Science.gov

Sample records for adult zebrafish retina

  1. Reactive gliosis in the adult zebrafish retina.

    PubMed

    Thomas, Jennifer L; Ranski, Alexandra H; Morgan, Gregory W; Thummel, Ryan

    2016-02-01

    In contrast to mammals, zebrafish posses the remarkable ability to regenerate retinal neurons. Damage to the zebrafish retina induces Müller glia to act as stem cells, generating retinal progenitors for regeneration. In contrast, injury in the mammalian retina results in Müller glial reactive gliosis, a characteristic gliotic response that is normally detrimental to vision. Understanding the signaling pathways that determine how Müller glia respond to injury is a critical step toward promoting regeneration in the mammalian retina. Here we report that zebrafish Müller glia exhibit signs of reactive gliosis even under normal regenerative conditions and that cell cycle inhibition increases this response. Persistently reactive Müller glia increase their neuroprotective functions, temporarily saving photoreceptors from a cytotoxic light lesion. However, the absence of a sustained proliferation response results in a significant inhibition of retinal regeneration. Interestingly, when cell cycle inhibition is released, a partial recovery of regeneration is observed. Together, these data demonstrate that zebrafish Müller glia possess both gliotic and regenerative potential. PMID:26492821

  2. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina

    PubMed Central

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M.

    2015-01-01

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. SIGNIFICANCE STATEMENT The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms

  3. Expression of TRPV4 in the zebrafish retina during development.

    PubMed

    Sánchez-Ramos, C; Guerrera, M C; Bonnin-Arias, C; Calavia, M G; Laurà, R; Germanà, A; Vega, J A

    2012-06-01

    The transient receptor potential (TRP) channels are involved in sensing mechanical/physical stimuli such as temperature, light, pressure, as well as chemical stimuli. Some TRP channels are present in the vertebrate retina, and the occurrence of the multifunctional channel TRP vanilloid 4 (TRPV4) has been reported in adult zebrafish. Here, we investigate the expression and distribution of TRPV4 in the retina of zebrafish during development using polymerase chain reaction (PCR), Western blot, and immunohistochemistry from 3 days post fertilization (dpf) until 100 dpf. TRPV4 was detected at the mRNA and protein levels in the eye of zebrafish at all ages sampled. Immunohistochemistry revealed the presence of TRPV4 in a population of the retinal cells identified as amacrine cells on the basis of their morphology and localization within the retina, as well as the co-localization of TRPV4 with calretinin. TRPV4 was first (3 dpf) found in the soma of cells localized in the inner nuclear and ganglion cell layers, and thereafter (10 dpf) also in the inner plexiform layer. The adult pattern of TRPV4 expression was achieved by 40 dpf the expression being restricted to the soma of some cells in the inner nuclear layer and ganglion cell layers. These data demonstrate the occurrence and developmental changes in the expression and localization of TRPV4 in the retina of zebrafish, and suggest a role of TRPV4 in the visual processing.

  4. Purpurin is a key molecule for cell differentiation during the early development of zebrafish retina.

    PubMed

    Nagashima, Mikiko; Mawatari, Kazuhiro; Tanaka, Masayuki; Higashi, Tomomi; Saito, Hikaru; Muramoto, Ken-ichiro; Matsukawa, Toru; Koriyama, Yoshiki; Sugitani, Kayo; Kato, Satoru

    2009-12-11

    Recently, we cloned purpurin cDNA as an upregulated gene in the axotomized fish retina. The retina-specific protein was secreted from photoreceptors to ganglion cell layer during an early stage of optic nerve regeneration in zebrafish retina. The purpurin worked as a trigger molecule for axonal regrowth in adult injured fish retina. During zebrafish development, purpurin mRNA first appeared in ventral retina at 2 days post-fertilization (dpf) and spread out to the outer nuclear layer at 3 dpf. Here, we investigated the role of purpurin for zebrafish retinal development using morpholino gene knockdown technique. Injection of purpurin morpholino into the 1-2 cell stage of embryos significantly inhibited the transcriptional and translational expression of purpurin at 3 dpf. In the purpurin morphant, the eyeball was significantly smaller and retinal lamination of nuclear and plexiform layers was not formed at 3 dpf. Retinal cells of purpurin morphants were still proliferative and undifferentiated at 3 dpf. The visual function of purpurin morphant estimated by optomotor response was also suppressed at 5 dpf. By contrast, the control morphants with random sequence morpholino showed retinal lamination with distinct layers and differentiated cells at 3 dpf. These results strongly suggest that purpurin is a key molecule for not only optic nerve regeneration in adult but also cell differentiation during early development in embryo.

  5. Zebrafish Cx35: cloning and characterization of a gap junction gene highly expressed in the retina.

    PubMed

    McLachlan, Elizabeth; White, Thomas W; Ugonabo, Chioma; Olson, Carl; Nagy, James I; Valdimarsson, Gunnar

    2003-09-15

    The vertebrate connexin gene family encodes protein subunits of gap junction channels, which provide a route for direct intercellular communication. Consequently, gap junctions play a vital role in many developmental and homeostatic processes. Aberrant functioning of gap junctions is implicated in many human diseases. Zebrafish are an ideal vertebrate model to study development of the visual system as they produce transparent embryos that develop rapidly, thereby facilitating morphological and behavioral testing. In this study, zebrafish connexin35 has been cloned from a P1 artificial chromosome (PAC) library. Sequence analysis shows a high degree of similarity to the Cx35/36 orthologous group, which are expressed primarily in nervous tissue, including the retina. The gene encodes a 304-amino acid protein with a predicted molecular weight of approximately 35 kDa. Injection of zebrafish Cx35 RNA into paired Xenopus oocytes elicited intercellular electrical coupling with weak voltage sensitivity. In development, Cx35 is first detectable by Northern analysis and RT-PCR, at 2 days post-fertilization (2 dpf), and in the adult it is expressed in the brain and retina. Immunohistochemical analysis revealed that the Cx35 protein is expressed in two sublaminae of the inner plexiform layer of the adult retina. A similar pattern was seen in the 4 and 5 dpf retina, but no labeling was detected in the retina of earlier embryos.

  6. Regeneration of Zebrafish CNS: Adult Neurogenesis

    PubMed Central

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  7. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  8. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming.

  9. Transducin Duplicates in the Zebrafish Retina and Pineal Complex: Differential Specialisation after the Teleost Tetraploidisation

    PubMed Central

    Lagman, David; Callado-Pérez, Amalia; Franzén, Ilkin E.

    2015-01-01

    Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation. PMID:25806532

  10. Transducin duplicates in the zebrafish retina and pineal complex: differential specialisation after the teleost tetraploidisation.

    PubMed

    Lagman, David; Callado-Pérez, Amalia; Franzén, Ilkin E; Larhammar, Dan; Abalo, Xesús M

    2015-01-01

    Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation. PMID:25806532

  11. Zebrafish inner retina: local signals for spatial position, luminance, and color contrast.

    PubMed

    Burkhardt, Dwight A

    2012-09-01

    The retina of the zebrafish (Danio rerio) provides an unusually favorable preparation for genetic and developmental studies of the retina. Although the retina has been studied extensively for two decades, the neuronal response of the inner retina is largely unknown. This report describes a prominent local field potential of the inner retina, the Proximal Negative Response (PNR). It is best evoked by small (100 μm) precisely positioned spots of light and is exceedingly sensitive to negative luminance contrast. The polarity, waveform, and other properties of the PNR suggest that it arises primarily from ON-OFF neurons of the proximal retina. The dominant response to negative contrast and its enhancement by light adaptation is believed due to a dominant presynaptic input from OFF bipolar cells. Color contrast was investigated by analyzing responses to a green bar moving on green versus red backgrounds. Over an intermediate range of irradiance, the response to green on red was larger than the response to green on green, thereby providing evidence for the encoding of color contrast. The present findings complement the classic principle of color contrast for human vision known as Kirschmann's third law and bring to mind the view of Walls that color contrast may have been the driving force for the evolution of color vision in lower vertebrates. In sum, the PNR of zebrafish provides clear evidence for the encoding of color and luminance contrast in the inner retina. It exhibits the defining properties common to many other vertebrates, reinforcing the view that the zebrafish may further serve as a model for retinal function and that the PNR may provide a new approach for studies of development, genetics, and retinal degeneration in zebrafish.

  12. DNA Damage Response Is Involved in the Developmental Toxicity of Mebendazole in Zebrafish Retina

    PubMed Central

    Sasagawa, Shota; Nishimura, Yuhei; Kon, Tetsuo; Yamanaka, Yukiko; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Okabe, Shiko; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Intestinal helminths cause iron-deficiency anemia in pregnant women, associated with premature delivery, low birth weight, maternal ill health, and maternal death. Although benzimidazole compounds such as mebendazole (MBZ) are highly efficacious against helminths, there are limited data on its use during pregnancy. In this study, we performed in vivo imaging of the retinas of zebrafish larvae exposed to MBZ, and found that exposure to MBZ during 2 and 3 days post-fertilization caused malformation of the retinal layers. To identify the molecular mechanism underlying the developmental toxicity of MBZ, we performed transcriptome analysis of zebrafish eyes. The analysis revealed that the DNA damage response was involved in the developmental toxicity of MBZ. We were also able to demonstrate that inhibition of ATM significantly attenuated the apoptosis induced by MBZ in the zebrafish retina. These results suggest that MBZ causes developmental toxicity in the zebrafish retina at least partly by activating the DNA damage response, including ATM signaling, providing a potential adverse outcome pathway in the developmental toxicity of MBZ in mammals. PMID:27014071

  13. Meis1 specifies positional information in the retina and tectum to organize the zebrafish visual system

    PubMed Central

    2010-01-01

    Background During visual system development, multiple signalling pathways cooperate to specify axial polarity within the retina and optic tectum. This information is required for the topographic mapping of retinal ganglion cell axons on the tectum. Meis1 is a TALE-class homeodomain transcription factor known to specify anterior-posterior identity in the hindbrain, but its role in visual system patterning has not been investigated. Results meis1 is expressed in both the presumptive retina and tectum. An analysis of retinal patterning reveals that Meis1 is required to correctly specify both dorsal-ventral and nasal-temporal identity in the zebrafish retina. Meis1-knockdown results in a loss of smad1 expression and an upregulation in follistatin expression, thereby causing lower levels of Bmp signalling and a partial ventralization of the retina. Additionally, Meis1-deficient embryos exhibit ectopic Fgf signalling in the developing retina and a corresponding loss of temporal identity. Meis1 also positively regulates ephrin gene expression in the tectum. Consistent with these patterning phenotypes, a knockdown of Meis1 ultimately results in retinotectal mapping defects. Conclusions In this work we describe a novel role for Meis1 in regulating Bmp signalling and in specifying temporal identity in the retina. By patterning both the retina and tectum, Meis1 plays an important role in establishing the retinotectal map and organizing the visual system. PMID:20809932

  14. Neocuproine ablates melanocytes in adult zebrafish.

    PubMed

    O'Reilly-Pol, Thomas; Johnson, Stephen L

    2008-12-01

    The simplest regeneration experiments involve the ablation of a single cell type. While methods exist to ablate the melanocytes of the larval zebrafish,(1,2) no convenient method exists to ablate melanocytes in adult zebrafish. Here, we show that the copper chelator neocuproine (NCP) causes fragmentation and disappearance of melanin in adult zebrafish melanocytes. Adult melanocytes expressing eGFP under the control of a melanocyte-specific promoter also lose eGFP fluorescence in the presence of NCP. We conclude that NCP causes melanocyte death. This death is independent of p53 and melanin, but can be suppressed by the addition of exogenous copper. NCP is ineffective at ablating larval melanocytes. This now provides a tool for addressing questions about stem cells and the maintenance of the adult pigment pattern in zebrafish.

  15. Macrophages modulate adult zebrafish tail fin regeneration.

    PubMed

    Petrie, Timothy A; Strand, Nicholas S; Yang, Chao-Tsung; Tsung-Yang, Chao; Rabinowitz, Jeremy S; Moon, Randall T

    2014-07-01

    Neutrophils and macrophages, as key mediators of inflammation, have defined functionally important roles in mammalian tissue repair. Although recent evidence suggests that similar cells exist in zebrafish and also migrate to sites of injury in larvae, whether these cells are functionally important for wound healing or regeneration in adult zebrafish is unknown. To begin to address these questions, we first tracked neutrophils (lyzC(+), mpo(+)) and macrophages (mpeg1(+)) in adult zebrafish following amputation of the tail fin, and detailed a migratory timecourse that revealed conserved elements of the inflammatory cell response with mammals. Next, we used transgenic zebrafish in which we could selectively ablate macrophages, which allowed us to investigate whether macrophages were required for tail fin regeneration. We identified stage-dependent functional roles of macrophages in mediating fin tissue outgrowth and bony ray patterning, in part through modulating levels of blastema proliferation. Moreover, we also sought to detail molecular regulators of inflammation in adult zebrafish and identified Wnt/β-catenin as a signaling pathway that regulates the injury microenvironment, inflammatory cell migration and macrophage phenotype. These results provide a cellular and molecular link between components of the inflammation response and regeneration in adult zebrafish. PMID:24961798

  16. Adult zebrafish model for pneumococcal pathogenesis.

    PubMed

    Saralahti, Anni; Piippo, Hannaleena; Parikka, Mataleena; Henriques-Normark, Birgitta; Rämet, Mika; Rounioja, Samuli

    2014-02-01

    Streptococcus pneumoniae (pneumococcus) is a leading cause of community acquired pneumonia, septicemia, and meningitis. Due to incomplete understanding of the host and bacterial factors contributing to these diseases optimal treatment and prevention methods are lacking. In the present study we examined whether the adult zebrafish (Danio rerio) can be used to investigate the pathophysiology of pneumococcal diseases. Here we show that both intraperitoneal and intramuscular injections of the pneumococcal strain TIGR4 cause a fulminant, dose-dependent infection in adult zebrafish, while isogenic mutant bacteria lacking the polysaccharide capsule, autolysin, or pneumolysin are attenuated in the model. Infection through the intraperitoneal route is characterized by rapid expansion of pneumococci in the bloodstream, followed by penetration of the blood-brain barrier and progression to meningitis. Using Rag1 mutant zebrafish, which are devoid of somatic recombination and thus lack adaptive immune responses, we show that clearance of pneumococci in adult zebrafish depends mainly on innate immune responses. In conclusion, this study provides evidence that the adult zebrafish can be used as a model for a pneumococcal infection, and that it can be used to study both host and bacterial factors involved in the pathogenesis. However, our results do not support the use of the zebrafish in studies on the role of adaptive immunity in pneumococcal disease or in the development of new pneumococcal vaccines.

  17. Pannexin1 Channel Proteins in the Zebrafish Retina Have Shared and Unique Properties

    PubMed Central

    Kurtenbach, Sarah; Prochnow, Nora; Kurtenbach, Stefan; Klooster, Jan; Zoidl, Christiane; Dermietzel, Rolf; Kamermans, Maarten; Zoidl, Georg

    2013-01-01

    In mammals, a single pannexin1 gene (Panx1) is widely expressed in the CNS including the inner and outer retinae, forming large-pore voltage-gated membrane channels, which are involved in calcium and ATP signaling. Previously, we discovered that zebrafish lack Panx1 expression in the inner retina, with drPanx1a exclusively expressed in horizontal cells of the outer retina. Here, we characterize a second drPanx1 protein, drPanx1b, generated by whole-genome duplications during teleost evolution. Homology searches strongly support the presence of pannexin sequences in cartilaginous fish and provide evidence that pannexins evolved when urochordata and chordata evolution split. Further, we confirm Panx1 ohnologs being solely present in teleosts. A hallmark of differential expression of drPanx1a and drPanx1b in various zebrafish brain areas is the non-overlapping protein localization of drPanx1a in the outer and drPanx1b in the inner fish retina. A functional comparison of the evolutionary distant fish and mouse Panx1s revealed both, preserved and unique properties. Preserved functions are the capability to form channels opening at resting potential, which are sensitive to known gap junction and hemichannel blockers, intracellular calcium, extracellular ATP and pH changes. However, drPanx1b is unique due to its highly complex glycosylation pattern and distinct electrophysiological gating kinetics. The existence of two Panx1 proteins in zebrafish displaying distinct tissue distribution, protein modification and electrophysiological properties, suggests that both proteins fulfill different functions in vivo. PMID:24194896

  18. Small molecule screen for compounds that affect vascular development in the zebrafish retina

    PubMed Central

    Kitambi, Satish S.; McCulloch, Kyle J.; Peterson, Randall T.; Malicki, Jarema J.

    2009-01-01

    Blood vessel formation in the vertebrate eye is a precisely regulated process. In the human retina, both an excess and a deficiency of blood vessels may lead to a loss of vision. To gain insight into the molecular basis of vessel formation in the vertebrate retina and to develop pharmacological means of manipulating this process in a living organism, we further characterized the embryonic zebrafish eye vasculature, and performed a small molecule screen for compounds that affect blood vessel morphogenesis. The screening of approximately 2000 compounds revealed four small molecules that at specific concentrations affect retinal vessel morphology but do not produce obvious changes in trunk vessels, or in the neuronal architecture of the retina. Of these, two induce a pronounced widening of vessel diameter without a substantial loss of vessel number, one compound produces a loss of retinal blood vessels accompanied by a mild increase of their diameter, and finally one other generates a severe loss of retinal vessels. This work demonstrates the utility of zebrafish as a screening tool for small molecules that affect eye vasculature and presents several compounds of potential therapeutic importance. PMID:19445054

  19. Transplanted neurons integrate into adult retinas and respond to light

    PubMed Central

    Venugopalan, Praseeda; Wang, Yan; Nguyen, Tu; Huang, Abigail; Muller, Kenneth J.; Goldberg, Jeffrey L.

    2016-01-01

    Retinal ganglion cells (RGCs) degenerate in diseases like glaucoma and are not replaced in adult mammals. Here we investigate whether transplanted RGCs can integrate into the mature retina. We have transplanted GFP-labelled RGCs into uninjured rat retinas in vivo by intravitreal injection. Transplanted RGCs acquire the general morphology of endogenous RGCs, with axons orienting towards the optic nerve head of the host retina and dendrites growing into the inner plexiform layer. Preliminary data show in some cases GFP+ axons extending within the host optic nerves and optic tract, reaching usual synaptic targets in the brain, including the lateral geniculate nucleus and superior colliculus. Electrophysiological recordings from transplanted RGCs demonstrate the cells' electrical excitability and light responses similar to host ON, ON–OFF and OFF RGCs, although less rapid and with greater adaptation. These data present a promising approach to develop cell replacement strategies in diseased retinas with degenerating RGCs. PMID:26843334

  20. Inhibitory neuron migration and IPL formation in the developing zebrafish retina.

    PubMed

    Chow, Renee W; Almeida, Alexandra D; Randlett, Owen; Norden, Caren; Harris, William A

    2015-08-01

    The mature vertebrate retina is a highly ordered neuronal network of cell bodies and synaptic neuropils arranged in distinct layers. Little, however, is known about the emergence of this spatial arrangement. Here, we investigate how the three main types of retinal inhibitory neuron (RIN)--horizontal cells (HCs), inner nuclear layer amacrine cells (iACs) and displaced amacrine cells (dACs)--reach their specific laminar positions during development. Using in vivo time-lapse imaging of zebrafish retinas, we show that RINs undergo distinct phases of migration. The first phase, common to all RINs, is bipolar migration directed towards the apicobasal centre of the retina. All RINs then transition to a less directionally persistent multipolar phase of migration. Finally, HCs, iACs and dACs each undergo cell type-specific migration. In contrast to current hypotheses, we find that most dACs send processes into the forming inner plexiform layer (IPL) before migrating through it and inverting their polarity. By imaging and quantifying the dynamics of HCs, iACs and dACs from birth to final position, this study thus provides evidence for distinct and new migration patterns during retinal lamination and insights into the initiation of IPL formation.

  1. Retina

    MedlinePlus

    As light enters the eye, it strikes the receptor cells of the retina called the rods and cones. A chemical reaction results in the formation of electric impulses, which then travel to the brain through the optic nerve.

  2. Mutations in N-cadherin and a Stardust homolog, Nagie oko, affect cell-cycle exit in zebrafish retina.

    PubMed

    Yamaguchi, Masahiro; Imai, Fumiyasu; Tonou-Fujimori, Noriko; Masai, Ichiro

    2010-01-01

    It has been reported that the loss of apicobasal cell polarity and the disruption of adherens junctions induce hyperplasia in the mouse developing brain. However, it is not fully understood whether hyperplasia is caused by an enhanced cell proliferation, an inhibited neurogenesis, or both. In this study, we found that the ratio of the number of proliferating progenitor cells to the total number of retinal cells increases in the neurogenic stages in zebrafish n-cadherin (ncad) and nagie oko (nok) mutants, in which the apicobasal cell polarity and adherens junctions in the retinal epithelium are disrupted. The cell-cycle progression was not altered in the ncad and nok mutants. Rather, the ratio of the number of cells undergoing neurogenic cell division to the total number of cells undergoing mitosis decreased in the ncad and nok mutant retinas, suggesting that the switching from proliferative cell division to neurogenic cell division was compromised in these mutant retinas. These findings suggest that the inhibition of neurogenesis is a primary defect that causes hyperplasia in the ncad and nok mutant retinas. The Hedgehog-protein kinase A signaling pathway and the Notch signaling pathway regulate retinal neurogenesis in zebrafish. We found that both signaling pathways are involved in the generation of neurogenic defects in the ncad and nok mutant retinas. Taken together, these findings suggest that apicobasal cell polarity and epithelial integrity are essential for retinal neurogenesis in zebrafish.

  3. Radial glia and neural progenitors in the adult zebrafish central nervous system.

    PubMed

    Than-Trong, Emmanuel; Bally-Cuif, Laure

    2015-08-01

    The adult central nervous system (CNS) of the zebrafish, owing to its enrichment in constitutive neurogenic niches, is becoming an increasingly used model to address fundamental questions pertaining to adult neural stem cell (NSC) biology, adult neurogenesis and neuronal repair. Studies conducted in several CNS territories (notably the telencephalon, retina, midbrain, cerebellum and spinal cord) highlighted the presence, in these niches, of progenitor cells displaying NSC-like characters. While pointing to radial glial cells (RG) as major long-lasting, constitutively active and/or activatable progenitors in most domains, these studies also revealed a high heterogeneity in the progenitor subtypes used at the top of neurogenic hierarchies, including the persistence of neuroepithelial (NE) progenitors in some areas. Likewise, dissecting the molecular pathways underlying RG maintenance and recruitment under physiological conditions and upon repair in the zebrafish model revealed shared processes but also specific cascades triggering or sustaining reparative NSC recruitment. Together, the zebrafish adult brain reveals an extensive complexity of adult NSC niches, properties and control pathways, which extends existing understanding of adult NSC biology and gives access to novel mechanisms of efficient NSC maintenance and recruitment in an adult vertebrate brain. PMID:25976648

  4. Opposing Shh and Fgf signals initiate nasotemporal patterning of the zebrafish retina

    PubMed Central

    Hernández-Bejarano, María; Gestri, Gaia; Spawls, Lana; Nieto-López, Francisco; Picker, Alexander; Tada, Masazumi; Brand, Michael; Bovolenta, Paola; Wilson, Stephen W.; Cavodeassi, Florencia

    2015-01-01

    The earliest known determinants of retinal nasotemporal identity are the transcriptional regulators Foxg1, which is expressed in the prospective nasal optic vesicle, and Foxd1, which is expressed in the prospective temporal optic vesicle. Previous work has shown that, in zebrafish, Fgf signals from the dorsal forebrain and olfactory primordia are required to specify nasal identity in the dorsal, prospective nasal, optic vesicle. Here, we show that Hh signalling from the ventral forebrain is required for specification of temporal identity in the ventral optic vesicle and is sufficient to induce temporal character when activated in the prospective nasal retina. Consequently, the evaginating optic vesicles become partitioned into prospective nasal and temporal domains by the opposing actions of Fgfs and Shh emanating from dorsal and ventral domains of the forebrain primordium. In absence of Fgf activity, foxd1 expression is established irrespective of levels of Hh signalling, indicating that the role of Shh in promoting foxd1 expression is only required in the presence of Fgf activity. Once the spatially complementary expression of foxd1 and foxg1 is established, the boundary between expression domains is maintained by mutual repression between Foxd1 and Foxg1. PMID:26428010

  5. Opposing Shh and Fgf signals initiate nasotemporal patterning of the zebrafish retina.

    PubMed

    Hernández-Bejarano, María; Gestri, Gaia; Spawls, Lana; Nieto-López, Francisco; Picker, Alexander; Tada, Masazumi; Brand, Michael; Bovolenta, Paola; Wilson, Stephen W; Cavodeassi, Florencia

    2015-11-15

    The earliest known determinants of retinal nasotemporal identity are the transcriptional regulators Foxg1, which is expressed in the prospective nasal optic vesicle, and Foxd1, which is expressed in the prospective temporal optic vesicle. Previous work has shown that, in zebrafish, Fgf signals from the dorsal forebrain and olfactory primordia are required to specify nasal identity in the dorsal, prospective nasal, optic vesicle. Here, we show that Hh signalling from the ventral forebrain is required for specification of temporal identity in the ventral optic vesicle and is sufficient to induce temporal character when activated in the prospective nasal retina. Consequently, the evaginating optic vesicles become partitioned into prospective nasal and temporal domains by the opposing actions of Fgfs and Shh emanating from dorsal and ventral domains of the forebrain primordium. In absence of Fgf activity, foxd1 expression is established irrespective of levels of Hh signalling, indicating that the role of Shh in promoting foxd1 expression is only required in the presence of Fgf activity. Once the spatially complementary expression of foxd1 and foxg1 is established, the boundary between expression domains is maintained by mutual repression between Foxd1 and Foxg1.

  6. Elevated dopamine concentration in light-adapted zebrafish retinas is correlated with increased dopamine synthesis and metabolism.

    PubMed

    Connaughton, Victoria P; Wetzell, Bradley; Arneson, Lynne S; DeLucia, Vittoria; Riley, Anthony L

    2015-10-01

    Probing zebrafish (Danio rerio) retinal cryostat sections, collected either 8 h into the light or dark cycle, with an antibody against tyrosine hydroxylase (TH) identified a single population of immunopositive cells in the inner retina. However, the observed labeling patterns were not identical in both sets of tissues - label intensity was brighter in light-adapted tissue. This difference was quantified by probing western blots of retinal homogenates with the same TH antibody, which showed that TH expression increased by 42% in light-adapted tissue. High-performance liquid chromatography with electrochemical detection revealed that the concentrations of both dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) are also elevated in light-adapted zebrafish retinal tissue. Dopamine levels increased by 14% and DOPAC levels increased by 25% when measured in retinal homogenates harvested during the light cycle. These results indicate that dopamine levels in zebrafish retina are significantly increased in light-adapted tissue. The increase in dopamine content is correlated with an increase in both TH and DOPAC, suggesting that changes in dopamine concentration are due to light-adaptive changes in the synthesis, release and metabolism of dopamine. Dopamine concentration is elevated in lighted-adapted zebrafish retinas. This increase is correlated with an increase in both tyrosine hydroxylase (TH) and DOPAC (3,4-dihydroxyphenylacetic acid), suggesting that changes in dopamine concentration are due to light-adaptive changes in the synthesis, release and metabolism of dopamine. This is applicable to studies examining retinal mutants, the role of dopamine in disease or visual system development.

  7. mglur6b:EGFP Transgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions.

    PubMed

    Glasauer, Stella M K; Wäger, Robert; Gesemann, Matthias; Neuhauss, Stephan C F

    2016-08-15

    Metabotropic glutamate receptors (mGluRs) are mainly known for regulating excitability of neurons. However, mGluR6 at the photoreceptor-ON bipolar cell synapse mediates sign inversion through glutamatergic inhibition. Although this is currently the only confirmed function of mGluR6, other functions have been suggested. Here we present Tg(mglur6b:EGFP)zh1, a new transgenic zebrafish line recapitulating endogenous expression of one of the two mglur6 paralogs in zebrafish. Investigating transgene as well as endogenous mglur6b expression within the zebrafish retina indicates that EGFP and mglur6b mRNA are not only expressed in bipolar cells, but also in a subset of ganglion and amacrine cells. The amacrine cells labeled in Tg(mglur6b:EGFP)zh1 constitute a novel cholinergic, non-GABAergic, non-starburst amacrine cell type described for the first time in teleost fishes. Apart from the retina, we found transgene expression in subsets of periventricular neurons of the hypothalamus, Purkinje cells of the cerebellum, various cell types of the optic tectum, and mitral/ruffed cells of the olfactory bulb. These findings suggest novel functions of mGluR6 besides sign inversion at ON bipolar cell dendrites, opening up the possibility that inhibitory glutamatergic signaling may be more prevalent than currently thought. J. Comp. Neurol. 524:2363-2378, 2016. © 2016 Wiley Periodicals, Inc.

  8. Chondroitin sulfate and keratan sulfate are the major glycosaminoglycans present in the adult zebrafish Danio rerio (Chordata-Cyprinidae).

    PubMed

    Souza, Aline R C; Kozlowski, Eliene O; Cerqueira, Vinicius R; Castelo-Branco, Morgana T L; Costa, Manoel L; Pavão, Mauro S G

    2007-12-01

    The zebrafish Danio rerio (Chordata-Cyprinidae) is a model organism frequently used to study the functions of proteoglycans and their glycosaminoglycan (GAG) chains. Although several studies clearly demonstrate the participation of these polymers in different biological and cellular events that take place during embryonic development, little is known about the GAGs in adult zebrafish. In the present study, the total GAGs were extracted from the whole fish by proteolytic digestion, purified by anion-exchange chromatography and characterized by electrophoresis after degradation with specific enzymes and/or by high-performance liquid chromatography (HPLC) analysis of the disaccharides. Two GAGs were identified: a low-molecular-weight chondroitin sulfate (CS) and keratan sulfate (KS), corresponding to approximately 80% and 20% of the total GAGs, respectively. In the fish eye, KS represents approximately 80% of total GAGs. Surprisingly, no heparinoid was detected, but may be present in the fish at concentrations lower than the limit of the method used. HPLC of the disaccharides formed after chondroitin AC or ABC lyase degradation revealed that the zebrafish CS is composed by DeltaUA-1-->3-GalNAc(4SO4) (59.4%), DeltaUA-1-->3-GalNAc(6SO4) (23.1%), and DeltaUA-1-->3-GalNAc (17.5%) disaccharide units. No disulfated disaccharides were detected. Immunolocalization on sections from zebrafish retina using monoclonal antibodies against CS4- or 6-sulfate showed that in the retina these GAGs are restricted to the outer and inner plexiform layers. This is the first report showing the presence of KS in zebrafish eye, and the structural characterization of CS and its localization in the zebrafish retina. Detailed information about the structure and tissue localization of GAGs is important to understand the functions of these polymers in this model organism.

  9. Nok plays an essential role in maintaining the integrity of the outer nuclear layer in the zebrafish retina

    PubMed Central

    Wei, Xiangyun; Zou, Jian; Takechi, Masaki; Kawamura, Shoji; Li, Lihua

    2010-01-01

    Proper visual function of the vertebrate retina requires the maintenance of the integrity of the retinal outer nuclear layer (ONL), which is often affected in many blinding human retinal diseases.While the structural integrity of the ONL has long been considered to be maintained primarily through the outer limiting membrane (OLM), we have little knowledge on the development and maintenance of the OLM itself. Here, by analyzing the adhering properties of photoreceptors in zebrafish N-cad and nok mutants, we demonstrated for the first time that the nok gene is essential for the establishment and/or maintenance of the OLM. In addition, our results imply the possibility that Nok, Crumbs, and their associated proteins may constitute a type of photoreceptor-photoreceptor junctional complex that has not been described before. Thus, our study provides novel insights into the mechanisms by which the integrity of the ONL is maintained in the vertebrate retina. PMID:16530752

  10. Irx7, a Smarca4-regulated gene for retinal differentiation, regulates other genes controlled by Smarca4 in zebrafish retinas.

    PubMed

    Zhang, Yuqing; Bonilla, Sylvia; Chong, Leelyn; Leung, Yuk Fai

    2013-01-01

    The iroquois 7 (irx7) in zebrafish encodes a homeodomain transcription factor (TF) in the retinal differentiation network regulated by smarca4, a component of chromatin remodeling complex. The function of Irx7 on retinal development has recently been revealed by antisense morpholino knockdown experiments. In particular, the normal expression of irx7 in the inner nuclear layer (INL) is essential for the differentiation of cells in the INL and the outer nuclear layer (ONL), as well as the dendritic projection of GCs into the inner plexiform layer (IPL). Irx7 also exerts its effect on retinal differentiation through activating the expression of TFs that specify various retinal cell types. However, the relationship between irx7 and the other Smarca4-regulated genes for retinal differentiation was not clear. This study reports an investigation of the regulatory role of irx7 on 13 genes including aanat2, barhl2, bhlhe22, cdh11, ckmt1, gnat1, irx4a, ndrg1a, nme2l, pbx1a, rcv1, robo2 and tfap2a. These genes were originally used in a study that characterized the cellular expression pattern of Smarca4-regulated genes and had a diverse expression pattern in the retina. Their expression in the normal wild-type (WT), Irx7-knockdown and the injection control embryos was characterized by in situ hybridization at 52h post-fertilization (hpf). This is the stage when irx7's expression level is the highest in the developing retinas. The results indicate that the expression of 11 of the 13 genes was reduced and one was overexpressed in the Irx7-knockdown retinas. Consistent with a previous report, one of these 13 genes was not expressed in the retina. Among the 12 Irx7-regulated genes, 11 had an expression change in the Irx7-knockdown retinas similar to that in the smarca4 retinas, indicating that Smarca4 regulates the expression of these 11 genes at least in part through irx7. Interestingly, bhlhe22 was only over-expressed in the Irx7-knockdown but not the smarca4 retinas. These

  11. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo

    PubMed Central

    Brönnimann, Daniel; Dellenbach, Christian; Saveljic, Igor; Rieger, Michael; Rohr, Stephan; Filipovic, Nenad; Djonov, Valentin

    2016-01-01

    Introduction Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo. Materials and Methods Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations. Results Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001). Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01) and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03). Discussion In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic

  12. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation.

    PubMed

    Weber, Isabell P; Ramos, Ana P; Strzyz, Paulina J; Leung, Louis C; Young, Stephen; Norden, Caren

    2014-04-24

    The development of complex neuronal tissues like the vertebrate retina requires the tight orchestration of cell proliferation and differentiation. Although the complexity of transcription factors and signaling pathways involved in retinogenesis has been studied extensively, the influence of tissue maturation itself has not yet been systematically explored. Here, we present a quantitative analysis of mitotic events during zebrafish retinogenesis that reveals three types of committed neuronal precursors in addition to the previously known apical progenitors. The identified precursor types present at distinct developmental stages and exhibit different mitotic location (apical versus nonapical), cleavage plane orientation, and morphology. Interestingly, the emergence of nonapically dividing committed bipolar cell precursors can be linked to an increase in apical crowding caused by the developing photoreceptor cell layer. Furthermore, genetic interference with neuronal subset specification induces ectopic divisions of committed precursors, underlining the finding that progressing morphogenesis can effect precursor division position.

  13. The perplexed and confused mutations affect distinct stages during the transition from proliferating to post-mitotic cells within the zebrafish retina.

    PubMed

    Link, B A; Kainz, P M; Ryou, T; Dowling, J E

    2001-08-15

    To identify and study genes essential for vertebrate retinal development, we are screening zebrafish embryos for mutations that disrupt retinal histogenesis. Key steps in retinogenesis include withdrawal from mitosis by multipotent neuroepithelial cells, specification to particular cell types, migration to the appropriate laminar positions, and molecular and morphological differentiation. In this study, we have identified two recessive mutations that affect the transition of proliferating neuroepithelial cells to postmitotic retinal cells. Both the perplexed and confused mutant phenotypes were initially detectable when the first retinal neuroepithelial cells began to leave the cell cycle. At this time, each mutant retina showed increased cell death and a lack of morphological differentiation. Cell death was found to be apoptotic in both perplexed and confused retinas based on TUNEL analysis and activation of caspase-3. TUNEL-phosphoRb-BrdU colocalization studies indicated that the perplexed mutation caused death in cells transitioning from a proliferative to postmitotic state. For the confused mutation, TUNEL-phosphoRb-BrdU analysis revealed that only a subset of postmitotic cells were induced to activate apoptosis. Mosaic analysis demonstrated that within the retina the perplexed mutation functions noncell-autonomously. Furthermore, whole lens or eye cup transplantations indicated that the retinal defect was intrinsic to the retina. Mosaic analysis with confused embryos showed this mutation acts cell-autonomously. From these studies, we conclude that the perplexed and confused genes are essential at distinct stages during the transition from proliferating to postmitotic cells within the zebrafish retina. PMID:11476583

  14. The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue

    PubMed Central

    Wan, Yinan; Almeida, Alexandra D.; Rulands, Steffen; Chalour, Naima; Muresan, Leila; Wu, Yunmin; Simons, Benjamin D.; He, Jie; Harris, William A.

    2016-01-01

    Clonal analysis is helping us understand the dynamics of cell replacement in homeostatic adult tissues (Simons and Clevers, 2011). Such an analysis, however, has not yet been achieved for continuously growing adult tissues, but is essential if we wish to understand the architecture of adult organs. The retinas of lower vertebrates grow throughout life from retinal stem cells (RSCs) and retinal progenitor cells (RPCs) at the rim of the retina, called the ciliary marginal zone (CMZ). Here, we show that RSCs reside in a niche at the extreme periphery of the CMZ and divide asymmetrically along a radial (peripheral to central) axis, leaving one daughter in the peripheral RSC niche and the other more central where it becomes an RPC. We also show that RPCs of the CMZ have clonal sizes and compositions that are statistically similar to progenitor cells of the embryonic retina and fit the same stochastic model of proliferation. These results link embryonic and postembryonic cell behaviour, and help to explain the constancy of tissue architecture that has been generated over a lifetime. PMID:26893352

  15. Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish.

    PubMed

    Hess, Isabell; Boehm, Thomas

    2016-01-01

    Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-myb(I181N) mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development. PMID:26777855

  16. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    PubMed

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-01

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration.

  17. Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration

    PubMed Central

    McCampbell, Kristen K.; Springer, Kristin N.; Wingert, Rebecca A.

    2015-01-01

    The zebrafish is a useful animal model to study the signaling pathways that orchestrate kidney regeneration, as its renal nephrons are simple, yet they maintain the biological complexity inherent to that of higher vertebrate organisms including mammals. Recent studies have suggested that administration of the aminoglycoside antibiotic gentamicin in zebrafish mimics human acute kidney injury (AKI) through the induction of nephron damage, but the timing and details of critical phenotypic events associated with the regeneration process, particularly in existing nephrons, have not been characterized. Here, we mapped the temporal progression of cellular and molecular changes that occur during renal epithelial regeneration of the proximal tubule in the adult zebrafish using a platform of histological and expression analysis techniques. This work establishes the timing of renal cell death after gentamicin injury, identifies proliferative compartments within the kidney, and documents gene expression changes associated with the regenerative response of proliferating cells. These data provide an important descriptive atlas that documents the series of events that ensue after damage in the zebrafish kidney, thus availing a valuable resource for the scientific community that can facilitate the implementation of zebrafish research to delineate the mechanisms that control renal regeneration. PMID:26089919

  18. Rhythmic Ganglion Cell Activity in Bleached and Blind Adult Mouse Retinas

    PubMed Central

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa – a degenerative disease which often leads to incurable blindness- the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor’s dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the

  19. Embryonic oxidative stress results in reproductive impairment for adult zebrafish

    PubMed Central

    Newman, Trent A.C.; Carleton, Catherine R.; Leeke, Bryony; Hampton, Mark B.; Horsfield, Julia A.

    2015-01-01

    Exposure to environmental stressors during embryo development can have long-term effects on the adult organism. This study used the thioredoxin reductase inhibitor auranofin to investigate the consequences of oxidative stress during zebrafish development. Auranofin at low doses triggered upregulation of the antioxidant genes gstp1 and prdx1. As the dose was increased, acute developmental abnormalities, including cerebral hemorrhaging and jaw malformation, were observed. To determine whether transient disruption of redox homeostasis during development could have long-term consequences, zebrafish embryos were exposed to a low dose of auranofin from 6–24 hours post fertilization, and then raised to adulthood. The adult fish were outwardly normal in their appearance with no gross physical differences compared to the control group. However, these adult fish had reduced odds of breeding and a lower incidence of egg fertilization. This study shows that a suboptimal early life environment can reduce the chances of reproductive success in adulthood. PMID:26584358

  20. Combining Zebrafish and Mouse Models to Test the Function of Deubiquitinating Enzyme (Dubs) Genes in Development: Role of USP45 in the Retina.

    PubMed

    Toulis, Vasileios; Garanto, Alejandro; Marfany, Gemma

    2016-01-01

    Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies. PMID:27613029

  1. Combining Zebrafish and Mouse Models to Test the Function of Deubiquitinating Enzyme (Dubs) Genes in Development: Role of USP45 in the Retina.

    PubMed

    Toulis, Vasileios; Garanto, Alejandro; Marfany, Gemma

    2016-01-01

    Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies.

  2. Whole-body multispectral photoacoustic imaging of adult zebrafish

    PubMed Central

    Huang, Na; Guo, Heng; Qi, Weizhi; Zhang, Zhiwei; Rong, Jian; Yuan, Zhen; Ge, Wei; Jiang, Huabei; Xi, Lei

    2016-01-01

    The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs. PMID:27699119

  3. Whole-body multispectral photoacoustic imaging of adult zebrafish

    PubMed Central

    Huang, Na; Guo, Heng; Qi, Weizhi; Zhang, Zhiwei; Rong, Jian; Yuan, Zhen; Ge, Wei; Jiang, Huabei; Xi, Lei

    2016-01-01

    The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs.

  4. Wnt Regulates Proliferation and Neurogenic Potential of Müller Glial Cells via a Lin28/let-7 miRNA-Dependent Pathway in Adult Mammalian Retinas.

    PubMed

    Yao, Kai; Qiu, Suo; Tian, Lin; Snider, William D; Flannery, John G; Schaffer, David V; Chen, Bo

    2016-09-27

    In cold-blooded vertebrates such as zebrafish, Müller glial cells (MGs) readily proliferate to replenish lost retinal neurons. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle unless the retina is injured. Here, we show that gene transfer of β-catenin in adult mouse retinas activates Wnt signaling and MG proliferation without retinal injury. Upstream of Wnt, deletion of GSK3β stabilizes β-catenin and activates MG proliferation. Downstream of Wnt, β-catenin binds to the Lin28 promoter and activates transcription. Deletion of Lin28 abolishes β-catenin-mediated effects on MG proliferation, and Lin28 gene transfer stimulates MG proliferation. We further demonstrate that let-7 miRNAs are critically involved in Wnt/Lin28-regulated MG proliferation. Intriguingly, a subset of cell-cycle-reactivated MGs express markers for amacrine cells. Together, these results reveal a key role of Wnt-Lin28-let7 miRNA signaling in regulating proliferation and neurogenic potential of MGs in the adult mammalian retina. PMID:27681429

  5. In vivo cell tracking and quantification method in adult zebrafish

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Alt, Clemens; Li, Pulin; White, Richard M.; Zon, Leonard I.; Wei, Xunbin; Lin, Charles P.

    2012-03-01

    Zebrafish have become a powerful vertebrate model organism for drug discovery, cancer and stem cell research. A recently developed transparent adult zebrafish using double pigmentation mutant, called casper, provide unparalleled imaging power in in vivo longitudinal analysis of biological processes at an anatomic resolution not readily achievable in murine or other systems. In this paper we introduce an optical method for simultaneous visualization and cell quantification, which combines the laser scanning confocal microscopy (LSCM) and the in vivo flow cytometry (IVFC). The system is designed specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish casper, under physiological conditions in the same fish over time. The confocal imaging part in this system serves the dual purposes of imaging fish tissue microstructure and a 3D navigation tool to locate a suitable vessel for circulating cell counting. The multi-color, multi-channel instrument allows the detection of multiple cell populations or different tissues or organs simultaneously. We demonstrate initial testing of this novel instrument by imaging vasculature and tracking circulating cells in CD41: GFP/Gata1: DsRed transgenic casper fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. Circulating fluorescent cell incidents were recorded and counted repeatedly over time and in different types of vessels. Great application opportunities in cancer and stem cell researches are discussed.

  6. Technical brief: Constant intense light exposure to lesion and initiate regeneration in normally pigmented zebrafish.

    PubMed

    Rajaram, Kamya; Summerbell, Emily R; Patton, James G

    2014-01-01

    Zebrafish are capable of robust and spontaneous regeneration of injured retina. Constant intense light exposure to adult albino zebrafish specifically causes apoptosis of rod and cone photoreceptor cells and is an excellent model to study the molecular mechanisms underlying photoreceptor regeneration. However, this paradigm has only been applied to lesion zebrafish of the nonpigmented albino genetic background, which precludes the use of numerous transgenic reporter lines that are widely used to study regeneration. Here, we explored the effectiveness of constant intense light exposure in causing photoreceptor apoptosis and stimulating regeneration in normally pigmented zebrafish retinas. We show that constant intense light exposure causes widespread photoreceptor damage in the dorsal-central retinas of pigmented zebrafish. Photoreceptor loss triggers dedifferentiation and proliferation of Müller glia as well as progenitor cell proliferation. We also demonstrate that the timeline of regeneration response is comparable between the albino and the pigmented retinas. PMID:25324680

  7. Targeted Electroporation in Embryonic, Larval, and Adult Zebrafish.

    PubMed

    Zou, Ming; Friedrich, Rainer W; Bianco, Isaac H

    2016-01-01

    This chapter describes three fast and straightforward methods to introduce nucleic acids, dyes, and other molecules into small numbers of cells of zebrafish embryos, larvae, and adults using electroporation. These reagents are delivered through a glass micropipette and electrical pulses are given through electrodes to permeabilize cell membranes and promote uptake of the reagent. This technique allows the experimenter to target cells of their choice at a particular time of development and at a particular location in the zebrafish with high precision and facilitates long-term noninvasive measurement of biological activities in vivo. Applications include cell fate mapping, neural circuit mapping, neuronal activity measurement, manipulation of activity, ectopic gene expression, and genetic knockdown experiments. PMID:27464813

  8. Preconditioning boosts regenerative programmes in the adult zebrafish heart

    PubMed Central

    de Preux Charles, Anne-Sophie; Bise, Thomas; Baier, Felix; Sallin, Pauline; Jaźwińska, Anna

    2016-01-01

    During preconditioning, exposure to a non-lethal harmful stimulus triggers a body-wide increase of survival and pro-regenerative programmes that enable the organism to better withstand the deleterious effects of subsequent injuries. This phenomenon has first been described in the mammalian heart, where it leads to a reduction of infarct size and limits the dysfunction of the injured organ. Despite its important clinical outcome, the actual mechanisms underlying preconditioning-induced cardioprotection remain unclear. Here, we describe two independent models of cardiac preconditioning in the adult zebrafish. As noxious stimuli, we used either a thoracotomy procedure or an induction of sterile inflammation by intraperitoneal injection of immunogenic particles. Similar to mammalian preconditioning, the zebrafish heart displayed increased expression of cardioprotective genes in response to these stimuli. As zebrafish cardiomyocytes have an endogenous proliferative capacity, preconditioning further elevated the re-entry into the cell cycle in the intact heart. This enhanced cycling activity led to a long-term modification of the myocardium architecture. Importantly, the protected phenotype brought beneficial effects for heart regeneration within one week after cryoinjury, such as a more effective cell-cycle reentry, enhanced reactivation of embryonic gene expression at the injury border, and improved cell survival shortly after injury. This study reveals that exposure to antecedent stimuli induces adaptive responses that render the fish more efficient in the activation of the regenerative programmes following heart damage. Our results open a new field of research by providing the adult zebrafish as a model system to study remote cardiac preconditioning. PMID:27440423

  9. Photopic and scotopic spatiotemporal tuning of adult zebrafish vision

    PubMed Central

    Hollbach, Nadine; Tappeiner, Christoph; Jazwinska, Anna; Enzmann, Volker; Tschopp, Markus

    2015-01-01

    Sensitivity to spatial and temporal patterns is a fundamental aspect of vision. Herein, we investigated this sensitivity in adult zebrafish for a wide range of spatial (0.014 to 0.511 cycles/degree [c/d]) and temporal frequencies (0.025 to 6 cycles/s) to better understand their visual system. Measurements were performed at photopic (1.8 log cd m−2) and scotopic (−4.5 log cd m−2) light levels to assess the optokinetic response (OKR). The resulting spatiotemporal contrast sensitivity (CS) functions revealed that the OKR of zebrafish is tuned to spatial frequency and speed but not to temporal frequencies. Thereby, optimal test parameters for CS measurements were identified. At photopic light levels, a spatial frequency of 0.116 ± 0.01 c/d (mean ± SD) and a grating speed of 8.42 ± 2.15 degrees/second (d/s) was ideal; at scotopic light levels, these values were 0.110 ± 0.02 c/d and 5.45 ± 1.31 d/s, respectively. This study allows to better characterize zebrafish mutants with altered vision and to distinguish between defects of rod and cone photoreceptors as measurements were performed under different light conditions. PMID:25788878

  10. Expression of Quaking RNA-Binding Protein in the Adult and Developing Mouse Retina

    PubMed Central

    Aono, Kentaro; Kawashima, Togo; Inoue, Kiyoshi; Ku, Li; Feng, Yue; Koike, Chieko

    2016-01-01

    Quaking (QKI), which belongs to the STAR family of KH domain-containing RNA-binding proteins, functions in pre-mRNA splicing, microRNA regulation, and formation of circular RNA. QKI plays critical roles in myelinogenesis in the central and peripheral nervous systems and has been implicated neuron-glia fate decision in the brain; however, neither the expression nor function of QKI in the neural retina is known. Here we report the expression of QKI RNA-binding protein in the developing and mature mouse retina. QKI was strongly expressed by Müller glial cells in both the developing and adult retina. Intriguingly, during development, QKI was expressed in early differentiating neurons, such as the horizontal and amacrine cells, and subsequently in later differentiating bipolar cells, but not in photoreceptors. Neuronal expression was uniformly weak in the adult. Among QKI isoforms (5, 6, and 7), QKI-5 was the predominantly expressed isoform in the adult retina. To study the function of QKI in the mouse retina, we examined quakingviable(qkv) mice, which have a dysmyelination phenotype that results from deficiency of QKI expression and reduced numbers of mature oligodendrocytes. In homozygous qkv mutant mice (qkv/qkv), the optic nerve expression levels of QKI-6 and 7, but not QKI-5 were reduced. In the retina of the mutant homozygote, QKI-5 levels were unchanged, and QKI-6 and 7 levels, already low, were also unaffected. We conclude that QKI is expressed in developing and adult Müller glia. QKI is additionally expressed in progenitors and in differentiating neurons during retinal development, but expression weakened or diminished during maturation. Among QKI isoforms, we found that QKI-5 predominated in the adult mouse retina. Since Müller glial cells are thought to share properties with retinal progenitor cells, our data suggest that QKI may contribute to maintaining retinal progenitors prior to differentiation into neurons. On the other hand, the expression of QKI in

  11. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish

    PubMed Central

    Saera-Vila, Alfonso; Kasprick, Daniel S.; Junttila, Tyler L.; Grzegorski, Steven J.; Louie, Ke'ale W.; Chiari, Estelle F.; Kish, Phillip E.; Kahana, Alon

    2015-01-01

    Purpose The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. Methods Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. Results Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2′-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. Conclusions EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular

  12. Mutation of the zebrafish glass onion locus causes early cell-nonautonomous loss of neuroepithelial integrity followed by severe neuronal patterning defects in the retina.

    PubMed

    Pujic, Z; Malicki, J

    2001-06-15

    Mutation of the glass onion locus causes drastic neuronal patterning defects in the zebrafish retina and brain. The precise stratified appearance of the wild-type retina is absent in the mutants. The glass onion phenotype is first visible shortly after the formation of optic primordia and is characterized by the rounding of cells and disruption of the ventricular surface in the eye and brain neuroepithelia. With exception of the dorsal- and ventral-most regions of the brain, neuroepithelial cells lose their integrity and begin to distribute ectopically. At later stages, the laminar patterning of retinal neurons is severely disrupted. Despite the lack of lamination, individual retinal cell classes differentiate in the glass onion retina. Mosaic analysis reveals that the glass onion mutation acts cell nonautonomously within the retina and brain, as neuroepithelial cell morphology and polarity in these tissues are normal when mutant cells develop in wild-type hosts. We conclude that the glass onion mutation affects cell-cell signaling event(s) involved in the maintenance of the neuroepithelial cell layer shortly after its formation. The disruption of neuroepithelial integrity may be the cause of the neuronal patterning defects following neurogenesis. In addition, the expression of the glass onion phenotype in a subset of neuroepithelial cells as well as its onset following the initial formation of the neuroepithelial sheets indicate the presence of genetically distinct temporal and spatial subdivisions in the development of this histologically uniform tissue. PMID:11397013

  13. Craniofacial skeletal defects of adult zebrafish glypican 4 (knypek) mutants

    PubMed Central

    LeClair, Elizabeth E.; Mui, Stephanie R.; Huang, Angela; Topczewska, Jolanta M.; Topczewski, Jacek

    2010-01-01

    The heparan sulfate proteoglycan Glypican 4 (Gpc4) is part of the Wnt/planar cell polarity pathway, which is required for convergence and extension during zebrafish gastrulation. To observe Glypican 4-deficient phenotypes at later stages, we rescued gpc4−/− (knypek) homozygotes and raised them for more than one year. Adult mutants showed diverse cranial malformations of both dermal and endochondral bones, ranging from shortening of the rostral-most skull to loss of the symplectic. Additionally, the adult palatoquadrate cartilage was disorganized, with abnormal chondrocyte orientation. To understand how the palatoquadrate cartilage normally develops, we examined a juvenile series of wild type and mutant specimens. This identified two novel domains of elongated chondrocytes in the larval palatoquadrate, which normally form prior to endochondral ossification. In contrast, gpc4−/− larvae never form these domains, suggesting a failure of chondrocyte orientation, though not differentiation. Our findings implicate Gpc4 in the regulation of zebrafish cartilage and bone morphogenesis. PMID:19777561

  14. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks.

    PubMed

    Sánchez-Farías, Nuria; Candal, Eva

    2016-01-01

    Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the

  15. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks.

    PubMed

    Sánchez-Farías, Nuria; Candal, Eva

    2016-01-01

    Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the

  16. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks

    PubMed Central

    Sánchez-Farías, Nuria; Candal, Eva

    2016-01-01

    Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the

  17. Calretinin in the peripheral nervous system of the adult zebrafish

    PubMed Central

    Levanti, M B; Montalbano, G; Laurà, R; Ciriaco, E; Cobo, T; García-Suarez, O; Germanà, A; Vega, J A

    2008-01-01

    Calretinin is a calcium-binding protein found widely distributed in the central nervous system and chemosensory cells of the teleosts, but its presence in the peripheral nervous system of fishes is unknown. In this study we used Western blot analysis and immunohistochemistry to investigate the occurrence and distribution of calretinin in the cranial nerve ganglia, dorsal root ganglia, sympathetic ganglia, and enteric nervous system of the adult zebrafish. By Western blotting a unique and specific protein band with an estimated molecular weight of around 30 kDa was detected, and it was identified as calretinin. Immunohistochemistry revealed that calretinin is selectively present in the cytoplasm of the neurons and never in the satellite glial cells. In both sensory and sympathetic ganglia the density of neurons that were immunolabelled, their size and morphology, as well as the intensity of immunostaining developed within the cytoplasm, were heterogeneous. In the enteric nervous system calretinin immunoreactivity was detected in a subset of enteric neurons as well as in a nerve fibre plexus localized inside the muscular layers. The present results demonstrate that in addition to the central nervous system, calretinin is also present in the peripheral nervous system of zebrafish, and contribute to completing the map of the distribution of this protein in the nervous system of teleosts. PMID:18173770

  18. Primary blast injury-induced lesions in the retina of adult rats

    PubMed Central

    2013-01-01

    Background The effect of primary blast exposure on the brain is widely reported but its effects on the eye remains unclear. Here, we aim to examine the effects of primary blast exposure on the retina. Methods Adult male Sprague–Dawley rats were exposed to primary blast high and low injury and sacrificed at 24 h, 72 h, and 2 weeks post injury. The retina was subjected to western analysis for vascular endothelial growth factor (VEGF), aquaporin-4 (AQP4), glutamine synthethase (GS), inducible nitric oxide synthase (NOS), endothelial NOS, neuronal NOS and nestin expression; ELISA analysis for cytokines and chemokines; and immunofluorescence for glial fibrillary acidic protein (GFAP)/VEGF, GFAP/AQP4, GFAP/nestin, GS/AQP4, lectin/iNOS, and TUNEL. Results The retina showed a blast severity-dependent increase in VEGF, iNOS, eNOS, nNOS, and nestin expression with corresponding increases in inflammatory cytokines and chemokines. There was also increased AQP4 expression and retinal thickness after primary blast exposure that was severity-dependent. Finally, a significant increase in TUNEL+ and Caspase-3+ cells was observed. These changes were observed at 24 h post-injury and sustained up to 2 weeks post injury. Conclusions Primary blast resulted in severity-dependent pathological changes in the retina, manifested by the increased expression of a variety of proteins involved in inflammation, edema, and apoptosis. These changes were observed immediately after blast exposure and sustained up to 2 weeks suggesting acute and chronic injury mechanisms. These changes were most obvious in the astrocytes and Müller cells and suggest important roles for these cells in retina pathophysiology after blast. PMID:23819902

  19. Directional and color preference in adult zebrafish: Implications in behavioral and learning assays in neurotoxicology studies.

    PubMed

    Bault, Zachary A; Peterson, Samuel M; Freeman, Jennifer L

    2015-12-01

    The zebrafish (Danio rerio) is a useful vertebrate model organism for neurological studies. While a number of behavior and learning assays are recently reported in the literature for zebrafish, many of these assays are still being refined. The initial purpose of this study was to apply a published T-maze assay for adult zebrafish that measures how quickly an organism can discriminate between different color stimuli after receiving reinforcement to measure learning in a study investigating the later life impacts of developmental Pb exposure. The original results were inconclusive as the control group showed a directional and color preference. To assess directional preference further, a three-chambered testing apparatus was constructed and rotated in several directions. The directional preference observed in males was alleviated by rotating the arms pointing west and east. In addition, color preference was investigated using all combinations of five different colors (orange, yellow, green, blue and purple). With directional preference alleviated results showed that both male and female zebrafish preferred colors of shorter wavelengths. An additional experiment tested changes in color preference due to developmental exposure to Pb in adult male zebrafish. Results revealed that Pb-exposed males gained and lost certain color preferences compared to control males and the preference for short wavelengths was decreased. Overall, these results show that consideration and pretesting should be completed before applying behavioral and learning assays involving adult zebrafish to avoid innate preferences and confounding changes in neurotoxicology studies and that developmental Pb exposure alters color preferences in adult male zebrafish.

  20. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance.

    PubMed

    Cruz, Ivan A; Kappedal, Ryan; Mackenzie, Scott M; Hailey, Dale W; Hoffman, Trevor L; Schilling, Thomas F; Raible, David W

    2015-06-15

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity.

  1. New tools for the identification of developmentally regulated enhancer regions in embryonic and adult zebrafish.

    PubMed

    Levesque, Mitchell P; Krauss, Jana; Koehler, Carla; Boden, Cindy; Harris, Matthew P

    2013-03-01

    We have conducted a screen to identify developmentally regulated enhancers that drive tissue-specific Gal4 expression in zebrafish. We obtained 63 stable transgenic lines with expression patterns in embryonic or adult zebrafish. The use of a newly identified minimal promoter from the medaka edar locus resulted in a relatively unbiased set of expression patterns representing many tissue types derived from all germ layers. Subsequent detailed characterization of selected lines showed strong and reproducible Gal4-driven GFP expression in diverse tissues, including neurons from the central and peripheral nervous systems, pigment cells, erythrocytes, and peridermal cells. By screening adults for GFP expression, we also isolated lines expressed in tissues of the adult zebrafish, including scales, fin rays, and joints. The new and efficient minimal promoter and large number of transactivating driver-lines we identified will provide the zebrafish community with a useful resource for further enhancer trap screening, as well as precise investigation of tissue-specific processes in vivo.

  2. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance

    PubMed Central

    Cruz, Ivan A.; Kappedal, Ryan; Mackenzie, Scott M.; Hailey, Dale W.; Hoffman, Trevor L.; Schilling, Thomas F.; Raible, David W.

    2015-01-01

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity. PMID:25869855

  3. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  4. Cerebroventricular Microinjection (CVMI) into Adult Zebrafish Brain Is an Efficient Misexpression Method for Forebrain Ventricular Cells

    PubMed Central

    Kizil, Caghan; Brand, Michael

    2011-01-01

    The teleost fish Danio rerio (zebrafish) has a remarkable ability to generate newborn neurons in its brain at adult stages of its lifespan-a process called adult neurogenesis. This ability relies on proliferating ventricular progenitors and is in striking contrast to mammalian brains that have rather restricted capacity for adult neurogenesis. Therefore, investigating the zebrafish brain can help not only to elucidate the molecular mechanisms of widespread adult neurogenesis in a vertebrate species, but also to design therapies in humans with what we learn from this teleost. Yet, understanding the cellular behavior and molecular programs underlying different biological processes in the adult zebrafish brain requires techniques that allow manipulation of gene function. As a complementary method to the currently used misexpression techniques in zebrafish, such as transgenic approaches or electroporation-based delivery of DNA, we devised a cerebroventricular microinjection (CVMI)-assisted knockdown protocol that relies on vivo morpholino oligonucleotides, which do not require electroporation for cellular uptake. This rapid method allows uniform and efficient knockdown of genes in the ventricular cells of the zebrafish brain, which contain the neurogenic progenitors. We also provide data on the use of CVMI for growth factor administration to the brain – in our case FGF8, which modulates the proliferation rate of the ventricular cells. In this paper, we describe the CVMI method and discuss its potential uses in zebrafish. PMID:22076157

  5. Advanced Echocardiography in Adult Zebrafish Reveals Delayed Recovery of Heart Function after Myocardial Cryoinjury

    PubMed Central

    Kossack, Mandy; Juergensen, Lonny; Fuchs, Dieter; Katus, Hugo A.; Hassel, David

    2015-01-01

    Translucent zebrafish larvae represent an established model to analyze genetics of cardiac development and human cardiac disease. More recently adult zebrafish are utilized to evaluate mechanisms of cardiac regeneration and by benefiting from recent genome editing technologies, including TALEN and CRISPR, adult zebrafish are emerging as a valuable in vivo model to evaluate novel disease genes and specifically validate disease causing mutations and their underlying pathomechanisms. However, methods to sensitively and non-invasively assess cardiac morphology and performance in adult zebrafish are still limited. We here present a standardized examination protocol to broadly assess cardiac performance in adult zebrafish by advancing conventional echocardiography with modern speckle-tracking analyses. This allows accurate detection of changes in cardiac performance and further enables highly sensitive assessment of regional myocardial motion and deformation in high spatio-temporal resolution. Combining conventional echocardiography measurements with radial and longitudinal velocity, displacement, strain, strain rate and myocardial wall delay rates after myocardial cryoinjury permitted to non-invasively determine injury dimensions and to longitudinally follow functional recovery during cardiac regeneration. We show that functional recovery of cryoinjured hearts occurs in three distinct phases. Importantly, the regeneration process after cryoinjury extends far beyond the proposed 45 days described for ventricular resection with reconstitution of myocardial performance up to 180 days post-injury (dpi). The imaging modalities evaluated here allow sensitive cardiac phenotyping and contribute to further establish adult zebrafish as valuable cardiac disease model beyond the larval developmental stage. PMID:25853735

  6. Retinal Proliferation Response in the Buphthalmic Zebrafish, bugeye

    PubMed Central

    Sherpa, Tshering; Hunter, Samuel S.; Frey, Ruth A.; Robison, Barrie D.; Stenkamp, Deborah L.

    2011-01-01

    The zebrafish retina regenerates in response to acute retinal lesions, replacing damaged neurons with new neurons. In this study we test the hypothesis that chronic stress to inner retinal neurons also triggers a retinal regeneration response in the bugeye zebrafish. Mutations in the lrp2 gene in zebrafish are associated with a progressive eye phenotype (bugeye) that models several risk factors for human glaucoma including buphthalmos (enlarged eyes), elevated intraocular pressure (IOP), and upregulation of genes related to retinal ganglion cell pathology. The retinas of adult bugeye zebrafish showed high rates of ongoing proliferation which resulted in the production of a small number of new retinal neurons, particularly photoreceptors. A marker of mechanical cell stress, Hsp27, was strongly expressed in inner retinal neurons and glia of bugeye retinas. The more enlarged eyes of individual bugeye zebrafish showed disrupted retinal lamination, and a persistent reduced density of neurons in the ganglion cell layer (GCL), although total numbers of GCL neurons were higher than in control eyes. Despite the presence of a proliferative response to damage, the adult bugeye zebrafish remained behaviorally blind. These findings suggest the existence of an unsuccessful regenerative response to a persistent pathological condition in the bugeye zebrafish. PMID:21723280

  7. Functional diversity of excitatory commissural interneurons in adult zebrafish

    PubMed Central

    Björnfors, E Rebecka; El Manira, Abdeljabbar

    2016-01-01

    Flexibility in the bilateral coordination of muscle contraction underpins variable locomotor movements or gaits. While the locomotor rhythm is generated by ipsilateral excitatory interneurons, less is known about the commissural excitatory interneurons. Here we examined how the activity of the V0v interneurons – an important commissural neuronal class – varies with the locomotor speed in adult zebrafish. Although V0v interneurons are molecularly homogenous, their activity pattern during locomotion is not uniform. They consist of two distinct types dependent on whether they display rhythmicity or not during locomotion. The rhythmic V0v interneurons were further subdivided into three sub-classes engaged sequentially, first at slow then intermediate and finally fast locomotor speeds. Their order of recruitment is defined by scaling their synaptic current with their input resistance. Thus we uncover, in an adult vertebrate, a novel organizational principle for a key class of commissural interneurons and their recruitment pattern as a function of locomotor speed. DOI: http://dx.doi.org/10.7554/eLife.18579.001 PMID:27559611

  8. Husbandry stress exacerbates mycobacterial infections in adult zebrafish, Danio rerio (Hamilton)

    USGS Publications Warehouse

    Ramsay, J.M.; Watral, V.; Schreck, C.B.; Kent, M.L.

    2009-01-01

    Mycobacteria are significant pathogens of laboratory zebrafish, Danio rerio (Hamilton). Stress is often implicated in clinical disease and morbidity associated with mycobacterial infections but has yet to be examined with zebrafish. The aim of this study was to examine the effects of husbandry stressors on zebrafish infected with mycobacteria. Adult zebrafish were exposed to Mycobacterium marinum or Mycobacterium chelonae, two species that have been associated with disease in zebrafish. Infected fish and controls were then subjected to chronic crowding and handling stressors and examined over an 8-week period. Whole-body cortisol was significantly elevated in stressed fish compared to non-stressed fish. Fish infected with M. marinum ATCC 927 and subjected to husbandry stressors had 14% cumulative mortality while no mortality occurred among infected fish not subjected to husbandry stressors. Stressed fish, infected with M. chelonae H1E2 from zebrafish, were 15-fold more likely to be infected than non-stressed fish at week 8 post-injection. Sub-acute, diffuse infections were more common among stressed fish infected with M. marinum or M. chelonae than non-stressed fish. This is the first study to demonstrate an effect of stress and elevated cortisol on the morbidity, prevalence, clinical disease and histological presentation associated with mycobacterial infections in zebrafish. Minimizing husbandry stress may be effective at reducing the severity of outbreaks of clinical mycobacteriosis in zebrafish facilities. ?? 2009 Blackwell Publishing Ltd.

  9. Radial glial cell-specific ablation in the adult Zebrafish brain.

    PubMed

    Shimizu, Yuki; Ito, Yoko; Tanaka, Hideomi; Ohshima, Toshio

    2015-07-01

    The zebrafish brain can continue to produce new neurons in widespread neurogenic brain regions throughout life. In contrast, neurogenesis in the adult mammalian brain is restricted to the subventricular zone (SVZ) and dentate gyrus (DG). In neurogenic regions in the adult brain, radial glial cells (RGCs) are considered to function as neural stem cells (NSCs). We generated a Tg(gfap:Gal4FF) transgenic zebrafish line, which enabled us to express specific genes in RGCs. To study the function of RGCs in neurogenesis in the adult zebrafish brain, we also generated a Tg(gfap: Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, which allowed us to induce cell death exclusively within RGCs upon addition of metronidazole (Mtz) to the media. RGCs expressing nitroreductase were specifically ablated by the Mtz treatment, decreasing the number of proliferative RGCs. Using the Tg(gfap:Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, we found that RGCs were specifically ablated in the adult zebrafish telencephalon. The Tg(gfap:Gal4FF) line could be useful to study the function of RGCs.

  10. Environmental enrichment protects the retina from early diabetic damage in adult rats.

    PubMed

    Dorfman, Damián; Aranda, Marcos L; González Fleitas, María Florencia; Chianelli, Mónica S; Fernandez, Diego C; Sande, Pablo H; Rosenstein, Ruth E

    2014-01-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Available treatments are not completely effective. We analyzed the effect of environmental enrichment on retinal damage induced by experimental diabetes in adult Wistar rats. Diabetes was induced by an intraperitoneal injection of streptozotocin. Three days after vehicle or streptozotocin injection, animals were housed in enriched environment or remained in a standard environment. Retinal function (electroretinogram, and oscillatory potentials), retinal morphology, blood-retinal barrier integrity, synaptophysin, astrocyte and Müller cell glial fibrillary acidic protein, vascular endothelial growth factor, tumor necrosis factor-α, and brain-derived neurotrophic factor levels, as well as lipid peroxidation were assessed in retina from diabetic animals housed in standard or enriched environment. Environmental enrichment preserved scotopic electroretinogram a-wave, b-wave and oscillatory potential amplitude, avoided albumin-Evan's blue leakage, prevented the decrease in retinal synaptophysin and astrocyte glial fibrillary acidic protein levels, the increase in Müller cell glial fibrillary acidic protein, vascular endothelial growth factor and tumor necrosis factor-α levels, as well as oxidative stress induced by diabetes. In addition, enriched environment prevented the decrease in retinal brain-derived neurotrophic factor levels induced by experimental diabetes. When environmental enrichment started 7 weeks after diabetes onset, retinal function was significantly preserved. These results indicate that enriched environment could attenuate the early diabetic damage in the retina from adult rats.

  11. Environmental Enrichment Protects the Retina from Early Diabetic Damage in Adult Rats

    PubMed Central

    Dorfman, Damián; Aranda, Marcos L.; González Fleitas, María Florencia; Chianelli, Mónica S.; Fernandez, Diego C.; Sande, Pablo H.; Rosenstein, Ruth E.

    2014-01-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Available treatments are not completely effective. We analyzed the effect of environmental enrichment on retinal damage induced by experimental diabetes in adult Wistar rats. Diabetes was induced by an intraperitoneal injection of streptozotocin. Three days after vehicle or streptozotocin injection, animals were housed in enriched environment or remained in a standard environment. Retinal function (electroretinogram, and oscillatory potentials), retinal morphology, blood-retinal barrier integrity, synaptophysin, astrocyte and Müller cell glial fibrillary acidic protein, vascular endothelial growth factor, tumor necrosis factor-α, and brain-derived neurotrophic factor levels, as well as lipid peroxidation were assessed in retina from diabetic animals housed in standard or enriched environment. Environmental enrichment preserved scotopic electroretinogram a-wave, b-wave and oscillatory potential amplitude, avoided albumin-Evan's blue leakage, prevented the decrease in retinal synaptophysin and astrocyte glial fibrillary acidic protein levels, the increase in Müller cell glial fibrillary acidic protein, vascular endothelial growth factor and tumor necrosis factor-α levels, as well as oxidative stress induced by diabetes. In addition, enriched environment prevented the decrease in retinal brain-derived neurotrophic factor levels induced by experimental diabetes. When environmental enrichment started 7 weeks after diabetes onset, retinal function was significantly preserved. These results indicate that enriched environment could attenuate the early diabetic damage in the retina from adult rats. PMID:25004165

  12. Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies

    PubMed Central

    Dang, Michelle; Henderson, Rachel E.; Garraway, Levi A.

    2016-01-01

    ABSTRACT Zebrafish are a major model for chemical genetics, and most studies use embryos when investigating small molecules that cause interesting phenotypes or that can rescue disease models. Limited studies have dosed adults with small molecules by means of water-borne exposure or injection techniques. Challenges in the form of drug delivery-related trauma and anesthesia-related toxicity have excluded the adult zebrafish from long-term drug efficacy studies. Here, we introduce a novel anesthetic combination of MS-222 and isoflurane to an oral gavage technique for a non-toxic, non-invasive and long-term drug administration platform. As a proof of principle, we established drug efficacy of the FDA-approved BRAFV600E inhibitor, Vemurafenib, in adult zebrafish harboring BRAFV600E melanoma tumors. In the model, adult casper zebrafish intraperitoneally transplanted with a zebrafish melanoma cell line (ZMEL1) and exposed to daily sub-lethal dosing at 100 mg/kg of Vemurafenib for 2 weeks via oral gavage resulted in an average 65% decrease in tumor burden and a 15% mortality rate. In contrast, Vemurafenib-resistant ZMEL1 cell lines, generated in culture from low-dose drug exposure for 4 months, did not respond to the oral gavage treatment regimen. Similarly, this drug treatment regimen can be applied for treatment of primary melanoma tumors in the zebrafish. Taken together, we developed an effective long-term drug treatment system that will allow the adult zebrafish to be used to identify more effective anti-melanoma combination therapies and opens up possibilities for treating adult models of other diseases. PMID:27482819

  13. Analysis of nephron composition and function in the adult zebrafish kidney.

    PubMed

    McCampbell, Kristen K; Springer, Kristin N; Wingert, Rebecca A

    2014-08-09

    The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.

  14. Normal anatomy and histology of the adult zebrafish.

    PubMed

    Menke, Aswin L; Spitsbergen, Jan M; Wolterbeek, Andre P M; Woutersen, Ruud A

    2011-08-01

    The zebrafish has been shown to be an excellent vertebrate model for studying the roles of specific genes and signaling pathways. The sequencing of its genome and the relative ease with which gene modifications can be performed have led to the creation of numerous human disease models that can be used for testing the potential and the toxicity of new pharmaceutical compounds. Many pharmaceutical companies already use the zebrafish for prescreening purposes. So far, the focus has been on ecotoxicity and the effects on embryonic development, but there is a trend to expand the use of the zebrafish with acute, subchronic, and chronic toxicity studies that are currently still carried out with the more conventional test animals such as rodents. However, before we can fully realize the potential of the zebrafish as an animal model for understanding human development, disease, and toxicology, we must first greatly advance our knowledge of normal zebrafish physiology, anatomy, and histology. To further this knowledge, we describe, in the present article, location and histology of the major zebrafish organ systems with a brief description of their function.

  15. The Proteome of Native Adult Müller Glial Cells From Murine Retina.

    PubMed

    Grosche, Antje; Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca; von Toerne, Christine; Merl-Pham, Juliane; Hauck, Stefanie M

    2016-02-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  16. Rhodopsin expression in the zebrafish pineal gland from larval to adult stage.

    PubMed

    Magnoli, Domenico; Zichichi, Rosalia; Laurà, Rosaria; Guerrera, Maria Cristina; Campo, Salvatore; de Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-01

    The zebrafish pineal gland plays an important role in different physiological functions including the regulation of the circadian clock. In the fish pineal gland the pinealocytes are made up of different segments: outer segment, inner segment and basal pole. Particularly, in the outer segment the rhodopsin participates in the external environment light reception that represents the first biochemical step in the melatonin production. It is well known that the rhodopsin in the adult zebrafish is well expressed in the pineal gland but both the expression and the cellular localization of this protein during development remain still unclear. In this study using qRT-PCR, sequencing and immunohistochemistry the expression as well as the protein localization of the rhodopsin in the zebrafish from larval (10 dpf) to adult stage (90 dpf) were demonstrated. The rhodopsin mRNA expression presents a peak of expression at 10 dpf, a further reduction to 50 dpf before increasing again in the adult stage. Moreover, the cellular localization of the rhodopsin-like protein was always localized in the pinealocyte at all ages examined. Our results demonstrated the involvement of the rhodopsin in the zebrafish pineal gland physiology particularly in the light capture during the zebrafish lifespan.

  17. Limb Regeneration is Impaired in an Adult Zebrafish Model of Diabetes Mellitus

    PubMed Central

    Olsen, Ansgar S.; Sarras, Michael P.; Intine, Robert V.

    2010-01-01

    The zebrafish (Danio Rerio) is an established model organism for the study of developmental processes, human disease and tissue regeneration. We report that limb regeneration is severely impaired in our newly developed adult zebrafish model of type I diabetes. Intraperitoneal streptozocin injection of adult, wild type zebrafish results in a sustained hyperglycemic state as determined by elevated fasting blood glucose values and increased glycation of serum protein. Serum insulin levels are also decreased and pancreas immunohistochemisty revealed a lesser amount of insulin signal in hyperglycemic fish. Additionally, the diabetic complications of retinal thinning and glomerular basement membrane thickening (early signs of retinopathy and nephropathy) resulting from the hyperglycemic state were evident in streptozocin injected fish at three weeks. Most significantly, limb regeneration, following caudal fin amputation, is severely impaired in diabetic zebrafish. Nonspecific toxic effects outside the pancreas were not found to contribute to impaired limb regeneration. This experimental system using adult zebrafish facilitates a broad spectrum of genetic and molecular approaches to study regeneration in the diabetic background. PMID:20840523

  18. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: neuron number, location, and cotransmitters.

    PubMed

    Sundvik, Maria; Panula, Pertti

    2012-12-01

    Histamine is an essential factor in the ascending arousal system (AAS) during motivated behaviors. Histamine and hypocretin/orexin (hcrt) are proposed to be responsible for different aspects of arousal and wakefulness, histamine mainly for cognitive and motivated behaviors. In this study we visualized the entire histaminergic neuron population in adult male and female zebrafish brain and quantified the histaminergic neuron numbers. There were 40-45 histaminergic neurons in both male and female zebrafish brain. Further, we identified cotransmitters of histaminergic neurons in the ventrocaudal hypothalamus, i.e., around the posterior recess (PR) in adult zebrafish. Galanin, γ-aminobutyric acid (GABA), and thyrotropin-releasing hormone (TRH) were colocalized with histamine in some but not all neurons, a result that was verified by intracerebroventricular injections of colchicine into adult zebrafish. Fibers immunoreactive (ir) for galanin, GABA, TRH, or methionine-enkephalin (mENK) were dense in the ventrocaudal hypothalamus around the histaminergic neurons. In histamine-ir fibers TRH and galanin immunoreactivities were also detected in the ventral telencephalon. All these neurotransmitters are involved in maintaining the equilibrium of the sleep-wake state. Our results are in accordance with results from rats, further supporting the use of zebrafish as a tool to study molecular mechanisms underlying complex behaviors.

  19. The photoreceptive cells of the pineal gland in adult zebrafish (Danio rerio).

    PubMed

    Laurà, Rosaria; Magnoli, Domenico; Zichichi, Rosalia; Guerrera, Maria Cristina; De Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-01

    The zebrafish pineal gland plays a fundamental role in the regulation of the circadian rhythm through the melatonin secretion. The pinealocytes, also called photoreceptive cells, are considered the morphofunctional unit of pineal gland. In literature, the anatomical features, the cellular characteristics, and the pinealocytes morphology of zebrafish pineal gland have not been previously described in detail. Therefore, this study was undertaken to analyze the structure and ultrastructure, as well as the immunohistochemical profile of the zebrafish pineal gland with particular reference to the pinealocytes. Here, we demonstrated, using RT-PCR, immunohistochemistry and transmission electron microscopy, the expression of the mRNA for rhodopsin in the pineal gland of zebrafish, as well as its cellular localization exclusively in the pinealocytes of adult zebrafish. Moreover, the ultrastructural observations demonstrated that the pinealocytes were constituted by an outer segment with numerous lamellar membranes, an inner segment with many mitochondria, and a basal pole with the synapses. Our results taken together demonstrated a central role of zebrafish pinealocytes in the control of pineal gland functions.

  20. Reducing the Noise in Behavioral Assays: Sex and Age in Adult Zebrafish Locomotion

    PubMed Central

    Philpott, Catelyn; Donack, Corey J.; Cousin, Margot A.

    2012-01-01

    Abstract Many assays are used in animal model systems to measure specific human disease-related behaviors. The use of both adult and larval zebrafish as a behavioral model is gaining popularity. As this work progresses and potentially translates into new treatments, we must do our best to improve the sensitivity of these assays by reducing confounding factors. Scientists who use the mouse model system have demonstrated that sex and age can influence a number of behaviors. As a community, they have moved to report the age and sex of all animals used in their studies. Zebrafish work does not yet carry the same mandate. In this study, we evaluated sex and age differences in locomotion behavior. We found that age was a significant factor in locomotion, as was sex within a given age group. In short, as zebrafish age, they appear to show less base level locomotion. With regard to sex, younger (10 months) zebrafish showed more locomotion in males, while older zebrafish (22 months) showed more movement in females. These findings have led us to suggest that those using the zebrafish for behavioral studies control for age and sex within their experimental design and report these descriptors in their methods. PMID:23244690

  1. Reducing the noise in behavioral assays: sex and age in adult zebrafish locomotion.

    PubMed

    Philpott, Catelyn; Donack, Corey J; Cousin, Margot A; Pierret, Chris

    2012-12-01

    Many assays are used in animal model systems to measure specific human disease-related behaviors. The use of both adult and larval zebrafish as a behavioral model is gaining popularity. As this work progresses and potentially translates into new treatments, we must do our best to improve the sensitivity of these assays by reducing confounding factors. Scientists who use the mouse model system have demonstrated that sex and age can influence a number of behaviors. As a community, they have moved to report the age and sex of all animals used in their studies. Zebrafish work does not yet carry the same mandate. In this study, we evaluated sex and age differences in locomotion behavior. We found that age was a significant factor in locomotion, as was sex within a given age group. In short, as zebrafish age, they appear to show less base level locomotion. With regard to sex, younger (10 months) zebrafish showed more locomotion in males, while older zebrafish (22 months) showed more movement in females. These findings have led us to suggest that those using the zebrafish for behavioral studies control for age and sex within their experimental design and report these descriptors in their methods.

  2. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio

    PubMed Central

    Kovrižnych, Jevgenij A.; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena

    2014-01-01

    Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems. PMID:26038672

  3. Identifying proteins in zebrafish embryos using spectral libraries generated from dissected adult organs and tissues.

    PubMed

    van der Plas-Duivesteijn, Suzanne J; Mohammed, Yassene; Dalebout, Hans; Meijer, Annemarie; Botermans, Anouk; Hoogendijk, Jordy L; Henneman, Alex A; Deelder, André M; Spaink, Herman P; Palmblad, Magnus

    2014-03-01

    Spectral libraries provide a sensitive and accurate method for identifying peptides from tandem mass spectra, complementary to searching genome-derived databases or sequencing de novo. Their application requires comprehensive libraries including peptides from low-abundant proteins. Here we describe a method for constructing such libraries using biological differentiation to "fractionate" the proteome by harvesting adult organs and tissues and build comprehensive libraries for identifying proteins in zebrafish (Danio rerio) embryos and larvae (an important and widely used model system). Hierarchical clustering using direct comparison of spectra was used to prioritize organ selection. The resulting and publicly available library covers 14,164 proteins, significantly improved the number of peptide-spectrum matches in zebrafish developmental stages, and can be used on data from different instruments and laboratories. The library contains information on tissue and organ expression of these proteins and is also applicable for adult experiments. The approach itself is not limited to zebrafish but would work for any model system.

  4. Effects of low-dose embryonic thyroid disruption and rearing temperature on the development of the eye and retina in zebrafish.

    PubMed

    Reider, Masha; Connaughton, Victoria P

    2014-10-01

    Thyroid hormones are required for vertebrate development, and disruption of the thyroid system in developing embryos can result in a large range of morphologic and physiologic changes, including in the eye and retina. In this study, our anatomic analyses following low-dose, chronic thyroid inhibition reveal that both methimazole (MMI) exposure and rearing temperature affect eye development in a time- and temperature-dependent fashion. Maximal sensitivity to MMI for external eye development occurred at 65 hr postfertilization (hpf) for zebrafish reared at 28°C, and at 69 hpf for those reared at 31°C. Changes in eye diameter corresponded to changes in thickness of two inner retinal layers: the ganglion cell layer and the inner plexiform layer, with irreversible MMI-induced decreases in layer thickness observed in larvae treated with MMI until 66 hpf at 28°C. We infer that maximal sensitivity to MMI between 65 and 66 hpf at 28°C indicates a critical period of thyroid-dependent eye and retinal development. Furthermore, our results support previous work that shows spontaneous escape from MMI-induced effects potentially due to embryonic compensatory actions, as our data show that embryos treated beyond the critical period generally resemble controls.

  5. Subdivisions of the adult zebrafish pallium based on molecular marker analysis

    PubMed Central

    Ganz, Julia; Kroehne, Volker; Freudenreich, Dorian; Machate, Anja; Geffarth, Michaela; Braasch, Ingo; Kaslin, Jan; Brand, Michael

    2015-01-01

    Background: The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the pallium of ray-finned fishes and the pallial nuclei of all other vertebrates. Various models of homology between pallial subdivisions in ray-finned fishes and the pallial nuclei in tetrapods have been proposed based on connectional, neurochemical, gene expression and functional data. However, no consensus has been reached so far. In recent years, the analysis of conserved developmental marker genes has assisted the identification of homologies for different parts of the telencephalon among several tetrapod species. Results: We have investigated the gene expression pattern of conserved marker genes in the adult zebrafish ( Danio rerio) pallium to identify pallial subdivisions and their homology to pallial nuclei in tetrapods. Combinatorial expression analysis of ascl1a, eomesa, emx1, emx2, emx3, and Prox1 identifies four main divisions in the adult zebrafish pallium. Within these subdivisions, we propose that Dm is homologous to the pallial amygdala in tetrapods and that the dorsal subdivision of Dl is homologous to part of the hippocampal formation in mouse. We have complemented this analysis be examining the gene expression of emx1, emx2 and emx3 in the zebrafish larval brain. Conclusions: Based on our gene expression data, we propose a new model of subdivisions in the adult zebrafish pallium and their putative homologies to pallial nuclei in tetrapods. Pallial nuclei control sensory, motor, and cognitive functions, like memory, learning and emotion. The identification of pallial subdivisions in the adult zebrafish and their homologies to pallial nuclei in tetrapods will contribute to the use of the zebrafish system as a model

  6. Characterization of transgenic zebrafish lines that express GFP in the retina, pineal gland, olfactory bulb, hatching gland, and optic tectum.

    PubMed

    Fang, Wei; Bonaffini, Sarah; Zou, Jian; Wang, Xiaolei; Zhang, Cen; Tsujimura, Taro; Kawamura, Shoji; Wei, Xiangyun

    2013-01-01

    Transgenic animals are powerful tools to study gene function invivo. Here we characterize several transgenic zebrafish lines that express green fluorescent protein (GFP) under the control of the LCR(RH2)-RH2-1 or LCR(RH2)-RH2-2 green opsin regulatory elements. Using confocal immunomicroscopy, stereo-fluorescence microscopy, and Western blotting, we show that the Tg(LCR(RH2)-RH2-1:GFP)(pt112) and Tg(LCR(RH2)-RH2-2:GFP)(pt115) transgenic zebrafish lines express GFP in the pineal gland and certain types of photoreceptors. In addition, some of these lines also express GFP in the hatching gland, optic tectum, or olfactory bulb. Some of the expression patterns differ significantly from previously published similar transgenic fish lines, making them useful tools for studying the development of the corresponding tissues and organs. In addition, the variations of GFP expression among different lines corroborate the notion that transgenic expression is often subjected to position effect, thus emphasizing the need for careful verification of expression patterns when transgenic animal models are utilized for research.

  7. Nonhatching Decapsulated Artemia Cysts As a Replacement to Artemia Nauplii in Juvenile and Adult Zebrafish Culture.

    PubMed

    Tye, Marc; Rider, Dana; Duffy, Elizabeth A; Seubert, Adam; Lothert, Brogen; Schimmenti, Lisa A

    2015-12-01

    Feeding Artemia nauplii as the main nutrition source for zebrafish is a common practice for many research facilities. Culturing live feed can be time-consuming and requires additional equipment to be purchased, maintained, and cleaned. Nonhatching decapsulated Artemia cysts (decaps) are a commercially available product that can be fed directly to fish. Several other ornamental fish species have been successfully cultured using decaps. Replacing Artemia nauplii with decaps could reduce the overall time and costs associated with the operation of a zebrafish facility. The objective of this study was to determine if decaps could be a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture. Wild-type zebrafish were fed one of three dietary treatments: decaps only, nauplii only, or a standard consisting of nauplii plus a commercially prepared pellet food. Survival, growth (length and weight), and embryo production were analyzed between the treatments. Fish receiving the decap diet demonstrated a significantly higher growth and embryo production when compared to the fish receiving the nauplii-only diet. When comparing the decap fish to the standard fish, no significant difference was found in mean survival, mean weight at 90 days postfertilization, or mean embryo production. It was determined that nonhatching decapsulated Artemia cysts can be used as a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture.

  8. Nonhatching Decapsulated Artemia Cysts As a Replacement to Artemia Nauplii in Juvenile and Adult Zebrafish Culture.

    PubMed

    Tye, Marc; Rider, Dana; Duffy, Elizabeth A; Seubert, Adam; Lothert, Brogen; Schimmenti, Lisa A

    2015-12-01

    Feeding Artemia nauplii as the main nutrition source for zebrafish is a common practice for many research facilities. Culturing live feed can be time-consuming and requires additional equipment to be purchased, maintained, and cleaned. Nonhatching decapsulated Artemia cysts (decaps) are a commercially available product that can be fed directly to fish. Several other ornamental fish species have been successfully cultured using decaps. Replacing Artemia nauplii with decaps could reduce the overall time and costs associated with the operation of a zebrafish facility. The objective of this study was to determine if decaps could be a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture. Wild-type zebrafish were fed one of three dietary treatments: decaps only, nauplii only, or a standard consisting of nauplii plus a commercially prepared pellet food. Survival, growth (length and weight), and embryo production were analyzed between the treatments. Fish receiving the decap diet demonstrated a significantly higher growth and embryo production when compared to the fish receiving the nauplii-only diet. When comparing the decap fish to the standard fish, no significant difference was found in mean survival, mean weight at 90 days postfertilization, or mean embryo production. It was determined that nonhatching decapsulated Artemia cysts can be used as a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture. PMID:25495227

  9. Distinct effects of inflammation on preconditioning and regeneration of the adult zebrafish heart

    PubMed Central

    de Preux Charles, Anne-Sophie; Bise, Thomas; Baier, Felix; Marro, Jan; Jaźwińska, Anna

    2016-01-01

    The adult heart is able to activate cardioprotective programmes and modifies its architecture in response to physiological or pathological changes. While mammalian cardiac remodelling often involves hypertrophic expansion, the adult zebrafish heart exploits hyperplastic growth. This capacity depends on the responsiveness of zebrafish cardiomyocytes to mitogenic signals throughout their entire life. Here, we have examined the role of inflammation on the stimulation of cell cycle activity in the context of heart preconditioning and regeneration. We used thoracotomy as a cardiac preconditioning model and cryoinjury as a model of cardiac infarction in the adult zebrafish. First, we performed a spatio-temporal characterization of leucocytes and cycling cardiac cells after thoracotomy. This analysis revealed a concomitance between the infiltration of inflammatory cells and the stimulation of the mitotic activity. However, decreasing the immune response using clodronate liposome injection, PLX3397 treatment or anti-inflammatory drugs surprisingly had no effect on the re-entry of cardiac cells into the cell cycle. In contrast, reducing inflammation using the same strategies after cryoinjury strongly impaired cardiac cell mitotic activity and the regenerative process. Taken together, our results show that, while the immune response is not necessary to induce cell-cycle activity in intact preconditioned hearts, inflammation is required for the regeneration of injured hearts in zebrafish. PMID:27440424

  10. Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish.

    PubMed

    Kishimoto, Norihito; Alfaro-Cervello, Clara; Shimizu, Kohei; Asakawa, Kazuhide; Urasaki, Akihiro; Nonaka, Shigenori; Kawakami, Koichi; Garcia-Verdugo, Jose Manuel; Sawamoto, Kazunobu

    2011-12-01

    In the brain of adult mammals, neuronal precursors are generated in the subventricular zone in the lateral wall of the lateral ventricles and migrate into the olfactory bulbs (OBs) through a well-studied route called the rostral migratory stream (RMS). Recent studies have revealed that a comparable neural stem cell niche is widely conserved at the ventricular wall of adult vertebrates. However, little is known about the migration route of neuronal precursors in nonmammalian adult brains. Here, we show that, in the adult zebrafish, a cluster of neuronal precursors generated in the telencephalic ventricular zone migrates into the OB via a route equivalent to the mammalian RMS. Unlike the mammalian RMS, these neuronal precursors are not surrounded by glial tubes, although radial glial cells with a single cilium lined the telencephalic ventricular wall, much as in embryonic and neonatal mammals. To observe the migrating neuronal precursors in living brain tissue, we established a brain hemisphere culture using a zebrafish line carrying a GFP transgene driven by the neurogenin1 (ngn1) promoter. In these fish, GFP was observed in the neuronal precursors migrating in the RMS, some of which were aligned with blood vessels. Numerous ngn1:gfp-positive cells were observed migrating tangentially in the RMS-like route medial to the OB. Taken together, our results suggest that the RMS in the adult zebrafish telencephalon is a functional migratory pathway. This is the first evidence for the tangential migration of neuronal precursors in a nonmammalian adult telencephalon.

  11. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Cortés-Campos, Christian; Letelier, Joaquín; Ceriani, Ricardo; Whitlock, Kathleen E.

    2015-01-01

    ABSTRACT Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons. PMID:26209533

  12. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    PubMed

    Hickmott, Jack W; Chen, Chih-Yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  13. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina

    PubMed Central

    Hickmott, Jack W; Chen, Chih-yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  14. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    PubMed Central

    Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N

    2007-01-01

    Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease. PMID:17937808

  15. Whole adult organism transcriptional profiling of acute metal exposures in male Zebrafish

    PubMed Central

    2014-01-01

    Background A convergence of technological breakthroughs in the past decade has facilitated the development of rapid screening tools for biomarkers of toxicant exposure and effect. Platforms using the whole adult organism to evaluate the genome-wide response to toxicants are especially attractive. Recent work demonstrates the feasibility of this approach in vertebrates using the experimentally robust zebrafish model. In the present study, we evaluated gene expression changes in whole adult male zebrafish following an acute 24 hr high dose exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride or sodium dichromate concentrations corresponding to their respective 96 hr LC20, LC40 and LC60. Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal. Results Comparative analysis identified subsets of differentially expressed transcripts both overlapping and unique to each metal. Application of gene ontology (GO) and transcription factor (TF) enrichment algorithms revealed a number of key biological processes perturbed by metal poisonings and the master transcriptional regulators mediating gene expression changes. Metal poisoning differentially activated biological processes associated with ribosome biogenesis, proteosomal degradation, and p53 signaling cascades, while repressing oxygen-generating pathways associated with amino acid and lipid metabolism. Despite appreciable effects on gene regulation, nickel poisoning did not induce any morphological alterations in male zebrafish organs and tissues. Histopathological effects of cobalt remained confined to the olfactory system, while chromium targeted the gills, pharynx, and intestinal mucosa. A number of enriched transcription factors mediated the observed gene response to metal poisoning, including known targets such as p53, HIF1α, and the myc oncogene, and novel

  16. Zinc-binding Domain-dependent, Deaminase-independent Actions of Apolipoprotein B mRNA-editing Enzyme, Catalytic Polypeptide 2 (Apobec2), Mediate Its Effect on Zebrafish Retina Regeneration*

    PubMed Central

    Powell, Curtis; Cornblath, Eli; Goldman, Daniel

    2014-01-01

    The Apobec/AID family of cytosine deaminases can deaminate cytosine and thereby contribute to adaptive and innate immunity, DNA demethylation, and the modification of cellular mRNAs. Unique among this family is Apobec2, whose enzymatic activity has been questioned and whose function remains poorly explored. We recently reported that zebrafish Apobec2a and Apobec2b (Apobec2a,2b) regulate retina regeneration; however, their mechanism of action remained unknown. Here we show that although Apobec2a,2b lack cytosine deaminase activity, they require a conserved zinc-binding domain to stimulate retina regeneration. Interestingly, we found that human APOBEC2 is able to functionally substitute for Apobec2a,2b during retina regeneration. By identifying Apobec2-interacting proteins, including ubiquitin-conjugating enzyme 9 (Ubc9); topoisomerase I-binding, arginine/serine-rich, E3 ubiquitin protein ligase (Toporsa); and POU class 6 homeobox 2 (Pou6f2), we uncovered that sumoylation regulates Apobec2 subcellular localization and that nuclear Apobec2 controls Pou6f2 binding to DNA. Importantly, mutations in the zinc-binding domain of Apobec2 diminished its ability to stimulate Pou6f2 binding to DNA, and knockdown of Ubc9 or Pou6f2 suppressed retina regeneration. PMID:25190811

  17. Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation.

    PubMed

    Liu, Chi Chi; Li, Li; Lam, Yun Wah; Siu, Chung Wah; Cheng, Shuk Han

    2016-01-01

    The adult zebrafish has been used to model the electrocardiogram (ECG) for human cardiovascular studies. Nonetheless huge variations are observed among studies probably because of the lack of a reliable and reproducible recording method. In our study, an adult zebrafish surface ECG recording technique was improved using a multi-electrode method and by pre-opening the pericardial sac. A convenient ECG data analysis method without wavelet transform was also established. Intraperitoneal injection of KCl in zebrafish induced an arrhythmia similar to that of humans, and the arrhythmia was partially rescued by calcium gluconate. Amputation and cryoinjury of the zebrafish heart induced ST segment depression and affected QRS duration after injury. Only cryoinjury decelerated the heart rate. Different changes were also observed in the QT interval during heart regeneration in these two injury models. We also characterized the electrocardiophysiology of breakdance zebrafish mutant with a prolonged QT interval, that has not been well described in previous studies. Our study provided a reliable and reproducible means to record zebrafish ECG and analyse data. The detailed characterization of the cardiac electrophysiology of zebrafish and its mutant revealed that the potential of the zebrafish in modeling the human cardiovascular system exceeds expectations. PMID:27125643

  18. Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation

    PubMed Central

    Liu, Chi Chi; Li, Li; Lam, Yun Wah; Siu, Chung Wah; Cheng, Shuk Han

    2016-01-01

    The adult zebrafish has been used to model the electrocardiogram (ECG) for human cardiovascular studies. Nonetheless huge variations are observed among studies probably because of the lack of a reliable and reproducible recording method. In our study, an adult zebrafish surface ECG recording technique was improved using a multi-electrode method and by pre-opening the pericardial sac. A convenient ECG data analysis method without wavelet transform was also established. Intraperitoneal injection of KCl in zebrafish induced an arrhythmia similar to that of humans, and the arrhythmia was partially rescued by calcium gluconate. Amputation and cryoinjury of the zebrafish heart induced ST segment depression and affected QRS duration after injury. Only cryoinjury decelerated the heart rate. Different changes were also observed in the QT interval during heart regeneration in these two injury models. We also characterized the electrocardiophysiology of breakdance zebrafish mutant with a prolonged QT interval, that has not been well described in previous studies. Our study provided a reliable and reproducible means to record zebrafish ECG and analyse data. The detailed characterization of the cardiac electrophysiology of zebrafish and its mutant revealed that the potential of the zebrafish in modeling the human cardiovascular system exceeds expectations. PMID:27125643

  19. Time-Gated Optical Projection Tomography Allows Visualization of Adult Zebrafish Internal Structures

    PubMed Central

    Foglia, Efrem Alessandro; Pistocchi, Anna; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio; Cotelli, Franco

    2012-01-01

    Optical imaging through biological samples is compromised by tissue scattering and currently various approaches aim to overcome this limitation. In this paper we demonstrate that an all optical technique, based on non-linear upconversion of infrared ultrashort laser pulses and on multiple view acquisition, allows the reduction of scattering effects in tomographic imaging. This technique, namely Time-Gated Optical Projection Tomography (TGOPT), is used to reconstruct three dimensionally the internal structure of adult zebrafish without staining or clearing agents. This method extends the use of Optical Projection Tomography to optically diffusive samples yielding reconstructions with reduced artifacts, increased contrast and improved resolution with respect to those obtained with non-gated techniques. The paper shows that TGOPT is particularly suited for imaging the skeletal system and nervous structures of adult zebrafish. PMID:23185643

  20. Kainate administered to adult zebrafish causes seizures similar to those in rodent models.

    PubMed

    Alfaro, Juan M; Ripoll-Gómez, Jorge; Burgos, Javier S

    2011-04-01

    Glutamate is the major excitatory neurotransmitter of the central nervous system in vertebrates. Excitotoxicity, caused by over-stimulation of the glutamate receptors, is a major cause of neuron death in several brain diseases, including epilepsy. We describe here how behavioural seizures can be triggered in adult zebrafish by the administration of kainate and are very similar to those observed in rodent models. Kainate induced a dose-dependent sequence of behavioural changes culminating in clonus-like convulsions. Behavioural seizures were suppressed by DNQX (6,7-dinitroquinoxaline-2,3-dione) dose-dependently, whilst MK-801 (a non-competitive NMDA receptor antagonist) had a lesser effect. Kainate triggers seizures in adult zebrafish, and thus this species can be considered as a new model for studying seizures and subsequent excitotoxic brain injury.

  1. The Behavioral Effects of Single Housing and Environmental Enrichment on Adult Zebrafish (Danio rerio).

    PubMed

    Collymore, Chereen; Tolwani, Ravi J; Rasmussen, Skye

    2015-05-01

    Environmental enrichment provides laboratory-housed species the opportunity to express natural behavior and exert control over their home environment, thereby minimizing stress. We sought to determine whether providing an artificial plant in the holding tank as enrichment influenced anxiety-like behaviors and place-preference choice in adult zebrafish. Fish were housed singly or in social groups of 5 for 3 wk in 1 of 4 experimental housing environments: single-housed enriched (n = 30), single-housed barren (n = 30), group-housed enriched (n = 30), and group-housed barren (n = 30). On week 4, individual fish were selected randomly from each of the experimental housing environments and tested by using novel-tank, light-dark, and place-preference tests. Housing fish singly in a barren environment increased anxiety-like behaviors in the novel-tank and light-dark behavioral tests. Single-housed zebrafish in barren tanks as well as zebrafish group-housed with conspecifics, both with and without plant enrichment, spent more time associating with conspecifics than with the artificial plant enrichment device during the place-preference test. Single-housed fish maintained in enriched tanks displayed no preference between a compartment with conspecifics or an artificial plant. Our results suggest the addition of an artificial plant as enrichment may benefit single-housed zebrafish when social housing is not possible.

  2. The Behavioral Effects of Single Housing and Environmental Enrichment on Adult Zebrafish (Danio rerio)

    PubMed Central

    Collymore, Chereen; Tolwani, Ravi J; Rasmussen, Skye

    2015-01-01

    Environmental enrichment provides laboratory-housed species the opportunity to express natural behavior and exert control over their home environment, thereby minimizing stress. We sought to determine whether providing an artificial plant in the holding tank as enrichment influenced anxiety-like behaviors and place-preference choice in adult zebrafish. Fish were housed singly or in social groups of 5 for 3 wk in 1 of 4 experimental housing environments: single-housed enriched (n = 30), single-housed barren (n = 30), group-housed enriched (n = 30), and group-housed barren (n = 30). On week 4, individual fish were selected randomly from each of the experimental housing environments and tested by using novel-tank, light–dark, and place-preference tests. Housing fish singly in a barren environment increased anxiety-like behaviors in the novel-tank and light–dark behavioral tests. Single-housed zebrafish in barren tanks as well as zebrafish group-housed with conspecifics, both with and without plant enrichment, spent more time associating with conspecifics than with the artificial plant enrichment device during the place-preference test. Single-housed fish maintained in enriched tanks displayed no preference between a compartment with conspecifics or an artificial plant. Our results suggest the addition of an artificial plant as enrichment may benefit single-housed zebrafish when social housing is not possible. PMID:26045453

  3. Identification and characterization of the pumilio-2 expressed in zebrafish embryos and adult tissues.

    PubMed

    Wang, Huan Nan; Xu, Yan; Tao, Ling Jie; Zhou, Jian; Qiu, Meng Xi; Teng, Yu Hang; Deng, Feng Jiao

    2012-03-01

    Pumilio proteins regulate the translation of specific proteins required for germ cell development and morphogenesis. In the present study, we have identified the pumilio-2 in zebrafish and analyze its expression in adult tissues and early embryos. Pumilio-2 codes for the full-length Pumilio-2 protein and contains a PUF-domain. When compared to the mammalian and avian Pumilio-2 proteins, zebrafish Pumilio-2 protein was found to contain an additional sequence of 24 amino acid residues within the PUF-domain. Zebrafish pumilio-2 mRNA is expressed in the ovary, testis, liver, kidney and brain but is absent in the heart and muscle as detected by RT-PCR. The results of in situ hybridization indicate that transcripts of pumilio-2 are distributed in all blastomeres from the 1-cell stage to the sphere stage and accumulate in the head and tail during the 60%-epiboly and 3-somite stages. Transcripts were also detected in the brain and neural tube of the 24 h post-fertilization (hpf) embryos. Western blot analyses indicate that the Pumilio-2 protein is strongly expressed in the ovary, testis and brain but not in other tissues. These data suggest that pumilio-2 plays an important role in the development of the zebrafish germ cells and nervous system.

  4. S100 protein-like immunoreactivity in the crypt olfactory neurons of the adult zebrafish.

    PubMed

    Germanà, A; Montalbano, G; Laurà, R; Ciriaco, E; del Valle, M E; Vega, José A

    2004-11-23

    The olfactory epithelium of some teleosts, including zebrafish, contains three types of olfactory sensory neurons. Because zebrafish has become an ideal model for the study of neurogenesis in the olfactory system, it is of capital importance the identification of specific markers for different neuronal populations. In this study we used immunohistochemistry to analyze the distribution of S100 protein-like in the adult zebrafish olfactory epithelium. Surprisingly, specific S100 protein-like immunostaining was detected exclusively in crypt neurons, whereas ciliated and microvillous neurons were not reactive, and the supporting glial cells as well. The pattern of immunostaining was exclusively cytoplasmic without apparent polarity within the soma, and the intensity of immunostaining was not related with the maturative stage of the neurons. The role of S100 protein in crypt olfactory neurons is unknown, although it is probably associated with the capacity of these cells to respond to chemical stimuli. In any case, it represents an excellent marker to identify crypt olfactory neurons in zebrafish.

  5. In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio).

    PubMed

    Krishnaraj, Chandran; Harper, Stacey L; Yun, Soon-Il

    2016-01-15

    The present study examines the deleterious effect of biologically synthesized silver nanoparticles in adult zebrafish. Silver nanoparticles (AgNPs) used in the study were synthesized by treating AgNO3 with aqueous leaves extract of Malva crispa Linn., a medicinal herb as source of reductants. LC50 concentration of AgNPs at 96 h was observed as 142.2 μg/l. In order to explore the underlying toxicity mechanisms of AgNPs, half of the LC50 concentration (71.1 μg/l) was exposed to adult zebrafish for 14 days. Cytological changes and intrahepatic localization of AgNPs were observed in gills and liver tissues respectively, and the results concluded a possible sign for oxidative stress. In addition to oxidative stress the genotoxic effect was observed in peripheral blood cells like presence of micronuclei, nuclear abnormalities and also loss in cell contact with irregular shape was observed in liver parenchyma cells. Hence to confirm the oxidative stress and genotoxic effects the mRNA expression of stress related (MTF-1, HSP70) and immune response related (TLR4, NFKB, IL1B, CEBP, TRF, TLR22) genes were analyzed in liver tissues and the results clearly concluded that the plant extract mediated synthesis of AgNPs leads to oxidative stress and immunotoxicity in adult zebrafish.

  6. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    DOE PAGES

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less

  7. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  8. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification.

    PubMed

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D'Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  9. Expression Atlas of the Deubiquitinating Enzymes in the Adult Mouse Retina, Their Evolutionary Diversification and Phenotypic Roles

    PubMed Central

    Esquerdo, Mariona; Grau-Bové, Xavier; Garanto, Alejandro; Toulis, Vasileios; Garcia-Monclús, Sílvia; Millo, Erica; López-Iniesta, Ma José; Abad-Morales, Víctor; Ruiz-Trillo, Iñaki; Marfany, Gemma

    2016-01-01

    Ubiquitination is a relevant cell regulatory mechanism to determine protein fate and function. Most data has focused on the role of ubiquitin as a tag molecule to target substrates to proteasome degradation, and on its impact in the control of cell cycle, protein homeostasis and cancer. Only recently, systematic assays have pointed to the relevance of the ubiquitin pathway in the development and differentiation of tissues and organs, and its implication in hereditary diseases. Moreover, although the activity and composition of ubiquitin ligases has been largely addressed, the role of the deubiquitinating enzymes (DUBs) in specific tissues, such as the retina, remains mainly unknown. In this work, we undertook a systematic analysis of the transcriptional levels of DUB genes in the adult mouse retina by RT-qPCR and analyzed the expression pattern by in situ hybridization and fluorescent immunohistochemistry, thus providing a unique spatial reference map of retinal DUB expression. We also performed a systematic phylogenetic analysis to understand the origin and the presence/absence of DUB genes in the genomes of diverse animal taxa that represent most of the known animal diversity. The expression landscape obtained supports the potential subfunctionalization of paralogs in those families that expanded in vertebrates. Overall, our results constitute a reference framework for further characterization of the DUB roles in the retina and suggest new candidates for inherited retinal disorders. PMID:26934049

  10. Rod Photoreceptors Express GPR55 in the Adult Vervet Monkey Retina

    PubMed Central

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian; Ptito, Maurice; Bouchard, Jean-François

    2013-01-01

    Cannabinoids exert their actions mainly through two receptors, the cannabinoid CB1 receptor (CB1R) and cannabinoid CB2 receptor (CB2R). In recent years, the G-protein coupled receptor 55 (GPR55) was suggested as a cannabinoid receptor based on its activation by anandamide and tetrahydrocannabinol. Yet, its formal classification is still a matter of debate. CB1R and CB2R expression patterns are well described for rodent and monkey retinas. In the monkey retina, CB1R has been localized in its neural (cone photoreceptor, horizontal, bipolar, amacrine and ganglion cells) and CB2R in glial components (Müller cells). The aim of this study was to determine the expression pattern of GPR55 in the monkey retina by using confocal microscopy. Our results show that GPR55 is strictly localized in the photoreceptor layer of the extrafoveal portion of the retina. Co-immunolabeling of GPR55 with rhodopsin, the photosensitive pigment in rods, revealed a clear overlap of expression throughout the rod structure with most prominent staining in the inner segments. Additionally, double-label of GPR55 with calbindin, a specific marker for cone photoreceptors in the primate retina, allowed us to exclude expression of GPR55 in cones. The labeling of GPR55 in rods was further assessed with a 3D visualization in the XZ and YZ planes thus confirming its exclusive expression in rods. These results provide data on the distribution of GPR55 in the monkey retina, different than CB1R and CB2R. The presence of GPR55 in rods suggests a function of this receptor in scotopic vision that needs to be demonstrated. PMID:24244730

  11. Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio).

    PubMed

    Ampatzis, Konstantinos; Dermon, Catherine R

    2016-10-01

    Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior.

  12. Ketamine induces anxiolytic effects in adult zebrafish: A multivariate statistics approach.

    PubMed

    De Campos, Eduardo Geraldo; Bruni, Aline Thais; De Martinis, Bruno Spinosa

    2015-10-01

    Ketamine inappropriate use has been associated with serious consequences for human health. Anesthetic properties of ketamine are well-known, but its side effects are poorly described, including the effects on anxiety. In this context, animal models are a safe way to conduct this neurobehavioral research and zebrafish (Danio rerio) is an interesting model which has several advantages. The validation and interpretation of results of behavioral assays requires a suitable statistical approach, and the use of multivariate statistical methods has been little explored, especially in zebrafish behavioral models. Here, we investigated the anxiolytic-induced effects of ketamine in adult zebrafish, using Light-Dark Test and proposing the Multivariate Statistics methods (PCA, HCA and SIMCA) to analyze the results. In addition, we compared the processing of data to the one carried out by analysis of variance (ANOVA) ketamine produced significant concentration of exposure-dependent anxiolytic effects, increasing time in white area and number of crossings and decreasing latency to first access to white area. Average entry duration behavior resulted in a slight decrease from control to treatment groups, with an observed concentration-dependent increase among the exposed groups. PCA results indicated that two principal components represent 88.74% of all the system information. HCA and PCA results showed a higher similarity among control and treatment groups exposed to lower concentrations of ketamine and among treatment groups exposed to concentrations of 40 and 60 mg L(-1). In SIMCA results, interclasses distances were concentration of exposure-dependent increased and misclassifications and interclasses residues results also support these findings. These findings confirm the anxiolytic potential of ketamine and zebrafish sensibility to this drug. In summary, our study confirms that zebrafish and multivariate statistics data validation are an appropriate and viable behavioral model

  13. Kcnq1-5 (Kv7.1-5) potassium channel expression in the adult zebrafish

    PubMed Central

    2014-01-01

    Background KCNQx genes encode slowly activating-inactivating K+ channels, are linked to physiological signal transduction pathways, and mutations in them underlie diseases such as long QT syndrome (KCNQ1), epilepsy in adults (KCNQ2/3), benign familial neonatal convulsions in children (KCNQ3), and hearing loss or tinnitus in humans (KCNQ4, but not KCNQ5). Identification of kcnqx potassium channel transcripts in zebrafish (Danio rerio) remains to be fully characterized although some genes have been mapped to the genome. Using zebrafish genome resources as the source of putative kcnq sequences, we investigated the expression of kcnq1-5 in heart, brain and ear tissues. Results Overall expression of the kcnqx channel transcripts is similar to that found in mammals. We found that kcnq1 expression was highest in the heart, and also present in the ear and brain. kcnq2 was lowest in the heart, while kcnq3 was highly expressed in the brain, heart and ear. kcnq5 expression was highest in the ear. We analyzed zebrafish genomic clones containing putative kcnq4 sequences to identify transcripts and protein for this highly conserved member of the Kcnq channel family. The zebrafish appears to have two kcnq4 genes that produce distinct mRNA species in brain, ear, and heart tissues. Conclusions We conclude that the zebrafish is an attractive model for the study of the KCNQ (Kv7) superfamily of genes, and are important to processes involved in neuronal excitability, cardiac anomalies, epileptic seizures, and hearing loss or tinnitus. PMID:24555524

  14. Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio).

    PubMed

    Ampatzis, Konstantinos; Dermon, Catherine R

    2016-10-01

    Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior. PMID:27363927

  15. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  16. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice.

    PubMed

    Rubin, Nicole; Harrison, Michael R; Krainock, Michael; Kim, Richard; Lien, Ching-Ling

    2016-10-01

    Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models.

  17. Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice

    PubMed Central

    Salinas-Navarro, Manuel; Alarcón-Martínez, Luis; Valiente-Soriano, Francisco Javier; Ortín-Martínez, Arturo; Jiménez-López, Manuel; Avilés-Trigueros, Marcelino; Villegas-Pérez, María Paz; de la Villa, Pedro

    2009-01-01

    Purpose To investigate the effects of laser photocoagulation (LP)-induced ocular hypertension (OHT) on the survival and retrograde axonal transport of retinal ganglion cells (RGC), as well as on the function of retinal layers. Methods Adult albino Swiss mice (35–45 g) received laser photocoagulation of limbal and episcleral veins in the left eye. Mice were sacrificed at 8, 17, 35, and 63 days. Intraocular pressure (IOP) in both eyes was measured with a Tono-Lab before LP and at various days after LP. Flash electroretinogram (ERG) scotopic threshold response (STR) and a- and b-wave amplitudes were recorded before LP and at various times after LP. RGCs were labeled with 10% hydroxystilbamidine methanesulfonate (OHSt) applied to both superior colliculi before sacrifice and in some mice, with dextran tetramethylrhodamine (DTMR) applied to the ocular stump of the intraorbitally transected optic nerve. Retinas were immunostained for RT97 or Brn3a. Retinas were prepared as whole-mounts and photographed under a fluorescence microscope. Labeled RGCs were counted using image analysis software, and an isodensity contour plot was generated for each retina. Results IOP increased to twice its basal values by 24 h and was maintained until day 5, after which IOP gradually declined to reach basal values by 1 wk. Similar IOP increases were observed in all groups. The mean total number of OHSt+ RGCs was 13,428±6,295 (n=12), 10,456±14,301 (n=13), 12,622±14,174 (n=21), and 10,451±13,949 (n=13) for groups I, II, III, and IV, respectively; these values represented 28%, 23%, 26%, and 22% of the values found in their contralateral fellow retinas. The mean total population of Brn3a+ RGCs was 24,343±5,739 (n=12) and 10,219±8,887 (n=9), respectively, for groups I and III; these values represented 49% and 20%, respectively, of the values found in their fellow eyes. OHT retinas showed an absence of OHSt+ and DTMR+ RGCs in both focal wedge-shaped and diffuse regions of the retina. By 1

  18. Retinal Vasculature of Adult Zebrafish: In Vivo Imaging Using Confocal Scanning Laser Ophthalmoscopy

    PubMed Central

    Bell, Brent A.; Xie, Jing; Yuan, Alex; Kaul, Charles; Hollyfield, Joe G.; Anand-Apte, Bela

    2014-01-01

    Over the past 3 decades the zebrafish (Danio rerio) has become an important biomedical research species. As their use continues to grow additional techniques and tools will be required to keep pace with ongoing research using this species. In this paper we describe a novel method for in vivo imaging of the retinal vasculature in adult animals using a commercially available confocal scanning laser ophthalmoscope (SLO). With this instrumentation, we demonstrate the ability to distinguish diverse vascular phenotypes in different transgenic GFP lines. In addition this technology allows repeated visualization of the vasculature in individual zebrafish over time to document vascular leakage progression and recovery induced by intraocular delivery of proteins that induce vascular permeability. SLO of the retinal vasculature was found to be highly informative, providing images of high contrast and resolution that were capable of resolving individual vascular endothelial cells. Finally, the procedures required to acquire SLO images from zebrafish are non-invasive, simple to perform and can be achieved with low animal mortality, allowing repeated imaging of individual fish. PMID:25447564

  19. Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish

    PubMed Central

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2013-01-01

    Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals. PMID:24336189

  20. Strong Static Magnetic Fields Elicit Swimming Behaviors Consistent with Direct Vestibular Stimulation in Adult Zebrafish

    PubMed Central

    Ward, Bryan K.; Tan, Grace X-J; Roberts, Dale C.; Della Santina, Charles C.; Zee, David S.; Carey, John P.

    2014-01-01

    Zebrafish (Danio rerio) offer advantages as model animals for studies of inner ear development, genetics and ototoxicity. However, traditional assessment of vestibular function in this species using the vestibulo-ocular reflex requires agar-immobilization of individual fish and specialized video, which are difficult and labor-intensive. We report that using a static magnetic field to directly stimulate the zebrafish labyrinth results in an efficient, quantitative behavioral assay in free-swimming fish. We recently observed that humans have sustained nystagmus in high strength magnetic fields, and we attributed this observation to magnetohydrodynamic forces acting on the labyrinths. Here, fish were individually introduced into the center of a vertical 11.7T magnetic field bore for 2-minute intervals, and their movements were tracked. To assess for heading preference relative to a magnetic field, fish were also placed in a horizontally oriented 4.7T magnet in infrared (IR) light. A sub-population was tested again in the magnet after gentamicin bath to ablate lateral line hair cell function. Free-swimming adult zebrafish exhibited markedly altered swimming behavior while in strong static magnetic fields, independent of vision or lateral line function. Two-thirds of fish showed increased swimming velocity or consistent looping/rolling behavior throughout exposure to a strong, vertically oriented magnetic field. Fish also demonstrated altered swimming behavior in a strong horizontally oriented field, demonstrating in most cases preferred swimming direction with respect to the field. These findings could be adapted for ‘high-throughput’ investigations of the effects of environmental manipulations as well as for changes that occur during development on vestibular function in zebrafish. PMID:24647586

  1. Aquatic surface respiration and swimming behaviour in adult and developing zebrafish exposed to hypoxia.

    PubMed

    Abdallah, Sara J; Thomas, Benjamin S; Jonz, Michael G

    2015-06-01

    Severe hypoxia elicits aquatic surface respiration (ASR) behaviour in many species of fish, where ventilation of the gills at the air-water interface improves O2 uptake and survival. ASR is an important adaptation that may have given rise to air breathing in vertebrates. The neural substrate of this behaviour, however, is not defined. We characterized ASR in developing and adult zebrafish (Danio rerio) to ascertain a potential role for peripheral chemoreceptors in initiation or modulation of this response. Adult zebrafish exposed to acute, progressive hypoxia (PO2 from 158 to 15 mmHg) performed ASR with a threshold of 30 mmHg, and spent more time at the surface as PO2 decreased. Acclimation to hypoxia attenuated ASR responses. In larvae, ASR behaviour was observed between 5 and 21 days postfertilization with a threshold of 16 mmHg. Zebrafish decreased swimming behaviour (i.e. distance, velocity and acceleration) as PO2 was decreased, with a secondary increase in behaviour near or below threshold PO2 . In adults that underwent a 10-day intraperitoneal injection regime of 10 μg g(-1) serotonin (5-HT) or 20 μg g(-1) acetylcholine (ACh), an acute bout of hypoxia (15 mmHg) increased the time engaged in ASR by 5.5 and 4.9 times, respectively, compared with controls. Larvae previously immersed in 10 μmol l(-1) 5-HT or ACh also displayed an increased ASR response. Our results support the notion that ASR is a behavioural response that is reliant upon input from peripheral O2 chemoreceptors. We discuss implications for the role of chemoreceptors in the evolution of air breathing.

  2. Pattern of innervation and recruitment of different classes of motoneurons in adult zebrafish.

    PubMed

    Ampatzis, Konstantinos; Song, Jianren; Ausborn, Jessica; El Manira, Abdeljabbar

    2013-06-26

    In vertebrates, spinal circuits drive rhythmic firing in motoneurons in the appropriate sequence to produce locomotor movements. These circuits become active early during development and mature gradually to acquire the flexibility necessary to accommodate the increased behavioral repertoire of adult animals. The focus here is to elucidate how different pools of motoneurons are organized and recruited and how membrane properties contribute to their mode of operation. For this purpose, we have used the in vitro preparation of adult zebrafish. We show that different motoneuron pools are organized in a somatotopic fashion in the motor column related to the type of muscle fibers (slow, intermediate, fast) they innervate. During swimming, the different motoneuron pools are recruited in a stepwise manner from slow, to intermediate, to fast to cover the full range of locomotor frequencies seen in intact animals. The spike threshold, filtering properties, and firing patterns of the different motoneuron pools are graded in a manner that relates to their order of recruitment. Our results thus show that motoneurons in adult zebrafish are organized into distinct modules, each with defined locations, properties, and recruitment patterns tuned to precisely match the muscle properties and hence produce swimming of different speeds and modalities. PMID:23804107

  3. Contrast-Enhanced X-Ray Micro-Computed Tomography as a Versatile Method for Anatomical Studies of Adult Zebrafish.

    PubMed

    Babaei, Fatemeh; Hong, Tony Liu Chi; Yeung, Kelvin; Cheng, Shuk Han; Lam, Yun Wah

    2016-08-01

    One attractive quality of zebrafish as a model organism for biological research is that transparency at early developmental stages allows the optical imaging of cellular and molecular events. However, this advantage cannot be applied to adult zebrafish. In this study, we explored the use of contrast-enhanced X-ray micro-computed tomography (microCT) on adult zebrafish in which the organism was stained with iodine, a simple and economical contrasting agent, after fixation. Tomographic reconstruction of the microCT data allowed the three-dimensional (3D) volumetric analyses of individual organs in adult zebrafish. Adipose tissues showed a higher affinity to iodine and were more strongly contrasted in microCT. As traditional histological techniques often involve dehydration steps that remove tissue lipids, iodine-contrasted microCT offers a convenient method for visualizing fat deposition in fish. Utilizing this advantage, we discovered a transient accumulation of lipids around the heart after ventricular amputation, suggesting a correlation between lipid distribution and heart regeneration. Taken together, microCT is a versatile technique that enables the 3D visualization of zebrafish organs, as well as other fish models, in their anatomical context. This simple method is a valuable new addition to the arsenal of techniques available to this model organism. PMID:27058023

  4. Contrast-Enhanced X-Ray Micro-Computed Tomography as a Versatile Method for Anatomical Studies of Adult Zebrafish.

    PubMed

    Babaei, Fatemeh; Hong, Tony Liu Chi; Yeung, Kelvin; Cheng, Shuk Han; Lam, Yun Wah

    2016-08-01

    One attractive quality of zebrafish as a model organism for biological research is that transparency at early developmental stages allows the optical imaging of cellular and molecular events. However, this advantage cannot be applied to adult zebrafish. In this study, we explored the use of contrast-enhanced X-ray micro-computed tomography (microCT) on adult zebrafish in which the organism was stained with iodine, a simple and economical contrasting agent, after fixation. Tomographic reconstruction of the microCT data allowed the three-dimensional (3D) volumetric analyses of individual organs in adult zebrafish. Adipose tissues showed a higher affinity to iodine and were more strongly contrasted in microCT. As traditional histological techniques often involve dehydration steps that remove tissue lipids, iodine-contrasted microCT offers a convenient method for visualizing fat deposition in fish. Utilizing this advantage, we discovered a transient accumulation of lipids around the heart after ventricular amputation, suggesting a correlation between lipid distribution and heart regeneration. Taken together, microCT is a versatile technique that enables the 3D visualization of zebrafish organs, as well as other fish models, in their anatomical context. This simple method is a valuable new addition to the arsenal of techniques available to this model organism.

  5. TBBPA chronic exposure produces sex-specific neurobehavioral and social interaction changes in adult zebrafish.

    PubMed

    Chen, Jiangfei; Tanguay, Robert L; Simonich, Michael; Nie, Shangfei; Zhao, Yuxin; Li, Lelin; Bai, Chenglian; Dong, Qiaoxiang; Huang, Changjiang; Lin, Kuangfei

    2016-01-01

    The toxicity of tetrabromobisphenol A (TBBPA) has been extensively studied because of its high production volume. TBBPA is toxic to aquatic fish based on acute high concentration exposure tests, and few studies have assessed the behavioral effects of low concentration chronic TBBPA exposures in aquatic organisms. The present study defined the developmental and neurobehavioral effects associated with exposure of zebrafish to 0, 5 and 50nM TBBPA during 1-120days post-fertilization (dpf) following by detoxification for four months before the behaviors assessment. These low concentration TBBPA exposures were not associated with malformations and did not alter sex ratio, but resulted in reduced zebrafish body weight and length. Adult behavioral assays indicated that TBBPA exposed males had significantly higher average swim speeds and spent significantly more time in high speed darting mode and less time in medium cruising mode compared to control males. In an adult photomotor response assay, TBBPA exposure was associated with hyperactivity in male fish. Female zebrafish responses in these assays followed a similar trend, but the magnitude of TBBPA effects was generally smaller than in males. Social interaction evaluated using a mirror attack test showed that 50nM TBBPA exposed males had heightened aggression. Females exposed to 50nM TBBPA spent more time in the vicinity of the mirror, but did not show increased aggression toward the mirror compared to unexposed control fish. Overall, the hyperactivity and social behavior deficits ascribed here to chronic TBBPA exposure was most profound in males. Our findings indicate that TBBPA can cause developmental and neurobehavioral deficits, and may pose significant health risk to humans. PMID:27221227

  6. Neuronal labeling patterns in the spinal cord of adult transgenic Zebrafish.

    PubMed

    Stil, Aurélie; Drapeau, Pierre

    2016-06-01

    We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well-known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP-positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP-positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish.

  7. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis.

    PubMed

    Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S; Xiao, Changhe; Cannon, Jason R; Freeman, Jennifer L

    2015-07-01

    Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3μg/L as defined by the U.S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30μg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7dpf or in adult males, but a significant decrease in 5-hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1928, 89, and 435 genes in the females exposed to 0.3, 3, or 30μg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis. PMID:25929836

  8. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Sepúlveda, Maria S.; Xiao, Changhe; Cannon, Jason R.; Freeman, Jennifer L.

    2015-01-01

    Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3 µg/L as defined by the U. S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30 µg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7 dpf or in adult males, but a significant decrease in 5-Hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1853, 84, and 419 genes in the females exposed to 0.3, 3, or 30 µg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis. PMID:25929836

  9. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis.

    PubMed

    Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S; Xiao, Changhe; Cannon, Jason R; Freeman, Jennifer L

    2015-07-01

    Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3μg/L as defined by the U.S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30μg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7dpf or in adult males, but a significant decrease in 5-hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1928, 89, and 435 genes in the females exposed to 0.3, 3, or 30μg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis.

  10. Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish.

    PubMed

    Barbosa, Joana S; Ninkovic, Jovica

    2016-01-01

    Adult Neural Stem Cells (aNSCs) generate new neurons that integrate into the pre-existing networks in specific locations of the Vertebrate brain. Moreover, aNSCs contribute with new neurons to brain regeneration in some non-mammalian Vertebrates. The similarities and the differences in the cellular and molecular processes governing neurogenesis in the intact and regenerating brain are still to be assessed. Toward this end, we recently established a protocol for non-invasive imaging of aNSC behavior in their niche in vivo in the adult intact and regenerating zebrafish telencephalon. We observed different modes of aNSC division in the intact brain and a novel mode of neurogenesis by direct conversion, which contributes to stem cell depletion with age. After injury, the generation of neurons is increased both by the activation of additional aNSCs and a shift in the division mode of aNSCs, thereby contributing to the successful neuronal regeneration. The cellular behavior we observed opens new questions regarding long-term aNSC maintenance in homeostasis and in regeneration. In this commentary we discuss our data and new questions arising in the context of aNSC behavior, not only in zebrafish but also in other species, including mammals. PMID:27606336

  11. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish.

    PubMed

    Diep, Cuong Q; Ma, Dongdong; Deo, Rahul C; Holm, Teresa M; Naylor, Richard W; Arora, Natasha; Wingert, Rebecca A; Bollig, Frank; Djordjevic, Gordana; Lichman, Benjamin; Zhu, Hao; Ikenaga, Takanori; Ono, Fumihito; Englert, Christoph; Cowan, Chad A; Hukriede, Neil A; Handin, Robert I; Davidson, Alan J

    2011-02-01

    Loss of kidney function underlies many renal diseases. Mammals can partly repair their nephrons (the functional units of the kidney), but cannot form new ones. By contrast, fish add nephrons throughout their lifespan and regenerate nephrons de novo after injury, providing a model for understanding how mammalian renal regeneration may be therapeutically activated. Here we trace the source of new nephrons in the adult zebrafish to small cellular aggregates containing nephron progenitors. Transplantation of single aggregates comprising 10-30 cells is sufficient to engraft adults and generate multiple nephrons. Serial transplantation experiments to test self-renewal revealed that nephron progenitors are long-lived and possess significant replicative potential, consistent with stem-cell activity. Transplantation of mixed nephron progenitors tagged with either green or red fluorescent proteins yielded some mosaic nephrons, indicating that multiple nephron progenitors contribute to a single nephron. Consistent with this, live imaging of nephron formation in transparent larvae showed that nephrogenic aggregates form by the coalescence of multiple cells and then differentiate into nephrons. Taken together, these data demonstrate that the zebrafish kidney probably contains self-renewing nephron stem/progenitor cells. The identification of these cells paves the way to isolating or engineering the equivalent cells in mammals and developing novel renal regenerative therapies.

  12. Basal bodies exhibit polarized positioning in zebrafish cone photoreceptors

    PubMed Central

    Ramsey, Michelle; Perkins, Brian D.

    2012-01-01

    The asymmetric positioning of basal bodies, and therefore cilia, is often critical for proper cilia function. This planar polarity is critical for motile cilia function but has not been extensively investigated for non-motile cilia or for sensory cilia such as vertebrate photoreceptors. Zebrafish photoreceptors form an organized mosaic ideal for investigating cilia positioning. We report that in the adult retina, the basal bodies of red, green-, and blue-sensitive cone photoreceptors localized asymmetrically on the cell edge nearest to the optic nerve. In contrast, no patterning was seen in the basal bodies of ultraviolet-sensitive cones or in rod photoreceptors. The asymmetric localization of basal bodies was consistent in all regions of the adult retina. Basal body patterning was unaffected in the cones of the XOPS-mCFP transgenic line, which lacks rod photoreceptors. Finally, the adult pattern was not seen in 7 day post fertilization (dpf) larvae as basal bodies were randomly distributed in all the photoreceptor subtypes. These results establish the asymmetrical localization of basal bodies in red-, green-, and blue-sensitive cones in adult zebrafish retinas but not in larvae. This pattern suggests an active cellular mechanism regulated the positioning of basal bodies after the transition to the adult mosaic and that rods do not seem to be necessary for the patterning of cone basal bodies. PMID:23171982

  13. Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish

    PubMed Central

    Barton, Carrie L.; Proffitt, Sarah; Tanguay, Robert L.; Sharpton, Thomas J.

    2016-01-01

    Growing evidence indicates that disrupting the microbial community that comprises the intestinal tract, known as the gut microbiome, can contribute to the development or severity of disease. As a result, it is important to discern the agents responsible for microbiome disruption. While animals are frequently exposed to a diverse array of environmental chemicals, little is known about their effects on gut microbiome stability and structure. Here, we demonstrate how zebrafish can be used to glean insight into the effects of environmental chemical exposure on the structure and ecological dynamics of the gut microbiome. Specifically, we exposed forty-five adult zebrafish to triclosan-laden food for four or seven days or a control diet, and analyzed their microbial communities using 16S rRNA amplicon sequencing. Triclosan exposure was associated with rapid shifts in microbiome structure and diversity. We find evidence that several operational taxonomic units (OTUs) associated with the family Enterobacteriaceae appear to be susceptible to triclosan exposure, while OTUs associated with the genus Pseudomonas appeared to be more resilient and resistant to exposure. We also found that triclosan exposure is associated with topological alterations to microbial interaction networks and results in an overall increase in the number of negative interactions per microbe in these networks. Together these data indicate that triclosan exposure results in altered composition and ecological dynamics of microbial communities in the gut. Our work demonstrates that because zebrafish afford rapid and inexpensive interrogation of a large number of individuals, it is a useful experimental system for the discovery of the gut microbiome’s interaction with environmental chemicals. PMID:27191725

  14. Exposure to Zinc Sulfate Results in Differential Effects on Olfactory Sensory Neuron Subtypes in Adult Zebrafish

    PubMed Central

    Hentig, James T.; Byrd-Jacobs, Christine A.

    2016-01-01

    Zinc sulfate is a known olfactory toxicant, although its specific effects on the olfactory epithelium of zebrafish are unknown. Olfactory organs of adult zebrafish were exposed to zinc sulfate and, after 2, 3, 5, 7, 10 or 14 days, fish were processed for histological, immunohistochemical, ultrastructural, and behavioral analyses. Severe morphological disruption of the olfactory organ was observed two days following zinc sulfate exposure, including fusion of lamellae, epithelial inflammation, and significant loss of anti-calretinin labeling. Scanning electron microscopy revealed the apical surface of the sensory region was absent of ciliated structures, but microvilli were still present. Behavioral analysis showed significant loss of the ability to perceive bile salts and some fish also had no response to amino acids. Over the next several days, olfactory organ morphology, epithelial structure, and anti-calretinin labeling returned to control-like conditions, although the ability to perceive bile salts remained lost until day 14. Thus, exposure to zinc sulfate results in rapid degeneration of the olfactory organ, followed by restoration of morphology and function within two weeks. Zinc sulfate appears to have a greater effect on ciliated olfactory sensory neurons than on microvillous olfactory sensory neurons, suggesting differential effects on sensory neuron subtypes. PMID:27589738

  15. Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio).

    PubMed

    Chang, Juhua; Liu, Shaoying; Zhou, Shengli; Wang, Minghua; Zhu, Guonian

    2013-01-01

    Butachlor, a chloracetamide herbicide, is widely used in China. In the present study, paired adult male and female zebrafish (Danio rerio) were exposed to various concentrations of butachlor (0, 25, 50 and 100 μg/L) for 30 days, and the effects on reproduction and endocrine disruption were evaluated using fecundity, condition factor (CF), gonadosomatic index (GSI), liver somatic index (LSI), plasma vitellogenin (VTG), sex steroids and thyroid hormone levels as endpoints. Our results showed that the mean fecundity rates were significantly decreased at 50 and 100 μg/L butachlor during the 30-day exposure period. At the end of the exposure period, no significant changes were observed in CF and LSI in both females and males, while GSI was significantly reduced in males at 50 and 100 μg/L butachlor. At 100 μg/L butachlor, plasma testosterone (T) and 17β-estradiol (E2) levels were significantly decreased in females, while plasma VTG level was significantly increased in males. Plasma thyroxine (T4) and triiodothyronine (T3) levels were significantly increased at 50 and 100 μg/L butachlor in males, and at 100 μg/L in females. This work demonstrated that butachlor adversely affected the normal reproductive success of zebrafish, and disrupted the thyroid and sex steroid endocrine systems, which provides the basis for the estimated ecological risk during butachlor exposure.

  16. Exposure to Zinc Sulfate Results in Differential Effects on Olfactory Sensory Neuron Subtypes in Adult Zebrafish.

    PubMed

    Hentig, James T; Byrd-Jacobs, Christine A

    2016-01-01

    Zinc sulfate is a known olfactory toxicant, although its specific effects on the olfactory epithelium of zebrafish are unknown. Olfactory organs of adult zebrafish were exposed to zinc sulfate and, after 2, 3, 5, 7, 10 or 14 days, fish were processed for histological, immunohistochemical, ultrastructural, and behavioral analyses. Severe morphological disruption of the olfactory organ was observed two days following zinc sulfate exposure, including fusion of lamellae, epithelial inflammation, and significant loss of anti-calretinin labeling. Scanning electron microscopy revealed the apical surface of the sensory region was absent of ciliated structures, but microvilli were still present. Behavioral analysis showed significant loss of the ability to perceive bile salts and some fish also had no response to amino acids. Over the next several days, olfactory organ morphology, epithelial structure, and anti-calretinin labeling returned to control-like conditions, although the ability to perceive bile salts remained lost until day 14. Thus, exposure to zinc sulfate results in rapid degeneration of the olfactory organ, followed by restoration of morphology and function within two weeks. Zinc sulfate appears to have a greater effect on ciliated olfactory sensory neurons than on microvillous olfactory sensory neurons, suggesting differential effects on sensory neuron subtypes. PMID:27589738

  17. [Quantitative analysis of the isthmo-optic nucleus and projection neurons to the retina in adult fowl (Gallus gallus domesticus)].

    PubMed

    Sugita, S; Yamada, M

    1992-08-01

    Quantitative analysis of the isthmo-optic nucleus (IO) and centrifugal projection to the retina in the fowl was made using Nissl preparation and retrograde horseradish peroxidase (HRP) methods. Seven adult fowls (Gallus gallus domesticus) were used for Nissl stain. Serial sections were cut on a freezing microtome at 60 microns and stained with cresyl violet. IO was situated just medial to the caudal part of the tectum and laterodorsal surface of the brain stem. Rostrocaudal extension of IO was about 800-1,000 microns. The average total volume and neuronal population of the IO was 280 x 10(-3) mm3 and 5,600 neurons, respectively. Eight animals were used for HRP study. One hundred microliters of 30% HRP solution in physiological saline was injected into the vitreous body of one eye of each hen. Serial transverse sections of 60 microns were treated with tetramethyl benzidine (TMB). Many labeled neurons were found in contralateral brain stem. Average total number of contralateral HRP-labeled cells in IO and peri-IO were 5,268 and 1,492, respectively. Labeled neurons peri-IO were mainly distributed ventrally and rostrally to IO. No labeled neurons in IO, and only a few labeled neurons peri-IO were found ipsilaterally. The number of HRP-labeled neurons in IO corresponded to the neuronal population of IO in Nissl preparation, which suggested that most of isthmo-optic neurons might be projecting to the contralateral retina. In contrast to the round and small IO neurons (long axis 15-20 microns, short axis 10-20 microns), peri-IO neurons were multipolar and longer (long axis 15-30 microns, short axis 10-25 microns).

  18. Long-term exposure to paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio).

    PubMed

    Bortolotto, Josiane W; Cognato, Giana P; Christoff, Raissa R; Roesler, Laura N; Leite, Carlos E; Kist, Luiza W; Bogo, Mauricio R; Vianna, Monica R; Bonan, Carla D

    2014-04-01

    Chronic exposure to paraquat (Pq), a toxic herbicide, can result in Parkinsonian symptoms. This study evaluated the effect of the systemic administration of Pq on locomotion, learning and memory, social interaction, tyrosine hydroxylase (TH) expression, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels, and dopamine transporter (DAT) gene expression in zebrafish. Adult zebrafish received an i.p. injection of either 10 mg/kg (Pq10) or 20 mg/kg (Pq20) of Pq every 3 days for a total of six injections. Locomotion and distance traveled decreased at 24 h after each injection in both treatment doses. In addition, both Pq10- and Pq20-treated animals exhibited differential effects on the absolute turn angle. Nonmotor behaviors were also evaluated, and no changes were observed in anxiety-related behaviors or social interactions in Pq-treated zebrafish. However, Pq-treated animals demonstrated impaired acquisition and consolidation of spatial memory in the Y-maze task. Interestingly, dopamine levels increased while DOPAC levels decreased in the zebrafish brain after both treatments. However, DAT expression decreased in the Pq10-treated group, and there was no change in the Pq20-treated group. The amount of TH protein showed no significant difference in the treated group. Our study establishes a new model to study Parkinson-associated symptoms in zebrafish that have been chronically treated with Pq.

  19. Differential Expression of protocadherin-19, protocadherin-17 and cadherin-6 in Adult Zebrafish Brain

    PubMed Central

    Liu, Qin; Bhattarai, Sunil; Wang, Nan; Sochacka-Marlowe, Alicja

    2015-01-01

    Cell adhesion molecule cadherins play important roles in both development and maintenance of adult structures. Most studies on cadherin expression have been carried out in developing organisms, but information on cadherin distribution in adult vertebrate brains is limited. In this study, we used in situ hybridization to examine mRNA expression of three cadherins, protocadherin-19, protocadherin-17 and cadherin-6 in adult zebrafish brain. Each cadherin exhibits a distinct expression pattern in the fish brain, with protocadherin-19 and protocadherin-17 showing much wider and stronger expression than that of cadherin-6. Both protocadherin-19 and protocadherin-17 expressing cells occur throughout the brain with strong expression in the ventromedial telencephalon, periventricular regions of the thalamus and anterior hypothalamus, stratum periventriculare of the optic tectum, dorsal tegmental nucleus, granular regions of the cerebellar body and valvula, and superficial layers of the facial and vagal lobes. Numerous sensory structures (e.g. auditory, gustatory, lateral line, olfactory and visual nuclei) and motor nuclei (e.g. oculomotor, trochlear, trigeminal motor, abducens and vagal motor nuclei) contain protocadherin-19 and/or protocadherin-17 expressing cell. Expression of these two protocadherins is similar in the ventromedial telencephalon, thalamus, hypothalamus, facial and vagal lobes, but substantially different in the dorsolateral telencephalon, intermediate layers of the optic tectum, and cerebellar valvula. In contrast to the two protocadherins, cadherin-6 expression is much weaker and limited in the adult fish brain. PMID:25612302

  20. V-ATPase Proton Pumping Activity Is Required for Adult Zebrafish Appendage Regeneration

    PubMed Central

    Monteiro, Joana; Aires, Rita; Becker, Jörg D.; Jacinto, António; Certal, Ana C.; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration. PMID:24671205

  1. V-ATPase proton pumping activity is required for adult zebrafish appendage regeneration.

    PubMed

    Monteiro, Joana; Aires, Rita; Becker, Jörg D; Jacinto, António; Certal, Ana C; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration.

  2. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  3. Differential expression of protocadherin-19, protocadherin-17, and cadherin-6 in adult zebrafish brain.

    PubMed

    Liu, Qin; Bhattarai, Sunil; Wang, Nan; Sochacka-Marlowe, Alicja

    2015-06-15

    Cell adhesion molecule cadherins play important roles in both development and maintenance of adult structures. Most studies on cadherin expression have been carried out in developing organisms, but information on cadherin distribution in adult vertebrate brains is limited. In this study we used in situ hybridization to examine mRNA expression of three cadherins, protocadherin-19, protocadherin-17, and cadherin-6 in adult zebrafish brain. Each cadherin exhibits a distinct expression pattern in the fish brain, with protocadherin-19 and protocadherin-17 showing much wider and stronger expression than that of cadherin-6. Both protocadherin-19 and protocadherin-17-expressing cells occur throughout the brain, with strong expression in the ventromedial telencephalon, periventricular regions of the thalamus and anterior hypothalamus, stratum periventriculare of the optic tectum, dorsal tegmental nucleus, granular regions of the cerebellar body and valvula, and superficial layers of the facial and vagal lobes. Numerous sensory structures (e.g., auditory, gustatory, lateral line, olfactory, and visual nuclei) and motor nuclei (e.g., oculomotor, trochlear, trigeminal motor, abducens, and vagal motor nuclei) contain protocadherin-19 and/or protocadherin-17-expressing cell. Expression of these two protocadherins is similar in the ventromedial telencephalon, thalamus, hypothalamus, facial, and vagal lobes, but substantially different in the dorsolateral telencephalon, intermediate layers of the optic tectum, and cerebellar valvula. In contrast to the two protocadherins, cadherin-6 expression is much weaker and limited in the adult fish brain.

  4. Peripheral Axons of the Adult Zebrafish Maxillary Barbel Extensively Remyelinate During Sensory Appendage Regeneration

    PubMed Central

    Moore, Alex C.; Mark, Tiffany E.; Hogan, Ann K.; Topczewski, Jacek; LeClair, Elizabeth E.

    2013-01-01

    Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ~180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ~85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate. PMID:22592645

  5. Bisphenol A exposure during early development induces sex-specific changes in adult zebrafish social interactions.

    PubMed

    Weber, Daniel N; Hoffmann, Raymond G; Hoke, Elizabeth S; Tanguay, Robert L

    2015-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1, or 1 μM) or one of two control compounds (0.1 μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into three computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1-3 (= AM) and 5-8 (= PM) h postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, percent of time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced nonmonotonic effects (response curve changes direction within range of concentrations examined) on male percent of time at mirror only in AM. All treatments produced increased percent of time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions, and time of day of observation affected results. PMID:25424546

  6. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  7. Expression and distribution of S100 protein in the nervous system of the adult zebrafish (Danio rerio).

    PubMed

    Germanà, A; Marino, F; Guerrera, M C; Campo, S; de Girolamo, P; Montalbano, G; Germanà, G P; Ochoa-Erena, F J; Ciriaco, E; Vega, J A

    2008-03-01

    S100 proteins are EF-hand calcium-binding protein highly preserved during evolution present in both neuronal and non-neuronal tissues of the higher vertebrates. Data about the expression of S100 protein in fishes are scarce, and no data are available on zebrafish, a common model used in biology to study development but also human diseases. In this study, we have investigated the expression of S100 protein in the central nervous system of adult zebrafish using PCR, Western blot, and immunohistochemistry. The central nervous system of the adult zebrafish express S100 protein mRNA, and contain a protein of approximately 10 kDa identified as S100 protein. S100 protein immunoreactivity was detected widespread distributed in the central nervous system, labeling the cytoplasm of both neuronal and non-neuronal cells. In fact, S100 protein immunoreactivity was primarily found in glial and ependymal cells, whereas the only neurons displaying S100 immunoreactivity were the Purkinje's neurons of the cerebellar cortex and those forming the deep cerebellar nuclei. Outside the central nervous system, S100 protein immunoreactivity was observed in a subpopulation of sensory and sympathetic neurons, and it was absent from the enteric nervous system. The functional role of S100 protein in both neurons and non-neuronal cells of the zebrafish central nervous system remains to be elucidated, but present results might serve as baseline for future experimental studies using this teleost as a model.

  8. Expression and cell localization of brain-derived neurotrophic factor and TrkB during zebrafish retinal development

    PubMed Central

    Germanà, A; Sánchez-Ramos, C; Guerrera, M C; Calavia, M G; Navarro, M; Zichichi, R; García-Suárez, O; Pérez-Piñera, P; Vega, Jose A

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) signaling through TrkB regulates different aspects of neuronal development, including survival, axonal and dendritic growth, and synapse formation. Despite recent advances in our understanding of the functional significance of BDNF and TrkB in the retina, the cell types in the retina that express BDNF and TrkB, and the variations in their levels of expression during development, remain poorly defined. The goal of the present study is to determine the age-dependent changes in the levels of expression and localization of BDNF and TrkB in the zebrafish retina. Zebrafish retinas from 10 days post-fertilization (dpf) to 180 dpf were used to perform PCR, Western blot and immunohistochemistry. Both BDNF and TrkB mRNAs, and BDNF and full-length TrkB proteins were detected at all ages sampled. The localization of these proteins in the retina was very similar at all time points studied. BDNF immunoreactivity was found in the outer nuclear layer, the outer plexiform layer and the inner plexiform layer, whereas TrkB immunoreactivity was observed in the inner plexiform layer and, to a lesser extent, in the ganglion cell layer. These results demonstrate that the pattern of expression of BDNF and TrkB in the retina of zebrafish remains unchanged during postembryonic development and adult life. Because TrkB expression in retina did not change with age, cells expressing TrkB may potentially be able to respond during the entire lifespan of zebrafish to BDNF either exogenously administered or endogenously produced, acting through paracrine mechanisms. PMID:20649707

  9. Expression and cell localization of brain-derived neurotrophic factor and TrkB during zebrafish retinal development.

    PubMed

    Germanà, A; Sánchez-Ramos, C; Guerrera, M C; Calavia, M G; Navarro, M; Zichichi, R; García-Suárez, O; Pérez-Piñera, P; Vega, Jose A

    2010-09-01

    Brain-derived neurotrophic factor (BDNF) signaling through TrkB regulates different aspects of neuronal development, including survival, axonal and dendritic growth, and synapse formation. Despite recent advances in our understanding of the functional significance of BDNF and TrkB in the retina, the cell types in the retina that express BDNF and TrkB, and the variations in their levels of expression during development, remain poorly defined. The goal of the present study is to determine the age-dependent changes in the levels of expression and localization of BDNF and TrkB in the zebrafish retina. Zebrafish retinas from 10 days post-fertilization (dpf) to 180 dpf were used to perform PCR, Western blot and immunohistochemistry. Both BDNF and TrkB mRNAs, and BDNF and full-length TrkB proteins were detected at all ages sampled. The localization of these proteins in the retina was very similar at all time points studied. BDNF immunoreactivity was found in the outer nuclear layer, the outer plexiform layer and the inner plexiform layer, whereas TrkB immunoreactivity was observed in the inner plexiform layer and, to a lesser extent, in the ganglion cell layer. These results demonstrate that the pattern of expression of BDNF and TrkB in the retina of zebrafish remains unchanged during postembryonic development and adult life. Because TrkB expression in retina did not change with age, cells expressing TrkB may potentially be able to respond during the entire lifespan of zebrafish to BDNF either exogenously administered or endogenously produced, acting through paracrine mechanisms.

  10. Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon.

    PubMed

    Barbosa, Joana S; Di Giaimo, Rossella; Götz, Magdalena; Ninkovic, Jovica

    2016-08-01

    Adult neural stem cells (aNSCs) in zebrafish produce mature neurons throughout their entire life span in both the intact and regenerating brain. An understanding of the behavior of aNSCs in their intact niche and during regeneration in vivo should facilitate the identification of the molecular mechanisms controlling regeneration-specific cellular events. A greater understanding of the process in regeneration-competent species may enable regeneration to be achieved in regeneration-incompetent species, including humans. Here we describe a protocol for labeling and repetitive imaging of aNSCs in vivo. We label single aNSCs, allowing nonambiguous re-identification of single cells in repetitive imaging sessions using electroporation of a red-reporter plasmid in Tg(gfap:GFP)mi2001 transgenic fish expressing GFP in aNSCs. We image using two-photon microscopy through the thinned skull of anesthetized and immobilized fish. Our protocol allows imaging every 2 d for a period of up to 1 month. This methodology allowed the visualization of aNSC behavior in vivo in their natural niche, in contrast to previously available technologies, which rely on the imaging of either dissociated cells or tissue slices. We used this protocol to follow the mode of aNSC division, fate changes and cell death in both the intact and injured zebrafish telencephalon. This experimental setup can be widely used, with minimal prior experience, to assess key factors for processes that modulate aNSC behavior. A typical experiment with data analysis takes up to 1.5 months. PMID:27362338

  11. Reduced swim performance and aerobic capacity in adult zebrafish exposed to waterborne selenite.

    PubMed

    Massé, Anita J; Thomas, Jith K; Janz, David M

    2013-04-01

    Although dietary exposure of adult fish to organoselenium in contaminated aquatic ecosystems has been reported to bioaccumulate and cause larval deformities in offspring, subtle physiological effects produced through low level waterborne selenium exposure in fish such as swim performance and aerobic capacity have not been investigated. To evaluate potential effects of selenite on these responses, adult zebrafish (Danio rerio) were exposed to nominal aqueous concentrations of 0, 10 or 100 μg/L sodium selenite for 14 days. Upon completion of the exposure period, fish underwent two successive swim trials in a swim tunnel respirometer to determine critical swim speed (Ucrit), oxygen consumption (MO2), standard and active metabolic rates, aerobic scope (AS) and cost of transport (COT) followed by analysis of whole body triglyceride and glycogen concentrations. Selenite exposure had a significant negative effect on Ucrit and aerobic capacity. Active metabolic rates and AS significantly decreased in both selenite exposure groups after the second swim trial. No significant effect was observed in MO2, standard metabolic rate, COT, triglyceride and glycogen levels, or condition factor between groups. These results suggest that aqueous selenite exposure at environmentally relevant concentrations produces adverse effects on aerobic capacity that can diminish endurance and maximum swim speeds, which may lower fish survivability.

  12. Fgf8 haploinsufficiency results in distinct craniofacial defects in adult zebrafish.

    PubMed

    Albertson, R Craig; Yelick, Pamela C

    2007-06-15

    Significant progress has been made toward understanding the role of fgf8 in directing early embryonic patterning of the pharyngeal skeleton. Considerably less is known about the role this growth factor plays in the coordinated development, growth, and remodeling of the craniofacial skeleton beyond embryonic stages. To better understand the contributions of fgf8 in the formation of adult craniofacial architecture, we analyzed the skeletal anatomy of adult ace(ti282a)/fgf8 heterozygous zebrafish. Our results revealed distinct skeletal defects including facial asymmetries, aberrant craniofacial geometry, irregular patterns of cranial suturing, and ectopic bone formation. These defects are similar in presentation to several human craniofacial disorders (e.g., craniosynostosis, hemifacial microsomia), and may be related to increased levels of bone metabolism observed in ace(ti282a)/fgf8 heterozygotes. Moreover, skeletal defects observed in ace(ti282a)/fgf8 heterozygotes are consistent with expression patterns of fgf8 in the mature craniofacial skeleton. These data reveal previously unrecognized roles for fgf8 during skeletogenesis, and provide a basis for future investigations into the mechanisms that regulate craniofacial development beyond the embryo. PMID:17448458

  13. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration.

    PubMed

    Schall, K A; Holoyda, K A; Grant, C N; Levin, D E; Torres, E R; Maxwell, A; Pollack, H A; Moats, R A; Frey, M R; Darehzereshki, A; Al Alam, D; Lien, C; Grikscheit, T C

    2015-08-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation.

  14. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    SciTech Connect

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils and excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.

  15. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (‑)-PCB149, and (+)-PCB149. Greater enrichment of (‑)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (‑)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149.

  16. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    PubMed Central

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (−)-PCB149, and (+)-PCB149. Greater enrichment of (−)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (−)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149. PMID:26786282

  17. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (-)-PCB149, and (+)-PCB149. Greater enrichment of (-)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (-)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149.

  18. Feed and feeding regime affect growth rate and gonadosomatic index of adult zebrafish (Danio rerio).

    PubMed

    Gonzales, John M; Law, Sheran Hiu Wan

    2013-12-01

    A 5-week study was conducted to evaluate commercially available Artemia, Ziegler zebrafish diet, and Calamac diet fed in five different feeding regimes on the growth and reproductive development of 7-month-old zebrafish. Zebrafish were fed to satiation three times daily during the normal work week and twice daily during the weekend and holidays. Zebrafish in dietary groups CCC (Calamac three times daily) and CCA (Calamac twice daily, Artemia once daily) had a significantly (p<0.05) greater weight gain and specific growth rate as compared to all other dietary groups. Male zebrafish in dietary group 5 had significantly larger gonadosomatic index (GSI) values than all other groups, while female zebrafish in dietary group CCC had significantly larger GSI values than all other groups. No differences in the fatty acid content of female gonads were detected. Zebrafish fed solely Artemia had the greatest weight loss and lowest GSI values. Preliminary evidence of protein sparing in zebrafish is reported. Collectively, this study sheds more light into the effects of the use of commercially available feeds and feeding regime on the rearing of zebrafish. PMID:23902461

  19. Feed and Feeding Regime Affect Growth Rate and Gonadosomatic Index of Adult Zebrafish (Danio Rerio)

    PubMed Central

    Law, Sheran Hiu Wan

    2013-01-01

    Abstract A 5-week study was conducted to evaluate commercially available Artemia, Ziegler zebrafish diet, and Calamac diet fed in five different feeding regimes on the growth and reproductive development of 7-month-old zebrafish. Zebrafish were fed to satiation three times daily during the normal work week and twice daily during the weekend and holidays. Zebrafish in dietary groups CCC (Calamac three times daily) and CCA (Calamac twice daily, Artemia once daily) had a significantly (p<0.05) greater weight gain and specific growth rate as compared to all other dietary groups. Male zebrafish in dietary group 5 had significantly larger gonadosomatic index (GSI) values than all other groups, while female zebrafish in dietary group CCC had significantly larger GSI values than all other groups. No differences in the fatty acid content of female gonads were detected. Zebrafish fed solely Artemia had the greatest weight loss and lowest GSI values. Preliminary evidence of protein sparing in zebrafish is reported. Collectively, this study sheds more light into the effects of the use of commercially available feeds and feeding regime on the rearing of zebrafish. PMID:23902461

  20. Feed and feeding regime affect growth rate and gonadosomatic index of adult zebrafish (Danio rerio).

    PubMed

    Gonzales, John M; Law, Sheran Hiu Wan

    2013-12-01

    A 5-week study was conducted to evaluate commercially available Artemia, Ziegler zebrafish diet, and Calamac diet fed in five different feeding regimes on the growth and reproductive development of 7-month-old zebrafish. Zebrafish were fed to satiation three times daily during the normal work week and twice daily during the weekend and holidays. Zebrafish in dietary groups CCC (Calamac three times daily) and CCA (Calamac twice daily, Artemia once daily) had a significantly (p<0.05) greater weight gain and specific growth rate as compared to all other dietary groups. Male zebrafish in dietary group 5 had significantly larger gonadosomatic index (GSI) values than all other groups, while female zebrafish in dietary group CCC had significantly larger GSI values than all other groups. No differences in the fatty acid content of female gonads were detected. Zebrafish fed solely Artemia had the greatest weight loss and lowest GSI values. Preliminary evidence of protein sparing in zebrafish is reported. Collectively, this study sheds more light into the effects of the use of commercially available feeds and feeding regime on the rearing of zebrafish.

  1. Copper at low levels impairs memory of adult zebrafish (Danio rerio) and affects swimming performance of larvae.

    PubMed

    Acosta, Daiane da Silva; Danielle, Naissa Maria; Altenhofen, Stefani; Luzardo, Milene Dornelles; Costa, Patrícia Gomes; Bianchini, Adalto; Bonan, Carla Denise; da Silva, Rosane Souza; Dafre, Alcir Luiz

    2016-01-01

    Metal contamination at low levels is an important issue because it usually produces health and environmental effects, either positive or deleterious. Contamination of surface waters with copper (Cu) is a worldwide event, usually originated by mining, agricultural, industrial, commercial, and residential activities. Water quality criteria for Cu are variable among countries but allowed limits are generally in the μg/L range, which can disrupt several functions in the early life-stages of fish species. Behavioral and biochemical alterations after Cu exposure have also been described at concentrations close to the allowed limits. Aiming to search for the effects of Cu in the range of the allowed limits, larvae and adult zebrafish (Danio rerio) were exposed to different concentrations of dissolved Cu (nominally: 0, 5, 9, 20 and 60μg/L; measured: 0.4, 5.7, 7.2 16.6 and 42.3μg/L, respectively) for 96h. Larvae swimming and body length, and adult behavior and biochemical biomarkers (activity of glutathione-related enzymes in gills, muscle, and brain) were assessed after Cu exposure. Several effects were observed in fish exposed to 9μg/L nominal Cu, including increased larvae swimming distance and velocity, abolishment of adult inhibitory avoidance memory, and decreased glutathione S-transferase (GST) activity in gills of adult fish. At the highest Cu concentration tested (nominally: 60μg/L), body length of larvae, spatial memory of adults, and gill GST activity were decreased. Social behavior (aggressiveness and conspecific interaction), and glutathione reductase (GR) activity were not affected in adult zebrafish. Exposure to Cu, at concentrations close to the water quality criteria for this metal in fresh water, was able to alter larvae swimming performance and to induce detrimental effects on the behavior of adult zebrafish, thus indicating the need for further studies to reevaluate the currently allowed limits for Cu in fresh water. PMID:27012768

  2. Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis.

    PubMed

    Diotel, Nicolas; Beil, Tanja; Strähle, Uwe; Rastegar, Sepand

    2015-01-01

    Teleost fish display a remarkable ability to generate new neurons and to repair brain lesions during adulthood. They are, therefore, a very popular model to investigate the molecular mechanisms of constitutive and induced neurogenesis in adult vertebrates. In this study, we investigated the expression patterns of inhibitor of DNA binding (id) genes and of their potential transcriptional repressor, znf238, in the whole brain of adult zebrafish. We show that while id1 is exclusively expressed in ventricular cells in the whole brain, id2a, id3 and id4 genes are expressed in broader areas. Interestingly, znf238 was also detected in these regions, its expression overlapping with id2a, id3 and id4 expression. Further detailed characterization of the id-expressing cells demonstrated that (a) id1 is expressed in type 1 and type 2 neural progenitors as previously published, (b) id2a in type 1, 2 and 3 neural progenitors, (c) id3 in type 3 neural progenitors and (d) id4 in postmitotic neurons. Our data provide a detailed map of id and znf238 expression in the brain of adult zebrafish, supplying a framework for studies of id genes function during adult neurogenesis and brain regeneration in the zebrafish.

  3. Zebrafish vimentin: molecular characterization, assembly properties and developmental expression.

    PubMed

    Cerdà, J; Conrad, M; Markl, J; Brand, M; Herrmann, H

    1998-11-01

    To provide a basis for the investigation of the intermediate filament (IF) protein vimentin in one of the most promising experimental vertebrate systems, the zebrafish (Danio rerio), we have isolated a cDNA clone of high sequence identity to and with the characteristic features of human vimentin. Using this clone we produced recombinant zebrafish vimentin and studied its assembly behaviour. Unlike other vimentins, zebrafish vimentin formed unusually thick filaments when assembled at temperatures below 21 degrees C. At 37 degrees C few filaments were observed, which often also terminated in aggregated masses, indicating that its assembly was severely disturbed at this temperature. Between 21 and 34 degrees C apparently normal IFs were generated. By viscometry, the temperature optimum of assembly was determined to be around 28 degrees C. At this temperature, zebrafish vimentin partially rescued, in mixing experiments, the temperature-dependent assembly defect of trout vimentin. Therefore it is apparently able to "instruct" the misorganized trout vimentin such that it can enter normal IFs. This feature, that assembly is best at the normal body temperature of various species, puts more weight on the assumption that vimentin is vital for some aspects of generating functional adult tissues. Remarkably, like in most other vertebrates, zebrafish vimentin appears to be an abundant factor in the lens and the retina as well as transiently, during development, in various parts of the central and peripheral nervous system. Therefore, promising cell biological investigations may now be performed with cells involved in the generation of the vertebrate eye and brain, and, in particular, the retina. Moreover, the power of genetics of the zebrafish system may be employed to investigate functional properties of vimentin in vivo. PMID:9860133

  4. Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development.

    PubMed

    Takechi, Masaki; Kawamura, Shoji

    2005-04-01

    Zebrafish have two red, LWS-1 and LWS-2, and four green, RH2-1, RH2-2, RH2-3 and RH2-4, opsin genes encoding photopigments with distinct absorption spectra. Occurrence of opsin subtypes by gene duplication is characteristic of fish but little is known whether the subtypes are expressed differently in the retina, either spatially or temporally. Here we show by in situ hybridization the dynamic expression patterns of the opsin subtypes in the zebrafish retina. Expression of red type opsins is initiated with the shorter-wavelength subtype LWS-2, followed by the longer-wavelength subtype LWS-1. In the adult retina, LWS-2 was expressed in the central to dorsal area and LWS-1 in the ventral and peripheral areas. Expression patterns of green type opsins were similar to those of the red type opsins. The expression started with the shortest wavelength subtype RH2-1 followed by the longer wavelength ones, and in the adult retina, the shorter wavelength subtypes (RH2-1 and RH2-2) were expressed in the central to dorsal area and longer wavelength subtypes (RH2-3 and RH2-4) in the ventral and peripheral areas. These results provide the framework for subsequent studies of opsin gene regulation and for probing functional rationale of the developmental changes by using the power of zebrafish genetics.

  5. Embryonic Atrazine Exposure Elicits Alterations in Genes Associated with Neuroendocrine Function in Adult Male Zebrafish.

    PubMed

    Wirbisky, Sara E; Sepúlveda, Maria S; Weber, Gregory J; Jannasch, Amber S; Horzmann, Katharine A; Freeman, Jennifer L

    2016-09-01

    The developmental origins of health and disease (DOHaD) hypothesis states that exposure to environmental stressors early in life can elicit genome and epigenome changes resulting in an increased susceptibility of a disease state during adulthood. Atrazine, a common agricultural herbicide used throughout the Midwestern United States, frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. In our previous studies, zebrafish was exposed to 0, 0.3, 3, or 30 parts per billion (μg/l) atrazine through embryogenesis, rinsed, and allowed to mature to adulthood. A decrease in spawning was observed with morphological alterations in offspring. In addition, adult females displayed an increase in ovarian progesterone and follicular atresia, alterations in levels of a serotonin metabolite and serotonin turnover in brain tissue, and transcriptome changes in brain and ovarian tissue supporting neuroendocrine alterations. As reproductive dysfunction is also influenced by males, this study assessed testes histology, hormone levels, and transcriptomic profiles of testes and brain tissue in the adult males. The embryonic atrazine exposure resulted in no alterations in body or testes weight, gonadosomatic index, testes histology, or levels of 11-ketotestosterone or testosterone. To further investigate potential alterations, transcriptomic profiles of adult male testes and brain tissue was completed. This analysis demonstrated alterations in genes associated with abnormal cell and neuronal growth and morphology; molecular transport, quantity, and production of steroid hormones; and neurotransmission with an emphasis on the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-thyroid axes. Overall, this data indicate future studies should focus on additional neuroendocrine endpoints to determine potential functional impairments. PMID:27413107

  6. Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish.

    PubMed

    Dranow, Daniel B; Hu, Kevin; Bird, April M; Lawry, S Terese; Adams, Melissa T; Sanchez, Angelica; Amatruda, James F; Draper, Bruce W

    2016-09-01

    Although the zebrafish is a major model organism, how they determine sex is not well understood. In domesticated zebrafish, sex determination appears to be polygenic, being influenced by multiple genetic factors that may vary from strain to strain, and additionally can be influenced by environmental factors. However, the requirement of germ cells for female sex determination is well documented: animals that lack germ cells, or oocytes in particular, develop exclusively as males. Recently, it has been determined that oocytes are also required throughout the adult life of the animal to maintain the differentiated female state. How oocytes control sex differentiation and maintenance of the sexual phenotype is unknown. We therefore generated targeted mutations in genes for two oocyte produced signaling molecules, Bmp15 and Gdf9 and here report a novel role for Bmp15 in maintaining adult female sex differentiation in zebrafish. Females deficient in Bmp15 begin development normally but switch sex during the mid- to late- juvenile stage, and become fertile males. Additionally, by generating mutations in the aromatase cyp19a1a, we show that estrogen production is necessary for female development and that the function of Bmp15 in female sex maintenance is likely linked to the regulation of estrogen biosynthesis via promoting the development of estrogen-producing granulosa cells in the oocyte follicle.

  7. Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish

    PubMed Central

    Hu, Kevin; Lawry, S. Terese; Sanchez, Angelica; Amatruda, James F.

    2016-01-01

    Although the zebrafish is a major model organism, how they determine sex is not well understood. In domesticated zebrafish, sex determination appears to be polygenic, being influenced by multiple genetic factors that may vary from strain to strain, and additionally can be influenced by environmental factors. However, the requirement of germ cells for female sex determination is well documented: animals that lack germ cells, or oocytes in particular, develop exclusively as males. Recently, it has been determined that oocytes are also required throughout the adult life of the animal to maintain the differentiated female state. How oocytes control sex differentiation and maintenance of the sexual phenotype is unknown. We therefore generated targeted mutations in genes for two oocyte produced signaling molecules, Bmp15 and Gdf9 and here report a novel role for Bmp15 in maintaining adult female sex differentiation in zebrafish. Females deficient in Bmp15 begin development normally but switch sex during the mid- to late- juvenile stage, and become fertile males. Additionally, by generating mutations in the aromatase cyp19a1a, we show that estrogen production is necessary for female development and that the function of Bmp15 in female sex maintenance is likely linked to the regulation of estrogen biosynthesis via promoting the development of estrogen-producing granulosa cells in the oocyte follicle. PMID:27642754

  8. Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish.

    PubMed

    Dranow, Daniel B; Hu, Kevin; Bird, April M; Lawry, S Terese; Adams, Melissa T; Sanchez, Angelica; Amatruda, James F; Draper, Bruce W

    2016-09-01

    Although the zebrafish is a major model organism, how they determine sex is not well understood. In domesticated zebrafish, sex determination appears to be polygenic, being influenced by multiple genetic factors that may vary from strain to strain, and additionally can be influenced by environmental factors. However, the requirement of germ cells for female sex determination is well documented: animals that lack germ cells, or oocytes in particular, develop exclusively as males. Recently, it has been determined that oocytes are also required throughout the adult life of the animal to maintain the differentiated female state. How oocytes control sex differentiation and maintenance of the sexual phenotype is unknown. We therefore generated targeted mutations in genes for two oocyte produced signaling molecules, Bmp15 and Gdf9 and here report a novel role for Bmp15 in maintaining adult female sex differentiation in zebrafish. Females deficient in Bmp15 begin development normally but switch sex during the mid- to late- juvenile stage, and become fertile males. Additionally, by generating mutations in the aromatase cyp19a1a, we show that estrogen production is necessary for female development and that the function of Bmp15 in female sex maintenance is likely linked to the regulation of estrogen biosynthesis via promoting the development of estrogen-producing granulosa cells in the oocyte follicle. PMID:27642754

  9. Neurotoxicity of neem commercial formulation (Azadirachta indica A. Juss) in adult zebrafish (Danio rerio).

    PubMed

    Bernardi, M M; Dias, S G; Barbosa, V E

    2013-11-01

    The neurotoxic effects of a commercial formulation of Azadirachta indica A. Juss, also called neem or nim, in adult zebrafish were determined using behavioral models. General activity, anxiety-like effects, and learning and memory in a passive avoidance task were assessed after exposure to 20 or 40 μl/L neem. The results showed that 20 μl/L neem reduced the number of runs. Both neem concentrations increased the number of climbs to the water surface, and 40 μl/L increased the number of tremors. In the anxiety test, the 20 μl/L dose increased the number of entries in the light side compared with controls, but the latency to enter the dark side and the freezing behavior in this side did not changed. In relation to controls, the 40 μl/L neem reduced the latency to enter in the light side, did not change the number of entries in this side and increased freezing behavior in the light side. In the passive avoidance test, pre-training and pre-test neem exposure to 40 μl/L decreased the response to the learning task. Thus, no impairment was observed in this behavioral test. We conclude that neem reduced general activity and increased anxiety-like behavior but did not affect learning and memory.

  10. Acid-sensing ion channel immunoreactivities in the cephalic neuromasts of adult zebrafish.

    PubMed

    Abbate, F; Madrigrano, M; Scopitteri, T; Levanti, M; Cobo, J L; Germanà, A; Vega, J A; Laurà, R

    2016-09-01

    The neuromasts are the morphofunctional unit of the lateral line system serving as mechanosensors for water flow and movement. The mechanisms underlying the detection of the mechanical stimuli in the vertebrate mechanosensory cells remain poorly understood at the molecular level, and no information is available on neuromasts. Mechanotransduction is the conversion of a mechanical stimulus into an electrical signal via activation of ion channels. The acid-sensing ion channels (ASICs) are presumably involved in mechanosensation, and therefore are expected to be expressed in the mechanoreceptors. Here we used immunohistochemistry to investigate the occurrence and distribution of ASICs in the cephalic neuromasts of the adult zebrafish. Specific immunoreactivity for ASIC1 and ASIC4 was detected in the hair cells while ASIC2 was restricted to the nerves supplying neuromasts. Moreover, supporting and mantle cells; i.e., the non-sensory cells of the neuromasts, also displayed ASIC4. For the first time, these results demonstrate the presence of the putative mechanoproteins ASIC1, ASIC2 and ASIC4 in neuromasts, suggesting a role for these ion channels in mechanosensation.

  11. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated.

  12. Persistent Adult Zebrafish Behavioral Deficits Results from Acute Embryonic Exposure to Gold Nanoparticles

    PubMed Central

    Truong, Lisa; Saili, Katerine S.; Miller, John M.; Hutchison, James E.; Tanguay, Robert L.

    2011-01-01

    As the number of products containing nanomaterials increase, human exposure to nanoparticles (NPs) is unavoidable. Presently, few studies focus on the potential long-term consequences of developmental NP exposure. In this study, zebrafish embryos were acutely exposed to three gold NPs that possess functional groups with differing surface charge. Embryos were exposed to 50 μg/mL of 1.5 nm gold nanoparticles (AuNPs) possessing negatively charged 2-mercaptoethanesulfonic acid (MES) or neutral 2-(2-(2-mercaptoethoxy)ethoxy)ethanol (MEEE) ligands or 10 μg/mL of the AuNPs possessing positively charged trimethylammoniumethanethiol (TMAT). Both MES- and TMAT-AuNP exposed embryos exhibited hypo-locomotor activity, while those exposed to MEEE-AuNPs did not. A subset of embryos that were exposed to 1.5 nm MES- and TMAT-AuNPs during development from 6–120 hours post fertilization were raised to adulthood. Behavioral abnormalities and the number of survivors into adulthood were evaluated at 122 days post fertilization. We found that both treatments induced abnormal startle behavior following a tap stimulus. However, the MES-AuNPs exposed group also exhibited abnormal adult behavior in the light and had a lower survivorship into adulthood. This study demonstrates that acute, developmental exposure to 1.5 nm MES- and TMAT- AuNPs, two NPs differing only in the functional group, affects larval behavior, with behavioral effects persisting into adulthood. PMID:21946249

  13. Acid-sensing ion channel immunoreactivities in the cephalic neuromasts of adult zebrafish.

    PubMed

    Abbate, F; Madrigrano, M; Scopitteri, T; Levanti, M; Cobo, J L; Germanà, A; Vega, J A; Laurà, R

    2016-09-01

    The neuromasts are the morphofunctional unit of the lateral line system serving as mechanosensors for water flow and movement. The mechanisms underlying the detection of the mechanical stimuli in the vertebrate mechanosensory cells remain poorly understood at the molecular level, and no information is available on neuromasts. Mechanotransduction is the conversion of a mechanical stimulus into an electrical signal via activation of ion channels. The acid-sensing ion channels (ASICs) are presumably involved in mechanosensation, and therefore are expected to be expressed in the mechanoreceptors. Here we used immunohistochemistry to investigate the occurrence and distribution of ASICs in the cephalic neuromasts of the adult zebrafish. Specific immunoreactivity for ASIC1 and ASIC4 was detected in the hair cells while ASIC2 was restricted to the nerves supplying neuromasts. Moreover, supporting and mantle cells; i.e., the non-sensory cells of the neuromasts, also displayed ASIC4. For the first time, these results demonstrate the presence of the putative mechanoproteins ASIC1, ASIC2 and ASIC4 in neuromasts, suggesting a role for these ion channels in mechanosensation. PMID:27443821

  14. Neurotoxicity of neem commercial formulation (Azadirachta indica A. Juss) in adult zebrafish (Danio rerio).

    PubMed

    Bernardi, M M; Dias, S G; Barbosa, V E

    2013-11-01

    The neurotoxic effects of a commercial formulation of Azadirachta indica A. Juss, also called neem or nim, in adult zebrafish were determined using behavioral models. General activity, anxiety-like effects, and learning and memory in a passive avoidance task were assessed after exposure to 20 or 40 μl/L neem. The results showed that 20 μl/L neem reduced the number of runs. Both neem concentrations increased the number of climbs to the water surface, and 40 μl/L increased the number of tremors. In the anxiety test, the 20 μl/L dose increased the number of entries in the light side compared with controls, but the latency to enter the dark side and the freezing behavior in this side did not changed. In relation to controls, the 40 μl/L neem reduced the latency to enter in the light side, did not change the number of entries in this side and increased freezing behavior in the light side. In the passive avoidance test, pre-training and pre-test neem exposure to 40 μl/L decreased the response to the learning task. Thus, no impairment was observed in this behavioral test. We conclude that neem reduced general activity and increased anxiety-like behavior but did not affect learning and memory. PMID:24211596

  15. A rapid throughput approach identifies cognitive deficits in adult zebrafish from developmental exposure to polybrominated flame retardants

    PubMed Central

    Truong, Lisa; Mandrell, David; Mandrell, Rick; Simonich, Michael; Tanguay, Robert L.

    2014-01-01

    A substantial body of evidence has correlated the human body burdens of some polybrominated diphenyl ether (PBDE) flame retardants with cognitive and other behavioral deficits. Adult zebrafish exhibit testable learning and memory, making them an increasingly attractive model for neurotoxicology. Our goal was to develop a rapid throughput means of identifying the cognitive impact of developmental exposure to flame retardants in the zebrafish model. We exposed embryos from 6 hours post fertilization to 5 days post fertilization to either PBDE 47 (0.1 uM), PBDE 99 (0.1 uM) or PBDE 153 (0.1 uM), vehicle (0.1% DMSO), or embryo medium (EM). The larvae were grown to adulthood and evaluated for the rate at which they learned an active-avoidance response in an automated shuttle box array. Zebrafish developmentally exposed to PBDE 47 learned the active avoidance paradigm significantly faster than the 0.1% DMSO control fish (P < 0.0001), but exhibited significantly poorer performance when retested suggestive of impaired memory retention or altered neuromotor activity. Learning in the PBDE 153 group was not significantly different from the DMSO group. Developmental exposure to 0.1% DMSO impaired adult active avoidance learning relative to the sham group (n = 39; P < 0.0001). PBDE 99 prevented the DMSO effect, yielding a learning rate not significantly different from the sham group (n = 36; P > 0.9). Our results underscore the importance of vehicle choice in accurately assessing chemical effects on behavior. Active avoidance response in zebrafish is an effective model of learning that, combined with automated shuttle box testing, will provide a highly efficient platform for evaluating persistent neurotoxic hazard from many chemicals. PMID:24674958

  16. Patterns of olfactory bulb neurogenesis in the adult zebrafish are altered following reversible deafferentation.

    PubMed

    Trimpe, Darcy M; Byrd-Jacobs, Christine A

    2016-09-01

    Adult brain plasticity can be investigated using reversible methods that remove afferent innervation but allow return of sensory input. Repeated intranasal irrigation with Triton X-100 in adult zebrafish diminishes innervation to the olfactory bulb, resulting in a number of alterations in bulb structure and function, and cessation of the treatment allows for reinnervation and recovery. Using bromodeoxyuridine, Hu, and caspase-3 immunoreactivity we examined cell proliferation, differentiation, migration, and survival under conditions of acute and chronic deafferentation and reafferentation. Cell proliferation within the olfactory bulb was not influenced by acute or chronic deafferentation or reafferentation, but cell fate (including differentiation, migration, and/or survival of newly formed cells) was affected. We found that chronic deafferentation caused a bilateral increase in the number of newly formed cells that migrated into the bulb, although the amount of cell death of these new cells was significantly increased compared to untreated fish. Reafferentation also increased the number of newly formed cells migrating into both bulbs, suggesting that the deafferentation effect on cell fate was maintained. Reafferentation resulted in a decrease in newly formed cells that became neurons and, although death of newly formed cells was not altered from control levels, survival was reduced in relation to that seen in chronically deafferented fish. The potential effect of age on cell genesis was also examined. While the amount of cell migration into the olfactory bulbs was not affected by fish age, more of the newly formed cells became neurons in older fish. Younger fish displayed more cell death under conditions of chronic deafferentation. In sum, our results show that reversible deafferentation affects several aspects of cell fate, including cell differentiation, migration, and survival, and age of the fish influences the response to deafferentation. PMID:27343831

  17. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications

    PubMed Central

    Zou, Ming; De Koninck, Paul; Neve, Rachael L.; Friedrich, Rainer W.

    2014-01-01

    The zebrafish has various advantages as a model organism to analyze the structure and function of neural circuits but efficient viruses or other tools for fast gene transfer are lacking. We show that transgenes can be introduced directly into the adult zebrafish brain by herpes simplex type I viruses (HSV-1) or electroporation. We developed a new procedure to target electroporation to defined brain areas and identified promoters that produced strong long-term expression. The fast workflow of electroporation was exploited to express multiple channelrhodopsin-2 variants and genetically encoded calcium indicators in telencephalic neurons for measurements of neuronal activity and synaptic connectivity. The results demonstrate that HSV-1 and targeted electroporation are efficient tools for gene delivery into the zebrafish brain, similar to adeno-associated viruses and lentiviruses in other species. These methods fill an important gap in the spectrum of molecular tools for zebrafish and are likely to have a wide range of applications. PMID:24834028

  18. Inhibition of phosphorylated tyrosine hydroxylase attenuates ethanol-induced hyperactivity in adult zebrafish (Danio rerio).

    PubMed

    Nowicki, Magda; Tran, Steven; Chatterjee, Diptendu; Gerlai, Robert

    2015-11-01

    Zebrafish have been successfully employed in the study of the behavioural and biological effects of ethanol. Like in mammals, low to moderate doses of ethanol induce motor hyperactivity in zebrafish, an effect that has been attributed to the activation of the dopaminergic system. Acute ethanol exposure increases dopamine (DA) in the zebrafish brain, and it has been suggested that tyrosine hydroxylase, the rate-limiting enzyme of DA synthesis, may be activated in response to ethanol via phosphorylation. The current study employed tetrahydropapaveroline (THP), a selective inhibitor of phosphorylated tyrosine hydroxylase, for the first time, in zebrafish. We treated zebrafish with a THP dose that did not alter baseline motor responses to examine whether it can attenuate or abolish the effects of acute exposure to alcohol (ethanol) on motor activity, on levels of DA, and on levels of dopamine's metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). We found that 60-minute exposure to 1% alcohol induced motor hyperactivity and an increase in brain DA. Both of these effects were attenuated by pre-treatment with THP. However, no differences in DOPAC levels were found among the treatment groups. These findings suggest that tyrosine hydroxylase is activated via phosphorylation to increase DA synthesis during alcohol exposure in zebrafish, and this partially mediates alcohol's locomotor stimulant effects. Future studies will investigate other potential candidates in the molecular pathway to further decipher the neurobiological mechanism that underlies the stimulatory properties of this popular psychoactive drug.

  19. Administration of docosahexaenoic acid before birth and until aging decreases kainate-induced seizures in adult zebrafish.

    PubMed

    Sierra, Saleta; Alfaro, Juan M; Sánchez, Sonia; Burgos, Javier S

    2012-08-01

    Docosahexaeonic acid (DHA) is the final compound in the omega-3 polyunsaturated fatty acids (PUFA) synthetic pathway and the most abundant PUFA found in the brain. DHA plays an essential role in the development of the brain, and the intakes in pregnancy and early life affect growth and cognitive performance later in childhood. Recently, it has been proposed that dietary intake of DHA could be a non-pharmacological interventional strategy for the treatment of seizures in humans. However, to date, the experimental approaches to study the antiepileptic effect of DHA have been exclusively restricted to rodent models during short-to-medium periods of treatment. The purpose of the present study was to test the chronic anticonvulsivant effects of DHA supplementation in zebrafish from the pre-spawning stage to aging, taking advantage of our recently described kainate-induced seizure model using this animal. To that end, two groups of adult female zebrafish were fed with standard or 200mg/kg DHA-enriched diets during 1 month previous to the spawning, and offspring subdivided in two categories, and subsequently fed with standard or DHA diets, generating 4 groups of animals that were aged until 20 months. Afterward, KA was intraperitoneally administered and epileptic score determined. All the DHA-enriched groups presented antiepileptic effects compared to the control group, showing that DHA presents an anticonvulsant potential. Among the studied groups, zebrafish fed with DHA from the pre-spawning stage to aging presented the best antiepileptic profile. These results show a neuroprotective benefit in zebrafish fed with DHA-enriched diet before birth and during the whole life.

  20. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration

    PubMed Central

    Schall, K. A.; Holoyda, K. A.; Grant, C. N.; Levin, D. E.; Torres, E. R.; Maxwell, A.; Pollack, H. A.; Moats, R. A.; Frey, M. R.; Darehzereshki, A.; Al Alam, D.; Lien, C.

    2015-01-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. PMID:26089336

  1. Olfactory bulb recovery following reversible deafferentation with repeated detergent application in the adult zebrafish.

    PubMed

    Paskin, T R; Iqbal, T R; Byrd-Jacobs, C A

    2011-11-24

    The neuroplasticity and regenerative properties of the olfactory system make it a useful model for studying the ability of the nervous system to recover from damage. We have developed a novel method for examining the effects of long-term deafferentation and regeneration of the olfactory organ and resulting influence on the olfactory bulb in adult zebrafish. To test the hypothesis that repeated damage to the olfactory epithelium causes reduced olfactory bulb afferent input and cessation of treatment allows recovery, we chronically ablated the olfactory organ every 2-3 days for 3 weeks with the detergent Triton X-100 while another group was allowed 3 weeks of recovery following treatment. Animals receiving chronic treatment showed severe morphological disruption of the olfactory organ, although small pockets of epithelium remained. These pockets were labeled by anti-calretinin, indicating the presence of mature olfactory sensory neurons (OSNs). Following a recovery period, the epithelium was more extensive and neuronal labeling increased, with three different morphologies of sensory neurons observed. Repeated peripheral exposure to Triton X-100 also affected the olfactory bulb. Bulb volumes and anti-tyrosine hydroxylase-like immunoreactivity, which is an indicator of afferent activity, were diminished in the olfactory bulb of the chronically treated group compared to the control side. In the recovery group, there was little difference in bulb volume or antibody staining. These results suggest that repeated, long-term nasal irrigation with Triton X-100 eliminates a substantial number of mature OSNs and reduces afferent input to the olfactory bulb. It also appears that these effects are reversible and regeneration will occur in both the peripheral olfactory organ and the olfactory bulb when given time to recover following cessation of treatment. We report here a new method that allows observation not only of the effects of deafferentation on the olfactory bulb but also

  2. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections.

    PubMed

    Cronan, Mark R; Rosenberg, Allison F; Oehlers, Stefan H; Saelens, Joseph W; Sisk, Dana M; Jurcic Smith, Kristen L; Lee, Sunhee; Tobin, David M

    2015-12-01

    Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ. PMID:26449262

  3. Her4-positive population in the tectum opticum is proliferating neural precursors in the adult zebrafish brain.

    PubMed

    Jung, Seung-Hyun; Kim, Hyung-Seok; Ryu, Jae-Ho; Gwak, Jung-Woo; Bae, Young-Ki; Kim, Cheol-Hee; Yeo, Sang-Yeob

    2012-06-01

    Previous studies have shown that Notch signaling not only regulates the number of early differentiating neurons, but also maintains proliferating neural precursors in the neural tube. Although it is well known that Notch signaling is closely related to the differentiation of adult neural stem cells, none of transgenic zebrafish provides a tool to figure out the relationship between Notch signaling and the differentiation of neural precursors. The goal of this study was to characterize Her4-positive cells by comparing the expression of a fluorescent Her4 reporter in Tg[her4-dRFP] animals with a GFAP reporter in Tg[gfap-GFP] adult zebrafish. BrdU incorporation indicated that dRFP-positive cells were proliferating and a double labeling assay revealed that a significant fraction of the Her4-dRFP positive population was also GFAP-GFP positive. Our observations suggest that a reporter line with Notch-dependent gene expression can provide a tool to examine proliferating neural precursors and/or neuronal/glial precursors in the development of the adult nervous system to examine the model in which Notch signaling maintains proliferating neural precursors in the neural tube.

  4. The alpha1 isoform of the Na+/K+ ATPase is up-regulated in dedifferentiated progenitor cells that mediate lens and retina regeneration in adult newts.

    PubMed

    Vergara, M Natalia; Smiley, Laura K; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A

    2009-02-01

    Adult newts are able to regenerate their retina and lens after injury or complete removal through transdifferentiation of the pigmented epithelial tissues of the eye. This process needs to be tightly controlled, and several different mechanisms are likely to be recruited for this function. The Na(+)/K(+) ATPase is a transmembrane protein that establishes electrochemical gradients through the transport of Na(+) and K(+) and has been implicated in the modulation of key cellular processes such as cell division, migration and adhesion. Even though it is expressed in all cells, its isoform composition varies with cell type and is tightly controlled during development and regeneration. In the present study we characterize the expression pattern of Na(+)/K(+) ATPase alpha1 in the adult newt eye and during the process of lens and retina regeneration. We show that this isoform is up-regulated in undifferentiated cells during transdifferentiation. Such change in composition could be one of the mechanisms that newt cells utilize to modulate this process.

  5. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish

    PubMed Central

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  6. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish.

    PubMed

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  7. Molecular psychiatry of zebrafish

    PubMed Central

    Stewart, Adam Michael; Ullmann, Jeremy F.P.; Norton, William H.J.; Brennan, Caroline H.; Parker, Matthew O.; Gerlai, Robert; Kalueff, Allan V.

    2014-01-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling CNS disorders. In particular, we outline recent genetic and technological developments allowing for in-vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern biological psychiatry research. PMID:25349164

  8. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish

    PubMed Central

    Olt, Jennifer; Johnson, Stuart L; Marcotti, Walter

    2014-01-01

    Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in obtaining systematic electrophysiological recordings from hair cells under physiological recording conditions. Thus, the biophysical properties of developing and adult zebrafish hair cells are largely unknown. We investigated potassium and calcium currents, voltage responses and synaptic activity in hair cells from the lateral line and inner ear in vivo and using near-physiological in vitro recordings. We found that the basolateral current profile of hair cells from the lateral line becomes more segregated with age, and that cells positioned in the centre of the neuromast show more mature characteristics and those towards the edge retain a more immature phenotype. The proportion of mature-like hair cells within a given neuromast increased with zebrafish development. Hair cells from the inner ear showed a developmental change in current profile between the juvenile and adult stages. In lateral line hair cells from juvenile zebrafish, exocytosis also became more efficient and required less calcium for vesicle fusion. In hair cells from mature zebrafish, the biophysical characteristics of ion channels and exocytosis resembled those of hair cells from other lower vertebrates and, to some extent, those in the immature mammalian vestibular and auditory systems. We show that although the zebrafish provides a suitable animal model for studies on hair cell physiology, it is advisable to consider that the age at which the majority of hair cells acquire a mature-type configuration is reached only in the juvenile lateral line and in the inner ear from >2 months after hatching. PMID

  9. Mapping of zebrafish research: a global outlook.

    PubMed

    Kinth, Priyamvadah; Mahesh, Gopalakrishnan; Panwar, Yatish

    2013-12-01

    On the basis of analysis of 17,151 records on zebrafish identified from Zebrafish Information Network: the zebrafish model organism database and Web of Science, the research performance on this model organism has been evaluated. The earliest research work on zebrafish as reflected in the databases goes back to 1951. After a rather slow growth till the 1980s, research on zebrafish gained momentum in the 1990s. Analysis shows a rapid and consistent increase in the publication output with 226 publications in the year 1996, to 1929 publications in the year 2012. The prominent areas of zebrafish research, journals, and leading authors as reflected from the research output have been identified. USA is the most productive country with 8196 articles. The most frequently used keywords were also determined to gain insights about the research trends and some of the commonly used keywords other than zebrafish and Danio rerio are development, retina, and gene expression.

  10. Chronic social isolation affects thigmotaxis and whole-brain serotonin levels in adult zebrafish.

    PubMed

    Shams, Soaleha; Chatterjee, Diptendu; Gerlai, Robert

    2015-10-01

    The popularity of the zebrafish has been growing in behavioral brain research. Previously utilized mainly in developmental biology and genetics, the zebrafish has turned out to possess a complex behavioral repertoire. For example, it is a highly social species, and individuals form tight groups, a behavior called shoaling. Social isolation induced changes in brain function and behavior have been demonstrated in a variety of laboratory organisms. However, despite its highly social nature, the zebrafish has rarely been utilized in this research area. Here, we investigate the effects of chronic social isolation (lasting 90 days) on locomotor activity and anxiety-related behaviors in an open tank. We also examine the effect of chronic social isolation on levels of whole-brain serotonin and dopamine and their metabolites. We found that long-term social deprivation surprisingly decreased anxiety-related behavious during open-tank testing but had no effect on locomotor activity. We also found that serotonin levels, decreased significantly in socially isolated fish, but levels of dopamine and metabolites of these neurotransmitters 5HIAA and DOPAC, respectively, remained unchanged. Our results imply that the standard high density housing employed in most zebrafish laboratories may not be the optimal way to keep these fish, and open a new avenue towards the analysis of the biological mechanisms of social behavior and of social deprivation induced changes in brain function using this simple vertebrate model organism.

  11. Infrared retina

    DOEpatents

    Krishna, Sanjay; Hayat, Majeed M.; Tyo, J. Scott; Jang, Woo-Yong

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  12. In vivo spectroscopic photoacoustic tomography imaging of a far red fluorescent protein expressed in the exocrine pancreas of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Mengyang; Schmitner, Nicole; Sandrian, Michelle G.; Zabihian, Behrooz; Hermann, Boris; Salvenmoser, Willi; Meyer, Dirk; Drexler, Wolfgang

    2014-03-01

    Fluorescent proteins brought a revolution in life sciences and biological research in that they make a powerful tool for researchers to study not only the structural and morphological information, but also dynamic and functional information in living cells and organisms. While green fluorescent proteins (GFP) have become a common labeling tool, red-shifted or even near infrared fluorescent proteins are becoming the research focus due to the fact that longer excitation wavelengths are more suitable for deep tissue imaging. In this study, E2-Crimson, a far red fluorescent protein whose excitation wavelength is 611 nm, was genetically expressed in the exocrine pancreas of adult zebrafish. Using spectroscopic all optical detection photoacoustic tomography, we mapped the distribution of E2-Crimson in 3D after imaging the transgenic zebrafish in vivo using two different wavelengths. With complementary morphological information provided by imaging the same fish using a spectral domain optical coherence tomography system, the E2-Crimson distribution acquired from spectroscopic photoacoustic tomography was confirmed in 2D by epifluorescence microscopy and in 3D by histology. To the authors' knowledge, this is the first time a far red fluorescent protein is imaged in vivo by spectroscopic photoacoustic tomography. Due to the regeneration feature of zebrafish pancreas, this work preludes the longitudinal studies of animal models of diseases such as pancreatitis by spectroscopic photoacoustic tomography. Since the effective penetration depth of photoacoustic tomography is beyond the transport mean free path length, other E2-Crimson labeled inner organs will also be able to be studied dynamically using spectroscopic photoacoustic tomography.

  13. Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio.

    PubMed

    Fang, Liu; Liang, Xu-Fang; Zhou, Yi; Guo, Xiao-Ze; He, Yan; Yi, Ti-Lin; Liu, Li-Wei; Yuan, Xiao-Chen; Tao, Ya-Xiong

    2014-03-14

    The aim of the present study was to determine the potential long-term metabolic effects of early nutritional programming on carbohydrate utilisation in adult zebrafish (Danio rerio). High-carbohydrate diets were fed to fish during four ontogenetic stages: from the first-feeding stage to the end of the yolk-sac larval stage; from the first-feeding stage to 2 d after yolk-sac exhaustion; after yolk-sac exhaustion for 3 or 5 d. The carbohydrate stimuli significantly increased the body weight of the first-feeding groups in the short term. The expression of genes was differentially regulated by the early dietary intervention. The high-carbohydrate diets resulted in decreased plasma glucose levels in the adult fish. The mRNA levels and enzyme activities of glucokinase, pyruvate kinase, α-amylase and sodium-dependent glucose co-transporter 1 were up-regulated in the first-feeding groups. There was no significant change in the mRNA levels of glucose-6-phosphatase (G6Pase) in any experimental group, and the activity of G6Pase enzyme in the FF-5 (first feeding to 2 d after yolk-sac exhaustion) group was significantly different from that of the other groups. The expression of phosphoenolpyruvate carboxykinase gene in all the groups was significantly decreased. In the examined early programming range, growth performance was not affected. Taken together, data reported herein indicate that the period ranging from the polyculture to the external feeding stage is an important window for potential modification of the long-term physiological functions. In conclusion, the present study demonstrates that it is possible to permanently modify carbohydrate digestion, transport and metabolism of adult zebrafish through early nutritional programming.

  14. The Effect of Zeaxanthin on the Visual Acuity of Zebrafish

    PubMed Central

    Saidi, Eric A.; Davey, Pinakin Gunvant; Cameron, D. Joshua

    2015-01-01

    Oral supplementation of carotenoids such as zeaxanthin or lutein which naturally occur in human retina have been shown to improve vision and prevent progression of damage to advanced AMD in some studies. The zebrafish eye shares many physiological similarities with the human eye and is increasingly being used as model for vision research. We hypothesized that injection of zeaxanthin into the zebrafish eye would improve the visual acuity of the zebrafish over time. Visual acuity, calculated in cycles per degree, was measured in adult zebrafish to establish a consistent baseline using the optokinetic response. Zeaxanthin dissolved into phosphate buffered saline (PBS) or PBS only was injected into the anterior chamber of the right and left eyes of the Zebrafish. Visual acuities were measured at 1 week and 3, 8 and 12 weeks post-injection to compare to baseline values. Repeated measures ANOVA was used to compare visual acuities between fish injected with PBS and zeaxanthin. A significant improvement in visual acuity, 14% better than before the injection (baseline levels), was observed one week after injection with zeaxanthin (p = 0.04). This improvement peaked at more than 30% for some fish a few weeks after the injection and improvement in vision persisted at 3 weeks after injection (p = 0.006). The enhanced visual function was not significantly better than baseline at 8 weeks (p = 0.19) and returned to baseline levels 12 weeks after the initial injection (p = 0.50). Zeaxanthin can improve visual acuity in zebrafish eyes. Further studies are required to develop a better understanding of the role zeaxanthin and other carotenoids play during normal visual function. PMID:26267864

  15. A New Anaesthetic Protocol for Adult Zebrafish (Danio rerio): Propofol Combined with Lidocaine

    PubMed Central

    Valentim, Ana M.; Félix, Luís M.; Carvalho, Leonor; Diniz, Enoque; Antunes, Luís M.

    2016-01-01

    Background The increasing use of zebrafish model has not been accompanied by the evolution of proper anaesthesia for this species in research. The most used anaesthetic in fishes, MS222, may induce aversion, reduction of heart rate, and consequently high mortality, especially during long exposures. Therefore, we aim to explore new anaesthetic protocols to be used in zebrafish by studying the quality of anaesthesia and recovery induced by different concentrations of propofol alone and in combination with different concentrations of lidocaine. Material and Methods In experiment A, eighty-three AB zebrafish were randomly assigned to 7 different groups: control, 2.5 (2.5P), 5 (5P) or 7.5 μg/ml (7.5P) of propofol; and 2.5 μg/ml of propofol combined with 50, (P/50L), 100 (P/100L) or 150 μg/ml (P/150L) of lidocaine. Zebrafish were placed in an anaesthetic water bath and time to lose the equilibrium, reflex to touch, reflex to a tail pinch, and respiratory rate were measured. Time to gain equilibrium was also assessed in a clean tank. Five and 24 hours after anaesthesia recovery, zebrafish were evaluated concerning activity and reactivity. Afterwards, in a second phase of experiments (experiment B), the best protocol of the experiment A was compared with a new group of 8 fishes treated with 100 mg/L of MS222 (100M). Results In experiment A, only different concentrations of propofol/lidocaine combination induced full anaesthesia in all animals. Thus only these groups were compared with a standard dose of MS222 in experiment B. Propofol/lidocaine induced a quicker loss of equilibrium, and loss of response to light and painful stimuli compared with MS222. However zebrafish treated with MS222 recovered quickly than the ones treated with propofol/lidocaine. Conclusion In conclusion, propofol/lidocaine combination and MS222 have advantages in different situations. MS222 is ideal for minor procedures when a quick recovery is important, while propofol/lidocaine is best to

  16. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio)

    PubMed Central

    McClelland, Grant B; Craig, Paul M; Dhekney, Kalindi; Dipardo, Shawn

    2006-01-01

    Both exercise training and cold acclimatization induce muscle remodelling in vertebrates, producing a more aerobic phenotype. In ectothermic species exercise training and cold-acclimatization represent distinct stimuli. It is currently unclear if these stimuli act through a common mechanism or if different mechanisms lead to a common phenotype. The goal of this study was to survey responses that represent potential mechanisms responsible for contraction- and temperature-induced muscle remodelling, using an ectothermic vertebrate. Separate groups of adult zebrafish (Danio rerio) were either swim trained or cold acclimatized for 4 weeks. We found that the mitochondrial marker enzyme citrate synthase (CS) was increased by 1.5× in cold and by 1.3× with exercise (P < 0.05). Cytochrome c oxidase (COx) was increased by 1.2× following exercise training (P < 0.05) and 1.2× (P = 0.07) with cold acclimatization. However, only cold acclimatization increased β-hydroxyacyl-CoA dehydrogenase (HOAD) compared to exercise-trained (by 1.3×) and pyruvate kinase (PK) relative to control zebrafish. We assessed the whole-animal performance outcomes of these treatments. Maximum absolute sustained swimming speed (Ucrit) was increased in the exercise trained group but not in the cold acclimatized group. Real-time PCR analysis indicated that increases in CS are primarily transcriptionally regulated with exercise but not with cold treatments. Both treatments showed increases in nuclear respiratory factor (NRF)-1 mRNA which was increased by 2.3× in cold-acclimatized and 4× in exercise-trained zebrafish above controls. In contrast, peroxisome proliferator-activated receptor (PPAR)-α mRNA levels were decreased in both experimental groups while PPAR-β1 declined in exercise training only. Moreover, PPAR-γ coactivator (PGC)-1α mRNA was not changed by either treatment. In zebrafish, both temperature and exercise produce a more aerobic phenotype, but there are stimulus-dependent responses

  17. Atomoxetine reduces anticipatory responding in a 5-choice serial reaction time task for adult zebrafish

    PubMed Central

    Parker, Matthew O.; Brock, Alistair J.; Sudwarts, Ari; Brennan, Caroline H.

    2014-01-01

    Deficits in impulse control are related to a number of psychiatric diagnoses, including attention deficit hyperactivity disorder, addiction, and pathological gambling. Despite increases in our knowledge about the underlying neurochemical and neuroanatomical correlates, understanding of the molecular and cellular mechanisms is less well established. Understanding these mechanisms is essential in order to move towards individualized treatment programs and increase efficacy of interventions. Zebrafish are a very useful vertebrate model for exploring molecular processes underlying disease owing to their small size and genetic tractability. Their utility in terms of behavioral neuroscience, however, hinges on the validation and publication of reliable assays with adequate translational relevance. Here, we report an initial pharmacological validation of a fully automated zebrafish version of the commonly used five-choice serial reaction time task using a variable interval pre-stimulus interval. We found that atomoxetine reduced anticipatory responses (0.6 mg/kg), whereas a high-dose (4 mg/kg) methylphenidate increased anticipatory responses and the number of trials completed in a session. On the basis of these results, we argue that similar neurochemical processes in fish as in mammals may control impulsivity, as operationally defined by anticipatory responses on a continuous performance task such as this, making zebrafish potentially a good model for exploring the molecular basis of impulse control disorders and for first-round drug screening. PMID:24481568

  18. Atomoxetine reduces anticipatory responding in a 5-choice serial reaction time task for adult zebrafish.

    PubMed

    Parker, Matthew O; Brock, Alistair J; Sudwarts, Ari; Brennan, Caroline H

    2014-07-01

    Deficits in impulse control are related to a number of psychiatric diagnoses, including attention deficit hyperactivity disorder, addiction, and pathological gambling. Despite increases in our knowledge about the underlying neurochemical and neuroanatomical correlates, understanding of the molecular and cellular mechanisms is less well established. Understanding these mechanisms is essential in order to move towards individualized treatment programs and increase efficacy of interventions. Zebrafish are a very useful vertebrate model for exploring molecular processes underlying disease owing to their small size and genetic tractability. Their utility in terms of behavioral neuroscience, however, hinges on the validation and publication of reliable assays with adequate translational relevance. Here, we report an initial pharmacological validation of a fully automated zebrafish version of the commonly used five-choice serial reaction time task using a variable interval pre-stimulus interval. We found that atomoxetine reduced anticipatory responses (0.6 mg/kg), whereas a high-dose (4 mg/kg) methylphenidate increased anticipatory responses and the number of trials completed in a session. On the basis of these results, we argue that similar neurochemical processes in fish as in mammals may control impulsivity, as operationally defined by anticipatory responses on a continuous performance task such as this, making zebrafish potentially a good model for exploring the molecular basis of impulse control disorders and for first-round drug screening. PMID:24481568

  19. Effects of chronic dietary selenomethionine exposure on repeat swimming performance, aerobic metabolism and methionine catabolism in adult zebrafish (Danio rerio).

    PubMed

    Thomas, Jith K; Wiseman, Steve; Giesy, John P; Janz, David M

    2013-04-15

    In a previous study we reported impaired swimming performance and greater stored energy in adult zebrafish (Danio rerio) after chronic dietary exposure to selenomethionine (SeMet). The goal of the present study was to further investigate effects of chronic exposure to dietary SeMet on repeat swimming performance, oxygen consumption (MO2), metabolic capacities (standard metabolic rate [SMR], active metabolic rate [AMR], factorial aerobic scope [F-AS] and cost of transport [COT]) and gene expression of energy metabolism and methionine catabolism enzymes in adult zebrafish. Fish were fed SeMet at measured concentrations of 1.3, 3.4, 9.8 or 27.5 μg Se/g dry mass (d.m.) for 90 d. At the end of the exposure period, fish from each treatment group were divided into three subgroups: (a) no swim, (b) swim, and (c) repeat swim. Fish from the no swim group were euthanized immediately at 90 d and whole body triglycerides, glycogen and lactate, and gene expression of energy metabolism and methionine catabolism enzymes were determined. Individual fish from the swim group were placed in a swim tunnel respirometer and swimming performance was assessed by determining the critical swimming speed (U(crit)). After both Ucrit and MO2 analyses, fish were euthanized and whole body energy stores and lactate were determined. Similarly, individual fish from the repeat swim group were subjected to two U(crit) tests (U(crit-1) and U(crit-2)) performed with a 60 min recovery period between tests, followed by determination of energy stores and lactate. Impaired swim performance was observed in fish fed SeMet at concentrations greater than 3 μg Se/g in the diet. However, within each dietary Se treatment group, no significant differences between single and repeat U(crits) were observed. Oxygen consumption, SMR and COT were significantly greater, and F-AS was significantly lesser, in fish fed SeMet. Whole body triglycerides were proportional to the concentration of SeMet in the diet. While

  20. Genetic Dissection Reveals Two Separate Pathways for Rod and Cone Regeneration in the Teleost Retina

    PubMed Central

    Morris, Ann C.; Scholz, Tamera L.; Brockerhoff, Susan E.; Fadool, James M.

    2009-01-01

    Development of therapies to treat visual system dystrophies resulting from the degeneration of rod and cone photoreceptors may directly benefit from studies of animal models, such as the zebrafish, that display continuous retinal neurogenesis and the capacity for injury-induced regeneration. Previous studies of retinal regeneration in fish have been conducted on adult animals and have relied on methods that cause acute damage to both rods and cones, as well as other retinal cell types. We report here the use of a genetic approach to study progenitor cell responses to photoreceptor degeneration in the larval and adult zebrafish retina. We have compared the responses to selective rod or cone degeneration using, respectively, the XOPS-mCFP transgenic line and zebrafish with a null mutation in the pde6c gene. Notably, rod degeneration induces increased proliferation of progenitors in the outer nuclear layer (ONL) and is not associated with proliferation or reactive gliosis in the inner nuclear layer (INL). Molecular characterization of the rod progenitor cells demonstrated that they are committed to the rod photoreceptor fate while they are still mitotic. In contrast, cone degeneration induces both Müller cell proliferation and reactive gliosis, with little change in proliferation in the ONL. We found that in both lines, proliferative responses to photoreceptor degeneration can be observed as 7 days post fertilization (dpf). These two genetic models therefore offer new opportunities for investigating the molecular mechanisms of selective degeneration and regeneration of rods and cones. PMID:18265406

  1. Definition of three somatic adult cell nuclear transplant methods in zebrafish (Danio rerio): before, during and after egg activation by sperm fertilization.

    PubMed

    Pérez-Camps, M; Cardona-Costa, J; Francisco-Simao, M; García-Ximénez, F

    2010-02-01

    Zebrafish somatic nuclear transplant has only been attempted using preactivated eggs. In this work, three methods to carry out the nuclear transplant using adult cells before, during and after the egg activation/fertilization were developed in zebrafish with the aim to be used in reprogramming studies. The donor nucleus from somatic adult cells was inserted: (method A) in the central region of the egg and subsequently fertilized; (method B) in the incipient animal pole at the same time that the egg was fertilized; and (method C) in the completely defined animal pole after fertilization. Larval and adult specimens were obtained using the three methods. Technical aspects related to temperature conditions, media required, egg activation/fertilization, post-ovulatory time of the transplant, egg aging, place of the donor nucleus injection in each methodology are presented. In conclusion, the technical approach developed in this work can be used in reprogramming studies.

  2. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish.

    PubMed

    Osborne, Olivia J; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Yu, Xuechen; Wang, Xiang; Lin, Shuo; Xia, Tian; Nel, André E

    2015-10-27

    We studied adult zebrafish to determine whether the size of 20 and 110 nm citrate-coated silver nanoparticles (AgC NPs) differentially impact the gills and intestines, known target organs for Ag toxicity in fish. Following exposure for 4 h, 4 days, or 4 days plus a 7 day depuration period, we obtained different toxicokinetic profiles for different particle sizes, as determined by Ag content of the tissues. Ionic AgNO3 served as a positive control. The gills showed a significantly higher Ag content for the 20 nm particles at 4 h and 4 days than the 110 nm particles, while the values were more similar in the intestines. Both particle types were retained in the intestines even after depuration. These toxicokinetics were accompanied by striking size-dependent differences in the ultrastructural features and histopathology in the target organs in response to the particulates. Ag staining of the gills and intestines confirmed prominent Ag deposition in the basolateral membranes for the 20 nm but not for the 110 nm particles. Furthermore, it was possible to link the site of tissue deposition to disruption of the Na(+)/K(+) ion channel, which is also localized to the basolateral membrane. This was confirmed by a reduction in ATPase activity and immunohistochemical detection of the α subunit of this channel in both target organs, with the 20 nm particles causing significantly higher inhibition and disruption than the larger size particles or AgNO3. These results demonstrate the importance of particle size in determining the hazardous impact of AgNPs in the gills and intestines of adult zebrafish.

  3. Expression and anatomical distribution of TrkB in the encephalon of the adult zebrafish (Danio rerio).

    PubMed

    Abbate, F; Guerrera, M C; Montalbano, G; Levanti, M B; Germanà, G P; Navarra, M; Laurà, R; Vega, J A; Ciriaco, E; Germanà, A

    2014-03-20

    Neurotrophins are a family of growth factor primarily acting in the nervous system, throughout two categories of membrane receptors on the basis of their high (Trk receptors) or low (p75NTR) affinity. Both neurotrophins and Trk receptors are phylogenetically conserved and are expressed not only in the central and peripheral nervous system but also in non-nervous tissues of vertebrates and some invertebrates. The brain-derived neurotrophic factor (BDNF)/TrkB system plays an important role in the development, phenotypic maintenance and plasticity of specific neuronal populations. Considering that this system is poorly characterized in the central nervous system of teleosts, the expression and anatomical distribution of TrkB in the brain of the adult zebrafish using reverse transcriptase-polymerase chain reaction (RT-PCR), Western-blot and immunohistochemistry were analysed. Both the riboprobe and the antibody used were designed to map within the catalytic domain of TrkB. RT-PCR detected specific TrkB mRNA in brain homogenates, while Western-blot identified one unique protein band with an estimated molecular weight of 145kDa, thus corresponding with the TrkB full-length isiform of the receptor. Immunohistochemistry showed specific TrkB immunoreactivity in restricted areas of the encephalon, i.e. the hypothalamus and a specific neuronal subpopulation of the reticular formation. The present results demonstrate, for the first time, that, as in mammals, the encephalon of adult zebrafish expresses TrkB in specific zones related to food intake, behaviour or motor activity.

  4. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish.

    PubMed

    Osborne, Olivia J; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Yu, Xuechen; Wang, Xiang; Lin, Shuo; Xia, Tian; Nel, André E

    2015-10-27

    We studied adult zebrafish to determine whether the size of 20 and 110 nm citrate-coated silver nanoparticles (AgC NPs) differentially impact the gills and intestines, known target organs for Ag toxicity in fish. Following exposure for 4 h, 4 days, or 4 days plus a 7 day depuration period, we obtained different toxicokinetic profiles for different particle sizes, as determined by Ag content of the tissues. Ionic AgNO3 served as a positive control. The gills showed a significantly higher Ag content for the 20 nm particles at 4 h and 4 days than the 110 nm particles, while the values were more similar in the intestines. Both particle types were retained in the intestines even after depuration. These toxicokinetics were accompanied by striking size-dependent differences in the ultrastructural features and histopathology in the target organs in response to the particulates. Ag staining of the gills and intestines confirmed prominent Ag deposition in the basolateral membranes for the 20 nm but not for the 110 nm particles. Furthermore, it was possible to link the site of tissue deposition to disruption of the Na(+)/K(+) ion channel, which is also localized to the basolateral membrane. This was confirmed by a reduction in ATPase activity and immunohistochemical detection of the α subunit of this channel in both target organs, with the 20 nm particles causing significantly higher inhibition and disruption than the larger size particles or AgNO3. These results demonstrate the importance of particle size in determining the hazardous impact of AgNPs in the gills and intestines of adult zebrafish. PMID:26327297

  5. Significance of metabolite extraction method for evaluating sulfamethazine toxicity in adult zebrafish using metabolomics.

    PubMed

    De Sotto, Ryan; Medriano, Carl; Cho, Yunchul; Seok, Kwang-Seol; Park, Youngja; Kim, Sungpyo

    2016-05-01

    Recently, environmental metabolomics has been introduced as a next generation environmental toxicity method which helps in evaluating toxicity of bioactive compounds to non-target organisms. In general, efficient metabolite extraction from target cells is one of the keys to success to better understand the effects of toxic substances to organisms. In this regard, the aim of this study is (1) to compare two sample extraction methods in terms of abundance and quality of metabolites and (2) investigate how this could lead to difference in data interpretation using pathway analysis. For this purpose, the antibiotic sulfamethazine and zebrafish (Danio rerio) were selected as model toxic substance and target organism, respectively. The zebrafish was exposed to four different sulfamethazine concentrations (0, 10, 30, and 50mg/L) for 72h. Metabolites were extracted using two different methods (Bligh and Dyer and solid-phase extraction). A total of 13,538 and 12,469 features were detected using quadrupole time-of-flight liquid chromatography mass spectrometry (QTOF LC-MS). Of these metabolites, 4278 (Bligh and Dyer) and 332 (solid phase extraction) were found to be significant after false discovery rate adjustment at a significance threshold of 0.01. Metlin and KEGG pathway analysis showed comprehensive information from fish samples extracted using Bligh and Dyer compared to solid phase extraction. This study shows that proper selection of sample extraction method is critically important for interpreting and analyzing the toxicity data of organisms when metabolomics is applied. PMID:26827276

  6. Global DNA methylation in gonads of adult zebrafish Danio rerio under bisphenol A exposure.

    PubMed

    Liu, Yan; Zhang, Yingying; Tao, Shiyu; Guan, Yongjing; Zhang, Ting; Wang, Zaizhao

    2016-08-01

    Altered DNA methylation is pervasively associated with changes in gene expression and signal transduction after exposure to a wide range of endocrine disrupting chemicals. As a weak estrogenic chemical, bisphenol A (BPA) has been extensively studied for reproductive toxicity. In order to explore the effects of BPA on epigenetic modification in gonads of zebrafish Danio rerio, we measured the global DNA methylation together with the gene expression of DNA methyltransferase (dnmts), glycine N-methyltransferase (gnmt), and ten-eleven translocation (tets) in gonads of D. rerio under BPA exposure by ELISA and quantitative real-time PCR method, respectively. The global level of DNA methylation was significantly decreased in ovaries after exposed to BPA for 7 days, and testes following 35-day exposure. Moreover, the global level of DNA methylation was also significantly reduced in testes after exposed to 15μg/L BPA for 7 days. Besides the alteration of the global level of DNA methylation, varying degrees of transcriptional changes of dnmts, gnmt and tets were detected in gonads of D. rerio under BPA exposure. The present study suggested that BPA might cause the global DNA demethylation in gonads of zebrafish by regulating the transcriptional changes of the DNA methylation/demethylation-associated genes (dnmts, gnmt, and tets). PMID:27101439

  7. Long-term dietary-exposure to non-coplanar PCBs induces behavioral disruptions in adult zebrafish and their offspring.

    PubMed

    Péan, Samuel; Daouk, Tarek; Vignet, Caroline; Lyphout, Laura; Leguay, Didier; Loizeau, Véronique; Bégout, Marie-Laure; Cousin, Xavier

    2013-01-01

    The use of polychlorinated biphenyls (PCBs) has been banned for several decades. PCBs have a long biological half-life and high liposolubility which leads to their bioaccumulation and biomagnification through food chains over a wide range of trophic levels. Exposure can lead to changes in animal physiology and behavior and has been demonstrated in both experimental and field analyses. There are also potential risks to high trophic level predators, including humans. A maternal transfer has been demonstrated in fish as PCBs bind to lipids in eggs. In this study, behavioral traits (exploration and free swimming, with or without challenges) of contaminated zebrafish (Danio rerio) adults and their offspring (both as five-day-old larvae and as two-month-old fish reared under standard conditions) were measured using video-tracking. Long-term dietary exposure to a mixture of non-coplanar PCBs was used to mimic known environmental contamination levels and congener composition. Eight-week-old fish were exposed for eight months at 26-28 °C. Those exposed to an intermediate dose (equivalent to that found in the Loire Estuary, ∑(CB)=515 ng g⁻¹ dry weight in food) displayed behavioral disruption in exploration capacities. Fish exposed to the highest dose (equivalent to that found in the Seine Estuary, ∑(CB)=2302 ng g⁻¹ dry weight in food) displayed an increased swimming activity at the end of the night. In offspring, larval activity was increased and two-month-old fish occupied the bottom section of the tank less often. These findings call for more long-term experiments using the zebrafish model; the mechanisms underlying behavioral disruptions need to be understood due to their implications for both human health and their ecological relevance in terms of individual fitness and survival.

  8. Sustained Action of Developmental Ethanol Exposure on the Cortisol Response to Stress in Zebrafish Larvae and Adults

    PubMed Central

    Baiamonte, Matteo; Brennan, Caroline H.; Vinson, Gavin P.

    2015-01-01

    Background Ethanol exposure during pregnancy is one of the leading causes of preventable birth defects, leading to a range of symptoms collectively known as fetal alcohol spectrum disorder. More moderate levels of prenatal ethanol exposure lead to a range of behavioural deficits including aggression, poor social interaction, poor cognitive performance and increased likelihood of addiction in later life. Current theories suggest that adaptation in the hypothalamo-pituitary-adrenal (HPA) axis and neuroendocrine systems contributes to mood alterations underlying behavioural deficits and vulnerability to addiction. In using zebrafish (Danio rerio), the aim is to determine whether developmental ethanol exposure provokes changes in the hypothalamo-pituitary-interrenal (HPI) axis (the teleost equivalent of the HPA), as it does in mammalian models, therefore opening the possibilities of using zebrafish to elucidate the mechanisms involved, and to test novel therapeutics to alleviate deleterious symptoms. Results and Conclusions The results showed that developmental exposure to ambient ethanol, 20mM-50mM 1-9 days post fertilisation, had immediate effects on the HPI, markedly reducing the cortisol response to air exposure stress, as measured by whole body cortisol content. This effect was sustained in adults 6 months later. Morphology, growth and locomotor activity of the animals were unaffected, suggesting a specific action of ethanol on the HPI. In this respect the data are consistent with mammalian results, although they contrast with the higher corticosteroid stress response reported in rats after developmental ethanol exposure. The mechanisms that underlie the specific sensitivity of the HPI to ethanol require elucidation. PMID:25875496

  9. Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio).

    PubMed

    Nazario, Luiza Reali; Antonioli, Régis; Capiotti, Katiucia Marques; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S; Bonan, Carla Denise; da Silva, Rosane Souza

    2015-08-01

    Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine.

  10. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  11. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol.

  12. Early-life stress changes expression of GnRH and kisspeptin genes and DNA methylation of GnRH3 promoter in the adult zebrafish brain.

    PubMed

    Khor, Yee Min; Soga, Tomoko; Parhar, Ishwar S

    2016-02-01

    Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions.

  13. Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior.

    PubMed

    Glazer, Lilah; Hahn, Mark E; Aluru, Neelakanteswar

    2016-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. The most toxic PCBs are the non-ortho-substituted ("dioxin-like") congeners that act through the aryl hydrocarbon receptor (AHR) pathway. In humans, perinatal exposure to dioxin-like PCBs is associated with neurodevelopmental toxicity in children. Yet, the full potential for later-life neurobehavioral effects that result from early-life low level exposure to dioxin-like PCBs is not well understood. The objective of this study was to determine the effects of developmental exposure to low levels of dioxin-like PCBs on early- and later-life behavioral phenotypes using zebrafish as a model system. We exposed zebrafish embryos to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2nM) for 20h (4-24h post fertilization), and then reared them to adulthood in clean water. Locomotor activity was tested at two larval stages (7 and 14 days post fertilization). Adult fish were tested for anxiety-related behavior using the novel tank and shoaling assays. Adult behavioral assays were repeated several times on the same group of fish and effects on intra- and inter-trial habituation were determined. While there was no effect of PCB126 on larval locomotor activity in response to changes in light conditions, developmental exposure to PCB126 resulted in impaired short- and long-term habituation to a novel environment in adult zebrafish. Cyp1a induction was measured as an indicator for AHR activation. Despite high induction at early stages, cyp1a expression was not induced in the brains of developmentally exposed adult fish that showed altered behavior, suggesting that AHR was not activated at this stage. Our results demonstrate the effectiveness of the zebrafish model in detecting subtle and delayed behavioral effects resulting from developmental exposure to an environmental contaminant. PMID:26616910

  14. The common neural parasite Pseudoloma neurophilia is associated with altered startle response habituation in adult zebrafish (Danio rerio): Implications for the zebrafish as a model organism.

    PubMed

    Spagnoli, Sean; Xue, Lan; Kent, Michael L

    2015-09-15

    The zebrafish's potential as a model for human neurobehavioral research appears nearly limitless despite its relatively recent emergence as an experimental organism. Since the zebrafish has only been part of the research community for a handful of decades, pathogens from its commercial origins continue to plague laboratory stocks. One such pathogen is Pseudoloma neurophilia, a common microparasite in zebrafish laboratories world-wide that generally produces subclinical infections. Given its high prevalence, its predilection for the host's brain and spinal cord, and the delicate nature of neurobehavioral research, the behavioral consequences of subclinical P. neurophilia infection must be explored. Fish infected via cohabitation were tested for startle response habituation in parallel with controls in a device that administered ten taps over 10 min along with taps at 18 and 60 min to evaluate habituation extinction. After testing, fish were euthanized and evaluated for infection via histopathology. Infected fish had a significantly smaller reduction in startle velocity during habituation compared to uninfected tankmates and controls. Habituation was eliminated in infected and control fish at 18 min, whereas exposed negative fish retained partial habituation at 18 min. Infection was also associated with enhanced capture evasion: Despite the absence of external symptoms, infected fish tended to be caught later than uninfected fish netted from the same tank. The combination of decreased overall habituation, early extinction of habituation compared to uninfected cohorts, and enhanced netting evasion indicates that P. neurophilia infection is associated with a behavioral phenotype distinct from that of controls and uninfected cohorts. Because of its prevalence in zebrafish facilities, P. neurophilia has the potential to insidiously influence a wide range of neurobehavioral studies if these associations are causative. Rigorous health screening is therefore vital to the

  15. Methylnitrosourea (MNU)-induced Retinal Degeneration and Regeneration in the Zebrafish: Histological and Functional Characteristics

    PubMed Central

    Maurer, Ellinor; Tschopp, Markus; Tappeiner, Christoph; Sallin, Pauline; Jazwinska, Anna; Enzmann, Volker

    2014-01-01

    Retinal degenerative diseases, e.g. retinitis pigmentosa, with resulting photoreceptor damage account for the majority of vision loss in the industrial world. Animal models are of pivotal importance to study such diseases. In this regard the photoreceptor-specific toxin N-methyl-N-nitrosourea (MNU) has been widely used in rodents to pharmacologically induce retinal degeneration. Previously, we have established a MNU-induced retinal degeneration model in the zebrafish, another popular model system in visual research. A fascinating difference to mammals is the persistent neurogenesis in the adult zebrafish retina and its regeneration after damage. To quantify this observation we have employed visual acuity measurements in the adult zebrafish. Thereby, the optokinetic reflex was used to follow functional changes in non-anesthetized fish. This was supplemented with histology as well as immunohistochemical staining for apoptosis (TUNEL) and proliferation (PCNA) to correlate the developing morphological changes. In summary, apoptosis of photoreceptors occurs three days after MNU treatment, which is followed by a marked reduction of cells in the outer nuclear layer (ONL). Thereafter, proliferation of cells in the inner nuclear layer (INL) and ONL is observed. Herein, we reveal that not only a complete histological but also a functional regeneration occurs over a time course of 30 days. Now we illustrate the methods to quantify and follow up zebrafish retinal de- and regeneration using MNU in a video-format. PMID:25350292

  16. Induction of Female-to-Male Sex Change in Adult Zebrafish by Aromatase Inhibitor Treatment

    NASA Astrophysics Data System (ADS)

    Takatsu, Kanae; Miyaoku, Kaori; Roy, Shimi Rani; Murono, Yuki; Sago, Tomohiro; Itagaki, Hideyuki; Nakamura, Masaru; Tokumoto, Toshinobu

    2013-12-01

    This study investigated whether undifferentiated germ and/or somatic stem cells remain in the differentiated ovary of a species that does not undergo sex changes under natural conditions and retain their sexual plasticity. The effect of aromatase inhibitor (AI)-treatment on sexually mature female zebrafish was examined. A 5-month AI treatment caused retraction of the ovaries after which testes-like organs appeared, and cyst structures filled with spermatozoa-like cells were observed in sections of these tissues. Electron microscopic observations revealed that these cells appeared as large sperm heads without tails. Sperm formation was re-examined after changing the diet to an AI-free food. A large number of normal sperm were obtained after eight weeks, and no formation of ovarian tissue was observed. Artificial fertilization using sperm from the sex-changed females was successful. These results demonstrated that sex plasticity remains in the mature ovaries of this species.

  17. Induction of Female-to-Male Sex Change in Adult Zebrafish by Aromatase Inhibitor Treatment

    PubMed Central

    Takatsu, Kanae; Miyaoku, Kaori; Roy, Shimi Rani; Murono, Yuki; Sago, Tomohiro; Itagaki, Hideyuki; Nakamura, Masaru; Tokumoto, Toshinobu

    2013-01-01

    This study investigated whether undifferentiated germ and/or somatic stem cells remain in the differentiated ovary of a species that does not undergo sex changes under natural conditions and retain their sexual plasticity. The effect of aromatase inhibitor (AI)-treatment on sexually mature female zebrafish was examined. A 5-month AI treatment caused retraction of the ovaries after which testes-like organs appeared, and cyst structures filled with spermatozoa-like cells were observed in sections of these tissues. Electron microscopic observations revealed that these cells appeared as large sperm heads without tails. Sperm formation was re-examined after changing the diet to an AI-free food. A large number of normal sperm were obtained after eight weeks, and no formation of ovarian tissue was observed. Artificial fertilization using sperm from the sex-changed females was successful. These results demonstrated that sex plasticity remains in the mature ovaries of this species. PMID:24292399

  18. Cancers Affecting the Retina

    MedlinePlus

    ... or ARMD) Epiretinal Membrane Detachment of the Retina Retinitis Pigmentosa Blockage of Central Retinal Veins and Branch Retinal ... or ARMD) Epiretinal Membrane Detachment of the Retina Retinitis Pigmentosa Blockage of Central Retinal Veins and Branch Retinal ...

  19. Axonal regeneration in zebrafish.

    PubMed

    Becker, Thomas; Becker, Catherina G

    2014-08-01

    In contrast to mammals, fish and amphibia functionally regenerate axons in the central nervous system (CNS). The strengths of the zebrafish model, that is, transgenics and mutant availability, ease of gene expression analysis and manipulation and optical transparency of larvae lend themselves to the analysis of successful axonal regeneration. Analyses in larval and adult zebrafish suggest a high intrinsic capacity for axon regrowth, yet signaling pathways employed in axonal growth and pathfinding are similar to those in mammals. However, the lesioned CNS environment in zebrafish shows remarkably little scarring or expression of inhibitory molecules and regenerating axons use molecular cues in the environment to successfully navigate to their targets. Future zebrafish research, including screening techniques, will complete our picture of the mechanisms behind successful CNS axon regeneration in this vertebrate model organism.

  20. The common neural parasite Pseudoloma neurophilia is associated with altered startle response habituation in adult zebrafish (Danio rerio): Implications for the zebrafish as a model organism

    PubMed Central

    Spagnoli, Sean; Xue, Lan; Kent, Michael L.

    2015-01-01

    The zebrafish’s potential as a model for human neurobehavioral research appears nearly limitless despite its relatively recent emergence as an experimental organism. Since the zebrafish has only been part of the research community for a handful of decades, pathogens from its commercial origins continue to plague laboratory stocks. One such pathogen is Pseudoloma neurophilia, a common microparasite in zebrafish laboratories world-wide that generally produces subclinical infections. Given its high prevalence, its predilection for the host’s brain and spinal cord, and the delicate nature of neurobehavioral research, the behavioral consequences of subclinical P. neurophilia infection must be explored. Fish infected via cohabitation were tested for startle response habituation in parallel with controls in a device that administered ten taps over ten minutes along with taps at 18 and 60 minutes to evaluate habituation extinction. After testing, fish were euthanized and evaluated for infection via histopathology. Infected fish had a significantly smaller reduction in startle velocity during habituation compared to uninfected tankmates and controls. Habituation was eliminated in infected and control fish at 18 minutes, whereas exposed negative fish retained partial habituation at 18 minutes. Infection was also associated with enhanced capture evasion: Despite the absence of external symptoms, infected fish tended to be caught later than uninfected fish netted from the same tank. The combination of decreased overall habituation, early extinction of habituation compared to uninfected cohorts, and enhanced netting evasion indicates that P. neurophilia infection is associated with a behavioral phenotype distinct from that of controls and uninfected cohorts. Because of its prevalence in zebrafish facilities, P. neurophilia has the potential to insidiously influence a wide range of neurobehavioral studies if these associations are causative. Rigorous health screening is

  1. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60) Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

    PubMed Central

    Dal Forno, Gonzalo Ogliari; Kist, Luiza Wilges; de Azevedo, Mariana Barbieri; Fritsch, Rachel Seemann; Pereira, Talita Carneiro Brandão; Britto, Roberta Socoowski; Guterres, Sílvia Stanisçuaski; Külkamp-Guerreiro, Irene Clemes; Bonan, Carla Denise; Monserrat, José María; Bogo, Maurício Reis

    2013-01-01

    Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure. PMID:23865059

  2. Acid-sensing ion channel 2 (ASIC2) is selectively localized in the cilia of the non-sensory olfactory epithelium of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Abbate, F; Cabo, R; Guerrera, M C; Laurà, R; Quirós, L M; Pérez-Varela, J C; Cobo, T; Germanà, A; Vega, J A; García-Suárez, O

    2015-01-01

    Ionic channels play key roles in the sensory cells, such as transducing specific stimuli into electrical signals. The acid-sensing ion channel (ASIC) family is voltage-insensitive, amiloride-sensitive, proton-gated cation channels involved in several sensory functions. ASIC2, in particular, has a dual function as mechano- and chemo-sensor. In this study, we explored the possible role of zebrafish ASIC2 in olfaction. RT-PCR, Western blot, chromogenic in situ hybridization and immunohistochemistry, as well as ultrastructural analysis, were performed on the olfactory rosette of adult zebrafish. ASIC2 mRNA and protein were detected in homogenates of olfactory rosettes. Specific ASIC2 hybridization was observed in the luminal pole of the non-sensory epithelium, especially in the cilia basal bodies, and immunoreactivity for ASIC2 was restricted to the cilia of the non-sensory cells where it was co-localized with the cilia marker tubulin. ASIC2 expression was always absent in the olfactory cells. These findings demonstrate for the first time the expression of ASIC2 in the olfactory epithelium of adult zebrafish and suggest that it is not involved in olfaction. Since the cilium sense and transduce mechanical and chemical stimuli, ASIC2 expression in this location might be related to detection of aquatic environment pH variations or to detection of water movement through the nasal cavity.

  3. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters

    PubMed Central

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  4. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish.

    PubMed

    Davis, Daniel J; Doerr, Holly M; Grzelak, Agata K; Busi, Susheel B; Jasarevic, Eldin; Ericsson, Aaron C; Bryda, Elizabeth C

    2016-01-01

    The consumption of probiotics has become increasingly popular as a means to try to improve health and well-being. Not only are probiotics considered beneficial to digestive health, but increasing evidence suggests direct and indirect interactions between gut microbiota (GM) and the central nervous system (CNS). Here, adult zebrafish were supplemented with Lactobacillus plantarum to determine the effects of probiotic treatment on structural and functional changes of the GM, as well as host neurological and behavioral changes. L. plantarum administration altered the β-diversity of the GM while leaving the major core architecture intact. These minor structural changes were accompanied by significant enrichment of several predicted metabolic pathways. In addition to GM modifications, L. plantarum treatment also significantly reduced anxiety-related behavior and altered GABAergic and serotonergic signaling in the brain. Lastly, L. plantarum supplementation provided protection against stress-induced dysbiosis of the GM. These results underscore the influence commensal microbes have on physiological function in the host, and demonstrate bidirectional communication between the GM and the host. PMID:27641717

  5. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Sepúlveda, Maria S.; Lin, Tsang-Long; Jannasch, Amber S.; Freeman, Jennifer L.

    2016-01-01

    The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring. PMID:26891955

  6. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish

    PubMed Central

    Davis, Daniel J.; Doerr, Holly M.; Grzelak, Agata K.; Busi, Susheel B.; Jasarevic, Eldin; Ericsson, Aaron C.; Bryda, Elizabeth C.

    2016-01-01

    The consumption of probiotics has become increasingly popular as a means to try to improve health and well-being. Not only are probiotics considered beneficial to digestive health, but increasing evidence suggests direct and indirect interactions between gut microbiota (GM) and the central nervous system (CNS). Here, adult zebrafish were supplemented with Lactobacillus plantarum to determine the effects of probiotic treatment on structural and functional changes of the GM, as well as host neurological and behavioral changes. L. plantarum administration altered the β-diversity of the GM while leaving the major core architecture intact. These minor structural changes were accompanied by significant enrichment of several predicted metabolic pathways. In addition to GM modifications, L. plantarum treatment also significantly reduced anxiety-related behavior and altered GABAergic and serotonergic signaling in the brain. Lastly, L. plantarum supplementation provided protection against stress-induced dysbiosis of the GM. These results underscore the influence commensal microbes have on physiological function in the host, and demonstrate bidirectional communication between the GM and the host. PMID:27641717

  7. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters.

    PubMed

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  8. Innervation is required for sense organ development in the lateral line system of adult zebrafish.

    PubMed

    Wada, Hironori; Dambly-Chaudière, Christine; Kawakami, Koichi; Ghysen, Alain

    2013-04-01

    Superficial mechanosensory organs (neuromasts) distributed over the head and body of fishes and amphibians form the "lateral line" system. During zebrafish adulthood, each neuromast of the body (posterior lateral line system, or PLL) produces "accessory" neuromasts that remain tightly clustered, thereby increasing the total number of PLL neuromasts by a factor of more than 10. This expansion is achieved by a budding process and is accompanied by branches of the afferent nerve that innervates the founder neuromast. Here we show that innervation is essential for the budding process, in complete contrast with the development of the embryonic PLL, where innervation is entirely dispensable. To obtain insight into the molecular mechanisms that underlie the budding process, we focused on the terminal system that develops at the posterior tip of the body and on the caudal fin. In this subset of PLL neuromasts, bud neuromasts form in a reproducible sequence over a few days, much faster than for other PLL neuromasts. We show that wingless/int (Wnt) signaling takes place during, and is required for, the budding process. We also show that the Wnt activator R-spondin is expressed by the axons that innervate budding neuromasts. We propose that the axon triggers Wnt signaling, which itself is involved in the proliferative phase that leads to bud formation. Finally, we show that innervation is required not only for budding, but also for long-term maintenance of all PLL neuromasts.

  9. In vivo three dimensional dual wavelength photoacoustic tomography imaging of the far red fluorescent protein E2-Crimson expressed in adult zebrafish

    PubMed Central

    Liu, Mengyang; Schmitner, Nicole; Sandrian, Michelle G.; Zabihian, Behrooz; Hermann, Boris; Salvenmoser, Willi; Meyer, Dirk; Drexler, Wolfgang

    2013-01-01

    For the first time the far red fluorescent protein (FP) E2-Crimson genetically expressed in the exocrine pancreas of adult zebrafish has been non-invasively mapped in 3D in vivo using photoacoustic tomography (PAT). The distribution of E2-Crimson in the exocrine pancreas acquired by PAT was confirmed using epifluorescence imaging and histology, with optical coherence tomography (OCT) providing complementary structural information. This work demonstrates the depth advantage of PAT to resolve FP in an animal model and establishes the value of E2-Crimson for PAT studies of transgenic models, laying the foundation for future longitudinal studies of the zebrafish as a model of diseases affecting inner organs. PMID:24156048

  10. The Zebrafish Neurophenome Database (ZND): a dynamic open-access resource for zebrafish neurophenotypic data.

    PubMed

    Kyzar, Evan; Zapolsky, Ivan; Green, Jeremy; Gaikwad, Siddharth; Pham, Mimi; Collins, Christopher; Roth, Andrew; Stewart, Adam Michael; St-Pierre, Paul; Hirons, Budd; Kalueff, Allan V

    2012-03-01

    Zebrafish (Danio rerio) are widely used in neuroscience research, where their utility as a model organism is rapidly expanding. Low cost, ease of experimental manipulations, and sufficient behavioral complexity make zebrafish a valuable tool for high-throughput studies in biomedicine. To complement the available repositories for zebrafish genetic information, there is a growing need for the collection of zebrafish neurobehavioral and neurological phenotypes. For this, we are establishing the Zebrafish Neurophenome Database (ZND; www.tulane.edu/∼znpindex/search ) as a new dynamic online open-access data repository for behavioral and related physiological data. ZND, currently focusing on adult zebrafish, combines zebrafish neurophenotypic data with a simple, easily searchable user interface, which allow scientists to view and compare results obtained by other laboratories using various treatments in different testing paradigms. As a developing community effort, ZND is expected to foster innovative research using zebrafish by federating the growing body of zebrafish neurophenotypic data.

  11. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment.

  12. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment. PMID:26769247

  13. Protocadherin-17 Function in Zebrafish Retinal Development

    PubMed Central

    Chen, Yun; Londraville, Richard; Brickner, Sarah; El-Shaar, Lana; Fankhauser, Kelsee; Dearth, Cassandra; Fulton, Leah; Sochacka, Alicja; Bhattarai, Sunil; Marrs, James A.; Liu, Qin

    2012-01-01

    Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N-cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin-17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin-17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin-17 specific antisense morpholino oligonucleotides (MOs). Protocadherin-17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin-17 mRNA. Injection of a vivo-protocadherin-17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin-17 plays an important role in the normal formation of the zebrafish retina. PMID:22927092

  14. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults.

    PubMed

    Naderi, Mohammad; Wong, Marian Y L; Gholami, Fatemeh

    2014-03-01

    In the recent years, there has been a growing concern about the production and use of bisphenol-A substitute, namely bisphenol-S (BPS). Due to its novel nature, there have been few studies addressing the ability of BPS to disrupt the endocrine system of animals. In the present study, zebrafish (Danio rerio) embryos were exposed to and reared in various concentrations of BPS (0, 0.1, 1, 10 and 100 μg/l) for 75 days. Then adult males and females were paired in spawning tanks for 7 days in clean water and the consequent effects on fish development, reproduction, plasma vitellogenin (VTG), sex steroids and thyroid hormone levels were investigated as endpoints. After 75 days of exposure, there was a skewed sex ratio in favor of females. The results also showed that body length and weight significantly decreased in males exposed to 100 μg/l of BPS. Gonadosomatic index was significantly reduced in fish at ≥ 10 μg/l. Hepatosomatic index exhibited a significant increase in both male and female fish. At ≥ 1 μg/l of BPS, plasma 17β-estradiol levels were significantly increased in both males and females. However, plasma testosterone showed a significant reduction in males exposed to 10 and 100 μg/l of BPS. A significant induction in plasma VTG level was observed in both males and females at ≥ 10 μg/l of BPS. Plasma thyroxine and triiodothyronine levels were significantly decreased at 10 and 100 μg/l of BPS in males, and at 100 μg/l in females. Egg production and sperm count were also significantly decreased in groups received 10 and 100 μg/l of BPS. Moreover, once time to hatching and hatching rates were calculated for fertilized eggs the postponed and decreased rates of hatching were observed. Taken together, these results suggest that developmental exposure to low concentrations of BPS has adverse effects on different parts of the endocrine system in zebrafish.

  15. Neurochemical measurements in the zebrafish brain

    PubMed Central

    Jones, Lauren J.; McCutcheon, James E.; Young, Andrew M. J.; Norton, William H. J.

    2015-01-01

    The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain. PMID:26441575

  16. Computer retina that models the primate retina

    NASA Astrophysics Data System (ADS)

    Shah, Samir; Levine, Martin D.

    1994-06-01

    At the retinal level, the strategies utilized by biological visual systems allow them to outperform machine vision systems, serving to motivate the design of electronic or `smart' sensors based on similar principles. Design of such sensors in silicon first requires a model of retinal information processing which captures the essential features exhibited by biological retinas. In this paper, a simple retinal model is presented, which qualitatively accounts for the achromatic information processing in the primate cone system. The model exhibits many of the properties found in biological retina such as data reduction through nonuniform sampling, adaptation to a large dynamic range of illumination levels, variation of visual acuity with illumination level, and enhancement of spatio temporal contrast information. The model is validated by replicating experiments commonly performed by electrophysiologists on biological retinas and comparing the response of the computer retina to data from experiments in monkeys. In addition, the response of the model to synthetic images is shown. The experiments demonstrate that the model behaves in a manner qualitatively similar to biological retinas and thus may serve as a basis for the development of an `artificial retina.'

  17. Large-scale reconstitution of a retina-to-brain pathway in adult rats using gene therapy and bridging grafts: An anatomical and behavioral analysis.

    PubMed

    You, Si-Wei; Hellström, Mats; Pollett, Margaret A; LeVaillant, Chrisna; Moses, Colette; Rigby, Paul J; Penrose, Marissa; Rodger, Jennifer; Harvey, Alan R

    2016-05-01

    Peripheral nerve (PN) grafts can be used to bridge tissue defects in the CNS. Using a PN-to-optic nerve (ON) graft model, we combined gene therapy with pharmacotherapy to promote the long-distance regeneration of injured adult retinal ganglion cells (RGCs). Autologous sciatic nerve was sutured onto the transected ON and the distal end immediately inserted into contralateral superior colliculus (SC). Control rats received intraocular injections of saline or adeno-associated virus (AAV) encoding GFP. In experimental groups, three bi-cistronic AAV vectors encoding ciliary neurotrophic factor (CNTF) were injected into different regions of the grafted eye. Each vector encoded a different fluorescent reporter to assess retinotopic order in the regenerate projection. To encourage sprouting/synaptogenesis, after 6 weeks some AAV-CNTF injected rats received an intravitreal injection of recombinant brain-derived neurotrophic factor (rBDNF) or AAV-BDNF. Four months after surgery, cholera toxin B was used to visualize regenerate RGC axons. RGC viability and axonal regrowth into SC were significantly greater in AAV-CNTF groups. In some cases, near the insertion site, regenerate axonal density resembled retinal terminal densities seen in normal SC. Complex arbors were seen in superficial but not deep SC layers and many terminals were immunopositive for presynaptic proteins vGlut2 and SV2. There was improvement in visual function via the grafted eye with significantly greater pupillary constriction in both AAV-CNTF+BDNF groups. In both control and AAV-CNTF+rBDNF groups the extent of light avoidance correlated with the maximal distance of axonal penetration into superficial SC. Despite the robust regrowth of RGC axons back into the SC, axons originating from different parts of the retina were intermixed at the PN graft/host SC interface, indicating that there remained a lack of order in this extensive regenerate projection. PMID:26970586

  18. The side-by-side exploratory test: a simple automated protocol for the evaluation of adult zebrafish behavior simultaneously with social interaction.

    PubMed

    Schaefer, Isabel C; Siebel, Anna M; Piato, Angelo L; Bonan, Carla D; Vianna, Mônica R; Lara, Diogo R

    2015-10-01

    The assessment of shoaling in adult zebrafish is technically difficult, but important, given their social nature. The present study aimed to characterize a new protocol using simple automated tracking software to evaluate general behavior and social interaction simultaneously. To this end, we used a single tank with a central transparent glass division and placed one zebrafish on each side for 5 min. This strategy allows fish to interact visually at the same time that individual automated evaluation of behavior can be easily performed. Our results showed that, when two fish are placed side-by-side, there is an increase in their height in the tank compared with isolated fish and they remain close to each other. The pharmacological treatments with benzodiazepines (bromazepam and clonazepam) and the serotonergic drugs buspirone, fluoxetine, and escitalopram did not affect locomotion at the concentrations tested, except for the highest concentration of buspirone. Nevertheless, benzodiazepines increased interfish distance (i.e. reduced shoaling behavior) and serotonergic drugs elevated height in the tank. These results support the use of the side-by-side exploratory test for behavioral studies with the zebrafish, including high-throughput behavioral screening for antidepressants and anxiolytics. PMID:26061352

  19. Persistent effects on adult swim performance and energetics in zebrafish developmentally exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Marit, Jordan S; Weber, Lynn P

    2012-01-15

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) remains a potent and persistent toxicant in aquatic environments, causing lethal developmental deformities in fish. However, few studies have examined sublethal or persistent effects of developmental TCDD exposure and none have examined its effects on swimming capabilities in sub-adult fish. The objective of the current study was to examine whether effects of TCDD exposure during the critical period of cardiovascular development (2-4 days post fertilization) on swim performance, triglyceride stores and cardiovascular deformities would persist until adulthood in zebrafish. Zebrafish larvae were exposed between 48 and 96 h post fertilization to 1, 0.1, 0.01 ng/L TCDD or DMSO control (0.005%), then raised in clean water for 90 days. Despite having equal survivability, no significant increase in gross deformities and no change in cytochrome P450 1A (CYP1A) activity was observed, while critical swimming speed and dorsal aorta diameter were significantly decreased in TCDD-exposed fish at 90 days. Furthermore, whole body triglycerides were significantly elevated in TCDD-exposed fish both before and after swim testing. Therefore sublethal TCDD exposure during zebrafish development caused a persistent decrease in swim endurance. The cause of this persistent decrease in swim endurance is not known, but may be related to behavioral adaptations limiting swimming capabilities, failure to mobilize triglyceride stores, vascular deformities limiting blood flow to the periphery, or a combination of these factors.

  20. No bioavailability of 17α-ethinylestradiol when associated with nC60 aggregates during dietary exposure in adult male zebrafish (Danio rerio).

    PubMed

    Park, June-Woo; Henry, Theodore B; Menn, Fu-Min; Compton, Robert N; Sayler, Gary

    2010-11-01

    The C(60) fullerene is a manufactured carbon nanoparticle (CNP) that could pose a risk to humans and other organisms after release into the environment. In surface waters, C(60) is likely to be present as aggregates of nC(60) and these aggregates can associate with other substances that are toxic. Our goal was to evaluate the association of a model contaminant [17α-ethinylestradiol (EE2)] with nC(60) and determine bioavailability of EE2 after accumulation by a filter feeding organism [Brine shrimp (BS) Artemia sp.] and subsequent dietary exposure in zebrafish. Aqueous suspensions of nC(60) were prepared (600 mg C(60)/900 mL, 6-month water stirred method) with/without EE2 (1 μg/L) and BS were exposed to these preparations. Accumulation of nC(60) in gut of BS was assessed by light microscopy, and C(60) were extracted from BS and concentration analyzed by HPLC. Adult male zebrafish were fed (5d) live BS according to the following treatments: BS (control); BS containing nC(60); BS containing nC(60)+EE2; or BS containing EE2. Liver was excised from exposed fish and total RNA was extracted for assessment of vitellogenin gene (vtg1A/B) expression. The vtg1A/B was highly up-regulated in fish exposed to BS containing EE2, but expression of vtg1A/B did not differ from controls in other treatments. The EE2 associated with nC(60) did not become bioavailable in zebrafish during passage through the intestinal tract of zebrafish. Results have implications on the effect of nC(60) on the bioavailability of co-contaminants in organisms during dietary exposure. PMID:20937515

  1. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring.

    PubMed

    Chen, Jiangfei; Das, Siba R; La Du, Jane; Corvi, Margaret M; Bai, Chenglian; Chen, Yuanhong; Liu, Xiaojuan; Zhu, Guonian; Tanguay, Robert L; Dong, Qiaoxiang; Huang, Changjiang

    2013-01-01

    Perfluorooctane sulfonic acid (PFOS) is an organic contaminant that is ubiquitous in the environment. Few studies have assessed the behavioral effects of chronic PFOS exposure in aquatic organisms. The present study defined the behavioral effects of varying life span chronic exposures to PFOS in zebrafish. Specifically, zebrafish were exposed to control or 0.5 µM PFOS during 1 to 20, 21 to 120, or 1 to 120 d postfertilization (dpf). Exposure to PFOS impaired the adult zebrafish behavior mode under the tapping stimulus. The movement speed of male and female fish exposed for 1 to 120 dpf was significantly increased compared with control before and after tapping, whereas in the groups exposed for 1 to 20 and 21 to 120 dpf, only the males exhibited elevated swim speed before tapping. Residues of PFOS in F1 embryos derived from parental exposure for 1 to 120 and 21 to 120 dpf were significantly higher than control, and F1 embryos in these two groups also showed high malformation and mortality. The F1 larvae of parental fish exposed to PFOS for 1 to 20 or 21 to 120 dpf exhibited a higher swimming speed than control larvae in a light-to-dark behavior assessment test. The F1 larvae derived from parental fish exposed to PFOS for 1 to 120 dpf showed a significantly lower speed in the light period and a higher speed in the dark period compared with controls. Although there was little PFOS residue in embryos derived from the 1- to 20-dpf parental PFOS-exposed group, the adverse behavioral effects on both adult and F1 larvae indicate that exposure during the first 21 dpf induces long-term neurobehaviorial toxicity. The authors' findings demonstrate that chronic PFOS exposure during different life stages adversely affects adult behavior and F1 offspring morphology, behavior, and survival.

  2. Characterization of optic nerve regeneration using transgenic zebrafish

    PubMed Central

    Diekmann, Heike; Kalbhen, Pascal; Fischer, Dietmar

    2015-01-01

    In contrast to the adult mammalian central nervous system (CNS), fish are able to functionally regenerate severed axons upon injury. Although the zebrafish is a well-established model vertebrate for genetic and developmental studies, its use for anatomical studies of axon regeneration has been hampered by the paucity of appropriate tools to visualize re-growing axons in the adult CNS. On this account, we used transgenic zebrafish that express enhanced green fluorescent protein (GFP) under the control of a GAP-43 promoter. In adult, naïve retinae, GFP was restricted to young retinal ganglion cells (RGCs) and their axons. Within the optic nerve, these fluorescent axons congregated in a distinct strand at the nerve periphery, indicating age-related order. Upon optic nerve crush, GFP expression was markedly induced in RGC somata and intra-retinal axons at 4 to at least 14 days post injury. Moreover, individual axons were visualized in their natural environment of the optic nerve using wholemount tissue clearing and confocal microscopy. With this novel approach, regenerating axons were clearly detectable beyond the injury site as early as 2 days after injury and grew past the optic chiasm by 4 days. Regenerating axons in the entire optic nerve were labeled from 6 to at least 14 days after injury, thereby allowing detailed visualization of the complete regeneration process. Therefore, this new approach could now be used in combination with expression knockdown or pharmacological manipulations to analyze the relevance of specific proteins and signaling cascades for axonal regeneration in vivo. In addition, the RGC-specific GFP expression facilitated accurate evaluation of neurite growth in dissociated retinal cultures. This fast in vitro assay now enables the screening of compound and expression libraries. Overall, the presented methodologies provide exciting possibilities to investigate the molecular mechanisms underlying successful CNS regeneration in zebrafish. PMID

  3. Neurotransmitter properties of the newborn human retina

    SciTech Connect

    Hollyfield, J.G.; Frederick, J.M.; Rayborn, M.E.

    1983-07-01

    Human retinal tissue from a newborn was examined autoradiographically for the presence of high-affinity uptake and localization of the following putative neurotransmitters: dopamine, glycine, GABA, aspartate, and glutamate. In addition, the dopamine content of this newborn retina was measured by high pressure liquid chromatography. Our study reveals that specific uptake mechanisms for /sup 3/H-glycine, /sup 3/H-dopamine, and /sup 3/H-GABA are present at birth. However, the number and distribution of cells labeled with each of these /sup 3/H-transmitters are not identical to those observed in adult human retinas. Furthermore, the amount of endogenous dopamine in the newborn retina is approximately 1/20 the adult level. Photoreceptor-specific uptake of /sup 3/H-glutamate and /sup 3/H-aspartate are not observed. These findings indicate that, while some neurotransmitter-specific properties are present at birth, significant maturation of neurotransmitter systems occurs postnatally.

  4. Tales of regeneration in zebrafish.

    PubMed

    Poss, Kenneth D; Keating, Mark T; Nechiporuk, Alex

    2003-02-01

    Complex tissue regeneration involves exquisitely coordinated proliferation and patterning of adult cells after severe injury or amputation. Certain lower vertebrates such as urodele amphibians and teleost fish have a greater capacity for regeneration than mammals. However, little is known about molecular mechanisms of regeneration, and cellular mechanisms are incompletely defined. To address this deficiency, we and others have focused on the zebrafish model system. Several helpful tools and reagents are available for use with zebrafish, including the potential for genetic approaches to regeneration. Recent studies have shed light on the remarkable ability of zebrafish to regenerate fins. PMID:12557199

  5. Development of social behavior in young zebrafish

    PubMed Central

    Dreosti, Elena; Lopes, Gonçalo; Kampff, Adam R.; Wilson, Stephen W.

    2015-01-01

    Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same 1–3 weeks period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behavior in adult zebrafish. PMID:26347614

  6. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish

    PubMed Central

    Saade, Carole J.; Alvarez-Delfin, Karen; Fadool, James M.

    2013-01-01

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second order neurons, bipolar cells and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6cw59 larval retina but not rod degeneration in the Xops:mCFPq13 line. In adults, rods and cones are present in approximately equal numbers, and in pde6cw59 mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once-blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2bp22bbtl or six7 morpholino-injected larvae protect from pde6cw59-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease. PMID:23365220

  7. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny.

    PubMed

    Volkova, Kristina; Reyhanian Caspillo, Nasim; Porseryd, Tove; Hallgren, Stefan; Dinnétz, Patrik; Porsch-Hällström, Inger

    2015-07-01

    Exposure to estrogenic endocrine disruptors (EDCs) during development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior are less well studied. Here, we analyze the effects of 17α-ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the novel tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the novel tank test and increased light avoidance in the scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny was affected by their parents' exposure, which might suggest transgenerational effects. PMID:26072466

  8. Synaptic mechanisms of adaptation and sensitization in the retina

    PubMed Central

    Nikolaev, Anton; Leung, Kin-Mei; Odermatt, Benjamin; Lagnado, Leon

    2014-01-01

    Sensory systems continually adjust the way stimuli are processed. What are the circuit mechanisms underlying this plasticity? We investigated how synapses in the retina of zebrafish adjust to changes in the temporal contrast of a visual stimulus by imaging activity in vivo. Following an increase in contrast, bipolar cell synapses with strong initial responses depressed, whereas synapses with weak initial responses facilitated. Depression and facilitation predominated in different strata of the inner retina, where bipolar cell output was anticorrelated with the activity of amacrine cell synapses providing inhibitory feedback. Pharmacological block of GABAergic feedback converted facilitating bipolar cell synapses into depressing ones. These results indicate that depression intrinsic to bipolar cell synapses causes adaptation of the ganglion cell response to contrast, whereas depression in amacrine cell synapses causes sensitization. Distinct microcircuits segregating to different layers of the retina can cause simultaneous increases or decreases in the gain of neural responses. PMID:23685718

  9. A programmable artificial retina

    SciTech Connect

    Bernard, T.M. ); Zavidovique, B.Y. . Electrical Engineering Dept. Perception System Lab., Arcueil ); Devos, F.J. . Dept. of Integrated Circuits and Systems)

    1993-07-01

    An artificial retina is a device that intimately associates an imager with processing facilities on a monolithic circuit. Yet, except for simple environments and applications, analog hardware will not suffice to process and compact the raw image flow from the photosensitive array. To solve this output problem, an on-chip array of bare Boolean processors with halftoning facilities might be used, providing versatility from programmability. By setting the pixel memory size to 3 b, the authors have demonstrated both the technological practicality and the computational efficiency of this programmable Boolean retina concept. Using semi-static shifting structures together with some interaction circuitry, a minimal retina Boolean processor can be built with less than 30 transistors and controlled by as few as 6 global clock signals. The successful design, integration, and test of such a 65x76 Boolean retina on a 50-mm[sup 2] CMOS 2-[mu]m circuit are presented.

  10. Expression of neuropeptides and anoctamin 1 in the embryonic and adult zebrafish intestine, revealing neuronal subpopulations and ICC-like cells.

    PubMed

    Uyttebroek, Leen; Shepherd, Iain T; Hubens, Guy; Timmermans, Jean-Pierre; Van Nassauw, Luc

    2013-11-01

    This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.

  11. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    PubMed

    Tsujimura, Taro; Hosoya, Tomohiro; Kawamura, Shoji

    2010-12-16

    A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio) have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs) in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC) clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR) upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  12. Zebrafish Rhabdomyosarcoma.

    PubMed

    Phelps, Michael; Chen, Eleanor

    2016-01-01

    In vivo models of Rhabdomyosarcoma (RMS) have proven instrumental in understanding the development and progression of this devastating pediatric sarcoma. Both vertebrate and invertebrate model systems have been developed to study the tumor biology of both embryonal (ERMS) and alveolar (ARMS) RMS subtypes. Zebrafish RMS models have been particularly amenable for high-throughput studies to identify drug targetable pathways because of their short tumor latency, ease of ex vivo manipulation and conserved tumor biology. The transgenic KRASG12D-induced ERMS model allows for molecular and cellular characterization of distinct tumor cell subpopulations including the tumor propagating cells. Comparative genomic approaches have also been utilized in zebrafish ERMS to identify conserved candidate driver genes. Recent advances in zebrafish genome engineering have further enabled the ability to probe the functional significance of potential driver genes. Using the unique strengths of the zebrafish model organisms with the wealth of cellular and molecular tools currently available, zebrafish RMS models provide a powerful in vivo system for which to study RMS tumorigenesis. PMID:27165362

  13. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-08-01

    Mercury (Hg) is a prominent environmental contaminant that causes a variety of adverse effects on aquatic organisms. However, the mechanisms underlying inorganic Hg-induced reproductive impairment in fish remains largely unknown. In this study, adult zebrafish were exposed to 0 (control), 15 and 30μg Hg/l (added as mercuric chloride, HgCl2) for 30days, and the effects on histological structure, antioxidant status and sex hormone levels in the ovary and testis, as well as the mRNA expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Exposure to Hg caused pathological lesions in zebrafish gonads, and changed the activities and mRNA levels of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) as well as the content of glutathione (GSH) and malondialdehyde (MDA). In females, although ovarian 17β-estradiol (E2) content remained relatively stable, significant down-regulation of lhβ, gnrh2, gnrh3, lhr and erα were observed. In males, testosterone (T) levels in the testis significantly decreased after Hg exposure, accompanied by down-regulated expression of gnrh2, gnrh3, fshβ and lhβ in the brain as well as fshr, lhr, ar, cyp17 and cyp11b in the testis. Thus, our study indicated that waterborne inorganic Hg exposure caused histological damage and oxidative stress in the gonads of zebrafish, and altered sex hormone levels by disrupting the transcription of related HPG-axis genes, which could subsequently impair the reproduction of fish. Different response of the antioxidant defense system, sex hormone and HPG-axis genes between females and males exposed to inorganic Hg indicated the gender-specific regulatory effect by Hg. To our knowledge, this is the first time to explore the effects and mechanisms of inorganic Hg exposure on reproduction at the histological, enzymatic and molecular levels, which will greatly extend our understanding on the mechanisms underlying of reproductive

  14. Comparative effects of nodularin and microcystin-LR in zebrafish: 2. Uptake and molecular effects in eleuthero-embryos and adult liver with focus on endoplasmic reticulum stress.

    PubMed

    Faltermann, Susanne; Grundler, Verena; Gademann, Karl; Pernthaler, Jakob; Fent, Karl

    2016-02-01

    . In contrast to adult liver, MC-LR and nodularin did not result in detectable changes of mRNA levels of selected target genes involved in ER-stress in zebrafish eleuthero-embryos, nor was the abundance of transcripts belonging to the MAPK and pro-apoptosis pathways altered. In conclusion, our data indicate that MC-LR and nodularin have similar transcriptional effects. They lead to changes in mRNA levels of genes that suggest induction of ER-stress, and furthermore, lead to increased level of tnfα mRNA in the adult liver, which suggests a novel (transcriptional) mode of action in fish. However, although taken up by eleuthero-embryos, no transcriptional changes induced by these cyanobacterial toxins were detected. This is probably due to action to specific organs such as liver and kidneys that could not be identified by whole-embryo sampling. PMID:26748408

  15. Comparative effects of nodularin and microcystin-LR in zebrafish: 2. Uptake and molecular effects in eleuthero-embryos and adult liver with focus on endoplasmic reticulum stress.

    PubMed

    Faltermann, Susanne; Grundler, Verena; Gademann, Karl; Pernthaler, Jakob; Fent, Karl

    2016-02-01

    . In contrast to adult liver, MC-LR and nodularin did not result in detectable changes of mRNA levels of selected target genes involved in ER-stress in zebrafish eleuthero-embryos, nor was the abundance of transcripts belonging to the MAPK and pro-apoptosis pathways altered. In conclusion, our data indicate that MC-LR and nodularin have similar transcriptional effects. They lead to changes in mRNA levels of genes that suggest induction of ER-stress, and furthermore, lead to increased level of tnfα mRNA in the adult liver, which suggests a novel (transcriptional) mode of action in fish. However, although taken up by eleuthero-embryos, no transcriptional changes induced by these cyanobacterial toxins were detected. This is probably due to action to specific organs such as liver and kidneys that could not be identified by whole-embryo sampling.

  16. Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Wanjing; Chen, Chuanyue; Chen, Liang; Wang, Li; Li, Jian; Chen, Yuanyuan; Jin, Jienan; Kawan, Atufa; Zhang, Xuezhen

    2016-03-01

    While microcystins (MCs) have been reported to exert reproductive toxicity on fish with a sex-dependent effect, the underlying mechanism has been rarely investigated. In the present study, zebrafish were exposed to 1, 5 and 20 μg/L MC-LR for 30 d. The gonad-somatic index declined in all treated males. 17β-estradiol (E2), testosterone (T), 11-keto testosterone (11-KT) and follicle-stimulating hormone (FSH) levels increased in serum from all treated females, while T, FSH and luteinizing hormone (LH) levels changed in all treated males. Histomorphological observation showed that MC-LR exposure evidently retarded oogenesis and spermatogenesis. Transcriptional changes of 22 genes of the hypothalamic-pituitary-gonad (HPG) axis exhibited sex-specific responses, and the relationship between gene transcriptions and gametogenesis was evaluated by principle component analysis (PCA). Major contributors to PC1 (gnrh2, gnrhr3, ar, lhr, hmgra, hmgrb and cyp19a) were positively correlated with the number of post-vitellogenic oocytes, while PC1 (gnrh2, lhβ, erβ, fshr, cyp11a and 17βhsd) were positively correlated with the number of spermatozoa. The protein levels of 17βHSD and CYP19a were affected in both females and males. In conclusion, this study first investigated the sex-dependent effects of microcystins on fish reproduction and revealed some important molecular biomarkers related to gametogenesis in zebrafish suffered from MC-LR.

  17. Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish

    PubMed Central

    Liu, Wanjing; Chen, Chuanyue; Chen, Liang; Wang, Li; Li, Jian; Chen, Yuanyuan; Jin, Jienan; Kawan, Atufa; Zhang, Xuezhen

    2016-01-01

    While microcystins (MCs) have been reported to exert reproductive toxicity on fish with a sex-dependent effect, the underlying mechanism has been rarely investigated. In the present study, zebrafish were exposed to 1, 5 and 20 μg/L MC-LR for 30 d. The gonad-somatic index declined in all treated males. 17β-estradiol (E2), testosterone (T), 11-keto testosterone (11-KT) and follicle-stimulating hormone (FSH) levels increased in serum from all treated females, while T, FSH and luteinizing hormone (LH) levels changed in all treated males. Histomorphological observation showed that MC-LR exposure evidently retarded oogenesis and spermatogenesis. Transcriptional changes of 22 genes of the hypothalamic-pituitary-gonad (HPG) axis exhibited sex-specific responses, and the relationship between gene transcriptions and gametogenesis was evaluated by principle component analysis (PCA). Major contributors to PC1 (gnrh2, gnrhr3, ar, lhr, hmgra, hmgrb and cyp19a) were positively correlated with the number of post-vitellogenic oocytes, while PC1 (gnrh2, lhβ, erβ, fshr, cyp11a and 17βhsd) were positively correlated with the number of spermatozoa. The protein levels of 17βHSD and CYP19a were affected in both females and males. In conclusion, this study first investigated the sex-dependent effects of microcystins on fish reproduction and revealed some important molecular biomarkers related to gametogenesis in zebrafish suffered from MC-LR. PMID:26960901

  18. Zebrafish Germ Cell Tumors.

    PubMed

    Sanchez, Angelica; Amatruda, James F

    2016-01-01

    Germ cell tumors (GCTs) are malignant cancers that arise from embryonic precursors known as Primordial Germ Cells. GCTs occur in neonates, children, adolescents and young adults and can occur in the testis, the ovary or extragonadal sites. Because GCTs arise from pluripotent cells, the tumors can exhibit a wide range of different histologies. Current cisplatin-based combination therapies cures most patients, however at the cost of significant toxicity to normal tissues. While GWAS studies and genomic analysis of human GCTs have uncovered somatic mutations and loci that might confer tumor susceptibility, little is still known about the exact mechanisms that drive tumor development, and animal models that faithfully recapitulate all the different GCT subtypes are lacking. Here, we summarize current understanding of germline development in humans and zebrafish, describe the biology of human germ cell tumors, and discuss progress and prospects for zebrafish GCT models that may contribute to better understanding of human GCTs. PMID:27165367

  19. Reprint of "Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio)".

    PubMed

    Nazario, Luiza Reali; Antonioli, Régis Junior; Capiotti, Katiucia Marques; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S; Bonan, Carla Denise; da Silva, Rosane Souza

    2015-12-01

    Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine.

  20. Short-term treatment of adult male zebrafish (Danio Rerio) with 17α-ethinyl estradiol affects the transcription of genes involved in development and male sex differentiation.

    PubMed

    Reyhanian Caspillo, Nasim; Volkova, Kristina; Hallgren, Stefan; Olsson, Per-Erik; Porsch-Hällström, Inger

    2014-08-01

    The synthetic estrogen 17α-ethinyl estradiol (EE2) disturbs reproduction and causes gonadal malformation in fish. Effects on the transcription of genes involved in gonad development and function that could serve as sensitive biomarkers of reproductive effects in the field is, however, not well known. We have studied mRNA expression in testes and liver of adult zebrafish (Danio rerio) males treated with 0, 5 or 25 ng/L EE2for 14 days. qPCR analysis showed that the mRNA expression of four genes linked to zebrafish male sex determination and differentiation, Anti-Mullerian Hormone, Double sex and mab-related protein, Sry-related HMG box-9a and Nuclear receptor subfamily 5 group number 1b were significantly decreased by 25 ng/L, but not 5 ng/L EE2 compared with the levels in untreated fish. The decreased transcription was correlated with a previously shown spawning failure in these males (Reyhanian et al., 2011. Aquat Toxicol 105, 41-48), suggesting that decreased mRNA expression of genes regulating male sexual function could be involved in the functional sterility. The mRNA level of Cytochrome P-45019a, involved in female reproductive development, was unaffected by hormone treatment. The transcription of the female-specific Vitellogenin was significantly induced in testes. While testicular Androgen Receptor and the Estrogen Receptor-alpha mRNA levels were unchanged, Estrogen receptor-beta was significantly decreased by 25 ng/L EE2. Hepatic Estrogen Receptor-alpha mRNA was significantly increased by both exposure concentrations, while Estrogen Receptor-beta transcription was unaltered. The decreased transcription of male-predominant genes supports a demasculinization of testes by EE2 and might reflect reproductive disturbances in the environment. PMID:24747828

  1. Zebrafish as an emerging model for studying complex brain disorders

    PubMed Central

    Kalueff, Allan V.; Stewart, Adam Michael; Gerlai, Robert

    2014-01-01

    The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, for example, depression, autism, psychoses, drug abuse and cognitive disorders), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions have become a rapidly emerging critical field in translational neuropharmacology research. PMID:24412421

  2. Zebrafish Melanoma.

    PubMed

    Kaufman, Charles K

    2016-01-01

    Melanoma skin cancer is a potentially deadly disease in humans and has remained extremely difficult to treat once it has metastasized. In just the last 10 years, a number of models of melanoma have been developed in the zebrafish that are biologically faithful to the human disease and have already yielded important insights into the fundamental biology of melanoma and offered new potential avenues for treatment. With the diversity and breadth of the molecular genetic tools available in the zebrafish, these melanoma models will continue to be refined and expanded upon to keep pace with the rapidly evolving field of melanoma biology. PMID:27165365

  3. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    SciTech Connect

    Zucchi, Sara; Bluethgen, Nancy; Ieronimo, Andrea; Fent, Karl

    2011-01-15

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. In eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.

  4. Expression of zebrafish ROR alpha gene in cerebellar-like structures.

    PubMed

    Katsuyama, Yu; Oomiya, Yoshihiro; Dekimoto, Hideyuki; Motooka, Eriko; Takano, Ai; Kikkawa, Satoshi; Hibi, Masahiko; Terashima, Toshio

    2007-09-01

    Mouse genetic studies have identified several genes involved in cerebellar development. The mouse mutants staggerer and lurcher are functionally deficient for the retinoid-related orphan receptor alpha (ROR alpha) and glutamate receptor delta2 (Grid2) genes, respectively, and they show similar functional and developmental abnormalities in the cerebellum. Here, we report the cloning and expression pattern of zebrafish ROR alpha orthologues rora1 and rora2, and compare their expression pattern with that of grid2. Expression of rora1 and rora2 is initiated at late gastrula and pharyngula stages, respectively. Both rora1 and rora2 are spatially expressed in the retina and tectum. Expression of rora2 was further observed in the cerebellum, as reported for mammalian ROR alpha. In the adult brain, rora2 and grid2 are coexpressed in brain regions, designated as cerebellar-like structures. These observations suggest an evolutionarily conserved function of ROR alpha orthologues in the vertebrate brain.

  5. Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish.

    PubMed

    Ogawa, Yohey; Shiraki, Tomoya; Kojima, Daisuke; Fukada, Yoshitaka

    2015-08-01

    Colour discrimination in vertebrates requires cone photoreceptor cells in the retina, and high-acuity colour vision is endowed by a set of four cone subtypes expressing UV-, blue-, green- and red-sensitive opsins. Previous studies identified transcription factors governing cone photoreceptor development in mice, although loss of blue and green opsin genes in the evolution of mammals make it difficult to understand how high-acuity colour vision was organized during evolution and development. Zebrafish (Danio rerio) represents a valuable vertebrate model for studying colour vision as it retains all the four ancestral vertebrate cone subtypes. Here, by RT-qPCR and in situ hybridization analysis, we found that sine oculis homeobox homolog 7 (six7), a transcription factor widely conserved in ray-finned fish, is expressed predominantly in the cone photoreceptors in zebrafish at both the larval and the adult stages. TAL effector nuclease-based six7 knock-out revealed its roles in expression of green, red and blue cone opsin genes. Most prominently, the six7 deficiency caused a loss of expression of all the green opsins at both the larval and adult stages. six7 is indispensable for the development and/or maintenance of the green cones. PMID:26180064

  6. Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish.

    PubMed

    Ogawa, Yohey; Shiraki, Tomoya; Kojima, Daisuke; Fukada, Yoshitaka

    2015-08-01

    Colour discrimination in vertebrates requires cone photoreceptor cells in the retina, and high-acuity colour vision is endowed by a set of four cone subtypes expressing UV-, blue-, green- and red-sensitive opsins. Previous studies identified transcription factors governing cone photoreceptor development in mice, although loss of blue and green opsin genes in the evolution of mammals make it difficult to understand how high-acuity colour vision was organized during evolution and development. Zebrafish (Danio rerio) represents a valuable vertebrate model for studying colour vision as it retains all the four ancestral vertebrate cone subtypes. Here, by RT-qPCR and in situ hybridization analysis, we found that sine oculis homeobox homolog 7 (six7), a transcription factor widely conserved in ray-finned fish, is expressed predominantly in the cone photoreceptors in zebrafish at both the larval and the adult stages. TAL effector nuclease-based six7 knock-out revealed its roles in expression of green, red and blue cone opsin genes. Most prominently, the six7 deficiency caused a loss of expression of all the green opsins at both the larval and adult stages. six7 is indispensable for the development and/or maintenance of the green cones.

  7. Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish

    PubMed Central

    Ogawa, Yohey; Shiraki, Tomoya; Kojima, Daisuke; Fukada, Yoshitaka

    2015-01-01

    Colour discrimination in vertebrates requires cone photoreceptor cells in the retina, and high-acuity colour vision is endowed by a set of four cone subtypes expressing UV-, blue-, green- and red-sensitive opsins. Previous studies identified transcription factors governing cone photoreceptor development in mice, although loss of blue and green opsin genes in the evolution of mammals make it difficult to understand how high-acuity colour vision was organized during evolution and development. Zebrafish (Danio rerio) represents a valuable vertebrate model for studying colour vision as it retains all the four ancestral vertebrate cone subtypes. Here, by RT-qPCR and in situ hybridization analysis, we found that sine oculis homeobox homolog 7 (six7), a transcription factor widely conserved in ray-finned fish, is expressed predominantly in the cone photoreceptors in zebrafish at both the larval and the adult stages. TAL effector nuclease-based six7 knock-out revealed its roles in expression of green, red and blue cone opsin genes. Most prominently, the six7 deficiency caused a loss of expression of all the green opsins at both the larval and adult stages. six7 is indispensable for the development and/or maintenance of the green cones. PMID:26180064

  8. In Vivo Imaging of Cancer in Zebrafish.

    PubMed

    Ignatius, Myron S; Hayes, Madeline; Langenau, David M

    2016-01-01

    Zebrafish cancer models have greatly advanced our understanding of malignancy in humans. This is made possible due to the unique advantages of the zebrafish model including ex vivo development and large clutch sizes, which enable large-scale genetic and chemical screens. Transparency of the embryo and the creation of adult zebrafish devoid of pigmentation (casper) have permitted unprecedented ability to dynamically visualize cancer progression in live animals. When coupled with fluorescent reporters and transgenic approaches that drive oncogenesis, it is now possible to label entire or subpopulations of cancer cells and follow cancer growth in near real-time. Here, we will highlight aspects of in vivo imaging using the zebrafish and how it has enhanced our understanding of the fundamental aspects of tumor initiation, self-renewal, neovascularization, tumor cell heterogeneity, invasion and metastasis. Importantly, we will highlight the contribution of cancer imaging in zebrafish for drug discovery. PMID:27165356

  9. Retina and Omega-3

    PubMed Central

    Querques, Giuseppe; Forte, Raimondo; Souied, Eric H.

    2011-01-01

    Over the last decade, several epidemiological studies based on food frequency questionnaires suggest that omega-3 polyunsaturated fatty acids could have a protective role in reducing the onset and progression of retinal diseases. The retina has a high concentration of omega-3, particularly DHA, which optimizes fluidity of photoreceptor membranes, retinal integrity, and visual function. Furthermore, many studies demonstrated that DHA has a protective, for example antiapoptotic, role in the retina. From a nutritional point of view, it is known that western populations, particularly aged individuals, have a higher than optimal omega-6/omega-3 ratio and should enrich their diet with more fish consumption or have DHA supplementation. This paper underscores the potential beneficial effect of omega-3 fatty acids on retinal diseases. PMID:22175009

  10. Müller glia provide essential tensile strength to the developing retina

    PubMed Central

    MacDonald, Ryan B.; Randlett, Owen; Oswald, Julia; Yoshimatsu, Takeshi

    2015-01-01

    To investigate the cellular basis of tissue integrity in a vertebrate central nervous system (CNS) tissue, we eliminated Müller glial cells (MG) from the zebrafish retina. For well over a century, glial cells have been ascribed a mechanical role in the support of neural tissues, yet this idea has not been specifically tested in vivo. We report here that retinas devoid of MG rip apart, a defect known as retinoschisis. Using atomic force microscopy, we show that retinas without MG have decreased resistance to tensile stress and are softer than controls. Laser ablation of MG processes showed that these cells are under tension in the tissue. Thus, we propose that MG act like springs that hold the neural retina together, finally confirming an active mechanical role of glial cells in the CNS. PMID:26416961

  11. The infrared retina

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2009-12-01

    As infrared imaging systems have evolved from the first generation of linear devices to the second generation of small format staring arrays to the present 'third-gen' systems, there is an increased emphasis on large area focal plane arrays (FPAs) with multicolour operation and higher operating temperature. In this paper, we discuss how one needs to develop an increased functionality at the pixel level for these next generation FPAs. This functionality could manifest itself as spectral, polarization, phase or dynamic range signatures that could extract more information from a given scene. This leads to the concept of an infrared retina, which is an array that works similarly to the human eye that has a 'single' FPA but multiple cones, which are photoreceptor cells in the retina of the eye that enable the perception of colour. These cones are then coupled with powerful signal processing techniques that allow us to process colour information from a scene, even with a limited basis of colour cones. Unlike present day multi or hyperspectral systems, which are bulky and expensive, the idea would be to build a poor man's 'infrared colour' camera. We use examples such as plasmonic tailoring of the resonance or bias dependent dynamic tuning based on quantum confined Stark effect or incorporation of avalanche gain to achieve embodiments of the infrared retina.

  12. The zebrafish as a model for complex tissue regeneration

    PubMed Central

    Gemberling, Matthew; Bailey, Travis J.; Hyde, David R.; Poss, Kenneth D.

    2013-01-01

    For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues, and in some cases have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs. PMID:23927865

  13. Zebrafish Sensitivity to Botulinum Neurotoxins

    PubMed Central

    Chatla, Kamalakar; Gaunt, Patricia S.; Petrie-Hanson, Lora; Ford, Lorelei; Hanson, Larry A.

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight) at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg)/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins. PMID:27153088

  14. Zebrafish Sensitivity to Botulinum Neurotoxins.

    PubMed

    Chatla, Kamalakar; Gaunt, Patricia S; Petrie-Hanson, Lora; Ford, Lorelei; Hanson, Larry A

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight) at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg)/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins. PMID:27153088

  15. Growth response and expression of muscle growth-related candidate genes in adult zebrafish fed plant and fishmeal protein-based diets.

    PubMed

    Ulloa, Pilar E; Peña, Andrea A; Lizama, Carla D; Araneda, Cristian; Iturra, Patricia; Neira, Roberto; Medrano, Juan F

    2013-03-01

    The main objective of this study was to examine the effects of a plant protein- vs. fishmeal-based diet on growth response in a population of 24 families, as well as expression of growth-related genes in the muscle of adult zebrafish (Danio rerio). Each family was split to create two fish populations with similar genetic backgrounds, and the fish were fed either fishmeal (FM diet) or plant protein (PP diet) as the unique protein source in their diets from 35 to 98 days postfertilization (dpf). To understand the effect of the PP diet on gene expression, individuals from three families, representative of the mean weight in both populations, were selected. To understand the effect of familiar variation on gene expression, the same families were evaluated separately. At 98 dpf, growth-related genes Igf1a, Igf2a, mTOR, Pld1a, Mrf4, Myod, Myogenin, and Myostatin1b were evaluated. In males, Myogenin, Mrf4, and Igf2a showed changes attributable to the PP diet. In females, the effect of the PP diet did not modulate the expression in any of the eight genes studied. The effect of familiar variation on gene expression was observed among families. This study shows that PP diet and family variation have effects on gene expression in fish muscle.

  16. The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water.

    PubMed

    Yu, Shilin; Lin, Tao; Chen, Wei; Tao, Hui

    2015-11-01

    The detection method of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in chlorinated drinking water, was established using a gas chromatograph coupled with a micro-electron capture detector. The chlorinated water samples were taken from ten drinking water treatment plants around Yangtze River or Taihu Lake in China. The concentration of DCAcAm was detected ranging from 0.5 to 1.8μg/L in the waterworks around Yangtze River, and 1.5-2.6μg/L around Taihu Lake. The toxicity of DCAcAm on adult zebrafish was assessed by investigating the metabolism damage with multiple metabolic biomarkers and the accumulation capability with bio-concentration factor. The results showed that DCAcAm could cause the acute metabolism damage and was easily accumulated in zebrafish, and should be extremely cautioned.

  17. The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water.

    PubMed

    Yu, Shilin; Lin, Tao; Chen, Wei; Tao, Hui

    2015-11-01

    The detection method of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in chlorinated drinking water, was established using a gas chromatograph coupled with a micro-electron capture detector. The chlorinated water samples were taken from ten drinking water treatment plants around Yangtze River or Taihu Lake in China. The concentration of DCAcAm was detected ranging from 0.5 to 1.8μg/L in the waterworks around Yangtze River, and 1.5-2.6μg/L around Taihu Lake. The toxicity of DCAcAm on adult zebrafish was assessed by investigating the metabolism damage with multiple metabolic biomarkers and the accumulation capability with bio-concentration factor. The results showed that DCAcAm could cause the acute metabolism damage and was easily accumulated in zebrafish, and should be extremely cautioned. PMID:26037958

  18. Effects of Pro-Tex on zebrafish (Danio rerio) larvae, adult common carp (Cyprinus carpio) and adult yellowtail kingfish (Seriola lalandi).

    PubMed

    Boerrigter, Jeroen G J; van de Vis, Hans W; van den Bos, Ruud; Abbink, Wout; Spanings, Tom; Zethof, Jan; Martinez, Laura Louzao; van Andel, Wouter F M; Lopez-Luna, Javier; Flik, Gert

    2014-08-01

    Aquaculture practices bring several stressful events to fish. Stressors not only activate the hypothalamus-pituitary-interrenal-axis, but also evoke cellular stress responses. Up-regulation of heat shock proteins (HSPs) is among the best studied mechanisms of the cellular stress response. An extract of the prickly pear cactus (Opuntia ficus indica), Pro-Tex, a soluble variant of TEX-OE(®), may induce expression of HSPs and reduce negative effects of cellular stress. Pro-Tex therefore is used to ameliorate conditions during stressful aquaculture-related practices. We tested Pro-Tex in zebrafish (Danio rerio), common carp (Cyprinus carpio L.) and yellowtail kingfish (Seriola lalandi) exposed to aquaculture-relevant stressors (thermal stress, net confinement, transport) and assessed its effects on stress physiology. Heat shock produced a mild increase in hsp70 mRNA expression in 5-day-old zebrafish larvae. Pro-Tex increased basal hsp70 mRNA expression, but decreased heat-shock-induced expression of hsp70 mRNA. In carp, Pro-Tex increased plasma cortisol and glucose levels, while it did not affect the mild stress response (increased plasma cortisol and glucose) to net confinement. In gills, and proximal and distal intestine, stress increased hsp70 mRNA expression; in the distal intestine, an additive enhancement of hsp70 mRNA expression by Pro-Tex was seen under stress. In yellowtail kingfish, Pro-Tex reduced the negative physiological effects of transport more efficiently than when fish were sedated with AQUI-S(®). Overall, our data indicate that Pro-Tex has protective effects under high levels of stress only. As Pro-Tex has potential for use in aquaculture, its functioning and impact on health and welfare of fish should be further studied. PMID:24493298

  19. CERKL Knockdown Causes Retinal Degeneration in Zebrafish

    PubMed Central

    Riera, Marina; Burguera, Demian; Garcia-Fernàndez, Jordi; Gonzàlez-Duarte, Roser

    2013-01-01

    The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration. PMID:23671706

  20. Zebrafish: modeling for herpes simplex virus infections.

    PubMed

    Antoine, Thessicar Evadney; Jones, Kevin S; Dale, Rodney M; Shukla, Deepak; Tiwari, Vaibhav

    2014-02-01

    For many years, zebrafish have been the prototypical model for studies in developmental biology. In recent years, zebrafish has emerged as a powerful model system to study infectious diseases, including viral infections. Experiments conducted with herpes simplex virus type-1 in adult zebrafish or in embryo models are encouraging as they establish proof of concept with viral-host tropism and possible screening of antiviral compounds. In addition, the presence of human homologs of viral entry receptors in zebrafish such as 3-O sulfated heparan sulfate, nectins, and tumor necrosis factor receptor superfamily member 14-like receptor bring strong rationale for virologists to test their in vivo significance in viral entry in a zebrafish model and compare the structure-function basis of virus zebrafish receptor interaction for viral entry. On the other end, a zebrafish model is already being used for studying inflammation and angiogenesis, with or without genetic manipulations, and therefore can be exploited to study viral infection-associated pathologies. The major advantage with zebrafish is low cost, easy breeding and maintenance, rapid lifecycle, and a transparent nature, which allows visualizing dissemination of fluorescently labeled virus infection in real time either at a localized region or the whole body. Further, the availability of multiple transgenic lines that express fluorescently tagged immune cells for in vivo imaging of virus infected animals is extremely attractive. In addition, a fully developed immune system and potential for receptor-specific knockouts further advocate the use of zebrafish as a new tool to study viral infections. In this review, we focus on expanding the potential of zebrafish model system in understanding human infectious diseases and future benefits.

  1. Retinal Detachment: Torn or Detached Retina Diagnosis

    MedlinePlus

    ... Eye Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Diagnosis Written by: Kierstan Boyd ...

  2. Retinal Detachment: Torn or Detached Retina Symptoms

    MedlinePlus

    ... Eye Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Symptoms Written by: Kierstan Boyd ...

  3. SiO2 nanoparticles change colour preference and cause Parkinson's-like behaviour in zebrafish.

    PubMed

    Li, Xiang; Liu, Bo; Li, Xin-Le; Li, Yi-Xiang; Sun, Ming-Zhu; Chen, Dong-Yan; Zhao, Xin; Feng, Xi-Zeng

    2014-01-22

    With advances in the development of various disciplines, there is a need to decipher bio-behavioural mechanisms via interdisciplinary means. Here, we present an interdisciplinary study of the role of silica nanoparticles (SiO2-NPs) in disturbing the neural behaviours of zebrafish and a possible physiological mechanism for this phenomenon. We used adult zebrafish as an animal model to evaluate the roles of size (15-nm and 50-nm) and concentration (300 μg/mL and 1000 μg/mL) in SiO2-NP neurotoxicity via behavioural and physiological analyses. With the aid of video tracking and data mining, we detected changes in behavioural phenotypes. We found that compared with 50-nm nanosilica, 15-nm SiO2-NPs produced greater significant changes in advanced cognitive neurobehavioural patterns (colour preference) and caused potentially Parkinson's disease-like behaviour. Analyses at the tissue, cell and molecular levels corroborated the behavioural results, demonstrating that nanosilica acted on the retina and dopaminergic (DA) neurons to change colour preference and to cause potentially Parkinson's disease-like behaviour.

  4. [Research and development of artificial retina material].

    PubMed

    Hu, Ning; Yang, Jun; Peng, Chenglin; Wang, Xing; Zhang, Sijie; Zhang, Ying; Zheng, Erxin

    2008-04-01

    The application of artificial retina was introduced. The principal characteristics of artificial retina material were reviewed in particular. Moreover, the recent research development and application prospect were discussed.

  5. Signals for color and achromatic contrast in the goldfish inner retina.

    PubMed

    Burkhardt, Dwight A

    2014-11-01

    A moving stimulus paradigm was designed to investigate color contrast encoding in the retina. Recently, this paradigm yielded suggestive evidence for color contrast encoding in zebrafish but the significance and generality remain uncertain since the properties of color coding in the zebrafish inner retina are largely unknown. Here, the question of color contrast is pursued in the goldfish retina where there is much accumulated evidence for retinal mechanisms of color vision and opponent color-coding, in particular. Recordings of a sensitive local field potential of the inner retina, the proximal negative response, were made in the intact, superfused retina in the light-adapted state. Responses to color contrast and achromatic contrast were analyzed by comparing responses to a green moving bar on green versus red backgrounds. The quantitative form of the irradiance/response curves was distinctly different under a range of conditions in 32 retinas, thereby providing robust evidence for red-green color contrast. The color contrast is based on successive contrast, occurs in the absence of overt color opponency, and clearly differs from previous findings in the goldfish retina for simultaneous color contrast mediated by color-opponent neurons. The form of the irradiance/response curves suggests that successive color contrast is particularly important when achromatic contrast is low, as often occurs in natural environments. The present results provide a parallel with the well-known principle of human color vision, first proposed by Kirschmann as the third law of color contrast, and may also have implications for the evolution of vertebrate color vision.

  6. What is the Thalamus in Zebrafish?

    PubMed Central

    Mueller, Thomas

    2012-01-01

    Current research on the thalamus and related structures in the zebrafish diencephalon identifies an increasing number of both neurological structures and ontogenetic processes as evolutionary conserved between teleosts and mammals. The patterning processes, for example, which during the embryonic development of zebrafish form the thalamus proper appear largely conserved. Yet also striking differences between zebrafish and other vertebrates have been observed, particularly when we look at mature and histologically differentiated brains. A case in point is the migrated preglomerular complex of zebrafish which evolved only within the lineage of ray-finned fish and has no counterpart in mammals or tetrapod vertebrates. Based on its function as a sensory relay station with projections to pallial zones, the preglomerular complex has been compared to specific thalamic nuclei in mammals. However, no thalamic projections to the zebrafish dorsal pallium, which corresponds topologically to the mammalian isocortex, have been identified. Merely one teleostean thalamic nucleus proper, the auditory nucleus, projects to a part of the dorsal telencephalon, the pallial amygdala. Studies on patterning mechanisms identify a rostral and caudal domain in the embryonic thalamus proper. In both, teleosts and mammals, the rostral domain gives rise to GABAergic neurons, whereas glutamatergic neurons originate in the caudal domain of the zebrafish thalamus. The distribution of GABAergic derivatives in the adult zebrafish brain, furthermore, revealed previously overlooked thalamic nuclei and redefined already established ones. These findings require some reconsideration regarding the topological origin of these adult structures. In what follows, I discuss how evolutionary conserved and newly acquired features of the developing and adult zebrafish thalamus can be compared to the mammalian situation. PMID:22586363

  7. Measuring thigmotaxis in larval zebrafish.

    PubMed

    Schnörr, S J; Steenbergen, P J; Richardson, M K; Champagne, D L

    2012-03-17

    One of the most commonly used behavioral endpoints measured in preclinical studies using rodent models is thigmotaxis (or "wall-hugging"). Thigmotaxis is a well-validated index of anxiety in animals and humans. While assays measuring thigmotaxis in adult zebrafish have been developed, a thigmotaxis assay has not yet been validated in larval zebrafish. Here we present a novel assay for measurement of thigmotaxis in zebrafish larvae that is triggered by a sudden change in illumination (i.e. sudden light-to-darkness transition) and performed in a standard 24-well plate. We show that zebrafish larvae as young as 5 days post fertilization respond to this challenge by engaging in thigmotaxis. Thigmotaxis was significantly attenuated by anxiolytic (diazepam) and significantly enhanced by anxiogenic (caffeine) drugs, thus representing the first validated thigmotaxis assay for larval zebrafish. We also show that exposure to sudden darkness per se may represent an anxiogenic situation for larval zebrafish since less contrasting light-to-darkness transitions (achieved by lowering darkness degrees) significantly decreased thigmotaxis levels in a manner similar to what was achieved with diazepam. These findings suggest that stimuli such as exposure to sudden darkness could be used proficiently to trigger the expression of anxiety-like behaviors in laboratory settings. In sum, this is a versatile protocol allowing testing of both anxiolytic and anxiogenic drugs in a cost-effective manner (only 10 min). This assay is also amenable to medium to high-throughput capacity while constituting a valuable tool for stress and central nervous system research as well as for preclinical drug screening and discovery. PMID:22197677

  8. Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey.

    PubMed

    Cornide-Petronio, María Eugenia; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2015-06-01

    The dual development of the retina of lampreys is exceptional among vertebrates and offers an interesting EvoDevo (evolutionary developmental biology) model for understanding the origin and evolution of the vertebrate retina. Only a single type of photoreceptor, ganglion cell and bipolar cell are present in the early-differentiated central retina of lamprey prolarvae. A lateral retina appears later in medium-sized larvae (about 3 years after hatching in the sea lamprey), growing and remaining largely neuroblastic until metamorphosis. In this lateral retina, only ganglion cells and optic fibers differentiate in larvae, whereas differentiation of amacrine, horizontal, photoreceptor and bipolar cells mainly takes place during metamorphosis, which gives rise to the adult retina. Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter found in the retina of vertebrates whose synthesis is mediated by the rate-limiting enzyme tryptophan hydroxylase (TPH). TPH is also the first enzyme in the biosynthetic pathways of melatonin in photoreceptor cells. The serotonin 1A receptor (5-HT1A) is a major determinant of the activity of both serotonergic cells and their targets due to its pre- and post-synaptic location. Here, we report the developmental pattern of expression of tph and 5-ht1a transcripts in the sea lamprey retina by means of in situ hybridization. In larvae, strong tph mRNA signal was observed in photoreceptors and putative ganglion cells of the central retina, and in some neuroblasts of the lateral retina. In adults, strong tph expression was observed in bipolar, amacrine and ganglion cells and in photoreceptors. In the prolarval (central) retina, all the differentiated retinal cells expressed 5-ht1a transcripts, which were not observed in undifferentiated cells. In larvae, photoreceptors, bipolar cells and ganglion cells in the central retina, and neuroblasts in the lateral retina, showed 5-ht1a expression. In the adult retina, expression of 5-ht1a transcript

  9. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio).

    PubMed

    Beckwith, L G; Moore, J L; Tsao-Wu, G S; Harshbarger, J C; Cheng, K C

    2000-03-01

    The zebrafish (Danio rerio) has been successfully used to discover hundreds of genes involved in development and organogenesis. To address the potential of zebrafish as a cancer model, it is important to determine the susceptibility of zebrafish to tumors. Germ line mutations are most commonly induced for zebrafish mutant screens by exposing adult male zebrafish to the alkylating agent, ethylnitrosourea (ENU). To determine whether ENU induces tumors, we compared the incidence of tumors in ENU-treated fish with untreated controls. Interestingly, 18 of 18 (100%) fish mutagenized with either 2.5 or 3.0 mM ENU developed epidermal papillomas, which numbered 1 to 22 per fish, within 1 year of treatment. The induced epidermal lesions included epidermal hyperplasia, flat papillomas (0.2 to 1.2 mm), and pedunculated papillomas (1.2 to 8 mm in greatest dimension), but no skin cancers. Angiogenesis was evident in papillomas larger than approximately 1 mm. All but two papillomas contained the three cell types (keratinocytes, club, and mucous cells) of normal zebrafish epidermis; histologic variants lacked either club cells or mucous cells. Two cavernous hemangiomas and a single malignant peripheral nerve sheath tumor were also found in the treated fish. None of five untreated controls developed tumors. These studies establish the feasibility of the zebrafish as an experimental model for the study of skin tumors. PMID:10744073

  10. Cadmium affects retinogenesis during zebrafish embryonic development

    SciTech Connect

    Hen Chow, Elly Suk; Yu Hui, Michelle Nga; Cheng, Chi Wa; Cheng, Shuk Han

    2009-02-15

    Ocular malformations are commonly observed in embryos of aquatic species after exposure to toxicants. Using zebrafish embryos as the model organism, we showed that cadmium exposure from sphere stage (4 hpf) to end of segmentation stage (24 hpf) induced microphthalmia in cadmium-treated embryos. Embryos with eye defects were then assessed for visual abilities. Cadmium-exposed embryos were behaviorally blind, showing hyperpigmentation and loss of camouflage response to light. We investigated the cellular basis of the formation of the small eyes phenotype and the induction of blindness by studying retina development and retinotectal projections. Retinal progenitors were found in cadmium-treated embryos albeit in smaller numbers. The number of retinal ganglion cells (RGC), the first class of retinal cells to differentiate during retinogenesis, was reduced, while photoreceptor cells, the last batch of retinal neurons to differentiate, were absent. Cadmium also affected the propagation of neurons in neurogenic waves. The neurons remained in the ventronasal area and failed to spread across the retina. Drastically reduced RGC axons and disrupted optic stalk showed that the optic nerves did not extend from the retina beyond the chiasm into the tectum. Our data suggested that impairment in neuronal differentiation of the retina, disruption in RGC axon formation and absence of cone photoreceptors were the causes of microphthalmia and visual impairment in cadmium-treated embryos.

  11. Elk3 deficiency causes transient impairment in post-natal retinal vascular development and formation of tortuous arteries in adult murine retinae.

    PubMed

    Weinl, Christine; Wasylyk, Christine; Garcia Garrido, Marina; Sothilingam, Vithiyanjali; Beck, Susanne C; Riehle, Heidemarie; Stritt, Christine; Roux, Michel J; Seeliger, Mathias W; Wasylyk, Bohdan; Nordheim, Alfred

    2014-01-01

    Serum Response Factor (SRF) fulfills essential roles in post-natal retinal angiogenesis and adult neovascularization. These functions have been attributed to the recruitment by SRF of the cofactors Myocardin-Related Transcription Factors MRTF-A and -B, but not the Ternary Complex Factors (TCFs) Elk1 and Elk4. The role of the third TCF, Elk3, remained unknown. We generated a new Elk3 knockout mouse line and showed that Elk3 had specific, non-redundant functions in the retinal vasculature. In Elk3(-/-) mice, post-natal retinal angiogenesis was transiently delayed until P8, after which it proceeded normally. Interestingly, tortuous arteries developed in Elk3(-/-) mice from the age of four weeks, and persisted into late adulthood. Tortuous vessels have been observed in human pathologies, e.g. in ROP and FEVR. These human disorders were linked to altered activities of vascular endothelial growth factor (VEGF) in the affected eyes. However, in Elk3(-/-) mice, we did not observe any changes in VEGF or several other potential confounding factors, including mural cell coverage and blood pressure. Instead, concurrent with the post-natal transient delay of radial outgrowth and the formation of adult tortuous arteries, Elk3-dependent effects on the expression of Angiopoietin/Tie-signalling components were observed. Moreover, in vitro microvessel sprouting and microtube formation from P10 and adult aortic ring explants were reduced. Collectively, these results indicate that Elk3 has distinct roles in maintaining retinal artery integrity. The Elk3 knockout mouse is presented as a new animal model to study retinal artery tortuousity in mice and human patients.

  12. Elk3 Deficiency Causes Transient Impairment in Post-Natal Retinal Vascular Development and Formation of Tortuous Arteries in Adult Murine Retinae

    PubMed Central

    Weinl, Christine; Wasylyk, Christine; Garcia Garrido, Marina; Sothilingam, Vithiyanjali; Beck, Susanne C.; Riehle, Heidemarie; Stritt, Christine; Roux, Michel J.; Seeliger, Mathias W.; Wasylyk, Bohdan; Nordheim, Alfred

    2014-01-01

    Serum Response Factor (SRF) fulfills essential roles in post-natal retinal angiogenesis and adult neovascularization. These functions have been attributed to the recruitment by SRF of the cofactors Myocardin-Related Transcription Factors MRTF-A and -B, but not the Ternary Complex Factors (TCFs) Elk1 and Elk4. The role of the third TCF, Elk3, remained unknown. We generated a new Elk3 knockout mouse line and showed that Elk3 had specific, non-redundant functions in the retinal vasculature. In Elk3(−/−) mice, post-natal retinal angiogenesis was transiently delayed until P8, after which it proceeded normally. Interestingly, tortuous arteries developed in Elk3(−/−) mice from the age of four weeks, and persisted into late adulthood. Tortuous vessels have been observed in human pathologies, e.g. in ROP and FEVR. These human disorders were linked to altered activities of vascular endothelial growth factor (VEGF) in the affected eyes. However, in Elk3(−/−) mice, we did not observe any changes in VEGF or several other potential confounding factors, including mural cell coverage and blood pressure. Instead, concurrent with the post-natal transient delay of radial outgrowth and the formation of adult tortuous arteries, Elk3-dependent effects on the expression of Angiopoietin/Tie-signalling components were observed. Moreover, in vitro microvessel sprouting and microtube formation from P10 and adult aortic ring explants were reduced. Collectively, these results indicate that Elk3 has distinct roles in maintaining retinal artery integrity. The Elk3 knockout mouse is presented as a new animal model to study retinal artery tortuousity in mice and human patients. PMID:25203538

  13. Short-term exposure to low concentrations of the synthetic androgen methyltestosterone affects vitellogenin and steroid levels in adult male zebrafish (Danio rerio).

    PubMed

    Andersen, Lene; Goto-Kazeto, Rie; Trant, John M; Nash, Jon P; Korsgaard, Bodil; Bjerregaard, Poul

    2006-03-10

    Short-term effects of methyltestosterone (MT) on the endocrine system of adult male zebrafish (Danio rerio) were examined. Males were exposed to 0, 4.5, 6.6, 8.5, 19.8, 35.9, 62.3 ng MT/l and ethinylestradiol (EE2) (26.4 ng/l) for 7 days. Several physiological endpoints that may be affected by endocrine disrupters were analysed, specifically vitellogenin (VTG) concentration, estradiol (E2), testosterone (T), and 11-ketotestosterone (KT) content, brain aromatase activity and gene expression of CYP19A1 and CYP19A2 in the testis. Exposure to the lowest MT concentration (4.5 ng MT/l), and the EE2 increased the concentration of VTG significantly compared to solvent control group. Exposure to higher concentrations of MT did not increase VTG levels. Endogenous KT and T levels decreased significantly in a concentration-dependent manner in response to the MT exposure and the lowest effective concentrations were 6.4 and 8.5 ng MT/l, respectively. The levels of KT and T were also significantly suppressed by EE2 when compared to the solvent control group. Significant decreases in endogenous E2 levels were found in some MT groups but it was not possible to distinguish a simple concentration-response relationship. No effects of MT or EE2 on the brain aromatase activity or on testicular gene expression of CYP19A1 and CYP19A2 were detected. The results show that androgens such as MT can act as endocrine disrupters even at very low concentrations.

  14. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography.

    PubMed

    Lee, Ling; Genge, Christine E; Cua, Michelle; Sheng, Xiaoye; Rayani, Kaveh; Beg, Mirza F; Sarunic, Marinko V; Tibbits, Glen F

    2016-01-01

    The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA- 18°C; warm acclimated WA- 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling. PMID:26730947

  15. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography

    PubMed Central

    Cua, Michelle; Sheng, Xiaoye; Rayani, Kaveh; Beg, Mirza F.; Sarunic, Marinko V.; Tibbits, Glen F.

    2016-01-01

    The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA– 18°C; warm acclimated WA– 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling. PMID:26730947

  16. Allograft Cancer Cell Transplantation in Zebrafish.

    PubMed

    Moore, John C; Langenau, David M

    2016-01-01

    Allogeneic cell transplantation is the transfer of cells from one individual into another of the same species and has become an indispensable technique for studying development, immunology, regeneration and cancer biology. In experimental settings, tumor cell engraftment into immunologically competent recipients has greatly increased our understanding of the mechanisms that drive self-renewal, progression and metastasis in vivo. Zebrafish have quickly emerged as a powerful genetic model of cancer that has benefited greatly from allogeneic transplantation. Efficient engraftment can be achieved by transplanting cells into either early larval stage zebrafish that have not yet developed a functional acquired immune system or adult zebrafish following radiation or chemical ablation of the immune system. Alternatively, transplantation can be completed in adult fish using either clonal syngeneic strains or newly-generated immune compromised zebrafish models that have mutations in genes required for proper immune cell function. Here, we discuss the current state of cell transplantation as it pertains to zebrafish cancer and the available models used for dissecting important processes underlying cancer. We will also use the zebrafish model to highlight the power of cell transplantation, including its capacity to dynamically assess functional heterogeneity within individual cancer cells, visualize cancer progression and evolution, assess tumor-propagating potential and self-renewal, image cancer cell invasion and dissemination and identify novel therapies for treating cancer. PMID:27165358

  17. The proteome of human retina

    PubMed Central

    Zhang, Pingbo; Dufresne, Craig; Turner, Randi; Ferri, Sara; Venkatraman, Vidya; Karani, Rabia; Lutty, Gerard A.; Van Eyk, Jennifer E.; Semba, Richard D.

    2014-01-01

    The retina is a delicate tissue that detects light, converts photochemical energy into neural signals, and transmits the signals to the visual cortex of the brain. A detailed protein inventory of the proteome of the normal human eye may provide a foundation for new investigations into both the physiology of the retina and the pathophysiology of retinal diseases. To provide an inventory, proteins were extracted from five retinas of normal eyes and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed in duplicate using LC-MS/MS on an Orbitrap Elite mass spectrometer. A total of 3,436 non-redundant proteins were identified in the human retina, including 20 unambiguous protein isoforms, of which 8 have not previously been demonstrated to exist at the protein level. The proteins identified in the retina included most of the enzymes involved in the visual cycle and retinoid metabolism. One hundred and fifty-eight proteins that have been associated with age-related macular degeneration were identified in the retina. The MS proteome database of the human retina may serve as a valuable resource for future investigations of retinal biology and disease. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD001242. PMID:25407473

  18. [Intracellular localization of transcription factor PROX1 in the human retina in ontogeny].

    PubMed

    Markitantova, Iu V; Zinov'eva, R D

    2014-01-01

    The spatiotemporal intracellular localization of the transcription factor PROX1 in the human retina during prenatal development (fetal weeks 9.5 to 31) and in the adult human retina was studied for the first time. The PROX1 protein was identified in the cell nuclei of the neuroblast retinal layers at the stage of active cell proliferation (fetal week 9.5) as well as in the nuclei of differentiating neurons of the inner nuclear retinal layer (horizontal, amacrine, and bipolar cells) from weeks 13 to 31 of prenatal development. The PROX1 protein localization in the adult retina was the same as at the late stage of prenatal development. Our results indicate the involvement of the transcription factor PROX1 in the regulation of proliferation of progenitor cells and differentiation of the inner nuclear layer cells of the human retina. These results confirm the conservative functions of Prox1/PROX1 in the vertebrate retina.

  19. Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration.

    PubMed

    Thummel, Ryan; Enright, Jennifer M; Kassen, Sean C; Montgomery, Jacob E; Bailey, Travis J; Hyde, David R

    2010-05-01

    The light-damaged zebrafish retina results in the death of photoreceptor cells and the subsequent regeneration of the missing rod and cone cells. Photoreceptor regeneration initiates with asymmetric Müller glial cell division to produce neuronal progenitor cells, which amplify, migrate to the outer nuclear layer (ONL), and differentiate into both classes of photoreceptor cells. In this study, we examined the role of the Pax6 protein in regeneration. In zebrafish, there are two Pax6 proteins, one encoded by the pax6a gene and the other encoded by the pax6b gene. We intravitreally injected and electroporated morpholinos that were complementary to either the pax6a or pax6b mRNA to knockdown the translation of the corresponding protein. Loss of Pax6b expression did not affect Müller glial cell division, but blocked the subsequent first cell division of the neuronal progenitors. In contrast, the paralogous Pax6a protein was required for later neuronal progenitor cell divisions, which maximized the number of neuronal progenitors. Without neuronal progenitor cell amplification, proliferation of resident ONL rod precursor cells, which can only regenerate rods, increased inversely proportional to the number of INL neuronal progenitor cells. This confirmed that Müller glial-derived neuronal progenitor cells are necessary to regenerate cones and that distinct mechanisms selectively regenerate rod and cone photoreceptors. This work also defines distinct roles for Pax6a and Pax6b in regulating neuronal progenitor cell proliferation in the adult zebrafish retina and increases our understanding of the molecular pathways required for photoreceptor cell regeneration. PMID:20152834

  20. Retina mosaicing using local features.

    PubMed

    Cattin, Philippe C; Bay, Herbert; Van Gool, Luc; Székely, Gábor

    2006-01-01

    Laser photocoagulation is a proven procedure to treat various pathologies of the retina. Challenges such as motion compensation, correct energy dosage, and avoiding incidental damage are responsible for the still low success rate. They can be overcome with improved instrumentation, such as a fully automatic laser photocoagulation system. In this paper, we present a core image processing element of such a system, namely a novel approach for retina mosaicing. Our method relies on recent developments in region detection and feature description to automatically fuse retina images. In contrast to the state-of-the-art the proposed approach works even for retina images with no discernable vascularity. Moreover, an efficient scheme to determine the blending masks of arbitrarily overlapping images for multi-band blending is presented.

  1. A living biosensor model to dynamically trace glucocorticoid transcriptional activity during development and adult life in zebrafish.

    PubMed

    Benato, Francesca; Colletti, Elisa; Skobo, Tatjana; Moro, Enrico; Colombo, Lorenzo; Argenton, Francesco; Dalla Valle, Luisa

    2014-07-01

    Glucocorticoids (GCs) modulate many cellular processes through the binding of the glucocorticoid receptor (GR) to specific responsive elements located upstream of the transcription starting site or within an intron of GC target genes. Here we describe a transgenic fish line harboring a construct with nine GC-responsive elements (GREs) upstream of a reporter (EGFP) coding sequence. Transgenic fish exhibit strong fluorescence in many known GC-responsive organs. Moreover, its enhanced sensitivity allowed the discovery of novel GC-responsive tissue compartments, such as fin, eyes, and otic vesicles. Long-term persistence of transgene expression is seen during adult stages in several organs. Pharmacological and genetic analysis demonstrates that the transgenic line is highly responsive to drug administration and molecular manipulation. Moreover, reporter expression is sensitively and dynamically modulated by the photoperiod, thus proving that these fish are an in vivo valuable platform to explore GC responsiveness to both endogenous and exogenous stimuli.

  2. Recent advances in the study of zebrafish extracellular matrix proteins.

    PubMed

    Jessen, Jason R

    2015-05-01

    The zebrafish extracellular matrix (ECM) is a dynamic and pleomorphic structure consisting of numerous proteins that together regulate a variety of cellular and morphogenetic events beginning as early as gastrulation. The zebrafish genome encodes a similar complement of ECM proteins as found in other vertebrate organisms including glycoproteins, fibrous proteins, proteoglycans, glycosaminoglycans, and interacting or modifying proteins such as integrins and matrix metalloproteinases. As a genetic model system combined with its amenability to high-resolution microscopic imaging, the zebrafish allows interrogation of ECM protein structure and function in both the embryo and adult. Accumulating data have identified important roles for zebrafish ECM proteins in processes as diverse as cell polarity, migration, tissue mechanics, organ laterality, muscle contraction, and regeneration. In this review, I highlight recently published data on these topics that demonstrate how the ECM proteins fibronectin, laminin, and collagen contribute to zebrafish development and adult homeostasis.

  3. Retina vascular network recognition

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo

    1993-09-01

    The analysis of morphological and structural modifications of the retina vascular network is an interesting investigation method in the study of diabetes and hypertension. Normally this analysis is carried out by qualitative evaluations, according to standardized criteria, though medical research attaches great importance to quantitative analysis of vessel color, shape and dimensions. The paper describes a system which automatically segments and recognizes the ocular fundus circulation and micro circulation network, and extracts a set of features related to morphometric aspects of vessels. For this class of images the classical segmentation methods seem weak. We propose a computer vision system in which segmentation and recognition phases are strictly connected. The system is hierarchically organized in four modules. Firstly the Image Enhancement Module (IEM) operates a set of custom image enhancements to remove blur and to prepare data for subsequent segmentation and recognition processes. Secondly the Papilla Border Analysis Module (PBAM) automatically recognizes number, position and local diameter of blood vessels departing from optical papilla. Then the Vessel Tracking Module (VTM) analyses vessels comparing the results of body and edge tracking and detects branches and crossings. Finally the Feature Extraction Module evaluates PBAM and VTM output data and extracts some numerical indexes. Used algorithms appear to be robust and have been successfully tested on various ocular fundus images.

  4. pyewacket, a new zebrafish fin pigment pattern mutant.

    PubMed

    Mellgren, Eve M; Johnson, Stephen L

    2006-06-01

    Many mutants that disrupt zebrafish embryonic pigment pattern have been isolated, and subsequent cloning of the mutated genes causing these phenotypes has contributed to our understanding of pigment cell development. However, few mutants have been identified that specifically affect development of the adult pigment pattern. Through a mutant screen for adult pigment pattern phenotypes, we identified pyewacket (pye), a novel zebrafish mutant in which development of the adult caudal fin pigment pattern is aberrant. Specifically, pye mutants have fin melanocyte pigment pattern defects and fewer xanthophores than wild-type fins. We mapped pye to an interval where a single gene, the zebrafish ortholog of the human gene DHRSX, is present. pye will be an informative mutant for understanding how xanthophores and melanocytes interact to form the pigment pattern of the adult zebrafish fin.

  5. Unexpected diversity and photoperiod dependence of the zebrafish melanopsin system.

    PubMed

    Matos-Cruz, Vanessa; Blasic, Joseph; Nickle, Benjamin; Robinson, Phyllis R; Hattar, Samer; Halpern, Marnie E

    2011-01-01

    Animals have evolved specialized photoreceptors in the retina and in extraocular tissues that allow them to measure light changes in their environment. In mammals, the retina is the only structure that detects light and relays this information to the brain. The classical photoreceptors, rods and cones, are responsible for vision through activation of rhodopsin and cone opsins. Melanopsin, another photopigment first discovered in Xenopus melanophores (Opn4x), is expressed in a small subset of retinal ganglion cells (RGCs) in the mammalian retina, where it mediates non-image forming functions such as circadian photoentrainment and sleep. While mammals have a single melanopsin gene (opn4), zebrafish show remarkable diversity with two opn4x-related and three opn4-related genes expressed in distinct patterns in multiple neuronal cell types of the developing retina, including bipolar interneurons. The intronless opn4.1 gene is transcribed in photoreceptors as well as in horizontal cells and produces functional photopigment. Four genes are also expressed in the zebrafish embryonic brain, but not in the photoreceptive pineal gland. We discovered that photoperiod length influences expression of two of the opn4-related genes in retinal layers involved in signaling light information to RGCs. Moreover, both genes are expressed in a robust diurnal rhythm but with different phases in relation to the light-dark cycle. The results suggest that melanopsin has an expanded role in modulating the retinal circuitry of fish.

  6. The architecture of functional interaction networks in the retina.

    PubMed

    Ganmor, Elad; Segev, Ronen; Schneidman, Elad

    2011-02-23

    Sensory information is represented in the brain by the joint activity of large groups of neurons. Recent studies have shown that, although the number of possible activity patterns and underlying interactions is exponentially large, pairwise-based models give a surprisingly accurate description of neural population activity patterns. We explored the architecture of maximum entropy models of the functional interaction networks underlying the response of large populations of retinal ganglion cells, in adult tiger salamander retina, responding to natural and artificial stimuli. We found that we can further simplify these pairwise models by neglecting weak interaction terms or by relying on a small set of interaction strengths. Comparing network interactions under different visual stimuli, we show the existence of local network motifs in the interaction map of the retina. Our results demonstrate that the underlying interaction map of the retina is sparse and dominated by local overlapping interaction modules.

  7. Development of the zebrafish mesonephros

    PubMed Central

    Diep, Cuong Q.; Peng, Zhenzhen; Ukah, Tobechukwu K.; Kelly, Paul M.; Daigle, Renee V.; Davidson, Alan J.

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. PMID:25677367

  8. Deriving cell lines from zebrafish embryos and tumors.

    PubMed

    Choorapoikayil, Suma; Overvoorde, John; den Hertog, Jeroen

    2013-09-01

    Over the last two decades the zebrafish has emerged as a powerful model organism in science. The experimental accessibility, the broad range of zebrafish mutants, and the highly conserved genetic and biochemical pathways between zebrafish and mammals lifted zebrafish to become one of the most attractive vertebrate models to study gene function and to model human diseases. Zebrafish cell lines are highly attractive to investigate cell biology and zebrafish cell lines complement the experimental tools that are available already. We established a straightforward method to culture cells from a single zebrafish embryo or a single tumor. Here we describe the generation of fibroblast-like cell lines from wild-type and ptenb(-/-) embryos and an endothelial-like cell line from a tumor of an adult ptena(+/-)ptenb(-/-) zebrafish. This protocol can easily be adapted to establish stable cell lines from any mutant or transgenic zebrafish line and the average time to obtain a pro-stable cell line is 3-5 months.

  9. [Implantation of the artificial retina].

    PubMed

    Yagi, T; Hayashida, Y

    1999-05-01

    In some degenerative retinal diseases, e.g., retinitis pigmentosa and age-related macular degeneration, the photoreceptors are destroyed to cause serious visual defects. Recent studies on blind human subjects revealed that a large number of ganglion cells remains intact and is capable of transmitting signals to the brain to evoke partial visual perception. This provided hope to compensate for the visual defects with retinal prostheses. The recent progress of microfabrication technique made it possible to implement the Vary Large Scale Integrated circuit, the artificial retina, which emulates a part of retinal function. The idea of implanting the artificial retina to the patients was proposed recently and experiments using animals have been put into practice. This article surveys the front line of the artificial retina implantation.

  10. The rod circuit in the rabbit retina.

    PubMed

    Vaney, D I; Young, H M; Gynther, I C

    1991-01-01

    Mammalian retinae have a well-defined neuronal pathway that serves rod vision. In rabbit retina, the different populations of interneurons in the rod pathway can be selectively labeled, either separately or in combination. The rod bipolar cells show protein kinase C immunoreactivity; the rod (AII) amacrine cells can be distinguished in nuclear-yellow labeled retina; the rod reciprocal (S1 & S2) amacrine cells accumulate serotonin; and the dopaminergic amacrine cells show tyrosine-hydroxylase immunoreactivity. Furthermore, intracellular dye injection of the microscopically identified interneurons enables whole-population and single-cell studies to be combined in the same tissue. Using this approach, we have been able to analyze systematically the neuronal architecture of the rod circuit across the rabbit retina and compare its organization with that of the rod circuit in central cat retina. In rabbit retina, the rod interneurons are not organized in a uniform neuronal module that is simply scaled up from central to peripheral retina. Moreover, peripheral fields in superior and inferior retina that have equivalent densities of each neuronal type show markedly different rod bipolar to AII amacrine convergence ratios, with the result that many more rod photoreceptors converge on an AII amacrine cell in superior retina. In rabbit retina, much of the convergence in the rod circuit occurs in the outer retina whereas, in central cat retina, it is more evenly distributed between the inner and outer retina.

  11. Characterization of mesonephric development and regeneration using transgenic zebrafish

    PubMed Central

    Zhou, Weibin; Boucher, Rudrick C.; Bollig, Frank; Englert, Christoph

    2010-01-01

    The zebrafish is a valuable vertebrate model for kidney research. The majority of previous studies focused on the zebrafish pronephros, which comprises only two nephrons and is structurally simpler than the mesonephros of adult fish and the metanephros of mammals. To evaluate the zebrafish system for more complex studies of kidney development and regeneration, we investigated the development and postinjury regeneration of the mesonephros in adult zebrafish. Utilizing two transgenic zebrafish lines (wt1b::GFP and pod::NTR-mCherry), we characterized the developmental stages of individual mesonephric nephrons and the temporal-spatial pattern of mesonephrogenesis. We found that mesonephrogenesis continues throughout the life of zebrafish, with a rapid growth phase during the juvenile period and a slower phase in adulthood such that the total nephron number of juvenile and adult fish linearly correlates with body mass. Following gentamicin-induced renal injury, the zebrafish mesonephros can undergo de novo regeneration of mesonephric nephrons, a process known as neonephrogenesis. We found that wt1b expression was induced in individually dispersed cells in the mesonephric interstitium as early as 48 h following injury. These wt1b-expressing cells formed aggregates by 72–96 h following injury which proceeded to form nephrons. This suggests that wt1b may serve as an early marker of fated renal progenitor cells. The synchronous nature of regenerative neonephrogenesis suggests that this process may be useful for studies of nephron development. PMID:20810610

  12. Association of tuberculosis with vasculitis retinae.

    PubMed

    Habibullah, M; Uddin, M S; Islam, S

    2008-07-01

    Retinal vasculitis is one of the common causes of blindness among the young adult in this subcontinent. Causes of retinal vasculitis are variable and it is one of the common ocular manifestations of tuberculosis. This case control study was carried out on 45 patients with retinal vasculitis of different age groups. All the patients were purposively selected from the department of ophthalmology, Bangabandhu Sheikh Mujib Medical University and National Institute of Ophthalmology Dhaka. This study reveals that vasculitis retinae is a disease of younger age group (68.9%). Mean+/-SD age of cases were 31.84+/-10.82 years. It occurs more in male (75.6%) and male female ratio is 3.09:1, single or both eye may involve. Retinal vasculitis occurs more in middle socio-economic status persons (62.2%). It present with floaters (58.9%), hazy media (60%), vitreous haemorrhage (57.8%) and retinal haemorrhage (42.2%). All 45 subjects both cases and control groups were tested with Mantoux test. 18(40%) subjects of cases and 13(28.9%) subjects of control group were found positive Mantoux test. It was observed that the association of tuberculosis with vasculitis retinae is not statistically significant. As tuberculosis is common in this country, further specific and extensive study over a longer period of time is necessary for understanding the role of tuberculosis in retinal vasculitis patients.

  13. The Zebrafish as a Tool to Cancer Drug Discovery

    PubMed Central

    Huiting, LN; Laroche, FJF; Feng, H

    2015-01-01

    The ability of zebrafish to faithfully recapitulate a variety of human cancers provides a unique in vivo system for drug identification and validation. Zebrafish models of human cancer generated through methodologies such as transgenesis, gene inactivation, transplantation, and carcinogenic induction have proven similar to their human counterparts both molecularly and pathologically. Suppression of cancer-relevant phenotypes provides opportunities to both identify and evaluate efficacious compounds using embryonic and adult zebrafish. After relevant compounds are selected, preclinical evaluation in mammalian models can occur, delivering lead compounds to human trials swiftly and rapidly. The advantages of in vivo imaging, large progeny, and rapid development that the zebrafish provides make it an attractive model to promote novel cancer drug discovery and reduce the hurdles and cost of clinical trials. This review explores the current methodologies to model human cancers in zebrafish, and how these cancer models have aided in formation of novel therapeutic hypotheses. PMID:26835511

  14. Zebrafish Models of Human Liver Development and Disease

    PubMed Central

    Wilkins, Benjamin J.; Pack, Michael

    2016-01-01

    The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease. PMID:23897685

  15. Development of sensory systems in zebrafish (Danio rerio)

    NASA Technical Reports Server (NTRS)

    Moorman, S. J.

    2001-01-01

    Zebrafish possess all of the classic sensory modalities: taste, tactile, smell, balance, vision, and hearing. For each sensory system, this article provides a brief overview of the system in the adult zebrafish followed by a more detailed overview of the development of the system. By far the majority of studies performed in each of the sensory systems of the zebrafish have involved some aspect of molecular biology or genetics. Although molecular biology and genetics are not major foci of the paper, brief discussions of some of the mutant strains of zebrafish that have developmental defects in each specific sensory system are included. The development of the sensory systems is only a small sampling of the work being done using zebrafish and provides a mere glimpse of the potential of this model for the study of vertebrate development, physiology, and human disease.

  16. Retinal Detachment: Torn or Detached Retina Treatment

    MedlinePlus

    ... of these procedures create a scar that helps seal the retina to the back of the eye. ... around the retinal tear. The scarring that results seals the retina to the underlying tissue, helping to ...

  17. Selenium dependent glutathione-peroxidase (GSH-Px) activity in the retina of preterm human infants

    SciTech Connect

    Lane, H.; Hittner, H.; Barron, S.; Mehta, R.; Kretzer, F.

    1986-03-01

    GSH-Px activity was determined in the retina of 15 preterm human neonates with gestational ages of 17-28 weeks and birth weights of 120 to 960 g. GSH-Px activity was measured using the coupled assay. The infants survived from 0.5 to 9 hours after parturition. The retinas were removed within 3 hours of autopsy. Through electronmicroscopy, there was verification that the entire retina was removed and no contamination of other eye tissues occurred. After removal, the retinas were immediately dissolved in phosphate buffered pH 7.0 saline for assay of GSH-Px activity. The mean GSH-Px activity was 19.44 +/- 6.44 with a range of 11.1 to 32.8 units NAPH/sub 2/ oxidized/min/g protein. There was a negative correlation between birth weight and GSH-Px activity (r = -0.86) and between week of gestation and GSH-Px activity (r = -0.91). The neonatal retina GSH-Px activity was 2 to 15 times higher than found in adult retinas. Thus, this research demonstrates that selenium dependent GSH-Px activity is elevated in the preterm neonate's retina which indicates that retina GSH-Px activity may be an important antioxidation system in the premature neonate.

  18. Stressing Zebrafish for Behavioral Genetics

    PubMed Central

    Clark, Karl J.; Boczek, Nicole J.; Ekker, Stephen C.

    2012-01-01

    Synopsis The stress response is a normal reaction to a real or perceived threat. However, stress response systems that are overwhelmed or out of balance can increase both the incidence and severity of diseases including addiction and mood and anxiety disorders. Using an animal model with both genetic diversity and large family size can help discover the specific genetic and environmental contributions to these behavioral diseases. The stress response has been studied extensively in teleosts because of their importance in food production. The zebrafish (Danio rerio) is a major model organism with a strong record for use in developmental biology, genetic screening, and genomic studies. More recently, the stress response of larval and adult zebrafish has been documented. High-throughput automated tracking systems make possible behavioral readouts of the stress response in zebrafish. This non-invasive measure of the stress response can be combined with mutagenesis methods to dissect the genes involved in complex stress response behaviors in vertebrates. Understanding the genetic and epigenetic basis for the stress response in vertebrates will help to develop advanced screening and therapies for stress-aggravated diseases like addiction and mood and anxiety disorders. PMID:21615261

  19. Characterization of snakehead rhabdovirus infection in zebrafish (Danio rerio).

    PubMed

    Phelan, Peter E; Pressley, Meagan E; Witten, P Eckhard; Mellon, Mark T; Blake, Sharon; Kim, Carol H

    2005-02-01

    The zebrafish, Danio rerio, has become recognized as a valuable model for the study of development, genetics, and toxicology. Recently, the zebrafish has been recognized as a useful model for infectious disease and immunity. In this study, the pathogenesis and antiviral immune response of zebrafish to experimental snakehead rhabdovirus (SHRV) infection was characterized. Zebrafish 24 h postfertilization to 30 days postfertilization were susceptible to infection by immersion in 10(6) 50% tissue culture infective doses (TCID50) of SHRV/ml, and adult zebrafish were susceptible to infection by intraperitoneal (i.p.) injection of 10(5) TCID50 of SHRV/ml. Mortalities exceeded 40% in infected fish, and clinical presentation of infection included petechial hemorrhaging, redness of the abdomen, and erratic swim behavior. Virus reisolation and reverse transcription-PCR analysis of the viral nucleocapsid gene confirmed the presence of SHRV. Histological sections of moribund embryonic and juvenile fish revealed necrosis of the pharyngeal epithelium and liver, in addition to congestion of the swim bladder by cell debris. Histopathology in adult fish injected i.p. was confined to the site of injection. The antiviral response in zebrafish was monitored by quantitative real-time PCR analysis of zebrafish interferon (IFN) and Mx expression. IFN and Mx levels were elevated in zebrafish exposed to SHRV, although expression and intensity differed with age and route of infection. This study is the first to examine the pathogenesis of SHRV infection in zebrafish. Furthermore, this study is the first to describe experimental infection of zebrafish embryos with a viral pathogen, which will be important for future experiments involving targeted gene disruption and forward genetic screens.

  20. Cadmium potentiates toxicity of cypermethrin in zebrafish.

    PubMed

    Yang, Ye; Ye, Xiaoqing; He, Buyuan; Liu, Jing

    2016-02-01

    Co-occurrence of pesticides such as synthetic pyrethroids and metals in aquatic ecosystems raises concerns over their combined ecological effects. Cypermethrin, 1 of the top 5 synthetic pyrethroids in use, has been extensively detected in surface water. Cadmium (Cd) has been recognized as 1 of the most toxic metals and is a common contaminant in the aquatic system. However, little information is available regarding their joint toxicity. In the present study, combined toxicity of cypermethrin and Cd and the underlying mechanisms were investigated. Zebrafish embryos and adults were exposed to the individual contaminant or binary mixtures. Co-exposure to cypermethrin and Cd produced synergistic effects on the occurrence of crooked body, pericardial edema, and noninflation of swim bladder. The addition of Cd significantly potentiated cypermethrin-induced spasms and caused more oxidative stress in zebrafish larvae. Cypermethrin-mediated induction of transcription levels and catalytic activities of cytochrome P450 (CYP) enzyme were significantly down-regulated by Cd in both zebrafish larvae and adults. Chemical analytical data showed that in vitro elimination of cypermethrin by CYP1A1 was inhibited by Cd. The addition of Cd caused an elevation of in vivo cypermethrin residue levels in the mixture-exposed adult zebrafish. These results suggest that the enhanced toxicity of cypermethrin in the presence of Cd results from the inhibitory effects of Cd on CYP-mediated biotransformation of this pesticide. The authors' findings provide a deeper understanding of the mechanistic basis accounting for the joint toxicity of cypermethrin and Cd.

  1. Characterization of behavioral and endocrine effects of LSD on zebrafish.

    PubMed

    Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V

    2010-12-25

    Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse.

  2. A hierarchical artificial retina architecture

    NASA Astrophysics Data System (ADS)

    Parker, Alice C.; Azar, Adi N.

    2009-05-01

    Connectivity in the human retina is complex. Over one hundred million photoreceptors transduce light into electrical signals. These electrical signals are sent to the ganglion cells through amacrine and bipolar cells. Lateral connections involving horizontal and amacrine cells span throughout the outer plexiform layer and inner plexiform layer respectively. Horizontal cells are important for photoreceptor regulation by depolarizing them after an illumination occurs. Horizontal cells themselves form an electrical network that communicates by gap junctions, and these cells exhibit plasticity (change in behavior and structure) with respect to glycine receptors. The bipolar and amacrine cells transfer electrical signals from photoreceptors to the ganglion cells. Furthermore, amacrine cells are responsible for further processing the retinal image. Finally, the ganglion cells receive electrical signals from the bipolar and amacrine cells and will spike at a faster rate if there is a change in the overall intensity for a group of photoreceptors, sending a signal to the brain. Dramatic progress is being made with respect to retinal prostheses, raising hope for an entire synthetic retina in the future. We propose a bio-inspired 3D hierarchical pyramidal architecture for a synthetic retina that mimics the overall structure of the human retina. We chose to use a 3D architecture to facilitate connectivity among retinal cells, maintaining a hierarchical structure similar to that of the biological retina. The first layer of the architecture contains electronic circuits that model photoreceptors and horizontal cells. The second layer contains amacrine and bipolar electronic cells, and the third layer contains ganglion cells. Layer I has the highest number of cells, and layer III has the lowest number of cells, resulting in a pyramidal architecture. In our proposed architecture we intend to use photodetectors to transduce light into electrical signals. We propose to employ

  3. Crossover Inhibition Generates Sustained Visual Responses in the Inner Retina

    PubMed Central

    Rosa, Juliana M.; Ruehle, Sabine; Ding, Huayu; Lagnado, Leon

    2016-01-01

    Summary In daylight, the input to the retinal circuit is provided primarily by cone photoreceptors acting as band-pass filters, but the retinal output also contains neuronal populations transmitting sustained signals. Using in vivo imaging of genetically encoded calcium reporters, we investigated the circuits that generate these sustained channels within the inner retina of zebrafish. In OFF bipolar cells, sustained transmission was found to depend on crossover inhibition from the ON pathway through GABAergic amacrine cells. In ON bipolar cells, the amplitude of low-frequency signals was regulated by glycinergic amacrine cells, while GABAergic inhibition regulated the gain of band-pass signals. We also provide the first functional description of a subset of sustained ON bipolar cells in which synaptic activity was suppressed by fluctuations at frequencies above ∼0.2 Hz. These results map out the basic circuitry by which the inner retina generates sustained visual signals and describes a new function of crossover inhibition. PMID:27068790

  4. Retinoic acid-mediated gene expression in transgenic reporter zebrafish.

    PubMed

    Perz-Edwards, A; Hardison, N L; Linney, E

    2001-01-01

    Retinoic acid-mediated gene activation is important for normal vertebrate development. The size and nature of retinoic acid make it difficult to identify the precise cellular location of this signaling molecule throughout an embryo. Additionally, retinoic acid (RA) signaling is regulated by a complex combination of receptors, coactivators, and antagonizing proteins. Thus, in order to integrate these signals and identify regions within a whole developing embryo where cells can respond transcriptionally to retinoic acid, we have used a reporter transgenic approach. We have generated several stable lines of transgenic zebrafish which use retinoic acid response elements to drive fluorescent protein expression. In these zebrafish lines, transgene expression is localized to regions of the neural tube, retina, notochord, somites, heart, pronephric ducts, branchial arches, and jaw muscles in embryos and larvae. Transgene expression can be induced in additional regions of the neural tube and retina as well as the immature notochord, hatching gland, enveloping cell layer, and fin by exposing embryos to retinoic acid. Treatment with retinoic acid synthase inhibitors, citral and diethylaminobenzaldehyde (DEAB), during neurulation, greatly reduces transgene expression. DEAB treatment of embryos at gastrulation phenocopies the embryonic effects of vitamin A deprivation or targeted disruption of the RA synthase retinaldehyde dehydrogenase-2 in other vertebrates. Together these data suggest that the reporter expression we see in zebrafish is dependent upon conserved vertebrate pathways of RA synthesis.

  5. Characterisation of neuronal and glial populations of the visual system during zebrafish lifespan.

    PubMed

    Arenzana, F J; Santos-Ledo, A; Porteros, A; Aijón, J; Velasco, A; Lara, J M; Arévalo, R

    2011-06-01

    During visual system morphogenesis, several cell populations arise at different time points correlating with the expression of specific molecular markers We have analysed the distribution pattern of three molecular markers (zn-1, calretinin and glial fibrillary acidic protein) which are involved in the development of zebrafish retina and optic tectum. zn-1 is a neural antigen expressed in the developing zebrafish central nervous system. Calretinin is the first calcium-binding protein expressed in the central nervous system of vertebrates and it is widely distributed in different neuronal populations of vertebrate retina, being a valuable marker for its early and late development. Glial fibrillary acidic protein (GFAP), which is an astroglial marker, is a useful tool for characterising the glial environment in which the optic axons develop. We describe the expression profile changes in these three markers throughout the zebrafish lifespan with special attention to ganglion cells and their projections. zn-1 is expressed in the first postmitotic ganglion cells of the retina. Calretinin is observed in the ganglion and amacrine cells of the retina in neurons of different tectal bands and in axons of retinofugal projections. GFAP is localised in the endfeet of Müller cells and in radial processes of the optic tectum after hatching. A transient expression of GFAP in the optic nerve, coinciding with the arrival of the first calretinin-immunoreactive optic axons, is observed. As axonal growth occurs in these regions of the zebrafish visual pathway (retina and optic tectum) throughout the lifespan, a relationship between GFAP expression and the correct arrangement of the first optic axons may exist. In conclusion we provide valuable neuroanatomical data about the best characterised sensorial pathway to be used in further studies such as teratology and toxicology.

  6. Glyphosate induces neurotoxicity in zebrafish.

    PubMed

    Roy, Nicole M; Carneiro, Bruno; Ochs, Jeremy

    2016-03-01

    Glyphosate based herbicides (GBH) like Roundup(®) are used extensively in agriculture as well as in urban and rural settings as a broad spectrum herbicide. Its mechanism of action was thought to be specific only to plants and thus considered safe and non-toxic. However, mounting evidence suggests that GBHs may not be as safe as once thought as initial studies in frogs suggest that GBHs may be teratogenic. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate exposure using technical grade glyphosate and the Roundup(®) Classic formulation. We find morphological abnormalities including cephalic and eye reductions and a loss of delineated brain ventricles. Concomitant with structural changes in the developing brain, using in situ hybridization analysis, we detect decreases in genes expressed in the eye, fore and midbrain regions of the brain including pax2, pax6, otx2 and ephA4. However, we do not detect changes in hindbrain expression domains of ephA4 nor exclusive hindbrain markers krox-20 and hoxb1a. Additionally, using a Retinoic Acid (RA) mediated reporter transgenic, we detect no alterations in the RA expression domains in the hindbrain and spinal cord, but do detect a loss of expression in the retina. We conclude that glyphosate and the Roundup(®) formulation is developmentally toxic to the forebrain and midbrain but does not affect the hindbrain after 24 h exposure.

  7. Glyphosate induces neurotoxicity in zebrafish.

    PubMed

    Roy, Nicole M; Carneiro, Bruno; Ochs, Jeremy

    2016-03-01

    Glyphosate based herbicides (GBH) like Roundup(®) are used extensively in agriculture as well as in urban and rural settings as a broad spectrum herbicide. Its mechanism of action was thought to be specific only to plants and thus considered safe and non-toxic. However, mounting evidence suggests that GBHs may not be as safe as once thought as initial studies in frogs suggest that GBHs may be teratogenic. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate exposure using technical grade glyphosate and the Roundup(®) Classic formulation. We find morphological abnormalities including cephalic and eye reductions and a loss of delineated brain ventricles. Concomitant with structural changes in the developing brain, using in situ hybridization analysis, we detect decreases in genes expressed in the eye, fore and midbrain regions of the brain including pax2, pax6, otx2 and ephA4. However, we do not detect changes in hindbrain expression domains of ephA4 nor exclusive hindbrain markers krox-20 and hoxb1a. Additionally, using a Retinoic Acid (RA) mediated reporter transgenic, we detect no alterations in the RA expression domains in the hindbrain and spinal cord, but do detect a loss of expression in the retina. We conclude that glyphosate and the Roundup(®) formulation is developmentally toxic to the forebrain and midbrain but does not affect the hindbrain after 24 h exposure. PMID:26773362

  8. The Role of Histamine in the Retina: Studies on the Hdc Knockout Mouse

    PubMed Central

    Greferath, Ursula; Vessey, Kirstan A.; Jobling, Andrew I.; Mills, Samuel A.; Bui, Bang V.; He, Zheng; Nag, Nupur; Ohtsu, Hiroshi; Fletcher, Erica L.

    2014-01-01

    The role of histamine in the retina is not well understood, despite it regulating a number of functions within the brain, including sleep, feeding, energy balance, and anxiety. In this study we characterized the structure and function of the retina in mice that lacked expression of the rate limiting enzyme in the formation of histamine, histidine decarboxylase (Hdc−/− mouse). Using laser capture microdissection, Hdc mRNA expression was assessed in the inner and outer nuclear layers of adult C57Bl6J wildtype (WT) and Hdc−/−-retinae. In adult WT and Hdc−/−-mice, retinal fundi were imaged, retinal structure was assessed using immunocytochemistry and function was probed by electroretinography. Blood flow velocity was assessed by quantifying temporal changes in the dynamic fluorescein angiography in arterioles and venules. In WT retinae, Hdc gene expression was detected in the outer nuclear layer, but not the inner nuclear layer, while the lack of Hdc expression was confirmed in the Hdc−/− retina. Preliminary examination of the fundus and retinal structure of the widely used Hdc−/−mouse strain revealed discrete lesions across the retina that corresponded to areas of photoreceptor abnormality reminiscent of the rd8 (Crb1) mutation. This was confirmed after genotyping and the strain designated Hdcrd8/rd8. In order to determine the effect of the lack of Hdc-alone on the retina, Hdc−/− mice free of the Crb1 mutation were bred. Retinal fundi appeared normal in these animals and there was no difference in retinal structure, macrogliosis, nor any change in microglial characteristics in Hdc−/− compared to wildtype retinae. In addition, retinal function and retinal blood flow dynamics showed no alterations in the Hdc−/− retina. Overall, these results suggest that histamine plays little role in modulating retinal structure and function. PMID:25545149

  9. Lymphatics, Cancer and Zebrafish.

    PubMed

    Astin, Jonathan W; Crosier, Philip S

    2016-01-01

    Many solid tumors are known to metastasize through the lymphatic vasculature. This process is facilitated by the generation of new lymphatic vessels (tumor lymphangiogenesis) and also by the remodelling of existing lymphatics. Together these processes enable the spread of tumor cells to distant sites. Currently our understanding of tumor lymphangiogenesis has been informed from mouse tumor models and from studies of developmental lymphangiogenesis. Since the discovery of bona fide lymphatic vessels in zebrafish in 2006, zebrafish have become a well-established model of developmental lymphangiogenesis. The attributes that make zebrafish such an important model of blood vessel development-the ability to live image developing vessels, genetic tractability and the conserved nature of development-also make fish an attractive model of lymphatic vessel development. In particular, zebrafish have made important contributions to our understanding of the processes of lymphatic vessel sprouting from veins and the mechanisms by which lymphatic precursors remodel into mature vessels. To date, zebrafish have not been used to directly model tumor lymphangiogenesis. In this chapter we will summarise the contributions zebrafish have made to our understanding of lymphangiogenesis and investigate the possibilities of combining zebrafish transgenic cancer lines or tumor transplantation models with existing lymphatic reporter lines, which could provide valuable insights into the process of tumor-induced lymphangiogenesis. In addition the utility of using the zebrafish lymphatic model as a platform to screen and develop novel anti-lymphatic therapeutics will also be discussed.

  10. Lymphatics, Cancer and Zebrafish.

    PubMed

    Astin, Jonathan W; Crosier, Philip S

    2016-01-01

    Many solid tumors are known to metastasize through the lymphatic vasculature. This process is facilitated by the generation of new lymphatic vessels (tumor lymphangiogenesis) and also by the remodelling of existing lymphatics. Together these processes enable the spread of tumor cells to distant sites. Currently our understanding of tumor lymphangiogenesis has been informed from mouse tumor models and from studies of developmental lymphangiogenesis. Since the discovery of bona fide lymphatic vessels in zebrafish in 2006, zebrafish have become a well-established model of developmental lymphangiogenesis. The attributes that make zebrafish such an important model of blood vessel development-the ability to live image developing vessels, genetic tractability and the conserved nature of development-also make fish an attractive model of lymphatic vessel development. In particular, zebrafish have made important contributions to our understanding of the processes of lymphatic vessel sprouting from veins and the mechanisms by which lymphatic precursors remodel into mature vessels. To date, zebrafish have not been used to directly model tumor lymphangiogenesis. In this chapter we will summarise the contributions zebrafish have made to our understanding of lymphangiogenesis and investigate the possibilities of combining zebrafish transgenic cancer lines or tumor transplantation models with existing lymphatic reporter lines, which could provide valuable insights into the process of tumor-induced lymphangiogenesis. In addition the utility of using the zebrafish lymphatic model as a platform to screen and develop novel anti-lymphatic therapeutics will also be discussed. PMID:27165355

  11. Retinal injury, growth factors and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration

    PubMed Central

    Wan, Jin; Zhao, Xiao-Feng; Vojtek, Anne; Goldman, Daniel

    2014-01-01

    Summary Müller glia (MG) in the zebrafish retina respond to retinal injury by generating multipotent progenitors for retinal repair. Here we show that Insulin, Igf-1 and FGF signaling components are necessary for retina regeneration. Interestingly, these factors synergize with each other and with HB-EGF and cytokines to stimulate MG to generate multipotent progenitors in the uninjured retina. These factors act by stimulating a core set of signaling cascades (Mapk/Erk, PI3K, β-catenin and pStat3) that are also shared with retinal injury and exhibit a remarkable amount of crosstalk. Our studies suggest that MG are both the producers and responders of factors that stimulate MG reprogramming and proliferation following retinal injury. The identification of a core set of regeneration-associated signaling pathways required for MG reprogramming not only furthers our understanding of retina regeneration in fish, but also suggests new targets for enhancing regeneration in mammals. PMID:25263555

  12. Blood supply to the retina in the laboratory shrew (Suncus murinus).

    PubMed

    Isomura, G; Ikeda, S; Ikezaki, K; Miyashita, Y

    1997-06-01

    The blood supply to both retinae was studied light microscopically and by scanning electron microscopy in 48 adult laboratory shrews (Suncus murinus) of both sexes. Thirty-eight of the animals were injected into the left ventricle with Neoprene latex (Du Pont. 601A) or with Mercox (Dai Nippon Ink Ltd., CL-2R) to elucidate the blood supply to the retina from the ophthalmic artery. The remaining animals were kept for histological study of the retina. The central retinal artery, originating from the ophthalmic artery in the muscular part of the orbit, enters the optic nerve, passes through the optic disk together with the central retinal vein and penetrates the vitreous space (cavity of the eye) between the lens and the inner limiting membrane of the retina, where it divides into the dorsal, ventral, and caudal branches. Each branch, moreover, bifurcates into nasal and temporal arterioles and is distributed throughout the retina on the inner limiting membrane as far as the ciliary body and the lens. On the way they obliquely send small vessels through the inner limiting membrane into the outer plexiform layer of the retina. Their vascularization appears to correspond to the membrana vasculosa retinae found in teleosts, amphibia and reptiles.

  13. Using myc genes to search for stem cells in the ciliary margin of the Xenopus retina.

    PubMed

    Xue, Xiao Yan; Harris, William A

    2012-04-01

    The ciliary marginal zone (CMZ) of fish and frog retinas contains cells that proliferate throughout postembryonic development as the retina grows with increasing body size, indicating the presence of stem cells in this region. However, neither the location nor the molecular identity of retinal stem cells has been identified. Here, we show in Xenopus that c-myc and n-myc are sequentially expressed both during development and in the post-embryonic retina. The c-myc+/n-myc- cells near the extreme periphery of the CMZ cycle more slowly and preferentially retain DNA label compared to their more central cmyc+/n-myc+ neighbors which cycle rapidly and preferentially dilute DNA label. During retinal development c-myc is functionally required earlier than n-myc, and n-myc expression depends on earlier c-myc expression. The expression of c-myc but not n-myc in the CMZ depends on growth factor signaling. Our results suggest that c-myc+/n-myc- cells in the far peripheral CMZ are candidates for a niche-dependent population of retinal stem cells that give rise to more centrally located and rapidly dividing n-myc+ progenitors of more limited proliferative potential. Analysis of homologues of these genes in the zebrafish CMZ suggests that the transition from c-myc to n-myc expression might be conserved in other lower vertebrates whose retinas growth throughout life.

  14. Early retinoic acid deprivation in developing zebrafish results in microphthalmia.

    PubMed

    Le, Hong-Gam T; Dowling, John E; Cameron, D Joshua

    2012-09-01

    Vitamin A deficiency causes impaired vision and blindness in millions of children around the world. Previous studies in zebrafish have demonstrated that retinoic acid (RA), the acid form of vitamin A, plays a vital role in early eye development. The objective of this study was to describe the effects of early RA deficiency by treating zebrafish with diethylaminobenzaldehyde (DEAB), a potent inhibitor of the enzyme retinaldehyde dehydrogenase (RALDH) that converts retinal to RA. Zebrafish embryos were treated for 2 h beginning at 9 h postfertilization. Gross morphology and retinal development were examined at regular intervals for 5 days after treatment. The optokinetic reflex (OKR) test, visual background adaptation (VBA) test, and the electroretinogram (ERG) were performed to assess visual function and behavior. Early treatment of zebrafish embryos with 100 μM DEAB (9 h) resulted in reduced eye size, and this microphthalmia persisted through larval development. Retinal histology revealed that DEAB eyes had significant developmental abnormalities but had relatively normal retinal lamination by 5.5 days postfertilization. However, the fish showed neither an OKR nor a VBA response. Further, the retina did not respond to light as measured by the ERG. We conclude that early deficiency of RA during eye development causes microphthalmia as well as other visual defects, and that timing of the RA deficiency is critical to the developmental outcome.

  15. The development of retina and the optic tectum of petromyzon marinus, L. A light microscopic study.

    PubMed

    de Miguel, E; Anadón, R

    1987-01-01

    Morphological evolution of the retina and optic tectum along the stage of ammocoete, transformation and young adult of sea lampreys (Petromyzon marinus L.) was studied using light microscopic techniques and quantitative morphometry. A retinal differentiated zone surrounding the optic nerve head with a kind of differentiated photoreceptors is present through all the stages studied until stage VI of transformation and its extension is almost unchanged since 60 mm. larve. From this length larval retina grows by extension of the lateral undifferentiated retina, that in large larvae subdivides in a lateral germinal zone and an intermediate differentiating zone more thickened were ganglion cells and the optic fibre layer differentiate early. In the largest larvae outer and inner neuroblastic layers were also recognized in these intermediate zone except in the most lateral retina. Mitotic activity was observed both in germinal and intermediate differentiating zones near the optic ventricle. The germinal zone disappears after the formation of an irideal retina in transforming stages and, with the exception of the photoreceptor layer, retinal layers were differentiated since stage III along the neural retina. The photoreceptor layer develops in the early stage VI along the retina. Adult pattern of retinal pigmentation is found in these stage. A periventricular and a lateral region were recognizable in the optic tectum of the larval period. Tectum of large larvae shows an outline of laminar organization. In the stage III of transformation the tectal lamination is the same of the young adults: the periventricular cell layer is subdivided by fibre bands and in the lateral region a stratum cellulare centralis and a stratum cellulare et fibrosum externum were distinguishable. A comparison between retinal and tectal growths was made. Most retinal and tectal growth and differentiation occurs before adult photoreceptors develop.

  16. Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina

    PubMed Central

    Wang, Xu; Zhao, Lian; Zhang, Jun; Fariss, Robert N.; Ma, Wenxin; Kretschmer, Friedrich; Wang, Minhua; Qian, Hao hua; Badea, Tudor C.; Diamond, Jeffrey S.; Gan, Wen-Biao; Roger, Jerome E.

    2016-01-01

    Microglia, the principal resident immune cell of the CNS, exert significant influence on neurons during development and in pathological situations. However, if and how microglia contribute to normal neuronal function in the mature uninjured CNS is not well understood. We used the model of the adult mouse retina, a part of the CNS amenable to structural and functional analysis, to investigate the constitutive role of microglia by depleting microglia from the retina in a sustained manner using genetic methods. We discovered that microglia are not acutely required for the maintenance of adult retinal architecture, the survival of retinal neurons, or the laminar organization of their dendritic and axonal compartments. However, sustained microglial depletion results in the degeneration of photoreceptor synapses in the outer plexiform layer, leading to a progressive functional deterioration in retinal light responses. Our results demonstrate that microglia are constitutively required for the maintenance of synaptic structure in the adult retina and for synaptic transmission underlying normal visual function. Our findings on constitutive microglial function are relevant in understanding microglial contributions to pathology and in the consideration of therapeutic interventions that reduce or perturb constitutive microglial function. SIGNIFICANCE STATEMENT Microglia, the principal resident immune cell population in the CNS, has been implicated in diseases in the brain and retina. However, how they contribute to the everyday function of the CNS is unclear. Using the model of the adult mouse retina, we examined the constitutive role of microglia by depleting microglia from the retina. We found that in the absence of microglia, retinal neurons did not undergo overt cell death or become structurally disorganized in their processes. However, connections between neurons called synapses begin to break down, leading to a decreased ability of the retina to transmit light responses

  17. Time-lapse imaging of neural development: Zebrafish lead the way into the fourth dimension

    PubMed Central

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-01-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. PMID:21305690

  18. A Computational Framework for Realistic Retina Modeling.

    PubMed

    Martínez-Cañada, Pablo; Morillas, Christian; Pino, Begoña; Ros, Eduardo; Pelayo, Francisco

    2016-11-01

    Computational simulations of the retina have led to valuable insights about the biophysics of its neuronal activity and processing principles. A great number of retina models have been proposed to reproduce the behavioral diversity of the different visual processing pathways. While many of these models share common computational stages, previous efforts have been more focused on fitting specific retina functions rather than generalizing them beyond a particular model. Here, we define a set of computational retinal microcircuits that can be used as basic building blocks for the modeling of different retina mechanisms. To validate the hypothesis that similar processing structures may be repeatedly found in different retina functions, we implemented a series of retina models simply by combining these computational retinal microcircuits. Accuracy of the retina models for capturing neural behavior was assessed by fitting published electrophysiological recordings that characterize some of the best-known phenomena observed in the retina: adaptation to the mean light intensity and temporal contrast, and differential motion sensitivity. The retinal microcircuits are part of a new software platform for efficient computational retina modeling from single-cell to large-scale levels. It includes an interface with spiking neural networks that allows simulation of the spiking response of ganglion cells and integration with models of higher visual areas. PMID:27354192

  19. Paths to colour in the retina.

    PubMed

    Lee, Barry B

    2004-07-01

    The description of colour pathways in the primate retina has become clearer within the past decade. This review summarises current views on the pathways subserving colour vision in the primate retina, beginning in the receptors and outer retina and leading to the mechanisms in the inner retina that add and subtract the receptor signals. Although the main features of colour pathways are now well-defined, there remains uncertainty about some of the wiring details. In particular, the question of how much connectional specificity is present is unresolved. Finally, means of isolating these pathways by psychophysical tests are considered; some current tests are likely to be less specific than hoped.

  20. A Computational Framework for Realistic Retina Modeling.

    PubMed

    Martínez-Cañada, Pablo; Morillas, Christian; Pino, Begoña; Ros, Eduardo; Pelayo, Francisco

    2016-11-01

    Computational simulations of the retina have led to valuable insights about the biophysics of its neuronal activity and processing principles. A great number of retina models have been proposed to reproduce the behavioral diversity of the different visual processing pathways. While many of these models share common computational stages, previous efforts have been more focused on fitting specific retina functions rather than generalizing them beyond a particular model. Here, we define a set of computational retinal microcircuits that can be used as basic building blocks for the modeling of different retina mechanisms. To validate the hypothesis that similar processing structures may be repeatedly found in different retina functions, we implemented a series of retina models simply by combining these computational retinal microcircuits. Accuracy of the retina models for capturing neural behavior was assessed by fitting published electrophysiological recordings that characterize some of the best-known phenomena observed in the retina: adaptation to the mean light intensity and temporal contrast, and differential motion sensitivity. The retinal microcircuits are part of a new software platform for efficient computational retina modeling from single-cell to large-scale levels. It includes an interface with spiking neural networks that allows simulation of the spiking response of ganglion cells and integration with models of higher visual areas.

  1. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  2. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  3. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond.

    PubMed

    Kalueff, Allan V; Gebhardt, Michael; Stewart, Adam Michael; Cachat, Jonathan M; Brimmer, Mallorie; Chawla, Jonathan S; Craddock, Cassandra; Kyzar, Evan J; Roth, Andrew; Landsman, Samuel; Gaikwad, Siddharth; Robinson, Kyle; Baatrup, Erik; Tierney, Keith; Shamchuk, Angela; Norton, William; Miller, Noam; Nicolson, Teresa; Braubach, Oliver; Gilman, Charles P; Pittman, Julian; Rosemberg, Denis B; Gerlai, Robert; Echevarria, David; Lamb, Elisabeth; Neuhauss, Stephan C F; Weng, Wei; Bally-Cuif, Laure; Schneider, Henning

    2013-03-01

    Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish 'do', and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species.

  4. Towards a Comprehensive Catalog of Zebrafish Behavior 1.0 and Beyond

    PubMed Central

    Gebhardt, Michael; Stewart, Adam Michael; Cachat, Jonathan M.; Brimmer, Mallorie; Chawla, Jonathan S.; Craddock, Cassandra; Kyzar, Evan J.; Roth, Andrew; Landsman, Samuel; Gaikwad, Siddharth; Robinson, Kyle; Baatrup, Erik; Tierney, Keith; Shamchuk, Angela; Norton, William; Miller, Noam; Nicolson, Teresa; Braubach, Oliver; Gilman, Charles P.; Pittman, Julian; Rosemberg, Denis B.; Gerlai, Robert; Echevarria, David; Lamb, Elisabeth; Neuhauss, Stephan C.F.; Weng, Wei; Bally-Cuif, Laure; Schneider, Henning

    2013-01-01

    Abstract Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish ‘do’, and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species. PMID:23590400

  5. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model.

    PubMed

    Capiotti, Katiucia Marques; Antonioli, Régis; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2014-05-01

    Diabetes mellitus (DM) affects over 10% of the world's population. Hyperglycemia is the main feature for the diagnosis of this disease. The zebrafish (Danio rerio) is an established model organism for the study of various metabolic diseases. In this paper, hyperglycemic zebrafish, when immersed in a 111 mM glucose solution for 14 days, developed increased glycation of proteins from the eyes, decreased mRNA levels of insulin receptors in the muscle, and a reversion of high blood glucose level after treatment with anti-diabetic drugs (glimepiride and metformin) even after 7 days of glucose withdrawal. Additionally, hyperglycemic zebrafish developed an impaired response to exogenous insulin, which was recovered after 7 days of glucose withdrawal. These data suggest that the exposure of adult zebrafish to high glucose concentration is able to induce persistent metabolic changes probably underlined by a hyperinsulinemic state and impaired peripheral glucose metabolism. PMID:24704522

  6. Imaging blood vessels and lymphatic vessels in the zebrafish.

    PubMed

    Jung, H M; Isogai, S; Kamei, M; Castranova, D; Gore, A V; Weinstein, B M

    2016-01-01

    Blood vessels supply tissues and organs with oxygen, nutrients, cellular, and humoral factors, while lymphatic vessels regulate tissue fluid homeostasis, immune trafficking, and dietary fat absorption. Understanding the mechanisms of vascular morphogenesis has become a subject of intense clinical interest because of the close association of both types of vessels with pathogenesis of a broad spectrum of human diseases. The zebrafish provides a powerful animal model to study vascular morphogenesis because of their small, accessible, and transparent embryos. These unique features of zebrafish embryos permit sophisticated high-resolution live imaging of even deeply localized vessels during embryonic development and even in adult tissues. In this chapter, we summarize various methods for blood and lymphatic vessel imaging in zebrafish, including nonvital resin injection-based or dye injection-based vessel visualization, and alkaline phosphatase staining. We also provide protocols for vital imaging of vessels using microangiography or transgenic fluorescent reporter zebrafish lines. PMID:27263409

  7. Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity.

    PubMed

    Stewart, Adam Michael; Kaluyeva, Alexandra A; Poudel, Manoj K; Nguyen, Michael; Song, Cai; Kalueff, Allan V

    2015-10-01

    Zebrafish are emerging as an important model organism for neurobehavioral phenomics research. Given the likely variation of zebrafish behavioral phenotypes between and within laboratories, in this study, we examine the influence and variability of several common environmental modifiers on adult zebrafish anxiety and locomotor activity. Utilizing the novel tank paradigm, this study assessed the role of various laboratory factors, including experimenter/handling, testing time and days, batch, and the order of testing, on the behavior of a large population of experimentally naive control fish. Although time of the day, experimenter identity, and order of testing had little effect on zebrafish anxiety and locomotor activity levels, subtle differences were found for testing days and batches. Our study establishes how zebrafish behaviors are modulated by common environmental/laboratory factors and outlines several implications for zebrafish neurobehavioral phenomics research. PMID:26244595

  8. Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity.

    PubMed

    Stewart, Adam Michael; Kaluyeva, Alexandra A; Poudel, Manoj K; Nguyen, Michael; Song, Cai; Kalueff, Allan V

    2015-10-01

    Zebrafish are emerging as an important model organism for neurobehavioral phenomics research. Given the likely variation of zebrafish behavioral phenotypes between and within laboratories, in this study, we examine the influence and variability of several common environmental modifiers on adult zebrafish anxiety and locomotor activity. Utilizing the novel tank paradigm, this study assessed the role of various laboratory factors, including experimenter/handling, testing time and days, batch, and the order of testing, on the behavior of a large population of experimentally naive control fish. Although time of the day, experimenter identity, and order of testing had little effect on zebrafish anxiety and locomotor activity levels, subtle differences were found for testing days and batches. Our study establishes how zebrafish behaviors are modulated by common environmental/laboratory factors and outlines several implications for zebrafish neurobehavioral phenomics research.

  9. Premature aging in telomerase-deficient zebrafish

    PubMed Central

    Anchelin, Monique; Alcaraz-Pérez, Francisca; Martínez, Carlos M.; Bernabé-García, Manuel; Mulero, Victoriano; Cayuela, María L.

    2013-01-01

    SUMMARY The study of telomere biology is crucial to the understanding of aging and cancer. In the pursuit of greater knowledge in the field of human telomere biology, the mouse has been used extensively as a model. However, there are fundamental differences between mouse and human cells. Therefore, additional models are required. In light of this, we have characterized telomerase-deficient zebrafish (Danio rerio) as the second vertebrate model for human telomerase-driven diseases. We found that telomerase-deficient zebrafish show p53-dependent premature aging and reduced lifespan in the first generation, as occurs in humans but not in mice, probably reflecting the similar telomere length in fish and humans. Among these aging symptoms, spinal curvature, liver and retina degeneration, and infertility were the most remarkable. Although the second-generation embryos died in early developmental stages, restoration of telomerase activity rescued telomere length and survival, indicating that telomerase dosage is crucial. Importantly, this model also reproduces the disease anticipation observed in humans with dyskeratosis congenita (DC). Thus, telomerase haploinsufficiency leads to anticipation phenomenon in longevity, which is related to telomere shortening and, specifically, with the proportion of short telomeres. Furthermore, p53 was induced by telomere attrition, leading to growth arrest and apoptosis. Importantly, genetic inhibition of p53 rescued the adverse effects of telomere loss, indicating that the molecular mechanisms induced by telomere shortening are conserved from fish to mammals. The partial rescue of telomere length and longevity by restoration of telomerase activity, together with the feasibility of the zebrafish for high-throughput chemical screening, both point to the usefulness of this model for the discovery of new drugs able to reactivate telomerase in individuals with DC. PMID:23744274

  10. Neuroendocrine control of ionic balance in zebrafish.

    PubMed

    Kwong, Raymond W M; Kumai, Yusuke; Perry, Steve F

    2016-08-01

    Zebrafish (Danio rerio) is an emerging model for integrative physiological research. In this mini-review, we discuss recent advances in the neuroendocrine control of ionic balance in this species, and identify current knowledge gaps and issues that would benefit from further investigation. Zebrafish inhabit a hypo-ionic environment and therefore are challenged by a continual loss of ions to the water. To maintain ionic homeostasis, they must actively take up ions from the water and reduce passive ion loss. The adult gill or the skin of larvae are the primary sites of ionic regulation. Current models for the uptake of major ions in zebrafish incorporate at least three types of ion transporting cells (also called ionocytes); H(+)-ATPase-rich cells for Na(+) uptake, Na(+)/K(+)-ATPase-rich cells for Ca(2+) uptake, and Na(+)/Cl(-)-cotransporter expressing cells for both Na(+) and Cl(-) uptake. The precise molecular mechanisms regulating the paracellular loss of ions remain largely unknown. However, epithelial tight junction proteins, including claudins, are thought to play a critical role in reducing ion losses to the surrounding water. Using the zebrafish model, several key neuroendocrine factors were identified as regulators of epithelial ion movement, including the catecholamines (adrenaline and noradrenaline), cortisol, the renin-angiotensin system, parathyroid hormone and prolactin. Increasing evidence also suggests that gasotransmitters, such as H2S, are involved in regulating ion uptake.

  11. Complement system in zebrafish.

    PubMed

    Zhang, Shicui; Cui, Pengfei

    2014-09-01

    Zebrafish is recently emerging as a model species for the study of immunology and human diseases. Complement system is the humoral backbone of the innate immune defense, and our knowledge as such in zebrafish has dramatically increased in the recent years. This review summarizes the current research progress of zebrafish complement system. The global searching for complement components in genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in zebrafish. Interestingly, zebrafish complement components also display some distinctive features, such as prominent levels of extrahepatic expression and isotypic diversity of the complement components. Future studies should focus on the following issues that would be of special importance for understanding the physiological role of complement components in zebrafish: conclusive identification of complement genes, especially those with isotypic diversity; analysis and elucidation of function and mechanism of complement components; modulation of innate and adaptive immune response by complement system; and unconventional roles of complement-triggered pathways.

  12. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures

    PubMed Central

    Contartese, Daniela S.; Rolón, Federico; Sarotto, Anibal; Dorfman, Veronica B.; Loidl, Cesar F.; Martínez, Alfredo

    2016-01-01

    Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP), including RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C) and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C). Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina. PMID:27556928

  13. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures.

    PubMed

    Larrayoz, Ignacio M; Rey-Funes, Manuel; Contartese, Daniela S; Rolón, Federico; Sarotto, Anibal; Dorfman, Veronica B; Loidl, Cesar F; Martínez, Alfredo

    2016-01-01

    Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP), including RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C) and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C). Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina. PMID:27556928

  14. Enkephalin in the goldfish retina

    SciTech Connect

    Su, Y.Y.; Fry, K.R.; Lam, D.M.; Watt, C.B.

    1986-12-01

    Enkephalin-like immunoreactive amacrine cells were visualized using the highly sensitive avidin-biotin method. The somas of these cells were situated in the inner nuclear and ganglion cell layers. Enkephalin-stained processes were observed in layers 1, 3, and 5 of the inner plexiform layer. The biosynthesis of sulfur-containing compounds in the goldfish retina was studied by means of a pulse-chase incubation with /sup 35/S-methionine. A /sup 35/S-labeled compound, which comigrated with authentic Met5-enkephalin on high-performance liquid chromatography (HPLC), was synthesized and was bound competitively by antibodies to enkephalin and by opiate receptors. This compound was tentatively identified as Met5-enkephalin. The newly synthesized /sup 35/S-Met5-enkephalin was released upon depolarization of the retina with a high K+ concentration. This K+-stimulated release was greatly suppressed by 5 mM Co/sup 2 +/, suggesting that the release was Ca/sup 2 +/ dependent. Using a double-label technique, enkephalin immunoreactivity and gamma-aminobutyric acid (GABA) uptake were colocalized to some amacrine cells, whereas others labeled only for enkephalin or GABA. The possible significance of enkephalin-GABA interactions is also discussed.

  15. A robust procedure for distinctively visualizing zebrafish retinal cell nuclei under bright field light microscopy.

    PubMed

    Fu, Jinling; Fang, Wei; Zou, Jian; Sun, Ming; Lathrop, Kira; Su, Guanfang; Wei, Xiangyun

    2013-03-01

    To simultaneously visualize individual cell nuclei and tissue morphologies of the zebrafish retina under bright field light microscopy, it is necessary to establish a procedure that specifically and sensitively stains the cell nuclei in thin tissue sections. This necessity arises from the high nuclear density of the retina and the highly decondensed chromatin of the cone photoreceptors, which significantly reduces their nuclear signals and makes nuclei difficult to distinguish from possible high cytoplasmic background staining. Here we optimized a procedure that integrates JB4 plastic embedding and Feulgen reaction for visualizing zebrafish retinal cell nuclei under bright field light microscopy. This method produced highly specific nuclear staining with minimal cytoplasmic background, allowing us to distinguish individual retinal nuclei despite their tight packaging. The nuclear staining is also sensitive enough to distinguish the euchromatin from heterochromatin in the zebrafish cone nuclei. In addition, this method could be combined with in situ hybridization to simultaneously visualize the cell nuclei and mRNA expression patterns. With its superb specificity and sensitivity, this method may be extended to quantify cell density and analyze global chromatin organization throughout the retina or other tissues.

  16. The Functional Architecture of the Retina.

    ERIC Educational Resources Information Center

    Masland, Richard H.

    1986-01-01

    Examines research related to the retina's coding of visual input with emphasis on the organization of two kinds of ganglion cell receptive fields. Reviews current techniques for examining the shapes and arrangement in the retina of entire populations of nerve cells. (ML)

  17. Acetylcholine receptors in the human retina

    SciTech Connect

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.

  18. Blood supply to the retina and the lens in the gerbil (Meriones unguiculatus).

    PubMed

    Imada, Hideki; Isomura, Genzoh; Miyachi, Ei-ichi

    2003-03-01

    The blood supply to the retina and the lens in 32 gerbils (Meriones unguiculatus) of both sexes from infancy to maturity was studied under light and stereoscopic microscopes, and a scanning electron microscope. Mercox (CL-2R; Dai Nippon Ink, Tokyo, Japan) was injected into the left ventricle of 30 animals in order to visualize the blood supply to the retina and the lens from the ophthalmic artery. The central retinal artery arises from the ophthalmic artery, passes through the papilla of the optic nerve together with the central retinal vein and penetrates the vitreous space (cavity of the eye) between the lens and the internal limiting membrane of the retina, where it divides into the central branches covering the lens and the parietal branches to supply the retina. The former passes through the hyaloid space after branching several arterioles and then covers the lens like a network from its medial and marginal sides. Different from small experimental animals, the parietal branches, just after separating from the central one, divides into the nasal, dorsal and temporal branches in the vitreous space, each of which then subdivides to distribute across the retina on the inner limiting membrane, then delineates the membrana vasculosa retinae. This basal pattern of vasculization 1 day after birth continues to death. Both the central and parietal branches of the central retinal artery correspond to the branches of the hyaloid artery in embryo and the latter is preserved in adult gerbils. PMID:12680468

  19. Zebrafish and giant danio as models for muscle growth: determinate vs. indeterminate growth as determined by morphometric analysis.

    PubMed

    Biga, P R; Goetz, F W

    2006-11-01

    The zebrafish has become an important genetic model, but their small size makes them impractical for traditional physiological studies. In contrast, the closely related giant danio is larger and can be utilized for physiological studies that can also make use of the extensive zebrafish genomic resources. In addition, the giant danio and zebrafish appear to exhibit different growth types, indicating the potential for developing a comparative muscle growth model system. Therefore, the present study was conducted to compare and characterize the muscle growth pattern of zebrafish and giant danio. Morphometric analyses demonstrated that giant danio exhibit an increased growth rate compared with zebrafish, starting as early as 2 wk posthatch. Total myotome area, mean fiber area, and total fiber number all exhibited positive correlations with larvae length in giant danio but not in zebrafish. Morphometric analysis of giant danio and zebrafish larvae demonstrated faster, more efficient growth in giant danio larvae. Similar to larger teleosts, adult giant danio exhibited increased growth rates in response to growth hormone, suggesting that giant danio exhibit indeterminate growth. In contrast, adult zebrafish do not exhibit mosaic hyperplasia, nor do they respond to growth hormone, suggesting they exhibit determinate growth like mammals. These results demonstrate that giant danio and zebrafish can be utilized as a direct comparative model system for muscle growth studies, with zebrafish serving as a model organism for determinate growth and giant danio for indeterminate growth.

  20. Quantum biology of the retina.

    PubMed

    Sia, Paul Ikgan; Luiten, André N; Stace, Thomas M; Wood, John Pm; Casson, Robert J

    2014-08-01

    The emerging field of quantum biology has led to a greater understanding of biological processes at the microscopic level. There is recent evidence to suggest that non-trivial quantum features such as entanglement, tunnelling and coherence have evolved in living systems. These quantum features are particularly evident in supersensitive light-harvesting systems such as in photosynthesis and photoreceptors. A biomimetic strategy utilizing biological quantum phenomena might allow new advances in the field of quantum engineering, particularly in quantum information systems. In addition, a better understanding of quantum biological features may lead to novel medical diagnostic and therapeutic developments. In the present review, we discuss the role of quantum physics in biological systems with an emphasis on the retina.

  1. Cytogenesis in the monkey retina

    SciTech Connect

    La Vail, M.M.; Rapaport, D.H.; Rakic, P. )

    1991-07-01

    Time of cell origin in the retina of the rhesus monkey (Macaca mulatta) was studied by plotting the number of heavily radiolabeled nuclei in autoradiograms prepared from 2- to 6-month-old animals, each of which was exposed to a pulse of 3H-thymidine (3H-TdR) on a single embryonic (E) or postnatal (P) day. Cell birth in the monkey retina begins just after E27, and approximately 96% of cells are generated by E120. The remaining cells are produced during the last (approximately 45) prenatal days and into the first several weeks after birth. Cell genesis begins near the fovea, and proceeds towards the periphery. Cell division largely ceases in the foveal and perifoveal regions by E56. Despite extensive overlap, a class-specific sequence of cell birth was observed. Ganglion and horizontal cells, which are born first, have largely congruent periods of cell genesis with the peak between E38 and E43, and termination around E70. The first labeled cones were apparent by E33, and their highest density was achieved between E43 and E56, tapering to low values at E70, although some cones are generated in the far periphery as late as E110. Amacrine cells are next in the cell birth sequence and begin genesis at E43, reach a peak production between E56 and E85, and cease by E110. Bipolar cell birth begins at the same time as amacrines, but appears to be separate from them temporally since their production reaches a peak between E56 and E102, and persists beyond the day of birth. Mueller cells and rod photoreceptors, which begin to be generated at E45, achieve a peak, and decrease in density at the same time as bipolar cells, but continue genesis at low density on the day of birth. Thus, bipolar, Mueller, and rod cells have a similar time of origin.

  2. Measuring zebrafish turning rate.

    PubMed

    Mwaffo, Violet; Butail, Sachit; di Bernardo, Mario; Porfiri, Maurizio

    2015-06-01

    Zebrafish is becoming a popular animal model in preclinical research, and zebrafish turning rate has been proposed for the analysis of activity in several domains. The turning rate is often estimated from the trajectory of the fish centroid that is output by commercial or custom-made target tracking software run on overhead videos of fish swimming. However, the accuracy of such indirect methods with respect to the turning rate associated with changes in heading during zebrafish locomotion is largely untested. Here, we compare two indirect methods for the turning rate estimation using the centroid velocity or position data, with full shape tracking for three different video sampling rates. We use tracking data from the overhead video recorded at 60, 30, and 15 frames per second of zebrafish swimming in a shallow water tank. Statistical comparisons of absolute turning rate across methods and sampling rates indicate that, while indirect methods are indistinguishable from full shape tracking, the video sampling rate significantly influences the turning rate measurement. The results of this study can aid in the selection of the video capture frame rate, an experimental design parameter in zebrafish behavioral experiments where activity is an important measure.

  3. The smell of "anxiety": Behavioral modulation by experimental anosmia in zebrafish.

    PubMed

    Abreu, Murilo S; Giacomini, Ana C V V; Kalueff, Allan V; Barcellos, Leonardo J G

    2016-04-01

    Olfaction is strongly involved in the regulation of fish behavior, including reproductive, defensive, social and migration behaviors. In fish, anosmia (the lack of olfaction) can be induced experimentally, impairing their ability to respond to various olfactory stimuli. Here, we examine the effects of experimental lidocaine-induced anosmia on anxiety-like behavior and whole-body cortisol levels in adult zebrafish (Danio rerio). We show that experimentally-induced anosmia reduces anxiolytic-like behavioral effects of fluoxetine and seems to interact with anxiogenic effect of stress also paralleling cortisol responses in zebrafish. These findings provide first experimental evidence that temporary anosmia modulates anxiety-like behaviors and physiology in adult zebrafish.

  4. Mechanical spectroscopy of retina explants at the protein level employing nanostructured scaffolds.

    PubMed

    Mayazur Rahman, S; Reichenbach, Andreas; Zink, Mareike; Mayr, Stefan G

    2016-04-14

    Development of neuronal tissue, such as folding of the brain, and formation of the fovea centralis in the human retina are intimately connected with the mechanical properties of the underlying cells and the extracellular matrix. In particular for neuronal tissue as complex as the vertebrate retina, mechanical properties are still a matter of debate due to their relation to numerous diseases as well as surgery, where the tension of the retina can result in tissue detachment during cutting. However, measuring the elasticity of adult retina wholemounts is difficult and until now only the mechanical properties at the surface have been characterized with micrometer resolution. Many processes, however, such as pathological changes prone to cause tissue rupture and detachment, respectively, are reflected in variations of retina elasticity at smaller length scales at the protein level. In the present work we demonstrate that freely oscillating cantilevers composed of nanostructured TiO2 scaffolds can be employed to study the frequency-dependent mechanical response of adult mammalian retina explants at the nanoscale. Constituting highly versatile scaffolds with strong tissue attachment for long-term organotypic culture atop, these scaffolds perform damped vibrations as fingerprints of the mechanical tissue properties that are derived using finite element calculations. Since the tissue adheres to the nanostructures via constitutive proteins on the photoreceptor side of the retina, the latter are stretched and compressed during vibration of the underlying scaffold. Probing mechanical response of individual proteins within the tissue, the proposed mechanical spectroscopy approach opens the way for studying tissue mechanics, diseases and the effect of drugs at the protein level. PMID:26947970

  5. Glycogen metabolism in the rat retina.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2004-02-01

    It has been reported that glycogen levels in retina vary with retinal vascularization. However, the electrical activity of isolated retina depends on glucose supply, suggesting that it does not contain energetic reserves. We determined glycogen levels and pyruvate and lactate production under various conditions in isolated retina. Ex vivo retinas from light- and dark-adapted rats showed values of 44 +/- 0.3 and 19.5 +/- 0.4 nmol glucosyl residues/mg protein, respectively. The glycogen content of retinas from light-adapted animals was reduced by 50% when they were transferred to darkness. Glycogen levels were low in retinas incubated in glucose-free media and increased in the presence of glucose. The highest glycogen values were found in media containing 20 mm of glucose. A rapid increase in lactate production was observed in the presence of glucose. Surprisingly, glycogen levels were the lowest and lactate production was also very low in the presence of 30 mm glucose. Our results suggest that glycogen can be used as an immediate accessible energy reserve in retina. We speculate on the possibility that gluconeogenesis may play a protective role by removal of lactic acid. PMID:14756809

  6. Impaired Lymphocytes Development and Xenotransplantation of Gastrointestinal Tumor Cells in Prkdc-Null SCID Zebrafish Model.

    PubMed

    Jung, In Hye; Chung, Yong-Yoon; Jung, Dawoon E; Kim, Young Jin; Kim, Do Hee; Kim, Kyung-Sik; Park, Seung Woo

    2016-08-01

    Severe combined immunodeficiency (SCID) mice have widely been used as hosts for human tumor cell xenograft study. This animal model, however, is labor intensive. As zebrafish is largely emerging as a promising model system for studying human diseases including cancer, developing efficient immunocompromised strains for tumor xenograft study are also demanded in zebrafish. Here, we have created the Prkdc-null SCID zebrafish model which provides the stable immune-deficient background required for xenotransplantation of tumor cell. In this study, the two transcription activator-like effector nucleases that specifically target the exon3 of the zebrafish Prkdc gene were used to induce a frame shift mutation, causing a complete knockout of the gene function. The SCID zebrafish showed susceptibility to spontaneous infection, a well-known phenotype found in the SCID mutation. Further characterization revealed that the SCID zebrafish contained no functional T and B lymphocytes which reflected the phenotypes identified in the mice SCID model. Intraperitoneal injection of human cancer cells into the adult SCID zebrafish clearly showed tumor cell growth forming into a solid mass. Our present data show the suitability of using the SCID zebrafish strain for xenotransplantation experiments, and in vivo monitoring of the tumor cell growth in the zebrafish demonstrates use of the animal model as a new platform of tumor xenograft study.

  7. Impaired Lymphocytes Development and Xenotransplantation of Gastrointestinal Tumor Cells in Prkdc-Null SCID Zebrafish Model.

    PubMed

    Jung, In Hye; Chung, Yong-Yoon; Jung, Dawoon E; Kim, Young Jin; Kim, Do Hee; Kim, Kyung-Sik; Park, Seung Woo

    2016-08-01

    Severe combined immunodeficiency (SCID) mice have widely been used as hosts for human tumor cell xenograft study. This animal model, however, is labor intensive. As zebrafish is largely emerging as a promising model system for studying human diseases including cancer, developing efficient immunocompromised strains for tumor xenograft study are also demanded in zebrafish. Here, we have created the Prkdc-null SCID zebrafish model which provides the stable immune-deficient background required for xenotransplantation of tumor cell. In this study, the two transcription activator-like effector nucleases that specifically target the exon3 of the zebrafish Prkdc gene were used to induce a frame shift mutation, causing a complete knockout of the gene function. The SCID zebrafish showed susceptibility to spontaneous infection, a well-known phenotype found in the SCID mutation. Further characterization revealed that the SCID zebrafish contained no functional T and B lymphocytes which reflected the phenotypes identified in the mice SCID model. Intraperitoneal injection of human cancer cells into the adult SCID zebrafish clearly showed tumor cell growth forming into a solid mass. Our present data show the suitability of using the SCID zebrafish strain for xenotransplantation experiments, and in vivo monitoring of the tumor cell growth in the zebrafish demonstrates use of the animal model as a new platform of tumor xenograft study. PMID:27566103

  8. Inducible Podocyte Injury and Proteinuria in Transgenic Zebrafish

    PubMed Central

    Hildebrandt, Friedhelm

    2012-01-01

    Damage or loss of podocytes causes glomerulosclerosis in murine models, and mutations in podocyte-specific genes cause nephrotic syndrome in humans. Zebrafish provide a valuable model for kidney research, but disruption of pronephroi leads to death within a few days, thereby preventing the study of CKD. In this study, we generated an inducible model of podocyte injury in zebrafish (pod::NTR-mCherry) by expressing a bacterial nitroreductase, which converts metronidazole to a cytotoxin, specifically in podocytes under the control of the zebrafish nphs2/podocin promoter. Application of the prodrug metronidazole to the transgenic fish induces acute damage to the podocytes in pronephroi of larval zebrafish and the mesonephroi of adult zebrafish, resulting in foot-process effacement and podocyte loss. We also developed a functional assay of the glomerular filtration barrier by creating transgenic zebrafish expressing green fluorescent protein (GFP)–tagged vitamin D–binding protein (VDBP) as a tracer for proteinuria. In the VDBP-GFP and pod::NTR-mCherry double-transgenic fish, induction of podocyte damage led to whole-body edema, and the proximal tubules reabsorbed and accumulated VDBP-GFP that leaked through the glomeruli, mimicking the phenotype of human nephrotic syndrome. Moreover, expression of wt1b::GFP, a marker for the developing nephron, extended into the Bowman capsule in response to podocyte injury, suggesting that zebrafish have a podocyte-specific repair process known to occur in mammalian metanephros. These data support the use of these transgenic zebrafish as a model system for studies of glomerular pathogenesis and podocyte regeneration. PMID:22440901

  9. Effects of altered ambient pressure on the volume and distribution of gas within the swimbladder of the adult zebrafish, Danio rerio.

    PubMed

    Stoyek, Matthew R; Smith, Frank M; Croll, Roger P

    2011-09-01

    Many teleosts use gas-filled swimbladders to control buoyancy and influence three-dimensional orientation (pitch and roll). However, swimbladder volume, and its contributions to these functions, varies with depth-related pressure according to Boyle's law. Moreover, the swimbladder volume at a given depth also depends on the compliance of the swimbladder wall, but this latter factor has been investigated in only a limited number of species. In this study, changes in the volume of the zebrafish swimbladder were observed both in vitro and in situ in pressure chambers that allowed simulations of movements within the water column to and from depths of >300 cm. Results show the anterior chamber to be highly compliant, varying ±38% from its initial volume over the range of simulated depths. This large volume change was accomplished, at least in part, by a series of regular corrugations running along the ventral aspect of the chamber wall and another set of pleats radiating from around the communicating duct in the caudal aspect of the chamber wall. The posterior chamber, in contrast, was found to be minimally compliant, varying only a fraction of a percent from its initial volume over the same pressure range. The different volumetric responses of the chambers caused a significant shift in the distribution of gas within the swimbladder system, but only resulted in a change in the whole-body pitch angle of ±2 deg over the range of pressures tested. Together, our findings provide new insights into the control of buoyancy and trim within teleosts and suggest novel mechanisms that may contribute to swimbladder performance. PMID:21832139

  10. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans

    PubMed Central

    Sorribes, Amanda; Þorsteinsson, Haraldur; Arnardóttir, Hrönn; Jóhannesdóttir, Ingibjörg Þ.; Sigurgeirsson, Benjamín; de Polavieja, Gonzalo G.; Karlsson, Karl Æ.

    2013-01-01

    Zebrafish (Danio rerio) are used extensively in sleep research; both to further understanding of sleep in general and also as a model of human sleep. To date, sleep studies have been performed in larval and adult zebrafish but no efforts have been made to document the ontogeny of zebrafish sleep–wake cycles. Because sleep differs across phylogeny and ontogeny it is important to validate the use of zebrafish in elucidating the neural substrates of sleep. Here we describe the development of sleep and wake across the zebrafish lifespan and how it compares to humans. We find power-law distributions to best fit wake bout data but demonstrate that exponential distributions, previously used to describe sleep bout distributions, fail to adequately account for the data in either species. Regardless, the data reveal remarkable similarities in the ontogeny of sleep cycles in zebrafish and humans. Moreover, as seen in other organisms, zebrafish sleep levels are highest early in ontogeny and sleep and wake bouts gradually consolidate to form the adult sleep pattern. Finally, sleep percentage, bout duration, bout number, and sleep fragmentation are shown to allow for meaningful comparisons between zebrafish and human sleep. PMID:24312015

  11. Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals.

    PubMed

    Lakowski, Jörn; Majumder, Anirban; Lauderdale, James D

    2007-07-15

    The Pax6 gene plays several roles in retinal development, including control of cell proliferation, maintenance of the retinogenic potential of progenitor cells, and cell fate specification. Emerging evidence suggests that these different aspects of Pax6 gene function are mediated by different isoforms of the Pax6 protein; however, relatively little is known about the spatiotemporal expression of Pax6 isoforms in the vertebrate retina. Using bacterial artificial chromosome (BAC) technology, we modified a zebrafish Pax6a BAC such that we could distinguish paired-containing Pax6a transcripts from paired-less Pax6a transcripts. In the zebrafish, the spatial and temporal onset of expression of these transcripts suggests that the paired-less isoform is involved in the cell fate decision leading to the generation of amacrine cells; however, because of limitations associated with transient transgenic analysis, it was not feasible to establish whether this promoter was active in all amacrine cells or in a specific population of amacrine cells. By making mice transgenic for the zebrafish Pax6a BAC reporter transgene, we were able to show that paired-containing and paired-less Pax6a transcripts were differentially expressed in amacrine subpopulations. Our study also directly demonstrates the functional conservation of the regulatory mechanisms governing Pax6 transcription in teleosts and mammals.

  12. Dynamics of DNA hydroxymethylation in zebrafish.

    PubMed

    Kamstra, Jorke H; Løken, Marianne; Aleström, Peter; Legler, Juliette

    2015-06-01

    During embryonic development in mammals, most of the methylated cytosines in the paternal genome are converted to 5-hydroxymethyldeoxycytidine (hmC), as part of DNA methylation reprogramming. Recent data also suggest tissue-specific functional roles of hmC, perhaps as an epigenetic mark. However, limited data are available on the levels and tissue distribution in zebrafish. In this study, we used high-performance liquid chromatography mass spectrometry to quantify hmC and 5-methyldeoxycytidine (mC) in zebrafish during development and in different tissues of the adult fish. Low levels of mC were found at 0.5 hours postfertilization (hpf) (1-2 cell stage) (1.9%), and increased to 8.4% by 96 hpf, with similar levels observed in different adult tissues. No hmC was detected up to 12 hpf, but levels increased during development from 24 up to 96 hpf (0.23%). In tissues, the highest levels of hmC were found in the brain (0.49%), intermediate levels in muscle (0.13%), liver (0.08%), and intestine (0.06%) and low levels in testis (0.01%), with an inverse correlation between hmC and mC. Our results indicate similar tissue distribution and levels of hmC between zebrafish and mammals, but distinct differences during embryonic development. Although more research is needed, these results support the use of zebrafish as an alternative model in the elucidation of tissue-specific functions of hmC.

  13. Immuno-histochemical analysis of rod and cone reaction to RPE65 deficiency in the inferior and superior canine retina.

    PubMed

    Klein, Daniela; Mendes-Madeira, Alexandra; Schlegel, Patrice; Rolling, Fabienne; Lorenz, Birgit; Haverkamp, Silke; Stieger, Knut

    2014-01-01

    Mutations in the RPE65 gene are associated with autosomal recessive early onset severe retinal dystrophy. Morphological and functional studies indicate early and dramatic loss of rod photoreceptors and early loss of S-cone function, while L and M cones remain initially functional. The Swedish Briard dog is a naturally occurring animal model for this disease. Detailed information about rod and cone reaction to RPE65 deficiency in this model with regard to their location within the retina remains limited. The aim of this study was to analyze morphological parameters of cone and rod viability in young adult RPE65 deficient dogs in different parts of the retina in order to shed light on local disparities in this disease. In retinae of affected dogs, sprouting of rod bipolar cell dendrites and horizontal cell processes was dramatically increased in the inferior peripheral part of affected retinae, while central inferior and both superior parts did not display significantly increased sprouting. This observation was correlated with photoreceptor cell layer thickness. Interestingly, while L/M cone opsin expression was uniformly reduced both in the superior and inferior part of the retina, S-cone opsin expression loss was less severe in the inferior part of the retina. In summary, in retinae of young adult RPE65 deficient dogs, the degree of rod bipolar and horizontal cell sprouting as well as of S-cone opsin expression depends on the location. As the human retinal pigment epithelium (RPE) is pigmented similar to the RPE in the inferior part of the canine retina, and the kinetics of photoreceptor degeneration in humans seems to be similar to what has been observed in the inferior peripheral retina in dogs, this area should be studied in future gene therapy experiments in this model.

  14. Immuno-Histochemical Analysis of Rod and Cone Reaction to RPE65 Deficiency in the Inferior and Superior Canine Retina

    PubMed Central

    Klein, Daniela; Mendes-Madeira, Alexandra; Schlegel, Patrice; Rolling, Fabienne; Lorenz, Birgit; Haverkamp, Silke; Stieger, Knut

    2014-01-01

    Mutations in the RPE65 gene are associated with autosomal recessive early onset severe retinal dystrophy. Morphological and functional studies indicate early and dramatic loss of rod photoreceptors and early loss of S-cone function, while L and M cones remain initially functional. The Swedish Briard dog is a naturally occurring animal model for this disease. Detailed information about rod and cone reaction to RPE65 deficiency in this model with regard to their location within the retina remains limited. The aim of this study was to analyze morphological parameters of cone and rod viability in young adult RPE65 deficient dogs in different parts of the retina in order to shed light on local disparities in this disease. In retinae of affected dogs, sprouting of rod bipolar cell dendrites and horizontal cell processes was dramatically increased in the inferior peripheral part of affected retinae, while central inferior and both superior parts did not display significantly increased sprouting. This observation was correlated with photoreceptor cell layer thickness. Interestingly, while L/M cone opsin expression was uniformly reduced both in the superior and inferior part of the retina, S-cone opsin expression loss was less severe in the inferior part of the retina. In summary, in retinae of young adult RPE65 deficient dogs, the degree of rod bipolar and horizontal cell sprouting as well as of S-cone opsin expression depends on the location. As the human retinal pigment epithelium (RPE) is pigmented similar to the RPE in the inferior part of the canine retina, and the kinetics of photoreceptor degeneration in humans seems to be similar to what has been observed in the inferior peripheral retina in dogs, this area should be studied in future gene therapy experiments in this model. PMID:24466015

  15. The Zebrafish Breathes New Life into the Study of Tuberculosis

    PubMed Central

    Myllymäki, Henna; Bäuerlein, Carina A.; Rämet, Mika

    2016-01-01

    Tuberculosis (TB) is a global health emergency. Up to one-third of the world’s population is infected with Mycobacterium tuberculosis, and the pathogen continues to kill 1.5 million people annually. Currently, the means for preventing, diagnosing, and treating TB are unsatisfactory. One of the main reasons for the poor progress in TB research has been a lack of good animal models to study the latency, dormancy, and reactivation of the disease. Although sophisticated in vitro and in silico methods suitable for TB research are constantly being developed, they cannot reproduce the complete vertebrate immune system and its interplay with pathogens and vaccines. However, the zebrafish has recently emerged as a useful alternative to more traditional models, such as mice, rabbits, guinea pigs, and non-human primates, for studying the complex pathophysiology of a mycobacterial infection. The model is based on the similarity between Mycobacterium marinum – a natural fish pathogen – and M. tuberculosis. In both zebrafish larvae and adult fish, an infection with M. marinum leads to the formation of macrophage aggregates and granulomas, which resemble the M. tuberculosis infections in humans. In this review, we will summarize the current status of the zebrafish model in TB research and highlight the advantages of using zebrafish to dissect mycobacterial virulence strategies as well as the host immune responses elicited against them. In addition, we will discuss the possibilities of using the adult zebrafish model for studying latency, dormancy, and reactivation in a mycobacterial infection. PMID:27242801

  16. Chemical Screening in Zebrafish.

    PubMed

    Brady, Colleen A; Rennekamp, Andrew J; Peterson, Randall T

    2016-01-01

    Phenotypic small molecule screens in zebrafish have gained popularity as an unbiased approach to probe biological processes. In this chapter we outline basic methods for performing chemical screens with larval zebrafish including breeding large numbers of embryos, plating larval fish into multi-well dishes, and adding small molecules to these wells. We also highlight important considerations when designing and interpreting the results of a phenotypic screen and possible follow-up approaches, including popular methods used to identify the mechanism of action of a chemical compound. PMID:27464797

  17. Distribution of caveolin isoforms in the lemur retina.

    PubMed

    Berta, Agnes I; Kiss, Anna L; Lukáts, Akos; Szabó, Arnold; Szél, Agoston

    2007-09-01

    The distribution of caveolin isoforms was previously evaluated in the retinas of different species, but has not yet been described in the primate retina. In this study, the distribution of caveolins was assessed via immunochemistry using isoform-specific antibodies in the retina of the black-and-white ruffed lemur. Here, we report the presence of a variety of caveolin isoforms in many layers of the lemur retina. As normal human retinas were not available for research and the retinas of primates are fairly similar to those of humans, the lemur retina can be utilized as a model for caveolin distribution in normal humans.

  18. Jak/Stat signaling regulates the proliferation and neurogenic potential of Müller glia-derived progenitor cells in the avian retina

    PubMed Central

    Todd, Levi; Squires, Natalie; Suarez, Lilianna; Fischer, Andy J.

    2016-01-01

    Müller glia are capable of de-differentiating and proliferating to become Müller glia-derived progenitor cells (MGPCs) with the ability to regenerate retinal neurons. One of the cell-signaling pathways that drives the reprogramming of Müller glia into MGPCs in the zebrafish retina is the Jak/Stat-pathway. However, nothing is known about the influence of Jak/Stat-signaling during the formation of MGPCs in the retinas of warm-blooded vertebrates. Accordingly, we examined whether Jak/Stat-signaling influences the formation of MGPCs and differentiation of progeny in the avian retina. We found that Jak/Stat-signaling is activated in Müller glia in response to NMDA-induced retinal damage or by CNTF or FGF2 in the absence of retinal damage. Inhibition of gp130, Jak2, or Stat3 suppressed the formation of proliferating MGPCs in NMDA-damaged and FGF2-treated retinas. Additionally, CNTF combined with FGF2 enhanced the formation of proliferating MGPCs in the absence of retinal damage. In contrast to the zebrafish model, where activation of gp130/Jak/Stat is sufficient to drive neural regeneration from MGPCs, signaling through gp130 inhibits the neurogenic potential of MGPCs and promotes glial differentiation. We conclude that gp130/Jak/Stat-signaling plays an important role in the network of pathways that drives the formation of proliferating MGPCs; however, this pathway inhibits the neural differentiation of the progeny. PMID:27759082

  19. Complex computation in the retina

    NASA Astrophysics Data System (ADS)

    Deshmukh, Nikhil Rajiv

    Elucidating the general principles of computation in neural circuits is a difficult problem requiring both a tractable model circuit as well as sophisticated measurement tools. This thesis advances our understanding of complex computation in the salamander retina and its underlying circuitry and furthers the development of advanced tools to enable detailed study of neural circuits. The retina provides an ideal model system for neural circuits in general because it is capable of producing complex representations of the visual scene, and both its inputs and outputs are accessible to the experimenter. Chapter 2 describes the biophysical mechanisms that give rise to the omitted stimulus response in retinal ganglion cells described in Schwartz et al., (2007) and Schwartz and Berry, (2008). The extra response to omitted flashes is generated at the input to bipolar cells, and is separable from the characteristic latency shift of the OSR apparent in ganglion cells, which must occur downstream in the circuit. Chapter 3 characterizes the nonlinearities at the first synapse of the ON pathway in response to high contrast flashes and develops a phenomenological model that captures the effect of synaptic activation and intracellular signaling dynamics on flash responses. This work is the first attempt to model the dynamics of the poorly characterized mGluR6 transduction cascade unique to ON bipolar cells, and explains the second lobe of the biphasic flash response. Complementary to the study of neural circuits, recent advances in wafer-scale photolithography have made possible new devices to measure the electrical and mechanical properties of neurons. Chapter 4 reports a novel piezoelectric sensor that facilitates the simultaneous measurement of electrical and mechanical signals in neural tissue. This technology could reveal the relationship between the electrical activity of neurons and their local mechanical environment, which is critical to the study of mechanoreceptors

  20. Effects of combined exposure to 17α-ethynylestradiol and dibutyl phthalate on the growth and reproduction of adult male zebrafish (Danio rerio).

    PubMed

    Xu, Nan; Chen, Pengyu; Liu, Lei; Zeng, Yaqiong; Zhou, Haixia; Li, Song

    2014-09-01

    To evaluate the combined effects of 17α-ethynylestradiol (EE2) and dibutyl phthalate (DBP) on the growth and reproduction of male zebrafish, three-month-old fish were exposed to 0.005 or 0.020µg/L EE2, 100 or 500µg/L DBP or their binary mixtures under semi-static conditions. Investigated parameters include the length, weight, condition factor, vitellogenin (VTG) induction, acyl-CoA oxidase (AOX) protein level, histopathological alteration of testis, liver and gill, and reproductive capacity. After 21d exposure, no statistical difference was found among the weights, lengths and condition factors of different treatment groups. In all binary mixture groups, decreased VTG levels were detected compared to EE2-only groups; and the AOX levels were significantly lower than DBP-only treatments while both chemicals can individually induce AOX synthesis. Therefore, EE2 and DBP may act additively on VTG and antagonistically on AOX induction in males. After 45d exposure, delayed gametogenesis was observed for the DBP-only groups, indicated by fewer spermatozoa and more spermatocytes, which was further aggravated with the addition of EE2. The developmental delay of testis partially recovered after a 30d depuration in clean water. Combined exposure also caused liver and gill lesions, which were not alleviated during the 30d depuration, suggesting a nonreversible harmful effect the same as single exposure. Mixed EE2 and DBP were observed to impair the reproductive capability (the fecundity and fertilization rate) of males, while single exposure did not. Co-exposed to 0.020µg/L EE2 and 100µg/L DBP promoted the early hatching of offspring (F1 generation) at 48h post-fertilization (hpf), but the survival rates of the F1 generation were similar in all treatments. Our findings indicate that the effects of mixed EE2 and DBP at environmentally relevant levels can be either antagonistic or additive relying on the specific toxicological endpoints and the respective doses of each

  1. Optimizing methods for the study of intravascular lipid metabolism in zebrafish.

    PubMed

    Chen, Kan; Wang, Chang-Qian; Fan, Yu-Qi; Xie, Yu-Shui; Yin, Zhao-Fang; Xu, Zuo-Jun; Zhang, Hui-Li; Cao, Jia-Tian; Han, Zhi-Hua; Wang, Yue; Song, Dong-Qiang

    2015-03-01

    The zebrafish (Danio rerio) is a useful vertebrate model for use in cardiovascular drug discovery. The present study aimed to construct optimized methods for the study of intravascular lipid metabolism of zebrafish. The lipophilic dye, Oil Red O, was used to stain fasting zebrafish one to eight days post-fertilization (dpf) and to stain 7-dpf zebrafish incubated in a breeding system containing 0.1% egg yolk as a high-fat diet (HFD) for 48 h. Three-dpf zebrafish were kept in CholEsteryl boron-dipyrromethene (BODIPY) 542/563 C11 water for 24 h which indicated the efficiency of CholEsteryl BODIPY 542/563 C11 intravascular cholesterol staining. Subsequently, 7-dpf zebrafish were incubated in water containing the fluorescent probe CholEsteryl BODIPY 542/563 C11 and fed a high-cholesterol diet (HCD) for 10 d. Two groups of 7-dpf zebrafish were incubated in regular breeding water and fed with a regular or HCD containing CholEsteryl BODIPY 542/563 C11 for 10 d. Finally, blood lipids of adult zebrafish fed with regular or HFD for seven weeks were measured. Oil Red O was not detected in the blood vessels of 7-8-dpf zebrafish. Increased intravascular lipid levels were detected in 7-dpf zebrafish incubated in 0.1% egg yolk, indicated by Oil Red O staining. Intravascular cholesterol was efficiently stained in 3-dpf zebrafish incubated in breeding water containing CholEsteryl BODIPY 542/563 C11; however, this method was inappropriate for the calculation of intravascular fluorescence intensity in zebrafish >7‑dpf. In spite of this, intra-aortic fluorescence intensity of zebrafish fed a HCD containing CholEsteryl BODIPY 542/563 C11 was significantly higher (P<0.05) than that of those fed a regular diet containing CholEsteryl BODIPY 542/563 C11. The serum total cholesterol and triglyceride levels of adult zebrafish fed a HFD were markedly increased compared to those of the control group (P<0.05). In conclusion, the use of Oil Red O staining and CholEsteryl BODIPY 542/563 C11 may

  2. A crystal-clear zebrafish for in vivo imaging.

    PubMed

    Antinucci, Paride; Hindges, Robert

    2016-01-01

    The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes.

  3. A crystal-clear zebrafish for in vivo imaging

    PubMed Central

    Antinucci, Paride; Hindges, Robert

    2016-01-01

    The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes. PMID:27381182

  4. Imaging Single Cells in the Living Retina

    PubMed Central

    Williams, David R.

    2011-01-01

    A quarter century ago, we were limited to a macroscopic view of the retina inside the living eye. Since then, new imaging technologies, including confocal scanning laser ophthalmoscopy, optical coherence tomography, and adaptive optics fundus imaging, transformed the eye into a microscope in which individual cells can now be resolved noninvasively. These technologies have enabled a wide range of studies of the retina that were previously impossible. PMID:21596053

  5. Flipping coins in the fly retina.

    PubMed

    Mikeladze-Dvali, Tamara; Desplan, Claude; Pistillo, Daniela

    2005-01-01

    Color vision in Drosophila melanogaster relies on the presence of two different subtypes of ommatidia: the "green" and "blue." These two classes are distributed randomly throughout the retina. The decision of a given ommatidium to take on the "green" or "blue" fate seems to be based on a stochastic mechanism. Here we compare the stochastic choice of photoreceptors in the fly retina with other known examples of random choices in both sensory and other systems. PMID:16243594

  6. Alzheimer’s Disease-Related Protein Expression in the Retina of Octodon degus

    PubMed Central

    Du, Lucia Y.; Chang, Lily Y-L.; Ardiles, Alvaro O.; Tapia-Rojas, Cheril; Araya, Joaquin; Inestrosa, Nibaldo C.

    2015-01-01

    New studies show that the retina also undergoes pathological changes during the development of Alzheimer’s disease (AD). While transgenic mouse models used in these previous studies have offered insight into this phenomenon, they do not model human sporadic AD, which is the most common form. Recently, the Octodon degus has been established as a sporadic model of AD. Degus display age-related cognitive impairment associated with Aβ aggregates and phosphorylated tau in the brain. Our aim for this study was to examine the expression of AD-related proteins in young, adult and old degus retina using enzyme-linked or fluorescence immunohistochemistry and to quantify the expression using slot blot and western blot assays. Aβ4G8 and Aβ6E10 detected Aβ peptides in some of the young animals but the expression was higher in the adults. Aβ peptides were observed in the inner and outer segment of the photoreceptors, the nerve fiber layer (NFL) and ganglion cell layer (GCL). Expression was higher in the central retinal region than in the retinal periphery. Using an anti-oligomer antibody we detected Aβ oligomer expression in the young, adult and old retina. Immunohistochemical labeling showed small discrete labeling of oligomers in the GCL that did not resemble plaques. Congo red staining did not result in green birefringence in any of the animals analyzed except for one old (84 months) animal. We also investigated expression of tau and phosphorylated tau. Expression was seen at all ages studied and in adults it was more consistently observed in the NFL-GCL. Hyperphosphorylated tau detected with AT8 antibody was significantly higher in the adult retina and it was localized to the GCL. We confirm for the first time that Aβ peptides and phosphorylated tau are expressed in the retina of degus. This is consistent with the proposal that AD biomarkers are present in the eye. PMID:26267479

  7. An analog silicon retina with multichip configuration.

    PubMed

    Kameda, Seiji; Yagi, Tetsuya

    2006-01-01

    The neuromorphic silicon retina is a novel analog very large scale integrated circuit that emulates the structure and the function of the retinal neuronal circuit. We fabricated a neuromorphic silicon retina, in which sample/hold circuits were embedded to generate fluctuation-suppressed outputs in the previous study [1]. The applications of this silicon retina, however, are limited because of a low spatial resolution and computational variability. In this paper, we have fabricated a multichip silicon retina in which the functional network circuits are divided into two chips: the photoreceptor network chip (P chip) and the horizontal cell network chip (H chip). The output images of the P chip are transferred to the H chip with analog voltages through the line-parallel transfer bus. The sample/hold circuits embedded in the P and H chips compensate for the pattern noise generated on the circuits, including the analog communication pathway. Using the multichip silicon retina together with an off-chip differential amplifier, spatial filtering of the image with an odd- and an even-symmetric orientation selective receptive fields was carried out in real time. The analog data transfer method in the present multichip silicon retina is useful to design analog neuromorphic multichip systems that mimic the hierarchical structure of neuronal networks in the visual system.

  8. Expressions of Raldh3 and Raldh4 during zebrafish early development.

    PubMed

    Liang, Dong; Zhang, Mei; Bao, Jie; Zhang, Luqing; Xu, Xiaofeng; Gao, Xiang; Zhao, Qingshun

    2008-04-01

    Retinoic acid (RA) plays crucial roles in vertebrate embryogenesis. Four retinal dehydrogenases (Raldhs) that are responsible for RA synthesis have been characterized in mammals. However, only Raldh2 ortholog is identified in zebrafish. Here, we report the identification of raldh3 and raldh4 genes in zebrafish. The predicted proteins encoded by zebrafish raldh3 and raldh4 exhibit 70.0% and 73.5% amino acid identities with mouse Raldh3 and Raldh4, respectively. RT-PCR analyses reveal that both raldh3 and raldh4 mRNAs are present in early development. However, whole mount in situ hybridization shows that raldh3 mRNA is first expressed in the developing eye region of zebrafish embryos at 10-somite stage. At 24 hpf (hours post fertilization), raldh3 mRNA is expressed in the ventral retina of eye. At 36 hpf, the mRNA is also expressed in otic vesicle in addition to ventral retina, and it maintains its expression pattern till 2 dpf (days post fertilization). At 3 dpf, raldh3 mRNA becomes very weak in ventral retina but is present in otic vesicle at a high level. At 5 dpf and 7 dpf, raldh3 is no longer expressed in eyes but is expressed in otic vesicles at a very low level. raldh4 mRNA is initially detected in developing liver and intestine regions at 2 dpf embryos. Its expression level becomes very high in these two regions of embryos from 3 dpf to 5 dpf. Analysis on the sections of 5 dpf embryos reveals that raldh4 is expressed in the epithelium of intestine. At 7 dpf, raldh4 mRNA is only weakly expressed in the epithelium of intestinal bulb.

  9. Ontogeny of classical and operant learning behaviors in zebrafish.

    PubMed

    Valente, André; Huang, Kuo-Hua; Portugues, Ruben; Engert, Florian

    2012-03-20

    The performance of developing zebrafish in both classical and operant conditioning assays was tested with a particular focus on the emergence of these learning behaviors during development. Strategically positioned visual cues paired with electroshocks were used in two fully automated assays to investigate both learning paradigms. These allow the evaluation of the behavioral performance of zebrafish continuously throughout development, from larva to adult. We found that learning improves throughout development, starts reliably around week 3, and reaches adult performance levels at week 6. Adult fish quickly learned to perform perfectly, and the expression of the learned behavior is manifestly controlled by vision. The memory is behaviorally expressed in adults for at least 6 h and retrievable for at least 12 h.

  10. Transgenic overexpression of cdx1b induces metaplastic changes of gene expression in zebrafish esophageal squamous epithelium.

    PubMed

    Hu, Bo; Chen, Hao; Liu, Xiuping; Zhang, Chengjin; Cole, Gregory J; Lee, Ju-Ahng; Chen, Xiaoxin

    2013-06-01

    Cdx2 has been suggested to play an important role in Barrett's esophagus or intestinal metaplasia (IM) in the esophagus. To investigate whether transgenic overexpression of cdx1b, the functional equivalent of mammalian Cdx2 in zebrafish, may lead to IM of zebrafish esophageal squamous epithelium, a transgenic zebrafish system was developed by expressing cdx1b gene under the control of zebrafish keratin 5 promoter (krt5p). Gene expression in the esophageal squamous epithelium of wild-type and transgenic zebrafish was analyzed by Affymetrix microarray and confirmed by in situ hybridization. Morphology, mucin expression, cell proliferation, and apoptosis were analyzed by hematoxylin & eosin (HE) staining, Periodic acid Schiff (PAS) Alcian blue staining, proliferating cell nuclear antigen (PCNA) immunohistochemical staining, and TUNEL assay as well. cdx1b was found to be overexpressed in the nuclei of esophageal squamous epithelial cells of the transgenic zebrafish. Ectopic expression of cdx1b disturbed the development of this epithelium in larval zebrafish and induced metaplastic changes in gene expression in the esophageal squamous epithelial cells of adult zebrafish, that is, up-regulation of intestinal differentiation markers and down-regulation of squamous differentiation markers. However, cdx1b failed to induce histological IM, or to modulate cell proliferation and apoptosis in the squamous epithelium of adult transgenic zebrafish.

  11. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish

    PubMed Central

    Guggiana-Nilo, Drago A.; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish. PMID:27594828

  12. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.

    PubMed

    Guggiana-Nilo, Drago A; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish. PMID:27594828

  13. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish

    PubMed Central

    Guggiana-Nilo, Drago A.; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish.

  14. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. PMID:27085002

  15. Characterization of Snakehead Rhabdovirus Infection in Zebrafish (Danio rerio)†

    PubMed Central

    Phelan, Peter E.; Pressley, Meagan E.; Witten, P. Eckhard; Mellon, Mark T.; Blake, Sharon; Kim, Carol H.

    2005-01-01

    The zebrafish, Danio rerio, has become recognized as a valuable model for the study of development, genetics, and toxicology. Recently, the zebrafish has been recognized as a useful model for infectious disease and immunity. In this study, the pathogenesis and antiviral immune response of zebrafish to experimental snakehead rhabdovirus (SHRV) infection was characterized. Zebrafish 24 h postfertilization to 30 days postfertilization were susceptible to infection by immersion in 106 50% tissue culture infective doses (TCID50) of SHRV/ml, and adult zebrafish were susceptible to infection by intraperitoneal (i.p.) injection of 105 TCID50 of SHRV/ml. Mortalities exceeded 40% in infected fish, and clinical presentation of infection included petechial hemorrhaging, redness of the abdomen, and erratic swim behavior. Virus reisolation and reverse transcription-PCR analysis of the viral nucleocapsid gene confirmed the presence of SHRV. Histological sections of moribund embryonic and juvenile fish revealed necrosis of the pharyngeal epithelium and liver, in addition to congestion of the swim bladder by cell debris. Histopathology in adult fish injected i.p. was confined to the site of injection. The antiviral response in zebrafish was monitored by quantitative real-time PCR analysis of zebrafish interferon (IFN) and Mx expression. IFN and Mx levels were elevated in zebrafish exposed to SHRV, although expression and intensity differed with age and route of infection. This study is the first to examine the pathogenesis of SHRV infection in zebrafish. Furthermore, this study is the first to describe experimental infection of zebrafish embryos with a viral pathogen, which will be important for future experiments involving targeted gene disruption and forward genetic screens. PMID:15650208

  16. The lens controls cell survival in the retina: Evidence from the blind cavefish Astyanax.

    PubMed

    Strickler, Allen G; Yamamoto, Yoshiyuki; Jeffery, William R

    2007-11-15

    The lens influences retinal growth and differentiation during vertebrate eye development but the mechanisms are not understood. The role of the lens in retinal growth and development was studied in the teleost Astyanax mexicanus, which has eyed surface-dwelling (surface fish) and blind cave-dwelling (cavefish) forms. A lens and laminated retina initially develop in cavefish embryos, but the lens dies by apoptosis. The cavefish retina is subsequently disorganized, apoptotic cells appear, the photoreceptor layer degenerates, and retinal growth is arrested. We show here by PCNA, BrdU, and TUNEL labeling that cell proliferation continues in the adult cavefish retina but the newly born cells are removed by apoptosis. Surface fish to cavefish lens transplantation, which restores retinal growth and rod cell differentiation, abolished apoptosis in the retina but not in the RPE. Surface fish lens deletion did not cause apoptosis in the surface fish retina or affect RPE differentiation. Neither lens transplantation in cavefish nor lens deletion in surface fish affected retinal cell proliferation. We conclude that the lens acts in concert with another optic component, possibly the RPE, to promote retinal cell survival. Accordingly, deficiency in both optic structures may lead to eye degeneration in cavefish.

  17. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  18. Short-term memory in zebrafish (Danio rerio).

    PubMed

    Jia, Jason; Fernandes, Yohaan; Gerlai, Robert

    2014-08-15

    Learning and memory represent perhaps the most complex behavioral phenomena. Although their underlying mechanisms have been extensively analyzed, only a fraction of the potential molecular components have been identified. The zebrafish has been proposed as a screening tool with which mechanisms of complex brain functions may be systematically uncovered. However, as a relative newcomer in behavioral neuroscience, the zebrafish has not been well characterized for its cognitive and mnemonic features, thus learning and/or memory screens with adults have not been feasible. Here we study short-term memory of adult zebrafish. We show animated images of conspecifics (the stimulus) to the experimental subject during 1 min intervals on ten occasions separated by different (2, 4, 8 or 16 min long) inter-stimulus intervals (ISI), a between subject experimental design. We quantify the distance of the subject from the image presentation screen during each stimulus presentation interval, during each of the 1-min post-stimulus intervals immediately following the stimulus presentations and during each of the 1-min intervals furthest away from the last stimulus presentation interval and just before the next interval (pre-stimulus interval), respectively. Our results demonstrate significant retention of short-term memory even in the longest ISI group but suggest no acquisition of reference memory. Because in the employed paradigm both stimulus presentation and behavioral response quantification is computer automated, we argue that high-throughput screening for drugs or mutations that alter short-term memory performance of adult zebrafish is now becoming feasible.

  19. Building neurophenomics in zebrafish: Effects of prior testing stress and test batteries.

    PubMed

    Song, Cai; Yang, Lei; Wang, JiaJia; Chen, Peirong; Li, Shaomin; Liu, Yingcong; Nguyen, Michael; Kaluyeva, Aleksandra; Kyzar, Evan J; Gaikwad, Siddharth; Kalueff, Allan V

    2016-09-15

    The zebrafish (Danio rerio) is a promising model organism for neurophenomics - a new field of neuroscience linking neural phenotypes to various genetic and environmental factors. However, the effects of prior experimental manipulations on zebrafish performance in different behavioral paradigms remain unclear. Here, we examine the influence of selected stressful procedures and test batteries on adult zebrafish anxiety-like behaviors in two commonly used models - the novel tank (NTT) and the light-dark box (LDB) tests. While no overt behavioral differences between outbred short-fin wild-type (WT) and mutant 'pink' glowfish were seen in both tests under baseline (control) conditions, an acute severe stressor (a 30-min car transportation) detected significantly lower mutant fish anxiety-like behavior in these tests. In contrast, WT zebrafish showed no overt NTT or LDB responses following a mild stressor (5-min 40-Wt light) exposure, also showing no differences in batteries of NTT and LDB run immediately one after another, or with a 1-day interval. Collectively, these findings suggest that zebrafish may be relatively less sensitive (e.g., than other popular species, such as rodents) to the test battery effect, and show that stronger stressors may be needed (to complement low-to-moderate stress aquatic screens) to better reveal phenotypical variance in zebrafish assays. Strengthening the value of zebrafish models in neurophenotyping research, this study indicates the potential of using more test batteries and a wider spectrum of pre-test stressors in zebrafish behavioral assays. PMID:27155502

  20. Building neurophenomics in zebrafish: Effects of prior testing stress and test batteries.

    PubMed

    Song, Cai; Yang, Lei; Wang, JiaJia; Chen, Peirong; Li, Shaomin; Liu, Yingcong; Nguyen, Michael; Kaluyeva, Aleksandra; Kyzar, Evan J; Gaikwad, Siddharth; Kalueff, Allan V

    2016-09-15

    The zebrafish (Danio rerio) is a promising model organism for neurophenomics - a new field of neuroscience linking neural phenotypes to various genetic and environmental factors. However, the effects of prior experimental manipulations on zebrafish performance in different behavioral paradigms remain unclear. Here, we examine the influence of selected stressful procedures and test batteries on adult zebrafish anxiety-like behaviors in two commonly used models - the novel tank (NTT) and the light-dark box (LDB) tests. While no overt behavioral differences between outbred short-fin wild-type (WT) and mutant 'pink' glowfish were seen in both tests under baseline (control) conditions, an acute severe stressor (a 30-min car transportation) detected significantly lower mutant fish anxiety-like behavior in these tests. In contrast, WT zebrafish showed no overt NTT or LDB responses following a mild stressor (5-min 40-Wt light) exposure, also showing no differences in batteries of NTT and LDB run immediately one after another, or with a 1-day interval. Collectively, these findings suggest that zebrafish may be relatively less sensitive (e.g., than other popular species, such as rodents) to the test battery effect, and show that stronger stressors may be needed (to complement low-to-moderate stress aquatic screens) to better reveal phenotypical variance in zebrafish assays. Strengthening the value of zebrafish models in neurophenotyping research, this study indicates the potential of using more test batteries and a wider spectrum of pre-test stressors in zebrafish behavioral assays.

  1. Zebrafish for modeling skin disorders.

    PubMed

    Cline, Abigail; Feldman, Steven R

    2016-01-01

    The experimental advantages of zebrafish make this model system highly amenable to the field of dermatology. Zebrafish skin development is similar to humans and its genome is ~70% orthologous to the human genome. Its external developmental process allows for genetic manipulation and analysis of embryogenesis within a short time frame with all important internal organs and skin compartments formed within 6 days. Zebrafish models of cutaneous human diseases offer insight into pathogenesis and a unique platform for testing of potential therapies. This review details the specific advantages of zebrafish and highlights its use in dermatological research. PMID:27617951

  2. VEGF-B-Neuropilin-1 signaling is spatiotemporally indispensable for vascular and neuronal development in zebrafish

    PubMed Central

    Jensen, Lasse D.; Nakamura, Masaki; Bräutigam, Lars; Li, Xuri; Liu, Yizhi; Samani, Nilesh J.; Cao, Yihai

    2015-01-01

    Physiological functions of vascular endothelial growth factor (VEGF)-B remain an enigma, and deletion of the Vegfb gene in mice lacks an overt phenotype. Here we show that knockdown of Vegfba, but not Vegfbb, in zebrafish embryos by specific morpholinos produced a lethal phenotype owing to vascular and neuronal defects in the brain. Vegfba morpholinos also markedly prevented development of hyaloid vasculatures in the retina, but had little effects on peripheral vascular development. Consistent with phenotypic defects, Vegfba, but not Vegfaa, mRNA was primarily expressed in the brain of developing zebrafish embryos. Interestingly, in situ detection of Neuropilin1 (Nrp1) mRNA showed an overlapping expression pattern with Vegfba, and knockdown of Nrp1 produced a nearly identically lethal phenotype as Vegfba knockdown. Furthermore, zebrafish VEGF-Ba protein directly bound to NRP1. Importantly, gain-of-function by exogenous delivery of mRNAs coding for NRP1-binding ligands VEGF-B or VEGF-A to the zebrafish embryos rescued the lethal phenotype by normalizing vascular development. Similarly, exposure of zebrafish embryos to hypoxia also rescued the Vegfba morpholino-induced vascular defects in the brain by increasing VEGF-A expression. Independent evidence of VEGF-A gain-of-function was provided by using a functionally defective Vhl-mutant zebrafish strain, which again rescued the Vegfba morpholino-induced vascular defects. These findings show that VEGF-B is spatiotemporally required for vascular development in zebrafish embryos and that NRP1, but not VEGFR1, mediates the essential signaling. PMID:26483474

  3. Acute exposure to waterborne psychoactive drugs attract zebrafish.

    PubMed

    Abreu, Murilo S; Giacomini, Ana Cristina V; Gusso, Darlan; Rosa, João G S; Koakoski, Gessi; Kalichak, Fabiana; Idalêncio, Renan; Oliveira, Thiago A; Barcellos, Heloísa H A; Bonan, Carla D; Barcellos, Leonardo J G

    2016-01-01

    Psychotropic medications are widely used, and their prescription has increased worldwide, consequently increasing their presence in aquatic environments. Therefore, aquatic organisms can be exposed to psychotropic drugs that may be potentially dangerous, raising the question of whether these drugs are attractive or aversive to fish. To answer this question, adult zebrafish were tested in a chamber that allows the fish to escape or seek a lane of contaminated water. These attraction and aversion paradigms were evaluated by exposing the zebrafish to the presence of acute contamination with these compounds. The zebrafish were attracted by certain concentrations of diazepam, fluoxetine, risperidone and buspirone, which were most likely detected by olfaction, because this behavior was absent in anosmic fish. These findings suggest that despite their deleterious effects, certain psychoactive drugs attract fish.

  4. The role of hydrogen sulphide in the control of breathing in hypoxic zebrafish (Danio rerio)

    PubMed Central

    Porteus, Cosima S; Abdallah, Sara J; Pollack, Jacob; Kumai, Yusuke; Kwong, Raymond W M; Yew, Hong M; Milsom, William K; Perry, Steve F

    2014-01-01

    The current study investigated the role of hydrogen sulphide (H2S) in oxygen sensing, intracellular signalling and promotion of ventilatory responses to hypoxia in adult and larval zebrafish (Danio rerio). Both larval and adult zebrafish exhibited a dose-dependent increase in ventilation to sodium sulphide (Na2S), an H2S donor. In vertebrates, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are enzymes that catalyse the endogenous production of H2S. In adult zebrafish, inhibition of both CBS and CSE with aminooxyacetate (AOA) and propargyl glycine (PPG) blunted or abolished the hypoxic hyperventilation, and the addition of Na2S to the water partially rescued the effects of inhibiting endogenous H2S production. In zebrafish larvae (4 days post-fertilization), gene knockdown of either CBS or CSE using morpholinos attenuated the hypoxic ventilatory response. Furthermore, the intracellular calcium concentration of isolated neuroepithelial cells (NECs), which are putative oxygen chemoreceptors, increased significantly when these cells were exposed to 50 μm Na2S, supporting a role for H2S in Ca2+-evoked neurotransmitter release in these cells. Finally, immunohistochemical labelling showed that NECs dissociated from adult gill contained CBS and CSE, whereas cutaneous NECs in larval zebrafish expressed only CSE. Taken together, these data show that H2S can be produced in the putative oxygen-sensing cells of zebrafish, the NECs, in which it appears to play a pivotal role in promoting the hypoxic ventilatory response. PMID:24756639

  5. Cloning and expression of new microRNAs from zebrafish

    PubMed Central

    Kloosterman, Wigard P.; Steiner, Florian A.; Berezikov, Eugene; de Bruijn, Ewart; van de Belt, Jose; Verheul, Mark; Cuppen, Edwin; Plasterk, Ronald H.A.

    2006-01-01

    MicroRNAs (miRNAs) play an important role in development and regulate the expression of many animal genes by post-transcriptional gene silencing. Here we describe the cloning and expression of new miRNAs from zebrafish. By high-throughput sequencing of small-RNA cDNA libraries from 5-day-old zebrafish larvae and adult zebrafish brain we found 139 known miRNAs and 66 new miRNAs. For 65 known miRNAs and for 11 new miRNAs we also cloned the miRNA star sequence. We analyzed the temporal and spatial expression patterns for 35 new miRNAs and for 32 known miRNAs in the zebrafish by whole mount in situ hybridization and northern blotting. Overall, 23 of the 35 new miRNAs and 30 of the 32 known miRNAs could be detected. We found that most miRNAs were expressed during later stages of development. Some were expressed ubiquitously, but many of the miRNAs were expressed in a tissue-specific manner. Most newly discovered miRNAs have low expression levels and are less conserved in other vertebrate species. Our cloning and expression analysis indicates that most abundant and conserved miRNAs in zebrafish are now known. PMID:16698962

  6. A jump persistent turning walker to model zebrafish locomotion

    PubMed Central

    Mwaffo, Violet; Anderson, Ross P.; Butail, Sachit; Porfiri, Maurizio

    2015-01-01

    Zebrafish are gaining momentum as a laboratory animal species for the investigation of several functional and dysfunctional biological processes. Mathematical models of zebrafish behaviour are expected to considerably aid in the design of hypothesis-driven studies by enabling preliminary in silico tests that can be used to infer possible experimental outcomes without the use of zebrafish. This study is motivated by observations of sudden, drastic changes in zebrafish locomotion in the form of large deviations in turn rate. We demonstrate that such deviations can be captured through a stochastic mean reverting jump diffusion model, a process that is commonly used in financial engineering to describe large changes in the price of an asset. The jump process-based model is validated on trajectory data of adult subjects swimming in a shallow circular tank obtained from an overhead camera. Through statistical comparison of the empirical distribution of the turn rate against theoretical predictions, we demonstrate the feasibility of describing zebrafish as a jump persistent turning walker. The critical role of the jump term is assessed through comparison with a simplified mean reversion diffusion model, which does not allow for describing the heavy-tailed distributions observed in the fish turn rate. PMID:25392396

  7. Zebrafish Craniofacial Development: A Window into Early Patterning

    PubMed Central

    Mork, Lindsey; Crump, Gage

    2016-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928

  8. Zebrafish Craniofacial Development: A Window into Early Patterning.

    PubMed

    Mork, Lindsey; Crump, Gage

    2015-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research.

  9. Somatostatin-like immunoreactivity in the retina.

    PubMed Central

    Yamada, T; Marshak, D; Basinger, S; Walsh, J; Morley, J; Stell, W

    1980-01-01

    A substance with somatostatin-like immunoreactivity (SLI) was found in extracts of goldfish, frog, and cow retina. Dilutions of retinal SLI parallel the standard curve for radioimmunoassay obtained with synthetic somatostatin. Chromatography of goldfish retinal extract on Sephadex G-50 revealed two peaks of SLI, one that coeluted with synthetic somatostatin and one that eluted as a larger molecule. Incubation in 8 M urea did not alter the chromatographic pattern of the extract. SLI was present in extracts of frog optic nerve and tectum in concentrations higher than those found in the retina. In goldfish retina, SLI was localized by immunofluorescence to four types of processes in the inner plexiform layer; their origins could be traced to three classes of SLI-containing cell bodies in the proximal row of the inner nuclear layer and one class in the ganglion cell layer. Localization of SLI to cells of the retina and characterizations of the molecular forms of retinal SLI suggest that the retina is a promising model system for studies on the potential neurotransmitter function of somatostatin. Images PMID:6103539

  10. Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish.

    PubMed

    Levin, Edward D; Sledge, Damiyon; Roach, Stephanie; Petro, Ann; Donerly, Susan; Linney, Elwood

    2011-01-01

    As more adults take the stimulant medication methylphenidate to treat attention deficit hyperactivity disorder (ADHD) residual type, the risk arises with regard to exposure during early development if people taking the medication become pregnant. We studied the neurobehavioral effects of methylphenidate in zebrafish. Zebrafish offer cellular reporter systems, continuous visual access and molecular interventions such as morpholinos to help determine critical mechanisms underlying neurobehavioral teratogenicity. Previously, we had seen that persisting neurobehavioral impairment in zebrafish with developmental chlorpyrifos exposure was associated with disturbed dopamine systems. Because methylphenidate is an indirect dopamine agonist, it was thought that it might also cause persistent behavioral impairment after developmental exposure. Zebrafish embryos were exposed to the ADHD stimulant medication methylphenidate 0-5 days post fertilization (12.5-50mg/l). They were tested for long-term behavioral effects as adults. Methylphenidate exposure (50mg/l) caused significant increases in dopamine, norepinepherine and serotonin on day 6 but not day 30 after fertilization. In the novel tank diving test of predatory avoidance developmental methylphenidate (50mg/l) caused a significant reduction in the normal diving response. In the three-chamber spatial learning task early developmental methylphenidate (50mg/l) caused a significant impairment in choice accuracy. These data show that early developmental exposure of zebrafish to methylphenidate causes a long-term impairment in neurobehavioral plasticity. The identification of these functional deficits in zebrafish enables further studies with this model to determine how molecular and cellular mechanisms are disturbed to arrive at this compromised state.

  11. White Adipose Tissue Development in Zebrafish Is Regulated by Both Developmental Time and Fish Size

    PubMed Central

    Imrie, Dru; Sadler, Kirsten C.

    2010-01-01

    Adipocytes are heterogeneous. Whether their differences are attributed to anatomical location or to different developmental origins is unknown. We investigated whether development of different white adipose tissue (WAT) depots in zebrafish occurs simultaneously or whether adipogenesis is influenced by the metabolic demands of growing fish. Like mammals, zebrafish adipocyte morphology is distinctive and adipocytes express cell-specific markers. All adults contain WAT in pancreatic, subcutaneous, visceral, esophageal, mandibular, cranial, and tail-fin depots. Unlike most zebrafish organs that form during embryogenesis, WAT was not found in embryos or young larvae. Instead, WAT was first identified in the pancreas on 12 days postfertilization (dpf), and then in visceral, subcutaneous, and cranial stores in older fish. All 30 dpf fish exceeding 10.6 mm standard length contained the adult repertoire of WAT depots. Pancreatic, esophageal, and subcutaneous WAT appearance correlated with size, not age, as found for other features appearing during postembryonic zebrafish development. PMID:20925116

  12. Associative learning in the multichamber tank: A new learning paradigm for zebrafish.

    PubMed

    Fernandes, Yohaan M; Rampersad, Mindy; Luchiari, Ana C; Gerlai, Robert

    2016-10-01

    The zebrafish has been gaining prominence in the field of behavioural brain research as this species offers a good balance between system complexity and practical simplicity. While the number of studies examining the behaviour of zebrafish has exponentially increased over the past decade, the need is still substantial for paradigms capable of assessing cognitive and mnemonic characteristics of this species. Here we describe and utilize a novel visual discrimination task with which we evaluated acquisition of CS (colour)-US (sight of conspecifics) association in adult zebrafish. We report significant acquisition of CS-US association indicated by the increased time the fish spent in and the increased frequency of visits of the target chamber during a probe trial in the absence of reward. Given the simplicity of the apparatus and procedure, we conclude that the new task may be employed to assay learning and memory in adult zebrafish in an efficient manner. PMID:27345425

  13. Associative learning in the multichamber tank: A new learning paradigm for zebrafish.

    PubMed

    Fernandes, Yohaan M; Rampersad, Mindy; Luchiari, Ana C; Gerlai, Robert

    2016-10-01

    The zebrafish has been gaining prominence in the field of behavioural brain research as this species offers a good balance between system complexity and practical simplicity. While the number of studies examining the behaviour of zebrafish has exponentially increased over the past decade, the need is still substantial for paradigms capable of assessing cognitive and mnemonic characteristics of this species. Here we describe and utilize a novel visual discrimination task with which we evaluated acquisition of CS (colour)-US (sight of conspecifics) association in adult zebrafish. We report significant acquisition of CS-US association indicated by the increased time the fish spent in and the increased frequency of visits of the target chamber during a probe trial in the absence of reward. Given the simplicity of the apparatus and procedure, we conclude that the new task may be employed to assay learning and memory in adult zebrafish in an efficient manner.

  14. Transplantation of GFP-expressing Blastomeres for Live Imaging of Retinal and Brain Development in Chimeric Zebrafish Embryos

    PubMed Central

    Zou, Jian; Wei, Xiangyun

    2010-01-01

    Cells change extensively in their locations and property during embryogenesis. These changes are regulated by the interactions between the cells and their environment. Chimeric embryos, which are composed of cells of different genetic background, are great tools to study the cell-cell interactions mediated by genes of interest. The embryonic transparency of zebrafish at early developmental stages permits direct visualization of the morphogenesis of tissues and organs at the cellular level. Here, we demonstrate a protocol to generate chimeric retinas and brains in zebrafish embryos and to perform live imaging of the donor cells. The protocol covers the preparation of transplantation needles, the transplantation of GFP-expressing donor blastomeres to GFP-negative hosts, and the examination of donor cell behavior under live confocal microscopy. With slight modifications, this protocol can also be used to study the embryonic development of other tissues and organs in zebrafish. The advantages of using GFP to label donor cells are also discussed. PMID:20689504

  15. Proteomics of early zebrafish embryos

    PubMed Central

    Link, Vinzenz; Shevchenko, Andrej; Heisenberg, Carl-Philipp

    2006-01-01

    Background Zebrafish (D. rerio) has become a powerful and widely used model system for the analysis of vertebrate embryogenesis and organ development. While genetic methods are readily available in zebrafish, protocols for two dimensional (2D) gel electrophoresis and proteomics have yet to be developed. Results As a prerequisite to carry out proteomic experiments with early zebrafish embryos, we developed a method to efficiently remove the yolk from large batches of embryos. This method enabled high resolution 2D gel electrophoresis and improved Western blotting considerably. Here, we provide detailed protocols for proteomics in zebrafish from sample preparation to mass spectrometry (MS), including a comparison of databases for MS identification of zebrafish proteins. Conclusion The provided protocols for proteomic analysis of early embryos enable research to be taken in novel directions in embryogenesis. PMID:16412219

  16. Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders.

    PubMed

    Verkerk, Arie O; Remme, Carol Ann

    2012-01-01

    The zebrafish is a cold-blooded tropical freshwater teleost with two-chamber heart morphology. A major advantage of the zebrafish for heart studies is that the embryo is transparent, allowing for easy assessment of heart development, heart rate analysis and phenotypic characterization. Moreover, rapid and effective gene-specific knockdown can be achieved using morpholino oligonucleotides. Lastly, zebrafish are small in size, are easy to maintain and house, grow fast, and have large offspring size, making them a cost-efficient research model. Zebrafish embryonic and adult heart rates as well as action potential (AP) shape and duration and electrocardiogram morphology closely resemble those of humans. However, whether the zebrafish is truly an attractive alternative model for human cardiac electrophysiology depends on the presence and gating properties of the various ion channels in the zebrafish heart, but studies into the latter are as yet limited. The rapid component of the delayed rectifier K(+) current (I(Kr)) remains the best characterized and validated ion current in zebrafish myocytes, and zebrafish may represent a valuable model to investigate human I(Kr) channel-related disease, including long QT syndrome. Arguments against the use of zebrafish as model for human cardiac (patho)electrophysiology include its cold-bloodedness and two-chamber heart morphology, absence of t-tubuli, sarcoplamatic reticulum function, and a different profile of various depolarizing and repolarizing ion channels, including a limited Na(+) current density. Based on the currently available literature, we propose that zebrafish may constitute a relevant research model for investigating ion channel disorders associated with abnormal repolarization, but may be less suitable for studying depolarization disorders or Ca(2+)-modulated arrhythmias. PMID:22934012

  17. Intraretinal grafting reveals growth requirements and guidance cues for optic axons in the developing avian retina.

    PubMed

    Halfter, W

    1996-07-10

    To study environmental factors controlling the growth and navigation of optic axons in the eye, grafts of retinal, optic disc, optic tectum, and floor plate tissue were transplanted into organ-cultured embryonic chick or quail eyes. The growth of axons into and out of the graft was studied in cross sections of the cultured eyes and by DiI tracing in retinal whole mounts. Based on the location and trajectory of axons and based on the quantity of axons that entered and exited the grafts, several requirements for axonal navigation were established: (1) Axonal growth is restricted to an approximately 10-microm-thick layer at the vitreal surface of the retina. (2) The retinal neuroepithelium prior to axogenesis is nonpermissive for neurite outgrowth. This nonpermissive quality is transient and recedes peripherally as the differentiation of the retina progresses. (3) Embryonic axons are able to grow into neonatal and adult retinal grafts, demonstrating that older retina remains permissive for axonal growth. (4) The trajectory of axons into and from retinal grafts that had been rotated in their peripheral-central orientation showed that the retina has an inherent polarity that permits axon growth toward and away from the optic disc, but does not allow axon growth perpendicular to this direction. This centroperipheral cue operates locally rather than by long distance. (5) The optic disc provides an exit for the axons from the retina, but has no detectable neurotropic activity. Finally, optic axons from the host retina readily enter grafts of their target tissue, the optic tectum, but few axons are able to leave tectal transplants. PMID:8660885

  18. A dedicated visual pathway for prey detection in larval zebrafish.

    PubMed

    Semmelhack, Julia L; Donovan, Joseph C; Thiele, Tod R; Kuehn, Enrico; Laurell, Eva; Baier, Herwig

    2014-01-01

    Zebrafish larvae show characteristic prey capture behavior in response to small moving objects. The neural mechanism used to recognize objects as prey remains largely unknown. We devised a machine learning behavior classification system to quantify hunting kinematics in semi-restrained animals exposed to a range of virtual stimuli. Two-photon calcium imaging revealed a small visual area, AF7, that was activated specifically by the optimal prey stimulus. This pretectal region is innervated by two types of retinal ganglion cells, which also send collaterals to the optic tectum. Laser ablation of AF7 markedly reduced prey capture behavior. We identified neurons with arbors in AF7 and found that they projected to multiple sensory and premotor areas: the optic tectum, the nucleus of the medial longitudinal fasciculus (nMLF) and the hindbrain. These findings indicate that computations in the retina give rise to a visual stream which transforms sensory information into a directed prey capture response. PMID:25490154

  19. Behavioral and biochemical adjustments of the zebrafish Danio rerio exposed to the β-blocker propranolol.

    PubMed

    Mitchell, Kimberly M; Moon, Thomas W

    2016-09-01

    Propranolol (PROP) is a β-blocker prescribed mainly to treat human cardiovascular diseases and as a result of its wide usage and persistence, it is reported in aquatic environments. This study examined whether PROP alters developmental patterns and catecholamine (CA)-regulated processes in the zebrafish (Danio rerio) and if exposure during early life alters the stress response and behaviors of adults. The calculated 48h larva LC50 was 21.6mg/L, well above reported environmental levels (0.01-0.59μg/L). Stressed and PROP-exposed adult zebrafish had reduced testosterone and estradiol levels and exhibited behaviors indicating less anxiety than control fish. Furthermore, adults previously PROP-exposed as embryos/larvae had decreased growth in terms of body length and mass. Finally, these adults showed increased cholesterol and a dose-dependent decrease in testosterone levels compared with unexposed zebrafish. Thus PROP-exposure of zebrafish embryos/larvae alters developmental patterns and CA-regulated processes that may affect normal behaviors and responses to stressors, and at least some of these changes persist in the adult zebrafish. PMID:26520238

  20. Vascular tumors of the choroid and retina

    PubMed Central

    Shanmugam, P Mahesh; Ramanjulu, Rajesh

    2015-01-01

    Vascular tumors of the retina and choroid can be seen occasionally. In the following article, the key clinical and diagnostic features of the major retinal and choroidal vascular tumors, their systemic associations, and the literature pertaining to the most currently available treatment strategies are reviewed. PMID:25827544

  1. Eye formation in the absence of retina

    PubMed Central

    Swindell, Eric C.; Liu, Chaomei; Shah, Rina; Smith, April N.; Lang, Richard A.; Jamrich, Milan

    2008-01-01

    Eye development is a complex process that involves the formation of the retina and the lens, collectively called the eyeball, as well as the formation of auxiliary eye structures such as the eyelid, lacrimal gland, cornea and conjunctiva. The developmental requirements for the formation of each individual structure are only partially understood. We have shown previously that the homeobox-containing gene Rx is a key component in eye formation, as retinal structures do not develop and retina-specific gene expression is not observed in Rx-deficient mice. In addition, Rx−/− embryos do not develop any lens structure, despite the fact that Rx is not expressed in the lens. This demonstrates that during normal mammalian development, retina-specific gene expression is necessary for lens formation. In this paper we show that lens formation can be restored in Rx-deficient embryos experimentally, by the elimination of β-catenin expression in the head surface ectoderm. This suggests that β-catenin is involved in lens specification either through Wnt signaling or through its function in cell adhesion. In contrast to lens formation, we demonstrate that the development of auxiliary eye structures does not depend on retina-specific gene expression or retinal morphogenesis. These results point to the existence of two separate developmental processes involved in the formation of the eye and its associated structures. One involved in the formation of the eyeball and the second involved in the formation of the auxiliary eye structures. PMID:18675797

  2. Gyrate atrophy of choroid and retina.

    PubMed

    Bhaduri, Gautam

    2002-03-01

    Gyrate atrophy of choroid and retina is a rare disorder of autosomal recessive nature. There occurs patchy and progressive atrophy of the choroid and retina at the equatorial region with central area being less affected. Here in this case report, one woman of about 47 years attended at the retina clinic, Tenennt Institute of Ophthalmology, Glasgow University with the history of gradual loss of vision. On fundus examination, sharply defined bizarre shaped atrophic areas of fundus was seen in both the eyes. Velvet like fine granular pigments were present in the macula, the zone of healthy retina and the periphery. The colourless, elongated, glittering crystals were scattered over the dark brown pigments visible through 90 dioptre lens. Bone corpuscles pigments were not found. Fluorescein angiography showed hyperfluorescence in the area of gyrate atrophy. Her plasma ornithine level and plasma tiramine level were 1 90 U mol/l and 357 U mol/l. respectively. A rigid schedule of low protein diet including near total elimination of arginine with supplementation of essential amino acids was advised since the diagnosis was established.

  3. In ovo electroporation in embryonic chick retina.

    PubMed

    Islam, Mohammed M; Doh, Sung Tae; Cai, Li

    2012-02-05

    Chicken embryonic retina is an excellent tool to study retinal development in higher vertebrates. Because of large size and external development, it is comparatively very easy to manipulate the chick embryonic retina using recombinant DNA/RNA technology. Electroporation of DNA/RNA constructs into the embryonic retina have a great advantage to study gene regulation in retinal stem/progenitor cells during retinal development. Different type of assays such as reporter gene assay, gene over-expression, gene knock down (shRNA) etc. can be performed using the electroporation technique. This video demonstrates targeted retinal injection and in ovo electroporation into the embryonic chick retina at the Hamburger and Hamilton stage 22-23, which is about embryonic day 4 (E4). Here we show a rapid and convenient in ovo electroporation technique whereby a plasmid DNA that expresses green fluorescent protein (GFP) as a marker is directly delivered into the chick embryonic subretinal space and followed by electric pulses to facilitate DNA uptake by retinal stem/progenitor cells. The new method of retinal injection and electroporation at E4 allows the visualization of all retinal cell types, including the late-born neurons(1), which has been difficult with the conventional method of injection and electroporation at E1.5(2).

  4. MARCKS in advanced stages of neural retina histogenesis.

    PubMed

    Zolessi, Flavio R; Arruti, Cristina

    2004-01-01

    Myristoylated alanine-rich kinase C substrate (MARCKS), an actin-binding protein, is involved in several signal transduction pathways. It is susceptible to be phosphorylated by protein kinases as protein kinase C and some proline-directed kinases. These phosphorylations differently modulate its functions. We previously showed that a phosphorylation at its Ser25 (S25p-MARCKS) in chickens is a signature of this ubiquitous protein in neuron differentiation. To gain insight into the possible involvement of MARCKS in late retinal histogenesis, we compared the developmental expression patterns of the total protein and its S25p variants. Here we show that the most outstanding modifications occur at the outer retina, where S25p disappears at the end of embryonic development and where MARCKS is missing in adults. These results suggest diverse functional specializations in the different retinal layers.

  5. MARCKS in advanced stages of neural retina histogenesis.

    PubMed

    Zolessi, Flavio R; Arruti, Cristina

    2004-01-01

    Myristoylated alanine-rich kinase C substrate (MARCKS), an actin-binding protein, is involved in several signal transduction pathways. It is susceptible to be phosphorylated by protein kinases as protein kinase C and some proline-directed kinases. These phosphorylations differently modulate its functions. We previously showed that a phosphorylation at its Ser25 (S25p-MARCKS) in chickens is a signature of this ubiquitous protein in neuron differentiation. To gain insight into the possible involvement of MARCKS in late retinal histogenesis, we compared the developmental expression patterns of the total protein and its S25p variants. Here we show that the most outstanding modifications occur at the outer retina, where S25p disappears at the end of embryonic development and where MARCKS is missing in adults. These results suggest diverse functional specializations in the different retinal layers. PMID:15855766

  6. Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.

    PubMed

    Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen

    2014-08-01

    A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.

  7. Identification of Wnt Genes Expressed in Neural Progenitor Zones during Zebrafish Brain Development

    PubMed Central

    Piotrowski, Tatjana; Dorsky, Richard I.

    2015-01-01

    Wnt signaling regulates multiple aspects of vertebrate central nervous system (CNS) development, including neurogenesis. However, vertebrate genomes can contain up to 25 Wnt genes, the functions of which are poorly characterized partly due to redundancy in their expression. To identify candidate Wnt genes as candidate mediators of pathway activity in specific brain progenitor zones, we have performed a comprehensive expression analysis at three different stages during zebrafish development. Antisense RNA probes for 21 Wnt genes were generated from existing and newly synthesized cDNA clones and used for in situ hybridization on whole embryos and dissected brains. As in other species, we found that Wnt expression patterns in the embryonic zebrafish CNS are complex and often redundant. We observed that progenitor zones in the telencephalon, dorsal diencephalon, hypothalamus, midbrain, midbrain-hindbrain boundary, cerebellum and retina all express multiple Wnt genes. Our data identify 12 specific ligands that can now be tested using loss-of-function approaches. PMID:26713625

  8. Plasmalemmal and Vesicular γ-Aminobutyric Acid Transporter Expression in the Developing Mouse Retina

    PubMed Central

    GUO, CHENYING; STELLA, SALVATORE L.; HIRANO, ARLENE A.; BRECHA, NICHOLAS C.

    2009-01-01

    Plasmalemmal and vesicular γ-aminobutyric acid (GABA) transporters influence neurotransmission by regulating high-affinity GABA uptake and GABA release into the synaptic cleft and extracellular space. Postnatal expression of the plasmalemmal GABA transporter-1 (GAT-1), GAT-3, and the vesicular GABA/glycine transporter (VGAT) were evaluated in the developing mouse retina by using immunohistochemistry with affinity-purified antibodies. Weak transporter immunoreactivity was observed in the inner retina at postnatal day 0 (P0). GAT-1 immunostaining at P0 and at older ages was in amacrine and displaced amacrine cells in the inner nuclear layer (INL) and ganglion cell layer (GCL), respectively, and in their processes in the inner plexiform layer (IPL). At P10, weak GAT-1 immunostaining was in Müller cell processes. GAT-3 immunostaining at P0 and older ages was in amacrine cells and their processes, as well as in Müller cells and their processes that extended radially across the retina. At P10, Müller cell somata were observed in the middle of the INL. VGAT immunostaining was present at P0 and older ages in amacrine cells in the INL as well as processes in the IPL. At P5, weak VGAT immunostaining was also observed in horizontal cell somata and processes. By P15, the GAT and VGAT immunostaining patterns appear similar to the adult immunostaining patterns; they reached adult levels by about P20. These findings demonstrate that GABA uptake and release are initially established in the inner retina during the first postnatal week and that these systems subsequently mature in the outer retina during the second postnatal week. PMID:18975268

  9. Depletion of Myostatin b Promotes Somatic Growth and Lipid Metabolism in Zebrafish.

    PubMed

    Gao, Yanping; Dai, Ziru; Shi, Chuang; Zhai, Gang; Jin, Xia; He, Jiangyan; Lou, Qiyong; Yin, Zhan

    2016-01-01

    Myostatin (MSTN) is a negative regulator of myogenesis in vertebrates. Depletion of mstn resulted in elevated muscle growth in several animal species. However, the report on the complete ablation of mstn in teleost fish has not yet become available. In this study, two independent mstnb-deficient mutant lines in zebrafish were generated with the TALENs technique. In the mstnb-deficient zebrafish, enhanced muscle growth with muscle fiber hyperplasia was achieved. Beginning at the adult stage (80 days postfertilization), the mstnb-deficient zebrafish exhibited increased circumferences and body weights compared with the wild-type sibling control fish. Although the overall total lipid/body weight ratios remained similar between the mstnb-deficient zebrafish and the control fish, the distribution of lipids was altered. The size of the visceral adipose tissues became smaller while more lipids accumulated in skeletal muscle in the mstnb-deficient zebrafish than in the wild-type control fish. Based on the transcriptional expression profiles, our results revealed that lipid metabolism, including lipolysis and lipogenesis processes, was highly activated in the mstnb-deficient zebrafish, which indicated the transition of energy metabolism from protein-dependent to lipid-dependent in mstnb-deficient zebrafish. Our mstnb-deficient model could be valuable in understanding not only the growth trait regulation in teleosts but also the mechanisms of teleost energy metabolism. PMID:27458428

  10. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration

    PubMed Central

    Gerlach, Gary F.; Wingert, Rebecca A.

    2012-01-01

    Vertebrates form a progressive series of up to three kidney organs during development—the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways. PMID:24014448

  11. A zebrafish (Danio rerio) model of infectious spleen and kidney necrosis virus (ISKNV) infection

    SciTech Connect

    Xu Xiaopeng; Zhang Lichun; Weng Shaoping; Huang Zhijian; Lu Jing; Lan Dongming; Zhong Xuejun; Yu Xiaoqiang; Xu Anlong He Jianguo

    2008-06-20

    Zebrafish is a model animal for studies of genetics, development, toxicology, oncology, and immunology. In this study, infectious spleen and kidney necrosis virus (ISKNV) was used to establish an infection in zebrafish, and the experimental conditions were established and characterized. Mortality of adult zebrafish infected with ISKNV by intraperitoneal (i.p.) injection exceeded 60%. ISKNV can be passed stably in zebrafish for over ten passages. The ailing zebrafish displayed petechial hemorrhaging and scale protrusion. Histological analysis of moribund fish revealed necrosis of tissue and enlarged cells in kidney and spleen. The real-time RT-PCR analysis of mRNA level confirmed that ISKNV was replicated in zebrafish. Immunohistochemistry and immunofluorescence analyses further confirmed the presence of ISKNV-infected cells in almost all organs of the infected fish. Electron microscope analyses showed that the ISKNV particle was present in the infected tissues. The establishment of zebrafish infection model of ISKNV can offer a valuable tool for studying the interactions between ISKNV and its host.

  12. Antibiotic Toxicity and Absorption in Zebrafish Using Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10–1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish. PMID:25938774

  13. Depletion of Myostatin b Promotes Somatic Growth and Lipid Metabolism in Zebrafish

    PubMed Central

    Gao, Yanping; Dai, Ziru; Shi, Chuang; Zhai, Gang; Jin, Xia; He, Jiangyan; Lou, Qiyong; Yin, Zhan

    2016-01-01

    Myostatin (MSTN) is a negative regulator of myogenesis in vertebrates. Depletion of mstn resulted in elevated muscle growth in several animal species. However, the report on the complete ablation of mstn in teleost fish has not yet become available. In this study, two independent mstnb-deficient mutant lines in zebrafish were generated with the TALENs technique. In the mstnb-deficient zebrafish, enhanced muscle growth with muscle fiber hyperplasia was achieved. Beginning at the adult stage (80 days postfertilization), the mstnb-deficient zebrafish exhibited increased circumferences and body weights compared with the wild-type sibling control fish. Although the overall total lipid/body weight ratios remained similar between the mstnb-deficient zebrafish and the control fish, the distribution of lipids was altered. The size of the visceral adipose tissues became smaller while more lipids accumulated in skeletal muscle in the mstnb-deficient zebrafish than in the wild-type control fish. Based on the transcriptional expression profiles, our results revealed that lipid metabolism, including lipolysis and lipogenesis processes, was highly activated in the mstnb-deficient zebrafish, which indicated the transition of energy metabolism from protein-dependent to lipid-dependent in mstnb-deficient zebrafish. Our mstnb-deficient model could be valuable in understanding not only the growth trait regulation in teleosts but also the mechanisms of teleost energy metabolism. PMID:27458428

  14. The neurogenic competence of progenitors from the postnatal rat retina in vitro.

    PubMed

    Engelhardt, Maren; Wachs, Frank-Peter; Couillard-Despres, Sebastien; Aigner, Ludwig

    2004-05-01

    The mammalian retina develops from stem or progenitor cells that are of neuroectodermal origin and derive from bilateral invaginations of the neuroepithelium, the optic vesicles. Shortly after birth, around 12 days postnatal in rats, the retina is fully developed in its cellular parts. Even though different cell types in the adult might be potential sources for retinal stem cells or progenitor cells, the retina is a non-neurogenic region and the diseased retina is devoid of any spontaneous regeneration. In an attempt to link late developmental processes to the adult situation, we analyzed the presence and the neurogenic potential of retinal progenitors during the postnatal period and compared it to adult ciliary body (CB) derived retinal progenitors and subventricular zone (SVZ) derived neural stem cells. Retinal progenitor properties were identified by the capacity to proliferate and by the expression of the progenitor markers Nestin, Flk-1, Chx10, Pax6 and the radial glia marker BLBP. The neurogenic potential was assayed by the expression of the neuronal markers doublecortin, betaIII Tubulin, Map2 and NSE, the glial makers A2B5, NG2, GalC and GFAP, and by incorporation of BrdU. The number of Flk-1 positive cells and concomitantly the number of newly born betaIII Tubulin-positive cells decreased within the first postnatal week in retinal progenitor cultures and no newly generated betaIII Tubulin, but GFAP positive cells were detected thereafter. In contrast to neural stem cells derived from the adult SVZ, postnatal and adult CB derived progenitors had a lower and a restricted proliferation potential and did not generate oligodendrocytes. The work demonstrates, however, that the existence of retinal progenitor cells is not restricted to embryonic development. In the sensory retina the differentiation potential of late retinal progenitors becomes restricted to the glial lineage, whereas neurogenic progenitor cells are still present in the CB. In addition, major

  15. Differential gene expression in mouse retina related to regional differences in vulnerability to hyperoxia

    PubMed Central

    Natoli, Riccardo; Valter, Krisztina; Stone, Jonathan

    2010-01-01

    Purpose In the C57BL/6J mouse retina, hyperoxia-induced degeneration of photoreceptors shows strong regional variation, beginning at a locus ~0.5 mm inferior to the optic disc. To identify gene expression differences that might underlie this variability in vulnerability, we have used microarray techniques to describe regional (superior-inferior) variations in gene expression in the retina. Methods Young adult C57BL/6J mice raised in dim cyclic illumination (12 h at 5 lx and 12 h in darkness) were exposed to hyperoxia (75% oxygen for two weeks). Retinas were collected from hyperoxia-exposed and control animals without fixation and divided into superior and inferior halves. RNA was extracted from each sample, purified, and hybridized to Mouse Gene 1.0 ST arrays (Affymetrix). The consistency of the microarray results was assessed using quantitative PCR for selected genes. Expression data were analyzed to identify genes and ncRNAs whose differential expression between the superior and inferior retina could be associated with relative vulnerability to hyperoxia. Results In control retinas, only two genes showed a fold difference in expression >2 between the superior and inferior retina; another 25 showed a fold difference of 1.5–2.0. Of these 27, the functions of six genes, including ventral anterior homeobox containing gene 2 (Vax2) and T-box 5 (Tbox5), are related to parameters of anatomic development and the functions of five are related to sensory perception. Among the latter, short-wave-sensitive cone opsin (Opn1sw) was more strongly expressed in the inferior retina and medium-wave-sensitive cone opsin (Opn1mw) in the superior retina. This is consistent with known differences in S- and M-cone distribution, confirming our separation of retinal regions. The highest fold difference was reported for membrane metalloendopeptidase (Mme), a member from the metallothionein group of cytoprotective proteins. To identify genes whose regulation by hyperoxia was

  16. Imaging and 3D Reconstruction of Cerebrovascular Structures in Embryonic Zebrafish

    PubMed Central

    Ethell, Douglas W.; Cameron, D. Joshua

    2014-01-01

    Zebrafish are a powerful tool to study developmental biology and pathology in vivo. The small size and relative transparency of zebrafish embryos make them particularly useful for the visual examination of processes such as heart and vascular development. In several recent studies transgenic zebrafish that express EGFP in vascular endothelial cells were used to image and analyze complex vascular networks in the brain and retina, using confocal microscopy. Descriptions are provided to prepare, treat and image zebrafish embryos that express enhanced green fluorescent protein (EGFP), and then generate comprehensive 3D renderings of the cerebrovascular system. Protocols include the treatment of embryos, confocal imaging, and fixation protocols that preserve EGFP fluorescence. Further, useful tips on obtaining high-quality images of cerebrovascular structures, such as removal the eye without damaging nearby neural tissue are provided. Potential pitfalls with confocal imaging are discussed, along with the steps necessary to generate 3D reconstructions from confocal image stacks using freely available open source software. PMID:24797110

  17. Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells.

    PubMed

    Zhang, Rong-wei; Wei, Hong-ping; Xia, Yi-meng; Du, Jiu-lin

    2010-07-15

    The zebrafish retina has been an important model for studying morphological development of neural circuits in vivo. However, its functional development is not yet well understood. To investigate the functional development of zebrafish retina, we developed an in vivo patch-clamp whole-cell recording technique in intact zebrafish larvae. We first examined the developmental profile of light-evoked responses (LERs) in retinal ganglion cells (RGCs) from 2 to 9 days post-fertilization (dpf). Unstable LERs were first observed at 2.5 dpf. By 4 dpf, RGCs exhibited reliable light responses. As the GABAergic system is critical for retinal development, we then performed in vivo gramicidin perforated-patch whole-cell recording to characterize the developmental change of GABAergic action in RGCs. The reversal potential of GABA-induced currents (E(GABA)) in RGCs gradually shifted from depolarized to hyperpolarized levels during 2-4 dpf and the excitation-to-inhibition (E-I) switch of GABAergic action occurred at around 2.5 dpf when RGCs became light sensitive. Meanwhile, GABAergic transmission upstream to RGCs also became inhibitory by 2.5 dpf. Furthermore, down-regulation of the K(+)/Cl() co-transporter (KCC2) by the morpholino oligonucleotide-based knockdown approach, which shifted RGC E(GABA) towards a more depolarized level and thus delayed the E-I switch by one day, postponed the appearance of RGC LERs by one day. In addition, RGCs exhibited correlated giant inward current (GICs) during 2.5-3.5 dpf. The period of GICs was shifted to 3-4.5 dpf by KCC2 knockdown. Taken together, the GABAergic E-I switch occurs coincidently with the emergence of light responses and GICs in zebrafish RGCs, and may contribute to the functional development of retinal circuits.

  18. Spatiotemporal Pattern of Doublecortin Expression in the Retina of the Sea Lamprey

    PubMed Central

    Fernández-López, Blanca; Romaus-Sanjurjo, Daniel; Senra-Martínez, Pablo; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2016-01-01

    Despite the importance of doublecortin (DCX) for the development of the nervous system, its expression in the retina of most vertebrates is still unknown. The key phylogenetic position of lampreys, together with their complex life cycle, with a long blind larval stage and an active predator adult stage, makes them an interesting model to study retinal development. Here, we studied the spatiotemporal pattern of expression of DCX in the retina of the sea lamprey. In order to characterize the DCX expressing structures, the expression of acetylated α-tubulin (a neuronal marker) and cytokeratins (glial marker) was also analyzed. Tract-tracing methods were used to label ganglion cells. DCX immunoreactivity appeared initially in photoreceptors, ganglion cells and in fibers of the prolarval retina. In larvae smaller than 100 mm, DCX expression was observed in photoreceptors, in cells located in the inner nuclear and inner plexiform layers (IPLs) and in fibers coursing in the nuclear and IPLs, and in the optic nerve (ON). In retinas of premetamorphic and metamorphic larvae, DCX immunoreactivity was also observed in radially oriented cells and fibers and in a layer of cells located in the outer part of the inner neuroblastic layer (INbL) of the lateral retina. Photoreceptors and fibers ending in the outer limitans membrane (OLM) showed DCX expression in adults. Some retinal pigment epithelium cells were also DCX immunoreactive. Immunofluorescence for α-tubulin in premetamorphic larvae showed coexpression in most of the DCX immunoreactive structures. No cells/fibers were found showing DCX and cytokeratins colocalization. The perikaryon of mature ganglion cells is DCX negative. The expression of DCX in sea lamprey retinas suggests that it could play roles in the migration of cells that differentiate in the metamorphosis, in the establishment of connections of ganglion cells and in the development of photoreceptors. Our results also suggest that the radial glia and retinal

  19. Fingerprinting of Psychoactive Drugs in Zebrafish Anxiety-Like Behaviors

    PubMed Central

    Maximino, Caio; da Silva, Annanda Waneza Batista; Araújo, Juliana; Lima, Monica Gomes; Miranda, Vanessa; Puty, Bruna; Benzecry, Rancés; Picanço-Diniz, Domingos Luiz Wanderley; Gouveia, Amauri; Oliveira, Karen Renata Matos; Herculano, Anderson Manoel

    2014-01-01

    A major hindrance for the development of psychiatric drugs is the prediction of how treatments can alter complex behaviors in assays which have good throughput and physiological complexity. Here we report the development of a medium-throughput screen for drugs which alter anxiety-like behavior in adult zebrafish. The observed phenotypes were clustered according to shared behavioral effects. This barcoding procedure revealed conserved functions of anxiolytic, anxiogenic and psychomotor stimulating drugs and predicted effects of poorly characterized compounds on anxiety. Moreover, anxiolytic drugs all decreased, while anxiogenic drugs increased, serotonin turnover. These results underscore the power of behavioral profiling in adult zebrafish as an approach which combines throughput and physiological complexity in the pharmacological dissection of complex behaviors. PMID:25079766

  20. Fingerprinting of psychoactive drugs in zebrafish anxiety-like behaviors.

    PubMed

    Maximino, Caio; da Silva, Annanda Waneza Batista; Araújo, Juliana; Lima, Monica Gomes; Miranda, Vanessa; Puty, Bruna; Benzecry, Rancés; Picanço-Diniz, Domingos Luiz Wanderley; Gouveia, Amauri; Oliveira, Karen Renata Matos; Herculano, Anderson Manoel

    2014-01-01

    A major hindrance for the development of psychiatric drugs is the prediction of how treatments can alter complex behaviors in assays which have good throughput and physiological complexity. Here we report the development of a medium-throughput screen for drugs which alter anxiety-like behavior in adult zebrafish. The observed phenotypes were clustered according to shared behavioral effects. This barcoding procedure revealed conserved functions of anxiolytic, anxiogenic and psychomotor stimulating drugs and predicted effects of poorly characterized compounds on anxiety. Moreover, anxiolytic drugs all decreased, while anxiogenic drugs increased, serotonin turnover. These results underscore the power of behavioral profiling in adult zebrafish as an approach which combines throughput and physiological complexity in the pharmacological dissection of complex behaviors.

  1. Fingerprinting of psychoactive drugs in zebrafish anxiety-like behaviors.

    PubMed

    Maximino, Caio; da Silva, Annanda Waneza Batista; Araújo, Juliana; Lima, Monica Gomes; Miranda, Vanessa; Puty, Bruna; Benzecry, Rancés; Picanço-Diniz, Domingos Luiz Wanderley; Gouveia, Amauri; Oliveira, Karen Renata Matos; Herculano, Anderson Manoel

    2014-01-01

    A major hindrance for the development of psychiatric drugs is the prediction of how treatments can alter complex behaviors in assays which have good throughput and physiological complexity. Here we report the development of a medium-throughput screen for drugs which alter anxiety-like behavior in adult zebrafish. The observed phenotypes were clustered according to shared behavioral effects. This barcoding procedure revealed conserved functions of anxiolytic, anxiogenic and psychomotor stimulating drugs and predicted effects of poorly characterized compounds on anxiety. Moreover, anxiolytic drugs all decreased, while anxiogenic drugs increased, serotonin turnover. These results underscore the power of behavioral profiling in adult zebrafish as an approach which combines throughput and physiological complexity in the pharmacological dissection of complex behaviors. PMID:25079766

  2. Husbandry of zebrafish, Danio rerio, and the cortisol stress response.

    PubMed

    Pavlidis, Michail; Digka, Nikoletta; Theodoridi, Antonia; Campo, Aurora; Barsakis, Konstantinos; Skouradakis, Gregoris; Samaras, Athanasios; Tsalafouta, Alexandra

    2013-12-01

    The effect of common husbandry conditions (crowding, social environment, water quality, handling, and background color) on the cortisol stress response in adult zebrafish, Danio rerio, was investigated to check the usefulness of zebrafish as a model organism in aquaculture research. In addition, a noninvasive methodology for assessing stress was evaluated. Zebrafish showed a fast cortisol response with high values at 30 min that returned to basal levels within 2 h of poststress. There was a significant positive correlation between trunk cortisol concentrations and the free water cortisol rate (r(2)=0.829-0.850, p<0.001), indicating that measurement of the water-borne cortisol release rate may serve as a noninvasive and reliable stress indicator at the population level. Crowding resulted in 13- to 21-fold greater mean trunk cortisol concentrations compared with controls. However, even at low stocking density (2-5 fish/L), the maintenance cost was higher than the one at higher densities (10 fish/L) due to the formation of dominance hierarchies. The background color affected trunk cortisol concentrations, with fish exposed to brighter backgrounds (green and white) showing 3- to 8-fold greater mean trunk cortisol concentrations than fish exposed to a black background or transparent aquaria. Fish exposed to high stocking densities for 2 h or 5 days had similar high mean trunk cortisol levels, indicating that exposure of fish for the period of 2 h to a specific stressor may represent a chronic situation in zebrafish. It is concluded that adult laboratory zebrafish had a preference for a transparent or black background aquarium, at a number of 10 individuals per 2 L of available water volume, to express their normal behavior and avoid increased cortisol stress reaction.

  3. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish

    PubMed Central

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7–9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  4. Using zebrafish to study podocyte genesis during kidney development and regeneration.

    PubMed

    Kroeger, Paul T; Wingert, Rebecca A

    2014-09-01

    During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771-792, 2014. © 2014 Wiley Periodicals, Inc.

  5. Learning and memory in zebrafish (Danio rerio).

    PubMed

    Gerlai, R

    2016-01-01

    Learning and memory are defining features of our own species inherently important to our daily lives and to who we are. Without our memories we cease to exist as a person. Without our ability to learn individuals and collectively our society would cease to function. Diseases of the mind still remain incurable. The interest in understanding of the mechanisms of learning and memory is thus well founded. Given the complexity of such mechanisms, concerted efforts have been made to study them under controlled laboratory conditions, ie, with laboratory model organisms. The zebrafish, although new in this field, is one such model organism. The rapidly developing forward- and reverse genetic methods designed for the zebrafish and the increasing use of pharmacological tools along with numerous neurobiology techniques make this species perhaps the best model for the analysis of the mechanisms of complex central nervous system characteristics. The fact that it is an evolutionarily ancient and simpler vertebrate, but at the same time it possesses numerous conserved features across multiple levels of biological organization makes this species an excellent tool for the analysis of the mechanisms of learning and memory. The bottleneck lies in our understanding of its cognitive and mnemonic features, the topic of this chapter. The current paper builds on a chapter published in the previous edition and continues to focus on associative learning, but now it extends the discussion to other forms of learning and to recent discoveries on memory-related features and findings obtained both in adults and larval zebrafish. PMID:27312505

  6. Novel biomarkers of perchlorate exposure in zebrafish

    USGS Publications Warehouse

    Mukhi, S.; Carr, J.A.; Anderson, T.A.; Patino, R.

    2005-01-01

    Perchlorate inhibits iodide uptake by thyroid follicles and lowers thyroid hormone production. Although several effects of perchlorate on the thyroid system have been reported, the utility of these pathologies as markers of environmental perchlorate exposures has not been adequately assessed. The present study examined time-course and concentration-dependent effects of perchlorate on thyroid follicle hypertrophy, colloid depletion, and angiogenesis; alterations in whole-body thyroxine (T4) levels; and somatic growth and condition factor of subadult and adult zebrafish. Changes in the intensity of the colloidal T4 ring previously observed in zebrafish also were examined immunohistochemically. Three-month-old zebrafish were exposed to ammonium perchlorate at measured perchlorate concentrations of 0, 11, 90, 1,131, and 11,480 ppb for 12 weeks and allowed to recover in clean water for 12 weeks. At two weeks of exposure, the lowest-observed-effective concentrations (LOECs) of perchlorate that induced angiogenesis and depressed the intensity of colloidal T4 ring were 90 and 1,131 ppb, respectively; other parameters were not affected (whole-body T4 was not determined at this time). At 12 weeks of exposure, LOECs for colloid depletion, hypertrophy, angiogenesis, and colloidal T4 ring were 11,480, 1,131, 90, and 11 ppb, respectively. All changes were reversible, but residual effects on angiogenesis and colloidal T4 ring intensity were still present after 12 weeks of recovery (LOEC, 11,480 ppb). Whole-body T 4 concentration, body growth (length and weight), and condition factor were not affected by perchlorate. The sensitivity and longevity of changes in colloidal T4 ring intensity and angiogenesis suggest their usefulness as novel markers of perchlorate exposure. The 12-week LOEC for colloidal T4 ring is the lowest reported for any perchlorate biomarker in aquatic vertebrates. ?? 2005 SETAC.

  7. The spinning task: a new protocol to easily assess motor coordination and resistance in zebrafish.

    PubMed

    Blazina, Ana R; Vianna, Mônica R; Lara, Diogo R

    2013-12-01

    The increasing use of adult zebrafish in behavioral studies has created the need for new and improved protocols. Our investigation sought to evaluate the swimming behavior of zebrafish against a water current using the newly developed Spinning Task. Zebrafish were individually placed in a beaker containing a spinning magnetic stirrer and their latency to be swept into the whirlpool was recorded. We characterized that larger fish (>4 cm) and lower rpm decreased the swimming time in the Spinning Task. There was also a dose-related reduction in swimming after acute treatment with haloperidol, valproic acid, clonazepam, and ethanol, which alter coordination. Importantly, at doses that reduced swimming time in the Spinning Task, these drugs influenced absolute turn angle (ethanol increased and the other drugs decreased), but had no effect of distance travelled in a regular water tank. These results suggest that the Spinning Task is a useful protocol to add information to the assessment of zebrafish motor behavior. PMID:24044654

  8. Environmental and Pharmacological Manipulations Blunt the Stress Response of Zebrafish in a Similar Manner

    PubMed Central

    Giacomini, Ana Cristina V. V.; Abreu, Murilo S.; Zanandrea, Rodrigo; Saibt, Natália; Friedrich, Maria Tereza; Koakoski, Gessi; Gusso, Darlan; Piato, Angelo L.; Barcellos, Leonardo J. G.

    2016-01-01

    Here we provide evidence that both pharmacological and environmental manipulations similarly blunt the cortisol release in response to an acute stressor in adult zebrafish. Different groups of fish were maintained isolated or group-housed in barren or enriched tanks, and then exposed or not to diazepam or fluoxetine. Acute stress increased cortisol levels in group-housed zebrafish maintained in barren environment. Single-housed zebrafish displayed a blunted cortisol response to stress. Environmental enrichment also blunted the stress response and this was observed in both isolated and group-housed fish. The same blunting effect was observed in zebrafish exposed to diazepam or fluoxetine. We highlighted environmental enrichment as an alternative and/or complimentary therapeutic for reducing stress and as a promoter of animal welfare. PMID:27351465

  9. Effect of acute ethanol administration on zebrafish tail-beat motion.

    PubMed

    Bartolini, Tiziana; Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2015-11-01

    Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening.

  10. Environmental and Pharmacological Manipulations Blunt the Stress Response of Zebrafish in a Similar Manner.

    PubMed

    Giacomini, Ana Cristina V V; Abreu, Murilo S; Zanandrea, Rodrigo; Saibt, Natália; Friedrich, Maria Tereza; Koakoski, Gessi; Gusso, Darlan; Piato, Angelo L; Barcellos, Leonardo J G

    2016-01-01

    Here we provide evidence that both pharmacological and environmental manipulations similarly blunt the cortisol release in response to an acute stressor in adult zebrafish. Different groups of fish were maintained isolated or group-housed in barren or enriched tanks, and then exposed or not to diazepam or fluoxetine. Acute stress increased cortisol levels in group-housed zebrafish maintained in barren environment. Single-housed zebrafish displayed a blunted cortisol response to stress. Environmental enrichment also blunted the stress response and this was observed in both isolated and group-housed fish. The same blunting effect was observed in zebrafish exposed to diazepam or fluoxetine. We highlighted environmental enrichment as an alternative and/or complimentary therapeutic for reducing stress and as a promoter of animal welfare. PMID:27351465

  11. The Dept. of Energy Artificial Retina project

    ScienceCinema

    None

    2016-07-12

    LLNL has assisted in the development of the first long-term retinal prosthesis - called an artificial retina - that can function for years inside the harsh biological environment of the eye. This work has been done in collaboration with four national laboratories (Argonne, Los Alamos, Oak Ridge and Sandia), four universities (the California Institute of Technology, the Doheny Eye Institute at USC, North Carolina State University and the University of California, Santa Cruz), an industrial partner (Second Sight® Medical Products Inc. of Sylmar, Calif.) and the U.S. Department of Energy. With this device, application-specific integrated circuits transform digital images from a camera into electric signals in the eye that the brain uses to create a visual image. In clinical trials, patients with vision loss were able to successfully identify objects, increase mobility and detect movement using the artificial retina.

  12. Cell fate determination in the vertebrate retina.

    PubMed Central

    Cepko, C L; Austin, C P; Yang, X; Alexiades, M; Ezzeddine, D

    1996-01-01

    In the vertebrate central nervous system, the retina has been a useful model for studies of cell fate determination. Recent results from studies conducted in vitro and in vivo suggest a model of retinal development in which both the progenitor cells and the environment change over time. The model is based upon the notion that the mitotic cells within the retina change in their response properties, or "competence", during development. These changes presage the ordered appearance of distinct cell types during development and appear to be necessary for the production of the distinct cell types. As the response properties of the cells change, so too do the environmental signals that the cells encounter. Together, intrinsic properties and extrinsic cues direct the choice of cell fate. Images Fig. 2 Fig. 5 PMID:8570600

  13. The Dept. of Energy Artificial Retina project

    SciTech Connect

    2009-08-10

    LLNL has assisted in the development of the first long-term retinal prosthesis - called an artificial retina - that can function for years inside the harsh biological environment of the eye. This work has been done in collaboration with four national laboratories (Argonne, Los Alamos, Oak Ridge and Sandia), four universities (the California Institute of Technology, the Doheny Eye Institute at USC, North Carolina State University and the University of California, Santa Cruz), an industrial partner (Second Sight® Medical Products Inc. of Sylmar, Calif.) and the U.S. Department of Energy. With this device, application-specific integrated circuits transform digital images from a camera into electric signals in the eye that the brain uses to create a visual image. In clinical trials, patients with vision loss were able to successfully identify objects, increase mobility and detect movement using the artificial retina.

  14. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish.

    PubMed

    Khor, Beng-Siang; Jamil, Mohd Fadzly Amar; Adenan, Mohamad Ilham; Shu-Chien, Alexander Chong

    2011-01-01

    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway. PMID:22205946

  15. Mitragynine Attenuates Withdrawal Syndrome in Morphine-Withdrawn Zebrafish

    PubMed Central

    Khor, Beng-Siang; Amar Jamil, Mohd Fadzly; Adenan, Mohamad Ilham; Chong Shu-Chien, Alexander

    2011-01-01

    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway. PMID:22205946

  16. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  17. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish.

    PubMed

    Harrison, Michael R M; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C Geoffrey; Burns, Caroline E; Sucov, Henry M; Siekmann, Arndt F; Lien, Ching-Ling

    2015-05-26

    Interruption of the coronary blood supply severely impairs heart function with often fatal consequences for patients. However, the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults.

  18. Automated Processing of Zebrafish Imaging Data: A Survey

    PubMed Central

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification o