phenotypes in different transgenic GFP lines. In addition this technology allows repeated visualization of the vasculature in individual zebrafish over time to document vascular leakage progression and recovery induced by intraocular delivery of proteins that induce vascular permeability. SLO of the retinal vasculature was found to be highly informative, providing images of high contrast and resolution that were capable of resolving individual vascular endothelial cells. Finally, the procedures required to acquire SLO images from zebrafish are non-invasive, simple to perform and can be achieved with low animal mortality, allowing repeated imaging of individual fish. PMID:25447564

  4. Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish

    PubMed Central

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2013-01-01

    Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals. PMID:24336189

  5. Strong Static Magnetic Fields Elicit Swimming Behaviors Consistent with Direct Vestibular Stimulation in Adult Zebrafish

    PubMed Central

    Ward, Bryan K.; Tan, Grace X-J; Roberts, Dale C.; Della Santina, Charles C.; Zee, David S.; Carey, John P.

    2014-01-01

    Zebrafish (Danio rerio) offer advantages as model animals for studies of inner ear development, genetics and ototoxicity. However, traditional assessment of vestibular function in this species using the vestibulo-ocular reflex requires agar-immobilization of individual fish and specialized video, which are difficult and labor-intensive. We report that using a static magnetic field to directly stimulate the zebrafish labyrinth results in an efficient, quantitative behavioral assay in free-swimming fish. We recently observed that humans have sustained nystagmus in high strength magnetic fields, and we attributed this observation to magnetohydrodynamic forces acting on the labyrinths. Here, fish were individually introduced into the center of a vertical 11.7T magnetic field bore for 2-minute intervals, and their movements were tracked. To assess for heading preference relative to a magnetic field, fish were also placed in a horizontally oriented 4.7T magnet in infrared (IR) light. A sub-population was tested again in the magnet after gentamicin bath to ablate lateral line hair cell function. Free-swimming adult zebrafish exhibited markedly altered swimming behavior while in strong static magnetic fields, independent of vision or lateral line function. Two-thirds of fish showed increased swimming velocity or consistent looping/rolling behavior throughout exposure to a strong, vertically oriented magnetic field. Fish also demonstrated altered swimming behavior in a strong horizontally oriented field, demonstrating in most cases preferred swimming direction with respect to the field. These findings could be adapted for ‘high-throughput’ investigations of the effects of environmental manipulations as well as for changes that occur during development on vestibular function in zebrafish. PMID:24647586

  6. Aquatic surface respiration and swimming behaviour in adult and developing zebrafish exposed to hypoxia.

    PubMed

    Abdallah, Sara J; Thomas, Benjamin S; Jonz, Michael G

    2015-06-01

    Severe hypoxia elicits aquatic surface respiration (ASR) behaviour in many species of fish, where ventilation of the gills at the air-water interface improves O2 uptake and survival. ASR is an important adaptation that may have given rise to air breathing in vertebrates. The neural substrate of this behaviour, however, is not defined. We characterized ASR in developing and adult zebrafish (Danio rerio) to ascertain a potential role for peripheral chemoreceptors in initiation or modulation of this response. Adult zebrafish exposed to acute, progressive hypoxia (PO2 from 158 to 15 mmHg) performed ASR with a threshold of 30 mmHg, and spent more time at the surface as PO2 decreased. Acclimation to hypoxia attenuated ASR responses. In larvae, ASR behaviour was observed between 5 and 21 days postfertilization with a threshold of 16 mmHg. Zebrafish decreased swimming behaviour (i.e. distance, velocity and acceleration) as PO2 was decreased, with a secondary increase in behaviour near or below threshold PO2 . In adults that underwent a 10-day intraperitoneal injection regime of 10 μg g(-1) serotonin (5-HT) or 20 μg g(-1) acetylcholine (ACh), an acute bout of hypoxia (15 mmHg) increased the time engaged in ASR by 5.5 and 4.9 times, respectively, compared with controls. Larvae previously immersed in 10 μmol l(-1) 5-HT or ACh also displayed an increased ASR response. Our results support the notion that ASR is a behavioural response that is reliant upon input from peripheral O2 chemoreceptors. We discuss implications for the role of chemoreceptors in the evolution of air breathing.

  7. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field.

    PubMed

    Jahangiri, Leila; Sharpe, Michka; Novikov, Natasha; González-Rosa, Juan Manuel; Borikova, Asya; Nevis, Kathleen; Paffett-Lugassy, Noelle; Zhao, Long; Adams, Meghan; Guner-Ataman, Burcu; Burns, Caroline E; Burns, C Geoffrey

    2016-01-01

    The vertebrate heart forms through successive phases of cardiomyocyte differentiation. Initially, cardiomyocytes derived from first heart field (FHF) progenitors assemble the linear heart tube. Thereafter, second heart field (SHF) progenitors differentiate into cardiomyocytes that are accreted to the poles of the heart tube over a well-defined developmental window. Although heart tube elongation deficiencies lead to life-threatening congenital heart defects, the variables controlling the initiation, rate and duration of myocardial accretion remain obscure. Here, we demonstrate that the AP-1 transcription factor, Fos-like antigen 2 (Fosl2), potentiates the rate of myocardial accretion from the zebrafish SHF. fosl2 mutants initiate accretion appropriately, but cardiomyocyte production is sluggish, resulting in a ventricular deficit coupled with an accumulation of SHF progenitors. Surprisingly, mutant embryos eventually correct the myocardial deficit by extending the accretion window. Overexpression of Fosl2 also compromises production of SHF-derived ventricular cardiomyocytes, a phenotype that is consistent with precocious depletion of the progenitor pool. Our data implicate Fosl2 in promoting the progenitor to cardiomyocyte transition and uncover the existence of regulatory mechanisms to ensure appropriate SHF-mediated cardiomyocyte contribution irrespective of embryonic stage.

  8. Pattern of innervation and recruitment of different classes of motoneurons in adult zebrafish.

    PubMed

    Ampatzis, Konstantinos; Song, Jianren; Ausborn, Jessica; El Manira, Abdeljabbar

    2013-06-26

    In vertebrates, spinal circuits drive rhythmic firing in motoneurons in the appropriate sequence to produce locomotor movements. These circuits become active early during development and mature gradually to acquire the flexibility necessary to accommodate the increased behavioral repertoire of adult animals. The focus here is to elucidate how different pools of motoneurons are organized and recruited and how membrane properties contribute to their mode of operation. For this purpose, we have used the in vitro preparation of adult zebrafish. We show that different motoneuron pools are organized in a somatotopic fashion in the motor column related to the type of muscle fibers (slow, intermediate, fast) they innervate. During swimming, the different motoneuron pools are recruited in a stepwise manner from slow, to intermediate, to fast to cover the full range of locomotor frequencies seen in intact animals. The spike threshold, filtering properties, and firing patterns of the different motoneuron pools are graded in a manner that relates to their order of recruitment. Our results thus show that motoneurons in adult zebrafish are organized into distinct modules, each with defined locations, properties, and recruitment patterns tuned to precisely match the muscle properties and hence produce swimming of different speeds and modalities. PMID:23804107

  9. More Than Just the Heart: Transition and Psychosocial Issues in Adult Congenital Heart Disease.

    PubMed

    Kovacs, Adrienne H; Utens, Elisabeth M

    2015-11-01

    Most infants born with congenital heart disease (CHD) are now expected to reach adulthood. However, adults with CHD of moderate or great complexity remain at elevated risk of heart failure, arrhythmias, additional surgeries and interventional procedures, and premature mortality. This creates a need for lifelong specialized cardiac care and leads to 2 sets of potential challenges: (1) the transition from pediatric to adult care and (2) the psychosocial implications of coping with a chronic and often life-shortening medical condition. Many adolescents struggle with the transition to adult care, and mood and anxiety disorders are not uncommon in the adult setting.

  10. TBBPA chronic exposure produces sex-specific neurobehavioral and social interaction changes in adult zebrafish.

    PubMed

    Chen, Jiangfei; Tanguay, Robert L; Simonich, Michael; Nie, Shangfei; Zhao, Yuxin; Li, Lelin; Bai, Chenglian; Dong, Qiaoxiang; Huang, Changjiang; Lin, Kuangfei

    2016-01-01

    The toxicity of tetrabromobisphenol A (TBBPA) has been extensively studied because of its high production volume. TBBPA is toxic to aquatic fish based on acute high concentration exposure tests, and few studies have assessed the behavioral effects of low concentration chronic TBBPA exposures in aquatic organisms. The present study defined the developmental and neurobehavioral effects associated with exposure of zebrafish to 0, 5 and 50nM TBBPA during 1-120days post-fertilization (dpf) following by detoxification for four months before the behaviors assessment. These low concentration TBBPA exposures were not associated with malformations and did not alter sex ratio, but resulted in reduced zebrafish body weight and length. Adult behavioral assays indicated that TBBPA exposed males had significantly higher average swim speeds and spent significantly more time in high speed darting mode and less time in medium cruising mode compared to control males. In an adult photomotor response assay, TBBPA exposure was associated with hyperactivity in male fish. Female zebrafish responses in these assays followed a similar trend, but the magnitude of TBBPA effects was generally smaller than in males. Social interaction evaluated using a mirror attack test showed that 50nM TBBPA exposed males had heightened aggression. Females exposed to 50nM TBBPA spent more time in the vicinity of the mirror, but did not show increased aggression toward the mirror compared to unexposed control fish. Overall, the hyperactivity and social behavior deficits ascribed here to chronic TBBPA exposure was most profound in males. Our findings indicate that TBBPA can cause developmental and neurobehavioral deficits, and may pose significant health risk to humans. PMID:27221227

  11. Neuronal labeling patterns in the spinal cord of adult transgenic Zebrafish.

    PubMed

    Stil, Aurélie; Drapeau, Pierre

    2016-06-01

    We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well-known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP-positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP-positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish.

  12. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis.

    PubMed

    Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S; Xiao, Changhe; Cannon, Jason R; Freeman, Jennifer L

    2015-07-01

    Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3μg/L as defined by the U.S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30μg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7dpf or in adult males, but a significant decrease in 5-hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1928, 89, and 435 genes in the females exposed to 0.3, 3, or 30μg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis. PMID:25929836

  13. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Sepúlveda, Maria S.; Xiao, Changhe; Cannon, Jason R.; Freeman, Jennifer L.

    2015-01-01

    Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3 µg/L as defined by the U. S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30 µg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7 dpf or in adult males, but a significant decrease in 5-Hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1853, 84, and 419 genes in the females exposed to 0.3, 3, or 30 µg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis. PMID:25929836

  14. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis.

    PubMed

    Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S; Xiao, Changhe; Cannon, Jason R; Freeman, Jennifer L

    2015-07-01

    Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3μg/L as defined by the U.S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30μg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7dpf or in adult males, but a significant decrease in 5-hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1928, 89, and 435 genes in the females exposed to 0.3, 3, or 30μg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis.

  15. Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish.

    PubMed

    Barbosa, Joana S; Ninkovic, Jovica

    2016-01-01

    Adult Neural Stem Cells (aNSCs) generate new neurons that integrate into the pre-existing networks in specific locations of the Vertebrate brain. Moreover, aNSCs contribute with new neurons to brain regeneration in some non-mammalian Vertebrates. The similarities and the differences in the cellular and molecular processes governing neurogenesis in the intact and regenerating brain are still to be assessed. Toward this end, we recently established a protocol for non-invasive imaging of aNSC behavior in their niche in vivo in the adult intact and regenerating zebrafish telencephalon. We observed different modes of aNSC division in the intact brain and a novel mode of neurogenesis by direct conversion, which contributes to stem cell depletion with age. After injury, the generation of neurons is increased both by the activation of additional aNSCs and a shift in the division mode of aNSCs, thereby contributing to the successful neuronal regeneration. The cellular behavior we observed opens new questions regarding long-term aNSC maintenance in homeostasis and in regeneration. In this commentary we discuss our data and new questions arising in the context of aNSC behavior, not only in zebrafish but also in other species, including mammals. PMID:27606336

  16. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish.

    PubMed

    Diep, Cuong Q; Ma, Dongdong; Deo, Rahul C; Holm, Teresa M; Naylor, Richard W; Arora, Natasha; Wingert, Rebecca A; Bollig, Frank; Djordjevic, Gordana; Lichman, Benjamin; Zhu, Hao; Ikenaga, Takanori; Ono, Fumihito; Englert, Christoph; Cowan, Chad A; Hukriede, Neil A; Handin, Robert I; Davidson, Alan J

    2011-02-01

    Loss of kidney function underlies many renal diseases. Mammals can partly repair their nephrons (the functional units of the kidney), but cannot form new ones. By contrast, fish add nephrons throughout their lifespan and regenerate nephrons de novo after injury, providing a model for understanding how mammalian renal regeneration may be therapeutically activated. Here we trace the source of new nephrons in the adult zebrafish to small cellular aggregates containing nephron progenitors. Transplantation of single aggregates comprising 10-30 cells is sufficient to engraft adults and generate multiple nephrons. Serial transplantation experiments to test self-renewal revealed that nephron progenitors are long-lived and possess significant replicative potential, consistent with stem-cell activity. Transplantation of mixed nephron progenitors tagged with either green or red fluorescent proteins yielded some mosaic nephrons, indicating that multiple nephron progenitors contribute to a single nephron. Consistent with this, live imaging of nephron formation in transparent larvae showed that nephrogenic aggregates form by the coalescence of multiple cells and then differentiate into nephrons. Taken together, these data demonstrate that the zebrafish kidney probably contains self-renewing nephron stem/progenitor cells. The identification of these cells paves the way to isolating or engineering the equivalent cells in mammals and developing novel renal regenerative therapies.

  17. MicroRNA 218 Mediates the Effects of Tbx5a Over-Expression on Zebrafish Heart Development

    PubMed Central

    Chiavacci, Elena; Dolfi, Luca; Verduci, Lorena; Meghini, Francesco; Gestri, Gaia; Evangelista, Alberto Mercatanti Monica; Wilson, Stephen W.; Cremisi, Federico; Pitto, Letizia

    2012-01-01

    tbx5, a member of the T-box gene family, encodes one of the key transcription factors mediating vertebrate heart development. Tbx5 function in heart development appears to be exquisitely sensitive to gene dosage, since both haploinsufficiency and gene duplication generate the cardiac abnormalities associated with Holt−Oram syndrome (HOS), a highly penetrant autosomal dominant disease characterized by congenital heart defects of varying severity and upper limb malformation. It is suggested that tight integration of microRNAs and transcription factors into the cardiac genetic circuitry provides a rich and robust array of regulatory interactions to control cardiac gene expression. Based on these considerations, we performed an in silico screening to identify microRNAs embedded in genes highly sensitive to Tbx5 dosage. Among the identified microRNAs, we focused our attention on miR-218-1 that, together with its host gene, slit2, is involved in heart development. We found correlated expression of tbx5 and miR-218 during cardiomyocyte differentiation of mouse P19CL6 cells. In zebrafish embryos, we show that both Tbx5 and miR-218 dysregulation have a severe impact on heart development, affecting early heart morphogenesis. Interestingly, down-regulation of miR-218 is able to rescue the heart defects generated by tbx5 over-expression supporting the notion that miR-218 is a crucial mediator of Tbx5 in heart development and suggesting its possible involvement in the onset of heart malformations. PMID:23226307

  18. Pregnancy and Adult Congenital Heart Disease.

    PubMed

    Bhatt, Ami B; DeFaria Yeh, Doreen

    2015-11-01

    Most women with known congenital heart disease can have successful pregnancy, labor, and delivery. Preconception assessment is essential in understanding anatomy, repairs, and current physiology, all of which can influence risk in pregnancy. With that foundation, a multidisciplinary cardio-obstetric team can predict and prepare for complications that may occur with superimposed hemodynamic changes of pregnancy. Individuals with Eisenmenger syndrome, pulmonary hypertension, cyanosis, significant left heart obstruction, ventricular dysfunction, or prior major cardiac event are among the highest risk for complications.

  19. A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish.

    PubMed

    Fish, Jason E; Wythe, Joshua D; Xiao, Tong; Bruneau, Benoit G; Stainier, Didier Y R; Srivastava, Deepak; Woo, Stephanie

    2011-04-01

    Members of the Slit family of secreted ligands interact with Roundabout (Robo) receptors to provide guidance cues for many cell types. For example, Slit/Robo signaling elicits repulsion of axons during neural development, whereas in endothelial cells this pathway inhibits or promotes angiogenesis depending on the cellular context. Here, we show that miR-218 is intronically encoded in slit2 and slit3 and that it suppresses Robo1 and Robo2 expression. Our data indicate that miR-218 and multiple Slit/Robo signaling components are required for heart tube formation in zebrafish and that this network modulates the previously unappreciated function of Vegf signaling in this process. These findings suggest a new paradigm for microRNA-based control of ligand-receptor interactions and provide evidence for a novel signaling pathway regulating vertebrate heart tube assembly.

  20. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair

    PubMed Central

    Xin, Mei; Olson, Eric N.; Bassel-Duby, Rhonda

    2013-01-01

    As the adult mammalian heart has limited potential for regeneration and repair, the loss of cardiomyocytes during injury and disease can result in heart failure and death. The cellular processes and regulatory mechanisms involved in heart growth and development can be exploited to repair the injured adult heart through ‘reawakening’ pathways that are active during embryogenesis. Heart function has been restored in rodents by reprogramming non-myocytes into cardiomyocytes, by expressing transcription factors (GATA4, HAND2, myocyte-specific enhancer factor 2C (MEF2C) and T-box 5 (TBX5)) and microRNAs (miR-1, miR-133, miR-208 and miR-499) that control cardiomyocyte identity. Stimulating cardiomyocyte dedifferentiation and proliferation by activating mitotic signalling pathways involved in embryonic heart growth represents a complementary approach for heart regeneration and repair. Recent advances in understanding the mechanistic basis of heart development offer exciting opportunities for effective therapies for heart failure. PMID:23839576

  1. Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish

    PubMed Central

    Barton, Carrie L.; Proffitt, Sarah; Tanguay, Robert L.; Sharpton, Thomas J.

    2016-01-01

    Growing evidence indicates that disrupting the microbial community that comprises the intestinal tract, known as the gut microbiome, can contribute to the development or severity of disease. As a result, it is important to discern the agents responsible for microbiome disruption. While animals are frequently exposed to a diverse array of environmental chemicals, little is known about their effects on gut microbiome stability and structure. Here, we demonstrate how zebrafish can be used to glean insight into the effects of environmental chemical exposure on the structure and ecological dynamics of the gut microbiome. Specifically, we exposed forty-five adult zebrafish to triclosan-laden food for four or seven days or a control diet, and analyzed their microbial communities using 16S rRNA amplicon sequencing. Triclosan exposure was associated with rapid shifts in microbiome structure and diversity. We find evidence that several operational taxonomic units (OTUs) associated with the family Enterobacteriaceae appear to be susceptible to triclosan exposure, while OTUs associated with the genus Pseudomonas appeared to be more resilient and resistant to exposure. We also found that triclosan exposure is associated with topological alterations to microbial interaction networks and results in an overall increase in the number of negative interactions per microbe in these networks. Together these data indicate that triclosan exposure results in altered composition and ecological dynamics of microbial communities in the gut. Our work demonstrates that because zebrafish afford rapid and inexpensive interrogation of a large number of individuals, it is a useful experimental system for the discovery of the gut microbiome’s interaction with environmental chemicals. PMID:27191725

  2. Exposure to Zinc Sulfate Results in Differential Effects on Olfactory Sensory Neuron Subtypes in Adult Zebrafish

    PubMed Central

    Hentig, James T.; Byrd-Jacobs, Christine A.

    2016-01-01

    Zinc sulfate is a known olfactory toxicant, although its specific effects on the olfactory epithelium of zebrafish are unknown. Olfactory organs of adult zebrafish were exposed to zinc sulfate and, after 2, 3, 5, 7, 10 or 14 days, fish were processed for histological, immunohistochemical, ultrastructural, and behavioral analyses. Severe morphological disruption of the olfactory organ was observed two days following zinc sulfate exposure, including fusion of lamellae, epithelial inflammation, and significant loss of anti-calretinin labeling. Scanning electron microscopy revealed the apical surface of the sensory region was absent of ciliated structures, but microvilli were still present. Behavioral analysis showed significant loss of the ability to perceive bile salts and some fish also had no response to amino acids. Over the next several days, olfactory organ morphology, epithelial structure, and anti-calretinin labeling returned to control-like conditions, although the ability to perceive bile salts remained lost until day 14. Thus, exposure to zinc sulfate results in rapid degeneration of the olfactory organ, followed by restoration of morphology and function within two weeks. Zinc sulfate appears to have a greater effect on ciliated olfactory sensory neurons than on microvillous olfactory sensory neurons, suggesting differential effects on sensory neuron subtypes. PMID:27589738

  3. Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio).

    PubMed

    Chang, Juhua; Liu, Shaoying; Zhou, Shengli; Wang, Minghua; Zhu, Guonian

    2013-01-01

    Butachlor, a chloracetamide herbicide, is widely used in China. In the present study, paired adult male and female zebrafish (Danio rerio) were exposed to various concentrations of butachlor (0, 25, 50 and 100 μg/L) for 30 days, and the effects on reproduction and endocrine disruption were evaluated using fecundity, condition factor (CF), gonadosomatic index (GSI), liver somatic index (LSI), plasma vitellogenin (VTG), sex steroids and thyroid hormone levels as endpoints. Our results showed that the mean fecundity rates were significantly decreased at 50 and 100 μg/L butachlor during the 30-day exposure period. At the end of the exposure period, no significant changes were observed in CF and LSI in both females and males, while GSI was significantly reduced in males at 50 and 100 μg/L butachlor. At 100 μg/L butachlor, plasma testosterone (T) and 17β-estradiol (E2) levels were significantly decreased in females, while plasma VTG level was significantly increased in males. Plasma thyroxine (T4) and triiodothyronine (T3) levels were significantly increased at 50 and 100 μg/L butachlor in males, and at 100 μg/L in females. This work demonstrated that butachlor adversely affected the normal reproductive success of zebrafish, and disrupted the thyroid and sex steroid endocrine systems, which provides the basis for the estimated ecological risk during butachlor exposure.

  4. Exposure to Zinc Sulfate Results in Differential Effects on Olfactory Sensory Neuron Subtypes in Adult Zebrafish.

    PubMed

    Hentig, James T; Byrd-Jacobs, Christine A

    2016-01-01

    Zinc sulfate is a known olfactory toxicant, although its specific effects on the olfactory epithelium of zebrafish are unknown. Olfactory organs of adult zebrafish were exposed to zinc sulfate and, after 2, 3, 5, 7, 10 or 14 days, fish were processed for histological, immunohistochemical, ultrastructural, and behavioral analyses. Severe morphological disruption of the olfactory organ was observed two days following zinc sulfate exposure, including fusion of lamellae, epithelial inflammation, and significant loss of anti-calretinin labeling. Scanning electron microscopy revealed the apical surface of the sensory region was absent of ciliated structures, but microvilli were still present. Behavioral analysis showed significant loss of the ability to perceive bile salts and some fish also had no response to amino acids. Over the next several days, olfactory organ morphology, epithelial structure, and anti-calretinin labeling returned to control-like conditions, although the ability to perceive bile salts remained lost until day 14. Thus, exposure to zinc sulfate results in rapid degeneration of the olfactory organ, followed by restoration of morphology and function within two weeks. Zinc sulfate appears to have a greater effect on ciliated olfactory sensory neurons than on microvillous olfactory sensory neurons, suggesting differential effects on sensory neuron subtypes. PMID:27589738

  5. Long-term exposure to paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio).

    PubMed

    Bortolotto, Josiane W; Cognato, Giana P; Christoff, Raissa R; Roesler, Laura N; Leite, Carlos E; Kist, Luiza W; Bogo, Mauricio R; Vianna, Monica R; Bonan, Carla D

    2014-04-01

    Chronic exposure to paraquat (Pq), a toxic herbicide, can result in Parkinsonian symptoms. This study evaluated the effect of the systemic administration of Pq on locomotion, learning and memory, social interaction, tyrosine hydroxylase (TH) expression, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels, and dopamine transporter (DAT) gene expression in zebrafish. Adult zebrafish received an i.p. injection of either 10 mg/kg (Pq10) or 20 mg/kg (Pq20) of Pq every 3 days for a total of six injections. Locomotion and distance traveled decreased at 24 h after each injection in both treatment doses. In addition, both Pq10- and Pq20-treated animals exhibited differential effects on the absolute turn angle. Nonmotor behaviors were also evaluated, and no changes were observed in anxiety-related behaviors or social interactions in Pq-treated zebrafish. However, Pq-treated animals demonstrated impaired acquisition and consolidation of spatial memory in the Y-maze task. Interestingly, dopamine levels increased while DOPAC levels decreased in the zebrafish brain after both treatments. However, DAT expression decreased in the Pq10-treated group, and there was no change in the Pq20-treated group. The amount of TH protein showed no significant difference in the treated group. Our study establishes a new model to study Parkinson-associated symptoms in zebrafish that have been chronically treated with Pq.

  6. Differential Expression of protocadherin-19, protocadherin-17 and cadherin-6 in Adult Zebrafish Brain

    PubMed Central

    Liu, Qin; Bhattarai, Sunil; Wang, Nan; Sochacka-Marlowe, Alicja

    2015-01-01

    Cell adhesion molecule cadherins play important roles in both development and maintenance of adult structures. Most studies on cadherin expression have been carried out in developing organisms, but information on cadherin distribution in adult vertebrate brains is limited. In this study, we used in situ hybridization to examine mRNA expression of three cadherins, protocadherin-19, protocadherin-17 and cadherin-6 in adult zebrafish brain. Each cadherin exhibits a distinct expression pattern in the fish brain, with protocadherin-19 and protocadherin-17 showing much wider and stronger expression than that of cadherin-6. Both protocadherin-19 and protocadherin-17 expressing cells occur throughout the brain with strong expression in the ventromedial telencephalon, periventricular regions of the thalamus and anterior hypothalamus, stratum periventriculare of the optic tectum, dorsal tegmental nucleus, granular regions of the cerebellar body and valvula, and superficial layers of the facial and vagal lobes. Numerous sensory structures (e.g. auditory, gustatory, lateral line, olfactory and visual nuclei) and motor nuclei (e.g. oculomotor, trochlear, trigeminal motor, abducens and vagal motor nuclei) contain protocadherin-19 and/or protocadherin-17 expressing cell. Expression of these two protocadherins is similar in the ventromedial telencephalon, thalamus, hypothalamus, facial and vagal lobes, but substantially different in the dorsolateral telencephalon, intermediate layers of the optic tectum, and cerebellar valvula. In contrast to the two protocadherins, cadherin-6 expression is much weaker and limited in the adult fish brain. PMID:25612302

  7. V-ATPase Proton Pumping Activity Is Required for Adult Zebrafish Appendage Regeneration

    PubMed Central

    Monteiro, Joana; Aires, Rita; Becker, Jörg D.; Jacinto, António; Certal, Ana C.; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration. PMID:24671205

  8. V-ATPase proton pumping activity is required for adult zebrafish appendage regeneration.

    PubMed

    Monteiro, Joana; Aires, Rita; Becker, Jörg D; Jacinto, António; Certal, Ana C; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration.

  9. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  10. Differential expression of protocadherin-19, protocadherin-17, and cadherin-6 in adult zebrafish brain.

    PubMed

    Liu, Qin; Bhattarai, Sunil; Wang, Nan; Sochacka-Marlowe, Alicja

    2015-06-15

    Cell adhesion molecule cadherins play important roles in both development and maintenance of adult structures. Most studies on cadherin expression have been carried out in developing organisms, but information on cadherin distribution in adult vertebrate brains is limited. In this study we used in situ hybridization to examine mRNA expression of three cadherins, protocadherin-19, protocadherin-17, and cadherin-6 in adult zebrafish brain. Each cadherin exhibits a distinct expression pattern in the fish brain, with protocadherin-19 and protocadherin-17 showing much wider and stronger expression than that of cadherin-6. Both protocadherin-19 and protocadherin-17-expressing cells occur throughout the brain, with strong expression in the ventromedial telencephalon, periventricular regions of the thalamus and anterior hypothalamus, stratum periventriculare of the optic tectum, dorsal tegmental nucleus, granular regions of the cerebellar body and valvula, and superficial layers of the facial and vagal lobes. Numerous sensory structures (e.g., auditory, gustatory, lateral line, olfactory, and visual nuclei) and motor nuclei (e.g., oculomotor, trochlear, trigeminal motor, abducens, and vagal motor nuclei) contain protocadherin-19 and/or protocadherin-17-expressing cell. Expression of these two protocadherins is similar in the ventromedial telencephalon, thalamus, hypothalamus, facial, and vagal lobes, but substantially different in the dorsolateral telencephalon, intermediate layers of the optic tectum, and cerebellar valvula. In contrast to the two protocadherins, cadherin-6 expression is much weaker and limited in the adult fish brain.

  11. Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders.

    PubMed

    Verkerk, Arie O; Remme, Carol Ann

    2012-01-01

    The zebrafish is a cold-blooded tropical freshwater teleost with two-chamber heart morphology. A major advantage of the zebrafish for heart studies is that the embryo is transparent, allowing for easy assessment of heart development, heart rate analysis and phenotypic characterization. Moreover, rapid and effective gene-specific knockdown can be achieved using morpholino oligonucleotides. Lastly, zebrafish are small in size, are easy to maintain and house, grow fast, and have large offspring size, making them a cost-efficient research model. Zebrafish embryonic and adult heart rates as well as action potential (AP) shape and duration and electrocardiogram morphology closely resemble those of humans. However, whether the zebrafish is truly an attractive alternative model for human cardiac electrophysiology depends on the presence and gating properties of the various ion channels in the zebrafish heart, but studies into the latter are as yet limited. The rapid component of the delayed rectifier K(+) current (I(Kr)) remains the best characterized and validated ion current in zebrafish myocytes, and zebrafish may represent a valuable model to investigate human I(Kr) channel-related disease, including long QT syndrome. Arguments against the use of zebrafish as model for human cardiac (patho)electrophysiology include its cold-bloodedness and two-chamber heart morphology, absence of t-tubuli, sarcoplamatic reticulum function, and a different profile of various depolarizing and repolarizing ion channels, including a limited Na(+) current density. Based on the currently available literature, we propose that zebrafish may constitute a relevant research model for investigating ion channel disorders associated with abnormal repolarization, but may be less suitable for studying depolarization disorders or Ca(2+)-modulated arrhythmias. PMID:22934012

  12. Hope in elderly adults with chronic heart failure. Concept analysis

    PubMed Central

    Caboral, Meriam F.; Evangelista, Lorraine S.; Whetsell, Martha V.

    2015-01-01

    This topic review employed Walker and Avant’s method of concept analysis to explore the construct of hope in elderly adults with chronic heart failure. The articles analyzed revealed that hope, as the belief of the occurrence of a positive result without any guarantee that it will be produced, is necessary for the survival and wellbeing of the elderly adults enduring this disease. PMID:26321777

  13. Peripheral Axons of the Adult Zebrafish Maxillary Barbel Extensively Remyelinate During Sensory Appendage Regeneration

    PubMed Central

    Moore, Alex C.; Mark, Tiffany E.; Hogan, Ann K.; Topczewski, Jacek; LeClair, Elizabeth E.

    2013-01-01

    Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ~180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ~85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate. PMID:22592645

  14. Bisphenol A exposure during early development induces sex-specific changes in adult zebrafish social interactions.

    PubMed

    Weber, Daniel N; Hoffmann, Raymond G; Hoke, Elizabeth S; Tanguay, Robert L

    2015-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1, or 1 μM) or one of two control compounds (0.1 μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into three computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1-3 (= AM) and 5-8 (= PM) h postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, percent of time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced nonmonotonic effects (response curve changes direction within range of concentrations examined) on male percent of time at mirror only in AM. All treatments produced increased percent of time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions, and time of day of observation affected results. PMID:25424546

  15. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  16. Advances in the Care of Adults With Congenital Heart Disease.

    PubMed

    Nasr, Viviane G; Kussman, Barry D

    2015-09-01

    The significant decline in mortality among children and adolescents with congenital heart disease (CHD) is associated with an increasing prevalence of CHD in adults, particularly those with moderate to severe defects. As a significant percentage of adolescents and young adults are lost to follow-up in the transition from pediatric to adult care, they may present for elective procedures with substantial CHD-associated morbidity. In addition to the specific cardiac defect, the procedures performed, and the current pathophysiological status, several factors should be considered when managing the adult with CHD. These include the type of setting (adult vs pediatric institution); surgeon (pediatric vs adult cardiac surgeon); coexisting diseases associated with CHD, such as coronary artery disease, hepatic dysfunction, renal dysfunction, cerebrovascular accidents, myopathy, and coagulation disorders; acquired diseases of aging; pregnancy; and psychosocial functioning. The current status of the management of common and important congenital cardiac defects is also described. PMID:25542866

  17. Expression and distribution of S100 protein in the nervous system of the adult zebrafish (Danio rerio).

    PubMed

    Germanà, A; Marino, F; Guerrera, M C; Campo, S; de Girolamo, P; Montalbano, G; Germanà, G P; Ochoa-Erena, F J; Ciriaco, E; Vega, J A

    2008-03-01

    S100 proteins are EF-hand calcium-binding protein highly preserved during evolution present in both neuronal and non-neuronal tissues of the higher vertebrates. Data about the expression of S100 protein in fishes are scarce, and no data are available on zebrafish, a common model used in biology to study development but also human diseases. In this study, we have investigated the expression of S100 protein in the central nervous system of adult zebrafish using PCR, Western blot, and immunohistochemistry. The central nervous system of the adult zebrafish express S100 protein mRNA, and contain a protein of approximately 10 kDa identified as S100 protein. S100 protein immunoreactivity was detected widespread distributed in the central nervous system, labeling the cytoplasm of both neuronal and non-neuronal cells. In fact, S100 protein immunoreactivity was primarily found in glial and ependymal cells, whereas the only neurons displaying S100 immunoreactivity were the Purkinje's neurons of the cerebellar cortex and those forming the deep cerebellar nuclei. Outside the central nervous system, S100 protein immunoreactivity was observed in a subpopulation of sensory and sympathetic neurons, and it was absent from the enteric nervous system. The functional role of S100 protein in both neurons and non-neuronal cells of the zebrafish central nervous system remains to be elucidated, but present results might serve as baseline for future experimental studies using this teleost as a model.

  18. Chondroitin sulfate and keratan sulfate are the major glycosaminoglycans present in the adult zebrafish Danio rerio (Chordata-Cyprinidae).

    PubMed

    Souza, Aline R C; Kozlowski, Eliene O; Cerqueira, Vinicius R; Castelo-Branco, Morgana T L; Costa, Manoel L; Pavão, Mauro S G

    2007-12-01

    The zebrafish Danio rerio (Chordata-Cyprinidae) is a model organism frequently used to study the functions of proteoglycans and their glycosaminoglycan (GAG) chains. Although several studies clearly demonstrate the participation of these polymers in different biological and cellular events that take place during embryonic development, little is known about the GAGs in adult zebrafish. In the present study, the total GAGs were extracted from the whole fish by proteolytic digestion, purified by anion-exchange chromatography and characterized by electrophoresis after degradation with specific enzymes and/or by high-performance liquid chromatography (HPLC) analysis of the disaccharides. Two GAGs were identified: a low-molecular-weight chondroitin sulfate (CS) and keratan sulfate (KS), corresponding to approximately 80% and 20% of the total GAGs, respectively. In the fish eye, KS represents approximately 80% of total GAGs. Surprisingly, no heparinoid was detected, but may be present in the fish at concentrations lower than the limit of the method used. HPLC of the disaccharides formed after chondroitin AC or ABC lyase degradation revealed that the zebrafish CS is composed by DeltaUA-1-->3-GalNAc(4SO4) (59.4%), DeltaUA-1-->3-GalNAc(6SO4) (23.1%), and DeltaUA-1-->3-GalNAc (17.5%) disaccharide units. No disulfated disaccharides were detected. Immunolocalization on sections from zebrafish retina using monoclonal antibodies against CS4- or 6-sulfate showed that in the retina these GAGs are restricted to the outer and inner plexiform layers. This is the first report showing the presence of KS in zebrafish eye, and the structural characterization of CS and its localization in the zebrafish retina. Detailed information about the structure and tissue localization of GAGs is important to understand the functions of these polymers in this model organism.

  19. Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon.

    PubMed

    Barbosa, Joana S; Di Giaimo, Rossella; Götz, Magdalena; Ninkovic, Jovica

    2016-08-01

    Adult neural stem cells (aNSCs) in zebrafish produce mature neurons throughout their entire life span in both the intact and regenerating brain. An understanding of the behavior of aNSCs in their intact niche and during regeneration in vivo should facilitate the identification of the molecular mechanisms controlling regeneration-specific cellular events. A greater understanding of the process in regeneration-competent species may enable regeneration to be achieved in regeneration-incompetent species, including humans. Here we describe a protocol for labeling and repetitive imaging of aNSCs in vivo. We label single aNSCs, allowing nonambiguous re-identification of single cells in repetitive imaging sessions using electroporation of a red-reporter plasmid in Tg(gfap:GFP)mi2001 transgenic fish expressing GFP in aNSCs. We image using two-photon microscopy through the thinned skull of anesthetized and immobilized fish. Our protocol allows imaging every 2 d for a period of up to 1 month. This methodology allowed the visualization of aNSC behavior in vivo in their natural niche, in contrast to previously available technologies, which rely on the imaging of either dissociated cells or tissue slices. We used this protocol to follow the mode of aNSC division, fate changes and cell death in both the intact and injured zebrafish telencephalon. This experimental setup can be widely used, with minimal prior experience, to assess key factors for processes that modulate aNSC behavior. A typical experiment with data analysis takes up to 1.5 months. PMID:27362338

  20. [Pediatric cardiology and congenital heart disease: from fetus to adult].

    PubMed

    Subirana, M Teresa; Oliver, José M; Sáez, José M; Zunzunegui, José L

    2012-01-01

    This article contains a review of some of the most important publications on congenital heart disease and pediatric cardiology that appeared in 2010 and up until September 2011. Of particular interest were studies on demographic changes reported in this patient population and on the need to manage the patients' transition from the pediatric to the adult cardiology department. This transition has given rise to the appearance of new areas of interest: for example, pregnancy in women with congenital heart disease, and the effect of genetic factors on the etiology and transmission of particular anomalies. In addition, this review considers some publications on fetal cardiology from the perspective of early diagnosis and, if possible, treatment. There follows a discussion on new contributions to Eisenmenger's syndrome and arrhythmias, as well as on imaging techniques, interventional catheterization and heart transplantation. Finally, there is an overview of the new version of clinical practice guidelines on the management of adult patients with congenital heart disease and of recently published guidelines on pregnancy in women with heart disease, both produced by the European Society of Cardiology.

  1. Reduced swim performance and aerobic capacity in adult zebrafish exposed to waterborne selenite.

    PubMed

    Massé, Anita J; Thomas, Jith K; Janz, David M

    2013-04-01

    Although dietary exposure of adult fish to organoselenium in contaminated aquatic ecosystems has been reported to bioaccumulate and cause larval deformities in offspring, subtle physiological effects produced through low level waterborne selenium exposure in fish such as swim performance and aerobic capacity have not been investigated. To evaluate potential effects of selenite on these responses, adult zebrafish (Danio rerio) were exposed to nominal aqueous concentrations of 0, 10 or 100 μg/L sodium selenite for 14 days. Upon completion of the exposure period, fish underwent two successive swim trials in a swim tunnel respirometer to determine critical swim speed (Ucrit), oxygen consumption (MO2), standard and active metabolic rates, aerobic scope (AS) and cost of transport (COT) followed by analysis of whole body triglyceride and glycogen concentrations. Selenite exposure had a significant negative effect on Ucrit and aerobic capacity. Active metabolic rates and AS significantly decreased in both selenite exposure groups after the second swim trial. No significant effect was observed in MO2, standard metabolic rate, COT, triglyceride and glycogen levels, or condition factor between groups. These results suggest that aqueous selenite exposure at environmentally relevant concentrations produces adverse effects on aerobic capacity that can diminish endurance and maximum swim speeds, which may lower fish survivability.

  2. Fgf8 haploinsufficiency results in distinct craniofacial defects in adult zebrafish.

    PubMed

    Albertson, R Craig; Yelick, Pamela C

    2007-06-15

    Significant progress has been made toward understanding the role of fgf8 in directing early embryonic patterning of the pharyngeal skeleton. Considerably less is known about the role this growth factor plays in the coordinated development, growth, and remodeling of the craniofacial skeleton beyond embryonic stages. To better understand the contributions of fgf8 in the formation of adult craniofacial architecture, we analyzed the skeletal anatomy of adult ace(ti282a)/fgf8 heterozygous zebrafish. Our results revealed distinct skeletal defects including facial asymmetries, aberrant craniofacial geometry, irregular patterns of cranial suturing, and ectopic bone formation. These defects are similar in presentation to several human craniofacial disorders (e.g., craniosynostosis, hemifacial microsomia), and may be related to increased levels of bone metabolism observed in ace(ti282a)/fgf8 heterozygotes. Moreover, skeletal defects observed in ace(ti282a)/fgf8 heterozygotes are consistent with expression patterns of fgf8 in the mature craniofacial skeleton. These data reveal previously unrecognized roles for fgf8 during skeletogenesis, and provide a basis for future investigations into the mechanisms that regulate craniofacial development beyond the embryo. PMID:17448458

  3. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration.

    PubMed

    Schall, K A; Holoyda, K A; Grant, C N; Levin, D E; Torres, E R; Maxwell, A; Pollack, H A; Moats, R A; Frey, M R; Darehzereshki, A; Al Alam, D; Lien, C; Grikscheit, T C

    2015-08-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation.

  4. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    SciTech Connect

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils and excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.

  5. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (‑)-PCB149, and (+)-PCB149. Greater enrichment of (‑)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (‑)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149.

  6. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    PubMed Central

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (−)-PCB149, and (+)-PCB149. Greater enrichment of (−)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (−)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149. PMID:26786282

  7. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (-)-PCB149, and (+)-PCB149. Greater enrichment of (-)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (-)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149.

  8. Feed and feeding regime affect growth rate and gonadosomatic index of adult zebrafish (Danio rerio).

    PubMed

    Gonzales, John M; Law, Sheran Hiu Wan

    2013-12-01

    A 5-week study was conducted to evaluate commercially available Artemia, Ziegler zebrafish diet, and Calamac diet fed in five different feeding regimes on the growth and reproductive development of 7-month-old zebrafish. Zebrafish were fed to satiation three times daily during the normal work week and twice daily during the weekend and holidays. Zebrafish in dietary groups CCC (Calamac three times daily) and CCA (Calamac twice daily, Artemia once daily) had a significantly (p<0.05) greater weight gain and specific growth rate as compared to all other dietary groups. Male zebrafish in dietary group 5 had significantly larger gonadosomatic index (GSI) values than all other groups, while female zebrafish in dietary group CCC had significantly larger GSI values than all other groups. No differences in the fatty acid content of female gonads were detected. Zebrafish fed solely Artemia had the greatest weight loss and lowest GSI values. Preliminary evidence of protein sparing in zebrafish is reported. Collectively, this study sheds more light into the effects of the use of commercially available feeds and feeding regime on the rearing of zebrafish. PMID:23902461

  9. Feed and Feeding Regime Affect Growth Rate and Gonadosomatic Index of Adult Zebrafish (Danio Rerio)

    PubMed Central

    Law, Sheran Hiu Wan

    2013-01-01

    Abstract A 5-week study was conducted to evaluate commercially available Artemia, Ziegler zebrafish diet, and Calamac diet fed in five different feeding regimes on the growth and reproductive development of 7-month-old zebrafish. Zebrafish were fed to satiation three times daily during the normal work week and twice daily during the weekend and holidays. Zebrafish in dietary groups CCC (Calamac three times daily) and CCA (Calamac twice daily, Artemia once daily) had a significantly (p<0.05) greater weight gain and specific growth rate as compared to all other dietary groups. Male zebrafish in dietary group 5 had significantly larger gonadosomatic index (GSI) values than all other groups, while female zebrafish in dietary group CCC had significantly larger GSI values than all other groups. No differences in the fatty acid content of female gonads were detected. Zebrafish fed solely Artemia had the greatest weight loss and lowest GSI values. Preliminary evidence of protein sparing in zebrafish is reported. Collectively, this study sheds more light into the effects of the use of commercially available feeds and feeding regime on the rearing of zebrafish. PMID:23902461

  10. Feed and feeding regime affect growth rate and gonadosomatic index of adult zebrafish (Danio rerio).

    PubMed

    Gonzales, John M; Law, Sheran Hiu Wan

    2013-12-01

    A 5-week study was conducted to evaluate commercially available Artemia, Ziegler zebrafish diet, and Calamac diet fed in five different feeding regimes on the growth and reproductive development of 7-month-old zebrafish. Zebrafish were fed to satiation three times daily during the normal work week and twice daily during the weekend and holidays. Zebrafish in dietary groups CCC (Calamac three times daily) and CCA (Calamac twice daily, Artemia once daily) had a significantly (p<0.05) greater weight gain and specific growth rate as compared to all other dietary groups. Male zebrafish in dietary group 5 had significantly larger gonadosomatic index (GSI) values than all other groups, while female zebrafish in dietary group CCC had significantly larger GSI values than all other groups. No differences in the fatty acid content of female gonads were detected. Zebrafish fed solely Artemia had the greatest weight loss and lowest GSI values. Preliminary evidence of protein sparing in zebrafish is reported. Collectively, this study sheds more light into the effects of the use of commercially available feeds and feeding regime on the rearing of zebrafish.

  11. Copper at low levels impairs memory of adult zebrafish (Danio rerio) and affects swimming performance of larvae.

    PubMed

    Acosta, Daiane da Silva; Danielle, Naissa Maria; Altenhofen, Stefani; Luzardo, Milene Dornelles; Costa, Patrícia Gomes; Bianchini, Adalto; Bonan, Carla Denise; da Silva, Rosane Souza; Dafre, Alcir Luiz

    2016-01-01

    Metal contamination at low levels is an important issue because it usually produces health and environmental effects, either positive or deleterious. Contamination of surface waters with copper (Cu) is a worldwide event, usually originated by mining, agricultural, industrial, commercial, and residential activities. Water quality criteria for Cu are variable among countries but allowed limits are generally in the μg/L range, which can disrupt several functions in the early life-stages of fish species. Behavioral and biochemical alterations after Cu exposure have also been described at concentrations close to the allowed limits. Aiming to search for the effects of Cu in the range of the allowed limits, larvae and adult zebrafish (Danio rerio) were exposed to different concentrations of dissolved Cu (nominally: 0, 5, 9, 20 and 60μg/L; measured: 0.4, 5.7, 7.2 16.6 and 42.3μg/L, respectively) for 96h. Larvae swimming and body length, and adult behavior and biochemical biomarkers (activity of glutathione-related enzymes in gills, muscle, and brain) were assessed after Cu exposure. Several effects were observed in fish exposed to 9μg/L nominal Cu, including increased larvae swimming distance and velocity, abolishment of adult inhibitory avoidance memory, and decreased glutathione S-transferase (GST) activity in gills of adult fish. At the highest Cu concentration tested (nominally: 60μg/L), body length of larvae, spatial memory of adults, and gill GST activity were decreased. Social behavior (aggressiveness and conspecific interaction), and glutathione reductase (GR) activity were not affected in adult zebrafish. Exposure to Cu, at concentrations close to the water quality criteria for this metal in fresh water, was able to alter larvae swimming performance and to induce detrimental effects on the behavior of adult zebrafish, thus indicating the need for further studies to reevaluate the currently allowed limits for Cu in fresh water. PMID:27012768

  12. Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis.

    PubMed

    Diotel, Nicolas; Beil, Tanja; Strähle, Uwe; Rastegar, Sepand

    2015-01-01

    Teleost fish display a remarkable ability to generate new neurons and to repair brain lesions during adulthood. They are, therefore, a very popular model to investigate the molecular mechanisms of constitutive and induced neurogenesis in adult vertebrates. In this study, we investigated the expression patterns of inhibitor of DNA binding (id) genes and of their potential transcriptional repressor, znf238, in the whole brain of adult zebrafish. We show that while id1 is exclusively expressed in ventricular cells in the whole brain, id2a, id3 and id4 genes are expressed in broader areas. Interestingly, znf238 was also detected in these regions, its expression overlapping with id2a, id3 and id4 expression. Further detailed characterization of the id-expressing cells demonstrated that (a) id1 is expressed in type 1 and type 2 neural progenitors as previously published, (b) id2a in type 1, 2 and 3 neural progenitors, (c) id3 in type 3 neural progenitors and (d) id4 in postmitotic neurons. Our data provide a detailed map of id and znf238 expression in the brain of adult zebrafish, supplying a framework for studies of id genes function during adult neurogenesis and brain regeneration in the zebrafish.

  13. Pdlim7 (LMP4) regulation of Tbx5 specifies zebrafish heart atrio-ventricular boundary and valve formation

    PubMed Central

    Camarata, Troy; Krcmery, Jennifer; Snyder, Diana; Park, Susan; Topczewski, Jacek; Simon, Hans-Georg

    2009-01-01

    Tbx5 is involved in congenital heart disease, however, the mechanisms leading to organ malformation are greatly unknown. We hypothesized a model by which the Tbx5 binding protein Pdlim7 controls nuclear/cytoplasmic shuttling and function of the transcription factor. Using the zebrafish, we present in vivo significance for an essential role of Tbx5/Pdlim7 protein interaction in the regulation of cardiac formation. Knock-down of Pdlim7 results in a non-looped heart, strikingly reminiscent of the tbx5 heartstrings mutant phenotype. However, while misregulation of Pdlim7 and Tbx5 produce similar aberrant cardiac morphology, molecular and histological analysis uncovered that the Pdlim7 and Tbx5 cardiac phenotypes are due to opposite effects on valve development. Loss of Pdlim7 function causes no valve tissue to develop while lack of Tbx5 results in increased valve tissue. These opposing defects are evident before valve formation and are the result of distinct gene misregulation during specification of the atrio-ventricular (AV) boundary. We show that Pdlim7/Tbx5 interactions affect the expression of Tbx5 target genes nppa and tbx2b at the AV boundary, and their domains of misexpression directly correlate with the identified valve defects. These studies demonstrate that controlling the correct balance of Tbx5 activity is crucial for the specification of the AV boundary and valve formation. PMID:19895804

  14. Embryonic Atrazine Exposure Elicits Alterations in Genes Associated with Neuroendocrine Function in Adult Male Zebrafish.

    PubMed

    Wirbisky, Sara E; Sepúlveda, Maria S; Weber, Gregory J; Jannasch, Amber S; Horzmann, Katharine A; Freeman, Jennifer L

    2016-09-01

    The developmental origins of health and disease (DOHaD) hypothesis states that exposure to environmental stressors early in life can elicit genome and epigenome changes resulting in an increased susceptibility of a disease state during adulthood. Atrazine, a common agricultural herbicide used throughout the Midwestern United States, frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. In our previous studies, zebrafish was exposed to 0, 0.3, 3, or 30 parts per billion (μg/l) atrazine through embryogenesis, rinsed, and allowed to mature to adulthood. A decrease in spawning was observed with morphological alterations in offspring. In addition, adult females displayed an increase in ovarian progesterone and follicular atresia, alterations in levels of a serotonin metabolite and serotonin turnover in brain tissue, and transcriptome changes in brain and ovarian tissue supporting neuroendocrine alterations. As reproductive dysfunction is also influenced by males, this study assessed testes histology, hormone levels, and transcriptomic profiles of testes and brain tissue in the adult males. The embryonic atrazine exposure resulted in no alterations in body or testes weight, gonadosomatic index, testes histology, or levels of 11-ketotestosterone or testosterone. To further investigate potential alterations, transcriptomic profiles of adult male testes and brain tissue was completed. This analysis demonstrated alterations in genes associated with abnormal cell and neuronal growth and morphology; molecular transport, quantity, and production of steroid hormones; and neurotransmission with an emphasis on the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-thyroid axes. Overall, this data indicate future studies should focus on additional neuroendocrine endpoints to determine potential functional impairments. PMID:27413107

  15. Angiopoietin-2 in Adults with Congenital Heart Disease and Heart Failure

    PubMed Central

    Kümpers, Philipp; Denecke, Agnieszka; Westhoff-Bleck, Mechthild; Schieffer, Bernhard; Bauersachs, Johann; Kielstein, Jan T.; Tutarel, Oktay

    2013-01-01

    Background Chronic heart failure is an important cause for morbidity and mortality in adults with congenital heart disease (ACHD). While NT-proBNP is an established biomarker for heart failure of non-congenital origin, its application in ACHD has limitations. The angiogenic factors Angiopoietin-1 and -2 (Ang-1, Ang-2), vascular endothelial growth factor (VEGF), and soluble receptor tyrosine kinase of the Tie family (sTie2) correlate with disease severity in heart failure of non-congenital origin. Their role in ACHD has not been studied. Methods In 91 patients Ang-2 and NT-proBNP were measured and related to New York Heart Association class, systemic ventricular function and parameters of cardiopulmonary exercise testing. Ang-1, VEGF, and sTie2 were also measured. Results Ang-2 correlates with NYHA class and ventricular dysfunction comparable to NT-proBNP. Further, Ang-2 showed a good correlation with parameters of cardiopulmonary exercise testing. Both, Ang-2 and NT-proBNP identified patients with severely limited cardiopulmonary exercise capacity. Additionally, Ang-2 is elevated in patients with a single ventricle physiology in contrast to NT-proBNP. VEGF, Ang-1, and sTie2 were not correlated with any clinical parameter. Conclusion The performance of Ang-2 as a biomarker for heart failure in ACHD is comparable to NT-proBNP. Its significant elevation in patients with single ventricle physiology indicates potential in this patient group and warrants further studies. PMID:23826161

  16. Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish.

    PubMed

    Dranow, Daniel B; Hu, Kevin; Bird, April M; Lawry, S Terese; Adams, Melissa T; Sanchez, Angelica; Amatruda, James F; Draper, Bruce W

    2016-09-01

    Although the zebrafish is a major model organism, how they determine sex is not well understood. In domesticated zebrafish, sex determination appears to be polygenic, being influenced by multiple genetic factors that may vary from strain to strain, and additionally can be influenced by environmental factors. However, the requirement of germ cells for female sex determination is well documented: animals that lack germ cells, or oocytes in particular, develop exclusively as males. Recently, it has been determined that oocytes are also required throughout the adult life of the animal to maintain the differentiated female state. How oocytes control sex differentiation and maintenance of the sexual phenotype is unknown. We therefore generated targeted mutations in genes for two oocyte produced signaling molecules, Bmp15 and Gdf9 and here report a novel role for Bmp15 in maintaining adult female sex differentiation in zebrafish. Females deficient in Bmp15 begin development normally but switch sex during the mid- to late- juvenile stage, and become fertile males. Additionally, by generating mutations in the aromatase cyp19a1a, we show that estrogen production is necessary for female development and that the function of Bmp15 in female sex maintenance is likely linked to the regulation of estrogen biosynthesis via promoting the development of estrogen-producing granulosa cells in the oocyte follicle.

  17. Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish

    PubMed Central

    Hu, Kevin; Lawry, S. Terese; Sanchez, Angelica; Amatruda, James F.

    2016-01-01

    Although the zebrafish is a major model organism, how they determine sex is not well understood. In domesticated zebrafish, sex determination appears to be polygenic, being influenced by multiple genetic factors that may vary from strain to strain, and additionally can be influenced by environmental factors. However, the requirement of germ cells for female sex determination is well documented: animals that lack germ cells, or oocytes in particular, develop exclusively as males. Recently, it has been determined that oocytes are also required throughout the adult life of the animal to maintain the differentiated female state. How oocytes control sex differentiation and maintenance of the sexual phenotype is unknown. We therefore generated targeted mutations in genes for two oocyte produced signaling molecules, Bmp15 and Gdf9 and here report a novel role for Bmp15 in maintaining adult female sex differentiation in zebrafish. Females deficient in Bmp15 begin development normally but switch sex during the mid- to late- juvenile stage, and become fertile males. Additionally, by generating mutations in the aromatase cyp19a1a, we show that estrogen production is necessary for female development and that the function of Bmp15 in female sex maintenance is likely linked to the regulation of estrogen biosynthesis via promoting the development of estrogen-producing granulosa cells in the oocyte follicle. PMID:27642754

  18. Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish.

    PubMed

    Dranow, Daniel B; Hu, Kevin; Bird, April M; Lawry, S Terese; Adams, Melissa T; Sanchez, Angelica; Amatruda, James F; Draper, Bruce W

    2016-09-01

    Although the zebrafish is a major model organism, how they determine sex is not well understood. In domesticated zebrafish, sex determination appears to be polygenic, being influenced by multiple genetic factors that may vary from strain to strain, and additionally can be influenced by environmental factors. However, the requirement of germ cells for female sex determination is well documented: animals that lack germ cells, or oocytes in particular, develop exclusively as males. Recently, it has been determined that oocytes are also required throughout the adult life of the animal to maintain the differentiated female state. How oocytes control sex differentiation and maintenance of the sexual phenotype is unknown. We therefore generated targeted mutations in genes for two oocyte produced signaling molecules, Bmp15 and Gdf9 and here report a novel role for Bmp15 in maintaining adult female sex differentiation in zebrafish. Females deficient in Bmp15 begin development normally but switch sex during the mid- to late- juvenile stage, and become fertile males. Additionally, by generating mutations in the aromatase cyp19a1a, we show that estrogen production is necessary for female development and that the function of Bmp15 in female sex maintenance is likely linked to the regulation of estrogen biosynthesis via promoting the development of estrogen-producing granulosa cells in the oocyte follicle. PMID:27642754

  19. Assessment of cardiotoxicity and effects of malathion on the early development of zebrafish (Danio rerio) using computer vision for heart rate quantification.

    PubMed

    Simoneschi, Daniele; Simoneschi, Francesco; Todd, Nancy E

    2014-06-01

    Malathion, a common organophosphate insecticide, is a proven acetylcholinesterase inhibitor and is the most applied organophosphate insecticide in the United States. The use of zebrafish as a model to study the effects of pesticides on development is an innovative approach yielding relevant implications for determining the potential toxic effects of these pesticides on humans. In this study, a simple noninvasive technique was developed to investigate the cardiotoxicity of malathion on Danio rerio embryos, and to detect and quantify its effect on heart rate. Videos were recorded under a stereomicroscope and examined with our custom-made software (FishBeat) to determine the heart rate of the embryos. The pixel average intensity frequency (PI) of the videos was computed at its maximum probability to indicate the average number of heartbeats per second. Experimental observations successfully demonstrated that this method was able to detect the heart rate of zebrafish embryos as compared with manual stopwatch counting, with no significant difference. Embryos were treated acutely with increasing malathion concentrations (33.3 and 50 μg/mL malathion) at 52, 76, and 96 hpf. Embryos treated with 33.3 μg/mL malathion had significant bradycardia at 52 and 76 hpf, whereas embryos treated with 50 μg/mL malathion presented bradycardia at all hpf. These novel observations confirmed that malathion, acting as an acetylcholinesterase inhibitor, induced heartbeat irregularity in zebrafish embryos.

  20. Transfer to Adult Care--Experiences of Young Adults with Congenital Heart Disease.

    PubMed

    Asp, Ann; Bratt, Ewa-Lena; Bramhagen, Ann-Cathrine

    2015-01-01

    More than 90% of children born with congenital heart disease survive into adulthood due to successes of cardiac surgery and medical management. Interviews with 16 young adults with congenital heart disease to explore their experiences of transfer from pediatric to adult care were performed. The analysis identified five themes; Feeling secure during the transfer process, Experiencing trust in the care, Expecting to be involved, Assuming responsibility for one's health is a process and Lack of knowledge leads to uncertainty. In conclusion; a structured and gradual transfer process was necessary to enable the informants to shoulder the responsibility for self-care.

  1. Neurotoxicity of neem commercial formulation (Azadirachta indica A. Juss) in adult zebrafish (Danio rerio).

    PubMed

    Bernardi, M M; Dias, S G; Barbosa, V E

    2013-11-01

    The neurotoxic effects of a commercial formulation of Azadirachta indica A. Juss, also called neem or nim, in adult zebrafish were determined using behavioral models. General activity, anxiety-like effects, and learning and memory in a passive avoidance task were assessed after exposure to 20 or 40 μl/L neem. The results showed that 20 μl/L neem reduced the number of runs. Both neem concentrations increased the number of climbs to the water surface, and 40 μl/L increased the number of tremors. In the anxiety test, the 20 μl/L dose increased the number of entries in the light side compared with controls, but the latency to enter the dark side and the freezing behavior in this side did not changed. In relation to controls, the 40 μl/L neem reduced the latency to enter in the light side, did not change the number of entries in this side and increased freezing behavior in the light side. In the passive avoidance test, pre-training and pre-test neem exposure to 40 μl/L decreased the response to the learning task. Thus, no impairment was observed in this behavioral test. We conclude that neem reduced general activity and increased anxiety-like behavior but did not affect learning and memory.

  2. Acid-sensing ion channel immunoreactivities in the cephalic neuromasts of adult zebrafish.

    PubMed

    Abbate, F; Madrigrano, M; Scopitteri, T; Levanti, M; Cobo, J L; Germanà, A; Vega, J A; Laurà, R

    2016-09-01

    The neuromasts are the morphofunctional unit of the lateral line system serving as mechanosensors for water flow and movement. The mechanisms underlying the detection of the mechanical stimuli in the vertebrate mechanosensory cells remain poorly understood at the molecular level, and no information is available on neuromasts. Mechanotransduction is the conversion of a mechanical stimulus into an electrical signal via activation of ion channels. The acid-sensing ion channels (ASICs) are presumably involved in mechanosensation, and therefore are expected to be expressed in the mechanoreceptors. Here we used immunohistochemistry to investigate the occurrence and distribution of ASICs in the cephalic neuromasts of the adult zebrafish. Specific immunoreactivity for ASIC1 and ASIC4 was detected in the hair cells while ASIC2 was restricted to the nerves supplying neuromasts. Moreover, supporting and mantle cells; i.e., the non-sensory cells of the neuromasts, also displayed ASIC4. For the first time, these results demonstrate the presence of the putative mechanoproteins ASIC1, ASIC2 and ASIC4 in neuromasts, suggesting a role for these ion channels in mechanosensation.

  3. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated.

  4. Persistent Adult Zebrafish Behavioral Deficits Results from Acute Embryonic Exposure to Gold Nanoparticles

    PubMed Central

    Truong, Lisa; Saili, Katerine S.; Miller, John M.; Hutchison, James E.; Tanguay, Robert L.

    2011-01-01

    As the number of products containing nanomaterials increase, human exposure to nanoparticles (NPs) is unavoidable. Presently, few studies focus on the potential long-term consequences of developmental NP exposure. In this study, zebrafish embryos were acutely exposed to three gold NPs that possess functional groups with differing surface charge. Embryos were exposed to 50 μg/mL of 1.5 nm gold nanoparticles (AuNPs) possessing negatively charged 2-mercaptoethanesulfonic acid (MES) or neutral 2-(2-(2-mercaptoethoxy)ethoxy)ethanol (MEEE) ligands or 10 μg/mL of the AuNPs possessing positively charged trimethylammoniumethanethiol (TMAT). Both MES- and TMAT-AuNP exposed embryos exhibited hypo-locomotor activity, while those exposed to MEEE-AuNPs did not. A subset of embryos that were exposed to 1.5 nm MES- and TMAT-AuNPs during development from 6–120 hours post fertilization were raised to adulthood. Behavioral abnormalities and the number of survivors into adulthood were evaluated at 122 days post fertilization. We found that both treatments induced abnormal startle behavior following a tap stimulus. However, the MES-AuNPs exposed group also exhibited abnormal adult behavior in the light and had a lower survivorship into adulthood. This study demonstrates that acute, developmental exposure to 1.5 nm MES- and TMAT- AuNPs, two NPs differing only in the functional group, affects larval behavior, with behavioral effects persisting into adulthood. PMID:21946249

  5. Acid-sensing ion channel immunoreactivities in the cephalic neuromasts of adult zebrafish.

    PubMed

    Abbate, F; Madrigrano, M; Scopitteri, T; Levanti, M; Cobo, J L; Germanà, A; Vega, J A; Laurà, R

    2016-09-01

    The neuromasts are the morphofunctional unit of the lateral line system serving as mechanosensors for water flow and movement. The mechanisms underlying the detection of the mechanical stimuli in the vertebrate mechanosensory cells remain poorly understood at the molecular level, and no information is available on neuromasts. Mechanotransduction is the conversion of a mechanical stimulus into an electrical signal via activation of ion channels. The acid-sensing ion channels (ASICs) are presumably involved in mechanosensation, and therefore are expected to be expressed in the mechanoreceptors. Here we used immunohistochemistry to investigate the occurrence and distribution of ASICs in the cephalic neuromasts of the adult zebrafish. Specific immunoreactivity for ASIC1 and ASIC4 was detected in the hair cells while ASIC2 was restricted to the nerves supplying neuromasts. Moreover, supporting and mantle cells; i.e., the non-sensory cells of the neuromasts, also displayed ASIC4. For the first time, these results demonstrate the presence of the putative mechanoproteins ASIC1, ASIC2 and ASIC4 in neuromasts, suggesting a role for these ion channels in mechanosensation. PMID:27443821

  6. Neurotoxicity of neem commercial formulation (Azadirachta indica A. Juss) in adult zebrafish (Danio rerio).

    PubMed

    Bernardi, M M; Dias, S G; Barbosa, V E

    2013-11-01

    The neurotoxic effects of a commercial formulation of Azadirachta indica A. Juss, also called neem or nim, in adult zebrafish were determined using behavioral models. General activity, anxiety-like effects, and learning and memory in a passive avoidance task were assessed after exposure to 20 or 40 μl/L neem. The results showed that 20 μl/L neem reduced the number of runs. Both neem concentrations increased the number of climbs to the water surface, and 40 μl/L increased the number of tremors. In the anxiety test, the 20 μl/L dose increased the number of entries in the light side compared with controls, but the latency to enter the dark side and the freezing behavior in this side did not changed. In relation to controls, the 40 μl/L neem reduced the latency to enter in the light side, did not change the number of entries in this side and increased freezing behavior in the light side. In the passive avoidance test, pre-training and pre-test neem exposure to 40 μl/L decreased the response to the learning task. Thus, no impairment was observed in this behavioral test. We conclude that neem reduced general activity and increased anxiety-like behavior but did not affect learning and memory. PMID:24211596

  7. Upper thermal limits of the hearts of Arctic cod Boreogadus saida: adults compared with larvae.

    PubMed

    Drost, H E; Fisher, J; Randall, F; Kent, D; Carmack, E C; Farrell, A P

    2016-02-01

    Wild adult and reared larval Boreogadus saida were acclimated to 3·5° C before testing their cardiac response to acute warming. Heart rate transition temperatures during warming were similar for adult and larval hearts, except that the maximum temperature for heart rate was 3° C warmer for adults. Thus, in a rapidly warming Arctic Ocean, the upper temperature limit for larval rather than adult B. saida appears more likely to dictate the southern range of the species. PMID:26608719

  8. Upper thermal limits of the hearts of Arctic cod Boreogadus saida: adults compared with larvae.

    PubMed

    Drost, H E; Fisher, J; Randall, F; Kent, D; Carmack, E C; Farrell, A P

    2016-02-01

    Wild adult and reared larval Boreogadus saida were acclimated to 3·5° C before testing their cardiac response to acute warming. Heart rate transition temperatures during warming were similar for adult and larval hearts, except that the maximum temperature for heart rate was 3° C warmer for adults. Thus, in a rapidly warming Arctic Ocean, the upper temperature limit for larval rather than adult B. saida appears more likely to dictate the southern range of the species.

  9. A rapid throughput approach identifies cognitive deficits in adult zebrafish from developmental exposure to polybrominated flame retardants

    PubMed Central

    Truong, Lisa; Mandrell, David; Mandrell, Rick; Simonich, Michael; Tanguay, Robert L.

    2014-01-01

    A substantial body of evidence has correlated the human body burdens of some polybrominated diphenyl ether (PBDE) flame retardants with cognitive and other behavioral deficits. Adult zebrafish exhibit testable learning and memory, making them an increasingly attractive model for neurotoxicology. Our goal was to develop a rapid throughput means of identifying the cognitive impact of developmental exposure to flame retardants in the zebrafish model. We exposed embryos from 6 hours post fertilization to 5 days post fertilization to either PBDE 47 (0.1 uM), PBDE 99 (0.1 uM) or PBDE 153 (0.1 uM), vehicle (0.1% DMSO), or embryo medium (EM). The larvae were grown to adulthood and evaluated for the rate at which they learned an active-avoidance response in an automated shuttle box array. Zebrafish developmentally exposed to PBDE 47 learned the active avoidance paradigm significantly faster than the 0.1% DMSO control fish (P < 0.0001), but exhibited significantly poorer performance when retested suggestive of impaired memory retention or altered neuromotor activity. Learning in the PBDE 153 group was not significantly different from the DMSO group. Developmental exposure to 0.1% DMSO impaired adult active avoidance learning relative to the sham group (n = 39; P < 0.0001). PBDE 99 prevented the DMSO effect, yielding a learning rate not significantly different from the sham group (n = 36; P > 0.9). Our results underscore the importance of vehicle choice in accurately assessing chemical effects on behavior. Active avoidance response in zebrafish is an effective model of learning that, combined with automated shuttle box testing, will provide a highly efficient platform for evaluating persistent neurotoxic hazard from many chemicals. PMID:24674958

  10. Patterns of olfactory bulb neurogenesis in the adult zebrafish are altered following reversible deafferentation.

    PubMed

    Trimpe, Darcy M; Byrd-Jacobs, Christine A

    2016-09-01

    Adult brain plasticity can be investigated using reversible methods that remove afferent innervation but allow return of sensory input. Repeated intranasal irrigation with Triton X-100 in adult zebrafish diminishes innervation to the olfactory bulb, resulting in a number of alterations in bulb structure and function, and cessation of the treatment allows for reinnervation and recovery. Using bromodeoxyuridine, Hu, and caspase-3 immunoreactivity we examined cell proliferation, differentiation, migration, and survival under conditions of acute and chronic deafferentation and reafferentation. Cell proliferation within the olfactory bulb was not influenced by acute or chronic deafferentation or reafferentation, but cell fate (including differentiation, migration, and/or survival of newly formed cells) was affected. We found that chronic deafferentation caused a bilateral increase in the number of newly formed cells that migrated into the bulb, although the amount of cell death of these new cells was significantly increased compared to untreated fish. Reafferentation also increased the number of newly formed cells migrating into both bulbs, suggesting that the deafferentation effect on cell fate was maintained. Reafferentation resulted in a decrease in newly formed cells that became neurons and, although death of newly formed cells was not altered from control levels, survival was reduced in relation to that seen in chronically deafferented fish. The potential effect of age on cell genesis was also examined. While the amount of cell migration into the olfactory bulbs was not affected by fish age, more of the newly formed cells became neurons in older fish. Younger fish displayed more cell death under conditions of chronic deafferentation. In sum, our results show that reversible deafferentation affects several aspects of cell fate, including cell differentiation, migration, and survival, and age of the fish influences the response to deafferentation. PMID:27343831

  11. Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: an effective system for experiments in chemical biology.

    PubMed

    Rana, Neha; Moond, Mamta; Marthi, Amarnath; Bapatla, Swetha; Sarvepalli, Tejasudha; Chatti, Kiranam; Challa, Anil Kumar

    2010-03-01

    Zebrafish embryos are well suited as a model system to perform chemical biology experiments effectively in educational settings. We studied the effect of caffeine on heart rate (HR) and other phenotypes of zebrafish embryos using visual microscopy and simple imaging. Acute treatment with millimolar concentrations of caffeine in embryo medium caused a dose-dependent decrease in HR in 2-3-day-old zebrafish embryos, ultimately resulting in complete HR cessation. A characteristic pattern of decrease in HR was observed, with an initial acute drop in HR and a period of stabilization followed by complete cessation. The effects of caffeine were not reversed by cotreatment with ruthenium red and adenosine, agents known to be antagonistic to caffeine, or by changes in calcium concentration in embryo medium. Apparent cardiac arrhythmia and a typical kinking effect in the trunk/tail region were also observed because of caffeine treatment. Our results, taken together with previous reports, raise the possibility that caffeine exerts its effects on embryonic HR of zebrafish by inhibition of ether-a-go-go potassium channels. However, further experimentation is required to dissect the molecular basis of caffeine action. We demonstrate that such experiments can be used to explore the effect of small molecules, such as caffeine, on cardiovascular phenotypes and to encourage experimental design in chemical biology.

  12. Clinical Research Priorities in Adult Congenital Heart Disease

    PubMed Central

    Cotts, Timothy; Khairy, Paul; Opotowsky, Alexander R.; John, Anitha S.; Valente, Anne Marie; Zaidi, Ali N.; Cook, Stephen C.; Aboulhosn, Jamil; Ting, Jennifer Grando; Gurvitz, Michelle; Landzberg, Michael J.; Verstappen, Amy; Kay, Joseph; Earing, Michael; Franklin, Wayne; Kogon, Brian; Broberg, Craig S.

    2014-01-01

    Background Adult congenital heart disease (ACHD) clinicians are hampered by the paucity of data to inform clinical decision-making. The objective of this study was to identify priorities for clinical research in ACHD. Methods A list of 45 research questions was developed by the Alliance for Adult Research in Congenital Cardiology (AARCC), compiled into a survey, and administered to ACHD providers. Patient input was sought via the Adult Congenital Heart Association at community meetings and online forums. The 25 top questions were sent to ACHD providers worldwide via an online survey. Each question was ranked based on perceived priority and weighted based on time spent in ACHD care. The top 10 topics identified are presented and discussed. Results The final online survey yielded 139 responses. Top priority questions related to tetralogy of Fallot (timing of pulmonary valve replacement and criteria for primary prevention ICDs), patients with systemic right ventricles (determining the optimal echocardiographic techniques for measuring right ventricular function, and indications for tricuspid valve replacement and primary prevention ICDs), and single ventricle/Fontan patients (role of pulmonary vasodilators, optimal anticoagulation, medical therapy for preservation of ventricular function, treatment for protein losing enteropathy). In addition, establishing criteria to refer ACHD patients for cardiac transplantation was deemed a priority. Conclusions The ACHD field is in need of prospective research to address fundamental clinical questions. It is hoped that this methodical consultation process will inform researchers and funding organizations about clinical research topics deemed to be of high priority. PMID:24411207

  13. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications

    PubMed Central

    Zou, Ming; De Koninck, Paul; Neve, Rachael L.; Friedrich, Rainer W.

    2014-01-01

    The zebrafish has various advantages as a model organism to analyze the structure and function of neural circuits but efficient viruses or other tools for fast gene transfer are lacking. We show that transgenes can be introduced directly into the adult zebrafish brain by herpes simplex type I viruses (HSV-1) or electroporation. We developed a new procedure to target electroporation to defined brain areas and identified promoters that produced strong long-term expression. The fast workflow of electroporation was exploited to express multiple channelrhodopsin-2 variants and genetically encoded calcium indicators in telencephalic neurons for measurements of neuronal activity and synaptic connectivity. The results demonstrate that HSV-1 and targeted electroporation are efficient tools for gene delivery into the zebrafish brain, similar to adeno-associated viruses and lentiviruses in other species. These methods fill an important gap in the spectrum of molecular tools for zebrafish and are likely to have a wide range of applications. PMID:24834028

  14. Inhibition of phosphorylated tyrosine hydroxylase attenuates ethanol-induced hyperactivity in adult zebrafish (Danio rerio).

    PubMed

    Nowicki, Magda; Tran, Steven; Chatterjee, Diptendu; Gerlai, Robert

    2015-11-01

    Zebrafish have been successfully employed in the study of the behavioural and biological effects of ethanol. Like in mammals, low to moderate doses of ethanol induce motor hyperactivity in zebrafish, an effect that has been attributed to the activation of the dopaminergic system. Acute ethanol exposure increases dopamine (DA) in the zebrafish brain, and it has been suggested that tyrosine hydroxylase, the rate-limiting enzyme of DA synthesis, may be activated in response to ethanol via phosphorylation. The current study employed tetrahydropapaveroline (THP), a selective inhibitor of phosphorylated tyrosine hydroxylase, for the first time, in zebrafish. We treated zebrafish with a THP dose that did not alter baseline motor responses to examine whether it can attenuate or abolish the effects of acute exposure to alcohol (ethanol) on motor activity, on levels of DA, and on levels of dopamine's metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). We found that 60-minute exposure to 1% alcohol induced motor hyperactivity and an increase in brain DA. Both of these effects were attenuated by pre-treatment with THP. However, no differences in DOPAC levels were found among the treatment groups. These findings suggest that tyrosine hydroxylase is activated via phosphorylation to increase DA synthesis during alcohol exposure in zebrafish, and this partially mediates alcohol's locomotor stimulant effects. Future studies will investigate other potential candidates in the molecular pathway to further decipher the neurobiological mechanism that underlies the stimulatory properties of this popular psychoactive drug.

  15. Administration of docosahexaenoic acid before birth and until aging decreases kainate-induced seizures in adult zebrafish.

    PubMed

    Sierra, Saleta; Alfaro, Juan M; Sánchez, Sonia; Burgos, Javier S

    2012-08-01

    Docosahexaeonic acid (DHA) is the final compound in the omega-3 polyunsaturated fatty acids (PUFA) synthetic pathway and the most abundant PUFA found in the brain. DHA plays an essential role in the development of the brain, and the intakes in pregnancy and early life affect growth and cognitive performance later in childhood. Recently, it has been proposed that dietary intake of DHA could be a non-pharmacological interventional strategy for the treatment of seizures in humans. However, to date, the experimental approaches to study the antiepileptic effect of DHA have been exclusively restricted to rodent models during short-to-medium periods of treatment. The purpose of the present study was to test the chronic anticonvulsivant effects of DHA supplementation in zebrafish from the pre-spawning stage to aging, taking advantage of our recently described kainate-induced seizure model using this animal. To that end, two groups of adult female zebrafish were fed with standard or 200mg/kg DHA-enriched diets during 1 month previous to the spawning, and offspring subdivided in two categories, and subsequently fed with standard or DHA diets, generating 4 groups of animals that were aged until 20 months. Afterward, KA was intraperitoneally administered and epileptic score determined. All the DHA-enriched groups presented antiepileptic effects compared to the control group, showing that DHA presents an anticonvulsant potential. Among the studied groups, zebrafish fed with DHA from the pre-spawning stage to aging presented the best antiepileptic profile. These results show a neuroprotective benefit in zebrafish fed with DHA-enriched diet before birth and during the whole life.

  16. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration

    PubMed Central

    Schall, K. A.; Holoyda, K. A.; Grant, C. N.; Levin, D. E.; Torres, E. R.; Maxwell, A.; Pollack, H. A.; Moats, R. A.; Frey, M. R.; Darehzereshki, A.; Al Alam, D.; Lien, C.

    2015-01-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. PMID:26089336

  17. Olfactory bulb recovery following reversible deafferentation with repeated detergent application in the adult zebrafish.

    PubMed

    Paskin, T R; Iqbal, T R; Byrd-Jacobs, C A

    2011-11-24

    The neuroplasticity and regenerative properties of the olfactory system make it a useful model for studying the ability of the nervous system to recover from damage. We have developed a novel method for examining the effects of long-term deafferentation and regeneration of the olfactory organ and resulting influence on the olfactory bulb in adult zebrafish. To test the hypothesis that repeated damage to the olfactory epithelium causes reduced olfactory bulb afferent input and cessation of treatment allows recovery, we chronically ablated the olfactory organ every 2-3 days for 3 weeks with the detergent Triton X-100 while another group was allowed 3 weeks of recovery following treatment. Animals receiving chronic treatment showed severe morphological disruption of the olfactory organ, although small pockets of epithelium remained. These pockets were labeled by anti-calretinin, indicating the presence of mature olfactory sensory neurons (OSNs). Following a recovery period, the epithelium was more extensive and neuronal labeling increased, with three different morphologies of sensory neurons observed. Repeated peripheral exposure to Triton X-100 also affected the olfactory bulb. Bulb volumes and anti-tyrosine hydroxylase-like immunoreactivity, which is an indicator of afferent activity, were diminished in the olfactory bulb of the chronically treated group compared to the control side. In the recovery group, there was little difference in bulb volume or antibody staining. These results suggest that repeated, long-term nasal irrigation with Triton X-100 eliminates a substantial number of mature OSNs and reduces afferent input to the olfactory bulb. It also appears that these effects are reversible and regeneration will occur in both the peripheral olfactory organ and the olfactory bulb when given time to recover following cessation of treatment. We report here a new method that allows observation not only of the effects of deafferentation on the olfactory bulb but also

  18. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration.

    PubMed

    Lepilina, Alexandra; Coon, Ashley N; Kikuchi, Kazu; Holdway, Jennifer E; Roberts, Richard W; Burns, C Geoffrey; Poss, Kenneth D

    2006-11-01

    Zebrafish possess a unique yet poorly understood capacity for cardiac regeneration. Here, we show that regeneration proceeds through two coordinated stages following resection of the ventricular apex. First a blastema is formed, comprised of progenitor cells that express precardiac markers, undergo differentiation, and proliferate. Second, epicardial tissue surrounding both cardiac chambers induces developmental markers and rapidly expands, creating a new epithelial cover for the exposed myocardium. A subpopulation of these epicardial cells undergoes epithelial-to-mesenchymal transition (EMT), invades the wound, and provides new vasculature to regenerating muscle. During regeneration, the ligand fgf17b is induced in myocardium, while receptors fgfr2 and fgfr4 are induced in adjacent epicardial-derived cells. When fibroblast growth factors (Fgf) signaling is experimentally blocked by expression of a dominant-negative Fgf receptor, epicardial EMT and coronary neovascularization fail, prematurely arresting regeneration. Our findings reveal injury responses by myocardial and epicardial tissues that collaborate in an Fgf-dependent manner to achieve cardiac regeneration. PMID:17081981

  19. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections.

    PubMed

    Cronan, Mark R; Rosenberg, Allison F; Oehlers, Stefan H; Saelens, Joseph W; Sisk, Dana M; Jurcic Smith, Kristen L; Lee, Sunhee; Tobin, David M

    2015-12-01

    Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ. PMID:26449262

  20. Her4-positive population in the tectum opticum is proliferating neural precursors in the adult zebrafish brain.

    PubMed

    Jung, Seung-Hyun; Kim, Hyung-Seok; Ryu, Jae-Ho; Gwak, Jung-Woo; Bae, Young-Ki; Kim, Cheol-Hee; Yeo, Sang-Yeob

    2012-06-01

    Previous studies have shown that Notch signaling not only regulates the number of early differentiating neurons, but also maintains proliferating neural precursors in the neural tube. Although it is well known that Notch signaling is closely related to the differentiation of adult neural stem cells, none of transgenic zebrafish provides a tool to figure out the relationship between Notch signaling and the differentiation of neural precursors. The goal of this study was to characterize Her4-positive cells by comparing the expression of a fluorescent Her4 reporter in Tg[her4-dRFP] animals with a GFAP reporter in Tg[gfap-GFP] adult zebrafish. BrdU incorporation indicated that dRFP-positive cells were proliferating and a double labeling assay revealed that a significant fraction of the Her4-dRFP positive population was also GFAP-GFP positive. Our observations suggest that a reporter line with Notch-dependent gene expression can provide a tool to examine proliferating neural precursors and/or neuronal/glial precursors in the development of the adult nervous system to examine the model in which Notch signaling maintains proliferating neural precursors in the neural tube.

  1. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish

    PubMed Central

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  2. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish.

    PubMed

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  3. Molecular psychiatry of zebrafish

    PubMed Central

    Stewart, Adam Michael; Ullmann, Jeremy F.P.; Norton, William H.J.; Brennan, Caroline H.; Parker, Matthew O.; Gerlai, Robert; Kalueff, Allan V.

    2014-01-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling CNS disorders. In particular, we outline recent genetic and technological developments allowing for in-vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern biological psychiatry research. PMID:25349164

  4. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish

    PubMed Central

    Olt, Jennifer; Johnson, Stuart L; Marcotti, Walter

    2014-01-01

    Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in obtaining systematic electrophysiological recordings from hair cells under physiological recording conditions. Thus, the biophysical properties of developing and adult zebrafish hair cells are largely unknown. We investigated potassium and calcium currents, voltage responses and synaptic activity in hair cells from the lateral line and inner ear in vivo and using near-physiological in vitro recordings. We found that the basolateral current profile of hair cells from the lateral line becomes more segregated with age, and that cells positioned in the centre of the neuromast show more mature characteristics and those towards the edge retain a more immature phenotype. The proportion of mature-like hair cells within a given neuromast increased with zebrafish development. Hair cells from the inner ear showed a developmental change in current profile between the juvenile and adult stages. In lateral line hair cells from juvenile zebrafish, exocytosis also became more efficient and required less calcium for vesicle fusion. In hair cells from mature zebrafish, the biophysical characteristics of ion channels and exocytosis resembled those of hair cells from other lower vertebrates and, to some extent, those in the immature mammalian vestibular and auditory systems. We show that although the zebrafish provides a suitable animal model for studies on hair cell physiology, it is advisable to consider that the age at which the majority of hair cells acquire a mature-type configuration is reached only in the juvenile lateral line and in the inner ear from >2 months after hatching. PMID

  5. 3D Printing to Guide Ventricular Assist Device Placement in Adults With Congenital Heart Disease and Heart Failure.

    PubMed

    Farooqi, Kanwal M; Saeed, Omar; Zaidi, Ali; Sanz, Javier; Nielsen, James C; Hsu, Daphne T; Jorde, Ulrich P

    2016-04-01

    As the population of adults with congenital heart disease continues to grow, so does the number of these patients with heart failure. Ventricular assist devices are underutilized in adults with congenital heart disease due to their complex anatomic arrangements and physiology. Advanced imaging techniques that may increase the utilization of mechanical circulatory support in this population must be explored. Three-dimensional printing offers individualized structural models that would enable pre-surgical planning of cannula and device placement in adults with congenital cardiac disease and heart failure who are candidates for such therapies. We present a review of relevant cardiac anomalies, cases in which such models could be utilized, and some background on the cost and procedure associated with this process. PMID:27033018

  6. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina

    PubMed Central

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M.

    2015-01-01

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. SIGNIFICANCE STATEMENT The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms

  7. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart

    PubMed Central

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D.; van den Hoff, Maurice J. B.; Butte, Manish J.; Yang, Phillip C.; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2016-01-01

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans. PMID:26375005

  8. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart.

    PubMed

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D; van den Hoff, Maurice J B; Butte, Manish J; Yang, Phillip C; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2015-09-24

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.

  9. Social burden and lifestyle in adults with congenital heart disease.

    PubMed

    Zomer, A Carla; Vaartjes, Ilonca; Uiterwaal, Cuno S P; van der Velde, Enno T; Sieswerda, Gert-Jan T; Wajon, Elly M C; Plomp, Koos; van Bergen, Paul F M; Verheugt, Carianne L; Krivka, Eva; de Vries, Cees J; Lok, Dirk J A; Grobbee, Diederick E; Mulder, Barbara J M

    2012-06-01

    We aimed to evaluate how the presence and severity of congenital heart disease (CHD) influence social life and lifestyle in adult patients. A random sample (n = 1,496) from the CONgenital CORvitia (n = 11,047), the Dutch national registry of adult patients with CHD, completed a questionnaire on educational attainment, employment and marital statuses, and lifestyle (response 76%). The Utrecht Health Project provided a large reference group (n = 6,810) of unaffected subjects. Logistic regression models were used for subgroup analyses and to adjust for age, gender, and socioeconomic status where appropriate. Of all patients 51.5% were men (median age 39 years, interquartile range 29 to 51) with mild (46%), moderate (44%), and severe (10%) CHD. Young (<40-year-old) patients with CHD were more likely to have achieved a lower education (adjusted odds ratios [ORs] 1.6 for men and 1.9 for women, p <0.05 for the 2 comparisons), significantly more often unemployed (adjusted ORs 5.9 and 2.0 for men and women, respectively), and less likely to be in a relationship compared to the reference group (adjusted ORs 8.5 for men and 4.5 for women). These poorer outcomes were seen in all severity groups. Overall, the CHD population smoked less (adjusted OR 0.5, p <0.05), had more sports participation (adjusted OR 1.2, p <0.05), and had less obesity (adjusted OR 0.7, p <0.05) than the reference group. In conclusion, there was a substantial social disadvantage in adult patients with CHD, which was seen in all severity groups and primarily in young men. In contrast, adults with CHD had healthier lifestyles compared to the reference group. PMID:22444325

  10. Chronic social isolation affects thigmotaxis and whole-brain serotonin levels in adult zebrafish.

    PubMed

    Shams, Soaleha; Chatterjee, Diptendu; Gerlai, Robert

    2015-10-01

    The popularity of the zebrafish has been growing in behavioral brain research. Previously utilized mainly in developmental biology and genetics, the zebrafish has turned out to possess a complex behavioral repertoire. For example, it is a highly social species, and individuals form tight groups, a behavior called shoaling. Social isolation induced changes in brain function and behavior have been demonstrated in a variety of laboratory organisms. However, despite its highly social nature, the zebrafish has rarely been utilized in this research area. Here, we investigate the effects of chronic social isolation (lasting 90 days) on locomotor activity and anxiety-related behaviors in an open tank. We also examine the effect of chronic social isolation on levels of whole-brain serotonin and dopamine and their metabolites. We found that long-term social deprivation surprisingly decreased anxiety-related behavious during open-tank testing but had no effect on locomotor activity. We also found that serotonin levels, decreased significantly in socially isolated fish, but levels of dopamine and metabolites of these neurotransmitters 5HIAA and DOPAC, respectively, remained unchanged. Our results imply that the standard high density housing employed in most zebrafish laboratories may not be the optimal way to keep these fish, and open a new avenue towards the analysis of the biological mechanisms of social behavior and of social deprivation induced changes in brain function using this simple vertebrate model organism.

  11. Perspectives of Puerto Rican Adults about Heart Health and a Potential Community Program

    ERIC Educational Resources Information Center

    Todorova, Irina L. G.; Tejada, Shirley; Castaneda-Sceppa, Carmen

    2014-01-01

    Background: Puerto Ricans are the second largest Hispanic group in the United States, and older adults have significant health disparities. Educational programs that address heart disease risk for this population have rarely been developed and implemented. Purpose: To address this gap, the Heart Healthy Initiative for Puerto Rican adults is being…

  12. Adolescents and Adults with Congenital Heart Diseases in Oman

    PubMed Central

    Al-Balushi, Asim; Al-Kindi, Hamood; Al-Shuaili, Hamood; Kumar, Suresh; Al-Maskari, Salim

    2015-01-01

    Objectives The aim of our study was to examine the spectrum, demographics, and mortality rate among adolescents and adults with congenital heart diseases (CHD) in Oman. Methods Data was collected retrospectively from the Royal Hospital, Muscat, electronic health records for all patients with a diagnosis of CHD aged 13 years and above. Data was analyzed according to the type of CHD and in-hospital mortality was assessed using Kaplan-Meier survival analysis. Results A total of 600 patients with CHD were identified, among them 145 (24%) were aged 18 years or below. The median age was 24 years. The majority of patients had a simple form of CHD. Atrial and ventricular septal defects together constituted 62.8% of congenital heart diseases. Most patients were clustered in Muscat (32%) and the Batinah regions (31.1%) of Oman. Patients with tetralogy of Fallot and Fontan had shorter survival time than recorded in the published literature. Conclusion Mostly simple forms of CHD in younger patients was observed. The survival rate was significantly shortened in more complex lesions compared to simple lesions. A national data registry for CHD is needed to address the morbidities and mortality associated with the disease. PMID:25829997

  13. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography.

    PubMed

    Lee, Ling; Genge, Christine E; Cua, Michelle; Sheng, Xiaoye; Rayani, Kaveh; Beg, Mirza F; Sarunic, Marinko V; Tibbits, Glen F

    2016-01-01

    The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA- 18°C; warm acclimated WA- 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling. PMID:26730947

  14. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography

    PubMed Central

    Cua, Michelle; Sheng, Xiaoye; Rayani, Kaveh; Beg, Mirza F.; Sarunic, Marinko V.; Tibbits, Glen F.

    2016-01-01

    The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA– 18°C; warm acclimated WA– 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling. PMID:26730947

  15. In vivo spectroscopic photoacoustic tomography imaging of a far red fluorescent protein expressed in the exocrine pancreas of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Mengyang; Schmitner, Nicole; Sandrian, Michelle G.; Zabihian, Behrooz; Hermann, Boris; Salvenmoser, Willi; Meyer, Dirk; Drexler, Wolfgang

    2014-03-01

    Fluorescent proteins brought a revolution in life sciences and biological research in that they make a powerful tool for researchers to study not only the structural and morphological information, but also dynamic and functional information in living cells and organisms. While green fluorescent proteins (GFP) have become a common labeling tool, red-shifted or even near infrared fluorescent proteins are becoming the research focus due to the fact that longer excitation wavelengths are more suitable for deep tissue imaging. In this study, E2-Crimson, a far red fluorescent protein whose excitation wavelength is 611 nm, was genetically expressed in the exocrine pancreas of adult zebrafish. Using spectroscopic all optical detection photoacoustic tomography, we mapped the distribution of E2-Crimson in 3D after imaging the transgenic zebrafish in vivo using two different wavelengths. With complementary morphological information provided by imaging the same fish using a spectral domain optical coherence tomography system, the E2-Crimson distribution acquired from spectroscopic photoacoustic tomography was confirmed in 2D by epifluorescence microscopy and in 3D by histology. To the authors' knowledge, this is the first time a far red fluorescent protein is imaged in vivo by spectroscopic photoacoustic tomography. Due to the regeneration feature of zebrafish pancreas, this work preludes the longitudinal studies of animal models of diseases such as pancreatitis by spectroscopic photoacoustic tomography. Since the effective penetration depth of photoacoustic tomography is beyond the transport mean free path length, other E2-Crimson labeled inner organs will also be able to be studied dynamically using spectroscopic photoacoustic tomography.

  16. Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio.

    PubMed

    Fang, Liu; Liang, Xu-Fang; Zhou, Yi; Guo, Xiao-Ze; He, Yan; Yi, Ti-Lin; Liu, Li-Wei; Yuan, Xiao-Chen; Tao, Ya-Xiong

    2014-03-14

    The aim of the present study was to determine the potential long-term metabolic effects of early nutritional programming on carbohydrate utilisation in adult zebrafish (Danio rerio). High-carbohydrate diets were fed to fish during four ontogenetic stages: from the first-feeding stage to the end of the yolk-sac larval stage; from the first-feeding stage to 2 d after yolk-sac exhaustion; after yolk-sac exhaustion for 3 or 5 d. The carbohydrate stimuli significantly increased the body weight of the first-feeding groups in the short term. The expression of genes was differentially regulated by the early dietary intervention. The high-carbohydrate diets resulted in decreased plasma glucose levels in the adult fish. The mRNA levels and enzyme activities of glucokinase, pyruvate kinase, α-amylase and sodium-dependent glucose co-transporter 1 were up-regulated in the first-feeding groups. There was no significant change in the mRNA levels of glucose-6-phosphatase (G6Pase) in any experimental group, and the activity of G6Pase enzyme in the FF-5 (first feeding to 2 d after yolk-sac exhaustion) group was significantly different from that of the other groups. The expression of phosphoenolpyruvate carboxykinase gene in all the groups was significantly decreased. In the examined early programming range, growth performance was not affected. Taken together, data reported herein indicate that the period ranging from the polyculture to the external feeding stage is an important window for potential modification of the long-term physiological functions. In conclusion, the present study demonstrates that it is possible to permanently modify carbohydrate digestion, transport and metabolism of adult zebrafish through early nutritional programming.

  17. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio)

    PubMed Central

    McClelland, Grant B; Craig, Paul M; Dhekney, Kalindi; Dipardo, Shawn

    2006-01-01

    Both exercise training and cold acclimatization induce muscle remodelling in vertebrates, producing a more aerobic phenotype. In ectothermic species exercise training and cold-acclimatization represent distinct stimuli. It is currently unclear if these stimuli act through a common mechanism or if different mechanisms lead to a common phenotype. The goal of this study was to survey responses that represent potential mechanisms responsible for contraction- and temperature-induced muscle remodelling, using an ectothermic vertebrate. Separate groups of adult zebrafish (Danio rerio) were either swim trained or cold acclimatized for 4 weeks. We found that the mitochondrial marker enzyme citrate synthase (CS) was increased by 1.5× in cold and by 1.3× with exercise (P < 0.05). Cytochrome c oxidase (COx) was increased by 1.2× following exercise training (P < 0.05) and 1.2× (P = 0.07) with cold acclimatization. However, only cold acclimatization increased β-hydroxyacyl-CoA dehydrogenase (HOAD) compared to exercise-trained (by 1.3×) and pyruvate kinase (PK) relative to control zebrafish. We assessed the whole-animal performance outcomes of these treatments. Maximum absolute sustained swimming speed (Ucrit) was increased in the exercise trained group but not in the cold acclimatized group. Real-time PCR analysis indicated that increases in CS are primarily transcriptionally regulated with exercise but not with cold treatments. Both treatments showed increases in nuclear respiratory factor (NRF)-1 mRNA which was increased by 2.3× in cold-acclimatized and 4× in exercise-trained zebrafish above controls. In contrast, peroxisome proliferator-activated receptor (PPAR)-α mRNA levels were decreased in both experimental groups while PPAR-β1 declined in exercise training only. Moreover, PPAR-γ coactivator (PGC)-1α mRNA was not changed by either treatment. In zebrafish, both temperature and exercise produce a more aerobic phenotype, but there are stimulus-dependent responses

  18. Atomoxetine reduces anticipatory responding in a 5-choice serial reaction time task for adult zebrafish

    PubMed Central

    Parker, Matthew O.; Brock, Alistair J.; Sudwarts, Ari; Brennan, Caroline H.

    2014-01-01

    Deficits in impulse control are related to a number of psychiatric diagnoses, including attention deficit hyperactivity disorder, addiction, and pathological gambling. Despite increases in our knowledge about the underlying neurochemical and neuroanatomical correlates, understanding of the molecular and cellular mechanisms is less well established. Understanding these mechanisms is essential in order to move towards individualized treatment programs and increase efficacy of interventions. Zebrafish are a very useful vertebrate model for exploring molecular processes underlying disease owing to their small size and genetic tractability. Their utility in terms of behavioral neuroscience, however, hinges on the validation and publication of reliable assays with adequate translational relevance. Here, we report an initial pharmacological validation of a fully automated zebrafish version of the commonly used five-choice serial reaction time task using a variable interval pre-stimulus interval. We found that atomoxetine reduced anticipatory responses (0.6 mg/kg), whereas a high-dose (4 mg/kg) methylphenidate increased anticipatory responses and the number of trials completed in a session. On the basis of these results, we argue that similar neurochemical processes in fish as in mammals may control impulsivity, as operationally defined by anticipatory responses on a continuous performance task such as this, making zebrafish potentially a good model for exploring the molecular basis of impulse control disorders and for first-round drug screening. PMID:24481568

  19. Atomoxetine reduces anticipatory responding in a 5-choice serial reaction time task for adult zebrafish.

    PubMed

    Parker, Matthew O; Brock, Alistair J; Sudwarts, Ari; Brennan, Caroline H

    2014-07-01

    Deficits in impulse control are related to a number of psychiatric diagnoses, including attention deficit hyperactivity disorder, addiction, and pathological gambling. Despite increases in our knowledge about the underlying neurochemical and neuroanatomical correlates, understanding of the molecular and cellular mechanisms is less well established. Understanding these mechanisms is essential in order to move towards individualized treatment programs and increase efficacy of interventions. Zebrafish are a very useful vertebrate model for exploring molecular processes underlying disease owing to their small size and genetic tractability. Their utility in terms of behavioral neuroscience, however, hinges on the validation and publication of reliable assays with adequate translational relevance. Here, we report an initial pharmacological validation of a fully automated zebrafish version of the commonly used five-choice serial reaction time task using a variable interval pre-stimulus interval. We found that atomoxetine reduced anticipatory responses (0.6 mg/kg), whereas a high-dose (4 mg/kg) methylphenidate increased anticipatory responses and the number of trials completed in a session. On the basis of these results, we argue that similar neurochemical processes in fish as in mammals may control impulsivity, as operationally defined by anticipatory responses on a continuous performance task such as this, making zebrafish potentially a good model for exploring the molecular basis of impulse control disorders and for first-round drug screening. PMID:24481568

  20. Hypoalbuminaemia predicts outcome in adult patients with congenital heart disease

    PubMed Central

    Kempny, Aleksander; Diller, Gerhard-Paul; Alonso-Gonzalez, Rafael; Uebing, Anselm; Rafiq, Isma; Li, Wei; Swan, Lorna; Hooper, James; Donovan, Jackie; Wort, Stephen J; Gatzoulis, Michael A; Dimopoulos, Konstantinos

    2015-01-01

    Background In patients with acquired heart failure, hypoalbuminaemia is associated with increased risk of death. The prevalence of hypoproteinaemia and hypoalbuminaemia and their relation to outcome in adult patients with congenital heart disease (ACHD) remains, however, unknown. Methods Data on patients with ACHD who underwent blood testing in our centre within the last 14 years were collected. The relation between laboratory, clinical or demographic parameters at baseline and mortality was assessed using Cox proportional hazards regression analysis. Results A total of 2886 patients with ACHD were included. Mean age was 33.3 years (23.6–44.7) and 50.1% patients were men. Median plasma albumin concentration was 41.0 g/L (38.0–44.0), whereas hypoalbuminaemia (<35 g/L) was present in 13.9% of patients. The prevalence of hypoalbuminaemia was significantly higher in patients with great complexity ACHD (18.2%) compared with patients with moderate (11.3%) or simple ACHD lesions (12.1%, p<0.001). During a median follow-up of 5.7 years (3.3–9.6), 327 (11.3%) patients died. On univariable Cox regression analysis, hypoalbuminaemia was a strong predictor of outcome (HR 3.37, 95% CI 2.67 to 4.25, p<0.0001). On multivariable Cox regression, after adjusting for age, sodium and creatinine concentration, liver dysfunction, functional class and disease complexity, hypoalbuminaemia remained a significant predictor of death. Conclusions Hypoalbuminaemia is common in patients with ACHD and is associated with a threefold increased risk of risk of death. Hypoalbuminaemia, therefore, should be included in risk-stratification algorithms as it may assist management decisions and timing of interventions in the growing ACHD population. PMID:25736048

  1. Effects of chronic dietary selenomethionine exposure on repeat swimming performance, aerobic metabolism and methionine catabolism in adult zebrafish (Danio rerio).

    PubMed

    Thomas, Jith K; Wiseman, Steve; Giesy, John P; Janz, David M

    2013-04-15

    In a previous study we reported impaired swimming performance and greater stored energy in adult zebrafish (Danio rerio) after chronic dietary exposure to selenomethionine (SeMet). The goal of the present study was to further investigate effects of chronic exposure to dietary SeMet on repeat swimming performance, oxygen consumption (MO2), metabolic capacities (standard metabolic rate [SMR], active metabolic rate [AMR], factorial aerobic scope [F-AS] and cost of transport [COT]) and gene expression of energy metabolism and methionine catabolism enzymes in adult zebrafish. Fish were fed SeMet at measured concentrations of 1.3, 3.4, 9.8 or 27.5 μg Se/g dry mass (d.m.) for 90 d. At the end of the exposure period, fish from each treatment group were divided into three subgroups: (a) no swim, (b) swim, and (c) repeat swim. Fish from the no swim group were euthanized immediately at 90 d and whole body triglycerides, glycogen and lactate, and gene expression of energy metabolism and methionine catabolism enzymes were determined. Individual fish from the swim group were placed in a swim tunnel respirometer and swimming performance was assessed by determining the critical swimming speed (U(crit)). After both Ucrit and MO2 analyses, fish were euthanized and whole body energy stores and lactate were determined. Similarly, individual fish from the repeat swim group were subjected to two U(crit) tests (U(crit-1) and U(crit-2)) performed with a 60 min recovery period between tests, followed by determination of energy stores and lactate. Impaired swim performance was observed in fish fed SeMet at concentrations greater than 3 μg Se/g in the diet. However, within each dietary Se treatment group, no significant differences between single and repeat U(crits) were observed. Oxygen consumption, SMR and COT were significantly greater, and F-AS was significantly lesser, in fish fed SeMet. Whole body triglycerides were proportional to the concentration of SeMet in the diet. While

  2. Definition of three somatic adult cell nuclear transplant methods in zebrafish (Danio rerio): before, during and after egg activation by sperm fertilization.

    PubMed

    Pérez-Camps, M; Cardona-Costa, J; Francisco-Simao, M; García-Ximénez, F

    2010-02-01

    Zebrafish somatic nuclear transplant has only been attempted using preactivated eggs. In this work, three methods to carry out the nuclear transplant using adult cells before, during and after the egg activation/fertilization were developed in zebrafish with the aim to be used in reprogramming studies. The donor nucleus from somatic adult cells was inserted: (method A) in the central region of the egg and subsequently fertilized; (method B) in the incipient animal pole at the same time that the egg was fertilized; and (method C) in the completely defined animal pole after fertilization. Larval and adult specimens were obtained using the three methods. Technical aspects related to temperature conditions, media required, egg activation/fertilization, post-ovulatory time of the transplant, egg aging, place of the donor nucleus injection in each methodology are presented. In conclusion, the technical approach developed in this work can be used in reprogramming studies.

  3. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish.

    PubMed

    Osborne, Olivia J; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Yu, Xuechen; Wang, Xiang; Lin, Shuo; Xia, Tian; Nel, André E

    2015-10-27

    We studied adult zebrafish to determine whether the size of 20 and 110 nm citrate-coated silver nanoparticles (AgC NPs) differentially impact the gills and intestines, known target organs for Ag toxicity in fish. Following exposure for 4 h, 4 days, or 4 days plus a 7 day depuration period, we obtained different toxicokinetic profiles for different particle sizes, as determined by Ag content of the tissues. Ionic AgNO3 served as a positive control. The gills showed a significantly higher Ag content for the 20 nm particles at 4 h and 4 days than the 110 nm particles, while the values were more similar in the intestines. Both particle types were retained in the intestines even after depuration. These toxicokinetics were accompanied by striking size-dependent differences in the ultrastructural features and histopathology in the target organs in response to the particulates. Ag staining of the gills and intestines confirmed prominent Ag deposition in the basolateral membranes for the 20 nm but not for the 110 nm particles. Furthermore, it was possible to link the site of tissue deposition to disruption of the Na(+)/K(+) ion channel, which is also localized to the basolateral membrane. This was confirmed by a reduction in ATPase activity and immunohistochemical detection of the α subunit of this channel in both target organs, with the 20 nm particles causing significantly higher inhibition and disruption than the larger size particles or AgNO3. These results demonstrate the importance of particle size in determining the hazardous impact of AgNPs in the gills and intestines of adult zebrafish.

  4. Expression and anatomical distribution of TrkB in the encephalon of the adult zebrafish (Danio rerio).

    PubMed

    Abbate, F; Guerrera, M C; Montalbano, G; Levanti, M B; Germanà, G P; Navarra, M; Laurà, R; Vega, J A; Ciriaco, E; Germanà, A

    2014-03-20

    Neurotrophins are a family of growth factor primarily acting in the nervous system, throughout two categories of membrane receptors on the basis of their high (Trk receptors) or low (p75NTR) affinity. Both neurotrophins and Trk receptors are phylogenetically conserved and are expressed not only in the central and peripheral nervous system but also in non-nervous tissues of vertebrates and some invertebrates. The brain-derived neurotrophic factor (BDNF)/TrkB system plays an important role in the development, phenotypic maintenance and plasticity of specific neuronal populations. Considering that this system is poorly characterized in the central nervous system of teleosts, the expression and anatomical distribution of TrkB in the brain of the adult zebrafish using reverse transcriptase-polymerase chain reaction (RT-PCR), Western-blot and immunohistochemistry were analysed. Both the riboprobe and the antibody used were designed to map within the catalytic domain of TrkB. RT-PCR detected specific TrkB mRNA in brain homogenates, while Western-blot identified one unique protein band with an estimated molecular weight of 145kDa, thus corresponding with the TrkB full-length isiform of the receptor. Immunohistochemistry showed specific TrkB immunoreactivity in restricted areas of the encephalon, i.e. the hypothalamus and a specific neuronal subpopulation of the reticular formation. The present results demonstrate, for the first time, that, as in mammals, the encephalon of adult zebrafish expresses TrkB in specific zones related to food intake, behaviour or motor activity.

  5. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish.

    PubMed

    Osborne, Olivia J; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Yu, Xuechen; Wang, Xiang; Lin, Shuo; Xia, Tian; Nel, André E

    2015-10-27

    We studied adult zebrafish to determine whether the size of 20 and 110 nm citrate-coated silver nanoparticles (AgC NPs) differentially impact the gills and intestines, known target organs for Ag toxicity in fish. Following exposure for 4 h, 4 days, or 4 days plus a 7 day depuration period, we obtained different toxicokinetic profiles for different particle sizes, as determined by Ag content of the tissues. Ionic AgNO3 served as a positive control. The gills showed a significantly higher Ag content for the 20 nm particles at 4 h and 4 days than the 110 nm particles, while the values were more similar in the intestines. Both particle types were retained in the intestines even after depuration. These toxicokinetics were accompanied by striking size-dependent differences in the ultrastructural features and histopathology in the target organs in response to the particulates. Ag staining of the gills and intestines confirmed prominent Ag deposition in the basolateral membranes for the 20 nm but not for the 110 nm particles. Furthermore, it was possible to link the site of tissue deposition to disruption of the Na(+)/K(+) ion channel, which is also localized to the basolateral membrane. This was confirmed by a reduction in ATPase activity and immunohistochemical detection of the α subunit of this channel in both target organs, with the 20 nm particles causing significantly higher inhibition and disruption than the larger size particles or AgNO3. These results demonstrate the importance of particle size in determining the hazardous impact of AgNPs in the gills and intestines of adult zebrafish. PMID:26327297

  6. Risks and Benefits of Exercise Training in Adults With Congenital Heart Disease.

    PubMed

    Chaix, Marie-A; Marcotte, François; Dore, Annie; Mongeon, François-Pierre; Mondésert, Blandine; Mercier, Lise-Andrée; Khairy, Paul

    2016-04-01

    Exercise capacity in adults with various forms of congenital heart disease is substantially lower than that of the general population. Although the underlying congenital heart defect, and its sequelae, certainly contribute to observed exercise limitations, there is evidence suggesting that deconditioning and a sedentary lifestyle are important implicated factors. The prevalence of acquired cardiovascular comorbidities is on the increase in the aging population with congenital heart disease, such that obesity and a sedentary lifestyle confer increased risk. Health fears and misconceptions are common barriers to regular physical activity in adults with congenital heart disease, despite evidence linking lower functional capacity to poor outcomes, and data supporting the safety and efficacy of exercise in bestowing numerous physical and psychosocial rewards. With few exceptions, adults with congenital heart disease should be counselled to exercise regularly. In this contemporary review, we provide a practical approach to assessing adults with congenital heart disease before exercise training. We examine available evidence supporting the safety and benefits of exercise training. Risks associated with exercise training in adults with congenital heart disease are discussed, particularly with regard to sudden cardiac death. Finally, recommendations for exercise training are provided, with consideration for the type of congenital heart disease, the nature (ie, static vs dynamic) and intensity (ie, low, medium, high) of the physical activity, and associated factors such as systemic ventricular dysfunction and residual defects. Further research is required to determine optimal exercise regimens and to identify effective strategies to implement exercise training as a key determinant of healthy living. PMID:26868839

  7. Prenatal methamphetamine differentially alters myocardial sensitivity to ischemic injury in male and female adult hearts.

    PubMed

    Rorabaugh, Boyd R; Seeley, Sarah L; Bui, Albert D; Sprague, Lisanne; D'Souza, Manoranjan S

    2016-02-15

    Methamphetamine is one of the most common illicit drugs abused during pregnancy. The neurological effects of prenatal methamphetamine are well known. However, few studies have investigated the potential effects of prenatal methamphetamine on adult cardiovascular function. Previous work demonstrated that prenatal cocaine exposure increases sensitivity of the adult heart to ischemic injury. Methamphetamine and cocaine have different mechanisms of action, but both drugs exert their effects by increasing dopaminergic and adrenergic receptor stimulation. Thus the goal of this study was to determine whether prenatal methamphetamine also worsens ischemic injury in the adult heart. Pregnant rats were injected with methamphetamine (5 mg·kg(-1)·day(-1)) or saline throughout pregnancy. When pups reached 8 wk of age, their hearts were subjected to ischemia and reperfusion by means of a Langendorff isolated heart system. Prenatal methamphetamine had no significant effect on infarct size, preischemic contractile function, or postischemic recovery of contractile function in male hearts. However, methamphetamine-treated female hearts exhibited significantly larger infarcts and significantly elevated end-diastolic pressure during recovery from ischemia. Methamphetamine significantly reduced protein kinase Cε expression and Akt phosphorylation in female hearts but had no effect on these cardioprotective proteins in male hearts. These data indicate that prenatal methamphetamine differentially affects male and female sensitivity to myocardial ischemic injury and alters cardioprotective signaling proteins in the adult heart.

  8. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  9. Placing Advocacy at the Heart of Adult Education

    ERIC Educational Resources Information Center

    Taylor, Jackie

    2016-01-01

    Adult educators know that adults and families change their lives through adult education. Adult education also positively impacts a host of social and economic issues. Yet this fact is largely unknown or misunderstood by the general public. Resources have become increasingly scarce, while at the same time adult educators are asked to do more with…

  10. Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.

    PubMed

    Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen

    2014-08-01

    A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.

  11. Anticoagulation in adults with congenital heart disease: The who, the when and the how?

    PubMed

    Jensen, A S; Idorn, L; Nørager, B; Vejlstrup, N; Sondergaard, L

    2015-03-01

    Adults with congenital heart disease are a growing population. One of the major challenges in the care of these patients is to prevent thromboembolic episodes. Despite relative young age and no typical cardiovascular risk factors, this cohort has a high prevalence of thrombotic events. It is difficult to use treatment algorithms from the general adult population with acquired heart disease in this heterogeneous population due to special conditions such as myocardial scarring after previous surgery, atypical atrial flutter, prothrombotic conditions and the presence of interatrial shunts. Furthermore, there is a lack of scientific evidence regarding how to prevent thromboembolic events with anticoagulation in adults with congenital heart disease. The aim of this paper is to review the current literature pertaining to anticoagulation in adults with congenital heart disease and hence enable recommendations for which patients are likely to benefit from which anticoagulation treatments, when they should be considered and how these would be carried out.

  12. Significance of metabolite extraction method for evaluating sulfamethazine toxicity in adult zebrafish using metabolomics.

    PubMed

    De Sotto, Ryan; Medriano, Carl; Cho, Yunchul; Seok, Kwang-Seol; Park, Youngja; Kim, Sungpyo

    2016-05-01

    Recently, environmental metabolomics has been introduced as a next generation environmental toxicity method which helps in evaluating toxicity of bioactive compounds to non-target organisms. In general, efficient metabolite extraction from target cells is one of the keys to success to better understand the effects of toxic substances to organisms. In this regard, the aim of this study is (1) to compare two sample extraction methods in terms of abundance and quality of metabolites and (2) investigate how this could lead to difference in data interpretation using pathway analysis. For this purpose, the antibiotic sulfamethazine and zebrafish (Danio rerio) were selected as model toxic substance and target organism, respectively. The zebrafish was exposed to four different sulfamethazine concentrations (0, 10, 30, and 50mg/L) for 72h. Metabolites were extracted using two different methods (Bligh and Dyer and solid-phase extraction). A total of 13,538 and 12,469 features were detected using quadrupole time-of-flight liquid chromatography mass spectrometry (QTOF LC-MS). Of these metabolites, 4278 (Bligh and Dyer) and 332 (solid phase extraction) were found to be significant after false discovery rate adjustment at a significance threshold of 0.01. Metlin and KEGG pathway analysis showed comprehensive information from fish samples extracted using Bligh and Dyer compared to solid phase extraction. This study shows that proper selection of sample extraction method is critically important for interpreting and analyzing the toxicity data of organisms when metabolomics is applied. PMID:26827276

  13. Global DNA methylation in gonads of adult zebrafish Danio rerio under bisphenol A exposure.

    PubMed

    Liu, Yan; Zhang, Yingying; Tao, Shiyu; Guan, Yongjing; Zhang, Ting; Wang, Zaizhao

    2016-08-01

    Altered DNA methylation is pervasively associated with changes in gene expression and signal transduction after exposure to a wide range of endocrine disrupting chemicals. As a weak estrogenic chemical, bisphenol A (BPA) has been extensively studied for reproductive toxicity. In order to explore the effects of BPA on epigenetic modification in gonads of zebrafish Danio rerio, we measured the global DNA methylation together with the gene expression of DNA methyltransferase (dnmts), glycine N-methyltransferase (gnmt), and ten-eleven translocation (tets) in gonads of D. rerio under BPA exposure by ELISA and quantitative real-time PCR method, respectively. The global level of DNA methylation was significantly decreased in ovaries after exposed to BPA for 7 days, and testes following 35-day exposure. Moreover, the global level of DNA methylation was also significantly reduced in testes after exposed to 15μg/L BPA for 7 days. Besides the alteration of the global level of DNA methylation, varying degrees of transcriptional changes of dnmts, gnmt and tets were detected in gonads of D. rerio under BPA exposure. The present study suggested that BPA might cause the global DNA demethylation in gonads of zebrafish by regulating the transcriptional changes of the DNA methylation/demethylation-associated genes (dnmts, gnmt, and tets). PMID:27101439

  14. Long-term dietary-exposure to non-coplanar PCBs induces behavioral disruptions in adult zebrafish and their offspring.

    PubMed

    Péan, Samuel; Daouk, Tarek; Vignet, Caroline; Lyphout, Laura; Leguay, Didier; Loizeau, Véronique; Bégout, Marie-Laure; Cousin, Xavier

    2013-01-01

    The use of polychlorinated biphenyls (PCBs) has been banned for several decades. PCBs have a long biological half-life and high liposolubility which leads to their bioaccumulation and biomagnification through food chains over a wide range of trophic levels. Exposure can lead to changes in animal physiology and behavior and has been demonstrated in both experimental and field analyses. There are also potential risks to high trophic level predators, including humans. A maternal transfer has been demonstrated in fish as PCBs bind to lipids in eggs. In this study, behavioral traits (exploration and free swimming, with or without challenges) of contaminated zebrafish (Danio rerio) adults and their offspring (both as five-day-old larvae and as two-month-old fish reared under standard conditions) were measured using video-tracking. Long-term dietary exposure to a mixture of non-coplanar PCBs was used to mimic known environmental contamination levels and congener composition. Eight-week-old fish were exposed for eight months at 26-28 °C. Those exposed to an intermediate dose (equivalent to that found in the Loire Estuary, ∑(CB)=515 ng g⁻¹ dry weight in food) displayed behavioral disruption in exploration capacities. Fish exposed to the highest dose (equivalent to that found in the Seine Estuary, ∑(CB)=2302 ng g⁻¹ dry weight in food) displayed an increased swimming activity at the end of the night. In offspring, larval activity was increased and two-month-old fish occupied the bottom section of the tank less often. These findings call for more long-term experiments using the zebrafish model; the mechanisms underlying behavioral disruptions need to be understood due to their implications for both human health and their ecological relevance in terms of individual fitness and survival.

  15. Sustained Action of Developmental Ethanol Exposure on the Cortisol Response to Stress in Zebrafish Larvae and Adults

    PubMed Central

    Baiamonte, Matteo; Brennan, Caroline H.; Vinson, Gavin P.

    2015-01-01

    Background Ethanol exposure during pregnancy is one of the leading causes of preventable birth defects, leading to a range of symptoms collectively known as fetal alcohol spectrum disorder. More moderate levels of prenatal ethanol exposure lead to a range of behavioural deficits including aggression, poor social interaction, poor cognitive performance and increased likelihood of addiction in later life. Current theories suggest that adaptation in the hypothalamo-pituitary-adrenal (HPA) axis and neuroendocrine systems contributes to mood alterations underlying behavioural deficits and vulnerability to addiction. In using zebrafish (Danio rerio), the aim is to determine whether developmental ethanol exposure provokes changes in the hypothalamo-pituitary-interrenal (HPI) axis (the teleost equivalent of the HPA), as it does in mammalian models, therefore opening the possibilities of using zebrafish to elucidate the mechanisms involved, and to test novel therapeutics to alleviate deleterious symptoms. Results and Conclusions The results showed that developmental exposure to ambient ethanol, 20mM-50mM 1-9 days post fertilisation, had immediate effects on the HPI, markedly reducing the cortisol response to air exposure stress, as measured by whole body cortisol content. This effect was sustained in adults 6 months later. Morphology, growth and locomotor activity of the animals were unaffected, suggesting a specific action of ethanol on the HPI. In this respect the data are consistent with mammalian results, although they contrast with the higher corticosteroid stress response reported in rats after developmental ethanol exposure. The mechanisms that underlie the specific sensitivity of the HPI to ethanol require elucidation. PMID:25875496

  16. Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio).

    PubMed

    Nazario, Luiza Reali; Antonioli, Régis; Capiotti, Katiucia Marques; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S; Bonan, Carla Denise; da Silva, Rosane Souza

    2015-08-01

    Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine.

  17. Precursors of Hypertensive Heart Phenotype Develop in Healthy Adults

    PubMed Central

    de Marvao, Antonio; Dawes, Timothy J.W.; Shi, Wenzhe; Durighel, Giuliana; Rueckert, Daniel; Cook, Stuart A.; O’Regan, Declan P.

    2015-01-01

    Objectives This study used high-resolution 3-dimensional cardiac magnetic resonance to define the anatomical and functional left ventricular (LV) properties associated with increasing systolic blood pressure (SBP) in a drug-naïve cohort. Background LV hypertrophy and remodeling occur in response to hemodynamic stress but little is known about how these phenotypic changes are initiated in the general population. Methods In this study, 1,258 volunteers (54% women, mean age 40.6 ± 12.8 years) without self-reported cardiovascular disease underwent 3-dimensional cardiac magnetic resonance combined with computational modeling. The relationship between SBP and wall thickness (WT), relative WT, end-systolic wall stress (WS), and fractional wall thickening were analyzed using 3-dimensional regression models adjusted for body surface area, sex, race, age, and multiple testing. Significantly associated points in the LV model (p < 0.05) were identified and the relationship with SBP reported as mean β coefficients. Results There was a continuous relationship between SBP and asymmetric concentric hypertrophic adaptation of the septum and anterior wall that was associated with normalization of wall stress. In the lateral wall an increase in wall stress with rising SBP was not balanced by a commensurate hypertrophic relationship. In normotensives, SBP was positively associated with WT (β = 0.09) and relative WT (β = 0.07) in the septal and anterior walls, and this regional hypertrophic relationship was progressively stronger among pre-hypertensives (β = 0.10) and hypertensives (β = 0.30). Conclusions These findings show that the precursors of the hypertensive heart phenotype can be traced to healthy normotensive adults and that an independent and continuous relationship exists between adverse LV remodeling and SBP in a low-risk population. These adaptations show distinct regional variations with concentric hypertrophy of the septum and eccentric hypertrophy of the

  18. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  19. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol.

  20. Early-life stress changes expression of GnRH and kisspeptin genes and DNA methylation of GnRH3 promoter in the adult zebrafish brain.

    PubMed

    Khor, Yee Min; Soga, Tomoko; Parhar, Ishwar S

    2016-02-01

    Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions.

  1. Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior.

    PubMed

    Glazer, Lilah; Hahn, Mark E; Aluru, Neelakanteswar

    2016-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. The most toxic PCBs are the non-ortho-substituted ("dioxin-like") congeners that act through the aryl hydrocarbon receptor (AHR) pathway. In humans, perinatal exposure to dioxin-like PCBs is associated with neurodevelopmental toxicity in children. Yet, the full potential for later-life neurobehavioral effects that result from early-life low level exposure to dioxin-like PCBs is not well understood. The objective of this study was to determine the effects of developmental exposure to low levels of dioxin-like PCBs on early- and later-life behavioral phenotypes using zebrafish as a model system. We exposed zebrafish embryos to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2nM) for 20h (4-24h post fertilization), and then reared them to adulthood in clean water. Locomotor activity was tested at two larval stages (7 and 14 days post fertilization). Adult fish were tested for anxiety-related behavior using the novel tank and shoaling assays. Adult behavioral assays were repeated several times on the same group of fish and effects on intra- and inter-trial habituation were determined. While there was no effect of PCB126 on larval locomotor activity in response to changes in light conditions, developmental exposure to PCB126 resulted in impaired short- and long-term habituation to a novel environment in adult zebrafish. Cyp1a induction was measured as an indicator for AHR activation. Despite high induction at early stages, cyp1a expression was not induced in the brains of developmentally exposed adult fish that showed altered behavior, suggesting that AHR was not activated at this stage. Our results demonstrate the effectiveness of the zebrafish model in detecting subtle and delayed behavioral effects resulting from developmental exposure to an environmental contaminant. PMID:26616910

  2. The common neural parasite Pseudoloma neurophilia is associated with altered startle response habituation in adult zebrafish (Danio rerio): Implications for the zebrafish as a model organism.

    PubMed

    Spagnoli, Sean; Xue, Lan; Kent, Michael L

    2015-09-15

    The zebrafish's potential as a model for human neurobehavioral research appears nearly limitless despite its relatively recent emergence as an experimental organism. Since the zebrafish has only been part of the research community for a handful of decades, pathogens from its commercial origins continue to plague laboratory stocks. One such pathogen is Pseudoloma neurophilia, a common microparasite in zebrafish laboratories world-wide that generally produces subclinical infections. Given its high prevalence, its predilection for the host's brain and spinal cord, and the delicate nature of neurobehavioral research, the behavioral consequences of subclinical P. neurophilia infection must be explored. Fish infected via cohabitation were tested for startle response habituation in parallel with controls in a device that administered ten taps over 10 min along with taps at 18 and 60 min to evaluate habituation extinction. After testing, fish were euthanized and evaluated for infection via histopathology. Infected fish had a significantly smaller reduction in startle velocity during habituation compared to uninfected tankmates and controls. Habituation was eliminated in infected and control fish at 18 min, whereas exposed negative fish retained partial habituation at 18 min. Infection was also associated with enhanced capture evasion: Despite the absence of external symptoms, infected fish tended to be caught later than uninfected fish netted from the same tank. The combination of decreased overall habituation, early extinction of habituation compared to uninfected cohorts, and enhanced netting evasion indicates that P. neurophilia infection is associated with a behavioral phenotype distinct from that of controls and uninfected cohorts. Because of its prevalence in zebrafish facilities, P. neurophilia has the potential to insidiously influence a wide range of neurobehavioral studies if these associations are causative. Rigorous health screening is therefore vital to the

  3. Prevalence and correlates of heart disease among adults in Singapore.

    PubMed

    Picco, Louisa; Subramaniam, Mythily; Abdin, Edimansyah; Vaingankar, Janhavi Ajit; Chong, Siow Ann

    2016-02-01

    Heart disease is one of the leading causes of morbidity and mortality worldwide and it has been well established that it is associated with both mental and physical conditions. This paper describes the prevalence of heart disease with mental disorders and other chronic physical conditions among the Singapore resident population. Data were from the Singapore Mental Health Study which was a representative, cross-sectional epidemiological survey undertaken with 6616 Singapore residents, between December 2009 and December 2010. The Composite International Diagnostic Interview Version 3.0 was used to establish the diagnosis of mental disorders, while a chronic medical conditions checklist was used to gather information on 15 physical conditions, including various forms of heart disease. Health-related quality of life was measured using the Euro-Quality of Life Scale (EQ-5D). The lifetime prevalence of heart disease was 2.8%. Socio-demographic correlates of heart disease included older age, Indian ethnicity, secondary education (vs. tertiary) and being economically inactive. After adjusting for socio-demographic variables and other comorbid physical and mental disorders, the prevalence of major depressive disorder and bipolar disorder were significantly higher among those with heart disease, as were diabetes, arthritis, kidney failure and lung disease. These findings highlight important associations between heart disease and various socio-demographic correlates, mental disorders and physical conditions. Given the high prevalence of mood disorders among heart disease patients, timely and appropriate screening and treatment of mental disorders among this group is essential.

  4. Induction of Female-to-Male Sex Change in Adult Zebrafish by Aromatase Inhibitor Treatment

    NASA Astrophysics Data System (ADS)

    Takatsu, Kanae; Miyaoku, Kaori; Roy, Shimi Rani; Murono, Yuki; Sago, Tomohiro; Itagaki, Hideyuki; Nakamura, Masaru; Tokumoto, Toshinobu

    2013-12-01

    This study investigated whether undifferentiated germ and/or somatic stem cells remain in the differentiated ovary of a species that does not undergo sex changes under natural conditions and retain their sexual plasticity. The effect of aromatase inhibitor (AI)-treatment on sexually mature female zebrafish was examined. A 5-month AI treatment caused retraction of the ovaries after which testes-like organs appeared, and cyst structures filled with spermatozoa-like cells were observed in sections of these tissues. Electron microscopic observations revealed that these cells appeared as large sperm heads without tails. Sperm formation was re-examined after changing the diet to an AI-free food. A large number of normal sperm were obtained after eight weeks, and no formation of ovarian tissue was observed. Artificial fertilization using sperm from the sex-changed females was successful. These results demonstrated that sex plasticity remains in the mature ovaries of this species.

  5. Induction of Female-to-Male Sex Change in Adult Zebrafish by Aromatase Inhibitor Treatment

    PubMed Central

    Takatsu, Kanae; Miyaoku, Kaori; Roy, Shimi Rani; Murono, Yuki; Sago, Tomohiro; Itagaki, Hideyuki; Nakamura, Masaru; Tokumoto, Toshinobu

    2013-01-01

    This study investigated whether undifferentiated germ and/or somatic stem cells remain in the differentiated ovary of a species that does not undergo sex changes under natural conditions and retain their sexual plasticity. The effect of aromatase inhibitor (AI)-treatment on sexually mature female zebrafish was examined. A 5-month AI treatment caused retraction of the ovaries after which testes-like organs appeared, and cyst structures filled with spermatozoa-like cells were observed in sections of these tissues. Electron microscopic observations revealed that these cells appeared as large sperm heads without tails. Sperm formation was re-examined after changing the diet to an AI-free food. A large number of normal sperm were obtained after eight weeks, and no formation of ovarian tissue was observed. Artificial fertilization using sperm from the sex-changed females was successful. These results demonstrated that sex plasticity remains in the mature ovaries of this species. PMID:24292399

  6. Asymmetrical Dimethylarginine - More Sensitive than NT-proBNP to Diagnose Heart Failure in Adults with Congenital Heart Disease

    PubMed Central

    Bode-Böger, Stefanie M.; Martens-Lobenhoffer, Jens; Lovric, Svjetlana; Bauersachs, Johann; Schieffer, Bernhard; Westhoff-Bleck, Mechthild; Kielstein, Jan T.

    2012-01-01

    Background Chronic heart failure is an important cause for morbidity and mortality in adults with congenital heart disease (ACHD). While NT-proBNP is an established biomarker for heart failure of non-congenital origin, its value in ACHD has limitations. Asymmetrical dimethylarginine (ADMA) correlates with disease severity and independently predicts adverse clinical events in heart failure of non-congenital origin. Its role in ACHD has not been investigated. Methods In 102 patients ADMA and NT-proBNP were measured and related to NYHA class, systemic ventricular function and parameters of cardiopulmonary exercise testing. Results In contrast to NT-proBNP ADMA differentiated between NYHA classes I-III. Both, ADMA and NT-proBNP showed a good correlation with parameters of cardiopulmonary exercise testing with comparable receiver-operating characteristic curves for identifying patients with severely limited cardiopulmonary exercise capacity. Conclusion ADMA seems to be a better biomarker than NT-proBNP for the assessment of NYHA class and as a good as NT-proBNP for the estimation of maximum exercise capacity in adults with congenital heart disease. Its use in clinical routine should be evaluated. PMID:22470476

  7. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons?

    PubMed

    Liao, Song-Yan; Tse, Hung-Fat

    2013-12-24

    Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed.

  8. Overweight Status, Obesity, and Risk Factors for Coronary Heart Disease in Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Henderson, C. Michael; Robinson, Laura M.; Davidson, Philip W.; Haveman, Meindert; Janicki, Matthew P.; Albertini, Giorgio

    2008-01-01

    Research indicates that adults with intellectual disabilities (ID) have high rates of overweight status/obesity (OSO). OSO is associated with several important risk factors for coronary heart disease (CHD). This study focused on assessing whether such risk factors are being identified in adults with ID who are receiving their healthcare in…

  9. Axonal regeneration in zebrafish.

    PubMed

    Becker, Thomas; Becker, Catherina G

    2014-08-01

    In contrast to mammals, fish and amphibia functionally regenerate axons in the central nervous system (CNS). The strengths of the zebrafish model, that is, transgenics and mutant availability, ease of gene expression analysis and manipulation and optical transparency of larvae lend themselves to the analysis of successful axonal regeneration. Analyses in larval and adult zebrafish suggest a high intrinsic capacity for axon regrowth, yet signaling pathways employed in axonal growth and pathfinding are similar to those in mammals. However, the lesioned CNS environment in zebrafish shows remarkably little scarring or expression of inhibitory molecules and regenerating axons use molecular cues in the environment to successfully navigate to their targets. Future zebrafish research, including screening techniques, will complete our picture of the mechanisms behind successful CNS axon regeneration in this vertebrate model organism.

  10. The common neural parasite Pseudoloma neurophilia is associated with altered startle response habituation in adult zebrafish (Danio rerio): Implications for the zebrafish as a model organism

    PubMed Central

    Spagnoli, Sean; Xue, Lan; Kent, Michael L.

    2015-01-01

    The zebrafish’s potential as a model for human neurobehavioral research appears nearly limitless despite its relatively recent emergence as an experimental organism. Since the zebrafish has only been part of the research community for a handful of decades, pathogens from its commercial origins continue to plague laboratory stocks. One such pathogen is Pseudoloma neurophilia, a common microparasite in zebrafish laboratories world-wide that generally produces subclinical infections. Given its high prevalence, its predilection for the host’s brain and spinal cord, and the delicate nature of neurobehavioral research, the behavioral consequences of subclinical P. neurophilia infection must be explored. Fish infected via cohabitation were tested for startle response habituation in parallel with controls in a device that administered ten taps over ten minutes along with taps at 18 and 60 minutes to evaluate habituation extinction. After testing, fish were euthanized and evaluated for infection via histopathology. Infected fish had a significantly smaller reduction in startle velocity during habituation compared to uninfected tankmates and controls. Habituation was eliminated in infected and control fish at 18 minutes, whereas exposed negative fish retained partial habituation at 18 minutes. Infection was also associated with enhanced capture evasion: Despite the absence of external symptoms, infected fish tended to be caught later than uninfected fish netted from the same tank. The combination of decreased overall habituation, early extinction of habituation compared to uninfected cohorts, and enhanced netting evasion indicates that P. neurophilia infection is associated with a behavioral phenotype distinct from that of controls and uninfected cohorts. Because of its prevalence in zebrafish facilities, P. neurophilia has the potential to insidiously influence a wide range of neurobehavioral studies if these associations are causative. Rigorous health screening is

  11. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60) Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

    PubMed Central

    Dal Forno, Gonzalo Ogliari; Kist, Luiza Wilges; de Azevedo, Mariana Barbieri; Fritsch, Rachel Seemann; Pereira, Talita Carneiro Brandão; Britto, Roberta Socoowski; Guterres, Sílvia Stanisçuaski; Külkamp-Guerreiro, Irene Clemes; Bonan, Carla Denise; Monserrat, José María; Bogo, Maurício Reis

    2013-01-01

    Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure. PMID:23865059

  12. Acid-sensing ion channel 2 (ASIC2) is selectively localized in the cilia of the non-sensory olfactory epithelium of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Abbate, F; Cabo, R; Guerrera, M C; Laurà, R; Quirós, L M; Pérez-Varela, J C; Cobo, T; Germanà, A; Vega, J A; García-Suárez, O

    2015-01-01

    Ionic channels play key roles in the sensory cells, such as transducing specific stimuli into electrical signals. The acid-sensing ion channel (ASIC) family is voltage-insensitive, amiloride-sensitive, proton-gated cation channels involved in several sensory functions. ASIC2, in particular, has a dual function as mechano- and chemo-sensor. In this study, we explored the possible role of zebrafish ASIC2 in olfaction. RT-PCR, Western blot, chromogenic in situ hybridization and immunohistochemistry, as well as ultrastructural analysis, were performed on the olfactory rosette of adult zebrafish. ASIC2 mRNA and protein were detected in homogenates of olfactory rosettes. Specific ASIC2 hybridization was observed in the luminal pole of the non-sensory epithelium, especially in the cilia basal bodies, and immunoreactivity for ASIC2 was restricted to the cilia of the non-sensory cells where it was co-localized with the cilia marker tubulin. ASIC2 expression was always absent in the olfactory cells. These findings demonstrate for the first time the expression of ASIC2 in the olfactory epithelium of adult zebrafish and suggest that it is not involved in olfaction. Since the cilium sense and transduce mechanical and chemical stimuli, ASIC2 expression in this location might be related to detection of aquatic environment pH variations or to detection of water movement through the nasal cavity.

  13. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish.

    PubMed

    Harrison, Michael R M; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C Geoffrey; Burns, Caroline E; Sucov, Henry M; Siekmann, Arndt F; Lien, Ching-Ling

    2015-05-26

    Interruption of the coronary blood supply severely impairs heart function with often fatal consequences for patients. However, the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults.

  14. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters

    PubMed Central

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  15. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish.

    PubMed

    Davis, Daniel J; Doerr, Holly M; Grzelak, Agata K; Busi, Susheel B; Jasarevic, Eldin; Ericsson, Aaron C; Bryda, Elizabeth C

    2016-01-01

    The consumption of probiotics has become increasingly popular as a means to try to improve health and well-being. Not only are probiotics considered beneficial to digestive health, but increasing evidence suggests direct and indirect interactions between gut microbiota (GM) and the central nervous system (CNS). Here, adult zebrafish were supplemented with Lactobacillus plantarum to determine the effects of probiotic treatment on structural and functional changes of the GM, as well as host neurological and behavioral changes. L. plantarum administration altered the β-diversity of the GM while leaving the major core architecture intact. These minor structural changes were accompanied by significant enrichment of several predicted metabolic pathways. In addition to GM modifications, L. plantarum treatment also significantly reduced anxiety-related behavior and altered GABAergic and serotonergic signaling in the brain. Lastly, L. plantarum supplementation provided protection against stress-induced dysbiosis of the GM. These results underscore the influence commensal microbes have on physiological function in the host, and demonstrate bidirectional communication between the GM and the host. PMID:27641717

  16. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Sepúlveda, Maria S.; Lin, Tsang-Long; Jannasch, Amber S.; Freeman, Jennifer L.

    2016-01-01

    The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring. PMID:26891955

  17. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish

    PubMed Central

    Davis, Daniel J.; Doerr, Holly M.; Grzelak, Agata K.; Busi, Susheel B.; Jasarevic, Eldin; Ericsson, Aaron C.; Bryda, Elizabeth C.

    2016-01-01

    The consumption of probiotics has become increasingly popular as a means to try to improve health and well-being. Not only are probiotics considered beneficial to digestive health, but increasing evidence suggests direct and indirect interactions between gut microbiota (GM) and the central nervous system (CNS). Here, adult zebrafish were supplemented with Lactobacillus plantarum to determine the effects of probiotic treatment on structural and functional changes of the GM, as well as host neurological and behavioral changes. L. plantarum administration altered the β-diversity of the GM while leaving the major core architecture intact. These minor structural changes were accompanied by significant enrichment of several predicted metabolic pathways. In addition to GM modifications, L. plantarum treatment also significantly reduced anxiety-related behavior and altered GABAergic and serotonergic signaling in the brain. Lastly, L. plantarum supplementation provided protection against stress-induced dysbiosis of the GM. These results underscore the influence commensal microbes have on physiological function in the host, and demonstrate bidirectional communication between the GM and the host. PMID:27641717

  18. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters.

    PubMed

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  19. Innervation is required for sense organ development in the lateral line system of adult zebrafish.

    PubMed

    Wada, Hironori; Dambly-Chaudière, Christine; Kawakami, Koichi; Ghysen, Alain

    2013-04-01

    Superficial mechanosensory organs (neuromasts) distributed over the head and body of fishes and amphibians form the "lateral line" system. During zebrafish adulthood, each neuromast of the body (posterior lateral line system, or PLL) produces "accessory" neuromasts that remain tightly clustered, thereby increasing the total number of PLL neuromasts by a factor of more than 10. This expansion is achieved by a budding process and is accompanied by branches of the afferent nerve that innervates the founder neuromast. Here we show that innervation is essential for the budding process, in complete contrast with the development of the embryonic PLL, where innervation is entirely dispensable. To obtain insight into the molecular mechanisms that underlie the budding process, we focused on the terminal system that develops at the posterior tip of the body and on the caudal fin. In this subset of PLL neuromasts, bud neuromasts form in a reproducible sequence over a few days, much faster than for other PLL neuromasts. We show that wingless/int (Wnt) signaling takes place during, and is required for, the budding process. We also show that the Wnt activator R-spondin is expressed by the axons that innervate budding neuromasts. We propose that the axon triggers Wnt signaling, which itself is involved in the proliferative phase that leads to bud formation. Finally, we show that innervation is required not only for budding, but also for long-term maintenance of all PLL neuromasts.

  20. In vivo three dimensional dual wavelength photoacoustic tomography imaging of the far red fluorescent protein E2-Crimson expressed in adult zebrafish

    PubMed Central

    Liu, Mengyang; Schmitner, Nicole; Sandrian, Michelle G.; Zabihian, Behrooz; Hermann, Boris; Salvenmoser, Willi; Meyer, Dirk; Drexler, Wolfgang

    2013-01-01

    For the first time the far red fluorescent protein (FP) E2-Crimson genetically expressed in the exocrine pancreas of adult zebrafish has been non-invasively mapped in 3D in vivo using photoacoustic tomography (PAT). The distribution of E2-Crimson in the exocrine pancreas acquired by PAT was confirmed using epifluorescence imaging and histology, with optical coherence tomography (OCT) providing complementary structural information. This work demonstrates the depth advantage of PAT to resolve FP in an animal model and establishes the value of E2-Crimson for PAT studies of transgenic models, laying the foundation for future longitudinal studies of the zebrafish as a model of diseases affecting inner organs. PMID:24156048

  1. The Zebrafish Neurophenome Database (ZND): a dynamic open-access resource for zebrafish neurophenotypic data.

    PubMed

    Kyzar, Evan; Zapolsky, Ivan; Green, Jeremy; Gaikwad, Siddharth; Pham, Mimi; Collins, Christopher; Roth, Andrew; Stewart, Adam Michael; St-Pierre, Paul; Hirons, Budd; Kalueff, Allan V

    2012-03-01

    Zebrafish (Danio rerio) are widely used in neuroscience research, where their utility as a model organism is rapidly expanding. Low cost, ease of experimental manipulations, and sufficient behavioral complexity make zebrafish a valuable tool for high-throughput studies in biomedicine. To complement the available repositories for zebrafish genetic information, there is a growing need for the collection of zebrafish neurobehavioral and neurological phenotypes. For this, we are establishing the Zebrafish Neurophenome Database (ZND; www.tulane.edu/∼znpindex/search ) as a new dynamic online open-access data repository for behavioral and related physiological data. ZND, currently focusing on adult zebrafish, combines zebrafish neurophenotypic data with a simple, easily searchable user interface, which allow scientists to view and compare results obtained by other laboratories using various treatments in different testing paradigms. As a developing community effort, ZND is expected to foster innovative research using zebrafish by federating the growing body of zebrafish neurophenotypic data.

  2. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment.

  3. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment. PMID:26769247

  4. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults.

    PubMed

    Naderi, Mohammad; Wong, Marian Y L; Gholami, Fatemeh

    2014-03-01

    In the recent years, there has been a growing concern about the production and use of bisphenol-A substitute, namely bisphenol-S (BPS). Due to its novel nature, there have been few studies addressing the ability of BPS to disrupt the endocrine system of animals. In the present study, zebrafish (Danio rerio) embryos were exposed to and reared in various concentrations of BPS (0, 0.1, 1, 10 and 100 μg/l) for 75 days. Then adult males and females were paired in spawning tanks for 7 days in clean water and the consequent effects on fish development, reproduction, plasma vitellogenin (VTG), sex steroids and thyroid hormone levels were investigated as endpoints. After 75 days of exposure, there was a skewed sex ratio in favor of females. The results also showed that body length and weight significantly decreased in males exposed to 100 μg/l of BPS. Gonadosomatic index was significantly reduced in fish at ≥ 10 μg/l. Hepatosomatic index exhibited a significant increase in both male and female fish. At ≥ 1 μg/l of BPS, plasma 17β-estradiol levels were significantly increased in both males and females. However, plasma testosterone showed a significant reduction in males exposed to 10 and 100 μg/l of BPS. A significant induction in plasma VTG level was observed in both males and females at ≥ 10 μg/l of BPS. Plasma thyroxine and triiodothyronine levels were significantly decreased at 10 and 100 μg/l of BPS in males, and at 100 μg/l in females. Egg production and sperm count were also significantly decreased in groups received 10 and 100 μg/l of BPS. Moreover, once time to hatching and hatching rates were calculated for fertilized eggs the postponed and decreased rates of hatching were observed. Taken together, these results suggest that developmental exposure to low concentrations of BPS has adverse effects on different parts of the endocrine system in zebrafish.

  5. Notch-independent RBPJ controls angiogenesis in the adult heart

    PubMed Central

    Díaz-Trelles, Ramón; Scimia, Maria Cecilia; Bushway, Paul; Tran, Danh; Monosov, Anna; Monosov, Edward; Peterson, Kirk; Rentschler, Stacey; Cabrales, Pedro; Ruiz-Lozano, Pilar; Mercola, Mark

    2016-01-01

    Increasing angiogenesis has long been considered a therapeutic target for improving heart function after injury such as acute myocardial infarction. However, gene, protein and cell therapies to increase microvascularization have not been successful, most likely because the studies failed to achieve regulated and concerted expression of pro-angiogenic and angiostatic factors needed to produce functional microvasculature. Here, we report that the transcription factor RBPJ is a homoeostatic repressor of multiple pro-angiogenic and angiostatic factor genes in cardiomyocytes. RBPJ controls angiogenic factor gene expression independently of Notch by antagonizing the activity of hypoxia-inducible factors (HIFs). In contrast to previous strategies, the cardiomyocyte-specific deletion of Rbpj increased microvascularization of the heart without adversely affecting cardiac structure or function even into old age. Furthermore, the loss of RBPJ in cardiomyocytes increased hypoxia tolerance, improved heart function and decreased pathological remodelling after myocardial infarction, suggesting that inhibiting RBPJ might be therapeutic for ischaemic injury. PMID:27357444

  6. Congenital Heart Diseases in Adults: A Review of Echocardiogram Records in Enugu, South-East Nigeria

    PubMed Central

    Ejim, EC; Anisiuba, BC; Oguanobi, NI; Ubani-Ukoma, BC; Nwaneli, UC; Ugwu, C; Ike, SO

    2014-01-01

    Background: Congenital abnormalities of the heart and cardiovascular system are reported in almost 1% of live births, and about half of these children need medical or surgical help in infancy. In the first decade, a further 25% require surgery to maintain or improve their life. Only 10% survive to adolescence without treatment. Of these 10%, however, many live a normal life for years before their abnormality is discovered. Aim: The aim of this study was to find the most common congenital heart diseases in adults presenting for echocardiographic examination in Enugu, and to determine whether there are any gender differences in frequency. Materials and Methods: The consecutive echocardiogram reports of 5058 adults done over a period of 9 years (2003-2012) were retrospectively reviewed. All adults who had congenital anomaly on transthoracic echocardiography were included in the study. Results: Congenital heart diseases were found in 115 adults representing 2.5% of the adult population (115/4539). The most common congenital anomalies were ventricular septal defects (VSD) - 31.3%, (36/115), atrial septal defects - 28.7% (33/115) and tetralogy of fallot - 10.4% (12/115). Conclusion: VSD are the most common congenital heart diseases in adults presenting for echocardiographic examination in Enugu, Nigeria. PMID:25221697

  7. Theory of mind deficit in adult patients with congenital heart disease.

    PubMed

    Chiavarino, Claudia; Bianchino, Claudia; Brach-Prever, Silvia; Riggi, Chiara; Palumbo, Luigi; Bara, Bruno G; Bosco, Francesca M

    2015-10-01

    This article provides the first assessment of theory of mind, that is, the ability to reason about mental states, in adult patients with congenital heart disease. Patients with congenital heart disease and matched healthy controls were administered classical theory of mind tasks and a semi-structured interview which provides a multidimensional evaluation of theory of mind (Theory of Mind Assessment Scale). The patients with congenital heart disease performed worse than the controls on the Theory of Mind Assessment Scale, whereas they did as well as the control group on the classical theory-of-mind tasks. These findings provide the first evidence that adults with congenital heart disease may display specific impairments in theory of mind.

  8. Neurochemical measurements in the zebrafish brain

    PubMed Central

    Jones, Lauren J.; McCutcheon, James E.; Young, Andrew M. J.; Norton, William H. J.

    2015-01-01

    The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain. PMID:26441575

  9. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    SciTech Connect

    Weinberger, Florian Mehrkens, Dennis Starbatty, Jutta Nicol, Philipp Eschenhagen, Thomas

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  10. Orthotopic Heart Transplantation in an Adult Patient with Heterotaxy Syndrome: Surgical Implications.

    PubMed

    González-López, María-Teresa; Pérez-Caballero-Martínez, Ramón; Amoros-Rivera, Carlos; Zamorano-Serrano, José; Pita-Fernández, Ana-María; Gil-Jaurena, Juan-Miguel

    2015-12-01

    Modified techniques for orthotopic heart transplantation are mandatory when complex congenital anomalies are associated in adult patients. An unusual case of a heterotaxy syndrome and dilated cardiomyopathy following mitral ring annuloplasty is presented in a 62-year-old male. Orthotopic cardiac transplantation was performed by using a modified operative strategy: selective peripheral and central venous cannulation according to the thoraco-abdominal venous challenges, biatrial technique, and preservation of venous drainage via the native coronary sinus. We discuss the anatomical features of heterotaxy in adult patients and surgical approaches when heart transplantation is needed. PMID:26450654

  11. The side-by-side exploratory test: a simple automated protocol for the evaluation of adult zebrafish behavior simultaneously with social interaction.

    PubMed

    Schaefer, Isabel C; Siebel, Anna M; Piato, Angelo L; Bonan, Carla D; Vianna, Mônica R; Lara, Diogo R

    2015-10-01

    The assessment of shoaling in adult zebrafish is technically difficult, but important, given their social nature. The present study aimed to characterize a new protocol using simple automated tracking software to evaluate general behavior and social interaction simultaneously. To this end, we used a single tank with a central transparent glass division and placed one zebrafish on each side for 5 min. This strategy allows fish to interact visually at the same time that individual automated evaluation of behavior can be easily performed. Our results showed that, when two fish are placed side-by-side, there is an increase in their height in the tank compared with isolated fish and they remain close to each other. The pharmacological treatments with benzodiazepines (bromazepam and clonazepam) and the serotonergic drugs buspirone, fluoxetine, and escitalopram did not affect locomotion at the concentrations tested, except for the highest concentration of buspirone. Nevertheless, benzodiazepines increased interfish distance (i.e. reduced shoaling behavior) and serotonergic drugs elevated height in the tank. These results support the use of the side-by-side exploratory test for behavioral studies with the zebrafish, including high-throughput behavioral screening for antidepressants and anxiolytics. PMID:26061352

  12. Persistent effects on adult swim performance and energetics in zebrafish developmentally exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Marit, Jordan S; Weber, Lynn P

    2012-01-15

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) remains a potent and persistent toxicant in aquatic environments, causing lethal developmental deformities in fish. However, few studies have examined sublethal or persistent effects of developmental TCDD exposure and none have examined its effects on swimming capabilities in sub-adult fish. The objective of the current study was to examine whether effects of TCDD exposure during the critical period of cardiovascular development (2-4 days post fertilization) on swim performance, triglyceride stores and cardiovascular deformities would persist until adulthood in zebrafish. Zebrafish larvae were exposed between 48 and 96 h post fertilization to 1, 0.1, 0.01 ng/L TCDD or DMSO control (0.005%), then raised in clean water for 90 days. Despite having equal survivability, no significant increase in gross deformities and no change in cytochrome P450 1A (CYP1A) activity was observed, while critical swimming speed and dorsal aorta diameter were significantly decreased in TCDD-exposed fish at 90 days. Furthermore, whole body triglycerides were significantly elevated in TCDD-exposed fish both before and after swim testing. Therefore sublethal TCDD exposure during zebrafish development caused a persistent decrease in swim endurance. The cause of this persistent decrease in swim endurance is not known, but may be related to behavioral adaptations limiting swimming capabilities, failure to mobilize triglyceride stores, vascular deformities limiting blood flow to the periphery, or a combination of these factors.

  13. No bioavailability of 17α-ethinylestradiol when associated with nC60 aggregates during dietary exposure in adult male zebrafish (Danio rerio).

    PubMed

    Park, June-Woo; Henry, Theodore B; Menn, Fu-Min; Compton, Robert N; Sayler, Gary

    2010-11-01

    The C(60) fullerene is a manufactured carbon nanoparticle (CNP) that could pose a risk to humans and other organisms after release into the environment. In surface waters, C(60) is likely to be present as aggregates of nC(60) and these aggregates can associate with other substances that are toxic. Our goal was to evaluate the association of a model contaminant [17α-ethinylestradiol (EE2)] with nC(60) and determine bioavailability of EE2 after accumulation by a filter feeding organism [Brine shrimp (BS) Artemia sp.] and subsequent dietary exposure in zebrafish. Aqueous suspensions of nC(60) were prepared (600 mg C(60)/900 mL, 6-month water stirred method) with/without EE2 (1 μg/L) and BS were exposed to these preparations. Accumulation of nC(60) in gut of BS was assessed by light microscopy, and C(60) were extracted from BS and concentration analyzed by HPLC. Adult male zebrafish were fed (5d) live BS according to the following treatments: BS (control); BS containing nC(60); BS containing nC(60)+EE2; or BS containing EE2. Liver was excised from exposed fish and total RNA was extracted for assessment of vitellogenin gene (vtg1A/B) expression. The vtg1A/B was highly up-regulated in fish exposed to BS containing EE2, but expression of vtg1A/B did not differ from controls in other treatments. The EE2 associated with nC(60) did not become bioavailable in zebrafish during passage through the intestinal tract of zebrafish. Results have implications on the effect of nC(60) on the bioavailability of co-contaminants in organisms during dietary exposure. PMID:20937515

  14. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring.

    PubMed

    Chen, Jiangfei; Das, Siba R; La Du, Jane; Corvi, Margaret M; Bai, Chenglian; Chen, Yuanhong; Liu, Xiaojuan; Zhu, Guonian; Tanguay, Robert L; Dong, Qiaoxiang; Huang, Changjiang

    2013-01-01

    Perfluorooctane sulfonic acid (PFOS) is an organic contaminant that is ubiquitous in the environment. Few studies have assessed the behavioral effects of chronic PFOS exposure in aquatic organisms. The present study defined the behavioral effects of varying life span chronic exposures to PFOS in zebrafish. Specifically, zebrafish were exposed to control or 0.5 µM PFOS during 1 to 20, 21 to 120, or 1 to 120 d postfertilization (dpf). Exposure to PFOS impaired the adult zebrafish behavior mode under the tapping stimulus. The movement speed of male and female fish exposed for 1 to 120 dpf was significantly increased compared with control before and after tapping, whereas in the groups exposed for 1 to 20 and 21 to 120 dpf, only the males exhibited elevated swim speed before tapping. Residues of PFOS in F1 embryos derived from parental exposure for 1 to 120 and 21 to 120 dpf were significantly higher than control, and F1 embryos in these two groups also showed high malformation and mortality. The F1 larvae of parental fish exposed to PFOS for 1 to 20 or 21 to 120 dpf exhibited a higher swimming speed than control larvae in a light-to-dark behavior assessment test. The F1 larvae derived from parental fish exposed to PFOS for 1 to 120 dpf showed a significantly lower speed in the light period and a higher speed in the dark period compared with controls. Although there was little PFOS residue in embryos derived from the 1- to 20-dpf parental PFOS-exposed group, the adverse behavioral effects on both adult and F1 larvae indicate that exposure during the first 21 dpf induces long-term neurobehaviorial toxicity. The authors' findings demonstrate that chronic PFOS exposure during different life stages adversely affects adult behavior and F1 offspring morphology, behavior, and survival.

  15. Smyd5 plays pivotal roles in both primitive and definitive hematopoiesis during zebrafish embryogenesis

    PubMed Central

    Fujii, Tomoaki; Tsunesumi, Shin-ichiro; Sagara, Hiroshi; Munakata, Miyo; Hisaki, Yoshihiro; Sekiya, Takao; Furukawa, Yoichi; Sakamoto, Kazuhiro; Watanabe, Sumiko

    2016-01-01

    Methylation of histone tails plays a pivotal role in the regulation of a wide range of biological processes. SET and MYND domain-containing protein (SMYD) is a methyltransferase, five family members of which have been identified in humans. SMYD1, SMYD2, SMYD3, and SMYD4 have been found to play critical roles in carcinogenesis and/or the development of heart and skeletal muscle. However, the physiological functions of SMYD5 remain unknown. To investigate the function of Smyd5 in vivo, zebrafish were utilised as a model system. We first examined smyd5 expression patterns in developing zebrafish embryos. Smyd5 transcripts were abundantly expressed at early developmental stages and then gradually decreased. Smyd5 was expressed in all adult tissues examined. Loss-of-function analysis of Smyd5 was then performed in zebrafish embryos using smyd5 morpholino oligonucleotide (MO). Embryos injected with smyd5-MO showed normal gross morphological development, including of heart and skeletal muscle. However, increased expression of both primitive and definitive hematopoietic markers, including pu.1, mpx, l-plastin, and cmyb, were observed. These phenotypes of smyd5-MO zebrafish embryos were also observed when we introduced mutations in smyd5 gene with the CRISPR/Cas9 system. As the expression of myeloid markers was elevated in smyd5 loss-of-function zebrafish, we propose that Smyd5 plays critical roles in hematopoiesis. PMID:27377701

  16. Exercise prescription in adults with congenital heart disease: a long way to go

    PubMed Central

    Swan, L; Hillis, W

    2000-01-01

    OBJECTIVE—To determine if appropriate advice had been given to adults with congenital heart disease regarding safe and effective exercise, and to assess pre-existing misconceptions of the potential benefits and dangers of exercise.
DESIGN—An anonymous self assessment questionnaire.
SETTING—A tertiary referral clinic.
PATIENTS—99 adults (57 men, 42 women) with congenital heart disease, mean age 25.6 years.
MAIN OUTCOME MEASURES—The extent and nature of exercise advice given over previous years; a measure of current activity level compared with the American Heart Association recommendations; and an assessment of exercise limiting symptoms and a description of barriers to further exercise.
RESULTS—44% of the cohort assumed all exercise was safe despite their cardiac disease. A health care professional had only raised the issue of specific exercise advice in 28 cases. Of those given instruction it was more common to receive prohibitive advice (30%) than to be encouraged to take more exercise (19%). Despite this 61% were involved in some form of at least light exercise. The most prevalent barriers to exercise were current symptoms (32.3%), lack of interest in exercise (24.2%), and health fears (16.1%).
CONCLUSIONS—The education of adults with congenital heart disease regarding exercise and its potential benefits and limitations is suboptimal even in a specialist clinic.


Keywords: congenital heart defects; exercise prescription PMID:10814630

  17. Metabolic Syndrome and Short-Term Heart Rate Variability in Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Chang, Yaw-Wen; Lin, Jin-Ding; Chen, Wei-Liang; Yen, Chia-Feng; Loh, Ching-Hui; Fang, Wen-Hui; Wu, Li-Wei

    2012-01-01

    Metabolic syndrome (MetS) increases the risk of cardiovascular events. Heart rate variability (HRV) represents autonomic functioning, and reduced HRV significantly increases cardiovascular mortality. The aims of the present paper are to assess the prevalence of MetS in adults with intellectual disabilities (ID), the difference in short-term HRV…

  18. Understanding age-based transition needs: Perspectives from adolescents and adults with congenital heart disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to explore the transition process in congenital heart disease (CHD) care through the perceived needs and concerns of adolescents (pretransition) and the experiential insight from adults (post-transition), in order to inform future transition initiatives and information ...

  19. Experience of decortication for restrictive hemodynamics in adults with congenital heart disease.

    PubMed

    Mizuno, Masanori; Ohuchi, Hideo; Kagisaki, Koji; Miyazaki, Aya; Ishibashi-Ueda, Hatsue; Yamada, Osamu

    2014-08-01

    We treated four postoperative adults with congenital heart disease with severe restrictive hemodynamics (RH), and performed decortication (DC) with the anticipation of some relief of the RH. The catheterizations before DC showed high central venous, and right and left ventricular end-diastolic pressures with "dip-and-plateau" pressure waveforms in the right and left ventricles. Upon myocardial histopathologic examination, moderate myocardial fibrotic change was demonstrated in two of three cases. DC led to decrease in type B natriuretic peptide levels in all cases, resulting in a decline in the central venous, right and left ventricular end-diastolic pressures in three cases. Successful DC-related relief of RH, dilatation of the ventricles with decline in central and end-diastolic pressures, was observed in only one case. Our limited DC-related hemodynamic improvement indicates a complexity of the severe RH, which may represent a unique intractable heart failure pathophysiology in intractable postoperative adult congenital heart disease.

  20. Attributing heart attack and stroke to "Old Age": Implications for subsequent health outcomes among older adults.

    PubMed

    Stewart, Tara L; Chipperfield, Judith G; Perry, Raymond P; Hamm, Jeremy M

    2016-01-01

    This study assessed the extent to which older adults attribute a recent heart attack/stroke to "old age," and examined consequences for subsequent lifestyle behavior and health-care service utilization. Community-dwelling adults (N = 57, ages 73-98 years) were interviewed about their heart attack/stroke, and an objective health registry provided data on health-care utilization over a 3-year period. Endorsement of "old age" as a cause of heart attack/stroke negatively predicted lifestyle behavior change, and positively predicted frequency of physician visits and likelihood of hospitalization over the subsequent 3 years. Findings suggest the importance of considering "old age" attributions in the context of cardiovascular health events.

  1. Transitioning the young adult with congenital heart disease for life-long medical care.

    PubMed

    Fernandes, Susan M; Landzberg, Michael J

    2004-12-01

    Guidelines for the successful orchestration of transitioning of the adolescent and young and older adult patient with congenital heart disease to a health care system appropriate for their long-term congenital heart disease care and counseling appear necessary to improve patient and family confidence, education, therapy, life quality, and survival outcomes. Schema for care organization and delivery for adult patients with congenital heart disease remain primitive and largely unimplemented. The presence of a strong central care oversight organization and the establishment of a multi-institutional database to assist in assessment of care outcomes and guidelines appears requisite to these needs and for the establishment of transitioning guidelines for these patients as they assume a greater and deeper shared control of their futures with their caregivers.

  2. Home Health Care With Telemonitoring Improves Health Status for Older Adults with Heart Failure

    PubMed Central

    Madigan, Elizabeth; Schmotzer, Brian J.; Struk, Cynthia J.; DiCarlo, Christina M.; Kikano, George; Piña, Ileana L.; Boxer, Rebecca S.

    2014-01-01

    Home telemonitoring can augment home health care services during a patient's transition from hospital to home. Home health care agencies commonly use telemonitors for patients with heart failure although studies have shown mixed results in the use of telemonitors to reduce rehospitalizations. This randomized trial investigated if older patients with heart failure admitted to home health care following a hospitalization would have a reduction in rehospitalizations and improved health status if they received telemonitoring. Patients were followed up to 180 days post-discharge from home health care services. Results showed no difference in the time to rehospitalizations or emergency visits between those who received a telemonitoring vs. usual care. Older heart failure patients who received telemonitoring had better health status by home health care discharge than those who received usual care. Therefore for older adults with heart failure telemonitoring may be important adjunct to home health care services to improve health status. PMID:23438509

  3. Arrhythmias in Adult Congenital Heart Disease: Diagnosis and Management.

    PubMed

    Kumar, Saurabh; Tedrow, Usha B; Triedman, John K

    2015-11-01

    Cardiac arrhythmias are a major source of morbidity and mortality in adults with CHD. A multidisciplinary approach in a center specializing in the care of ACHD is most likely to have the expertise needed provide this care. Knowledge of the underlying anatomy, mechanism of arrhythmia, and potential management strategies is critical, as well as access and expertise in the use of advanced imaging and ablative technologies. Future challenges in management include refining the underlying mechanism and putative ablation targets for catheter ablation of AF, an arrhythmia rapidly rising in prevalence in this population.

  4. Tales of regeneration in zebrafish.

    PubMed

    Poss, Kenneth D; Keating, Mark T; Nechiporuk, Alex

    2003-02-01

    Complex tissue regeneration involves exquisitely coordinated proliferation and patterning of adult cells after severe injury or amputation. Certain lower vertebrates such as urodele amphibians and teleost fish have a greater capacity for regeneration than mammals. However, little is known about molecular mechanisms of regeneration, and cellular mechanisms are incompletely defined. To address this deficiency, we and others have focused on the zebrafish model system. Several helpful tools and reagents are available for use with zebrafish, including the potential for genetic approaches to regeneration. Recent studies have shed light on the remarkable ability of zebrafish to regenerate fins. PMID:12557199

  5. Development of social behavior in young zebrafish

    PubMed Central

    Dreosti, Elena; Lopes, Gonçalo; Kampff, Adam R.; Wilson, Stephen W.

    2015-01-01

    Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same 1–3 weeks period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behavior in adult zebrafish. PMID:26347614

  6. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure

    PubMed Central

    Wu, San-Pin; Kao, Chung-Yang; Wang, Leiming; Creighton, Chad J.; Yang, Jin; Donti, Taraka R.; Harmancey, Romain; Vasquez, Hernan G.; Graham, Brett H.; Bellen, Hugo J.; Taegtmeyer, Heinrich; Chang, Ching-Pin; Tsai, Ming-Jer; Tsai, Sophia Y.

    2015-01-01

    Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. PMID:26356605

  7. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure.

    PubMed

    Wu, San-Pin; Kao, Chung-Yang; Wang, Leiming; Creighton, Chad J; Yang, Jin; Donti, Taraka R; Harmancey, Romain; Vasquez, Hernan G; Graham, Brett H; Bellen, Hugo J; Taegtmeyer, Heinrich; Chang, Ching-Pin; Tsai, Ming-Jer; Tsai, Sophia Y

    2015-01-01

    Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. PMID:26356605

  8. Awareness of heart attack and stroke symptoms among Hispanic male adults living in the United States.

    PubMed

    Lutfiyya, May Nawal; Bardales, Ricardo; Bales, Robert; Aguero, Carlos; Brady, Shelly; Tobar, Adriana; McGrath, Cynthia; Zaiser, Julia; Lipsky, Martin S

    2010-10-01

    There is evidence that Hispanic men are a high risk group for treatment delay for both heart attack and stroke. More targeted research is needed to elucidate this specific population's knowledge of warning signs for these acute events. This study sought to describe within-group disparities in Hispanic men's knowledge of heart attack and stroke symptomology. Multivariate techniques were used to analyze a multi-year Behavioral Risk Factor Surveillance Heart and Stroke module database. The data were cross-sectional and focused on health risk factors and behaviors. The research participants were U.S. male Hispanic adults aged 18-99. The main outcome measure for the study was heart attack and stroke symptom knowledge score. Multivariate logistic regression analysis yielded that Hispanic men aged >or=18 years who earned low scores on the composite heart attack and stroke knowledge questions (range 0-8 points) were more likely to: have less than a high school education, have deferred medical care because of cost, not have an identified health care provider, and be uninsured. There were significant within-group differences. Targeting educational efforts toward older (>or=55 years) Hispanic men with less than high school education, those who do not have an identified health care provider or health insurance, and who defer health care because of cost could be ways to improve the outcome of acute vascular events among the U.S. Hispanic adult male population.

  9. Emerging Research Directions in Adult Congenital Heart Disease: A Report From an NHLBI/ACHA Working Group.

    PubMed

    Gurvitz, Michelle; Burns, Kristin M; Brindis, Ralph; Broberg, Craig S; Daniels, Curt J; Fuller, Stephanie M P N; Honein, Margaret A; Khairy, Paul; Kuehl, Karen S; Landzberg, Michael J; Mahle, William T; Mann, Douglas L; Marelli, Ariane; Newburger, Jane W; Pearson, Gail D; Starling, Randall C; Tringali, Glenn R; Valente, Anne Marie; Wu, Joseph C; Califf, Robert M

    2016-04-26

    Congenital heart disease (CHD) is the most common birth defect, affecting about 0.8% of live births. Advances in recent decades have allowed >85% of children with CHD to survive to adulthood, creating a growing population of adults with CHD. Little information exists regarding survival, demographics, late outcomes, and comorbidities in this emerging group, and multiple barriers impede research in adult CHD. The National Heart, Lung, and Blood Institute and the Adult Congenital Heart Association convened a multidisciplinary working group to identify high-impact research questions in adult CHD. This report summarizes the meeting discussions in the broad areas of CHD-related heart failure, vascular disease, and multisystem complications. High-priority subtopics identified included heart failure in tetralogy of Fallot, mechanical circulatory support/transplantation, sudden cardiac death, vascular outcomes in coarctation of the aorta, late outcomes in single-ventricle disease, cognitive and psychiatric issues, and pregnancy.

  10. Psychosocial issues affecting adults with congenital heart disease: one patient's perspective.

    PubMed

    Livecchi, Tracy A

    2004-12-01

    This article addresses a number of psychosocial issues that advance practice nurses and other health care providers should be aware of when working with patients who have congenital heart disease. If not properly addressed, particularly during adolescence, these issues can have a strong impact on a person's medical care and over-all quality of life. This article includes information from medical literature, conversations with adult patients, and my own experiences as both a patient with congenital heart disease and as a clinical social worker.

  11. De novo cardiomyocytes from within the activated adult heart after injury

    PubMed Central

    Smart, Nicola; Bollini, Sveva; Dubé, Karina N.; Vieira, Joaquim M.; Zhou, Bin; Davidson, Sean; Yellon, Derek; Riegler, Johannes; Price, Anthony N.; Lythgoe, Mark F.; Pu, William T.; Riley, Paul R.

    2013-01-01

    A significant bottleneck in cardiovascular regenerative medicine is the identification of a viable source of stem/progenitor cells that could contribute new muscle after ischaemic heart disease and acute myocardial infarction1. A therapeutic ideal—relative to cell transplantation—would be to stimulate a resident source, thus avoiding the caveats of limited graft survival, restricted homing to the site of injury and host immune rejection. Here we demonstrate in mice that the adult heart contains a resident stem or progenitor cell population, which has the potential to contribute bona fide terminally differentiated cardiomyocytes after myocardial infarction. We reveal a novel genetic label of the activated adult progenitors via re-expression of a key embryonic epicardial gene, Wilm’s tumour 1 (Wt1), through priming by thymosin β4, a peptide previously shown to restore vascular potential to adult epicardium-derived progenitor cells2 with injury. Cumulative evidence indicates an epicardial origin of the progenitor population, and embryonic reprogramming results in the mobilization of this population and concomitant differentiation to give rise to de novo cardiomyocytes. Cell transplantation confirmed a progenitor source and chromosome painting of labelled donor cells revealed transdifferentiation to a myocyte fate in the absence of cell fusion. Derived cardiomyocytes are shown here to structurally and functionally integrate with resident muscle; as such, stimulation of this adult progenitor pool represents a significant step towards residentcell-based therapy in human ischaemic heart disease. PMID:21654746

  12. Nutritional strategy in the management of heart failure in adults.

    PubMed

    Bourdel-Marchasson, I; Emeriau, J P

    2001-01-01

    The incidence of congestive heart failure (CHF) is increasing in Westernized countries, and patients with CHF experience poor quality of life (functional impairment, high hospitalization rate and high mortality). Malnutrition occurring during the course of CHF is referred to as cardiac cachexia and is associated with higher mortality independent of the severity of CHF. Cardiac cachexia involving a loss of more than 10% of lean body mass can clinically be defined as a bodyweight loss of 7.5% of previous dry bodyweight in a period longer than 6 months. The energy requirements of patients with CHF, whether cachectic or not, are not noticeably modified since the increase in resting energy expenditure is compensated by a decrease in physical activity energy expenditure. Malnutrition in CHF has been ascribed to neurohormonal alterations, i.e. anabolic/catabolic imbalance and increased cytokine release. Anorexia may occur, particularly during acute decompensation of CHF. Function is impaired in CHF, because of exertional dyspnea and changes in skeletal muscle. Decreased exercise endurance seems to be related to decreased mitochondrial oxidative capacities and atrophy of type 1 fibers, which are attributed to alteration in muscle perfusion and are partially reversible by training. Malnutrition could also impair muscle function, because of decreased muscle mass and strength associated with decreased glycolytic capacities and atrophy of type 2a and 2b fibres. With respect to the putative mechanisms of cardiac cachexia, anabolic therapy (hormones or nutrients) and anticytokine therapy have been proposed, but trials are scarce and often inconclusive. In surgical patients with CHF, perioperative (pre- and postoperative) nutritional support has been shown to be effective in reducing the mortality rate. Long term nutritional supplementation trials in patients with CHF and cachexia are thus required to establish recommendations for the nutritional management of patients with CHF.

  13. Myocardial Factor Revisited: The Importance of Myocardial Fibrosis in Adults with Congenital Heart Disease

    PubMed Central

    Broberg, Craig S.; Burchill, Luke J.

    2015-01-01

    Pioneers in congenital heart surgery observed that exercise capacity did not return to normal levels despite successful surgical repair, leading some to cite a “myocardial factor” playing a role. They conjectured that residual alterations in myocardial function would be significant for patients’ long-term outlook. In fulfillment of their early observations, today’s adult congenital heart disease (ACHD) population shows well-recognized features of heart failure, even among patients without clear residual anatomic or hemodynamic abnormalities, demonstrating the vital role of the myocardium in their morbidity and mortality. Whereas the ‘myocardial factor’ was an elusive concept in the early history of congenital heart care, we now have imaging techniques to detect and quantify one such factor – myocardial fibrosis. Understanding the importance of myocardial fibrosis as a final common pathway in a variety of congenital lesions provides a framework for both the study and treatment of clinical heart failure in this context. While typical heart failure pharmacology should reduce or attenuate fibrogenesis, efforts to show meaningful improvements with standard pharmacotherapy in ACHD repeatedly fall short. This paper considers the importance of myocardial fibrosis and function, the current body of evidence for myocardial fibrosis in ACHD, and its implications for research and treatment. PMID:25897907

  14. Building and re-building the heart by cardiomyocyte proliferation.

    PubMed

    Foglia, Matthew J; Poss, Kenneth D

    2016-03-01

    The adult human heart does not regenerate significant amounts of lost tissue after injury. Rather than making new, functional muscle, human hearts are prone to scarring and hypertrophy, which can often lead to fatal arrhythmias and heart failure. The most-cited basis of this ineffective cardiac regeneration in mammals is the low proliferative capacity of adult cardiomyocytes. However, mammalian cardiomyocytes can avidly proliferate during fetal and neonatal development, and both adult zebrafish and neonatal mice can regenerate cardiac muscle after injury, suggesting that latent regenerative potential exists. Dissecting the cellular and molecular mechanisms that promote cardiomyocyte proliferation throughout life, deciphering why proliferative capacity normally dissipates in adult mammals, and deriving means to boost this capacity are primary goals in cardiovascular research. Here, we review our current understanding of how cardiomyocyte proliferation is regulated during heart development and regeneration.

  15. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny.

    PubMed

    Volkova, Kristina; Reyhanian Caspillo, Nasim; Porseryd, Tove; Hallgren, Stefan; Dinnétz, Patrik; Porsch-Hällström, Inger

    2015-07-01

    Exposure to estrogenic endocrine disruptors (EDCs) during development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior are less well studied. Here, we analyze the effects of 17α-ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the novel tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the novel tank test and increased light avoidance in the scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny was affected by their parents' exposure, which might suggest transgenerational effects. PMID:26072466

  16. Interventional and surgical treatment of cardiac arrhythmias in adults with congenital heart disease.

    PubMed

    Koyak, Zeliha; de Groot, Joris R; Mulder, Barbara J M

    2010-12-01

    Arrhythmias are a major cause of morbidity, mortality and hospital admission in adults with congenital heart disease (CHD). The etiology of arrhythmias in this population is often multifactorial and includes electrical disturbances as part of the underlying defect, surgical intervention or hemodynamic abnormalities. Despite the numerous existing arrhythmia management tools including drug therapy, pacing and ablation, management of arrhythmias in adults with CHD remains difficult and challenging. Owing to improvement in mapping and ablation techniques, ablation and arrhythmia surgery are being performed more frequently in adults with CHD. However, there is little information on the long-term results of these treatment strategies. The purpose of this article is therefore to review the available data on nonpharmacological treatment of cardiac arrhythmias in adult patients with CHD and to give an overview of the available data on the early and late outcomes of these treatment strategies.

  17. Heart Rate Response During Underwater Treadmill Training in Adults with Incomplete Spinal Cord Injury

    PubMed Central

    Morgan, Don W.

    2015-01-01

    Background: Walking on a submerged treadmill can improve mobility in persons displaying lower limb muscle weakness and balance deficits. Little is known, however, regarding the effect of water treadmill exercise on cardiac performance in persons with incomplete spinal cord injury (iSCI). Objective: To assess heart rate response during underwater treadmill training (UTT) in adults with iSCI. Methods: Seven males and 4 females with iSCI (age = 48 ± 13 years; 5 ± 8 years after injury) completed 8 weeks of UTT (3 sessions per week; 3 walks per session) incorporating individually determined walking speeds, personalized levels of body weight unloading, and gradual, alternating increases in speed and duration. Heart rate was monitored during the last 15 seconds of the final 2 minutes of each walk. Results: Over the course of 3 biweekly periods in which walking speed remained constant, heart rate fell by 7% (7 ± 1 b•min-1; P < .001) in weeks 2 and 3, 14% (17 ± 6 b•min-1; P < .001) in weeks 4 and 5, and 17% (21 ± 11 b•min-1; P < .001) in weeks 6 and 7. Conclusion: In adults with iSCI, progressively greater absolute and relative reductions in submaximal exercise heart rate occurred after 2 months of UTT featuring a systematic increase in training volume. PMID:25762859

  18. Expression of neuropeptides and anoctamin 1 in the embryonic and adult zebrafish intestine, revealing neuronal subpopulations and ICC-like cells.

    PubMed

    Uyttebroek, Leen; Shepherd, Iain T; Hubens, Guy; Timmermans, Jean-Pierre; Van Nassauw, Luc

    2013-11-01

    This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.

  19. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish.

    PubMed

    Nam, Hyun-Sik; Hwang, Kyu-Seok; Jeong, Yun-Mi; Ryu, Jeong-Im; Choi, Tae-Young; Bae, Myung-Ae; Son, Woo-Chan; You, Kwan-Hee; Son, Hwa-Young; Kim, Cheol-Hee

    2016-01-01

    MicroRNA-122 (miRNA-122), also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen) at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM) and cell death in larval liver (5 μM) at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish. PMID:27563662

  20. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish

    PubMed Central

    Jeong, Yun-Mi; Ryu, Jeong-Im; Choi, Tae-Young; Bae, Myung-Ae; Son, Woo-Chan

    2016-01-01

    MicroRNA-122 (miRNA-122), also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen) at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM) and cell death in larval liver (5 μM) at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish. PMID:27563662

  1. Improving Medication Knowledge among Older Adults with Heart Failure: A Patient-Centered Approach to Instruction Design

    ERIC Educational Resources Information Center

    Morrow, Daniel G.; Weiner, Michael; Young, James; Steinley, Douglas; Deer, Melissa; Murray, Michael D.

    2005-01-01

    Purpose: We investigated whether patient-centered instructions for chronic heart failure medications increase comprehension and memory for medication information in older adults diagnosed with chronic heart failure. Design and Methods: Patient-centered instructions for familiar and unfamiliar medications were compared with instructions for the…

  2. Sensitivity to dioxin decreases as zebrafish mature.

    PubMed

    Lanham, Kevin A; Peterson, Richard E; Heideman, Warren

    2012-06-01

    The embryos of teleost fish are exquisitely sensitive to the toxic effects of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, several lines of evidence suggest that adults are less sensitive to TCDD. To better understand and characterize this difference between early life stage and adults, we exposed zebrafish (Danio rerio) to graded TCDD concentrations at different ages. The LD(50) for embryos exposed at 1 day post-fertilization (dpf) was more than an order of magnitude lower than it was for juveniles exposed at 30 dpf. The latency between exposure and response also increased with age. Embryo toxicity was characterized by marked cardiovascular collapse and heart malformation, whereas juveniles exposed at 30 dpf had no detectable cardiovascular toxicity. In juveniles, the effects of TCDD exposure included stunted growth, altered pigmentation, and skeletal malformations. Furthermore, the transcriptional profile produced in hearts exposed to TCDD as embryos had very little overlap with the transcriptional changes induced by TCDD at 30 dpf. The early cardiotoxic response was associated with fish exposed prior to metamorphosis from the larval to the adult body plan at approximately 14 dpf. Our results show conclusively that the developmental stage at the time of exposure controls the toxic response to TCDD.

  3. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart.

    PubMed

    Bulatovic, Ivana; Månsson-Broberg, Agneta; Sylvén, Christer; Grinnemo, Karl-Henrik

    2016-02-01

    The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure.

  4. Dietary Interventions for Heart Failure in Older Adults: Re-emergence of the Hedonic Shift

    PubMed Central

    Wessler, Jeffrey D.; Hummel, Scott L.; Maurer, Mathew S.

    2014-01-01

    Dietary non-adherence to sodium restriction is an important contribution to heart failure (HF) symptom burden, particularly in older adults. While knowledge, skills, and attitudes towards sodium restriction are important, sodium intake is closely linked to the ability to taste salt. The ‘hedonic shift’ occurs when sodium restriction induces changes in an individual’s salt taste that lower subsequent salt affinity. Older adults often have compromised salt taste and higher dietary salt affinity due to age-related changes. Older HF patients may have additional loss of salt taste and elevated salt appetite due to comorbid conditions, medication use, and micronutrient or electrolyte abnormalities, creating a significant barrier to dietary adherence. Induction of the hedonic shift has the potential to improve long-term dietary sodium restriction and significantly impact HF outcomes in older adults. PMID:25216615

  5. Dietary interventions for heart failure in older adults: re-emergence of the hedonic shift.

    PubMed

    Wessler, Jeffrey D; Hummel, Scott L; Maurer, Mathew S

    2014-01-01

    Dietary non-adherence to sodium restriction is an important contribution to heart failure (HF) symptom burden, particularly in older adults. While knowledge, skills, and attitudes toward sodium restriction are important, sodium intake is closely linked to the ability to taste salt. The 'hedonic shift' occurs when sodium restriction induces changes in an individual's salt taste that lower subsequent salt affinity. Older adults often have compromised salt taste and higher dietary salt affinity due to age-related changes. Older HF patients may have additional loss of salt taste and elevated salt appetite due to comorbid conditions, medication use, and micronutrient or electrolyte abnormalities, creating a significant barrier to dietary adherence. Induction of the hedonic shift has the potential to improve long-term dietary sodium restriction and significantly impact HF outcomes in older adults.

  6. Blood Pressure and Heart Rate During Continuous Experimental Sleep Fragmentation in Healthy Adults

    PubMed Central

    Carrington, Melinda J.; Trinder, John

    2008-01-01

    Study Objectives: This paper aims to determine whether experimental arousals from sleep delay the sleep related fall in cardiovascular activity in healthy adults. Design: We report the results of 2 studies. The first experiment manipulated arousals from sleep in young adults. The second compared the effect of frequent arousals on young and middle-aged adults. The influence of arousals were assessed in 2 ways; (1) the fall in cardiovascular activity over sleep onset and the early sleep period, and (2) the underlying sleep levels during the sleep periods in between arousals. Setting: Both experiments were conducted in the sleep laboratory of the Department of Psychology, The University of Melbourne, Australia. Participants: There were 5 male and 5 female healthy individuals in each experiment between the ages of 18–25 years (Experiment 1) and 38–55 years (Experiment 2). Interventions: Participants in Experiment 1 were aroused by auditory stimuli every (i) 2 min, (ii) 1 min, and (iii) 30 sec of sleep for 90 min after the first indication of sleep. In a control condition, participants slept undisturbed for one NREM sleep cycle. Experiment 2 compared the control with the 30-sec condition in the young adults and in an additional group of middle-aged adults. Measurements and Results: The dependent variables were blood pressure (BP) and heart rate (HR). In Experiment 1, sleep fragmentation at higher frequencies retarded the fall in BP over sleep onset but did not affect the underlying sleep levels. Experiment 2 showed that there were no age differences on the effect of arousals on changes in BP and HR during sleep. Conclusions: This paper supports the hypothesis that repetitive arousals from sleep independently contribute to elevations in BP at night. Citation: Carrington MJ; Trinder J. Blood pressure and heart rate during continuous experimental sleep fragmentation in healthy adults. SLEEP 2008;31(12):1701–1712. PMID:19090326

  7. Affecting Rhomboid-3 Function Causes a Dilated Heart in Adult Drosophila

    PubMed Central

    Yu, Lin; Lee, Teresa; Lin, Na; Wolf, Matthew J.

    2010-01-01

    Drosophila is a well recognized model of several human diseases, and recent investigations have demonstrated that Drosophila can be used as a model of human heart failure. Previously, we described that optical coherence tomography (OCT) can be used to rapidly examine the cardiac function in adult, awake flies. This technique provides images that are similar to echocardiography in humans, and therefore we postulated that this approach could be combined with the vast resources that are available in the fly community to identify new mutants that have abnormal heart function, a hallmark of certain cardiovascular diseases. Using OCT to examine the cardiac function in adult Drosophila from a set of molecularly-defined genomic deficiencies from the DrosDel and Exelixis collections, we identified an abnormally enlarged cardiac chamber in a series of deficiency mutants spanning the rhomboid 3 locus. Rhomboid 3 is a member of a highly conserved family of intramembrane serine proteases and processes Spitz, an epidermal growth factor (EGF)–like ligand. Using multiple approaches based on the examination of deficiency stocks, a series of mutants in the rhomboid-Spitz–EGF receptor pathway, and cardiac-specific transgenic rescue or dominant-negative repression of EGFR, we demonstrate that rhomboid 3 mediated activation of the EGF receptor pathway is necessary for proper adult cardiac function. The importance of EGF receptor signaling in the adult Drosophila heart underscores the concept that evolutionarily conserved signaling mechanisms are required to maintain normal myocardial function. Interestingly, prior work showing the inhibition of ErbB2, a member of the EGF receptor family, in transgenic knock-out mice or individuals that received herceptin chemotherapy is associated with the development of dilated cardiomyopathy. Our results, in conjunction with the demonstration that altered ErbB2 signaling underlies certain forms of mammalian cardiomyopathy, suggest that an

  8. Life experiences and coping strategies in adults with congenital heart disease.

    PubMed

    Callus, E; Quadri, E; Compare, A; Tovo, A; Giamberti, A; Chessa, M

    2013-01-01

    Many adults with congenital heart disease (ACHD) have to face considerable psychosocial difficulties. The aim of this study was to explore the life experiences of ACHD patients, from when they become aware of having a condition, till after the open heart surgery they underwent. The study was conducted with the use of unstructured, in-depth interviews, performed on 11 patients (age ranging: 20 - 56 y) after they recovered from open heart surgery and a focus group, which included 16 participants (age ranging: 22 - 46 y). Both the interviews and the focus group were recorded, transcribed and analyzed according to Grounded Theory procedures. Our findings show that the condition of diversity is the core of the emotional experiences connected to ACHD. Feeling different and being perceived as being different are clearly interlinked and coping strategies adopted resulted as being influenced by this perception. This study also clearly outlines the importance of having an adequate perception of one's condition and the link between maladaptive coping strategies and an incorrect perception of one's heart condition. Results are discussed in order to promote psychosocial interventions within and outside of the hospital setting in order to improve the patients' emotional wellbeing. PMID:24516946

  9. [Role of the general practitioner or primary care physician in the management of adult congenital heart disease].

    PubMed

    Thambo, Jean-Benoît

    2013-03-01

    Congenital heart diseases are the most common inborn defect, occurring approximately 0.8% according to the last European Union count. This rate is stable for decades. Nowadays, up to 90% of children born with congenital heart diseases underwent surgical correction and reach adulthood, gratefully to the surgery and interventional cardiology advances, in conjunction to the post-surgery and following cares improvement. Both of this facts results to a growing population of adults with congenital heart diseases, actually exceeding the infant population. This arising population will lead general practitioners and primary care physicians to face more often this kind of patient. The needed cares are specifics, regarding the typical evolutions of this pathologies, as well as because congenital heart diseases wil impact other pathologies or usual cares. The need of an extended knowledge of the adult patients with congenital heart diseases is clearly emerging, and should lead the whole medical corps to work in close network. PMID:23687765

  10. Early life exposures and the occurrence and timing of heart disease among the older adult Puerto Rican population.

    PubMed

    McEnry, Mry; Palloni, Alberto

    2010-02-01

    Few studies have examined the effects of early life conditions on the timing of the onset of heart disease. We use the remarkable example of a representative sample of the population of older Puerto Ricans aged 60-74 who lived in the countryside during childhood (n = 1,438) to examine the effects ofseasonal exposures to poor nutrition and infectious diseases during late gestation on the timing of the onset and the probability of ever experiencing adult heart disease. Cox and log logistic hazard models controlling for childhood conditions (self-reported childhood health status and socioeconomic status [SES], rheumatic fever, and knee height) and adult risk factors (adult SES, obesity, smoking, exercise, and self-reported diabetes) showed that the risk of onset of heart disease was 65% higher among those born during high-exposure periods compared with unexposed individuals. However, there were no significant differences in median time of onset for those ever experiencing heart disease. As a comparison, we found that there were no significant seasonality effects for those who lived in urban areas during childhood. We conclude that early exposures in utero have important ramifications for adult heart disease among the older Puerto Rican population. We show, however, that while exposure is associated with the probability of ever experiencing adult heart disease, it is not associated with the timing of onset among those who do experience it.

  11. Drosophila as a model for the identification of genes causing adult human heart disease

    PubMed Central

    Wolf, Matthew J.; Amrein, Hubert; Izatt, Joseph A.; Choma, Michael A.; Reedy, Mary C.; Rockman, Howard A.

    2006-01-01

    Drosophila melanogaster genetics provides the advantage of molecularly defined P-element insertions and deletions that span the entire genome. Although Drosophila has been extensively used as a model system to study heart development, it has not been used to dissect the genetics of adult human heart disease because of an inability to phenotype the adult fly heart in vivo. Here we report the development of a strategy to measure cardiac function in awake adult Drosophila that opens the field of Drosophila genetics to the study of human dilated cardiomyopathies. Through the application of optical coherence tomography, we accurately distinguish between normal and abnormal cardiac function based on measurements of internal cardiac chamber dimensions in vivo. Normal Drosophila have a fractional shortening of 87 ± 4%, whereas cardiomyopathic flies that contain a mutation in troponin I or tropomyosin show severe impairment of systolic function. To determine whether the fly can be used as a model system to recapitulate human dilated cardiomyopathy, we generated transgenic Drosophila with inducible cardiac expression of a mutant of human δ-sarcoglycan (δsgS151A), which has previously been associated with familial dilated cardiomyopathy. Compared to transgenic flies overexpressing wild-type δsg, or the standard laboratory strain w1118, Drosophila expressing δsgS151A developed marked impairment of systolic function and significantly enlarged cardiac chambers. These data illustrate the utility of Drosophila as a model system to study dilated cardiomyopathy and the applicability of the vast genetic resources available in Drosophila to systematically study the genetic mechanisms responsible for human cardiac disease. PMID:16432241

  12. Differential Regenerative Capacity of Neonatal Mouse Hearts after Cryoinjury

    PubMed Central

    Darehzereshki, Ali; Rubin, Nicole; Gamba, Laurent; Kim, Jieun; Fraser, James; Huang, Ying; Billings, Joshua; Mohammadzadeh, Robabeh; Wood, John; Warburton, David; Kaartinen, Vesa; Lien, Ching-Ling

    2015-01-01

    Neonatal mouse hearts fully regenerate after ventricular resection similar to adult zebrafish. We established cryoinjury models to determine if different types and varying degrees of severity in cardiac injuries trigger different responses in neonatal mouse hearts. In contrast to ventricular resection, neonatal mouse hearts fail to regenerate and show severe impairment of cardiac function post transmural cryoinjury. However, neonatal hearts fully recover after non-transmural cryoinjury. Interestingly, cardiomyocyte proliferation does not significantly increase in neonatal mouse hearts after cryoinjuries. Epicardial activation and new coronary vessel formation occur after cryoinjury. The profibrotic marker PAI-1 is highly expressed after transmural but not non-transmural cryoinjuries, which may contribute to the differential scarring. Our results suggest that regenerative medicine strategies for heart injuries should vary depending on the nature of the injury. PMID:25555840

  13. Differential regenerative capacity of neonatal mouse hearts after cryoinjury.

    PubMed

    Darehzereshki, Ali; Rubin, Nicole; Gamba, Laurent; Kim, Jieun; Fraser, James; Huang, Ying; Billings, Joshua; Mohammadzadeh, Robabeh; Wood, John; Warburton, David; Kaartinen, Vesa; Lien, Ching-Ling

    2015-03-01

    Neonatal mouse hearts fully regenerate after ventricular resection similar to adult zebrafish. We established cryoinjury models to determine if different types and varying degrees of severity in cardiac injuries trigger different responses in neonatal mouse hearts. In contrast to ventricular resection, neonatal mouse hearts fail to regenerate and show severe impairment of cardiac function post transmural cryoinjury. However, neonatal hearts fully recover after non-transmural cryoinjury. Interestingly, cardiomyocyte proliferation does not significantly increase in neonatal mouse hearts after cryoinjuries. Epicardial activation and new coronary vessel formation occur after cryoinjury. The profibrotic marker PAI-1 is highly expressed after transmural but not non-transmural cryoinjuries, which may contribute to the differential scarring. Our results suggest that regenerative medicine strategies for heart injuries should vary depending on the nature of the injury.

  14. Zebrafish Rhabdomyosarcoma.

    PubMed

    Phelps, Michael; Chen, Eleanor

    2016-01-01

    In vivo models of Rhabdomyosarcoma (RMS) have proven instrumental in understanding the development and progression of this devastating pediatric sarcoma. Both vertebrate and invertebrate model systems have been developed to study the tumor biology of both embryonal (ERMS) and alveolar (ARMS) RMS subtypes. Zebrafish RMS models have been particularly amenable for high-throughput studies to identify drug targetable pathways because of their short tumor latency, ease of ex vivo manipulation and conserved tumor biology. The transgenic KRASG12D-induced ERMS model allows for molecular and cellular characterization of distinct tumor cell subpopulations including the tumor propagating cells. Comparative genomic approaches have also been utilized in zebrafish ERMS to identify conserved candidate driver genes. Recent advances in zebrafish genome engineering have further enabled the ability to probe the functional significance of potential driver genes. Using the unique strengths of the zebrafish model organisms with the wealth of cellular and molecular tools currently available, zebrafish RMS models provide a powerful in vivo system for which to study RMS tumorigenesis. PMID:27165362

  15. Elements of Psychocardiology in the Psychosocial Handling of Adults with Congenital Heart Disease

    PubMed Central

    Callus, Edward; Quadri, Emilia; Chessa, Massimo

    2010-01-01

    When it comes to the role of the clinical psychology in the cardiac settings, or psychocardiology, there is often a focus on acquired cardiac illnesses in the rehabilitation settings. However, the increase of adults with congenital heart disease due to technological advances in cardiology and cardiac surgery have created a new emergency. It is thus necessary to reflect upon the elements of psychocardiology adapting them to this new population, also when it comes to interventional hospital settings of cardiology and cardiac surgery. This perspective article is an effort in this direction. PMID:21833204

  16. Heart failure and obesity in adults: pathophysiology, clinical manifestations and management.

    PubMed

    Alpert, Martin A; Agrawal, Harsh; Aggarwal, Kul; Kumar, Senthil A; Kumar, Arun

    2014-06-01

    Obesity is both a risk factor and a direct cause of heart failure (HF) in adults. Severe obesity produces hemodynamic alterations that predispose to changes in left ventricular morphology and function, which, over time, may lend to the development of HF (obesity cardiomyopathy). Certain neurohormonal and metabolic abnormalities as well as cardiovascular co-morbidities may facilitate this process. Substantial purposeful weight loss is capable of reversing most of the alterations in cardiac performance and morphology and may improve functional capacity and quality of life in patents with obesity cardiomyopathy.

  17. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-08-01

    Mercury (Hg) is a prominent environmental contaminant that causes a variety of adverse effects on aquatic organisms. However, the mechanisms underlying inorganic Hg-induced reproductive impairment in fish remains largely unknown. In this study, adult zebrafish were exposed to 0 (control), 15 and 30μg Hg/l (added as mercuric chloride, HgCl2) for 30days, and the effects on histological structure, antioxidant status and sex hormone levels in the ovary and testis, as well as the mRNA expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Exposure to Hg caused pathological lesions in zebrafish gonads, and changed the activities and mRNA levels of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) as well as the content of glutathione (GSH) and malondialdehyde (MDA). In females, although ovarian 17β-estradiol (E2) content remained relatively stable, significant down-regulation of lhβ, gnrh2, gnrh3, lhr and erα were observed. In males, testosterone (T) levels in the testis significantly decreased after Hg exposure, accompanied by down-regulated expression of gnrh2, gnrh3, fshβ and lhβ in the brain as well as fshr, lhr, ar, cyp17 and cyp11b in the testis. Thus, our study indicated that waterborne inorganic Hg exposure caused histological damage and oxidative stress in the gonads of zebrafish, and altered sex hormone levels by disrupting the transcription of related HPG-axis genes, which could subsequently impair the reproduction of fish. Different response of the antioxidant defense system, sex hormone and HPG-axis genes between females and males exposed to inorganic Hg indicated the gender-specific regulatory effect by Hg. To our knowledge, this is the first time to explore the effects and mechanisms of inorganic Hg exposure on reproduction at the histological, enzymatic and molecular levels, which will greatly extend our understanding on the mechanisms underlying of reproductive

  18. Comparative effects of nodularin and microcystin-LR in zebrafish: 2. Uptake and molecular effects in eleuthero-embryos and adult liver with focus on endoplasmic reticulum stress.

    PubMed

    Faltermann, Susanne; Grundler, Verena; Gademann, Karl; Pernthaler, Jakob; Fent, Karl

    2016-02-01

    . In contrast to adult liver, MC-LR and nodularin did not result in detectable changes of mRNA levels of selected target genes involved in ER-stress in zebrafish eleuthero-embryos, nor was the abundance of transcripts belonging to the MAPK and pro-apoptosis pathways altered. In conclusion, our data indicate that MC-LR and nodularin have similar transcriptional effects. They lead to changes in mRNA levels of genes that suggest induction of ER-stress, and furthermore, lead to increased level of tnfα mRNA in the adult liver, which suggests a novel (transcriptional) mode of action in fish. However, although taken up by eleuthero-embryos, no transcriptional changes induced by these cyanobacterial toxins were detected. This is probably due to action to specific organs such as liver and kidneys that could not be identified by whole-embryo sampling. PMID:26748408

  19. Comparative effects of nodularin and microcystin-LR in zebrafish: 2. Uptake and molecular effects in eleuthero-embryos and adult liver with focus on endoplasmic reticulum stress.

    PubMed

    Faltermann, Susanne; Grundler, Verena; Gademann, Karl; Pernthaler, Jakob; Fent, Karl

    2016-02-01

    . In contrast to adult liver, MC-LR and nodularin did not result in detectable changes of mRNA levels of selected target genes involved in ER-stress in zebrafish eleuthero-embryos, nor was the abundance of transcripts belonging to the MAPK and pro-apoptosis pathways altered. In conclusion, our data indicate that MC-LR and nodularin have similar transcriptional effects. They lead to changes in mRNA levels of genes that suggest induction of ER-stress, and furthermore, lead to increased level of tnfα mRNA in the adult liver, which suggests a novel (transcriptional) mode of action in fish. However, although taken up by eleuthero-embryos, no transcriptional changes induced by these cyanobacterial toxins were detected. This is probably due to action to specific organs such as liver and kidneys that could not be identified by whole-embryo sampling.

  20. Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Wanjing; Chen, Chuanyue; Chen, Liang; Wang, Li; Li, Jian; Chen, Yuanyuan; Jin, Jienan; Kawan, Atufa; Zhang, Xuezhen

    2016-03-01

    While microcystins (MCs) have been reported to exert reproductive toxicity on fish with a sex-dependent effect, the underlying mechanism has been rarely investigated. In the present study, zebrafish were exposed to 1, 5 and 20 μg/L MC-LR for 30 d. The gonad-somatic index declined in all treated males. 17β-estradiol (E2), testosterone (T), 11-keto testosterone (11-KT) and follicle-stimulating hormone (FSH) levels increased in serum from all treated females, while T, FSH and luteinizing hormone (LH) levels changed in all treated males. Histomorphological observation showed that MC-LR exposure evidently retarded oogenesis and spermatogenesis. Transcriptional changes of 22 genes of the hypothalamic-pituitary-gonad (HPG) axis exhibited sex-specific responses, and the relationship between gene transcriptions and gametogenesis was evaluated by principle component analysis (PCA). Major contributors to PC1 (gnrh2, gnrhr3, ar, lhr, hmgra, hmgrb and cyp19a) were positively correlated with the number of post-vitellogenic oocytes, while PC1 (gnrh2, lhβ, erβ, fshr, cyp11a and 17βhsd) were positively correlated with the number of spermatozoa. The protein levels of 17βHSD and CYP19a were affected in both females and males. In conclusion, this study first investigated the sex-dependent effects of microcystins on fish reproduction and revealed some important molecular biomarkers related to gametogenesis in zebrafish suffered from MC-LR.

  1. Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish

    PubMed Central

    Liu, Wanjing; Chen, Chuanyue; Chen, Liang; Wang, Li; Li, Jian; Chen, Yuanyuan; Jin, Jienan; Kawan, Atufa; Zhang, Xuezhen

    2016-01-01

    While microcystins (MCs) have been reported to exert reproductive toxicity on fish with a sex-dependent effect, the underlying mechanism has been rarely investigated. In the present study, zebrafish were exposed to 1, 5 and 20 μg/L MC-LR for 30 d. The gonad-somatic index declined in all treated males. 17β-estradiol (E2), testosterone (T), 11-keto testosterone (11-KT) and follicle-stimulating hormone (FSH) levels increased in serum from all treated females, while T, FSH and luteinizing hormone (LH) levels changed in all treated males. Histomorphological observation showed that MC-LR exposure evidently retarded oogenesis and spermatogenesis. Transcriptional changes of 22 genes of the hypothalamic-pituitary-gonad (HPG) axis exhibited sex-specific responses, and the relationship between gene transcriptions and gametogenesis was evaluated by principle component analysis (PCA). Major contributors to PC1 (gnrh2, gnrhr3, ar, lhr, hmgra, hmgrb and cyp19a) were positively correlated with the number of post-vitellogenic oocytes, while PC1 (gnrh2, lhβ, erβ, fshr, cyp11a and 17βhsd) were positively correlated with the number of spermatozoa. The protein levels of 17βHSD and CYP19a were affected in both females and males. In conclusion, this study first investigated the sex-dependent effects of microcystins on fish reproduction and revealed some important molecular biomarkers related to gametogenesis in zebrafish suffered from MC-LR. PMID:26960901

  2. Zebrafish Germ Cell Tumors.

    PubMed

    Sanchez, Angelica; Amatruda, James F

    2016-01-01

    Germ cell tumors (GCTs) are malignant cancers that arise from embryonic precursors known as Primordial Germ Cells. GCTs occur in neonates, children, adolescents and young adults and can occur in the testis, the ovary or extragonadal sites. Because GCTs arise from pluripotent cells, the tumors can exhibit a wide range of different histologies. Current cisplatin-based combination therapies cures most patients, however at the cost of significant toxicity to normal tissues. While GWAS studies and genomic analysis of human GCTs have uncovered somatic mutations and loci that might confer tumor susceptibility, little is still known about the exact mechanisms that drive tumor development, and animal models that faithfully recapitulate all the different GCT subtypes are lacking. Here, we summarize current understanding of germline development in humans and zebrafish, describe the biology of human germ cell tumors, and discuss progress and prospects for zebrafish GCT models that may contribute to better understanding of human GCTs. PMID:27165367

  3. Reprint of "Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio)".

    PubMed

    Nazario, Luiza Reali; Antonioli, Régis Junior; Capiotti, Katiucia Marques; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S; Bonan, Carla Denise; da Silva, Rosane Souza

    2015-12-01

    Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine.

  4. Short-term treatment of adult male zebrafish (Danio Rerio) with 17α-ethinyl estradiol affects the transcription of genes involved in development and male sex differentiation.

    PubMed

    Reyhanian Caspillo, Nasim; Volkova, Kristina; Hallgren, Stefan; Olsson, Per-Erik; Porsch-Hällström, Inger

    2014-08-01

    The synthetic estrogen 17α-ethinyl estradiol (EE2) disturbs reproduction and causes gonadal malformation in fish. Effects on the transcription of genes involved in gonad development and function that could serve as sensitive biomarkers of reproductive effects in the field is, however, not well known. We have studied mRNA expression in testes and liver of adult zebrafish (Danio rerio) males treated with 0, 5 or 25 ng/L EE2for 14 days. qPCR analysis showed that the mRNA expression of four genes linked to zebrafish male sex determination and differentiation, Anti-Mullerian Hormone, Double sex and mab-related protein, Sry-related HMG box-9a and Nuclear receptor subfamily 5 group number 1b were significantly decreased by 25 ng/L, but not 5 ng/L EE2 compared with the levels in untreated fish. The decreased transcription was correlated with a previously shown spawning failure in these males (Reyhanian et al., 2011. Aquat Toxicol 105, 41-48), suggesting that decreased mRNA expression of genes regulating male sexual function could be involved in the functional sterility. The mRNA level of Cytochrome P-45019a, involved in female reproductive development, was unaffected by hormone treatment. The transcription of the female-specific Vitellogenin was significantly induced in testes. While testicular Androgen Receptor and the Estrogen Receptor-alpha mRNA levels were unchanged, Estrogen receptor-beta was significantly decreased by 25 ng/L EE2. Hepatic Estrogen Receptor-alpha mRNA was significantly increased by both exposure concentrations, while Estrogen Receptor-beta transcription was unaltered. The decreased transcription of male-predominant genes supports a demasculinization of testes by EE2 and might reflect reproductive disturbances in the environment. PMID:24747828

  5. Zebrafish as an emerging model for studying complex brain disorders

    PubMed Central

    Kalueff, Allan V.; Stewart, Adam Michael; Gerlai, Robert

    2014-01-01

    The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, for example, depression, autism, psychoses, drug abuse and cognitive disorders), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions have become a rapidly emerging critical field in translational neuropharmacology research. PMID:24412421

  6. Zebrafish Melanoma.

    PubMed

    Kaufman, Charles K

    2016-01-01

    Melanoma skin cancer is a potentially deadly disease in humans and has remained extremely difficult to treat once it has metastasized. In just the last 10 years, a number of models of melanoma have been developed in the zebrafish that are biologically faithful to the human disease and have already yielded important insights into the fundamental biology of melanoma and offered new potential avenues for treatment. With the diversity and breadth of the molecular genetic tools available in the zebrafish, these melanoma models will continue to be refined and expanded upon to keep pace with the rapidly evolving field of melanoma biology. PMID:27165365

  7. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    SciTech Connect

    Zucchi, Sara; Bluethgen, Nancy; Ieronimo, Andrea; Fent, Karl

    2011-01-15

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. In eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.

  8. Correlates of carotid artery stiffness in young adults: The Bogalusa Heart Study.

    PubMed

    Urbina, E M; Srinivasan, S R; Kieltyka, R L; Tang, R; Bond, M G; Chen, W; Berenson, G S

    2004-09-01

    Decreased arterial elasticity, an independent risk factor for cardiovascular (C-V) disease, is associated with C-V risk factors in middle-aged and older individuals. However, information is limited in this regard in young adults. This aspect was examined in a community-based sample of 516 black and white subjects aged 25-38 years (71% white, 39% male). The common carotid artery elasticity was measured from M-mode ultrasonography as Peterson's elastic modulus (Ep) and relative wall thickness-adjusted Young's elastic modulus (YEM). Blacks and males had higher Ep (P < 0.05); males had higher YEM (P < 0.0001); and blacks had higher wall thickness (P < 0.01). For the entire sample adjusted for race and gender both Ep and YEM correlated significantly (P < 0.05-0.0001) with age, BMI, waist, systolic and diastolic blood pressures, heart rate, product of heart rate and pulse pressure, triglycerides, total cholesterol to HDL cholesterol ratio, insulin and glucose. In a multivariate regression model that included hemodynamic variables, systolic blood pressure, product of heart rate and pulse pressure, age, triglycerides, BMI, and male gender (for YEM only) were independent correlates of Ep (R2 = 0.38) and YEM (R2 = 0.25). When the hemodynamic variables were excluded from the model, age, triglycerides, BMI, black race (Ep only), male gender, parental history of hypertension, HDL cholesterol (inverse association), and insulin (marginal significance) remained independent correlates of Ep (R2 = 0.20) and YEM (R2 = 16). Both Ep and YEM increased (P for trend P < 0.0001) with increasing number of independent continuous risk factors (defined as values above or below the age, race, and gender-specific extreme quintiles) that were retained in the regression models. The observed increasing arterial stiffness (or decreased elasticity) with increasing number of risk factors related to insulin resistance syndrome in free-living, asymptomatic young adults has important implications for

  9. In Vivo Imaging of Cancer in Zebrafish.

    PubMed

    Ignatius, Myron S; Hayes, Madeline; Langenau, David M

    2016-01-01

    Zebrafish cancer models have greatly advanced our understanding of malignancy in humans. This is made possible due to the unique advantages of the zebrafish model including ex vivo development and large clutch sizes, which enable large-scale genetic and chemical screens. Transparency of the embryo and the creation of adult zebrafish devoid of pigmentation (casper) have permitted unprecedented ability to dynamically visualize cancer progression in live animals. When coupled with fluorescent reporters and transgenic approaches that drive oncogenesis, it is now possible to label entire or subpopulations of cancer cells and follow cancer growth in near real-time. Here, we will highlight aspects of in vivo imaging using the zebrafish and how it has enhanced our understanding of the fundamental aspects of tumor initiation, self-renewal, neovascularization, tumor cell heterogeneity, invasion and metastasis. Importantly, we will highlight the contribution of cancer imaging in zebrafish for drug discovery. PMID:27165356

  10. HAND1 and HAND2 are expressed in the adult-rodent heart and are modulated during cardiac hypertrophy.

    PubMed

    Thattaliyath, Bijoy D; Livi, Carolina B; Steinhelper, Mark E; Toney, Glenn M; Firulli, Anthony B

    2002-10-01

    The HAND basic Helix-Loop-Helix (bHLH) transcription factors are essential for normal cardiac and extraembryonic development. Although highly evolutionarily conserved genes, HAND cardiac expression patterns differ across species. Mouse expression of HAND1 and HAND2 was reported absent in the adult heart. Human HAND genes are expressed in the adult heart and HAND1 expression is downregulated in cardiomyopathies. As rodent and human expression profiles are inconsistent, we re-examined expression of HAND1 and HAND2 in adult-rodent hearts. HAND1 and HAND2 are expressed in adult-rodent hearts and HAND2 is expressed in the atria. Induction of cardiac hypertrophy shows modulation of HAND expression, corresponding with observations in human cardiomyopathy. The downregulation of HAND expression observed in rodent hypertrophy and human cardiomyopathy may reflect a permissive role allowing, cardiomyocytes to reinitiate the fetal gene program and initiate the adaptive physiological changes that allow the heart to compensate (hypertrophy) for the increase in afterload.

  11. Trends in Heart Disease Mortality among Mississippi Adults over Three Decades, 1980-2013

    PubMed Central

    2016-01-01

    Heart disease (HD) remains the leading cause of death among Mississippians; however, despite the importance of the condition, trends in HD mortality in Mississippi have not been adequately explored. This study examined trends in HD mortality among adults in Mississippi from 1980 through 2013 and further examined these trends by race and sex. We used data from Mississippi Vital Statistics (1980–2013) to calculate age-adjusted HD mortality rates for Mississippians age 25 or older. Cases were identified using underlying cause of death codes from the International Classification of Diseases, Ninth Revision (ICD-9: 390–398, 402, 404–429) and Tenth Revision (ICD-10), including I00-I09, I11, I13, and I20-I51. Joinpoint software was used to calculate the average annual percent change in HD mortality rates for the overall population and by race and sex. Overall, the age-adjusted HD mortality rate among Mississippi adults decreased by 36.5% between 1980 and 2013, with an average annual percent change of -1.60% (95% CI -2.00 to -1.30). This trend varied across subgroups: HD mortality rates experienced an average annual change of -1.34% (95% CI -1.98 to -0.69) for black adults; -1.60% (95% CI -1.74 to -1.46) for white adults; -1.30% (95% CI -1.50 to -1.10) for all women, and -1.90% (95% -2.20 to -1.50) for all men. From 1980 to 2013, there was a continuous decrease in HD mortality among adult Mississippians. However, the magnitude of this reduction differed by race and sex. PMID:27518895

  12. Trends in Heart Disease Mortality among Mississippi Adults over Three Decades, 1980-2013.

    PubMed

    Mendy, Vincent L; Vargas, Rodolfo; El-Sadek, Lamees

    2016-01-01

    Heart disease (HD) remains the leading cause of death among Mississippians; however, despite the importance of the condition, trends in HD mortality in Mississippi have not been adequately explored. This study examined trends in HD mortality among adults in Mississippi from 1980 through 2013 and further examined these trends by race and sex. We used data from Mississippi Vital Statistics (1980-2013) to calculate age-adjusted HD mortality rates for Mississippians age 25 or older. Cases were identified using underlying cause of death codes from the International Classification of Diseases, Ninth Revision (ICD-9: 390-398, 402, 404-429) and Tenth Revision (ICD-10), including I00-I09, I11, I13, and I20-I51. Joinpoint software was used to calculate the average annual percent change in HD mortality rates for the overall population and by race and sex. Overall, the age-adjusted HD mortality rate among Mississippi adults decreased by 36.5% between 1980 and 2013, with an average annual percent change of -1.60% (95% CI -2.00 to -1.30). This trend varied across subgroups: HD mortality rates experienced an average annual change of -1.34% (95% CI -1.98 to -0.69) for black adults; -1.60% (95% CI -1.74 to -1.46) for white adults; -1.30% (95% CI -1.50 to -1.10) for all women, and -1.90% (95% -2.20 to -1.50) for all men. From 1980 to 2013, there was a continuous decrease in HD mortality among adult Mississippians. However, the magnitude of this reduction differed by race and sex.

  13. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos

    SciTech Connect

    Lin, C.C.; Hui, Michelle N.Y.; Cheng, S.H. E-mail: bhcheng@cityu.edu.hk

    2007-07-15

    Carbaryl, an acetylcholinesterase inhibitor, is known to be moderately toxic to adult zebrafish and has been reported to cause heart malformations and irregular heartbeat in medaka. We performed experiments to study the toxicity of carbaryl, specifically its effects on the heart, in early developing zebrafish embryos. LC50 and EC50 values for carbaryl at 28 h post-fertilization were 44.66 {mu}g/ml and 7.52 {mu}g/ml, respectively, and 10 {mu}g/ml carbaryl was used in subsequent experiments. After confirming acetylcholinesterase inhibition by carbaryl using an enzymatic method, we observed red blood cell accumulation, delayed hatching and pericardial edema, but not heart malformation as described in some previous reports. Our chronic exposure data also demonstrated carbaryl-induced bradycardia, which is a common effect of acetylcholinesterase inhibitors due to the accumulation of acetylcholine, in embryos from 1 day post-fertilization (dpf) to 5 dpf. The distance between the sinus venosus, the point where blood enters the atrium, and the bulbus arteriosus, the point where blood leaves the ventricle, indicated normal looping of the heart tube. Immunostaining of myosin heavy chains with the ventricle-specific antibody MF20 and the atrium-specific antibody S46 showed normal development of heart chambers. At the same time, acute exposure resulted in carbaryl-induced bradycardia. Heart rate dropped significantly after a 10-min exposure to 100 {mu}g/ml carbaryl but recovered when carbaryl was removed. The novel observation of carbaryl-induced bradycardia in 1- and 2-dpf embryos suggested that carbaryl affected cardiac function possibly through an alternative mechanism other than acetylcholinesterase inhibition such as inhibition of calcium ion channels, since acetylcholine receptors in zebrafish are not functional until 3 dpf. However, the exact nature of this mechanism is currently unknown, and thus further studies are required.

  14. Clinically approved iron chelators influence zebrafish mortality, hatching morphology and cardiac function.

    PubMed

    Hamilton, Jasmine L; Hatef, Azadeh; Imran ul-Haq, Muhammad; Nair, Neelima; Unniappan, Suraj; Kizhakkedathu, Jayachandran N

    2014-01-01

    Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.

  15. Clinically Approved Iron Chelators Influence Zebrafish Mortality, Hatching Morphology and Cardiac Function

    PubMed Central

    Hamilton, Jasmine L.; Hatef, Azadeh; Imran ul-haq, Muhammad; Nair, Neelima; Unniappan, Suraj; Kizhakkedathu, Jayachandran N.

    2014-01-01

    Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity. PMID:25329065

  16. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders

    PubMed Central

    Kubota, Akira; O'Meara, Conor M.; Lamb, David C.; Tanguay, Robert L.; Goldstone, Jared V.

    2016-01-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including liver, heart, gonads, spleen and brain, as well as eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. PMID:26853319

  17. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders.

    PubMed

    Lemaire, Benjamin; Kubota, Akira; O'Meara, Conor M; Lamb, David C; Tanguay, Robert L; Goldstone, Jared V; Stegeman, John J

    2016-04-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered "orphan" CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to "deorphanization", that is, identifying CYP20A1 functions and its roles in health and disease. PMID:26853319

  18. Prolonged Hypoxia Increases Survival Even in Zebrafish (Danio rerio) Showing Cardiac Arrhythmia

    PubMed Central

    Kopp, Renate; Bauer, Ines; Ramalingam, Anil; Egg, Margit; Schwerte, Thorsten

    2014-01-01

    Tolerance towards hypoxia is highly pronounced in zebrafish. In this study even beneficial effects of hypoxia, specifically enhanced survival of zebrafish larvae, could be demonstrated. This effect was actually more pronounced in breakdance mutants, which phenotypically show cardiac arrhythmia. Breakdance mutants (bre) are characterized by chronically reduced cardiac output. Despite an about 50% heart rate reduction, they become adults, but survival rate significantly drops to 40%. Normoxic bre animals demonstrate increased hypoxia inducible factor 1 a (Hif-1α) expression, which indicates an activated hypoxic signaling pathway. Consequently, cardiovascular acclimation, like cardiac hypertrophy and increased erythrocyte concentration, occurs. Thus, it was hypothesized, that under hypoxic conditions survival might be even more reduced. When bre mutants were exposed to hypoxic conditions, they surprisingly showed higher survival rates than under normoxic conditions and even reached wildtype values. In hypoxic wildtype zebrafish, survival yet exceeded normoxic control values. To specify physiological acclimation, cardiovascular and metabolic parameters were measured before hypoxia started (3 dpf), when the first differences in survival rate occurred (7 dpf) and when survival rate plateaued (15 dpf). Hypoxic animals expectedly demonstrated Hif-1α accumulation and consequently enhanced convective oxygen carrying capacity. Moreover, bre animals showed a significantly enhanced heart rate under hypoxic conditions, which reached normoxic wildtype values. This improvement in convective oxygen transport ensured a sufficient oxygen and nutrient supply and was also reflected in the significantly higher mitochondrial activity. The highly optimized energy metabolism observed in hypoxic zebrafish larvae might be decisive for periods of higher energy demand due to organ development, growth and increased activity. However, hypoxia increased survival only during a short period of

  19. Radiologic evaluation of coronary artery disease in adults with congenital heart disease.

    PubMed

    Valenzuela, David M; Ordovas, Karen G

    2016-01-01

    Improved surgical and medical therapy have prolonged survival in patients with congenital heart disease (CHD) such that general medical conditions like coronary artery disease (CAD) are now the main determinants of mortality. A summary of the association of CAD with CHD, as well as a discussion of the radiologic evaluation of the coronary arteries in adults with CHD is described herein. Cross sectional imaging to evaluate CAD in adults with CHD should follow the same appropriateness criteria as gender and aged matched patients without CHD. Coronary CT imaging may be particularly valuable in evaluating the coronary arteries in this patient population as invasive coronary angiography may prove challenging secondary to complicated or unconventional anatomy of the coronary arteries. Further, typical methods for evaluating CAD such as stress or echocardiography may be impractical in adults with CHD. Finally, delineating the anatomic relationship of the coronary arteries and their relationship with the sternum, chest wall, conduits, grafts, and valves is highly recommended in patients with CHD prior to reintervention to avoid iatrogenic complications.

  20. In Utero Caffeine Exposure Induces Transgenerational Effects on the Adult Heart

    PubMed Central

    Fang, Xiefan; Poulsen, Ryan R.; Rivkees, Scott A.; Wendler, Christopher C.

    2016-01-01

    Each year millions of pregnant woman are exposed to caffeine, which acts to antagonize adenosine action. The long-term consequences of this exposure on the developing fetus are largely unknown, although in animal models we have found adverse effects on cardiac function. To assess if these effects are transmitted transgenerationally, we exposed pregnant mice to caffeine equivalent to 2–4 cups of coffee at two embryonic stages. Embryos (F1 generation) exposed to caffeine early from embryonic (E) day 6.5–9.5 developed a phenotype similar to dilated cardiomyopathy by 1 year of age. Embryos exposed to caffeine later (E10.5–13.5) were not affected. We next examined the F2 generation and F3 generation of mice exposed to caffeine from E10.5–13.5, as this coincides with germ cell development. These F2 generation adult mice developed a cardiac phenotype similar to hypertrophic cardiomyopathy. The F3 generation exhibited morphological changes in adult hearts, including increased mass. This report shows that in utero caffeine exposure has long-term effects into adulthood and that prenatal caffeine exposure can exert adverse transgenerational effects on adult cardiac function. PMID:27677355

  1. Forkhead transcription factor foxe1 regulates chondrogenesis in zebrafish.

    PubMed

    Nakada, Chisako; Iida, Atsumi; Tabata, Yoko; Watanabe, Sumiko

    2009-12-15

    Forkhead transcription factor (Fox) e1 is a causative gene for Bamforth-Lazarus syndrome, which is characterized by hypothyroidism and cleft palate. Applying degenerate polymerase chain reaction using primers specific for the conserved forkhead domain, we identified zebrafish foxe1 (foxe1). Foxe1 is expressed in the thyroid, pharynx, and pharyngeal skeleton during development; strongly expressed in the gill and weakly expressed in the brain, eye, and heart in adult zebrafish. A loss of function of foxe1 by morpholino antisense oligo (MO) exhibited abnormal craniofacial development, shortening of Meckel's cartilage and the ceratohyals, and suppressed chondrycytic proliferation. However, at 27 hr post fertilization, the foxe1 MO-injected embryos showed normal dlx2, hoxa2, and hoxb2 expression, suggesting that the initial steps of pharyngeal skeletal development, including neural crest migration and specification of the pharyngeal arch occurred normally. In contrast, at 2 dpf, a severe reduction in the expression of sox9a, colIIaI, and runx2b, which play roles in chondrocytic proliferation and differentiation, was observed. Interestingly, fgfr2 was strongly upregulated in the branchial arches of the foxe1 MO-injected embryos. Unlike Foxe1-null mice, normal thyroid development in terms of morphology and thyroid-specific marker expression was observed in foxe1 MO-injected zebrafish embryos. Taken together, our results indicate that Foxe1 plays an important role in chondrogenesis during development of the pharyngeal skeleton in zebrafish, probably through regulation of fgfr2 expression. Furthermore, the roles reported for FOXE1 in mammalian thyroid development may have been acquired during evolution.

  2. Excitation-contraction coupling in zebrafish ventricular myocardium is regulated by trans-sarcolemmal Ca2+ influx and sarcoplasmic reticulum Ca2+ release.

    PubMed

    Haustein, Moritz; Hannes, Tobias; Trieschmann, Jan; Verhaegh, Rabea; Köster, Annette; Hescheler, Jürgen; Brockmeier, Konrad; Adelmann, Roland; Khalil, Markus

    2015-01-01

    Zebrafish (Danio rerio) have become a popular model in cardiovascular research mainly due to identification of a large number of mutants with structural defects. In recent years, cardiomyopathies and other diseases influencing contractility of the heart have been studied in zebrafish mutants. However, little is known about the regulation of contractility of the zebrafish heart on a tissue level. The aim of the present study was to elucidate the role of trans-sarcolemmal Ca(2+)-flux and sarcoplasmic reticulum Ca(2+)-release in zebrafish myocardium. Using isometric force measurements of fresh heart slices, we characterised the effects of changes of the extracellular Ca(2+)-concentration, trans-sarcolemmal Ca(2+)-flux via L-type Ca(2+)-channels and Na(+)-Ca(2+)-exchanger, and Ca(2+)-release from the sarcoplasmic reticulum as well as beating frequency and β-adrenergic stimulation on contractility of adult zebrafish myocardium. We found an overall negative force-frequency relationship (FFR). Inhibition of L-type Ca(2+)-channels by verapamil (1 μM) decreased force of contraction to 22 ± 7% compared to baseline (n=4, p<0.05). Ni(2+) was the only substance to prolong relaxation (5 mM, time after peak to 50% relaxation: 73 ± 3 ms vs. 101 ± 8 ms, n=5, p<0.05). Surprisingly though, inhibition of the sarcoplasmic Ca(2+)-release decreased force development to 54 ± 3% in ventricular (n=13, p<0.05) and to 52 ± 8% in atrial myocardium (n=5, p<0.05) suggesting a substantial role of SR Ca(2+)-release in force generation. In line with this finding, we observed significant post pause potentiation after pauses of 5 s (169 ± 7% force compared to baseline, n=8, p<0.05) and 10 s (198 ± 9% force compared to baseline, n=5, p<0.05) and mildly positive lusitropy after β-adrenergic stimulation. In conclusion, force development in adult zebrafish ventricular myocardium requires not only trans-sarcolemmal Ca2+-flux, but also intact sarcoplasmic reticulum Ca(2+)-cycling. In contrast to

  3. Excitation-Contraction Coupling in Zebrafish Ventricular Myocardium Is Regulated by Trans-Sarcolemmal Ca2+ Influx and Sarcoplasmic Reticulum Ca2+ Release

    PubMed Central

    Trieschmann, Jan; Verhaegh, Rabea; Köster, Annette; Hescheler, Jürgen; Brockmeier, Konrad; Adelmann, Roland; Khalil, Markus

    2015-01-01

    Zebrafish (Danio rerio) have become a popular model in cardiovascular research mainly due to identification of a large number of mutants with structural defects. In recent years, cardiomyopathies and other diseases influencing contractility of the heart have been studied in zebrafish mutants. However, little is known about the regulation of contractility of the zebrafish heart on a tissue level. The aim of the present study was to elucidate the role of trans-sarcolemmal Ca2+-flux and sarcoplasmic reticulum Ca2+-release in zebrafish myocardium. Using isometric force measurements of fresh heart slices, we characterised the effects of changes of the extracellular Ca2+-concentration, trans-sarcolemmal Ca2+-flux via L-type Ca2+-channels and Na+-Ca2+-exchanger, and Ca2+-release from the sarcoplasmic reticulum as well as beating frequency and β-adrenergic stimulation on contractility of adult zebrafish myocardium. We found an overall negative force-frequency relationship (FFR). Inhibition of L-type Ca2+-channels by verapamil (1 μM) decreased force of contraction to 22±7% compared to baseline (n=4, p<0.05). Ni2+ was the only substance to prolong relaxation (5 mM, time after peak to 50% relaxation: 73±3 ms vs. 101±8 ms, n=5, p<0.05). Surprisingly though, inhibition of the sarcoplasmic Ca2+-release decreased force development to 54±3% in ventricular (n=13, p<0.05) and to 52±8% in atrial myocardium (n=5, p<0.05) suggesting a substantial role of SR Ca2+-release in force generation. In line with this finding, we observed significant post pause potentiation after pauses of 5 s (169±7% force compared to baseline, n=8, p<0.05) and 10 s (198±9% force compared to baseline, n=5, p<0.05) and mildly positive lusitropy after β-adrenergic stimulation. In conclusion, force development in adult zebrafish ventricular myocardium requires not only trans-sarcolemmal Ca2+-flux, but also intact sarcoplasmic reticulum Ca2+-cycling. In contrast to mammals, FFR is strongly negative in the

  4. Zebrafish Sensitivity to Botulinum Neurotoxins

    PubMed Central

    Chatla, Kamalakar; Gaunt, Patricia S.; Petrie-Hanson, Lora; Ford, Lorelei; Hanson, Larry A.

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight) at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg)/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins. PMID:27153088

  5. Zebrafish Sensitivity to Botulinum Neurotoxins.

    PubMed

    Chatla, Kamalakar; Gaunt, Patricia S; Petrie-Hanson, Lora; Ford, Lorelei; Hanson, Larry A

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight) at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg)/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins. PMID:27153088

  6. Change in heart rate variability after the adult attachment interview in dissociative patients.

    PubMed

    Farina, Benedetto; Speranza, Anna Maria; Imperatori, Claudio; Quintiliani, Maria Isabella; Della Marca, Giacomo

    2015-01-01

    The aim of this study was to assess heart rate variability (HRV) in individuals with dissociative disorders (DD) before and after the Adult Attachment Interview (AAI). Electrocardiograms were recorded before, during, and after the AAI in 13 individuals with DD and 13 healthy participants matched for age and gender. Significant change in HRV was observed only in the DD group. After the AAI, those with DD showed significant increases in the low frequency/high frequency ratio (pre-AAI = 1.91 ± 1.19; post-AAI = 4.03 ± 2.40; Wilcoxon test = -2.76, p = .005). Our results suggest that the retrieval of childhood attachment experiences in individuals with DD is associated with a change in HRV patterns that could reflect the emotion dysregulation of dissociative psychopathological processes.

  7. Growth response and expression of muscle growth-related candidate genes in adult zebrafish fed plant and fishmeal protein-based diets.

    PubMed

    Ulloa, Pilar E; Peña, Andrea A; Lizama, Carla D; Araneda, Cristian; Iturra, Patricia; Neira, Roberto; Medrano, Juan F

    2013-03-01

    The main objective of this study was to examine the effects of a plant protein- vs. fishmeal-based diet on growth response in a population of 24 families, as well as expression of growth-related genes in the muscle of adult zebrafish (Danio rerio). Each family was split to create two fish populations with similar genetic backgrounds, and the fish were fed either fishmeal (FM diet) or plant protein (PP diet) as the unique protein source in their diets from 35 to 98 days postfertilization (dpf). To understand the effect of the PP diet on gene expression, individuals from three families, representative of the mean weight in both populations, were selected. To understand the effect of familiar variation on gene expression, the same families were evaluated separately. At 98 dpf, growth-related genes Igf1a, Igf2a, mTOR, Pld1a, Mrf4, Myod, Myogenin, and Myostatin1b were evaluated. In males, Myogenin, Mrf4, and Igf2a showed changes attributable to the PP diet. In females, the effect of the PP diet did not modulate the expression in any of the eight genes studied. The effect of familiar variation on gene expression was observed among families. This study shows that PP diet and family variation have effects on gene expression in fish muscle.

  8. Contribution of Major Lifestyle Risk Factors for Incident Heart Failure in Older Adults

    PubMed Central

    Del Gobbo, Liana C.; Kalantarian, Shadi; Imamura, Fumiaki; Lemaitre, Rozenn; Siscovick, David S.; Psaty, Bruce M.; Mozaffarian, Dariush

    2015-01-01

    Objectives The goal of this study was to determine the relative contribution of major lifestyle factors on the development of heart failure (HF) in older adults. Background HF incurs high morbidity, mortality, and health care costs among adults ≥65 years of age, which is the most rapidly growing segment of the U.S. population. Methods We prospectively investigated separate and combined associations of lifestyle risk factors with incident HF (1,380 cases) over 21.5 years among 4,490 men and women in the Cardiovascular Health Study, which is a community-based cohort of older adults. Lifestyle factors included 4 dietary patterns (Alternative Healthy Eating Index, Dietary Approaches to Stop Hypertension, an American Heart Association 2020 dietary goals score, and a Biologic pattern, which was constructed using previous knowledge of cardiovascular disease dietary risk factors), 4 physical activity metrics (exercise intensity, walking pace, energy expended in leisure activity, and walking distance), alcohol intake, smoking, and obesity. Results No dietary pattern was associated with developing HF (p > 0.05). Walking pace and leisure activity were associated with a 26% and 22% lower risk of HF, respectively (pace >3 mph vs. <2 mph; hazard ratio [HR]: 0.74; 95% confidence interval [CI]: 0.63 to 0.86; leisure activity ≥845 kcal/week vs. <845 kcal/week; HR: 0.78; 95% CI: 0.69 to 0.87). Modest alcohol intake, maintaining a body mass index <30 kg/m2, and not smoking were also independently associated with a lower risk of HF. Participants with ≥4 healthy lifestyle factors had a 45% (HR: 0.55; 95% CI: 0.42 to 0.74) lower risk of HF. Heterogeneity by age, sex, cardiovascular disease, hypertension medication use, and diabetes was not observed. Conclusions Among older U.S. adults, physical activity, modest alcohol intake, avoiding obesity, and not smoking, but not dietary patterns, were associated with a lower risk of HF. PMID:26160366

  9. The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water.

    PubMed

    Yu, Shilin; Lin, Tao; Chen, Wei; Tao, Hui

    2015-11-01

    The detection method of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in chlorinated drinking water, was established using a gas chromatograph coupled with a micro-electron capture detector. The chlorinated water samples were taken from ten drinking water treatment plants around Yangtze River or Taihu Lake in China. The concentration of DCAcAm was detected ranging from 0.5 to 1.8μg/L in the waterworks around Yangtze River, and 1.5-2.6μg/L around Taihu Lake. The toxicity of DCAcAm on adult zebrafish was assessed by investigating the metabolism damage with multiple metabolic biomarkers and the accumulation capability with bio-concentration factor. The results showed that DCAcAm could cause the acute metabolism damage and was easily accumulated in zebrafish, and should be extremely cautioned.

  10. The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water.

    PubMed

    Yu, Shilin; Lin, Tao; Chen, Wei; Tao, Hui

    2015-11-01

    The detection method of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in chlorinated drinking water, was established using a gas chromatograph coupled with a micro-electron capture detector. The chlorinated water samples were taken from ten drinking water treatment plants around Yangtze River or Taihu Lake in China. The concentration of DCAcAm was detected ranging from 0.5 to 1.8μg/L in the waterworks around Yangtze River, and 1.5-2.6μg/L around Taihu Lake. The toxicity of DCAcAm on adult zebrafish was assessed by investigating the metabolism damage with multiple metabolic biomarkers and the accumulation capability with bio-concentration factor. The results showed that DCAcAm could cause the acute metabolism damage and was easily accumulated in zebrafish, and should be extremely cautioned. PMID:26037958

  11. Effects of Pro-Tex on zebrafish (Danio rerio) larvae, adult common carp (Cyprinus carpio) and adult yellowtail kingfish (Seriola lalandi).

    PubMed

    Boerrigter, Jeroen G J; van de Vis, Hans W; van den Bos, Ruud; Abbink, Wout; Spanings, Tom; Zethof, Jan; Martinez, Laura Louzao; van Andel, Wouter F M; Lopez-Luna, Javier; Flik, Gert

    2014-08-01

    Aquaculture practices bring several stressful events to fish. Stressors not only activate the hypothalamus-pituitary-interrenal-axis, but also evoke cellular stress responses. Up-regulation of heat shock proteins (HSPs) is among the best studied mechanisms of the cellular stress response. An extract of the prickly pear cactus (Opuntia ficus indica), Pro-Tex, a soluble variant of TEX-OE(®), may induce expression of HSPs and reduce negative effects of cellular stress. Pro-Tex therefore is used to ameliorate conditions during stressful aquaculture-related practices. We tested Pro-Tex in zebrafish (Danio rerio), common carp (Cyprinus carpio L.) and yellowtail kingfish (Seriola lalandi) exposed to aquaculture-relevant stressors (thermal stress, net confinement, transport) and assessed its effects on stress physiology. Heat shock produced a mild increase in hsp70 mRNA expression in 5-day-old zebrafish larvae. Pro-Tex increased basal hsp70 mRNA expression, but decreased heat-shock-induced expression of hsp70 mRNA. In carp, Pro-Tex increased plasma cortisol and glucose levels, while it did not affect the mild stress response (increased plasma cortisol and glucose) to net confinement. In gills, and proximal and distal intestine, stress increased hsp70 mRNA expression; in the distal intestine, an additive enhancement of hsp70 mRNA expression by Pro-Tex was seen under stress. In yellowtail kingfish, Pro-Tex reduced the negative physiological effects of transport more efficiently than when fish were sedated with AQUI-S(®). Overall, our data indicate that Pro-Tex has protective effects under high levels of stress only. As Pro-Tex has potential for use in aquaculture, its functioning and impact on health and welfare of fish should be further studied. PMID:24493298

  12. Exercise Performance in Children and Young Adults After Complete and Incomplete Repair of Congenital Heart Disease.

    PubMed

    Rosenblum, Omer; Katz, Uriel; Reuveny, Ronen; Williams, Craig A; Dubnov-Raz, Gal

    2015-12-01

    Few previous studies have addressed exercise capacity in patients with corrected congenital heart disease (CHD) and significant anatomical residua. The aim of this study was to determine the aerobic fitness and peak cardiac function of patients with corrected CHD with complete or incomplete repairs, as determined by resting echocardiography. Children, adolescents and young adults (<40 years) with CHD from both sexes, who had previously undergone biventricular corrective therapeutic interventions (n = 73), and non-CHD control participants (n = 76) underwent cardiopulmonary exercise testing. The CHD group was further divided according to the absence/presence of significant anatomical residua on a resting echocardiogram ("complete"/"incomplete" repair groups). Aerobic fitness and cardiac function were compared between groups using linear regression and analysis of covariance. Peak oxygen consumption, O2 pulse and ventilatory threshold were significantly lower in CHD patients compared with controls (all p < 0.01). Compared with the complete repair group, the incomplete repair group had a significantly lower mean peak work rate, age-adjusted O2 pulse (expressed as % predicted) and a higher VE/VCO2 ratio (all p ≤ 0.05). Peak oxygen consumption was comparable between the subgroups. Patients after corrected CHD have lower peak and submaximal exercise parameters. Patients with incomplete repair of their heart defect had decreased aerobic fitness, with evidence of impaired peak cardiac function and lower pulmonary perfusion. Patients that had undergone a complete repair had decreased aerobic fitness attributed only to deconditioning. These newly identified differences explain why in previous studies, the lowest fitness was seen in patients with the most hemodynamically significant heart malformations.

  13. Knowledge Management in Cardiac Surgery: The Second Tehran Heart Center Adult Cardiac Surgery Database Report

    PubMed Central

    Abbasi, Kyomars; Karimi, Abbasali; Abbasi, Seyed Hesameddin; Ahmadi, Seyed Hossein; Davoodi, Saeed; Babamahmoodi, Abdolreza; Movahedi, Namdar; Salehiomran, Abbas; Shirzad, Mahmood; Bina, Peyvand

    2012-01-01

    Background: The Adult Cardiac Surgery Databank (ACSD) of Tehran Heart Center was established in 2002 with a view to providing clinical prediction rules for outcomes of cardiac procedures, developing risk score systems, and devising clinical guidelines. This is a general analysis of the collected data. Methods: All the patients referred to Tehran Heart Center for any kind of heart surgery between 2002 and 2008 were included, and their demographic, medical, clinical, operative, and postoperative data were gathered. This report presents general information as well as in-hospital mortality rates regarding all the cardiac procedures performed in the above time period. Results: There were 24959 procedures performed: 19663 (78.8%) isolated coronary artery bypass grafting surgeries (CABGs); 1492 (6.0%) isolated valve surgeries; 1437 (5.8%) CABGs concomitant with other procedures; 832 (3.3%) CABGs combined with valve surgeries; 722 (2.9%) valve surgeries concomitant with other procedures; 545 (2.2%) surgeries other than CABG or valve surgery; and 267 (1.1%) CABGs concomitant with valve and other types of surgery. The overall mortality was 205 (1.04%), with the lowest mortality rate (0.47%) in the isolated CABGs and the highest (4.49%) in the CABGs concomitant with valve surgeries and other types of surgery. Meanwhile, the overall mortality rate was higher in the female patients than in the males (1.90% vs. 0.74%, respectively). Conclusion: Isolated CABG was the most prevalent procedure at our center with the lowest mortality rate. However, the overall mortality was more prevalent in our female patients. This database can serve as a platform for the participation of the other countries in the region in the creation of a regional ACSD. PMID:23304179

  14. Prevalence and Correlates of Post-traumatic Stress Disorder in Adults With Congenital Heart Disease.

    PubMed

    Deng, Lisa X; Khan, Abigail May; Drajpuch, David; Fuller, Stephanie; Ludmir, Jonathan; Mascio, Christopher E; Partington, Sara L; Qadeer, Ayesha; Tobin, Lynda; Kovacs, Adrienne H; Kim, Yuli Y

    2016-03-01

    Post-traumatic stress disorder (PTSD) is associated with adverse outcomes and increased mortality in cardiac patients. No studies have examined PTSD in the adult congenital heart disease (ACHD) population. The objectives of this study were to assess the prevalence of self-reported symptoms of PTSD in patients with ACHD and explore potential associated factors. Patients were enrolled from an outpatient ACHD clinic and completed several validated measures including the Impact of Event Scale-Revised, PTSD Checklist-Civilian Version, and the Hospital Anxiety and Depression Scale. Clinical data were abstracted through medical data review. A total of 134 participants (mean age 34.6 ± 10.6; 46% men) were enrolled. Of the 127 participants who completed the Impact of Event Scale-Revised, 14 (11%) met criteria for elevated PTSD symptoms specifically related to their congenital heart disease or treatment. Of the 134 patients who completed PTSD Checklist-Civilian Version, 27 (21%) met criteria for global PTSD symptoms. In univariate analyses, patients with congenital heart disease-specific PTSD had their most recent cardiac surgery at an earlier year (p = 0.008), were less likely to have attended college (p = 0.04), had higher rates of stroke or transient ischemic attack (p = 0.03), and reported greater depressive symptoms on the Hospital Anxiety and Depression Scale (7 vs 2, p <0.001). In multivariable analysis, the 2 factors most strongly associated with PTSD were depressive symptoms (p <0.001) and year of most recent cardiac surgery (p <0.03). In conclusion, PTSD is present in 11% to 21% of subjects seen at a tertiary referral center for ACHD. The high prevalence of PTSD in this complex group of patients has important implications for the medical and psychosocial management of this growing population.

  15. 31P-NMR studies of isolated adult heart cells: effect of myoglobin inactivation.

    PubMed

    Gupta, R K; Wittenberg, B A

    1991-10-01

    31P nuclear magnetic resonance (NMR) studies of isolated adult rat heart cells revealed that the cells maintained high-energy phosphates for up to 6 h in polyamide hollow fibers perfused with well-oxygenated nutrient medium. Glucose plus pyruvate superfused heart cells maintained [phosphocreatine]/[ATP] at 1.4 +/- 0.1, internal pH at 7.09 +/- 0.04 (external pH = 7.25), and intracellular free Mg2+ at 0.51 +/- 0.04 mM. In glucose-containing media, hypoxia was accompanied by a reversible decrease in intracellular ATP and phosphocreatine of approximately 50% and 80%, respectively, while the intracellular free Mg2+ was reversibly increased by 40%. However, inhibition of glycolysis by iodoacetate in aerobic pyruvate-containing medium did not significantly alter high-energy phosphate content. Inactivation of intracellular myoglobin with 1-2 mM sodium nitrite, which reduces the steady-state respiratory oxygen consumption rate by 30%, caused a significant (30%) decrease in intracellular phosphocreatine peak, which was reversed upon removal of sodium nitrite. The nitrite-induced decrease in phosphocreatine was also observed in iodoacetate-treated myocytes but not in oligomycin-treated cells. These results indicate that functional myoglobin enhances high-energy phosphate synthesis in well-oxygenated myocytes. PMID:1928397

  16. Successful cord blood transplantation in an adult acute lymphoblastic leukemia patient with congenital heart disease.

    PubMed

    Kowata, Shugo; Fujishima, Yukiteru; Suzuki, Yuzo; Tsukushi, Yasuhiko; Oyake, Tatsuo; Togawa, Ryou; Oyama, Kotaro; Ikai, Akio; Ito, Shigeki; Ishida, Yoji

    2016-08-01

    Recent advances in surgical corrections and supportive care for congenital heart disease have resulted in increasing numbers of adult survivors who may develop hematological malignancies. Treatments including chemotherapy for such patients may cause serious hemodynamic or cardiac complications, especially in those receiving stem cell transplantation. We present a 29-year-old woman with acute lymphoblastic leukemia and congenital heart disease. She had been diagnosed with pulmonary atresia with an intact ventricular septum at birth, and the anomaly was surgically corrected according to the Fontan technique at age 9 years. Her induction chemotherapy required modifications due to poor cardiac status with Fontan circulation. However, after surgical procedures including total cavopulmonary connection and aortic valve replacement at first complete remission, her cardiac status was significantly improved. Subsequently, she underwent cord blood stem cell transplantation at the third complete remission. She required intensive supportive care for circulatory failure as a pre-engraftment immune reaction and stage III acute graft versus host disease of the gut, but recovered from these complications. She was discharged on day 239, and remained in complete remission at 1-year post-transplantation. PMID:27599417

  17. Place of birth and adult cardiovascular disease: the British Regional Heart Study.

    PubMed

    Shaper, A G; Elford, J

    1991-01-01

    Coronary heart disease (CHD) is almost certainly a nutritional disorder related to the quality and quantity of dietary fats and mediated by blood and tissue lipid concentrations. There is current controversy as to when the underlying process of atherosclerosis is initiated and whether the critical susceptibility to CHD may be established in utero or infancy. Blood pressure and hypertension may also be nutritionally based, and the age at which the rate of rise in blood pressure with age is determined is also controversial. The British Regional Heart Study (BRHS) involves 7,735 middle-aged men from 24 towns in England, Wales and Scotland and reveals that average blood cholesterol levels in these towns show no relationship to CHD mortality but all are high by international standards. Blood pressure levels vary markedly between the 24 towns and relate strongly to CHD mortality patterns, which are highest in Scotland and lowest in the South of England. The hypothesis relating adult blood pressures and CHD mortality to foetal and infant life circumstances has been examined using the data on birthplace and place of examination of the BRHS men. Regardless of where they were born, men living and examined in the South had lower mean blood pressures than men living in Scotland. The highest mean blood pressures were observed in Scotland, irrespective of where the men had been born. For CHD, regardless of their place of birth, men living in the South had a lower risk of CHD than men living elsewhere. The geographic zone of examination appeared to be more important than the zone of birth in determining the risk of CHD and the level of blood pressure. While patterns of nutrition during pregnancy, in infancy and childhood may be of importance for some outcomes, such as height, it seems that exposure to risk factors during adult life predominantly determine the outcome in cardiovascular disease.

  18. Optimal Cutoff Points of Anthropometric Parameters to Identify High Coronary Heart Disease Risk in Korean Adults

    PubMed Central

    2016-01-01

    Several published studies have reported the need to change the cutoff points of anthropometric indices for obesity. We therefore conducted a cross-sectional study to estimate anthropometric cutoff points predicting high coronary heart disease (CHD) risk in Korean adults. We analyzed the Korean National Health and Nutrition Examination Survey data from 2007 to 2010. A total of 21,399 subjects aged 20 to 79 yr were included in this study (9,204 men and 12,195 women). We calculated the 10-yr Framingham coronary heart disease risk score for all individuals. We then estimated receiver-operating characteristic (ROC) curves for body mass index (BMI), waist circumference, and waist-to-height ratio to predict a 10-yr CHD risk of 20% or more. For sensitivity analysis, we conducted the same analysis for a 10-yr CHD risk of 10% or more. For a CHD risk of 20% or more, the area under the curve of waist-to-height ratio was the highest, followed by waist circumference and BMI. The optimal cutoff points in men and women were 22.7 kg/m2 and 23.3 kg/m2 for BMI, 83.2 cm and 79.7 cm for waist circumference, and 0.50 and 0.52 for waist-to-height ratio, respectively. In sensitivity analysis, the results were the same as those reported above except for BMI in women. Our results support the re-classification of anthropometric indices and suggest the clinical use of waist-to-height ratio as a marker for obesity in Korean adults. PMID:26770039

  19. Optimal Cutoff Points of Anthropometric Parameters to Identify High Coronary Heart Disease Risk in Korean Adults.

    PubMed

    Kim, Sang Hyuck; Choi, Hyunrim; Won, Chang Won; Kim, Byung-Sung

    2016-01-01

    Several published studies have reported the need to change the cutoff points of anthropometric indices for obesity. We therefore conducted a cross-sectional study to estimate anthropometric cutoff points predicting high coronary heart disease (CHD) risk in Korean adults. We analyzed the Korean National Health and Nutrition Examination Survey data from 2007 to 2010. A total of 21,399 subjects aged 20 to 79 yr were included in this study (9,204 men and 12,195 women). We calculated the 10-yr Framingham coronary heart disease risk score for all individuals. We then estimated receiver-operating characteristic (ROC) curves for body mass index (BMI), waist circumference, and waist-to-height ratio to predict a 10-yr CHD risk of 20% or more. For sensitivity analysis, we conducted the same analysis for a 10-yr CHD risk of 10% or more. For a CHD risk of 20% or more, the area under the curve of waist-to-height ratio was the highest, followed by waist circumference and BMI. The optimal cutoff points in men and women were 22.7 kg/m(2) and 23.3 kg/m(2) for BMI, 83.2 cm and 79.7 cm for waist circumference, and 0.50 and 0.52 for waist-to-height ratio, respectively. In sensitivity analysis, the results were the same as those reported above except for BMI in women. Our results support the re-classification of anthropometric indices and suggest the clinical use of waist-to-height ratio as a marker for obesity in Korean adults.

  20. Implementation of the American College of Cardiology/American Heart Association 2008 Guidelines for the Management of Adults With Congenital Heart Disease.

    PubMed

    Goossens, Eva; Fernandes, Susan M; Landzberg, Michael J; Moons, Philip

    2015-08-01

    Although different guidelines on adult congenital heart disease (ACHD) care advocate for lifetime cardiac follow-up, a critical appraisal of the guideline implementation is lacking. We investigated the implementation of the American College of Cardiology/American Heart Association 2008 guidelines for ACHD follow-up by investigating the type of health care professional, care setting, and frequency of outpatient visits in young adults with CHD. Furthermore, correlates for care in line with the recommendations or untraceability were investigated. A cross-sectional observational study was conducted, including 306 patients with CHD who had a documented outpatient visit at pediatric cardiology before age 18 years. In all, 210 patients (68.6%) were in cardiac follow-up; 20 (6.5%) withdrew from follow-up and 76 (24.9%) were untraceable. Overall, 198 patients were followed up in tertiary care, 1/4 (n = 52) of which were seen at a formalized ACHD care program and 3/4 (n = 146) remained at pediatric cardiology. Of those followed in formalized ACHD and pediatric cardiology care, the recommended frequency was implemented in 94.2% and 89%, respectively (p = 0.412). No predictors for the implementation of the guidelines were identified. Risk factors for becoming untraceable were none or lower number of heart surgeries, health insurance issues, and nonwhite ethnicity. In conclusion, a significant number of adults continue to be cared for by pediatric cardiologists, indicating that transfer to adult-oriented care was not standard practice. Frequency of follow-up for most patients was in line with the ACC/AHA 2008 guidelines. A considerable proportion of young adults were untraceable in the system, which makes them vulnerable for discontinuation of care.

  1. Paleolithic nutrition improves plasma lipid concentrations of hypercholesterolemic adults to a greater extent than traditional heart-healthy dietary recommendations.

    PubMed

    Pastore, Robert L; Brooks, Judith T; Carbone, John W

    2015-06-01

    Recent research suggests that traditional grain-based heart-healthy diet recommendations, which replace dietary saturated fat with carbohydrate and reduce total fat intake, may result in unfavorable plasma lipid ratios, with reduced high-density lipoprotein (HDL) and an elevation of low-density lipoprotein (LDL) and triacylglycerols (TG). The current study tested the hypothesis that a grain-free Paleolithic diet would induce weight loss and improve plasma total cholesterol, HDL, LDL, and TG concentrations in nondiabetic adults with hyperlipidemia to a greater extent than a grain-based heart-healthy diet, based on the recommendations of the American Heart Association. Twenty volunteers (10 male and 10 female) aged 40 to 62 years were selected based on diagnosis of hypercholesterolemia. Volunteers were not taking any cholesterol-lowering medications and adhered to a traditional heart-healthy diet for 4 months, followed by a Paleolithic diet for 4 months. Regression analysis was used to determine whether change in body weight contributed to observed changes in plasma lipid concentrations. Differences in dietary intakes and plasma lipid measures were assessed using repeated-measures analysis of variance. Four months of Paleolithic nutrition significantly lowered (P < .001) mean total cholesterol, LDL, and TG and increased (P < .001) HDL, independent of changes in body weight, relative to both baseline and the traditional heart-healthy diet. Paleolithic nutrition offers promising potential for nutritional management of hyperlipidemia in adults whose lipid profiles have not improved after following more traditional heart-healthy dietary recommendations. PMID:26003334

  2. Blue 405 nm laser light mediates heart rate – investigations at the acupoint Neiguan (Pe.6) in Chinese adults

    PubMed Central

    Litscher, Gerhard; Xie, Zheng; Wang, Lu; Gaischek, Ingrid

    2009-01-01

    Background: In previous studies, we showed that laser needle acupuncture with red and infrared light has specific effects on bio-signals of the brain and heart. Aims: In this publication we report the effect of blue laser light on heart rate and heart rate variability (HRV) before, during and after acupuncture at the acupoint Neiguan (Pe.6) in Chinese adults. These are the first data published concerning heart rate and HRV, obtained with blue laser acupuncture equipment. Patients and Methods: The investigations were carried out in 13 healthy Chinese volunteers with a mean age of 31.2 ± 7.5 years within a randomized, controlled study. Stimulation was performed with painless blue laser light (wavelength: 405 nm; activation: 10 minutes) bilaterally at Pe.6. In a second session, for control reasons the laser was not activated. Results: Heart rate showed a significant (p=0.008) decrease during blue laser light stimulation. In contrast, no significant changes were found when the laser was deactivated. The evaluation parameter LF/HF ratio (low frequency/high frequency ratio) from the HRV spectral analysis showed a very slight increase during stimulation, however it was not significant. Conclusions: Our main conclusion is that continuous blue laser light stimulation on Neiguan significantly reduces heart rate of Chinese adults. PMID:22666700

  3. Outcomes of a Telehealth Intervention for Homebound Older Adults with Heart or Chronic Respiratory Failure: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Gellis, Zvi D.; Kenaley, Bonnie; McGinty, Jean; Bardelli, Ellen; Davitt, Joan; Ten Have, Thomas

    2012-01-01

    Purpose: Telehealth care is emerging as a viable intervention model to treat complex chronic conditions, such as heart failure (HF) and chronic obstructive pulmonary disease (COPD), and to engage older adults in self-care disease management. Design and Methods: We report on a randomized controlled trial examining the impact of a multifaceted…

  4. A Zebrafish Thrombosis Model for Assessing Antithrombotic Drugs.

    PubMed

    Zhu, Xiao-Yu; Liu, Hong-Cui; Guo, Sheng-Ya; Xia, Bo; Song, Ru-Shun; Lao, Qiao-Cong; Xuan, Yao-Xian; Li, Chun-Qi

    2016-08-01

    Thrombosis is a leading cause of death and the development of effective and safe therapeutic agents for thrombotic diseases has been proven challenging. In this study, taking advantage of the transparency of larval zebrafish, we developed a larval zebrafish thrombosis model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days post fertilization) were treated with phenylhydrazine (PHZ) and a testing drug for 24 h. Tested drugs were administered into the zebrafish either by direct soaking or circulation microinjection. Antithrombotic efficacy was quantitatively evaluated based on our previously patented technology characterized as an image analysis of the heart red blood cells stained with O-dianisidine staining. Zebrafish at 2 dpf treated with PHZ at a concentration of 1.5 μM for a time period of 24 h were determined as the optimum conditions for the zebrafish thrombosis model development. Induced thrombosis in zebrafish was visually confirmed under a dissecting stereomicroscope and quantified by the image assay. All 6 human antithrombotic drugs (aspirin, clopidogrel, diltiazem hydrochloride injection, xuanshuantong injection, salvianolate injection, and astragalus injection) showed significant preventive and therapeutic effects on zebrafish thrombosis (p < 0.05, p < 0.01, & p < 0.001) in this zebrafish thrombosis model. The larval zebrafish thrombosis model developed and validated in this study could be used for in vivo thrombosis studies and for rapid screening and efficacy assessment of antithrombotic drugs. PMID:27333081

  5. Zebrafish: modeling for herpes simplex virus infections.

    PubMed

    Antoine, Thessicar Evadney; Jones, Kevin S; Dale, Rodney M; Shukla, Deepak; Tiwari, Vaibhav

    2014-02-01

    For many years, zebrafish have been the prototypical model for studies in developmental biology. In recent years, zebrafish has emerged as a powerful model system to study infectious diseases, including viral infections. Experiments conducted with herpes simplex virus type-1 in adult zebrafish or in embryo models are encouraging as they establish proof of concept with viral-host tropism and possible screening of antiviral compounds. In addition, the presence of human homologs of viral entry receptors in zebrafish such as 3-O sulfated heparan sulfate, nectins, and tumor necrosis factor receptor superfamily member 14-like receptor bring strong rationale for virologists to test their in vivo significance in viral entry in a zebrafish model and compare the structure-function basis of virus zebrafish receptor interaction for viral entry. On the other end, a zebrafish model is already being used for studying inflammation and angiogenesis, with or without genetic manipulations, and therefore can be exploited to study viral infection-associated pathologies. The major advantage with zebrafish is low cost, easy breeding and maintenance, rapid lifecycle, and a transparent nature, which allows visualizing dissemination of fluorescently labeled virus infection in real time either at a localized region or the whole body. Further, the availability of multiple transgenic lines that express fluorescently tagged immune cells for in vivo imaging of virus infected animals is extremely attractive. In addition, a fully developed immune system and potential for receptor-specific knockouts further advocate the use of zebrafish as a new tool to study viral infections. In this review, we focus on expanding the potential of zebrafish model system in understanding human infectious diseases and future benefits.

  6. Visualization of Estrogen Receptor Transcriptional Activation in Zebrafish

    PubMed Central

    Halpern, Marnie E.

    2011-01-01

    Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds. PMID:21540282

  7. The care of adults with congenital heart disease across the globe: Current assessment and future perspective: A position statement from the International Society for Adult Congenital Heart Disease (ISACHD).

    PubMed

    Webb, Gary; Mulder, Barbara J; Aboulhosn, Jamil; Daniels, Curt J; Elizari, Maria Amalia; Hong, Gu; Horlick, Eric; Landzberg, Michael J; Marelli, Ariane J; O'Donnell, Clare P; Oechslin, Erwin N; Pearson, Dorothy D; Pieper, Els P G; Saxena, Anita; Schwerzmann, Markus; Stout, Karen K; Warnes, Carole A; Khairy, Paul

    2015-09-15

    The number of adults with congenital heart disease (CHD) has increased markedly over the past few decades as a result of astounding successes in pediatric cardiac care. Nevertheless, it is now well understood that CHD is not cured but palliated, such that life-long expert care is required to optimize outcomes. All countries in the world that experience improved survival in CHD must face new challenges inherent to the emergence of a growing and aging CHD population with changing needs and medical and psychosocial issues. Founded in 1992, the International Society for Adult Congenital Heart Disease (ISACHD) is the leading global organization of professionals dedicated to pursuing excellence in the care of adults with CHD worldwide. Recognizing the unique and varied issues involved in caring for adults with CHD, ISACHD established a task force to assess the current status of care for adults with CHD across the globe, highlight major challenges and priorities, and provide future direction. The writing committee consisted of experts from North America, South America, Europe, South Asia, East Asia, and Oceania. The committee was divided into subgroups to review key aspects of adult CHD (ACHD) care. Regional representatives were tasked with investigating and reporting on relevant local issues as accurately as possible, within the constraints of available data. The resulting ISACHD position statement addresses changing patterns of worldwide epidemiology, models of care and organization of care, education and training, and the global research landscape in ACHD.

  8. What is the Thalamus in Zebrafish?

    PubMed Central

    Mueller, Thomas

    2012-01-01

    Current research on the thalamus and related structures in the zebrafish diencephalon identifies an increasing number of both neurological structures and ontogenetic processes as evolutionary conserved between teleosts and mammals. The patterning processes, for example, which during the embryonic development of zebrafish form the thalamus proper appear largely conserved. Yet also striking differences between zebrafish and other vertebrates have been observed, particularly when we look at mature and histologically differentiated brains. A case in point is the migrated preglomerular complex of zebrafish which evolved only within the lineage of ray-finned fish and has no counterpart in mammals or tetrapod vertebrates. Based on its function as a sensory relay station with projections to pallial zones, the preglomerular complex has been compared to specific thalamic nuclei in mammals. However, no thalamic projections to the zebrafish dorsal pallium, which corresponds topologically to the mammalian isocortex, have been identified. Merely one teleostean thalamic nucleus proper, the auditory nucleus, projects to a part of the dorsal telencephalon, the pallial amygdala. Studies on patterning mechanisms identify a rostral and caudal domain in the embryonic thalamus proper. In both, teleosts and mammals, the rostral domain gives rise to GABAergic neurons, whereas glutamatergic neurons originate in the caudal domain of the zebrafish thalamus. The distribution of GABAergic derivatives in the adult zebrafish brain, furthermore, revealed previously overlooked thalamic nuclei and redefined already established ones. These findings require some reconsideration regarding the topological origin of these adult structures. In what follows, I discuss how evolutionary conserved and newly acquired features of the developing and adult zebrafish thalamus can be compared to the mammalian situation. PMID:22586363

  9. Measuring thigmotaxis in larval zebrafish.

    PubMed

    Schnörr, S J; Steenbergen, P J; Richardson, M K; Champagne, D L

    2012-03-17

    One of the most commonly used behavioral endpoints measured in preclinical studies using rodent models is thigmotaxis (or "wall-hugging"). Thigmotaxis is a well-validated index of anxiety in animals and humans. While assays measuring thigmotaxis in adult zebrafish have been developed, a thigmotaxis assay has not yet been validated in larval zebrafish. Here we present a novel assay for measurement of thigmotaxis in zebrafish larvae that is triggered by a sudden change in illumination (i.e. sudden light-to-darkness transition) and performed in a standard 24-well plate. We show that zebrafish larvae as young as 5 days post fertilization respond to this challenge by engaging in thigmotaxis. Thigmotaxis was significantly attenuated by anxiolytic (diazepam) and significantly enhanced by anxiogenic (caffeine) drugs, thus representing the first validated thigmotaxis assay for larval zebrafish. We also show that exposure to sudden darkness per se may represent an anxiogenic situation for larval zebrafish since less contrasting light-to-darkness transitions (achieved by lowering darkness degrees) significantly decreased thigmotaxis levels in a manner similar to what was achieved with diazepam. These findings suggest that stimuli such as exposure to sudden darkness could be used proficiently to trigger the expression of anxiety-like behaviors in laboratory settings. In sum, this is a versatile protocol allowing testing of both anxiolytic and anxiogenic drugs in a cost-effective manner (only 10 min). This assay is also amenable to medium to high-throughput capacity while constituting a valuable tool for stress and central nervous system research as well as for preclinical drug screening and discovery. PMID:22197677

  10. Strategies to Enhance the Effectiveness of Adult Stem Cell Therapy for Ischemic Heart Diseases Affecting the Elderly Patients

    PubMed Central

    Khatiwala, Roshni

    2016-01-01

    Myocardial infarctions and chronic ischemic heart disease both commonly and disproportionately affect elderly patients more than any other patient population. Despite available treatments, heart tissue is often permanently damaged as a result of cardiac injury. This review aims to summarize recent literature proposing the use of modified autologous adult stem cells to promote healing of post-infarct cardiac tissue. This novel cellular treatment involves isolation of adult stem cells from the patient, in vitro manipulation of these stem cells, and subsequent transplantation back into the patient’s own heart to accelerate healing. One of the hindrances affecting this process is that cardiac issues are increasingly common in elderly patients, and stem cells recovered from their tissues tend to be pre-senescent or already in senescence. As a result, harsh in vitro manipulations can cause the aged stem cells to undergo massive in vivo apoptosis after transplantation. The consensus in literature is that inhibition or reversal of senescence onset in adult stem cells would be of utmost benefit. In fact, it is believed that this strategy may lower stem cell mortality and coerce aged stem cells into adopting more resilient phenotypes similar to that of their younger counterparts. This review will discuss a selection of the most efficient and most-recent strategies used experimentally to enhance the effectiveness of current stem cell therapies for ischemic heart diseases. PMID:26779896

  11. Alternatively activated macrophages determine repair of the infarcted adult murine heart

    PubMed Central

    Shiraishi, Manabu; Shintani, Yasunori; Shintani, Yusuke; Ishida, Hidekazu; Saba, Rie; Yamaguchi, Atsushi; Adachi, Hideo; Yashiro, Kenta

    2016-01-01

    Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI. PMID:27140396

  12. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio).

    PubMed

    Beckwith, L G; Moore, J L; Tsao-Wu, G S; Harshbarger, J C; Cheng, K C

    2000-03-01

    The zebrafish (Danio rerio) has been successfully used to discover hundreds of genes involved in development and organogenesis. To address the potential of zebrafish as a cancer model, it is important to determine the susceptibility of zebrafish to tumors. Germ line mutations are most commonly induced for zebrafish mutant screens by exposing adult male zebrafish to the alkylating agent, ethylnitrosourea (ENU). To determine whether ENU induces tumors, we compared the incidence of tumors in ENU-treated fish with untreated controls. Interestingly, 18 of 18 (100%) fish mutagenized with either 2.5 or 3.0 mM ENU developed epidermal papillomas, which numbered 1 to 22 per fish, within 1 year of treatment. The induced epidermal lesions included epidermal hyperplasia, flat papillomas (0.2 to 1.2 mm), and pedunculated papillomas (1.2 to 8 mm in greatest dimension), but no skin cancers. Angiogenesis was evident in papillomas larger than approximately 1 mm. All but two papillomas contained the three cell types (keratinocytes, club, and mucous cells) of normal zebrafish epidermis; histologic variants lacked either club cells or mucous cells. Two cavernous hemangiomas and a single malignant peripheral nerve sheath tumor were also found in the treated fish. None of five untreated controls developed tumors. These studies establish the feasibility of the zebrafish as an experimental model for the study of skin tumors. PMID:10744073

  13. Antithetical regulation of α-myosin heavy chain between fetal and adult heart failure though shuttling of HDAC5 regulating YY-1 function.

    PubMed

    Fang, Jie; Li, Yifei; Zhou, Kaiyu; Hua, Yimin; Wang, Chuan; Mu, Dezhi

    2015-04-01

    Molecular switches of myosin isoforms are known to occur in various conditions. Here, we demonstrated the result from fetal heart failure and its potential mechanisms. Fetal and adult heart failure rat models were induced by injections of isoproterenol as previously described, and Go6976 was given to heart failing fetuses. Real-time PCR and Western blot were adopted to measure the expressions of α-MHC, β-MHC and YY-1. Co-immunoprecipitation was performed to analysis whether YY-1 interacts with HDAC5. Besides, histological immunofluorescence assessment was carried out to identify the location of HDAC5. α-MHC was recorded elevated in fetal heart failure which was decreased in adult heart failure. Besides, YY-1 was observed elevated both in fetal and adult failing hearts, but YY-1 could co-immunoprecipitation with HDAC5 only in adult hearts. Nuclear localization of HDAC5 was identified in adult cardiomyocytes, while cytoplasmic localization was identified in fetuses. After Go6976 supplied, HDAC5 shuttled into nucleuses interacted with YY-1. The myosin molecular switches were reversed with worsening cardiac functions and higher mortalities. Regulation of MHC in fetal heart failure was different from adult which provided a better compensation with increased α-MHC. This kind of transition was involved with shuttling of HDAC5 regulating YY-1 function.

  14. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult.

    PubMed

    Silva, A C; Rodrigues, S C; Caldeira, J; Nunes, A M; Sampaio-Pinto, V; Resende, T P; Oliveira, M J; Barbosa, M A; Thorsteinsdóttir, S; Nascimento, D S; Pinto-do-Ó, P

    2016-10-01

    A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair.

  15. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    SciTech Connect

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  16. Short-term exposure to low concentrations of the synthetic androgen methyltestosterone affects vitellogenin and steroid levels in adult male zebrafish (Danio rerio).

    PubMed

    Andersen, Lene; Goto-Kazeto, Rie; Trant, John M; Nash, Jon P; Korsgaard, Bodil; Bjerregaard, Poul

    2006-03-10

    Short-term effects of methyltestosterone (MT) on the endocrine system of adult male zebrafish (Danio rerio) were examined. Males were exposed to 0, 4.5, 6.6, 8.5, 19.8, 35.9, 62.3 ng MT/l and ethinylestradiol (EE2) (26.4 ng/l) for 7 days. Several physiological endpoints that may be affected by endocrine disrupters were analysed, specifically vitellogenin (VTG) concentration, estradiol (E2), testosterone (T), and 11-ketotestosterone (KT) content, brain aromatase activity and gene expression of CYP19A1 and CYP19A2 in the testis. Exposure to the lowest MT concentration (4.5 ng MT/l), and the EE2 increased the concentration of VTG significantly compared to solvent control group. Exposure to higher concentrations of MT did not increase VTG levels. Endogenous KT and T levels decreased significantly in a concentration-dependent manner in response to the MT exposure and the lowest effective concentrations were 6.4 and 8.5 ng MT/l, respectively. The levels of KT and T were also significantly suppressed by EE2 when compared to the solvent control group. Significant decreases in endogenous E2 levels were found in some MT groups but it was not possible to distinguish a simple concentration-response relationship. No effects of MT or EE2 on the brain aromatase activity or on testicular gene expression of CYP19A1 and CYP19A2 were detected. The results show that androgens such as MT can act as endocrine disrupters even at very low concentrations.

  17. Allograft Cancer Cell Transplantation in Zebrafish.

    PubMed

    Moore, John C; Langenau, David M

    2016-01-01

    Allogeneic cell transplantation is the transfer of cells from one individual into another of the same species and has become an indispensable technique for studying development, immunology, regeneration and cancer biology. In experimental settings, tumor cell engraftment into immunologically competent recipients has greatly increased our understanding of the mechanisms that drive self-renewal, progression and metastasis in vivo. Zebrafish have quickly emerged as a powerful genetic model of cancer that has benefited greatly from allogeneic transplantation. Efficient engraftment can be achieved by transplanting cells into either early larval stage zebrafish that have not yet developed a functional acquired immune system or adult zebrafish following radiation or chemical ablation of the immune system. Alternatively, transplantation can be completed in adult fish using either clonal syngeneic strains or newly-generated immune compromised zebrafish models that have mutations in genes required for proper immune cell function. Here, we discuss the current state of cell transplantation as it pertains to zebrafish cancer and the available models used for dissecting important processes underlying cancer. We will also use the zebrafish model to highlight the power of cell transplantation, including its capacity to dynamically assess functional heterogeneity within individual cancer cells, visualize cancer progression and evolution, assess tumor-propagating potential and self-renewal, image cancer cell invasion and dissemination and identify novel therapies for treating cancer. PMID:27165358

  18. Nuclear β-adrenergic receptors modulate gene expression in adult rat heart

    PubMed Central

    Vaniotis, George; Del Duca, Danny; Trieu, Phan; Rohlicek, Charles V.; Hébert, Terence E.; Allen, Bruce G.

    2016-01-01

    Both β1- and β3-adrenergic receptors (β1ARs and β3ARs) are present on nuclear membranes in adult ventricular myocytes. These nuclear-localized receptors are functional with respect to ligand binding and effector activation. In isolated cardiac nuclei, the non-selective βAR agonist isoproterenol stimulated de novo RNA synthesis measured using assays of transcription initiation (Boivin et al., 2006 Cardiovasc Res. 71:69–78). In contrast, stimulation of endothelin receptors, another G protein-coupled receptor (GPCR) that localizes to the nuclear membrane, resulted in decreased RNA synthesis. To investigate the signalling pathway(s) involved in GPCR-mediated regulation of RNA synthesis, nuclei were isolated from intact adult rat hearts and treated with receptor agonists in the presence or absence of inhibitors of different mitogen-activated protein kinase (MAPK) and PI3K/PKB pathways. Components of p38, JNK, and ERK1/2 MAP kinase cascades as well as PKB were detected in nuclear preparations. Inhibition of PKB with triciribine, in the presence of isoproterenol, converted the activation of the βAR from stimulatory to inhibitory with regards to RNA synthesis, while ERK1/2, JNK and p38 inhibition reduced both basal and isoproterenol-stimulated activity. Analysis by qPCR indicated an increase in the expression of 18 S rRNA following isoproterenol treatment and a decrease in NFκB mRNA. Further qPCR experiments revealed that isoproterenol treatment also reduced the expression of several other genes involved in the activation of NFκB, while ERK1/2 and PKB inhibition substantially reversed this effect. Our results suggest that GPCRs on the nuclear membrane regulate nuclear functions such as gene expression and this process is modulated by activation/inhibition of downstream protein kinases within the nucleus. PMID:20732414

  19. Exergaming in older adults: A scoping review and implementation potential for patients with heart failure

    PubMed Central

    Jaarsma, Tiny; Strömberg, Anna

    2014-01-01

    Background: Physical activity can improve exercise capacity, quality of life and reduce mortality and hospitalization in patients with heart failure (HF). Adherence to exercise recommendations in patients with HF is low. The use of exercise games (exergames) might be a way to encourage patients with HF to exercise especially those who may be reluctant to more traditional forms of exercise. No studies have been conducted on patients with HF and exergames. Aim: This scoping review focuses on the feasibility and influence of exergames on physical activity in older adults, aiming to target certain characteristics that are important for patients with HF to become more physically active. Methods: A literature search was undertaken in August 2012 in the databases PsychInfo, PUBMED, Scopus, Web of Science and CINAHL. Included studies evaluated the influence of exergaming on physical activity in older adults. Articles were excluded if they focused on rehabilitation of specific limbs, improving specific tasks or describing no intervention. Fifty articles were found, 11 were included in the analysis. Results: Exergaming was described as safe and feasible, and resulted in more energy expenditure compared to rest. Participants experienced improved balance and reported improved cognitive function after exergaming. Participants enjoyed playing the exergames, their depressive symptoms decreased, and they reported improved quality of life and empowerment. Exergames made them feel more connected with their family members, especially their grandchildren. Conclusion: Although this research field is small and under development, exergaming might be promising in order to enhance physical activity in patients with HF. However, further testing is needed. PMID:24198306

  20. Adoption of American Heart Association 2020 ideal healthy diet recommendations prevents weight gain in young adults.

    PubMed

    Forget, Geneviève; Doyon, Myriam; Lacerte, Guillaume; Labonté, Mélissa; Brown, Christine; Carpentier, André C; Langlois, Marie-France; Hivert, Marie-France

    2013-11-01

    In 2010, the American Heart Association established the concept of ideal cardiovascular health. Nationally representative data estimated that <1% of Americans meet the seven health metrics required for achieving ideal cardiovascular health, with the main challenge residing in meeting the criteria for an ideal Healthy Diet Score. In a cohort of young adults (N=196), we aimed to investigate the prevalence of ideal cardiovascular health and ideal Healthy Diet Score and its association to weight gain over a 4-year follow-up period. Anthropometric measures, blood pressure, and blood samples were taken according to standardized procedures. Dietary intake was measured by a 3-day food diary and verified by a registered dietitian. We observed that only 0.5% of our sample met the criteria for ideal cardiovascular health and only 4.1% met the criteria for an ideal Healthy Diet Score. The components of the Healthy Diet Score with the lowest observance were consumption of fruits and vegetables (9.7%) and whole grains (14.8%). Meeting zero or one out of five of the Healthy Diet Score components was associated with increased risk of weight gain over 4 years compared with meeting at least two components (P=0.03). With the exception of dietary criteria, prevalence was high for achieving ideal levels of the remaining six cardiovascular health metrics. In conclusion, in this sample of young adults, a very low prevalence of ideal overall cardiovascular health was observed, mainly driven by poor dietary habits, and a poor Healthy Diet Score was associated with increased weight gain.

  1. Repair Injured Heart by Regulating Cardiac Regenerative Signals

    PubMed Central

    Wang, Lei; Paul, Christian

    2016-01-01

    Cardiac regeneration is a homeostatic cardiogenic process by which the sections of malfunctioning adult cardiovascular tissues are repaired and renewed employing a combination of both cardiomyogenesis and angiogenesis. Unfortunately, while high-quality regeneration can be performed in amphibians and zebrafish hearts, mammalian hearts do not respond in kind. Indeed, a long-term loss of proliferative capacity in mammalian adult cardiomyocytes in combination with dysregulated induction of tissue fibrosis impairs mammalian endogenous heart regenerative capacity, leading to deleterious cardiac remodeling at the end stage of heart failure. Interestingly, several studies have demonstrated that cardiomyocyte proliferation capacity is retained in mammals very soon after birth, and cardiac regeneration potential is correspondingly preserved in some preadolescent vertebrates after myocardial infarction. There is therefore great interest in uncovering the molecular mechanisms that may allow heart regeneration during adult stages. This review will summarize recent findings on cardiac regenerative regulatory mechanisms, especially with respect to extracellular signals and intracellular pathways that may provide novel therapeutics for heart diseases. Particularly, both in vitro and in vivo experimental evidences will be presented to highlight the functional role of these signaling cascades in regulating cardiomyocyte proliferation, cardiomyocyte growth, and maturation, with special emphasis on their responses to heart tissue injury. PMID:27799944

  2. An evaluation of a specialist nursing service for adult patients with congenital heart disease.

    PubMed

    Hatchett, Richard; McLaren, Susan; Corrigan, Philomena; Filer, Lynda

    2015-10-01

    The purpose of this study was to evaluate grown-up congenital heart (GUCH) patients' experiences and satisfaction with the delivery of a nurse specialist service, including perceived priorities and recommendations for future service delivery. A service evaluation utilizing descriptive, cross-sectional survey principles was conducted over a 2 year period. Postal questionnaires were sent to three patient cohorts (general adult n = 747; pregnancy n = 202; learning disability n = 72). Quantitative data were analysed using descriptive statistics. The majority of respondents were satisfied with the nursing care provided, including information provision, time made available to discuss needs, emotional support, well-being, self-management and symptom distress. Priority areas included timely information and advice; specialist knowledge and expertise; effective care coordination, monitoring and support. Accessibility, contact and responsiveness were dominant. A majority of patients agreed that their first, second and third-rated priorities had been met. Findings identified strong commitment, support and satisfaction with the GUCH nurse specialist service. PMID:25307531

  3. Reversibility of electrophysiological changes induced by chronic high-altitude hypoxia in adult rat heart.

    PubMed

    Chouabe, C; Amsellem, J; Espinosa, L; Ribaux, P; Blaineau, S; Mégas, P; Bonvallet, R

    2002-04-01

    Recent studies indicate that regression of left ventricular hypertrophy normalizes membrane ionic current abnormalities. This work was designed to determine whether regression of right ventricular hypertrophy induced by permanent high-altitude exposure (4,500 m, 20 days) in adult rats also normalizes changes of ventricular myocyte electrophysiology. According to the current data, prolonged action potential, decreased transient outward current density, and increased inward sodium/calcium exchange current density normalized 20 days after the end of altitude exposure, whereas right ventricular hypertrophy evidenced by both the right ventricular weight-to-heart weight ratio and the right ventricular free wall thickness measurement normalized 40 days after the end of altitude exposure. This morphological normalization occurred at both the level of muscular tissue, as shown by the decrease toward control values of some myocyte parameters (perimeter, capacitance, and width), and the level of the interstitial collagenous connective tissue. In the chronic high-altitude hypoxia model, the regression of right ventricular hypertrophy would not be a prerequisite for normalization of ventricular electrophysiological abnormalities. PMID:11893582

  4. Cerebral Perfusion is Associated with White Matter Hyperintensities in Older Adults with Heart Failure

    PubMed Central

    Alosco, Michael L.; Brickman, Adam M.; Spitznagel, Mary Beth; Garcia, Sarah L.; Narkhede, Atul; Griffith, Erica Y; Raz, Naftali; Cohen, Ronald; Sweet, Lawrence H.; Colbert, Lisa H.; Josephson, Richard; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2013-01-01

    Cognitive impairment is common in heart failure (HF) and believed to be the result of cerebral hypoperfusion and subsequent brain changes including white matter hyperintensities (WMH). The current study examined the association between cerebral blood flow and WMH in HF patients and the relationship of WMH to cognitive impairment. Sixty-nine patients with HF completed the mini mental state examination (MMSE), echocardiogram, transcranial Doppler sonography (TCD) for cerebral blood flow velocity of the middle cerebral artery and brain magnetic resonance imaging (MRI). Multivariable hierarchical regression analyses controlling for medical and demographic characteristics as well as intracranial volume showed reduced cerebral blood flow velocity of the middle cerebral artery was associated with greater WMH (β = −.34, p = .02). Follow up regression analyses adjusting for the same medical and demographic factors in addition to cerebral perfusion also revealed marginal significance between increased WMH and poorer performance on the MMSE (β = −.26, p = .05). This study suggests that reduced cerebral perfusion is associated with greater WMH in older adults with HF. Our findings support the widely proposed mechanism of cognitive impairment in HF patients and prospective studies are needed to confirm our findings. PMID:23517434

  5. Transcriptomic Changes in Zebrafish Embryos and Larvae Following Benzo[a]pyrene Exposure

    PubMed Central

    Fang, Xiefan; Corrales, Jone; Thornton, Cammi; Clerk, Tracy; Scheffler, Brian E.; Willett, Kristine L.

    2015-01-01

    Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene expression. Herein, we performed a genome-wide transcriptional analysis and discovered differential gene expression and splicing in developing zebrafish. Adult zebrafish were exposed to control or 42.0 ± 1.9 µg/l BaP for 7 days. Eggs were collected and raised in control conditions or continuously exposed to BaP until 3.3 and 96 h post–fertilization (hpf). RNA sequencing (RNA-Seq) was conducted on zebrafish embryos and larvae. Data were analyzed to identify differentially expressed (DE) genes (changed at the gene or transcript variant level) and genes with differential exon usage (DEU; changed at the exon level). At 3.3 hpf, BaP exposure resulted in 8 DE genes and 51 DEU genes. At 96 hpf, BaP exposure altered expression in 1153 DE genes and 159 DEU genes. Functional ontology analysis by Ingenuity Pathway Analysis revealed that many disease pathways, including organismal death, growth failure, abnormal morphology of embryonic tissue, congenital heart disease, and adverse neuritogenesis, were significantly enriched for the DE and DEU genes, providing novel insights on the mechanisms of action of BaP-induced developmental toxicities. Collectively, we discovered substantial transcriptomic changes at the gene, transcript variant, and exon levels in developing zebrafish after early life BaP waterborne exposure, and these changes may lead to long-term adverse physiological consequences. PMID:26001963

  6. Temporal association between obesity and hyperinsulinemia in children, adolescents, and young adults: the Bogalusa Heart Study.

    PubMed

    Srinivasan, S R; Myers, L; Berenson, G S

    1999-07-01

    Obesity is generally associated with hyperinsulinemia. However, whether obesity precedes or follows hyperinsulinemia is not clear. The present study examined the temporal nature of the association between obesity and hyperinsulinemia in a biracial (black-white) community-based population enrolled in the Bogalusa Heart Study. Three longitudinal cohorts of children (n = 427; baseline age, 5 to 7 years), adolescents (n = 674; baseline age, 12 to 14 years), and young adults (n = 396; baseline age, 20 to 24 years) were selected retrospectively, with a follow-up period of approximately 3 years. In general, longitudinal changes in the mean body mass index (kilograms per meter squared), an indicator of adiposity, and fasting insulin level did not parallel each other. In a bivariate analysis, baseline insulin levels correlated significantly with the follow-up body mass index in adolescents and adults, but not in children. On the other hand, the baseline body mass index correlated significantly with follow-up insulin levels in all cases. Logistic regression analysis showed that the proportion of subjects who developed obesity (body mass index > 75th percentile, specific for age, race, gender, and survey year) at follow-up study increased significantly across baseline quintiles (specific for age, race, gender, and survey year) of insulin only among adolescents, irrespective of race and gender. This relationship disappeared after adjusting for the baseline body mass index. By contrast, a significant positive trend between baseline quintiles of the body mass index and incidence of hyperinsulinemia (> 75th percentile) at follow-up study was noted among all age groups independent of race, gender, and baseline insulin levels. Further, in a multiple stepwise regression model, the best predictor of the follow-up insulin level was the baseline body mass index in children and adults and the baseline insulin in adolescents. The baseline body mass index was the best predictor of the

  7. Coronary artery problems and disease in adults with congenital heart disease: how to evaluate, how to prevent, how to treat.

    PubMed

    Cataldo, S; Stuart, A G

    2014-10-01

    There are a wide variety of coronary artery anomalies and disease in adults with congenital heart disease (CHD). In fact, the increasing burden of acquired coronary artery disease (CAD) has to be considered in addition to congenital abnormalities of the coronary arteries, isolated or associated to other congenital diseases. This is largely a consequence of the increasing number of patients reaching older age. Due to complex underlying cardiac anatomy, previous surgery and comorbidities, treatment can be challenging. Individualized and multidisciplinary management involving congenital heart cardiologists, cardiac surgeons, coronary interventionists and imaging specialists is essential. This review gives an overview of coronary artery involvement in adults with CHD, summarizes the current literature and focuses on prevention, diagnosis and treatment. The potential role of cardiovascular risk factors for CAD is also discussed.

  8. A living biosensor model to dynamically trace glucocorticoid transcriptional activity during development and adult life in zebrafish.

    PubMed

    Benato, Francesca; Colletti, Elisa; Skobo, Tatjana; Moro, Enrico; Colombo, Lorenzo; Argenton, Francesco; Dalla Valle, Luisa

    2014-07-01

    Glucocorticoids (GCs) modulate many cellular processes through the binding of the glucocorticoid receptor (GR) to specific responsive elements located upstream of the transcription starting site or within an intron of GC target genes. Here we describe a transgenic fish line harboring a construct with nine GC-responsive elements (GREs) upstream of a reporter (EGFP) coding sequence. Transgenic fish exhibit strong fluorescence in many known GC-responsive organs. Moreover, its enhanced sensitivity allowed the discovery of novel GC-responsive tissue compartments, such as fin, eyes, and otic vesicles. Long-term persistence of transgene expression is seen during adult stages in several organs. Pharmacological and genetic analysis demonstrates that the transgenic line is highly responsive to drug administration and molecular manipulation. Moreover, reporter expression is sensitively and dynamically modulated by the photoperiod, thus proving that these fish are an in vivo valuable platform to explore GC responsiveness to both endogenous and exogenous stimuli.

  9. Changing practice of cardiac surgery in adult patients with congenital heart disease

    PubMed Central

    Srinathan, S K; Bonser, R S; Sethia, B; Thorne, S A; Brawn, W J; Barron, D J

    2005-01-01

    Objectives: To review 13 years’ data from a unit for grown ups with congenital heart disease (GUCH) to understand the change in surgical practice. Methods: Records were reviewed of patients over 16 years of age undergoing surgery between 1 January 1990 and 31 December 2002 in a dedicated GUCH unit. Patients with atrial septal defects were included but not those with Marfan’s syndrome or undergoing a first procedure for bicuspid aortic valves. Three equal time periods of 52 months were analysed. Results: Of 474 operations performed, 162 (34.2%) were repeat operations. The percentage of repeat operations increased from 24.8% (41 of 165) in January 1990–April 1994 to 49.7% (74 of 149) in September 1998–December 2002. Mortality was 6.3% (n  =  30). The median age decreased from 25.4 years (interquartile range 18.7) in January 1990–April 1994 to 23.9 (interquartile range 17.3) in September 1998–December 2002 (p  =  0.04). The proportion of patients with a “simple” diagnosis decreased from 45.4% (74 or 165) in January 1990–April 1994 to 27.5% (41 of 149) in September 1998–December 2002 (p  =  0.013). Pulmonary valve replacements in operated tetralogy of Fallot increased from one case in January 1990–April 1994 to 23 cases in September 1998–December 2002 and conduit replacement increased from five cases to 17. However, secundum atrial septal defect closures decreased from 35 cases to 14 (p < 0.0001). The estimated cost (not including salaries and prosthetics) incurred by an adult patient with congenital heart disease was £2290 compared with £2641 for a patient undergoing coronary artery bypass grafting. Conclusion: Despite the impact of interventional cardiology, the total number of surgical procedures remained unchanged. The complexity of the cases increased particularly with repeat surgery. Nevertheless, the patients do well with low mortality and the inpatient costs remain comparable with costs of surgery for acquired disease. PMID

  10. Conditional Knockout of Myocyte Focal Adhesion Kinase Abrogates Ischemic Preconditioning in Adult Murine Hearts

    PubMed Central

    Perricone, Adam J.; Bivona, Benjamin J.; Jackson, Fannie R.; Vander Heide, Richard S.

    2013-01-01

    Background Our laboratory has previously demonstrated the importance of a cytoskeletal‐based survival signaling pathway using in vitro models of ischemia/reperfusion (IR). However, the importance of this pathway in mediating stress‐elicited survival signaling in vivo is unknown. Methods and Results The essential cytoskeletal signaling pathway member focal adhesion kinase (FAK) was selectively deleted in adult cardiac myocytes using a tamoxifen‐inducible Cre‐Lox system (α‐MHC‐MerCreMer). Polymerase chain reaction (PCR) and Western blot were performed to confirm FAK knockout (KO). All mice were subjected to a 40‐minute coronary occlusion followed by 24 hours of reperfusion. Ischemic preconditioning (IP) was performed using a standard protocol. Control groups included wild‐type (WT) and tamoxifen‐treated α‐MHC‐MerCreMer+/−/FAKWT/WT (experimental control) mice. Infarct size was expressed as a percentage of the risk region. In WT mice IP significantly enhanced the expression of activated/phosphorylated FAK by 36.3% compared to WT mice subjected to a sham experimental protocol (P≤0.05; n=6 hearts [sham], n=4 hearts [IP]). IP significantly reduced infarct size in both WT and experimental control mice (43.7% versus 19.8%; P≤0.001; 44.7% versus 17.5%; P≤0.001, respectively). No difference in infarct size was observed between preconditioned FAK KO and nonpreconditioned controls (37.1% versus 43.7% versus 44.7%; FAK KO versus WT versus experimental control; P=NS). IP elicited a 67.2%/88.8% increase in activated phosphatidylinositol‐3‐kinase (PI3K) p85/activated Akt expression in WT mice, but failed to enhance the expression of either in preconditioned FAK KO mice. Conclusions Our results indicate that FAK is an essential mediator of IP‐elicited cardioprotection and provide further support for the hypothesis that cytoskeletal‐based signaling is an important component of stress‐elicited survival signaling. PMID:24080910

  11. Recent advances in the study of zebrafish extracellular matrix proteins.

    PubMed

    Jessen, Jason R

    2015-05-01

    The zebrafish extracellular matrix (ECM) is a dynamic and pleomorphic structure consisting of numerous proteins that together regulate a variety of cellular and morphogenetic events beginning as early as gastrulation. The zebrafish genome encodes a similar complement of ECM proteins as found in other vertebrate organisms including glycoproteins, fibrous proteins, proteoglycans, glycosaminoglycans, and interacting or modifying proteins such as integrins and matrix metalloproteinases. As a genetic model system combined with its amenability to high-resolution microscopic imaging, the zebrafish allows interrogation of ECM protein structure and function in both the embryo and adult. Accumulating data have identified important roles for zebrafish ECM proteins in processes as diverse as cell polarity, migration, tissue mechanics, organ laterality, muscle contraction, and regeneration. In this review, I highlight recently published data on these topics that demonstrate how the ECM proteins fibronectin, laminin, and collagen contribute to zebrafish development and adult homeostasis.

  12. In vivo activation of a conserved microRNA program induces robust mammalian heart regeneration

    PubMed Central

    Aguirre, A.; Montserrat, N.; Zachiggna, S.; Nivet, E.; Hishida, T.; Krause, M. N.; Kurian, L.; Ocampo, A.; Vazquez-Ferrer, E.; Rodriguez-Esteban, C.; Kumar, S.; Moresco, J.J.; Yates, J.R.; Campistol, J. M.; Sancho-Martinez, I.; Giacca, M.; Belmonte, J.C. Izpisua

    2014-01-01

    SUMMARY Heart failure is a leading cause of mortality and morbidity in the developed world, partly because mammals lack the ability to regenerate heart tissue. Whether this is due to evolutionary loss of regenerative mechanisms present in other organisms or to an inability to activate such mechanisms is currently unclear. Here, we decipher mechanisms underlying heart regeneration in adult zebrafish and show that the molecular regulators of this response are conserved in mammals. We identified miR-99/100 and Let-7a/c, and their protein targets smarca5 and fntb, as critical regulators of cardiomyocyte dedifferentiation and heart regeneration in zebrafish. Although human and murine adult cardiomyocytes fail to elicit an endogenous regenerative response following myocardial infarction, we show that in vivo manipulation of this molecular machinery in mice results in cardiomyocyte dedifferentiation and improved heart functionality after injury. These data provide a proof-of-concept for identifying and activating conserved molecular programs to regenerate the damaged heart. PMID:25517466

  13. Relationships between QT interval and heart rate variability at rest and the covariates in healthy young adults.

    PubMed

    Arai, Kaori; Nakagawa, Yui; Iwata, Toyoto; Horiguchi, Hyogo; Murata, Katsuyuki

    2013-01-01

    To clarify the links between ECG QT-related parameters and heart rate variability (HRV) and the covariates possibly distorting them, the averaged RR and QT intervals in a single lead ECG were measured for 64 male and 86 female subjects aged 18-26. The QT index, defined by Rautaharju et al., in the young adults was not significantly related to any HRV parameters nor heart rate, but the Bazett's corrected QT (QTc) interval was associated negatively with the parasympathetic activity and positively with heart rate. No significant differences in the QTc interval, QT index or heart rate were seen between the men and women, but they significantly differed between both sexes after adjustment for possible covariates such as age and body mass index (BMI). Significant sex differences in parasympathetic parameters of the HRV were unchanged before and after the adjustment, but significant differences observed in the unadjusted sympathetic parameters disappeared after adjusting for covariates. Age, BMI and body fat percentage also were significant covariates affecting these ECG parameters. Consequently, QT index, unaffected by heart rate and HRV parameters, appears to be a more useful indicator than the QTc interval. Instead, the QT index and HRV parameters are recommended to be simultaneously measured in epidemiological research because they are probably complementary in assessing autonomic nervous function. Also, these parameters should be analyzed in men and women separately.

  14. pyewacket, a new zebrafish fin pigment pattern mutant.

    PubMed

    Mellgren, Eve M; Johnson, Stephen L

    2006-06-01

    Many mutants that disrupt zebrafish embryonic pigment pattern have been isolated, and subsequent cloning of the mutated genes causing these phenotypes has contributed to our understanding of pigment cell development. However, few mutants have been identified that specifically affect development of the adult pigment pattern. Through a mutant screen for adult pigment pattern phenotypes, we identified pyewacket (pye), a novel zebrafish mutant in which development of the adult caudal fin pigment pattern is aberrant. Specifically, pye mutants have fin melanocyte pigment pattern defects and fewer xanthophores than wild-type fins. We mapped pye to an interval where a single gene, the zebrafish ortholog of the human gene DHRSX, is present. pye will be an informative mutant for understanding how xanthophores and melanocytes interact to form the pigment pattern of the adult zebrafish fin.

  15. Dietary carbohydrates, refined grains, glycemic load, and risk of coronary heart disease in Chinese adults.

    PubMed

    Yu, Danxia; Shu, Xiao-Ou; Li, Honglan; Xiang, Yong-Bing; Yang, Gong; Gao, Yu-Tang; Zheng, Wei; Zhang, Xianglan

    2013-11-15

    The potential long-term association between carbohydrate intake and the risk of coronary heart disease (CHD) remains unclear, especially among populations who habitually have high-carbohydrate diets. We prospectively examined intakes of carbohydrates and staple grains as well as glycemic index and glycemic load in relation to CHD among 117,366 Chinese women and men (40-74 years of age) without history of diabetes, CHD, stroke, or cancer at baseline in Shanghai, China. Diet was assessed using validated food frequency questionnaires. Incident CHD cases were ascertained during follow-ups (in women, the mean was 9.8 years and in men, the mean was 5.4 years) and confirmed by medical records. Carbohydrate intake accounted for 67.5% of the total energy intake in women and 68.5% in men. Seventy percent of total carbohydrates came from white rice and 17% were from refined wheat products. Positive associations between carbohydrate intakess and CHD were found in both sexes (all P for heterogeneity > 0.35). The combined multivariate-adjusted hazard ratios for the lowest to highest quartiles of carbohydrate intake, respectively, were 1.00, 1.38, 2.03, and 2.88 (95% confidence interval: 1.44, 5.78; P for trend = 0.001). The combined hazard ratios comparing the highest quartile with the lowest were 1.80 (95% confidence interval: 1.01, 3.17) for refined grains and 1.87 (95% confidence interval: 1.00, 3.53) for glycemic load (both P for trend = 0.03). High carbohydrate intake, mainly from refined grains, is associated with increased CHD risk in Chinese adults. PMID:24008907

  16. Posture and Gender Differentially Affect Heart Rate Variability of Symptomatic Mitral Valve Prolapse and Normal Adults

    PubMed Central

    Chang, Chien-Jung; Chen, Ya-Chu; Lee, Chih-Hsien; Yang, Ing-Fang; Yang, Ten-Fang

    2016-01-01

    Background Heart rate variability (HRV) has been shown to be a useful measure of autonomic activity in healthy and mitral valve prolapsed (MVP) subjects. However, the effects of posture and gender on HRV in symptomatic MVP and normal adults had not been elucidated in Taiwan. Methods A total of 118 MVP patients (7 males, 39 ± 7 years old; and 111 females, 42 ± 13 years old) and 148 healthy control (54 males, 28 ± 4 years old; and 94 females, 26 ± 6 years old) were investigated. The diagnosis of MVP was confirmed by cross-sectional echocardiography. A locally developed Taiwanese machine was used to record the HRV parameters for MVP and control groups in three stationary positions. Thereafter, the HRV time-domain parameters, and the frequency-domain parameters derived from fast Fourier transform or autoregressive methods were analyzed. Results The MVP group showed a decrease in time domain parameters and obtunded postural effects on frequency domain parameters moreso than the control group. Though the parasympathetic tone was dominant in female (higher RMSSD, nHF and lower nLF vs. male), the sympathetic outflow was higher in MVP female (lower SDNN, NN50 and higher nLF vs. normal female). While the parasympathetic activity was lower in male, sympathetic outflow was dominant in MVP male (lower nHF and higher nLF vs. normal male). Conclusions Both MVP female and male subjects had elevated levels of sympathetic outflow. The obtunded postural effects on frequency domain measures testified to the autonomic dysregulation of MVP subjects. PMID:27471360

  17. Transcatheter interventions for multiple lesions in adults with congenital heart disease

    PubMed Central

    Hamid, Tahir; Clarke, Bernard; Mahadevan, Vaikom

    2012-01-01

    Recent advances in diagnosis, surgery and interventional management have significantly changed the quality of life of patients with congenital heart disease. Historically, congenital heart disease patients with multiple cardiac lesions have been referred for surgery; however, with the advent of newer technologies and expertise, transcatheter treatment has evolved as an alternative option. A series of patients who underwent interventional procedures for multiple congenital heart disease lesions with excellent procedural and medium-term outcomes is reported. PMID:22826648

  18. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish

    PubMed Central

    Mersereau, Eric J.; Boyle, Cody A.; Poitra, Shelby; Espinoza, Ana; Seiler, Joclyn; Longie, Robert; Delvo, Lisa; Szarkowski, Megan; Maliske, Joshua; Chalmers, Sarah; Darland, Diane C.; Darland, Tristan

    2016-01-01

    A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults. PMID:27258254

  19. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish.

    PubMed

    Mersereau, Eric J; Boyle, Cody A; Poitra, Shelby; Espinoza, Ana; Seiler, Joclyn; Longie, Robert; Delvo, Lisa; Szarkowski, Megan; Maliske, Joshua; Chalmers, Sarah; Darland, Diane C; Darland, Tristan

    2016-05-31

    A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults.

  20. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish.

    PubMed

    Mersereau, Eric J; Boyle, Cody A; Poitra, Shelby; Espinoza, Ana; Seiler, Joclyn; Longie, Robert; Delvo, Lisa; Szarkowski, Megan; Maliske, Joshua; Chalmers, Sarah; Darland, Diane C; Darland, Tristan

    2016-01-01

    A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults. PMID:27258254

  1. Development of the zebrafish mesonephros

    PubMed Central

    Diep, Cuong Q.; Peng, Zhenzhen; Ukah, Tobechukwu K.; Kelly, Paul M.; Daigle, Renee V.; Davidson, Alan J.

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. PMID:25677367

  2. Deriving cell lines from zebrafish embryos and tumors.

    PubMed

    Choorapoikayil, Suma; Overvoorde, John; den Hertog, Jeroen

    2013-09-01

    Over the last two decades the zebrafish has emerged as a powerful model organism in science. The experimental accessibility, the broad range of zebrafish mutants, and the highly conserved genetic and biochemical pathways between zebrafish and mammals lifted zebrafish to become one of the most attractive vertebrate models to study gene function and to model human diseases. Zebrafish cell lines are highly attractive to investigate cell biology and zebrafish cell lines complement the experimental tools that are available already. We established a straightforward method to culture cells from a single zebrafish embryo or a single tumor. Here we describe the generation of fibroblast-like cell lines from wild-type and ptenb(-/-) embryos and an endothelial-like cell line from a tumor of an adult ptena(+/-)ptenb(-/-) zebrafish. This protocol can easily be adapted to establish stable cell lines from any mutant or transgenic zebrafish line and the average time to obtain a pro-stable cell line is 3-5 months.

  3. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart.

    PubMed

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-02-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3-4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation.

  4. Adult congenital heart disease imaging with second-generation dual-source computed tomography: initial experiences and findings.

    PubMed

    Ghoshhajra, Brian B; Sidhu, Manavjot S; El-Sherief, Ahmed; Rojas, Carlos; Yeh, Doreen Defaria; Engel, Leif-Christopher; Liberthson, Richard; Abbara, Suhny; Bhatt, Ami

    2012-01-01

    Adult congenital heart disease patients present a unique challenge to the cardiac imager. Patients may present with both acute and chronic manifestations of their complex congenital heart disease and also require surveillance for sequelae of their medical and surgical interventions. Multimodality imaging is often required to clarify their anatomy and physiology. Radiation dose is of particular concern in these patients with lifelong imaging needs for their chronic disease. The second-generation dual-source scanner is a recently available advanced clinical cardiac computed tomography (CT) scanner. It offers a combination of the high-spatial resolution of modern CT, the high-temporal resolution of dual-source technology, and the wide z-axis coverage of modern cone-beam geometry CT scanners. These advances in technology allow novel protocols that markedly reduce scan time, significantly reduce radiation exposure, and expand the physiologic imaging capabilities of cardiac CT. We present a case series of complicated adult congenital heart disease patients imaged by the second-generation dual-source CT scanner with extremely low-radiation doses and excellent image quality.

  5. Target of rapamycin (TOR)-based therapy for cardiomyopathy: evidence from zebrafish and human studies.

    PubMed

    Kushwaha, Sudhir; Xu, Xiaolei

    2012-02-01

    Rapamycin is a U.S. Food and Drug Administration-approved drug for the prevention of immunorejection following organ transplantation. Pharmacological studies suggest a potential new application of rapamycin in attenuating cardiomyopathy, but the potential for this application is not yet supported by genetic studies of genes in target of rapamycin (TOR) signaling in rodents. Recently, supporting genetic evidence was presented in zebrafish using two adult cardiomyopathy models. By characterizing a heterozygous zebrafish target of rapamycin (ztor) mutant, the therapeutic effect of long-term TOR signaling inhibition was demonstrated. Dose- and stage-dependent functions of TOR signaling provide an explanation for the seemingly contradictory results obtained in genetic studies of TOR components in rodents. The results from the zebrafish studies, together with the supporting preliminary clinical studies, suggested that TOR signaling inhibition should be further pursued as a novel therapeutic strategy for cardiomyopathy. Future directions for developing TOR-based therapy include assessing the long-term benefits of rapamycin as a candidate drug for heart failure patients, defining the dynamic activity of TOR, exploring the impacts of TOR signaling manipulation in different models of cardiomyopathies, and elucidating the downstream signaling branches that confer the therapeutic effects of TOR signaling inhibition.

  6. The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens.

    PubMed Central

    Warren, K S; Wu, J C; Pinet, F; Fishman, M C

    2000-01-01

    The vertebrate heart differs from chordate ancestors both structurally and functionally. Genetic units of form, termed 'modules', are identifiable by mutation, both in zebrafish and mouse, and correspond to features recently acquired in evolution, such as the ventricular chamber or endothelial lining of the vessels and heart. Zebrafish (Danio rerio) genetic screens have provided a reasonably inclusive set of such genes. Normal cardiac function may also be disrupted by single-gene mutations in zebrafish. Individual mutations may perturb contractility or rhythm generation. The zebrafish mutations which principally disturb cardiac contractility fall into two broad phenotypic categories, 'dilated' and 'hypertrophic'. Interestingly, these correspond to the two primary types of heart failure in humans. These disorders of early cardiac function provide candidate genes to be examined in complex human heart diseases, including arrhythmias and heart failure. PMID:11128987

  7. Characterization of zebrafish dysferlin by morpholino knockdown

    SciTech Connect

    Kawahara, Genri; Serafini, Peter R.; Myers, Jennifer A.; Alexander, Matthew S.; Kunkel, Louis M.

    2011-09-23

    Highlights: {yields} cDNAs of zebrafish dysferlin were cloned (6.3 kb). {yields} The dysferlin expression was detected in skeletal muscle, heart and eye. {yields} Injection of antisense morpholinos to dysferlin caused marked muscle disorganization. {yields} Zebrafish dysferlin expression may be involved in stabilizing muscle structures. -- Abstract: Mutations in the gene encoding dysferlin cause two distinct muscular dystrophy phenotypes: limb-girdle muscular dystrophy type 2B (LGMD-2B) and Miyoshi myopathy (MM). Dysferlin is a large transmembrane protein involved in myoblast fusion and membrane resealing. Zebrafish represent an ideal animal model to use for studying muscle disease including abnormalities of dysferlin. cDNAs of zebrafish dysferlin were cloned (6.3 kb) and the predicted amino acid sequences, showed 68% similarity to predicted amino acid sequences of mammalian dysferlin. The expression of dysferlin was mainly in skeletal muscle, heart and eye, and the expression could be detected as early as 11 h post fertilization (hpf). Three different antisense oligonucleotide morpholinos were targeted to inhibit translation of this dysferlin mRNA and the morpholino-injected fish showed marked muscle disorganization which could be detected by birefringence assay. Western blot analysis using dysferlin antibodies showed that the expression of dysferlin was reduced in each of the three morphants. Dysferlin expression was shown to be reduced at the myosepta of zebrafish muscle using immunohistochemistry, although the expression of other muscle membrane components, dystrophin, laminin, {beta}-dystroglycan were detected normally. Our data suggest that zebrafish dysferlin expression is involved in stabilizing muscle structures and its downregulation causes muscle disorganization.

  8. Effects of Moxa (Folium Artemisiae argyi) Smoke Exposure on Heart Rate and Heart Rate Variability in Healthy Young Adults: A Randomized, Controlled Human Study

    PubMed Central

    Cui, Yingxue; Zhao, Baixiao; Huang, Yuhai; Chen, Zhanghuang; Liu, Ping; Huang, Jian; Lao, Lixing

    2013-01-01

    Objective. To determine the effects of the moxa smoke on human heart rate (HR) and heart rate variability (HRV). Methods. Fifty-five healthy young adults were randomly divided into experimental (n = 28) and control (n = 27) groups. Experimental subjects were exposed to moxa smoke (2.5 ± 0.5 mg/m3) twice for 25 minutes in one week. ECG monitoring was performed before, during, and after exposure. Control subjects were exposed to normal indoor air in a similar environment and similarly monitored. Followup was performed the following week. Short-term (5 min) HRV parameters were analyzed with HRV analysis software. SPSS software was used for statistical analysis. Results. During and after the first exposure, comparison of percentage changes or changes in all parameters between groups showed no significant differences. During the second exposure, percentage decrease in HR, percentage increases in lnTP, lnHF, lnLF, and RMSSD, and increase in PNN50 were significantly greater in the experimental group than in control. Conclusion. No significant adverse HRV effects were associated with this clinically routine 25-minute exposure to moxa smoke, and the data suggests that short-term exposure to moxa smoke might have positive regulating effects on human autonomic function. Further studies are warranted to confirm these findings. PMID:23762143

  9. Effect of Fasting Blood Glucose Level on Heart Rate Variability of Healthy Young Adults

    PubMed Central

    Lutfi, Mohamed Faisal; Elhakeem, Ramaze Farouke

    2016-01-01

    Background Previous studies reported increased risk of cardiac events in subjects with fasting blood glucose (FBG) levels lower than the diagnostic threshold of diabetes mellitus. However, whether increased cardiac events in those with upper normal FBG is secondary to the shift of their cardiac sympathovagal balance towards sympathetic predominance is unknown. Aims To assess the association between FBG levels and cardiac autonomic modulation (CAM) in euglycaemic healthy subjects based on heart rate variability (HRV) derived indices. Subjects and Methods The study enrolled 42 healthy young adults. Following sociodemographic and clinical assessment, blood samples were collected to measure FBG levels. Five minutes ECG recordings were performed to all participants to obtain frequency domain HRV measurements, namely the natural logarithm (Ln) of total power (LnTP), very low frequency (LnVLF), low frequency (LnLF) and high frequency (LnHF), low frequency/ high frequency ratio (LnLF/HF), normalized low frequency (LF Norm) and high frequency (HF Norm). Results FBG levels correlated positively with LnHF (r = 0.33, P = 0.031) and HF Norm (r = 0.35, P = 0.025) and negatively with LF Norm (r = -0.35, P = 0.025) and LnLF/HF (r = -0.33, P = 0.035). LnHF and HF Norm were significantly decreased in subjects with the lower (4.00 (1.34) ms2/Hz and 33.12 (11.94) n.u) compared to those with the upper FBG quartile (5.64 (1.63) ms2/Hz and 49.43 (17.73) n.u, P = 0.013 and 0.032 respectively). LF Norm and LnLF/HF were significantly increased in subjects with the lower (66.88 (11.94) n.u and 0.73 (0.53)) compared to those with the higher FBG quartile (50.58 (17.83) n.u and 0.03 (0.79), P = 0.032 and 0.038 respectively). Conclusion The present study is the first to demonstrate that rise of blood glucose concentration, within physiological range, is associated with higher parasympathetic, but lower sympathetic CAM. Further researches are needed to set out the glycemic threshold beyond which

  10. What do adult patients with congenital heart disease know about their disease, treatment, and prevention of complications? A call for structured patient education

    PubMed Central

    Moons, P; De Volder, E; Budts, W; De Geest, S; Elen, J; Waeytens, K; Gewillig, M

    2001-01-01

    OBJECTIVE—To assess how much adults with congenital heart disease understand about their heart defect, its treatment, and the preventive measures necessary to avoid complications.
DESIGN—Descriptive, cross sectional study.
SETTING—Adult congenital heart disease programme in one tertiary care centre in Belgium.
PATIENTS—62 adults with congenital heart disease (47 men; 15 women), median age 23 years.
MAIN OUTCOME MEASURES—Patients' knowledge was assessed during an outpatient visit using the Leuven knowledge questionnaire for congenital heart diseases, a 33 item instrument developed for this study.
RESULTS—Patients had adequate knowledge (> 80% correct answers) about their treatment, frequency of follow up, dental practices, occupational choices, appropriateness of oral contraceptives, and the risks of pregnancy. Knowledge about the name and anatomy of the heart defect, the possibility of recurrent episodes of endocarditis during their lifetime, and the appropriateness of different physical activities was moderate (50-80% correct answers). There was poor understanding (< 50% correct answers) about the reasons for follow up, the symptoms of deterioration of the heart disease, the definition, characteristics, and risk factors of endocarditis, the impact of smoking and alcohol on the heart disease, the hereditary nature of the condition, and the suitability of intrauterine devices as contraceptives.
CONCLUSIONS—Adults with congenital heart disease have important gaps in their knowledge about their condition. The results of this study can be used as a basis for developing or optimising structured educational interventions to enhance patients' health behaviour.


Keywords: patient education; congenital heart disease; health behaviour PMID:11410567

  11. Characterization of mesonephric development and regeneration using transgenic zebrafish

    PubMed Central

    Zhou, Weibin; Boucher, Rudrick C.; Bollig, Frank; Englert, Christoph

    2010-01-01

    The zebrafish is a valuable vertebrate model for kidney research. The majority of previous studies focused on the zebrafish pronephros, which comprises only two nephrons and is structurally simpler than the mesonephros of adult fish and the metanephros of mammals. To evaluate the zebrafish system for more complex studies of kidney development and regeneration, we investigated the development and postinjury regeneration of the mesonephros in adult zebrafish. Utilizing two transgenic zebrafish lines (wt1b::GFP and pod::NTR-mCherry), we characterized the developmental stages of individual mesonephric nephrons and the temporal-spatial pattern of mesonephrogenesis. We found that mesonephrogenesis continues throughout the life of zebrafish, with a rapid growth phase during the juvenile period and a slower phase in adulthood such that the total nephron number of juvenile and adult fish linearly correlates with body mass. Following gentamicin-induced renal injury, the zebrafish mesonephros can undergo de novo regeneration of mesonephric nephrons, a process known as neonephrogenesis. We found that wt1b expression was induced in individually dispersed cells in the mesonephric interstitium as early as 48 h following injury. These wt1b-expressing cells formed aggregates by 72–96 h following injury which proceeded to form nephrons. This suggests that wt1b may serve as an early marker of fated renal progenitor cells. The synchronous nature of regenerative neonephrogenesis suggests that this process may be useful for studies of nephron development. PMID:20810610

  12. [Congenital heart disease in adults: residua, sequelae, and complications of cardiac defects repaired at an early age].

    PubMed

    Oliver Ruiz, José María

    2003-01-01

    Nowadays, it is estimated that 85% of the infants born with congenital heart disease (CHD) will survive to adulthood, thanks mainly to surgical or therapeutic procedures performed during infancy or childhood. The clinical profile and disease pattern of adults with CHD is changing. The prevalence of certain adult CHDs, such as tetralogy of Fallot, transposition of the great arteries or univentricular heart, is rising, but these conditions have practically become new diseases as a result of therapy. Most surviving patients present residua, sequelae, or complications, which can progress during adult life. These disorders can present electrophysiological disturbances, valvular disease, persistent shunts, myocardial dysfunction, pulmonary or systemic vascular disease, problems caused by prosthetic materials, infectious complications, thromboembolic events, or extravascular disorders involving multiple organs or systems. In tetralogy of Fallot, the most striking problems that affect long-term prognosis are pulmonary valve regurgitation, right ventricle dysfunction, and atrial or ventricular arrhythmias. The main problems appearing after physiological atrial repair of transposition of the great arteries are related to right ventricular function, since it is structurally unprepared for systemic circulation, and atrial arrhythmias. Surgical repair of univentricular heart using Fontan techniques should be considered a palliative procedure that does not modify the underlying structural disorder and exposes the postoperative patient to severe complications and problems. The increase in the number of patients with CHD who will reach adulthood in the coming decades makes it necessary to carefully consider the new healthcare demands that are being generated, who should be responsible for them, and how and where solutions can be found.

  13. Anesthetic considerations for an adult heart transplant recipient undergoing noncardiac surgery: a case report.

    PubMed

    Valerio, Regalado; Durra, Omar; Gold, Michele E

    2014-08-01

    Approximately 3,500 Americans undergo heart transplantation each year. A portion of this patient population will possibly present later for an elective noncardiac surgery. Anesthesia professionals can be tasked to assess and provide the anesthesia management for heart transplant recipients undergoing a noncardiac surgical procedure. A 57-year-old man with a complicated cardiac history before undergoing heart transplantation was scheduled to undergo a right inguinal hernia repair. The patient underwent general anesthesia and had an uneventful course of surgery and recovery. Management of the patient with a heart transplant includes consideration of the altered physiology of a denervated heart; the perioperative anesthetic considerations specific to this patient population; and the risks of rejection, infection, and pharmacologic interactions brought about by immunosuppression. The purposes of this case report were to discuss the indications for the perioperative care of heart transplant recipients undergoing noncardiac procedures, and to discuss the evidence-based literature to provide delivery of safe and effective patient care. PMID:25167609

  14. The Zebrafish as a Tool to Cancer Drug Discovery

    PubMed Central

    Huiting, LN; Laroche, FJF; Feng, H

    2015-01-01

    The ability of zebrafish to faithfully recapitulate a variety of human cancers provides a unique in vivo system for drug identification and validation. Zebrafish models of human cancer generated through methodologies such as transgenesis, gene inactivation, transplantation, and carcinogenic induction have proven similar to their human counterparts both molecularly and pathologically. Suppression of cancer-relevant phenotypes provides opportunities to both identify and evaluate efficacious compounds using embryonic and adult zebrafish. After relevant compounds are selected, preclinical evaluation in mammalian models can occur, delivering lead compounds to human trials swiftly and rapidly. The advantages of in vivo imaging, large progeny, and rapid development that the zebrafish provides make it an attractive model to promote novel cancer drug discovery and reduce the hurdles and cost of clinical trials. This review explores the current methodologies to model human cancers in zebrafish, and how these cancer models have aided in formation of novel therapeutic hypotheses. PMID:26835511

  15. Zebrafish Models of Human Liver Development and Disease

    PubMed Central

    Wilkins, Benjamin J.; Pack, Michael

    2016-01-01

    The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease. PMID:23897685

  16. Development of sensory systems in zebrafish (Danio rerio)

    NASA Technical Reports Server (NTRS)

    Moorman, S. J.

    2001-01-01

    Zebrafish possess all of the classic sensory modalities: taste, tactile, smell, balance, vision, and hearing. For each sensory system, this article provides a brief overview of the system in the adult zebrafish followed by a more detailed overview of the development of the system. By far the majority of studies performed in each of the sensory systems of the zebrafish have involved some aspect of molecular biology or genetics. Although molecular biology and genetics are not major foci of the paper, brief discussions of some of the mutant strains of zebrafish that have developmental defects in each specific sensory system are included. The development of the sensory systems is only a small sampling of the work being done using zebrafish and provides a mere glimpse of the potential of this model for the study of vertebrate development, physiology, and human disease.

  17. Cardiac neural crest contributes to cardiomyogenesis in zebrafish.

    PubMed

    Sato, Mariko; Yost, H Joseph

    2003-05-01

    In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.

  18. Stressing Zebrafish for Behavioral Genetics

    PubMed Central

    Clark, Karl J.; Boczek, Nicole J.; Ekker, Stephen C.

    2012-01-01

    Synopsis The stress response is a normal reaction to a real or perceived threat. However, stress response systems that are overwhelmed or out of balance can increase both the incidence and severity of diseases including addiction and mood and anxiety disorders. Using an animal model with both genetic diversity and large family size can help discover the specific genetic and environmental contributions to these behavioral diseases. The stress response has been studied extensively in teleosts because of their importance in food production. The zebrafish (Danio rerio) is a major model organism with a strong record for use in developmental biology, genetic screening, and genomic studies. More recently, the stress response of larval and adult zebrafish has been documented. High-throughput automated tracking systems make possible behavioral readouts of the stress response in zebrafish. This non-invasive measure of the stress response can be combined with mutagenesis methods to dissect the genes involved in complex stress response behaviors in vertebrates. Understanding the genetic and epigenetic basis for the stress response in vertebrates will help to develop advanced screening and therapies for stress-aggravated diseases like addiction and mood and anxiety disorders. PMID:21615261

  19. Characterization of snakehead rhabdovirus infection in zebrafish (Danio rerio).

    PubMed

    Phelan, Peter E; Pressley, Meagan E; Witten, P Eckhard; Mellon, Mark T; Blake, Sharon; Kim, Carol H

    2005-02-01

    The zebrafish, Danio rerio, has become recognized as a valuable model for the study of development, genetics, and toxicology. Recently, the zebrafish has been recognized as a useful model for infectious disease and immunity. In this study, the pathogenesis and antiviral immune response of zebrafish to experimental snakehead rhabdovirus (SHRV) infection was characterized. Zebrafish 24 h postfertilization to 30 days postfertilization were susceptible to infection by immersion in 10(6) 50% tissue culture infective doses (TCID50) of SHRV/ml, and adult zebrafish were susceptible to infection by intraperitoneal (i.p.) injection of 10(5) TCID50 of SHRV/ml. Mortalities exceeded 40% in infected fish, and clinical presentation of infection included petechial hemorrhaging, redness of the abdomen, and erratic swim behavior. Virus reisolation and reverse transcription-PCR analysis of the viral nucleocapsid gene confirmed the presence of SHRV. Histological sections of moribund embryonic and juvenile fish revealed necrosis of the pharyngeal epithelium and liver, in addition to congestion of the swim bladder by cell debris. Histopathology in adult fish injected i.p. was confined to the site of injection. The antiviral response in zebrafish was monitored by quantitative real-time PCR analysis of zebrafish interferon (IFN) and Mx expression. IFN and Mx levels were elevated in zebrafish exposed to SHRV, although expression and intensity differed with age and route of infection. This study is the first to examine the pathogenesis of SHRV infection in zebrafish. Furthermore, this study is the first to describe experimental infection of zebrafish embryos with a viral pathogen, which will be important for future experiments involving targeted gene disruption and forward genetic screens.

  20. Strategies for analyzing cardiac phenotypes in the zebrafish embryo.

    PubMed

    Houk, A R; Yelon, D

    2016-01-01

    The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo. PMID:27312497

  1. Short-term acute effects of gutkha chewing on heart rate variability among young adults: A cross-sectional study

    PubMed Central

    Itagi, Afreen Begum H; Arora, Dimple; Patil, Navin A; Bailwad, Sandeep Anant; Yunus, GY; Goel, Ankit

    2016-01-01

    Background and Objectives: An increase in the consumption of smokeless tobacco has been noticed among high school, college students, and adults. Despite the antiquity and popularity of chewing tobacco in India, its effects have not been investigated systematically in humans. The aim of this study was to investigate acute effects of gutkha chewing on heart rate variability (HRV) among healthy young adults. Materials and Methods: A total of 60 young adult males were included in the study. Each individual was asked to chew tobacco and subjected to HRV analysis. HRV analysis using short-term electrocardiogram recording was used to measure HRV parameters before gutkha chewing and at 5, 15, and 30 min after chewing tobacco. One-way analysis of variance and paired t-test was used to assess changes over time. Results: There was a significant increase in heart rate (HR) during tobacco chewing. Mean HR at baseline measured 73.0 ± 6.2 bpm. There was a rise in mean HR to 83.7 ± 9.1 bpm at 5 min during tobacco chewing and gradual reduction to baseline observed after 15 min followed by no significant change till 30 min. The normalized low-frequency power and LF/high-frequency (HF) power ratio were elevated after 5 min; however, normalized HF power was reduced after 5 min tobacco chewing. Conclusion: Gutkha is closely associated with traditional cardiovascular risk factors as detected by a transient enhancing sympathetic activity during tobacco chewing in the form of increased HRV parameters or an imbalance between sympathetic and parasympathetic neural activity among healthy young adults. PMID:26958522

  2. Cadmium potentiates toxicity of cypermethrin in zebrafish.

    PubMed

    Yang, Ye; Ye, Xiaoqing; He, Buyuan; Liu, Jing

    2016-02-01

    Co-occurrence of pesticides such as synthetic pyrethroids and metals in aquatic ecosystems raises concerns over their combined ecological effects. Cypermethrin, 1 of the top 5 synthetic pyrethroids in use, has been extensively detected in surface water. Cadmium (Cd) has been recognized as 1 of the most toxic metals and is a common contaminant in the aquatic system. However, little information is available regarding their joint toxicity. In the present study, combined toxicity of cypermethrin and Cd and the underlying mechanisms were investigated. Zebrafish embryos and adults were exposed to the individual contaminant or binary mixtures. Co-exposure to cypermethrin and Cd produced synergistic effects on the occurrence of crooked body, pericardial edema, and noninflation of swim bladder. The addition of Cd significantly potentiated cypermethrin-induced spasms and caused more oxidative stress in zebrafish larvae. Cypermethrin-mediated induction of transcription levels and catalytic activities of cytochrome P450 (CYP) enzyme were significantly down-regulated by Cd in both zebrafish larvae and adults. Chemical analytical data showed that in vitro elimination of cypermethrin by CYP1A1 was inhibited by Cd. The addition of Cd caused an elevation of in vivo cypermethrin residue levels in the mixture-exposed adult zebrafish. These results suggest that the enhanced toxicity of cypermethrin in the presence of Cd results from the inhibitory effects of Cd on CYP-mediated biotransformation of this pesticide. The authors' findings provide a deeper understanding of the mechanistic basis accounting for the joint toxicity of cypermethrin and Cd.

  3. Characterization of behavioral and endocrine effects of LSD on zebrafish.

    PubMed

    Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V

    2010-12-25

    Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse.

  4. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    PubMed Central

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Results Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Conclusions Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF. PMID:27594875

  5. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    PubMed Central

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Results Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Conclusions Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  6. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    NASA Astrophysics Data System (ADS)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  7. Heart rate, conduction and ultrasound abnormalities in adults with joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type.

    PubMed

    Camerota, Filippo; Castori, Marco; Celletti, Claudia; Colotto, Marco; Amato, Silvia; Colella, Alessandra; Curione, Mario; Danese, Chiara

    2014-07-01

    Joint hypermobility syndrome (JHS) and Ehlers-Danlos syndrome, hypermobility type (EDS-HT) are two clinically overlapping heritable connective tissue disorders strongly associating with pain, fatigue and other secondary aspects. Though not considered a diagnostic criterion for most EDS subtypes, cardiovascular involvement is a well-known complication in EDS. A case-control study was carried out on 28 adults with JHS/EDS-HT diagnosed according to current criteria, compared to 29 healthy subjects evaluating resting electrocardiographic (ECG), 24-h ECG and resting heart ultrasound data. Results obtained in the ECG studies showed a moderate excess in duration of the PR interval and P wave, an excess of heart conduction and rate abnormalities and an increased rate of mitral and tricuspid valve insufficiency often complicating with "true" mitral valve prolapse in the ecocardiographic study. These variable ECG subclinical anomalies reported in our sample may represent the resting surrogate of such a subnormal cardiovascular response to postural changes that are known to be present in patients with JHS/EDS-HT. Our findings indicate the usefulness of a full cardiologic evaluation of adults with JHS/EDS-HT for the correct management. PMID:24752348

  8. 2010 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Training Standards and Maintenance of Competency in Adult Clinical Cardiac Electrophysiology.

    PubMed

    Green, Martin S; Guerra, Peter G; Krahn, Andrew D

    2011-01-01

    The last guidelines on training for adult cardiac electrophysiology (EP) were published by the Canadian Cardiovascular Society in 1996. Since then, substantial changes in the knowledge and practice of EP have mandated a review of the previous guidelines by the Canadian Heart Rhythm Society, an affiliate of the Canadian Cardiovascular Society. Novel tools and techniques also now allow electrophysiologists to map and ablate increasingly complex arrhythmias previously managed with pharmacologic or device therapy. Furthermore, no formal attempt had previously been made to standardize EP training across the country. The 2010 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Training Standards and Maintenance of Competency in Adult Clinical Cardiac Electrophysiology represent a consensus arrived at by panel members from both societies, as well as EP program directors across Canada and other select contributors. In describing program requirements, the technical and cognitive skills that must be acquired to meet training standards, as well as the minimum number of procedures needed in order to acquire these skills, the new guidelines provide EP program directors and committee members with a template to develop an appropriate curriculum for EP training for cardiology fellows here in Canada.

  9. Cloning, characterization, and heat stress-induced redistribution of a protein homologous to human hsp27 in the zebrafish Danio rerio

    SciTech Connect

    Mao Li; Bryantsev, Anton L.; Chechenova, Maria B.; Shelden, Eric A. . E-mail: eshelden@wsu.edu

    2005-05-15

    Hsp27 is a small heat shock protein (shsp) regulating stress tolerance and increasingly thought to play roles in tissue homeostasis and differentiation. The zebrafish Danio rerio is an important model for the study of developmental processes, but little is known regarding shsps in this animal. Here, we report the sequence, expression, regulation, and function of a zebrafish protein (zfHsp27) homologous to human Hsp27. zfHsp27 contains three conserved phosphorylatable serines and a cysteine important for regulation of apoptosis, but it lacks much of a C-terminal tail domain and shows low homology in two putative actin interacting domains that are features of mammalian Hsp27. zfHsp27 mRNA is most abundant in adult skeletal muscle and heart and is upregulated during early embryogenesis. zfHsp27 expressed in mammalian fibroblasts was phosphorylated in response to heat stress and anisomycin, and this phosphorylation was prevented by treatment with SB202190, an inhibitor of p38 MAPK. Expression of zfHsp27 and human Hsp27 in mammalian fibroblasts promoted a similar degree of tolerance to heat stress. zfHsp27 fusion proteins entered the nucleus and associated with the cytoskeleton of heat stressed cells in vitro and in zebrafish embryos. These results reveal conservation in regulation and function of mammalian and teleost Hsp27 proteins and define zebrafish as a new model for the study of Hsp27 function.

  10. Retinal Proliferation Response in the Buphthalmic Zebrafish, bugeye

    PubMed Central

    Sherpa, Tshering; Hunter, Samuel S.; Frey, Ruth A.; Robison, Barrie D.; Stenkamp, Deborah L.

    2011-01-01

    The zebrafish retina regenerates in response to acute retinal lesions, replacing damaged neurons with new neurons. In this study we test the hypothesis that chronic stress to inner retinal neurons also triggers a retinal regeneration response in the bugeye zebrafish. Mutations in the lrp2 gene in zebrafish are associated with a progressive eye phenotype (bugeye) that models several risk factors for human glaucoma including buphthalmos (enlarged eyes), elevated intraocular pressure (IOP), and upregulation of genes related to retinal ganglion cell pathology. The retinas of adult bugeye zebrafish showed high rates of ongoing proliferation which resulted in the production of a small number of new retinal neurons, particularly photoreceptors. A marker of mechanical cell stress, Hsp27, was strongly expressed in inner retinal neurons and glia of bugeye retinas. The more enlarged eyes of individual bugeye zebrafish showed disrupted retinal lamination, and a persistent reduced density of neurons in the ganglion cell layer (GCL), although total numbers of GCL neurons were higher than in control eyes. Despite the presence of a proliferative response to damage, the adult bugeye zebrafish remained behaviorally blind. These findings suggest the existence of an unsuccessful regenerative response to a persistent pathological condition in the bugeye zebrafish. PMID:21723280

  11. Age-Dependent Changes in Geometry, Tissue Composition and Mechanical Properties of Fetal to Adult Cryopreserved Human Heart Valves.

    PubMed

    van Geemen, Daphne; Soares, Ana L F; Oomen, Pim J A; Driessen-Mol, Anita; Janssen-van den Broek, Marloes W J T; van den Bogaerdt, Antoon J; Bogers, Ad J J C; Goumans, Marie-José T H; Baaijens, Frank P T; Bouten, Carlijn V C

    2016-01-01

    There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation-but more pronounced in aortic valves-the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age.

  12. Combined triaxial accelerometry and heart rate telemetry for the physiological characterization of Latin dance in non-professional adults.

    PubMed

    Domene, Pablo A; Easton, Chris

    2014-03-01

    The purpose of this study was to value calibrate, cross-validate, and determine the reliability of a combined triaxial accelerometry and heart rate telemetry technique for characterizing the physiological and physical activity parameters of Latin dance. Twenty-two non-professional adult Latin dancers attended two laboratory-based dance trials each. After familiarization and a standardized warm-up, a multi-stage (3 x 5-minute) incremental (based on song tempo) Afro-Cuban salsa choreography was performed while following a video displayed on a projection screen. Data were collected with a portable indirect calorimeter, a heart rate telemeter, and wrist-, hip-, and ankle-mounted ActiGraph GT3X+ accelerometers. Prediction equations for energy expenditure and step count were value calibrated using forced entry multiple regression and cross-validated using a delete-one jackknife approach with additional Bland-Altman analysis. The average dance intensity reached 6.09 ± 0.96 kcal/kg/h and demanded 45.9 ± 11.3% of the heart rate reserve. Predictive ability of the derived models was satisfactory, where R(2) = 0.80; SEE = 0.44 kcal/kg/h and R(2) = 0.74; SEE = 3 step/min for energy expenditure and step count, respectively. Dependent t-tests indicated no differences between predicted and measured values for both energy expenditure (t65 = -0.25, p = 0.80) and step count (t65 = -0.89, p = 0.38). The 95% limits of agreement for energy expenditure and step count were -0.98 to 0.95 kcal/kg/h and -7 to 7 step/min, respectively. Latin dance to salsa music elicits physiological responses representative of moderate to vigorous physical activity, and a wrist-worn accelerometer with simultaneous heart rate measurement constitutes a valid and reliable technique for the prediction of energy expenditure and step count during Latin dance.

  13. When Hearts, Hands, and Feet Trump Brains: Centralist versus Peripheralist Responses in Children and Adults

    ERIC Educational Resources Information Center

    Winer, Gerald A.; Cottrell, Jane E.; Bica, Lori A.

    2009-01-01

    A series of studies examined the presence of centralist versus peripheralist responding about the physical location of psychological processes. Centralists respond that processes such as cognition and emotion are a function of the brain. Peripheralists respond that such processes are located in other parts of the body, such as the heart. Although…

  14. Influence of hospital volume and outcomes of adult structural heart procedures.

    PubMed

    Panaich, Sidakpal S; Patel, Nilay; Arora, Shilpkumar; Patel, Nileshkumar J; Patel, Samir V; Savani, Chirag; Singh, Vikas; Sonani, Rajesh; Deshmukh, Abhishek; Cleman, Michael; Mangi, Abeel; Forrest, John K; Badheka, Apurva O

    2016-04-26

    Hospital volume is regarded amongst many in the medical community as an important quality metric. This is especially true in more complicated and less commonly performed procedures such as structural heart disease interventions. Seminal work on hospital volume relationships was done by Luft et al more than 4 decades ago, when they demonstrated that hospitals performing > 200 surgical procedures a year had 25%-41% lower mortality than those performing fewer procedures. Numerous volume-outcome studies have since been done for varied surgical procedures. An old adage "practice makes perfect" indicating superior operator and institutional experience at higher volume hospitals is believed to primarily contribute to the volume outcome relationship. Compelling evidence from a slew of recent publications has also highlighted the role of hospital volume in predicting superior post-procedural outcomes following structural heart disease interventions. These included transcatheter aortic valve repair, transcatheter mitral valve repair, septal ablation and septal myectomy for hypertrophic obstructive cardiomyopathy, left atrial appendage closure and atrial septal defect/patent foramen ovale closure. This is especially important since these structural heart interventions are relatively complex with evolving technology and a steep learning curve. The benefit was demonstrated both in lower mortality and complications as well as better economics in terms of lower length of stay and hospitalization costs seen at high volume centers. We present an overview of the available literature that underscores the importance of hospital volume in complex structural heart disease interventions. PMID:27152142

  15. Influence of hospital volume and outcomes of adult structural heart procedures

    PubMed Central

    Panaich, Sidakpal S; Patel, Nilay; Arora, Shilpkumar; Patel, Nileshkumar J; Patel, Samir V; Savani, Chirag; Singh, Vikas; Sonani, Rajesh; Deshmukh, Abhishek; Cleman, Michael; Mangi, Abeel; Forrest, John K; Badheka, Apurva O

    2016-01-01

    Hospital volume is regarded amongst many in the medical community as an important quality metric. This is especially true in more complicated and less commonly performed procedures such as structural heart disease interventions. Seminal work on hospital volume relationships was done by Luft et al more than 4 decades ago, when they demonstrated that hospitals performing > 200 surgical procedures a year had 25%-41% lower mortality than those performing fewer procedures. Numerous volume-outcome studies have since been done for varied surgical procedures. An old adage “practice makes perfect” indicating superior operator and institutional experience at higher volume hospitals is believed to primarily contribute to the volume outcome relationship. Compelling evidence from a slew of recent publications has also highlighted the role of hospital volume in predicting superior post-procedural outcomes following structural heart disease interventions. These included transcatheter aortic valve repair, transcatheter mitral valve repair, septal ablation and septal myectomy for hypertrophic obstructive cardiomyopathy, left atrial appendage closure and atrial septal defect/patent foramen ovale closure. This is especially important since these structural heart interventions are relatively complex with evolving technology and a steep learning curve. The benefit was demonstrated both in lower mortality and complications as well as better economics in terms of lower length of stay and hospitalization costs seen at high volume centers. We present an overview of the available literature that underscores the importance of hospital volume in complex structural heart disease interventions. PMID:27152142

  16. The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product, in drinking water treatment process and its toxicity on zebrafish.

    PubMed

    Lin, Tao; Zhou, Dongju; Yu, Shilin; Chen, Wei

    2016-09-01

    The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in conventional drinking water treatment plant (C-DWTP) and advanced DWTP (ADWTP) was studied with newly maximum formation potential (MFP) process. It was demonstrated that the advanced treatment displayed greater removal efficiency towards DCAcAm formation potential (MFP) than the conventional treatment. The hydrophilic natural organic matter and natural organic matter with molecular weight <1 kDa or >10 kDa leaded to more DCAcAm formation, and the aromatic protein was inferred as one part of DCAcAm precursor. DCAcAm was found to cause delayed development and malformation to zebrafish embryos at embryonic growth stage. Compared with heart toxicity, it caused a significant neuron toxicity. It also could cause the acute DNA damage to adult zebrafish, which should be extremely cautioned.

  17. Are urinary polyaromatic hydrocarbons associated with adult hypertension, heart attack, and cancer? USA NHANES, 2011-2012.

    PubMed

    Shiue, Ivy

    2015-11-01

    Links between environmental chemicals and human health have emerged over the last few decades, but the effects from polyaromatic hydrocarbons were less studied, compared to other commonly known environmental chemicals such as heavy metals, phthalates, arsenic, phenols and pesticides. Therefore, it was aimed to study the relationships of urinary polyaromatic hydrocarbons and adult cardiovascular disease and cancer using human sample in a national and population-based study in recent years. Data was retrieved from US National Health and Nutrition Examination Surveys, 2011-2012, including demographics, self-reported health conditions and urinary polyaromatic hydrocarbons. Statistical analyses included chi-square test, t test, survey-weighted logistic regression modeling and population attributable risk (PAR) estimation. Of 5560 American adults aged 20-80 and included in the statistical analysis, urinary polyaromatic hydrocarbons (representatively in one-third sample) were observed to be higher in people with cardiovascular disease and total cancer. In particular, urinary 4-hydroxyphenanthrene was associated with hypertension (odds ratio (OR) 1.33, 95% confidence interval (CI) 1.00-1.76, P = 0.048, PAR 5.1%), urinary 1-hydroxypyrene was significantly associated with heart attack (OR 1.47, 95%CI 1.05-2.06, P = 0.027, PAR 1.7%), and urinary 2-hydroxynapthalene (2-naphthol) was associated with cancer (OR 1.46, 95%CI 1.12-1.90, P = 0.008, PAR 3.9%). Urinary polyaromatic hydrocarbons were associated with adult hypertension, heart attack and cancer, although the causality cannot be established. From the research perspective, future studies with a longitudinal or experimental approach would be suggested. From the law and public health perspectives, regulation on minimizing exposure to polyaromatic hydrocarbons might need to be considered in future health and environmental policies and intervention programs.

  18. Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes.

    PubMed

    Xiao, Yao; Gao, Maomao; Gao, Luna; Zhao, Yu; Hong, Qiang; Li, Zhigang; Yao, Jing; Cheng, Hanhua; Zhou, Rongjia

    2016-09-13

    A cardiomyocyte differentiation in vitro system from zebrafish embryos remains to be established. Here, we have determined pluripotency window of zebrafish embryos by analyzing their gene-expression patterns of pluripotency factors together with markers of three germ layers, and have found that zebrafish undergoes a very narrow period of pluripotency maintenance from zygotic genome activation to a brief moment after oblong stage. Based on the pluripotency and a combination of appropriate conditions, we established a rapid and efficient method for cardiomyocyte generation in vitro from primary embryonic cells. The induced cardiomyocytes differentiated into functional and specific cardiomyocyte subtypes. Notably, these in vitro generated cardiomyocytes exhibited typical contractile kinetics and electrophysiological features. The system provides a new paradigm of cardiomyocyte differentiation from primary embryonic cells in zebrafish. The technology provides a new platform for the study of heart development and regeneration, in addition to drug discovery, disease modeling, and assessment of cardiotoxic agents. PMID:27569061

  19. The zebrafish as a model for complex tissue regeneration

    PubMed Central

    Gemberling, Matthew; Bailey, Travis J.; Hyde, David R.; Poss, Kenneth D.

    2013-01-01

    For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues, and in some cases have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs. PMID:23927865

  20. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice.

    PubMed

    Nakamura, Ryo; Koshiba-Takeuchi, Kazuko; Tsuchiya, Megumi; Kojima, Mizuyo; Miyazawa, Asuka; Ito, Kohei; Ogawa, Hidesato; Takeuchi, Jun K

    2016-05-01

    Some organisms, such as zebrafish, urodele amphibians, and newborn mice, have a capacity for heart regeneration following injury. However, adult mammals fail to regenerate their hearts. To know why newborn mice can regenerate their hearts, we focused on epigenetic factors, which are involved in cell differentiation in many tissues. Baf60c (BRG1/BRM-associated factor 60c), a component of ATP-dependent chromatin-remodeling complexes, has an essential role for cardiomyocyte differentiation at the early heart development. To address the function of Baf60c in postnatal heart homeostasis and regeneration, we examined the detailed expression/localization patterns of Baf60c in both mice and axolotls. In the mouse heart development, Baf60c was highly expressed in the entire heart at the early stages, but gradually downregulated at the postnatal stages. During heart regeneration in neonatal mice and axolotls, Baf60c expression was strongly upregulated after resection. Interestingly, the timing of Baf60c upregulation after resection was consistent with the temporal dynamics of cardiomyocyte proliferation. Moreover, knockdown of Baf60c downregulated proliferation of neonatal mouse cardiomyocytes. These data suggested that Baf60c plays an important role in cardiomyocyte proliferation in heart development and regeneration. This is the first study indicating that Baf60c contributes to the heart regeneration in vertebrates. PMID:27125315

  1. Lymphatics, Cancer and Zebrafish.

    PubMed

    Astin, Jonathan W; Crosier, Philip S

    2016-01-01

    Many solid tumors are known to metastasize through the lymphatic vasculature. This process is facilitated by the generation of new lymphatic vessels (tumor lymphangiogenesis) and also by the remodelling of existing lymphatics. Together these processes enable the spread of tumor cells to distant sites. Currently our understanding of tumor lymphangiogenesis has been informed from mouse tumor models and from studies of developmental lymphangiogenesis. Since the discovery of bona fide lymphatic vessels in zebrafish in 2006, zebrafish have become a well-established model of developmental lymphangiogenesis. The attributes that make zebrafish such an important model of blood vessel development-the ability to live image developing vessels, genetic tractability and the conserved nature of development-also make fish an attractive model of lymphatic vessel development. In particular, zebrafish have made important contributions to our understanding of the processes of lymphatic vessel sprouting from veins and the mechanisms by which lymphatic precursors remodel into mature vessels. To date, zebrafish have not been used to directly model tumor lymphangiogenesis. In this chapter we will summarise the contributions zebrafish have made to our understanding of lymphangiogenesis and investigate the possibilities of combining zebrafish transgenic cancer lines or tumor transplantation models with existing lymphatic reporter lines, which could provide valuable insights into the process of tumor-induced lymphangiogenesis. In addition the utility of using the zebrafish lymphatic model as a platform to screen and develop novel anti-lymphatic therapeutics will also be discussed.

  2. Lymphatics, Cancer and Zebrafish.

    PubMed

    Astin, Jonathan W; Crosier, Philip S

    2016-01-01

    Many solid tumors are known to metastasize through the lymphatic vasculature. This process is facilitated by the generation of new lymphatic vessels (tumor lymphangiogenesis) and also by the remodelling of existing lymphatics. Together these processes enable the spread of tumor cells to distant sites. Currently our understanding of tumor lymphangiogenesis has been informed from mouse tumor models and from studies of developmental lymphangiogenesis. Since the discovery of bona fide lymphatic vessels in zebrafish in 2006, zebrafish have become a well-established model of developmental lymphangiogenesis. The attributes that make zebrafish such an important model of blood vessel development-the ability to live image developing vessels, genetic tractability and the conserved nature of development-also make fish an attractive model of lymphatic vessel development. In particular, zebrafish have made important contributions to our understanding of the processes of lymphatic vessel sprouting from veins and the mechanisms by which lymphatic precursors remodel into mature vessels. To date, zebrafish have not been used to directly model tumor lymphangiogenesis. In this chapter we will summarise the contributions zebrafish have made to our understanding of lymphangiogenesis and investigate the possibilities of combining zebrafish transgenic cancer lines or tumor transplantation models with existing lymphatic reporter lines, which could provide valuable insights into the process of tumor-induced lymphangiogenesis. In addition the utility of using the zebrafish lymphatic model as a platform to screen and develop novel anti-lymphatic therapeutics will also be discussed. PMID:27165355

  3. The 2-Minute Step Test is Independently Associated with Cognitive Function in Older Adults with Heart Failure

    PubMed Central

    Alosco, Michael L.; Spitznagel, Mary Beth; Raz, Naftali; Cohen, Ronald; Sweet, Lawrence H.; Colbert, Lisa H.; Josephson, Richard; Waechter, Donna; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2016-01-01

    Background and Aims Cognitive impairment is common in persons with heart failure (HF), and measures like the 6-minute walk test (6MWT) are known to correspond to level of impairment. The 2-minute step test (2MST) has been suggested as a more practical alternative to the 6MWT, though no study has examined whether it is associated with cognitive impairment in persons with HF. This study examined whether the 2MST is associated with cognitive function in older adults with HF. Methods Older adults with HF (N = 145; 68.97±9.31 years) completed the 2MST and a neuropsychological test battery that assessed function in multiple cognitive domains. Results Consistent with past work, HF patients exhibited high rates of cognitive impairment. Hierarchical regression analyses adjusting for demographic and medical characteistics found that the 2MST accounted for unique variance in global cognitive function (ΔR2 = .09, p < .001), executive function (ΔR2 = .03, p < .05), and language (ΔR2 = .10, p < .001). A trend emerged for attention (ΔR2 = .02, p = .09), Follow-up tests indicated that better 2MST performance was significantly correlated with better global, attention, executive, and language test performance. Conclusion The current results indicate that the 2MST is associated with cognitive function in older adults with HF. Further work is needed to clarify underlying mechanisms for this association and the value of implementing the 2MST during routine visits. PMID:22182711

  4. Nursing-sensitive outcome change scores for hospitalized older adults with heart failure: a preliminary descriptive study.

    PubMed

    Park, Hyejin

    2013-10-01

    Nursing has a social mandate to ensure effective practice within its domain and to be accountable for the outcomes of nursing care. Using standardized nursing terminologies makes it possible to measure aspects of nursing care. The purpose of this study was to determine whether a significant difference in outcome ratings exists from admission to discharge for hospitalized older adults with heart failure (HF) using Nursing Outcomes Classification (NOC). A retrospective descriptive research design was used. Data were obtained from 268 inpatient records of patients discharged with HF during a 1-year period. All top 10 NOC outcomes demonstrated statistically significant improvement in outcome ratings from admission to discharge. Findings from this study provide insight on the possible contribution of nursing to outcomes of hospitalized older adults with HF. Validating and incorporating nursing-sensitive outcome measures in future prospective experimental research can contribute to the advancement of science regarding effective treatment of older adults hospitalized with HF, while highlighting the contribution of nursing care to outcomes.

  5. Risk Factors for Increased Hospital Resource Utilization and In-Hospital Mortality in Adults With Single Ventricle Congenital Heart Disease.

    PubMed

    Collins, Ronnie Thomas; Doshi, Pratik; Onukwube, Jennifer; Fram, Ricki Y; Robbins, James M

    2016-08-01

    Most patients with single ventricle congenital heart disease are now expected to survive to adulthood. Co-morbid medical conditions (CMCs) are common. We sought to identify risk factors for increased hospital resource utilization and in-hospital mortality in adults with single ventricle. We analyzed data from the 2001 to 2011 Nationwide Inpatient Sample database in patients aged ≥18 years admitted to nonteaching general hospitals (NTGHs), TGHs, and pediatric hospitals (PHs) with either hypoplastic left heart syndrome, tricuspid atresia or common ventricle. National estimates of hospitalizations were calculated. Elixhauser CMCs were identified. Length of stay (LOS), total hospital costs, and effect of CMCs were determined. Age was greater in NTGH (41.5 ± 1.3 years) than in TGH (32.8 ± 0.5) and PH (25.0 ± 0.6; p <0.0001). Adjusted LOS was shorter in NTGH (5.6 days) than in PH (9.7 days; p <0.0001). Adjusted costs were higher in PH ($56,671) than in TGH ($31,934) and NTGH ($18,255; p <0.0001). CMCs are associated with increased LOS (p <0.0001) and costs (p <0.0001). Risk factors for in-hospital mortality included increasing age (odds ratio [OR] 5.250, CI 2.825 to 9.758 for 45- to 64-year old vs 18- to 30-year old), male gender (OR 2.72, CI 1.804 to 4.103]), and the presence of CMC (OR 4.55, CI 2.193 to 9.436) for 2 vs none). No differences in mortality were found among NTGH, TGH, and PH. Cardiovascular procedures were more common in PH hospitalizations and were associated with higher costs and LOS. CMCs increase costs and mortality. In-hospital mortality is increased with age, male gender, and the presence of hypoplastic left heart syndrome.

  6. Tumor Necrosis Factor Receptor Associated Factor 2 Signaling Provokes Adverse Cardiac Remodeling in the Adult Mammalian Heart

    PubMed Central

    Divakaran, Vijay G.; Evans, Sarah; Topkara, Veli K.; Diwan, Abhinav; Burchfield, Jana; Gao, Feng; Dong, Jianwen; Tzeng, Huei-Ping; Sivasubramanian, Natarajan; Barger, Philip M.; Mann, Douglas L.

    2013-01-01

    Background Tumor necrosis factor (TNF) superfamily ligands that provoke a dilated cardiac phenotype signal through a common scaffolding protein termed TNF receptor associated factor 2 (TRAF2); however, virtually nothing is known with regard to TRAF2 signaling in the adult mammalian heart. Methods and Results We generated multiple founder lines of mice with cardiac restricted overexpression of TRAF2 and characterized the phenotype of mice with higher expression levels of TRAF2 (MHC-TRAF2HC). MHC-TRAF2HC transgenic mice developed a time-dependent increase in cardiac hypertrophy, LV dilation and adverse LV remodeling, and a significant decrease in LV +dP/dt and −dP/dt when compared to littermate (LM) controls (p < 0.05 compared to LM). During the early phases of LV remodeling there was a significant increase in total matrix metalloproteinase (MMP) activity that corresponded with a decrease in total myocardial fibrillar collagen content. As the MHC-TRAF2HC mice aged, there was a significant decrease in total MMP activity accompanied by an increase in total fibrillar collagen content and an increase in myocardial tissue inhibitor of metalloproteinase-1 levels. There was a significant increase in NF-κB activation at 4 – 12 weeks and JNK activation at 4 weeks in the MHCs TRAF2HC mice. Transciptional profiling revealed that > 95% of the hypertrophic/dilated cardiomyopathy-related genes that were significantly upregulated genes in the MHC-TRAF2HC hearts contained κB elements in their promoters. Conclusions These results show for the first time that targeted overexpression of TRAF2 is sufficient to mediate adverse cardiac remodeling in the heart. PMID:23493088

  7. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women.

    PubMed Central

    Osmond, C; Barker, D J

    2000-01-01

    Many human fetuses have to adapt to a limited supply of nutrients. In doing so they permanently change their structure and metabolism. These programmed changes may be the origins of a number of diseases in later life, including coronary heart disease, hypertension, and noninsulin- dependent diabetes. We review epidemiologic studies in which the incidence of these diseases has been related to the recorded, early growth of individuals, while considering factors in the adult lifestyle, such as obesity and socioeconomic status. We discuss possible mechanisms. For hypertension these mechanisms include placentation, maternal blood pressure, fetal undernutrition; childhood growth, activation of the renin-angiotensin system, renal structure, programming of the hypothalamic-pituitary-adrenal axis, vascular structure, and sympathetic nervous activity. For noninsulin-dependent diabetes we discuss mechanisms concerning both insulin resistance and insulin deficiency. We include a review of evidence for the programming of serum cholesterol and clotting factor concentrations. We address the timing of critical windows for coronary heart disease, reviewing studies that allow assessment of the relative importance of fetal, infant, and childhood growth. We argue for a research strategy that combines clinical, animal, and epidemiological studies. PMID:10852853

  8. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    SciTech Connect

    Ding, Yu-Ju; Chen, Yau-Hung

    2012-05-15

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  9. Functional characteristics and molecular identification of swelling-activated chloride conductance in adult rabbit heart ventricles.

    PubMed

    Li, Jingdong; Wu, Xiangqiong; Cui, Tianpen

    2008-02-01

    Outwardly rectifying swelling-activated chloride conductance (ICl,Swell) in rabbit heart plays a critical role in cardioprotection following ischemic preconditioning (IP). But the functional characterization and molecular basis of this chloride conductance in rabbit heart ventricular myocytes is not clear. Candidate chloride channel clones (e.g. ClC-2, ClC-3, ClC-4 and ClC-5) were determined using RT-PCR and Western blot analysis. Whole cell ICl,Swell was recorded from isolated rabbit ventricular myocytes using patch clamp techniques during hypo-osmotic stress. The inhibitory effects of 4,4' isothiocyanato-2,2-disulfonic acid (DIDS), 5-nitro-2(3-phenylroylamino) benzoic acid (NPPB) and indanyloxyacetic acid 94 (IAA-94) on ICl,Swell were examined. The expected size of PCR products for ClC-2, ClC-3 and ClC-4 but not for ClC-5 was obtained. ClC-2 and ClC-3 expression was confirmed by automated fluorescent DNA sequencing. RT-PCR and Western blot showed that ClC-4 was expressed in abundance and ClC-2 was expressed at somewhat lower levels. The biological and pharmacological properties of I(Cl,Swell), including outward rectification, activation due to cell volume change, sensitivity to DIDS, IAA-94 and NPPB were identical to those known properties of ICl,Swell in exogenously expressed systems and other mammals hearts. It was concluded that ClC-3 or ClC-4 might be responsible for the outwardly rectifying part of ICl,Swell and may be the molecular targets of cardioprotection associated with ischemic preconditioning or hypo-osmotic shock. PMID:18278453

  10. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    PubMed Central

    Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N

    2007-01-01

    Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease. PMID:17937808

  11. Eating Patterns and Overweight Status in Young Adults: The Bogalusa Heart Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have focused on the association between eating patterns and obesity. However, the findings have not been consistent. The goal of the present study was to identify the eating patterns associated with overweight among young adults aged 19-28 years (n = 504) in Bogalusa, Louisiana. Fo...

  12. Dietary & health predictors associated with overweight & obesity in young adults: the Bogalusa Heart Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined independent associations between diet and lifestyle behaviors; differences in markers of cardiovascular disease (CVD), and type 2 diabetes mellitus (T2DM); and self-reported health problems among normal weight (NW); overweight (OW), and obese (OB) young adults. Cross-sectional data on pa...

  13. Dietary, lifestyle, and health correlates of overweight and obesity in adults 19 to 39 years of age: The Bogalusa Heart Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diet and lifestyle factors of young adults and their relationship to health risk factors are understudied. Data from the Bogalusa Heart Study population (n = 1214; 19-39 years; 74.1% white; 60.8% female) were used to study associations of lifestyle, health risk factors, and reported health problems ...

  14. In Vivo Cardiotoxicity Induced by Sodium Aescinate in Zebrafish Larvae.

    PubMed

    Liang, Jinfeng; Jin, Wangdong; Li, Hongwen; Liu, Hongcui; Huang, Yanfeng; Shan, Xiaowen; Li, Chunqi; Shan, Letian; Efferth, Thomas

    2016-01-01

    Sodium aescinate (SA) is a widely-applied triterpene saponin product derived from horse chestnut seeds, possessing vasoactive and organ-protective activities with oral or injection administration in the clinic. To date, no toxicity or adverse events in SA have been reported, by using routine models (in vivo or in vitro), which are insufficient to predict all aspects of its pharmacological and toxicological actions. In this study, taking advantage of transparent zebrafish larvae (Danio rerio), we evaluated cardiovascular toxicity of SA at doses of 1/10 MNLC, 1/3 MNLC, MNLC and LC10 by yolk sac microinjection. The qualitative and quantitative cardiotoxicity in zebrafish was assessed at 48 h post-SA treatment, using specific phenotypic endpoints: heart rate, heart rhythm, heart malformation, pericardial edema, circulation abnormalities, thrombosis and hemorrhage. The results showed that SA at 1/10 MNLC and above doses could induce obvious cardiac and pericardial malformations, whilst 1/3 MNLC and above doses could induce significant cardiac malfunctions (heart rate and circulation decrease/absence), as compared to untreated or vehicle-treated control groups. Such cardiotoxic manifestations occurred in more than 50% to 100% of all zebrafish treated with SA at MNLC and LC10. Our findings have uncovered the potential cardiotoxicity of SA for the first time, suggesting more attention to the risk of its clinical application. Such a time- and cost-saving zebrafish cardiotoxicity assay is very valid and reliable for rapid prediction of compound toxicity during drug research and development. PMID:26907249

  15. Use of Echocardiography Reveals Reestablishment of Ventricular Pumping Efficiency and Partial Ventricular Wall Motion Recovery upon Ventricular Cryoinjury in the Zebrafish

    PubMed Central

    Marques, Inês João; Sánchez-Iranzo, Héctor; Jiménez-Borreguero, Luis Jesús; Mercader, Nadia

    2014-01-01

    Aims While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters. Methods and Results Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored. Conclusion Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models. PMID:25532015

  16. Time-lapse imaging of neural development: Zebrafish lead the way into the fourth dimension

    PubMed Central

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-01-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. PMID:21305690

  17. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  18. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  19. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond.