Science.gov

Sample records for adult zebrafish skin

  1. Recovery of pigmentation following selective photothermolysis in adult zebrafish skin: clinical implications for laser toning treatment of melasma.

    PubMed

    Kim, Jae Hwan; Kim, Do Hyun; Kim, Ji Hae; Lee, Sang Geun; Kim, Hyeon Soo; Park, Hae Chul; Kim, Il-Hwan

    2012-12-01

    In recent years, laser toning has gained popularity for the treatment of melasma, and tyrosinase inhibitors are conventionally used to prevent its recurrence after this treatment. The effectiveness of this treatment modality, however, is still questionable, and additional in vivo studies are needed to validate the method. In this study, we used adult zebrafish skin as an adult melanocyte regenerative system and examined the simulated human skin response to laser toning. Melanosomes regenerated after selective photothermolysis, and these organelles showed a bi-directional translocation pattern in accordance with the changes of intact melanosome patterns. Furthermore, a tyrosinase inhibitor, 1-phenyl-2-thiourea (PTU), completely blocked melanosome regeneration after laser irradiation, but this inhibitor failed to prevent melanosome regeneration after the medication was discontinued. Finally, arbutin and kojic acid, the commercially available tyrosinase inhibitors, slowed down but did not completely block melanosome regeneration. Based on these findings, we describe the limitations of laser toning treatment of melasma and the combined use of tyrosinase inhibitors. We suggest that melanosomes in adult zebrafish skin can be utilized for studying melanosome regeneration response to laser irradiation and for developing a system to assess the comparative efficacy of melanogenic regulatory compounds. PMID:23057411

  2. Zebrafish for modeling skin disorders.

    PubMed

    Cline, Abigail; Feldman, Steven R

    2016-01-01

    The experimental advantages of zebrafish make this model system highly amenable to the field of dermatology. Zebrafish skin development is similar to humans and its genome is ~70% orthologous to the human genome. Its external developmental process allows for genetic manipulation and analysis of embryogenesis within a short time frame with all important internal organs and skin compartments formed within 6 days. Zebrafish models of cutaneous human diseases offer insight into pathogenesis and a unique platform for testing of potential therapies. This review details the specific advantages of zebrafish and highlights its use in dermatological research. PMID:27617951

  3. Intraperitoneal Injection into Adult Zebrafish

    PubMed Central

    Kinkel, Mary D.; Eames, Stefani C.; Philipson, Louis H.; Prince, Victoria E.

    2010-01-01

    A convenient method for chemically treating zebrafish is to introduce the reagent into the tank water, where it will be taken up by the fish. However, this method makes it difficult to know how much reagent is absorbed or taken up per fish. Some experimental questions, particularly those related to metabolic studies, may be better addressed by delivering a defined quantity to each fish, based on weight. Here we present a method for intraperitoneal (IP) injection into adult zebrafish. Injection is into the abdominal cavity, posterior to the pelvic girdle. This procedure is adapted from veterinary methods used for larger fish. It is safe, as we have observed zero mortality. Additionally, we have seen bleeding at the injection site in only 5 out of 127 injections, and in each of those cases the bleeding was brief, lasting several seconds, and the quantity of blood lost was small. Success with this procedure requires gentle handling of the fish through several steps including fasting, weighing, anesthetizing, injection, and recovery. Precautions are required to minimize stress throughout the procedure. Our precautions include using a small injection volume and a 35G needle. We use Cortland salt solution as the vehicle, which is osmotically balanced for freshwater fish. Aeration of the gills is maintained during the injection procedure by first bringing the fish into a surgical plane of anesthesia, which allows slow operculum movements, and second, by holding the fish in a trough within a water-saturated sponge during the injection itself. We demonstrate the utility of IP injection by injecting glucose and monitoring the rise in blood glucose level and its subsequent return to normal. As stress is known to increase blood glucose in teleost fish, we compare blood glucose levels in vehicle-injected and non-injected adults and show that the procedure does not cause a significant rise in blood glucose. PMID:20834219

  4. Intraperitoneal injection into adult zebrafish.

    PubMed

    Kinkel, Mary D; Eames, Stefani C; Philipson, Louis H; Prince, Victoria E

    2010-01-01

    A convenient method for chemically treating zebrafish is to introduce the reagent into the tank water, where it will be taken up by the fish. However, this method makes it difficult to know how much reagent is absorbed or taken up per fish. Some experimental questions, particularly those related to metabolic studies, may be better addressed by delivering a defined quantity to each fish, based on weight. Here we present a method for intraperitoneal (IP) injection into adult zebrafish. Injection is into the abdominal cavity, posterior to the pelvic girdle. This procedure is adapted from veterinary methods used for larger fish. It is safe, as we have observed zero mortality. Additionally, we have seen bleeding at the injection site in only 5 out of 127 injections, and in each of those cases the bleeding was brief, lasting several seconds, and the quantity of blood lost was small. Success with this procedure requires gentle handling of the fish through several steps including fasting, weighing, anesthetizing, injection, and recovery. Precautions are required to minimize stress throughout the procedure. Our precautions include using a small injection volume and a 35G needle. We use Cortland salt solution as the vehicle, which is osmotically balanced for freshwater fish. Aeration of the gills is maintained during the injection procedure by first bringing the fish into a surgical plane of anesthesia, which allows slow operculum movements, and second, by holding the fish in a trough within a water-saturated sponge during the injection itself. We demonstrate the utility of IP injection by injecting glucose and monitoring the rise in blood glucose level and its subsequent return to normal. As stress is known to increase blood glucose in teleost fish, we compare blood glucose levels in vehicle-injected and non-injected adults and show that the procedure does not cause a significant rise in blood glucose. PMID:20834219

  5. Macrophages modulate adult zebrafish tail fin regeneration.

    PubMed

    Petrie, Timothy A; Strand, Nicholas S; Yang, Chao-Tsung; Tsung-Yang, Chao; Rabinowitz, Jeremy S; Moon, Randall T

    2014-07-01

    Neutrophils and macrophages, as key mediators of inflammation, have defined functionally important roles in mammalian tissue repair. Although recent evidence suggests that similar cells exist in zebrafish and also migrate to sites of injury in larvae, whether these cells are functionally important for wound healing or regeneration in adult zebrafish is unknown. To begin to address these questions, we first tracked neutrophils (lyzC(+), mpo(+)) and macrophages (mpeg1(+)) in adult zebrafish following amputation of the tail fin, and detailed a migratory timecourse that revealed conserved elements of the inflammatory cell response with mammals. Next, we used transgenic zebrafish in which we could selectively ablate macrophages, which allowed us to investigate whether macrophages were required for tail fin regeneration. We identified stage-dependent functional roles of macrophages in mediating fin tissue outgrowth and bony ray patterning, in part through modulating levels of blastema proliferation. Moreover, we also sought to detail molecular regulators of inflammation in adult zebrafish and identified Wnt/β-catenin as a signaling pathway that regulates the injury microenvironment, inflammatory cell migration and macrophage phenotype. These results provide a cellular and molecular link between components of the inflammation response and regeneration in adult zebrafish. PMID:24961798

  6. Optimized cell transplantation using adult rag2 mutant zebrafish

    PubMed Central

    Tang, Qin; Abdelfattah, Nouran S.; Blackburn, Jessica S.; Moore, John C.; Martinez, Sarah A.; Moore, Finola E.; Lobbardi, Riadh; Tenente, Inês M.; Ignatius, Myron S.; Berman, Jason N.; Liwski, Robert S.; Houvras, Yariv; Langenau, David M.

    2014-01-01

    Cell transplantation into adult zebrafish has lagged behind mouse due to the lack of immune compromised models. Here, we have created homozygous rag2E450fs mutant zebrafish that have reduced numbers of functional T and B cells but are viable and fecund. Mutant fish engraft zebrafish muscle, blood stem cells, and cancers. rag2E450fs mutant zebrafish are the first immune compromised zebrafish model that permits robust, long-term engraftment of multiple tissues and cancer. PMID:25042784

  7. Regeneration of Zebrafish CNS: Adult Neurogenesis

    PubMed Central

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  8. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  9. TCDD Inhibits Heart Regeneration in Adult Zebrafish

    PubMed Central

    Hofsteen, Peter; Mehta, Vatsal; Heideman, Warren

    2013-01-01

    Normal adult zebrafish can completely regenerate lost myocardium following partial amputation of the ventricle apex. We report that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) significantly impairs this regeneration. Adult male zebrafish were injected with vehicle (control) or TCDD (70ng/g, ip) 1 day prior to partial amputation of the ventricle apex. Gross observation and histological analysis of the amputated heart at 21 days postamputation revealed that TCDD-exposed fish had not progressed beyond the initial clot formation stage, whereas the vehicle control fish showed substantial recovery and almost complete resolution of the formed clot. In contrast, hearts that were not surgically wounded showed no signs of TCDD toxicity. Striking features in the TCDD-exposed hearts were the absence of the normal sheath of new tissue enveloping the wound and the absence of intense cell proliferation at the site of the wound. In addition, the patterns of collagen deposition at the wound site were different between the TCDD and vehicle groups. Because the receptor for TCDD is the aryl hydrocarbon receptor ligand-activated transcriptional regulator, we examined the effects of TCDD exposure on gene expression in the ventricle using DNA microarrays. Samples were collected just prior to amputation and at 6h and 7 days postamputation. TCDD-pretreated hearts had dysregulated expression of genes involved in heart function, tissue regeneration, cell growth, and extracellular matrix. Because embryonic, but not adult, hearts are major targets for TCDD-induced cardiotoxicity, we speculate that the need for embryonic-like cells in regeneration is connected with the effects of TCDD in inhibiting the response to wounding. PMID:23204111

  10. An assay for lateral line regeneration in adult zebrafish.

    PubMed

    Pisano, Gina C; Mason, Samantha M; Dhliwayo, Nyembezi; Intine, Robert V; Sarras, Michael P

    2014-01-01

    Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al. that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required. PMID:24747778

  11. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo

    PubMed Central

    Brönnimann, Daniel; Dellenbach, Christian; Saveljic, Igor; Rieger, Michael; Rohr, Stephan; Filipovic, Nenad; Djonov, Valentin

    2016-01-01

    Introduction Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo. Materials and Methods Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations. Results Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001). Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01) and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03). Discussion In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic

  12. Reactive gliosis in the adult zebrafish retina.

    PubMed

    Thomas, Jennifer L; Ranski, Alexandra H; Morgan, Gregory W; Thummel, Ryan

    2016-02-01

    In contrast to mammals, zebrafish posses the remarkable ability to regenerate retinal neurons. Damage to the zebrafish retina induces Müller glia to act as stem cells, generating retinal progenitors for regeneration. In contrast, injury in the mammalian retina results in Müller glial reactive gliosis, a characteristic gliotic response that is normally detrimental to vision. Understanding the signaling pathways that determine how Müller glia respond to injury is a critical step toward promoting regeneration in the mammalian retina. Here we report that zebrafish Müller glia exhibit signs of reactive gliosis even under normal regenerative conditions and that cell cycle inhibition increases this response. Persistently reactive Müller glia increase their neuroprotective functions, temporarily saving photoreceptors from a cytotoxic light lesion. However, the absence of a sustained proliferation response results in a significant inhibition of retinal regeneration. Interestingly, when cell cycle inhibition is released, a partial recovery of regeneration is observed. Together, these data demonstrate that zebrafish Müller glia possess both gliotic and regenerative potential. PMID:26492821

  13. Thirty-Second Net Stressor Task in Adult Zebrafish

    PubMed Central

    Tran, Steven; Gerlai, Robert

    2016-01-01

    Zebrafish have become a popular animal model for behavioral neuroscience (Gerlai, 2014). Recent studies have demonstrated that brief experimental handling prior to euthanizing animals can subsequently alter biological measures quantified post-mortem (e.g. cortisol levels) (Ramsay et al., 2009; Tran et al., 2014). Here we provide a detailed protocol for a simple 30-sec net stressor task for adult zebrafish that increases whole-body cortisol levels without altering the levels of whole-brain dopamine, 3, 4-dihydroxyphenylacetic acid, serotonin, and 5-hydroxyindoleacetic acid (Tran et al., 2014).

  14. Absence of rapid eye movements during sleep in adult zebrafish.

    PubMed

    Árnason, B B; Þorsteinsson, H; Karlsson, K Æ

    2015-09-15

    Sleep is not a uniform phenomenon, but is organized in alternating, fundamentally different states, rapid eye movement sleep and non-rapid eye movement sleep. Zebrafish (Danio rerio) have recently emerged as an excellent model for sleep research. Zebrafish are well characterized in terms of development, neurobiology and genetics. Moreover, there are many experimental tools not easily applied in mammalian models that can be readily applied to zebrafish, making them a valuable additional animal model for sleep research. Sleep in zebrafish is defined behaviorally and exhibits the hallmarks of mammalian sleep (e.g. sleep homeostasis and pressure). To our knowledge no attempts have been made to discern if sleep in zebrafish entails alternations of REM-NREM sleep cycles which are critical for further development of the model. In the current experiment we quantify two key REM sleep components, rapid eye movements and respiratory rates, across sleep-wake cycles. We find no sleep-related rapid eye movements. During sleep respiratory rates, however, are reduced and become less regular, further establishing that the behavioral definition used truly captures a change in the fish's physiology. We thus fail to find evidence for REM-NREM sleep cycles in zebrafish but demonstrate a physiological change that occurs concomitantly with the previously defined behavioral state of sleep. We do not rule out that other phasic REM components (e.g. atonia, cardiac arrhythmias, myoclonic twitches or desynchronized EEG) are coherently expressed during sleep but we conclude that adult zebrafish do not have REM-sleep-related rapid eye movements. PMID:26003945

  15. Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish

    PubMed Central

    Hess, Isabell; Boehm, Thomas

    2016-01-01

    Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-mybI181N mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development. PMID:26777855

  16. Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish.

    PubMed

    Hess, Isabell; Boehm, Thomas

    2016-01-01

    Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-myb(I181N) mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development. PMID:26777855

  17. Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration

    PubMed Central

    McCampbell, Kristen K.; Springer, Kristin N.; Wingert, Rebecca A.

    2015-01-01

    The zebrafish is a useful animal model to study the signaling pathways that orchestrate kidney regeneration, as its renal nephrons are simple, yet they maintain the biological complexity inherent to that of higher vertebrate organisms including mammals. Recent studies have suggested that administration of the aminoglycoside antibiotic gentamicin in zebrafish mimics human acute kidney injury (AKI) through the induction of nephron damage, but the timing and details of critical phenotypic events associated with the regeneration process, particularly in existing nephrons, have not been characterized. Here, we mapped the temporal progression of cellular and molecular changes that occur during renal epithelial regeneration of the proximal tubule in the adult zebrafish using a platform of histological and expression analysis techniques. This work establishes the timing of renal cell death after gentamicin injury, identifies proliferative compartments within the kidney, and documents gene expression changes associated with the regenerative response of proliferating cells. These data provide an important descriptive atlas that documents the series of events that ensue after damage in the zebrafish kidney, thus availing a valuable resource for the scientific community that can facilitate the implementation of zebrafish research to delineate the mechanisms that control renal regeneration. PMID:26089919

  18. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    PubMed

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-01

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration. PMID:27387232

  19. Zebrafish Collagen Type I: Molecular and Biochemical Characterization of the Major Structural Protein in Bone and Skin.

    PubMed

    Gistelinck, C; Gioia, R; Gagliardi, A; Tonelli, F; Marchese, L; Bianchi, L; Landi, C; Bini, L; Huysseune, A; Witten, P E; Staes, A; Gevaert, K; De Rocker, N; Menten, B; Malfait, F; Leikin, S; Carra, S; Tenni, R; Rossi, A; De Paepe, A; Coucke, P; Willaert, A; Forlino, A

    2016-01-01

    Over the last years the zebrafish imposed itself as a powerful model to study skeletal diseases, but a limit to its use is the poor characterization of collagen type I, the most abundant protein in bone and skin. In tetrapods collagen type I is a trimer mainly composed of two α1 chains and one α2 chain, encoded by COL1A1 and COL1A2 genes, respectively. In contrast, in zebrafish three type I collagen genes exist, col1a1a, col1a1b and col1a2 coding for α1(I), α3(I) and α2(I) chains. During embryonic and larval development the three collagen type I genes showed a similar spatio-temporal expression pattern, indicating their co-regulation and interdependence at these stages. In both embryonic and adult tissues, the presence of the three α(I) chains was demonstrated, although in embryos α1(I) was present in two distinct glycosylated states, suggesting a developmental-specific collagen composition. Even though in adult bone, skin and scales equal amounts of α1(I), α3(I) and α2(I) chains are present, the presented data suggest a tissue-specific stoichiometry and/or post-translational modification status for collagen type I. In conclusion, this data will be useful to properly interpret results and insights gained from zebrafish models of skeletal diseases. PMID:26876635

  20. Zebrafish Collagen Type I: Molecular and Biochemical Characterization of the Major Structural Protein in Bone and Skin

    PubMed Central

    Gistelinck, C.; Gioia, R.; Gagliardi, A.; Tonelli, F.; Marchese, L.; Bianchi, L.; Landi, C.; Bini, L.; Huysseune, A.; Witten, P. E.; Staes, A.; Gevaert, K.; De Rocker, N.; Menten, B.; Malfait, F.; Leikin, S.; Carra, S.; Tenni, R.; Rossi, A.; De Paepe, A.; Coucke, P.; Willaert, A.; Forlino, A.

    2016-01-01

    Over the last years the zebrafish imposed itself as a powerful model to study skeletal diseases, but a limit to its use is the poor characterization of collagen type I, the most abundant protein in bone and skin. In tetrapods collagen type I is a trimer mainly composed of two α1 chains and one α2 chain, encoded by COL1A1 and COL1A2 genes, respectively. In contrast, in zebrafish three type I collagen genes exist, col1a1a, col1a1b and col1a2 coding for α1(I), α3(I) and α2(I) chains. During embryonic and larval development the three collagen type I genes showed a similar spatio-temporal expression pattern, indicating their co-regulation and interdependence at these stages. In both embryonic and adult tissues, the presence of the three α(I) chains was demonstrated, although in embryos α1(I) was present in two distinct glycosylated states, suggesting a developmental-specific collagen composition. Even though in adult bone, skin and scales equal amounts of α1(I), α3(I) and α2(I) chains are present, the presented data suggest a tissue-specific stoichiometry and/or post-translational modification status for collagen type I. In conclusion, this data will be useful to properly interpret results and insights gained from zebrafish models of skeletal diseases. PMID:26876635

  1. Embryonic oxidative stress results in reproductive impairment for adult zebrafish

    PubMed Central

    Newman, Trent A.C.; Carleton, Catherine R.; Leeke, Bryony; Hampton, Mark B.; Horsfield, Julia A.

    2015-01-01

    Exposure to environmental stressors during embryo development can have long-term effects on the adult organism. This study used the thioredoxin reductase inhibitor auranofin to investigate the consequences of oxidative stress during zebrafish development. Auranofin at low doses triggered upregulation of the antioxidant genes gstp1 and prdx1. As the dose was increased, acute developmental abnormalities, including cerebral hemorrhaging and jaw malformation, were observed. To determine whether transient disruption of redox homeostasis during development could have long-term consequences, zebrafish embryos were exposed to a low dose of auranofin from 6–24 hours post fertilization, and then raised to adulthood. The adult fish were outwardly normal in their appearance with no gross physical differences compared to the control group. However, these adult fish had reduced odds of breeding and a lower incidence of egg fertilization. This study shows that a suboptimal early life environment can reduce the chances of reproductive success in adulthood. PMID:26584358

  2. Electrophysiological recording in the brain of intact adult zebrafish.

    PubMed

    Johnston, Lindsey; Ball, Rebecca E; Acuff, Seth; Gaudet, John; Sornborger, Andrew; Lauderdale, James D

    2013-01-01

    Previously, electrophysiological studies in adult zebrafish have been limited to slice preparations or to eye cup preparations and electrorentinogram recordings. This paper describes how an adult zebrafish can be immobilized, intubated, and used for in vivo electrophysiological experiments, allowing recording of neural activity. Immobilization of the adult requires a mechanism to deliver dissolved oxygen to the gills in lieu of buccal and opercular movement. With our technique, animals are immobilized and perfused with habitat water to fulfill this requirement. A craniotomy is performed under tricaine methanesulfonate (MS-222; tricaine) anesthesia to provide access to the brain. The primary electrode is then positioned within the craniotomy window to record extracellular brain activity. Through the use of a multitube perfusion system, a variety of pharmacological compounds can be administered to the adult fish and any alterations in the neural activity can be observed. The methodology not only allows for observations to be made regarding changes in neurological activity, but it also allows for comparisons to be made between larval and adult zebrafish. This gives researchers the ability to identify the alterations in neurological activity due to the introduction of various compounds at different life stages. PMID:24300281

  3. Explant culture of adult zebrafish hearts for epicardial regeneration studies.

    PubMed

    Cao, Jingli; Poss, Kenneth D

    2016-05-01

    Here we describe how to culture adult zebrafish hearts as explants and study the regeneration of epicardial tissue ex vivo, as a means to identify therapeutic targets for heart disease. Uninjured or injured adult hearts are excised, washed and cultured in an incubator with gentle agitation. Heart explants can be prepared within 2 h, and they can be maintained in culture for 30 d or longer. If explants are prepared from appropriate transgenic lines, dynamic behaviors of epicardial cells can be monitored by live imaging using stereofluorescence microscopy. We also describe ex vivo procedures for genetic ablation of the epicardium, cell proliferation assays, tissue grafts and bead grafts. Basic cell culture and surgical skills are required to carry out this protocol. Unlike existing protocols for culturing isolated zebrafish epicardial cells on matrices, procedures described here maintain epicardial cells on an intact cardiac surface, thereby better supporting in vivo cell behaviors. Our protocols complement and extend in vivo studies of heart regeneration. PMID:27055096

  4. Adult Zebrafish model of streptococcal infection

    PubMed Central

    Phelps, Hilary A.; Runft, Donna L.

    2009-01-01

    Streptococcal pathogens cause a wide array of clinical syndromes in humans, including invasive systemic infections resulting in high mortality rates. Many of these pathogens are human specific, and therefore difficult to analyze in vivo using typical animal models, as these models rarely replicate what is observed in human infections. This unit describes the use of the zebrafish (Danio rerio) as an animal model for streptococcal infection to analyze multiple disease states. This model closely mimics the necrotizing fasciitis/myositis pathology observed in humans from a Streptococcus pyogenes infection. The use of a zoonotic pathogen, Streptococcus iniae, which replicates systemic infections caused by many streptococcal pathogens, including dissemination to the brain, is also described. Included protocols describe both intraperitoneal and intramuscular infections, as well as methods for histological and quantitative measurements of infection. PMID:19412913

  5. In vivo cell tracking and quantification method in adult zebrafish

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Alt, Clemens; Li, Pulin; White, Richard M.; Zon, Leonard I.; Wei, Xunbin; Lin, Charles P.

    2012-03-01

    Zebrafish have become a powerful vertebrate model organism for drug discovery, cancer and stem cell research. A recently developed transparent adult zebrafish using double pigmentation mutant, called casper, provide unparalleled imaging power in in vivo longitudinal analysis of biological processes at an anatomic resolution not readily achievable in murine or other systems. In this paper we introduce an optical method for simultaneous visualization and cell quantification, which combines the laser scanning confocal microscopy (LSCM) and the in vivo flow cytometry (IVFC). The system is designed specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish casper, under physiological conditions in the same fish over time. The confocal imaging part in this system serves the dual purposes of imaging fish tissue microstructure and a 3D navigation tool to locate a suitable vessel for circulating cell counting. The multi-color, multi-channel instrument allows the detection of multiple cell populations or different tissues or organs simultaneously. We demonstrate initial testing of this novel instrument by imaging vasculature and tracking circulating cells in CD41: GFP/Gata1: DsRed transgenic casper fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. Circulating fluorescent cell incidents were recorded and counted repeatedly over time and in different types of vessels. Great application opportunities in cancer and stem cell researches are discussed.

  6. Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish.

    PubMed

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2016-09-01

    Fibroblast growth factors (Fgfs) regulate critical biological processes such as embryonic development, tissue homeostasis, wound healing, and tissue regeneration. In zebrafish, Fgf signaling plays an important role in the regeneration of the spinal cord, liver, heart, fin, and photoreceptors, although its exact mechanism of action is not fully understood. Utilizing an adult zebrafish extraocular muscle (EOM) regeneration model, we demonstrate that blocking Fgf receptor function using either a chemical inhibitor (SU5402) or a dominant-negative transgenic construct (dnFGFR1a:EGFP) impairs muscle regeneration. Adult zebrafish EOMs regenerate through a myocyte dedifferentiation process, which involves a muscle-to-mesenchyme transition and cell cycle reentry by differentiated myocytes. Blocking Fgf signaling reduced cell proliferation and active caspase 3 levels in the regenerating muscle with no detectable levels of apoptosis, supporting the hypothesis that Fgf signaling is involved in the early steps of dedifferentiation. Fgf signaling in regenerating myocytes involves the MAPK/ERK pathway: inhibition of MEK activity with U0126 mimicked the phenotype of the Fgf receptor inhibition on both muscle regeneration and cell proliferation, and activated ERK (p-ERK) was detected in injured muscles by immunofluorescence and western blot. Interestingly, following injury, ERK2 expression is specifically induced and activated by phosphorylation, suggesting a key role in muscle regeneration. We conclude that the critical early steps of myocyte dedifferentiation in EOM regeneration are dependent on Fgf signaling. PMID:27267062

  7. Targeted Electroporation in Embryonic, Larval, and Adult Zebrafish.

    PubMed

    Zou, Ming; Friedrich, Rainer W; Bianco, Isaac H

    2016-01-01

    This chapter describes three fast and straightforward methods to introduce nucleic acids, dyes, and other molecules into small numbers of cells of zebrafish embryos, larvae, and adults using electroporation. These reagents are delivered through a glass micropipette and electrical pulses are given through electrodes to permeabilize cell membranes and promote uptake of the reagent. This technique allows the experimenter to target cells of their choice at a particular time of development and at a particular location in the zebrafish with high precision and facilitates long-term noninvasive measurement of biological activities in vivo. Applications include cell fate mapping, neural circuit mapping, neuronal activity measurement, manipulation of activity, ectopic gene expression, and genetic knockdown experiments. PMID:27464813

  8. Preconditioning boosts regenerative programmes in the adult zebrafish heart

    PubMed Central

    de Preux Charles, Anne-Sophie; Bise, Thomas; Baier, Felix; Sallin, Pauline; Jaźwińska, Anna

    2016-01-01

    During preconditioning, exposure to a non-lethal harmful stimulus triggers a body-wide increase of survival and pro-regenerative programmes that enable the organism to better withstand the deleterious effects of subsequent injuries. This phenomenon has first been described in the mammalian heart, where it leads to a reduction of infarct size and limits the dysfunction of the injured organ. Despite its important clinical outcome, the actual mechanisms underlying preconditioning-induced cardioprotection remain unclear. Here, we describe two independent models of cardiac preconditioning in the adult zebrafish. As noxious stimuli, we used either a thoracotomy procedure or an induction of sterile inflammation by intraperitoneal injection of immunogenic particles. Similar to mammalian preconditioning, the zebrafish heart displayed increased expression of cardioprotective genes in response to these stimuli. As zebrafish cardiomyocytes have an endogenous proliferative capacity, preconditioning further elevated the re-entry into the cell cycle in the intact heart. This enhanced cycling activity led to a long-term modification of the myocardium architecture. Importantly, the protected phenotype brought beneficial effects for heart regeneration within one week after cryoinjury, such as a more effective cell-cycle reentry, enhanced reactivation of embryonic gene expression at the injury border, and improved cell survival shortly after injury. This study reveals that exposure to antecedent stimuli induces adaptive responses that render the fish more efficient in the activation of the regenerative programmes following heart damage. Our results open a new field of research by providing the adult zebrafish as a model system to study remote cardiac preconditioning. PMID:27440423

  9. Gene expression profiling in the skin of zebrafish infected with Citrobacter freundii.

    PubMed

    Lü, Aijun; Hu, Xiucai; Xue, Jun; Zhu, Jingrong; Wang, Yi; Zhou, Guangzhou

    2012-02-01

    Skin is considered the largest immunologically active organ, but its molecular mechanism remains unclear in fish. Here, Affymetrix Zebrafish GeneChip was used to assess gene expression in the skin of zebrafish (Danio rerio) infected with the bacterium Citrobacter freundii. The results showed that 229 genes were differentially expressed, of which 196 genes were upregulated and 33 genes were downregulated. Gene Ontology and KEGG pathway analyses indicated 88 genes significantly associated with skin immunity involved in complement activation and acute phase response, defense and immune response, response to stress and stimulus, antigen processing and presentation, cell adhesion and migration, platelet activation and coagulation factors, regulation of autophagy and apoptosis. When compared with transcriptional profiles of previously reported carp (Cyprinus carpio) skin, a similar innate immunity (e.g., interferon, lectin, heat shock proteins, complements), and several different acute phase proteins (transferrin, ceruloplasmin, vitellogenin and alpha-1-microglobulin, etc.) were detected in zebrafish skin. The validity of the microarray results was verified by quantitative real-time PCR analysis of nine representative genes. This is first report that skin play important roles in innate immune responses to bacterial infection, which contribute to understanding the defense mechanisms of the skin in fish. PMID:22155693

  10. Photopic and scotopic spatiotemporal tuning of adult zebrafish vision

    PubMed Central

    Hollbach, Nadine; Tappeiner, Christoph; Jazwinska, Anna; Enzmann, Volker; Tschopp, Markus

    2015-01-01

    Sensitivity to spatial and temporal patterns is a fundamental aspect of vision. Herein, we investigated this sensitivity in adult zebrafish for a wide range of spatial (0.014 to 0.511 cycles/degree [c/d]) and temporal frequencies (0.025 to 6 cycles/s) to better understand their visual system. Measurements were performed at photopic (1.8 log cd m−2) and scotopic (−4.5 log cd m−2) light levels to assess the optokinetic response (OKR). The resulting spatiotemporal contrast sensitivity (CS) functions revealed that the OKR of zebrafish is tuned to spatial frequency and speed but not to temporal frequencies. Thereby, optimal test parameters for CS measurements were identified. At photopic light levels, a spatial frequency of 0.116 ± 0.01 c/d (mean ± SD) and a grating speed of 8.42 ± 2.15 degrees/second (d/s) was ideal; at scotopic light levels, these values were 0.110 ± 0.02 c/d and 5.45 ± 1.31 d/s, respectively. This study allows to better characterize zebrafish mutants with altered vision and to distinguish between defects of rod and cone photoreceptors as measurements were performed under different light conditions. PMID:25788878

  11. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals.

    PubMed

    Richardson, Rebecca; Metzger, Manuel; Knyphausen, Philipp; Ramezani, Thomas; Slanchev, Krasimir; Kraus, Christopher; Schmelzer, Elmon; Hammerschmidt, Matthias

    2016-06-15

    Re-epithelialization of cutaneous wounds in adult mammals takes days to complete and relies on numerous signalling cues and multiple overlapping cellular processes that take place both within the epidermis and in other participating tissues. Re-epithelialization of partial- or full-thickness skin wounds of adult zebrafish, however, is extremely rapid and largely independent of the other processes of wound healing. Live imaging after treatment with transgene-encoded or chemical inhibitors reveals that re-epithelializing keratinocytes repopulate wounds by TGF-β- and integrin-dependent lamellipodial crawling at the leading edges of the epidermal tongue. In addition, re-epithelialization requires long-range epithelial rearrangements, involving radial intercalations, flattening and directed elongation of cells - processes that are dependent on Rho kinase, JNK and, to some extent, planar cell polarity within the epidermis. These rearrangements lead to a massive recruitment of keratinocytes from the adjacent epidermis and make re-epithelialization independent of keratinocyte proliferation and the mitogenic effect of FGF signalling, which are only required after wound closure, allowing the epidermis outside the wound to re-establish its normal thickness. Together, these results demonstrate that the adult zebrafish is a valuable in vivo model for studying and visualizing the processes involved in cutaneous wound closure, facilitating the dissection of direct from indirect and motogenic from mitogenic effects of genes and molecules affecting wound re-epithelialization. PMID:27122176

  12. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish

    PubMed Central

    Saera-Vila, Alfonso; Kasprick, Daniel S.; Junttila, Tyler L.; Grzegorski, Steven J.; Louie, Ke'ale W.; Chiari, Estelle F.; Kish, Phillip E.; Kahana, Alon

    2015-01-01

    Purpose The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. Methods Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. Results Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2′-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. Conclusions EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular

  13. In vivo Electroporation of Morpholinos into the Adult Zebrafish Retina

    PubMed Central

    Thummel, Ryan; Bailey, Travis J.; Hyde, David R.

    2011-01-01

    Many devastating inherited eye diseases result in progressive and irreversible blindness because humans cannot regenerate dying or diseased retinal neurons. In contrast, the adult zebrafish retina possesses the robust ability to spontaneously regenerate any neuronal class that is lost in a variety of different retinal damage models, including retinal puncture, chemical ablation, concentrated high temperature, and intense light treatment 1-8. Our lab extensively characterized regeneration of photoreceptors following constant intense light treatment and inner retinal neurons after intravitreal ouabain injection 2, 5, 9. In all cases, resident Müller glia re-enter the cell cycle to produce neuronal progenitors, which continue to proliferate and migrate to the proper retinal layer, where they differentiate into the deficient neurons. We characterized five different stages during regeneration of the light-damaged retina that were highlighted by specific cellular responses. We identified several differentially expressed genes at each stage of retinal regeneration by mRNA microarray analysis 10. Many of these genes are also critical for ocular development. To test the role of each candidate gene/protein during retinal regeneration, we needed to develop a method to conditionally limit the expression of a candidate protein only at times during regeneration of the adult retina. Morpholino oligos are widely used to study loss of function of specific proteins during the development of zebrafish, Xenopus, chick, mouse, and tumors in human xenografts 11-14. These modified oligos basepair with complementary RNA sequence to either block the splicing or translation of the target RNA. Morpholinos are stable in the cell and can eliminate or "knockdown" protein expression for three to five days 12. Here, we describe a method to efficiently knockdown target protein expression in the adult zebrafish retina. This method employs lissamine-tagged antisense morpholinos that are injected

  14. Skin Temperature Biofeedback in Children and Adults.

    ERIC Educational Resources Information Center

    Suter, Steve; Loughry-Machado, Glenna

    1981-01-01

    Skin temperature biofeedback performance was studied in 38 6- to 10-year-old children and 38 of their parents across two sessions of audio biofeedback segments in which participants alternately attempted hand-warming and hand-cooling. Children were superior to adults in controlling skin temperature in the presence of biofeedback. (Author/DB)

  15. Skin exposure to micro- and nano-particles can cause haemostasis in zebrafish larvae.

    PubMed

    McLeish, Jennifer A; Chico, Timothy J A; Taylor, Harriet B; Tucker, Carl; Donaldson, Ken; Brown, Simon B

    2010-04-01

    Low mass ambient exposure to airborne particles is associated with atherothrombotic events that may be a consequence of the combustion-derived nanoparticle content. There is concern also over the potential cardiovascular impact of manufactured nanoparticles. To better understand the mechanism by which toxic airborne particles can affect cardiovascular function we utilised zebrafish as a genetically tractable model. Using light and confocal fluorescence video-microscopy, we measured heart-rate and blood flow in the dorsal aorta and caudal artery of zebrafish larvae that had been exposed to a number of toxic and non-toxic microparticles and nanoparticles. Diesel exhaust particles (DEP), carboxy-charged Latex beads (carboxy-beads) and toxic alumina (Taimicron TM300), but not non-toxic alumina (Baikalox A125), were found to promote both skin and gut cell damage, increased leukocyte invasion into the epidermis, tail muscle ischaemia and haemostasis within the caudal artery of free swimming zebrafish larvae. The presence of sodium sulfite, a reducing agent, or warfarin, an anticoagulant, within the system water abrogated the effects of both toxic alumina and carboxy-beads but not DEP. Genetic manipulation of skin barrier function augmented skin damage and haemostasis, even for the non-toxic alumina. The toxic effects of carboxy-beads were still apparent after leukocyte numbers were depleted with anti-Pu.1 morpholino. We conclude that particle uptake across skin epithelium and gut mucosal barriers, or the presence of leukocytes, is not required for particle-induced haemostasis while a compromised skin barrier function accentuated tissue injury and haemostasis. PMID:20174755

  16. Advanced Echocardiography in Adult Zebrafish Reveals Delayed Recovery of Heart Function after Myocardial Cryoinjury

    PubMed Central

    Kossack, Mandy; Juergensen, Lonny; Fuchs, Dieter; Katus, Hugo A.; Hassel, David

    2015-01-01

    Translucent zebrafish larvae represent an established model to analyze genetics of cardiac development and human cardiac disease. More recently adult zebrafish are utilized to evaluate mechanisms of cardiac regeneration and by benefiting from recent genome editing technologies, including TALEN and CRISPR, adult zebrafish are emerging as a valuable in vivo model to evaluate novel disease genes and specifically validate disease causing mutations and their underlying pathomechanisms. However, methods to sensitively and non-invasively assess cardiac morphology and performance in adult zebrafish are still limited. We here present a standardized examination protocol to broadly assess cardiac performance in adult zebrafish by advancing conventional echocardiography with modern speckle-tracking analyses. This allows accurate detection of changes in cardiac performance and further enables highly sensitive assessment of regional myocardial motion and deformation in high spatio-temporal resolution. Combining conventional echocardiography measurements with radial and longitudinal velocity, displacement, strain, strain rate and myocardial wall delay rates after myocardial cryoinjury permitted to non-invasively determine injury dimensions and to longitudinally follow functional recovery during cardiac regeneration. We show that functional recovery of cryoinjured hearts occurs in three distinct phases. Importantly, the regeneration process after cryoinjury extends far beyond the proposed 45 days described for ventricular resection with reconstitution of myocardial performance up to 180 days post-injury (dpi). The imaging modalities evaluated here allow sensitive cardiac phenotyping and contribute to further establish adult zebrafish as valuable cardiac disease model beyond the larval developmental stage. PMID:25853735

  17. High Cholesterol Diet Induces IL-1β Expression in Adult but Not Larval Zebrafish

    PubMed Central

    Jang, Man-Young; Na, Yirang; Ko, Youngho; Choi, Jae-Hoon; Seok, Seung Hyeok

    2013-01-01

    Recently, it has been demonstrated that high cholesterol diet induced hypercholesterolemia and vascular lipid oxidation and accumulation in zebrafish larvae, suggesting that zebrafish is a new promising atherosclerosis model in addition to mouse models. However, up to date, there was no report regarding inflammatory cytokine expression during the lipid accumulation in zebrafish larva and adult fish. In this study, we first demonstrated the expression levels of IL-1β and TNF-α in high cholesterol diet (HCD)-fed zebrafish larvae, and found that although HCD induced vascular lipid accumulation, the cytokine expressions in the larvae were not changed by HCD. Furthermore, there was no significant difference in leukocyte accumulation in vessels between control and HCD fed group. But prolonged HCD induced IL-1β expression in spleen and liver compared to those of control zebrafish, and produced very early stage of fatty streak lesion in dorsal aorta of 19 week HCD-fed zebrafish. These results indicate that HCD induced hypercholesterolemia and atherosclerotic changes in zebrafish are very early stage, and suggest the necessity of the generation of mutant zebrafish having a disruption in a lipid metabolism-related gene leading to severe hypercholesterolemia and advanced atherosclerosis. PMID:23825600

  18. Husbandry stress exacerbates mycobacterial infections in adult zebrafish, Danio rerio (Hamilton)

    USGS Publications Warehouse

    Ramsay, J.M.; Watral, V.; Schreck, C.B.; Kent, M.L.

    2009-01-01

    Mycobacteria are significant pathogens of laboratory zebrafish, Danio rerio (Hamilton). Stress is often implicated in clinical disease and morbidity associated with mycobacterial infections but has yet to be examined with zebrafish. The aim of this study was to examine the effects of husbandry stressors on zebrafish infected with mycobacteria. Adult zebrafish were exposed to Mycobacterium marinum or Mycobacterium chelonae, two species that have been associated with disease in zebrafish. Infected fish and controls were then subjected to chronic crowding and handling stressors and examined over an 8-week period. Whole-body cortisol was significantly elevated in stressed fish compared to non-stressed fish. Fish infected with M. marinum ATCC 927 and subjected to husbandry stressors had 14% cumulative mortality while no mortality occurred among infected fish not subjected to husbandry stressors. Stressed fish, infected with M. chelonae H1E2 from zebrafish, were 15-fold more likely to be infected than non-stressed fish at week 8 post-injection. Sub-acute, diffuse infections were more common among stressed fish infected with M. marinum or M. chelonae than non-stressed fish. This is the first study to demonstrate an effect of stress and elevated cortisol on the morbidity, prevalence, clinical disease and histological presentation associated with mycobacterial infections in zebrafish. Minimizing husbandry stress may be effective at reducing the severity of outbreaks of clinical mycobacteriosis in zebrafish facilities. ?? 2009 Blackwell Publishing Ltd.

  19. Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies

    PubMed Central

    Dang, Michelle; Henderson, Rachel E.; Garraway, Levi A.

    2016-01-01

    ABSTRACT Zebrafish are a major model for chemical genetics, and most studies use embryos when investigating small molecules that cause interesting phenotypes or that can rescue disease models. Limited studies have dosed adults with small molecules by means of water-borne exposure or injection techniques. Challenges in the form of drug delivery-related trauma and anesthesia-related toxicity have excluded the adult zebrafish from long-term drug efficacy studies. Here, we introduce a novel anesthetic combination of MS-222 and isoflurane to an oral gavage technique for a non-toxic, non-invasive and long-term drug administration platform. As a proof of principle, we established drug efficacy of the FDA-approved BRAFV600E inhibitor, Vemurafenib, in adult zebrafish harboring BRAFV600E melanoma tumors. In the model, adult casper zebrafish intraperitoneally transplanted with a zebrafish melanoma cell line (ZMEL1) and exposed to daily sub-lethal dosing at 100 mg/kg of Vemurafenib for 2 weeks via oral gavage resulted in an average 65% decrease in tumor burden and a 15% mortality rate. In contrast, Vemurafenib-resistant ZMEL1 cell lines, generated in culture from low-dose drug exposure for 4 months, did not respond to the oral gavage treatment regimen. Similarly, this drug treatment regimen can be applied for treatment of primary melanoma tumors in the zebrafish. Taken together, we developed an effective long-term drug treatment system that will allow the adult zebrafish to be used to identify more effective anti-melanoma combination therapies and opens up possibilities for treating adult models of other diseases. PMID:27482819

  20. Comparative analysis of the acute response of zebrafish Danio rerio skin to two different bacterial infections.

    PubMed

    Lü, Aijun; Hu, Xiucai; Wang, Yi; Shen, Xiaojing; Zhu, Aihua; Shen, Lulu; Ming, Qinglei; Feng, Zhaojun

    2013-12-01

    Skin is an important innate immune organ in fish; however, little is known about the skin's immune response to infectious pathogens. We conducted a comparative analysis of the acute immune response of Zebrafish Danio rerio skin against gram-positive (Staphylococcus chromogenes) and gram-negative (Citrobacter freundii) bacterial infections. Gene expression profiles induced from the two different infections were identified by microarray hybridization, with many genes demonstrating an acute immune response in the skin. Differentially expressed genes were mainly involved in response to stress and stimulus, complement activation, acute-phase response, and defense and immune response. Compared with transcription patterns of skin from the two infections, a similar innate immunity (e.g., transferrin, coagulation factor, complements, and lectins) was observed but with different acute-phase genes (e.g., ceruloplasmin, alpha-1-microglobulin, vitellogenin, and heat shock protein). These results suggest that the skin of fish plays an important role in the innate immune responses to bacterial infection. PMID:24341765

  1. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish.

    PubMed

    Lieschke, G J; Oates, A C; Crowhurst, M O; Ward, A C; Layton, J E

    2001-11-15

    The zebrafish is a useful model organism for developmental and genetic studies. The morphology and function of zebrafish myeloid cells were characterized. Adult zebrafish contain 2 distinct granulocytes, a heterophil and a rarer eosinophil, both of which circulate and are generated in the kidney, the adult hematopoietic organ. Heterophils show strong histochemical myeloperoxidasic activity, although weaker peroxidase activity was observed under some conditions in eosinophils and erythrocytes. Embryonic zebrafish have circulating immature heterophils by 48 hours after fertilization (hpf). A zebrafish myeloperoxidase homologue (myeloid-specific peroxidase; mpx) was isolated. Phylogenetic analysis suggested it represented a gene ancestral to the mammalian myeloperoxidase gene family. It was expressed in adult granulocytes and in embryos from 18 hpf, first diffusely in the axial intermediate cell mass and then discretely in a dispersed cell population. Comparison of hemoglobinized cell distribution, mpx gene expression, and myeloperoxidase histochemistry in wild-type and mutant embryos confirmed that the latter reliably identified a population of myeloid cells. Studies in embryos after tail transection demonstrated that mpx- and peroxidase-expressing cells were mobile and localized to a site of inflammation, indicating functional capability of these embryonic granulocytes. Embryonic macrophages removed carbon particles from the circulation by phagocytosis. Collectively, these observations have demonstrated the early onset of zebrafish granulopoiesis, have proved that granulocytes circulate by 48 hpf, and have demonstrated the functional activity of embryonic granulocytes and macrophages. These observations will facilitate the application of this genetically tractable organism to the study of myelopoiesis. PMID:11698295

  2. Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches.

    PubMed

    Diotel, Nicolas; Rodriguez Viales, Rebecca; Armant, Olivier; März, Martin; Ferg, Marco; Rastegar, Sepand; Strähle, Uwe

    2015-06-01

    The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential. PMID:25556858

  3. [Staphylococcal scalded skin syndrome in adults].

    PubMed

    Mikkelsen, Carsten Sauer; Mikkelsen, Dorthe Bisgaard; Jensen, Thøger Gorm; Vestergaard, Vibeke

    2010-03-01

    We describe a case of adult staphylococcal scalded skin syndrome (SSSS) in a 91-year-old woman. The patient had a Staphylococcus aureus infection in her right ear with redness and yellow secretion. A few days later she developed Nikolsky sign-positive tender enlarged flaccid bullae involving most parts of her body. The bullae ruptured easily and left a erythematous base. The histopathological changes were characteristic for adult SSSS. The patient was well-treated with intravenous dicloxacillin, topical antibiotic and antiseptic treatment. The patient had marked thrombocytosis, but no interest in further examination. PMID:20199754

  4. Directional and color preference in adult zebrafish: Implications in behavioral and learning assays in neurotoxicology studies.

    PubMed

    Bault, Zachary A; Peterson, Samuel M; Freeman, Jennifer L

    2015-12-01

    The zebrafish (Danio rerio) is a useful vertebrate model organism for neurological studies. While a number of behavior and learning assays are recently reported in the literature for zebrafish, many of these assays are still being refined. The initial purpose of this study was to apply a published T-maze assay for adult zebrafish that measures how quickly an organism can discriminate between different color stimuli after receiving reinforcement to measure learning in a study investigating the later life impacts of developmental Pb exposure. The original results were inconclusive as the control group showed a directional and color preference. To assess directional preference further, a three-chambered testing apparatus was constructed and rotated in several directions. The directional preference observed in males was alleviated by rotating the arms pointing west and east. In addition, color preference was investigated using all combinations of five different colors (orange, yellow, green, blue and purple). With directional preference alleviated results showed that both male and female zebrafish preferred colors of shorter wavelengths. An additional experiment tested changes in color preference due to developmental exposure to Pb in adult male zebrafish. Results revealed that Pb-exposed males gained and lost certain color preferences compared to control males and the preference for short wavelengths was decreased. Overall, these results show that consideration and pretesting should be completed before applying behavioral and learning assays involving adult zebrafish to avoid innate preferences and confounding changes in neurotoxicology studies and that developmental Pb exposure alters color preferences in adult male zebrafish. PMID:25993913

  5. Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration.

    PubMed

    Schmidt, Rebecca; Beil, Tanja; Strähle, Uwe; Rastegar, Sepand

    2014-01-01

    Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury. In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair. PMID:25146302

  6. In vivo imaging of zebrafish from embryo to adult stage with optical projection tomography

    NASA Astrophysics Data System (ADS)

    Bassi, Andrea; Fieramonti, Luca; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio; Foglia, Efrem; Cotelli, Franco

    2013-02-01

    Optical Projection Tomography (OPT) is a three dimensional imaging technique that is particularly suitable for studying millimeter sized biological samples and organisms. Similarly to x-ray computed tomography, OPT is based on the acquisition of a sequence of images taken through the sample at many angles (projections). Assuming the linearity of the optical absorption process, the projections are combined to reconstruct the 3-D volume of the sample, typically using a filtered back-projection algorithm. OPT has been applied to in-vivo imaging of zebrafish (Danio rerio). The instrument and the protocol for in vivo imaging of zebrafish embryos and juvenile specimens are described. Light scattering remains a challenge for in vivo OPT, especially when samples at the upper size limit, like zebrafish at the adult stage, are under study. We describe Time-Gated Optical Projection Tomography (TGOPT), a technique able to reconstruct adult zebrafish internal structures by counteracting the scattering effects through a fast time-gate. The time gating mechanism is based on non-linear optical upconversion of an infrared ultrashort laser pulse and allows the detection of quasi-ballistic photons within a 100 fs temporal gate. This results in a strong improvement in contrast and resolution with respect to conventional OPT. Artifacts in the reconstructed images are reduced as well. We show that TGOPT is suited for imaging the skeletal system and nervous structures of adult zebrafish.

  7. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio

    PubMed Central

    Kovrižnych, Jevgenij A.; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena

    2014-01-01

    Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems. PMID:26038672

  8. Subdivisions of the adult zebrafish pallium based on molecular marker analysis

    PubMed Central

    Ganz, Julia; Kroehne, Volker; Freudenreich, Dorian; Machate, Anja; Geffarth, Michaela; Braasch, Ingo; Kaslin, Jan; Brand, Michael

    2015-01-01

    Background: The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the pallium of ray-finned fishes and the pallial nuclei of all other vertebrates. Various models of homology between pallial subdivisions in ray-finned fishes and the pallial nuclei in tetrapods have been proposed based on connectional, neurochemical, gene expression and functional data. However, no consensus has been reached so far. In recent years, the analysis of conserved developmental marker genes has assisted the identification of homologies for different parts of the telencephalon among several tetrapod species. Results: We have investigated the gene expression pattern of conserved marker genes in the adult zebrafish ( Danio rerio) pallium to identify pallial subdivisions and their homology to pallial nuclei in tetrapods. Combinatorial expression analysis of ascl1a, eomesa, emx1, emx2, emx3, and Prox1 identifies four main divisions in the adult zebrafish pallium. Within these subdivisions, we propose that Dm is homologous to the pallial amygdala in tetrapods and that the dorsal subdivision of Dl is homologous to part of the hippocampal formation in mouse. We have complemented this analysis be examining the gene expression of emx1, emx2 and emx3 in the zebrafish larval brain. Conclusions: Based on our gene expression data, we propose a new model of subdivisions in the adult zebrafish pallium and their putative homologies to pallial nuclei in tetrapods. Pallial nuclei control sensory, motor, and cognitive functions, like memory, learning and emotion. The identification of pallial subdivisions in the adult zebrafish and their homologies to pallial nuclei in tetrapods will contribute to the use of the zebrafish system as a model

  9. Establishment of a Transgenic Zebrafish Line for Superficial Skin Ablation and Functional Validation of Apoptosis Modulators In Vivo

    PubMed Central

    Chen, Chi-Fang; Chu, Che-Yu; Chen, Te-Hao; Lee, Shyh-Jye; Shen, Chia-Ning; Hsiao, Chung-Der

    2011-01-01

    Background Zebrafish skin is composed of enveloping and basal layers which form a first-line defense system against pathogens. Zebrafish epidermis contains ionocytes and mucous cells that aid secretion of acid/ions or mucous through skin. Previous studies demonstrated that fish skin is extremely sensitive to external stimuli. However, little is known about the molecular mechanisms that modulate skin cell apoptosis in zebrafish. Methodology/Principal Findings This study aimed to create a platform to conduct conditional skin ablation and determine if it is possible to attenuate apoptotic stimuli by overexpressing potential apoptosis modulating genes in the skin of live animals. A transgenic zebrafish line of Tg(krt4:NTR-hKikGR)cy17 (killer line), which can conditionally trigger apoptosis in superficial skin cells, was first established. When the killer line was incubated with the prodrug metrodinazole, the superficial skin displayed extensive apoptosis as judged by detection of massive TUNEL- and active caspase 3-positive signals. Great reductions in NTR-hKikGR+ fluorescent signals accompanied epidermal cell apoptosis. This indicated that NTR-hKikGR+ signal fluorescence can be utilized to evaluate apoptotic events in vivo. After removal of metrodinazole, the skin integrity progressively recovered and NTR-hKikGR+ fluorescent signals gradually restored. In contrast, either crossing the killer line with testing lines or transiently injecting the killer line with testing vectors that expressed human constitutive active Akt1, mouse constitutive active Stat3, or HPV16 E6 element displayed apoptosis-resistant phenotypes to cytotoxic metrodinazole as judged by the loss of reduction in NTR-hKikGR+ fluorescent signaling. Conclusion/Significance The killer/testing line binary system established in the current study demonstrates a nitroreductase/metrodinazole system that can be utilized to conditionally perform skin ablation in a real-time manner, and provides a valuable tool to

  10. A Statistically Enhanced Spectral Counting Approach to TCDD Cardiac Toxicity in the Adult Zebrafish Heart

    PubMed Central

    Zhang, Jiang; Lanham, Kevin A; Heideman, Warren; Peterson, Richard E.; Li, Lingjun

    2013-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant and teratogen that produces cardiac toxicity in the developing zebrafish. Here we adopted a label free quantitative proteomic approach based on normalized spectral abundance factor (NSAF) to investigate the disturbance of the cardiac proteome induced by TCDD in the adult zebrafish heart. The protein expression level changes between heart samples from TCDD treated and control zebrafish were systematically evaluated by a large scale MudPIT analysis which incorporated triplicate analyses for both control and TCDD exposed heart proteomic samples to overcome the data dependant variation in shotgun proteomic experiments and obtain a statistically significant protein dataset with improved quantification confidence. A total of 519 and 443 proteins were identified in hearts collected from control and TCDD treated zebrafish, respectively, among which 106 proteins showed statistically significant expression changes. After correcting for the experimental variation between replicate analyses by statistical evaluation, 55 proteins exhibited NSAF ratio above 2 and 43 proteins displayed NSAF ratio smaller than 0.5, with statistical significance by t-test (p < 0.05). The proteins identified as altered by TCDD encompass a wide range of biological functions including calcium handling, myocardium cell architecture, energy production and metabolism, mitochondrial homeostasis, and stress response. Collectively, our results indicate that TCDD exposure alters the adult zebrafish heart in a way that could result in cardiac hypertrophy and heart failure, and suggests a potential mechanism for the diastolic dysfunction observed in TCDD exposed embryos. PMID:23682714

  11. Nonhatching Decapsulated Artemia Cysts As a Replacement to Artemia Nauplii in Juvenile and Adult Zebrafish Culture.

    PubMed

    Tye, Marc; Rider, Dana; Duffy, Elizabeth A; Seubert, Adam; Lothert, Brogen; Schimmenti, Lisa A

    2015-12-01

    Feeding Artemia nauplii as the main nutrition source for zebrafish is a common practice for many research facilities. Culturing live feed can be time-consuming and requires additional equipment to be purchased, maintained, and cleaned. Nonhatching decapsulated Artemia cysts (decaps) are a commercially available product that can be fed directly to fish. Several other ornamental fish species have been successfully cultured using decaps. Replacing Artemia nauplii with decaps could reduce the overall time and costs associated with the operation of a zebrafish facility. The objective of this study was to determine if decaps could be a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture. Wild-type zebrafish were fed one of three dietary treatments: decaps only, nauplii only, or a standard consisting of nauplii plus a commercially prepared pellet food. Survival, growth (length and weight), and embryo production were analyzed between the treatments. Fish receiving the decap diet demonstrated a significantly higher growth and embryo production when compared to the fish receiving the nauplii-only diet. When comparing the decap fish to the standard fish, no significant difference was found in mean survival, mean weight at 90 days postfertilization, or mean embryo production. It was determined that nonhatching decapsulated Artemia cysts can be used as a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture. PMID:25495227

  12. Pigment cell movement is not required for generation of Turing patterns in zebrafish skin

    PubMed Central

    Bullara, D.; De Decker, Y.

    2015-01-01

    The zebrafish is a model organism for pattern formation in vertebrates. Understanding what drives the formation of its coloured skin motifs could reveal pivotal to comprehend the mechanisms behind morphogenesis. The motifs look and behave like reaction–diffusion Turing patterns, but the nature of the underlying physico-chemical processes is very different, and the origin of the patterns is still unclear. Here we propose a minimal model for such pattern formation based on a regulatory mechanism deduced from experimental observations. This model is able to produce patterns with intrinsic wavelength, closely resembling the experimental ones. We mathematically prove that their origin is a Turing bifurcation occurring despite the absence of cell motion, through an effect that we call differential growth. This mechanism is qualitatively different from the reaction–diffusion originally proposed by Turing, although they both generate the short-range activation and the long-range inhibition required to form Turing patterns. PMID:25959141

  13. Pigment cell movement is not required for generation of Turing patterns in zebrafish skin

    NASA Astrophysics Data System (ADS)

    Bullara, D.; de Decker, Y.

    2015-05-01

    The zebrafish is a model organism for pattern formation in vertebrates. Understanding what drives the formation of its coloured skin motifs could reveal pivotal to comprehend the mechanisms behind morphogenesis. The motifs look and behave like reaction-diffusion Turing patterns, but the nature of the underlying physico-chemical processes is very different, and the origin of the patterns is still unclear. Here we propose a minimal model for such pattern formation based on a regulatory mechanism deduced from experimental observations. This model is able to produce patterns with intrinsic wavelength, closely resembling the experimental ones. We mathematically prove that their origin is a Turing bifurcation occurring despite the absence of cell motion, through an effect that we call differential growth. This mechanism is qualitatively different from the reaction-diffusion originally proposed by Turing, although they both generate the short-range activation and the long-range inhibition required to form Turing patterns.

  14. Cardiac morphology and blood pressure in the adult zebrafish.

    PubMed

    Hu, N; Yost, H J; Clark, E B

    2001-09-01

    Zebrafish has become a popular model for the study of cardiovascular development. We performed morphologic analysis on 3 months postfertilization zebrafish hearts (n > or = 20) with scanning electron microscopy, hematoxylin and eosin staining and Masson's trichrome staining, and morphometric analysis on cell organelles with transmission electron photomicrographs. We measured atrial, ventricular, ventral, and dorsal aortic blood pressures (n > or = 5) with a servonull system. The atrioventricular orifice was positioned on the dorsomedial side of the anterior ventricle, surmounted by the single-chambered atrium. The atrioventricular valve was free of tension apparati but supported by papillary bands to prevent retrograde flow. The ventricle was spanned with fine trabeculae perpendicular to the compact layer and perforated with a subepicardial network of coronary arteries, which originated from the efferent branchial arteries by means of the main coronary vessel. Ventricular myocytes were larger than those in the atrium (P < 0.05) with abundant mitochondria close to the sarcolemmal. Sarcoplasmic reticulum was sparse in zebrafish ventricle. Bulbus arteriosus was located anterior to the ventricle, and functioned as an elastic reservoir to absorb the rapid rise of pressure during ventricular contraction. The dense matrix of collagen interspersed across the entire bulbus arteriosus exemplified the characteristics of vasculature smooth muscle. There were pressure gradients from atrium to ventricle, and from ventral to dorsal aorta, indicating that the valves and the branchial arteries, respectively, were points of resistance to blood flow. These data serve as a framework for structure-function investigations of the zebrafish cardiovascular system. PMID:11505366

  15. Tetraspanin 3c requirement for pigment cell interactions and boundary formation in zebrafish adult pigment stripes

    PubMed Central

    Inoue, Shinya; Kondo, Shigeru; Parichy, David M.; Watanabe, Masakatsu

    2014-01-01

    Summary Skin pigment pattern formation in zebrafish requires pigment-cell autonomous interactions between melanophores and xanthophores, yet the molecular bases for these interactions remain largely unknown. Here, we examined the dali mutant that exhibits stripes in which melanophores are intermingled abnormally with xanthophores. By in vitro cell culture, we found that melanophores of dali mutants have a defect in motility and that interactions between melanophores and xanthophores are defective as well. Positional cloning and rescue identified dali as tetraspanin 3c (tspan3c), encoding a transmembrane scaffolding protein expressed by melanophores and xanthophores. We further showed that dali mutant Tspan3c expressed in HeLa cell exhibits a defect in N-glycosylation and is retained inappropriately in the endoplasmic reticulum. Our results are the first to identify roles for a tetraspanin superfamily protein in skin pigment pattern formation and suggest new mechanisms for the establishment and maintenance of zebrafish stripe boundaries. PMID:24734316

  16. New Tools for the Identification of Developmentally Regulated Enhancer Regions in Embryonic and Adult Zebrafish

    PubMed Central

    Krauss, Jana; Koehler, Carla; Boden, Cindy; Harris, Matthew P.

    2013-01-01

    Abstract We have conducted a screen to identify developmentally regulated enhancers that drive tissue-specific Gal4 expression in zebrafish. We obtained 63 stable transgenic lines with expression patterns in embryonic or adult zebrafish. The use of a newly identified minimal promoter from the medaka edar locus resulted in a relatively unbiased set of expression patterns representing many tissue types derived from all germ layers. Subsequent detailed characterization of selected lines showed strong and reproducible Gal4-driven GFP expression in diverse tissues, including neurons from the central and peripheral nervous systems, pigment cells, erythrocytes, and peridermal cells. By screening adults for GFP expression, we also isolated lines expressed in tissues of the adult zebrafish, including scales, fin rays, and joints. The new and efficient minimal promoter and large number of transactivating driver-lines we identified will provide the zebrafish community with a useful resource for further enhancer trap screening, as well as precise investigation of tissue-specific processes in vivo. PMID:23461416

  17. Distinct effects of inflammation on preconditioning and regeneration of the adult zebrafish heart

    PubMed Central

    de Preux Charles, Anne-Sophie; Bise, Thomas; Baier, Felix; Marro, Jan; Jaźwińska, Anna

    2016-01-01

    The adult heart is able to activate cardioprotective programmes and modifies its architecture in response to physiological or pathological changes. While mammalian cardiac remodelling often involves hypertrophic expansion, the adult zebrafish heart exploits hyperplastic growth. This capacity depends on the responsiveness of zebrafish cardiomyocytes to mitogenic signals throughout their entire life. Here, we have examined the role of inflammation on the stimulation of cell cycle activity in the context of heart preconditioning and regeneration. We used thoracotomy as a cardiac preconditioning model and cryoinjury as a model of cardiac infarction in the adult zebrafish. First, we performed a spatio-temporal characterization of leucocytes and cycling cardiac cells after thoracotomy. This analysis revealed a concomitance between the infiltration of inflammatory cells and the stimulation of the mitotic activity. However, decreasing the immune response using clodronate liposome injection, PLX3397 treatment or anti-inflammatory drugs surprisingly had no effect on the re-entry of cardiac cells into the cell cycle. In contrast, reducing inflammation using the same strategies after cryoinjury strongly impaired cardiac cell mitotic activity and the regenerative process. Taken together, our results show that, while the immune response is not necessary to induce cell-cycle activity in intact preconditioned hearts, inflammation is required for the regeneration of injured hearts in zebrafish. PMID:27440424

  18. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons.

    PubMed

    Cortés-Campos, Christian; Letelier, Joaquín; Ceriani, Ricardo; Whitlock, Kathleen E

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons. PMID:26209533

  19. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Cortés-Campos, Christian; Letelier, Joaquín; Ceriani, Ricardo; Whitlock, Kathleen E.

    2015-01-01

    ABSTRACT Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons. PMID:26209533

  20. Proteome Mapping of Adult Zebrafish Marrow Neutrophils Reveals Partial Cross Species Conservation to Human Peripheral Neutrophils

    PubMed Central

    Singh, Sachin Kumar; Sethi, Sachin; Aravamudhan, Sriram; Krüger, Marcus; Grabher, Clemens

    2013-01-01

    Neutrophil granulocytes are pivotal cells within the first line of host defense of the innate immune system. In this study, we have used a gel-based LC-MS/MS approach to explore the proteome of primary marrow neutrophils from adult zebrafish. The identified proteins originated from all major cellular compartments. Gene ontology analysis revealed significant association of proteins with different immune-related network and pathway maps. 75% of proteins identified in neutrophils were identified in neutrophils only when compared to neutrophil-free brain tissue. Moreover, cross-species comparison with human peripheral blood neutrophils showed partial conservation of immune-related proteins between human and zebrafish. This study provides the first zebrafish neutrophil proteome and may serve as a valuable resource for an understanding of neutrophil biology and innate immunity. PMID:24019943

  1. Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish.

    PubMed

    Chen, Jiangfei; Chen, Yuanhong; Liu, Wei; Bai, Chenglian; Liu, Xuexia; Liu, Kai; Li, Rong; Zhu, Jian-Hong; Huang, Changjiang

    2012-01-01

    Lead is a persistent metal and commonly present in our living environment. The present study was aimed to investigate lead-induced embryonic toxicity, behavioral responses, and adult learning/memory deficit in zebrafish. Lead acetate (PbAc) induced malformations such as uninflated swim bladder, bent spine and yolk-sac edema with an EC₅₀ of 0.29 mg/L at 120 h post fertilization (hpf). Spontaneous movement as characterized by tail bend frequency was significantly altered in zebrafish embryos following exposure to PbAc. Behavior assessment demonstrated that lead exposure changed behavioral responses in zebrafish larvae, as hyperactivity was detected within the first minute of light-to-dark transition in the fish exposed to PbAc from 6 to 96 hpf, and a different dose-dependent change was found in swimming speeds in the dark and in the light at 120 hpf following lead exposure. Learning/memory task assay showed that embryos exposed to PbAc from 6 to 120 hpf developed learning/memory deficit at adulthood as exhibited by a significant decrease in accuracy rate to find the food and a significant increase in finding time. Overall, our results suggested that low dose of developmental lead exposure resulted in embryonic toxicity, behavioral alteration, and adult learning/memory deficit in zebrafish. PMID:22975620

  2. Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation.

    PubMed

    Liu, Chi Chi; Li, Li; Lam, Yun Wah; Siu, Chung Wah; Cheng, Shuk Han

    2016-01-01

    The adult zebrafish has been used to model the electrocardiogram (ECG) for human cardiovascular studies. Nonetheless huge variations are observed among studies probably because of the lack of a reliable and reproducible recording method. In our study, an adult zebrafish surface ECG recording technique was improved using a multi-electrode method and by pre-opening the pericardial sac. A convenient ECG data analysis method without wavelet transform was also established. Intraperitoneal injection of KCl in zebrafish induced an arrhythmia similar to that of humans, and the arrhythmia was partially rescued by calcium gluconate. Amputation and cryoinjury of the zebrafish heart induced ST segment depression and affected QRS duration after injury. Only cryoinjury decelerated the heart rate. Different changes were also observed in the QT interval during heart regeneration in these two injury models. We also characterized the electrocardiophysiology of breakdance zebrafish mutant with a prolonged QT interval, that has not been well described in previous studies. Our study provided a reliable and reproducible means to record zebrafish ECG and analyse data. The detailed characterization of the cardiac electrophysiology of zebrafish and its mutant revealed that the potential of the zebrafish in modeling the human cardiovascular system exceeds expectations. PMID:27125643

  3. Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation

    PubMed Central

    Liu, Chi Chi; Li, Li; Lam, Yun Wah; Siu, Chung Wah; Cheng, Shuk Han

    2016-01-01

    The adult zebrafish has been used to model the electrocardiogram (ECG) for human cardiovascular studies. Nonetheless huge variations are observed among studies probably because of the lack of a reliable and reproducible recording method. In our study, an adult zebrafish surface ECG recording technique was improved using a multi-electrode method and by pre-opening the pericardial sac. A convenient ECG data analysis method without wavelet transform was also established. Intraperitoneal injection of KCl in zebrafish induced an arrhythmia similar to that of humans, and the arrhythmia was partially rescued by calcium gluconate. Amputation and cryoinjury of the zebrafish heart induced ST segment depression and affected QRS duration after injury. Only cryoinjury decelerated the heart rate. Different changes were also observed in the QT interval during heart regeneration in these two injury models. We also characterized the electrocardiophysiology of breakdance zebrafish mutant with a prolonged QT interval, that has not been well described in previous studies. Our study provided a reliable and reproducible means to record zebrafish ECG and analyse data. The detailed characterization of the cardiac electrophysiology of zebrafish and its mutant revealed that the potential of the zebrafish in modeling the human cardiovascular system exceeds expectations. PMID:27125643

  4. Regeneration, Plasticity, and Induced Molecular Programs in Adult Zebrafish Brain

    PubMed Central

    Cosacak, Mehmet Ilyas; Papadimitriou, Christos; Kizil, Caghan

    2015-01-01

    Regenerative capacity of the brain is a variable trait within animals. Aquatic vertebrates such as zebrafish have widespread ability to renew their brains upon damage, while mammals have—if not none—very limited overall regenerative competence. Underlying cause of such a disparity is not fully evident; however, one of the reasons could be activation of peculiar molecular programs, which might have specific roles after injury or damage, by the organisms that regenerate. If this hypothesis is correct, then there must be genes and pathways that (a) are expressed only after injury or damage in tissues, (b) are biologically and functionally relevant to restoration of neural tissue, and (c) are not detected in regenerating organisms. Presence of such programs might circumvent the initial detrimental effects of the damage and subsequently set up the stage for tissue redevelopment to take place by modulating the plasticity of the neural stem/progenitor cells. Additionally, if transferable, those “molecular mechanisms of regeneration” could open up new avenues for regenerative therapies of humans in clinical settings. This review focuses on the recent studies addressing injury/damage-induced molecular programs in zebrafish brain, underscoring the possibility of the presence of genes that could be used as biomarkers of neural plasticity and regeneration. PMID:26417601

  5. zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish

    PubMed Central

    Chen, Chen-Hui; Durand, Ellen; Wang, Jinhu; Zon, Leonard I.; Poss, Kenneth D.

    2013-01-01

    The zebrafish has become a standard model system for stem cell and tissue regeneration research, based on powerful genetics, high tissue regenerative capacity and low maintenance costs. Yet, these studies can be challenged by current limitations of tissue visualization techniques in adult animals. Here we describe new imaging methodology and present several ubiquitous and tissue-specific luciferase-based transgenic lines, which we have termed zebraflash, that facilitate the assessment of regeneration and engraftment in freely moving adult zebrafish. We show that luciferase-based live imaging reliably estimates muscle quantity in an internal organ, the heart, and can longitudinally follow cardiac regeneration in individual animals after major injury. Furthermore, luciferase-based detection enables visualization and quantification of engraftment in live recipients of transplanted hematopoietic stem cell progeny, with advantages in sensitivity and gross spatial resolution over fluorescence detection. Our findings present a versatile resource for monitoring and dissecting vertebrate stem cell and regeneration biology. PMID:24198277

  6. Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization.

    PubMed

    Mussulini, Ben Hur M; Leite, Carlos E; Zenki, Kamila C; Moro, Luana; Baggio, Suelen; Rico, Eduardo P; Rosemberg, Denis B; Dias, Renato D; Souza, Tadeu M; Calcagnotto, Maria E; Campos, Maria M; Battastini, Ana M; de Oliveira, Diogo L

    2013-01-01

    Pentylenetetrazole (PTZ) is a common convulsant agent used in animal models to investigate the mechanisms of seizures. Although adult zebrafish have been recently used to study epileptic seizures, a thorough characterization of the PTZ-induced seizures in this animal model is missing. The goal of this study was to perform a detailed temporal behavior profile characterization of PTZ-induced seizure in adult zebrafish. The behavioral profile during 20 min of PTZ immersion (5, 7.5, 10, and 15 mM) was characterized by stages defined as scores: (0) short swim, (1) increased swimming activity and high frequency of opercular movement, (2) erratic movements, (3) circular movements, (4) clonic seizure-like behavior, (5) fall to the bottom of the tank and tonic seizure-like behavior, (6) death. Animals exposed to distinct PTZ concentrations presented different seizure profiles, intensities and latencies to reach all scores. Only animals immersed into 15 mM PTZ showed an increased time to return to the normal behavior (score 0), after exposure. Total mortality rate at 10 and 15 mM were 33% and 50%, respectively. Considering all behavioral parameters, 5, 7.5, 10, and 15 mM PTZ, induced seizures with low, intermediate, and high severity, respectively. Pretreatment with diazepam (DZP) significantly attenuated seizure severity. Finally, the brain PTZ levels in adult zebrafish immersed into the chemoconvulsant solution at 5 and 10 mM were comparable to those described for the rodent model, with a peak after a 20-min of exposure. The PTZ brain levels observed after 2.5-min PTZ exposure and after 60-min removal from exposure were similar. Altogether, our results showed a detailed temporal behavioral characterization of a PTZ epileptic seizure model in adult zebrafish. These behavioral analyses and the simple method for PTZ quantification could be considered as important tools for future investigations and translational research. PMID:23349914

  7. The Behavioral Effects of Single Housing and Environmental Enrichment on Adult Zebrafish (Danio rerio)

    PubMed Central

    Collymore, Chereen; Tolwani, Ravi J; Rasmussen, Skye

    2015-01-01

    Environmental enrichment provides laboratory-housed species the opportunity to express natural behavior and exert control over their home environment, thereby minimizing stress. We sought to determine whether providing an artificial plant in the holding tank as enrichment influenced anxiety-like behaviors and place-preference choice in adult zebrafish. Fish were housed singly or in social groups of 5 for 3 wk in 1 of 4 experimental housing environments: single-housed enriched (n = 30), single-housed barren (n = 30), group-housed enriched (n = 30), and group-housed barren (n = 30). On week 4, individual fish were selected randomly from each of the experimental housing environments and tested by using novel-tank, light–dark, and place-preference tests. Housing fish singly in a barren environment increased anxiety-like behaviors in the novel-tank and light–dark behavioral tests. Single-housed zebrafish in barren tanks as well as zebrafish group-housed with conspecifics, both with and without plant enrichment, spent more time associating with conspecifics than with the artificial plant enrichment device during the place-preference test. Single-housed fish maintained in enriched tanks displayed no preference between a compartment with conspecifics or an artificial plant. Our results suggest the addition of an artificial plant as enrichment may benefit single-housed zebrafish when social housing is not possible. PMID:26045453

  8. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    DOE PAGESBeta

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less

  9. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  10. Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio).

    PubMed

    Ampatzis, Konstantinos; Dermon, Catherine R

    2016-10-01

    Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior. PMID:27363927

  11. Optical mapping of the electrical activity of isolated adult zebrafish hearts: acute effects of temperature

    PubMed Central

    Lin, Eric; Ribeiro, Amanda; Ding, Weiguang; Hove-Madsen, Leif; Sarunic, Marinko V.; Beg, Mirza Faisal

    2014-01-01

    The zebrafish (Danio rerio) has emerged as an important model for developmental cardiovascular (CV) biology; however, little is known about the cardiac function of the adult zebrafish enabling it to be used as a model of teleost CV biology. Here, we describe electrophysiological parameters, such as heart rate (HR), action potential duration (APD), and atrioventricular (AV) delay, in the zebrafish heart over a range of physiological temperatures (18–28°C). Hearts were isolated and incubated in a potentiometric dye, RH-237, enabling electrical activity assessment in several distinct regions of the heart simultaneously. Integration of a rapid thermoelectric cooling system facilitated the investigation of acute changes in temperature on critical electrophysiological parameters in the zebrafish heart. While intrinsic HR varied considerably between fish, the ex vivo preparation exhibited impressively stable HRs and sinus rhythm for more than 5 h, with a mean HR of 158 ± 9 bpm (means ± SE; n = 20) at 28°C. Atrial and ventricular APDs at 50% repolarization (APD50) were 33 ± 1 ms and 98 ± 2 ms, respectively. Excitation originated in the atrium, and there was an AV delay of 61 ± 3 ms prior to activation of the ventricle at 28°C. APD and AV delay varied between hearts beating at unique HRs; however, APD and AV delay did not appear to be statistically dependent on intrinsic basal HR, likely due to the innate beat-to-beat variability within each heart. As hearts were cooled to 18°C (by 1°C increments), HR decreased by ∼40%, and atrial and ventricular APD50 increased by a factor of ∼3 and 2, respectively. The increase in APD with cooling was disproportionate at different levels of repolarization, indicating unique temperature sensitivities for ion currents at different phases of the action potential. The effect of temperature was more apparent at lower levels of repolarization and, as a whole, the atrial APD was the cardiac parameter most affected by acute

  12. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  13. Hypoxia/Reoxygenation Cardiac Injury and Regeneration in Zebrafish Adult Heart

    PubMed Central

    Pompilio, Giulio; Verduci, Lorena; Colombo, Gualtiero I.; Milano, Giuseppina; Guerrini, Uliano; Squadroni, Lidia; Cotelli, Franco; Pozzoli, Ombretta; Capogrossi, Maurizio C.

    2013-01-01

    Aims the adult zebrafish heart regenerates spontaneously after injury and has been used to study the mechanisms of cardiac repair. However, no zebrafish model is available that mimics ischemic injury in mammalian heart. We developed and characterized zebrafish cardiac injury induced by hypoxia/reoxygenation (H/R) and the regeneration that followed it. Methods and Results adult zebrafish were kept either in hypoxic (H) or normoxic control (C) water for 15 min; thereafter fishes were returned to C water. Within 2–6 hours (h) after reoxygenation there was evidence of cardiac oxidative stress by dihydroethidium fluorescence and protein nitrosylation, as well as of inflammation. We used Tg(cmlc2:nucDsRed) transgenic zebrafish to identify myocardial cell nuclei. Cardiomyocyte apoptosis and necrosis were evidenced by TUNEL and Acridine Orange (AO) staining, respectively; 18 h after H/R, 9.9±2.6% of myocardial cell nuclei were TUNEL+ and 15.0±2.5% were AO+. At the 30-day (d) time point myocardial cell death was back to baseline (n = 3 at each time point). We evaluated cardiomyocyte proliferation by Phospho Histone H3 (pHH3) or Proliferating Cell Nuclear Antigen (PCNA) expression. Cardiomyocyte proliferation was apparent 18–24 h after H/R, it achieved its peak 3–7d later, and was back to baseline at 30d. 7d after H/R 17.4±2.3% of all cardiomyocytes were pHH3+ and 7.4±0.6% were PCNA+ (n = 3 at each time point). Cardiac function was assessed by 2D-echocardiography and Ventricular Diastolic and Systolic Areas were used to compute Fractional Area Change (FAC). FAC decreased from 29.3±2.0% in normoxia to 16.4±1.8% at 18 h after H/R; one month later ventricular function was back to baseline (n = 12 at each time point). Conclusions zebrafish exposed to H/R exhibit evidence of cardiac oxidative stress and inflammation, myocardial cell death and proliferation. The initial decrease in ventricular function is followed by full recovery. This model more closely

  14. Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).

    PubMed

    Hasumura, Takahiro; Meguro, Shinichi

    2016-07-01

    Exercise is very important for maintaining and increasing skeletal muscle mass, and is particularly important to prevent and care for sarcopenia and muscle disuse atrophy. However, the dose-response relationship between exercise quantity, duration/day, and overall duration and muscle mass is poorly understood. Therefore, we investigated the effect of exercise duration on skeletal muscle to reveal the relationship between exercise quantity and muscle hypertrophy in zebrafish forced to exercise. Adult male zebrafish were exercised 6 h/day for 4 weeks, 6 h/day for 2 weeks, or 3 h/day for 2 weeks. Flow velocity was adjusted to maximum velocity during continual swimming (initial 43 cm/s). High-speed consecutive photographs revealed that zebrafish mainly drove the caudal part. Additionally, X-ray micro computed tomography measurements indicated muscle hypertrophy of the mid-caudal half compared with the mid-cranial half part. The cross-sectional analysis of the mid-caudal half muscle revealed that skeletal muscle (red, white, or total) mass increased with increasing exercise quantity, whereas that of white muscle and total muscle increased only under the maximum exercise load condition of 6 h/day for 4 weeks. Additionally, the muscle fiver size distributions of exercised fish were larger than those from non-exercised fish. We revealed that exercise quantity, duration/day, and overall duration were correlated with skeletal muscle hypertrophy. The forced exercise model enabled us to investigate the relationship between exercise quantity and skeletal muscle mass. These results open up the possibility for further investigations on the effects of exercise on skeletal muscle in adult zebrafish. PMID:26951149

  15. A novel protocol for the oral administration of test chemicals to adult zebrafish.

    PubMed

    Zang, Liqing; Morikane, Daizo; Shimada, Yasuhito; Tanaka, Toshio; Nishimura, Norihiro

    2011-12-01

    A novel protocol using gluten as a carrier material was developed to administer chemicals to adult zebrafish, per os (p.o.). To evaluate the capacity of gluten to retain chemicals, we prepared gluten granules containing eight types of chemicals with different Log P(ow) values and immersed them in water. Less than 5% of chemicals were eluted from gluten granules within 5 min, a standard feeding time for zebrafish. Although retention capability was dependent on the hydrophilicity and hydrophobicity of the chemicals, the gluten granules retained 62%-99% of the total amount of chemical, even after immersion in water for 60 min. Vital staining dyes, such as 4-Di-2-Asp and Nile red, administered p.o., were delivered into the gastrointestinal tract where they were digested and secreted. Subsequently, we conducted a pharmacokinetic study of oral administration of felbinac and confirmed that it was successfully delivered into the blood of zebrafish. This indicates that chemicals administered using gluten granules are satisfactorily absorbed from the digestive tract and delivered into the metabolic system. The absorption, distribution, and pharmacokinetics of chemicals given by oral administration were also compared with those of chemicals given by alternative administration routes such as intraperitoneal injection and exposure to chemical solution. PMID:22181663

  16. Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish

    PubMed Central

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2013-01-01

    Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals. PMID:24336189

  17. Retinal Vasculature of Adult Zebrafish: In Vivo Imaging Using Confocal Scanning Laser Ophthalmoscopy

    PubMed Central

    Bell, Brent A.; Xie, Jing; Yuan, Alex; Kaul, Charles; Hollyfield, Joe G.; Anand-Apte, Bela

    2014-01-01

    Over the past 3 decades the zebrafish (Danio rerio) has become an important biomedical research species. As their use continues to grow additional techniques and tools will be required to keep pace with ongoing research using this species. In this paper we describe a novel method for in vivo imaging of the retinal vasculature in adult animals using a commercially available confocal scanning laser ophthalmoscope (SLO). With this instrumentation, we demonstrate the ability to distinguish diverse vascular phenotypes in different transgenic GFP lines. In addition this technology allows repeated visualization of the vasculature in individual zebrafish over time to document vascular leakage progression and recovery induced by intraocular delivery of proteins that induce vascular permeability. SLO of the retinal vasculature was found to be highly informative, providing images of high contrast and resolution that were capable of resolving individual vascular endothelial cells. Finally, the procedures required to acquire SLO images from zebrafish are non-invasive, simple to perform and can be achieved with low animal mortality, allowing repeated imaging of individual fish. PMID:25447564

  18. Aminoglycoside-Induced Hair Cell Death of Inner Ear Organs Causes Functional Deficits in Adult Zebrafish (Danio rerio)

    PubMed Central

    Uribe, Phillip M.; Sun, Huifang; Wang, Kevin; Asuncion, James D.; Wang, Qi; Chen, Chien-Wei; Steyger, Peter S.; Smith, Michael E.; Matsui, Jonathan I.

    2013-01-01

    Aminoglycoside antibiotics, like gentamicin, kill inner ear sensory hair cells in a variety of species including chickens, mice, and humans. The zebrafish (Danio rerio) has been used to study hair cell cytotoxicity in the lateral line organs of larval and adult animals. Little is known about whether aminoglycosides kill the hair cells within the inner ear of adult zebrafish. We report here the ototoxic effects of gentamicin on hair cells in the saccule, the putative hearing organ, and utricle of zebrafish. First, adult zebrafish received a single 30 mg/kg intraperitoneal injection of fluorescently-tagged gentamicin (GTTR) to determine the distribution of gentamicin within inner ear sensory epithelia. After 4 hours, GTTR was observed in hair cells throughout the saccular and utriclar sensory epithelia. To assess the ototoxic effects of gentamicin, adult zebrafish received a single 250 mg/kg intraperitoneal injection of gentamicin and, 24 hours later, auditory evoked potential recordings (AEPs) revealed significant shifts in auditory thresholds compared to untreated controls. Zebrafish were then euthanized, the inner ear fixed, and labeled for apoptotic cells (TUNEL reaction), and the stereociliary bundles of hair cells labeled with fluorescently-tagged phalloidin. Whole mounts of the saccule and utricle were imaged and cells counted. There were significantly more TUNEL-labeled cells found in both organs 4 hours after gentamicin injection compared to vehicle-injected controls. As expected, significantly fewer hair cell bundles were found along the rostral-caudal axis of the saccule and in the extrastriolar and striolar regions of the utricle in gentamicin-treated animals compared to untreated controls. Therefore, as in other species, gentamicin causes significant inner ear sensory hair cell death and auditory dysfunction in zebrafish. PMID:23533589

  19. Strong Static Magnetic Fields Elicit Swimming Behaviors Consistent with Direct Vestibular Stimulation in Adult Zebrafish

    PubMed Central

    Ward, Bryan K.; Tan, Grace X-J; Roberts, Dale C.; Della Santina, Charles C.; Zee, David S.; Carey, John P.

    2014-01-01

    Zebrafish (Danio rerio) offer advantages as model animals for studies of inner ear development, genetics and ototoxicity. However, traditional assessment of vestibular function in this species using the vestibulo-ocular reflex requires agar-immobilization of individual fish and specialized video, which are difficult and labor-intensive. We report that using a static magnetic field to directly stimulate the zebrafish labyrinth results in an efficient, quantitative behavioral assay in free-swimming fish. We recently observed that humans have sustained nystagmus in high strength magnetic fields, and we attributed this observation to magnetohydrodynamic forces acting on the labyrinths. Here, fish were individually introduced into the center of a vertical 11.7T magnetic field bore for 2-minute intervals, and their movements were tracked. To assess for heading preference relative to a magnetic field, fish were also placed in a horizontally oriented 4.7T magnet in infrared (IR) light. A sub-population was tested again in the magnet after gentamicin bath to ablate lateral line hair cell function. Free-swimming adult zebrafish exhibited markedly altered swimming behavior while in strong static magnetic fields, independent of vision or lateral line function. Two-thirds of fish showed increased swimming velocity or consistent looping/rolling behavior throughout exposure to a strong, vertically oriented magnetic field. Fish also demonstrated altered swimming behavior in a strong horizontally oriented field, demonstrating in most cases preferred swimming direction with respect to the field. These findings could be adapted for ‘high-throughput’ investigations of the effects of environmental manipulations as well as for changes that occur during development on vestibular function in zebrafish. PMID:24647586

  20. Strong static magnetic fields elicit swimming behaviors consistent with direct vestibular stimulation in adult zebrafish.

    PubMed

    Ward, Bryan K; Tan, Grace X-J; Roberts, Dale C; Della Santina, Charles C; Zee, David S; Carey, John P

    2014-01-01

    Zebrafish (Danio rerio) offer advantages as model animals for studies of inner ear development, genetics and ototoxicity. However, traditional assessment of vestibular function in this species using the vestibulo-ocular reflex requires agar-immobilization of individual fish and specialized video, which are difficult and labor-intensive. We report that using a static magnetic field to directly stimulate the zebrafish labyrinth results in an efficient, quantitative behavioral assay in free-swimming fish. We recently observed that humans have sustained nystagmus in high strength magnetic fields, and we attributed this observation to magnetohydrodynamic forces acting on the labyrinths. Here, fish were individually introduced into the center of a vertical 11.7T magnetic field bore for 2-minute intervals, and their movements were tracked. To assess for heading preference relative to a magnetic field, fish were also placed in a horizontally oriented 4.7T magnet in infrared (IR) light. A sub-population was tested again in the magnet after gentamicin bath to ablate lateral line hair cell function. Free-swimming adult zebrafish exhibited markedly altered swimming behavior while in strong static magnetic fields, independent of vision or lateral line function. Two-thirds of fish showed increased swimming velocity or consistent looping/rolling behavior throughout exposure to a strong, vertically oriented magnetic field. Fish also demonstrated altered swimming behavior in a strong horizontally oriented field, demonstrating in most cases preferred swimming direction with respect to the field. These findings could be adapted for 'high-throughput' investigations of the effects of environmental manipulations as well as for changes that occur during development on vestibular function in zebrafish. PMID:24647586

  1. Skin Cancer Surveillance Behaviors among U.S. Hispanic Adults

    PubMed Central

    Coups, Elliot J.; Stapleton, Jerod L.; Hudson, Shawna V.; Medina-Forrester, Amanda; Rosenberg, Stephen A.; Gordon, Marsha; Natale-Pereira, Ana; Goydos, James S.

    2012-01-01

    Background Little skin cancer prevention research has focused on the U.S. Hispanic population. Objective This study examined the prevalence and correlates of skin cancer surveillance behaviors among Hispanic adults. Methods A population-based sample of 788 Hispanic adults residing in five southern and western states completed an online survey in English or Spanish in September 2011. The outcomes were ever having conducted a skin self-examination (SSE) and having received a total cutaneous examination (TCE) from a health professional. The correlates included sociodemographic, skin cancer-related, and psychosocial factors. Results The rates of ever conducting a SSE or having a TCE were 17.6% and 9.2%, respectively. Based on the results of multivariable logistic regressions, factors associated with ever conducting a SSE included older age, English linguistic acculturation, a greater number of melanoma risk factors, more frequent sunscreen use, sunbathing, job-related sun exposure, higher perceived skin cancer risk, physician recommendation, more SSE benefits, and fewer SSE barriers. Factors associated with ever having a TCE were older age, English linguistic acculturation, a greater number of melanoma risk factors, ever having tanned indoors, greater skin cancer knowledge, higher perceived skin cancer severity, lower skin cancer worry, physician recommendation, more TCE benefits, and fewer SSE barriers. Limitations The cross-sectional design limits conclusions regarding the causal nature of observed associations. Conclusions Few Hispanic adults engage in skin cancer surveillance behaviors. The study highlights Hispanic subpopulations that are least likely to engage in skin cancer surveillance behaviors and informs the development of culturally appropriate interventions to promote these behaviors. PMID:23182066

  2. Contrast-Enhanced X-Ray Micro-Computed Tomography as a Versatile Method for Anatomical Studies of Adult Zebrafish.

    PubMed

    Babaei, Fatemeh; Hong, Tony Liu Chi; Yeung, Kelvin; Cheng, Shuk Han; Lam, Yun Wah

    2016-08-01

    One attractive quality of zebrafish as a model organism for biological research is that transparency at early developmental stages allows the optical imaging of cellular and molecular events. However, this advantage cannot be applied to adult zebrafish. In this study, we explored the use of contrast-enhanced X-ray micro-computed tomography (microCT) on adult zebrafish in which the organism was stained with iodine, a simple and economical contrasting agent, after fixation. Tomographic reconstruction of the microCT data allowed the three-dimensional (3D) volumetric analyses of individual organs in adult zebrafish. Adipose tissues showed a higher affinity to iodine and were more strongly contrasted in microCT. As traditional histological techniques often involve dehydration steps that remove tissue lipids, iodine-contrasted microCT offers a convenient method for visualizing fat deposition in fish. Utilizing this advantage, we discovered a transient accumulation of lipids around the heart after ventricular amputation, suggesting a correlation between lipid distribution and heart regeneration. Taken together, microCT is a versatile technique that enables the 3D visualization of zebrafish organs, as well as other fish models, in their anatomical context. This simple method is a valuable new addition to the arsenal of techniques available to this model organism. PMID:27058023

  3. The role of acid-sensing ion channels in epithelial Na+ uptake in adult zebrafish (Danio rerio).

    PubMed

    Dymowska, Agnieszka K; Boyle, David; Schultz, Aaron G; Goss, Greg G

    2015-04-15

    Acid-sensing ion channels (ASICs) are epithelial Na(+) channels gated by external H(+). Recently, it has been demonstrated that ASICs play a role in Na(+) uptake in freshwater rainbow trout. Here, we investigate the potential involvement of ASICs in Na(+) transport in another freshwater fish species, the zebrafish (Danio rerio). Using molecular and histological techniques we found that asic genes and the ASIC4.2 protein are expressed in the gill of adult zebrafish. Immunohistochemistry revealed that mitochondrion-rich cells positive for ASIC4.2 do not co-localize with Na(+)/K(+)-ATPase-rich cells, but co-localize with cells expressing vacuolar-type H(+)-ATPase. Furthermore, pharmacological inhibitors of ASIC and Na(+)/H(+)-exchanger significantly reduced uptake of Na(+) in adult zebrafish exposed to low-Na(+) media, but did not cause the same response in individuals exposed to ultra-low-Na(+) water. Our results suggest that in adult zebrafish ASICs play a role in branchial Na(+) uptake in media with low Na(+) concentrations and that mechanisms used for Na(+) uptake by zebrafish may depend on the Na(+) concentration in the acclimation medium. PMID:25722005

  4. TBBPA chronic exposure produces sex-specific neurobehavioral and social interaction changes in adult zebrafish.

    PubMed

    Chen, Jiangfei; Tanguay, Robert L; Simonich, Michael; Nie, Shangfei; Zhao, Yuxin; Li, Lelin; Bai, Chenglian; Dong, Qiaoxiang; Huang, Changjiang; Lin, Kuangfei

    2016-01-01

    The toxicity of tetrabromobisphenol A (TBBPA) has been extensively studied because of its high production volume. TBBPA is toxic to aquatic fish based on acute high concentration exposure tests, and few studies have assessed the behavioral effects of low concentration chronic TBBPA exposures in aquatic organisms. The present study defined the developmental and neurobehavioral effects associated with exposure of zebrafish to 0, 5 and 50nM TBBPA during 1-120days post-fertilization (dpf) following by detoxification for four months before the behaviors assessment. These low concentration TBBPA exposures were not associated with malformations and did not alter sex ratio, but resulted in reduced zebrafish body weight and length. Adult behavioral assays indicated that TBBPA exposed males had significantly higher average swim speeds and spent significantly more time in high speed darting mode and less time in medium cruising mode compared to control males. In an adult photomotor response assay, TBBPA exposure was associated with hyperactivity in male fish. Female zebrafish responses in these assays followed a similar trend, but the magnitude of TBBPA effects was generally smaller than in males. Social interaction evaluated using a mirror attack test showed that 50nM TBBPA exposed males had heightened aggression. Females exposed to 50nM TBBPA spent more time in the vicinity of the mirror, but did not show increased aggression toward the mirror compared to unexposed control fish. Overall, the hyperactivity and social behavior deficits ascribed here to chronic TBBPA exposure was most profound in males. Our findings indicate that TBBPA can cause developmental and neurobehavioral deficits, and may pose significant health risk to humans. PMID:27221227

  5. Notch Receptor Expression in Neurogenic Regions of the Adult Zebrafish Brain

    PubMed Central

    de Oliveira-Carlos, Vanessa; Ganz, Julia; Hans, Stefan; Kaslin, Jan; Brand, Michael

    2013-01-01

    The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches. PMID:24039926

  6. Neuronal labeling patterns in the spinal cord of adult transgenic Zebrafish.

    PubMed

    Stil, Aurélie; Drapeau, Pierre

    2016-06-01

    We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well-known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP-positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP-positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 642-660, 2016. PMID:26408263

  7. Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish.

    PubMed

    Barbosa, Joana S; Ninkovic, Jovica

    2016-01-01

    Adult Neural Stem Cells (aNSCs) generate new neurons that integrate into the pre-existing networks in specific locations of the Vertebrate brain. Moreover, aNSCs contribute with new neurons to brain regeneration in some non-mammalian Vertebrates. The similarities and the differences in the cellular and molecular processes governing neurogenesis in the intact and regenerating brain are still to be assessed. Toward this end, we recently established a protocol for non-invasive imaging of aNSC behavior in their niche in vivo in the adult intact and regenerating zebrafish telencephalon. We observed different modes of aNSC division in the intact brain and a novel mode of neurogenesis by direct conversion, which contributes to stem cell depletion with age. After injury, the generation of neurons is increased both by the activation of additional aNSCs and a shift in the division mode of aNSCs, thereby contributing to the successful neuronal regeneration. The cellular behavior we observed opens new questions regarding long-term aNSC maintenance in homeostasis and in regeneration. In this commentary we discuss our data and new questions arising in the context of aNSC behavior, not only in zebrafish but also in other species, including mammals. PMID:27606336

  8. Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain.

    PubMed

    Barbosa, Joana S; Sanchez-Gonzalez, Rosario; Di Giaimo, Rossella; Baumgart, Emily Violette; Theis, Fabian J; Götz, Magdalena; Ninkovic, Jovica

    2015-05-15

    Adult neural stem cells are the source for restoring injured brain tissue. We used repetitive imaging to follow single stem cells in the intact and injured adult zebrafish telencephalon in vivo and found that neurons are generated by both direct conversions of stem cells into postmitotic neurons and via intermediate progenitors amplifying the neuronal output. We observed an imbalance of direct conversion consuming the stem cells and asymmetric and symmetric self-renewing divisions, leading to depletion of stem cells over time. After brain injury, neuronal progenitors are recruited to the injury site. These progenitors are generated by symmetric divisions that deplete the pool of stem cells, a mode of neurogenesis absent in the intact telencephalon. Our analysis revealed changes in the behavior of stem cells underlying generation of additional neurons during regeneration. PMID:25977550

  9. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    PubMed Central

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. Results To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. Conclusions Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish

  10. Alternate Immersion in an External Glucose Solution Differentially Affects Blood Sugar Values in Older Versus Younger Zebrafish Adults.

    PubMed

    Connaughton, Victoria P; Baker, Cassandra; Fonde, Lauren; Gerardi, Emily; Slack, Carly

    2016-04-01

    Recently, zebrafish have been used to examine hyperglycemia-induced complications (retinopathy and neuropathy), as would occur in individuals with diabetes. Current models to induce hyperglycemia in zebrafish include glucose immersion and streptozotocin injections. Both are effective, although neither is reported to elevate blood sugar values for more than 1 month. In this article, we report differences in hyperglycemia induction and maintenance in young (4-11 months) versus old (1-3 years) zebrafish adults. In particular, older fish immersed in an alternating constant external glucose solution (2%) for 2 months displayed elevated blood glucose levels for the entire experimental duration. In contrast, younger adults displayed only transient hyperglycemia, suggesting the fish were acclimating to the glucose exposure protocol. However, modifying the immersion protocol to include a stepwise increasing glucose concentration (from 1% → 2%→3%) resulted in maintained hyperglycemia in younger zebrafish adults for up to 2 months. Glucose-exposed younger fish collected after 8 weeks of exposure also displayed a significant decrease in wet weight. Taken together, these data suggest different susceptibilities to hyperglycemia in older and younger fish and that stepwise increasing glucose concentrations of 1% are required for maintenance of hyperglycemia in younger adults, with higher concentrations of glucose resulting in greater increases in blood sugar values. PMID:26771444

  11. Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish

    PubMed Central

    Barton, Carrie L.; Proffitt, Sarah; Tanguay, Robert L.; Sharpton, Thomas J.

    2016-01-01

    Growing evidence indicates that disrupting the microbial community that comprises the intestinal tract, known as the gut microbiome, can contribute to the development or severity of disease. As a result, it is important to discern the agents responsible for microbiome disruption. While animals are frequently exposed to a diverse array of environmental chemicals, little is known about their effects on gut microbiome stability and structure. Here, we demonstrate how zebrafish can be used to glean insight into the effects of environmental chemical exposure on the structure and ecological dynamics of the gut microbiome. Specifically, we exposed forty-five adult zebrafish to triclosan-laden food for four or seven days or a control diet, and analyzed their microbial communities using 16S rRNA amplicon sequencing. Triclosan exposure was associated with rapid shifts in microbiome structure and diversity. We find evidence that several operational taxonomic units (OTUs) associated with the family Enterobacteriaceae appear to be susceptible to triclosan exposure, while OTUs associated with the genus Pseudomonas appeared to be more resilient and resistant to exposure. We also found that triclosan exposure is associated with topological alterations to microbial interaction networks and results in an overall increase in the number of negative interactions per microbe in these networks. Together these data indicate that triclosan exposure results in altered composition and ecological dynamics of microbial communities in the gut. Our work demonstrates that because zebrafish afford rapid and inexpensive interrogation of a large number of individuals, it is a useful experimental system for the discovery of the gut microbiome’s interaction with environmental chemicals. PMID:27191725

  12. Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish.

    PubMed

    Gaulke, Christopher A; Barton, Carrie L; Proffitt, Sarah; Tanguay, Robert L; Sharpton, Thomas J

    2016-01-01

    Growing evidence indicates that disrupting the microbial community that comprises the intestinal tract, known as the gut microbiome, can contribute to the development or severity of disease. As a result, it is important to discern the agents responsible for microbiome disruption. While animals are frequently exposed to a diverse array of environmental chemicals, little is known about their effects on gut microbiome stability and structure. Here, we demonstrate how zebrafish can be used to glean insight into the effects of environmental chemical exposure on the structure and ecological dynamics of the gut microbiome. Specifically, we exposed forty-five adult zebrafish to triclosan-laden food for four or seven days or a control diet, and analyzed their microbial communities using 16S rRNA amplicon sequencing. Triclosan exposure was associated with rapid shifts in microbiome structure and diversity. We find evidence that several operational taxonomic units (OTUs) associated with the family Enterobacteriaceae appear to be susceptible to triclosan exposure, while OTUs associated with the genus Pseudomonas appeared to be more resilient and resistant to exposure. We also found that triclosan exposure is associated with topological alterations to microbial interaction networks and results in an overall increase in the number of negative interactions per microbe in these networks. Together these data indicate that triclosan exposure results in altered composition and ecological dynamics of microbial communities in the gut. Our work demonstrates that because zebrafish afford rapid and inexpensive interrogation of a large number of individuals, it is a useful experimental system for the discovery of the gut microbiome's interaction with environmental chemicals. PMID:27191725

  13. Mitral cells in the olfactory bulb of adult zebrafish (Danio rerio): morphology and distribution.

    PubMed

    Fuller, Cynthia L; Yettaw, Holly K; Byrd, Christine A

    2006-11-10

    The mitral cell is the primary output neuron and central relay in the olfactory bulb of vertebrates. The morphology of these cells has been studied extensively in mammalian systems and to a lesser degree in teleosts. This study uses retrograde tract tracing and other techniques to characterize the morphology and distribution of mitral cells in the olfactory bulb of adult zebrafish, Danio rerio. These output neurons, located primarily in the glomerular layer and superficial internal cell layer, had variable-shaped somata that ranged in size from 4-18 microm in diameter and 31-96 microm2 in cross-sectional area. The mitral cells exhibited two main types of morphologies with regard to their dendrites: the unidendritic morphology was a single primary dendrite with one or more tufts, but multidendritic cells with several dendritic projections also were seen. The axons of these cells projected to either the medial or the lateral olfactory tract and, in general, the location of the cell on the medial or lateral side of the bulb was indicative of the tract to which it would project. Further, this study shows that the majority of zebrafish mitral cells likely innervate a single glomerulus rather than multiple glomeruli. This information is contrary to the multiple innervation pattern suggested for all teleost mitral cells. Our findings suggest that mitral cells in zebrafish may be more similar to mammalian mitral cells than previously believed, despite variation in size and structure. This information provides a revised anatomical framework for olfactory processing studies in this key model system. PMID:16977629

  14. The Asparaginyl Endopeptidase Legumain Is Essential for Functional Recovery after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Ma, Liping; Shen, Yan-Qin; Khatri, Harsh P.; Schachner, Melitta

    2014-01-01

    Unlike mammals, adult zebrafish are capable of regenerating severed axons and regaining locomotor function after spinal cord injury. A key factor for this regenerative capacity is the innate ability of neurons to re-express growth-associated genes and regrow their axons after injury in a permissive environment. By microarray analysis, we have previously shown that the expression of legumain (also known as asparaginyl endopeptidase) is upregulated after complete transection of the spinal cord. In situ hybridization showed upregulation of legumain expression in neurons of regenerative nuclei during the phase of axon regrowth/sprouting after spinal cord injury. Upregulation of Legumain protein expression was confirmed by immunohistochemistry. Interestingly, upregulation of legumain expression was also observed in macrophages/microglia and neurons in the spinal cord caudal to the lesion site after injury. The role of legumain in locomotor function after spinal cord injury was tested by reducing Legumain expression by application of anti-sense morpholino oligonucleotides. Using two independent anti-sense morpholinos, locomotor recovery and axonal regrowth were impaired when compared with a standard control morpholino. We conclude that upregulation of legumain expression after spinal cord injury in the adult zebrafish is an essential component of the capacity of injured neurons to regrow their axons. Another feature contributing to functional recovery implicates upregulation of legumain expression in the spinal cord caudal to the injury site. In conclusion, we established for the first time a function for an unusual protease, the asparaginyl endopeptidase, in the nervous system. This study is also the first to demonstrate the importance of legumain for repair of an injured adult central nervous system of a spontaneously regenerating vertebrate and is expected to yield insights into its potential in nervous system regeneration in mammals. PMID:24747977

  15. Exposure to Zinc Sulfate Results in Differential Effects on Olfactory Sensory Neuron Subtypes in Adult Zebrafish.

    PubMed

    Hentig, James T; Byrd-Jacobs, Christine A

    2016-01-01

    Zinc sulfate is a known olfactory toxicant, although its specific effects on the olfactory epithelium of zebrafish are unknown. Olfactory organs of adult zebrafish were exposed to zinc sulfate and, after 2, 3, 5, 7, 10 or 14 days, fish were processed for histological, immunohistochemical, ultrastructural, and behavioral analyses. Severe morphological disruption of the olfactory organ was observed two days following zinc sulfate exposure, including fusion of lamellae, epithelial inflammation, and significant loss of anti-calretinin labeling. Scanning electron microscopy revealed the apical surface of the sensory region was absent of ciliated structures, but microvilli were still present. Behavioral analysis showed significant loss of the ability to perceive bile salts and some fish also had no response to amino acids. Over the next several days, olfactory organ morphology, epithelial structure, and anti-calretinin labeling returned to control-like conditions, although the ability to perceive bile salts remained lost until day 14. Thus, exposure to zinc sulfate results in rapid degeneration of the olfactory organ, followed by restoration of morphology and function within two weeks. Zinc sulfate appears to have a greater effect on ciliated olfactory sensory neurons than on microvillous olfactory sensory neurons, suggesting differential effects on sensory neuron subtypes. PMID:27589738

  16. Acid-sensing ion channels (ASICs) 2 and 4.2 are expressed in the retina of the adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Sánchez-Ramos, C; Cabo, R; Guerrera, M C; Quirós, L M; Germanà, A; Vega, J A; García-Suárez, O

    2015-05-01

    Acid-sensing ion channels (ASICs) are H(+)-gated, voltage-insensitive cation channels involved in synaptic transmission, mechanosensation and nociception. Different ASICs have been detected in the retina of mammals but it is not known whether they are expressed in adult zebrafish, a commonly used animal model to study the retina in both normal and pathological conditions. We study the expression and distribution of ASIC2 and ASIC4 in the retina of adult zebrafish and its regulation by light using PCR, in situ hybridization, western blot and immunohistochemistry. We detected mRNA encoding zASIC2 and zASIC4.2 but not zASIC4.1. ASIC2, at the mRNA or protein level, was detected in the outer nuclear layer, the outer plexiform layer, the inner plexiform layer, the retinal ganglion cell layer and the optic nerve. ASIC4 was expressed in the photoreceptors layer and to a lesser extent in the retinal ganglion cell layer. Furthermore, the expression of both ASIC2 and ASIC4.2 was down-regulated by light and darkness. These results are the first demonstration that ASIC2 and ASIC4 are expressed in the adult zebrafish retina and suggest that zebrafish could be used as a model organism for studying retinal pathologies involving ASICs. PMID:25585988

  17. Effects of Chronic Dietary Selenomethionine Exposure on the Visual System of Adult and F1 Generation Zebrafish (Danio rerio).

    PubMed

    Raine, Jason C; Lallemand, Lise; Pettem, Connor M; Janz, David M

    2016-09-01

    The effects of chronic dietary selenomethionine (SeMet) exposure on the visual system of adult zebrafish and their progeny were investigated. Adult zebrafish were exposed to measured concentrations of 1.1 (control) and 10.3 µg Se/g dry mass as SeMet for 57 days, then encouraged to breed. Progeny were reared to swim-up and differences in mortality, eye size and visual behaviour were determined. Adult vision was also investigated using behavioural assays. Adults fed the SeMet-spiked diet exhibited significantly fewer positive reactions in the escape response assay when compared to controls. Larvae from adults fed elevated SeMet had smaller eyes and a lower proportion of positive responses in phototaxis, oculomotor and optokinetic response assays compared to controls. These results demonstrate that environmentally relevant elevated dietary SeMet exposure can affect the visual system of both exposed adult zebrafish and their progeny, which could affect fitness and survivability. PMID:27312825

  18. Startle response memory and hippocampal changes in adult zebrafish pharmacologically-induced to exhibit anxiety/depression-like behaviors.

    PubMed

    Pittman, Julian T; Lott, Chad S

    2014-01-17

    Zebrafish (Danio rerio) are rapidly becoming a popular animal model for neurobehavioral and psychopharmacological research. While startle testing is a well-established assay to investigate anxiety-like behaviors in different species, screening of the startle response and its habituation in zebrafish is a new direction of translational biomedical research. This study focuses on a novel behavioral protocol to assess a tapping-induced startle response and its habituation in adult zebrafish that have been pharmacologically-induced to exhibit anxiety/depression-like behaviors. We demonstrated that zebrafish exhibit robust learning performance in a task adapted from the mammalian literature, a modified plus maze, and showed that ethanol and fluoxetine impair memory performance in this maze when administered after training at a dose that does not impair motor function, however, leads to significant upregulation of hippocampal serotoninergic neurons. These results suggest that the maze associative learning paradigm has face and construct validity and that zebrafish may become a translationally relevant study species for the analysis of the mechanisms of learning and memory changes associated with psychopharmacological treatment of anxiety/depression. PMID:24184510

  19. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    PubMed Central

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135

  20. V-ATPase Proton Pumping Activity Is Required for Adult Zebrafish Appendage Regeneration

    PubMed Central

    Monteiro, Joana; Aires, Rita; Becker, Jörg D.; Jacinto, António; Certal, Ana C.; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration. PMID:24671205

  1. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.

    PubMed

    Hartig, Ellen I; Zhu, Shusen; King, Benjamin L; Coffman, James A

    2016-01-01

    Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  2. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  3. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  4. Efficacy and Safety of 5 Anesthetics in Adult Zebrafish (Danio rerio)

    PubMed Central

    Collymore, Chereen; Tolwani, Angela; Lieggi, Christine; Rasmussen, Skye

    2014-01-01

    Although the safety and efficacy of tricaine methanesulfonate (MS222) for anesthesia of fish are well established, other anesthetics used less commonly in fish have been less extensively evaluated. Therefore, we compared gradual cooling, lidocaine hydrochloride (300, 325, and 350 mg/L), metomidate hydrochloride (2, 4, 6, 8, and 10 mg/L), and isoflurane (0.5 mL/L) with MS222 (150 mg/L) for anesthesia of adult zebrafish. The efficacy and safety of each agent was evaluated by observing loss of equilibrium, slowing of opercular movement, response to tail-fin pinch, recovery time, and anesthesia-associated mortality rates. At 15 min after anesthetic recovery, we used a novel-tank test to evaluate whether anesthetic exposure influenced short-term anxiety-like behavior. Behavioral parameters measured included latency to enter and number of transitions to the upper half of the tank, number of erratic movements, and number of freezing bouts. Behavior after anesthesia was unaltered regardless of the anesthetic used. Efficacy and safety differed among the anesthetics evaluated. Gradual cooling was useful for short procedures requiring immobilization only, but all instrumentation and surfaces that come in contact with fish must be maintained at approximately 10 °C. MS222 and lidocaine hydrochloride at 325 mg/L were effective as anesthetic agents for surgical procedures in adult zebrafish, but isoflurane and high-dose lidocaine hydrochloride were unsuitable as sole anesthetic agents due to high (30%) mortality rates. Although MS222 remains the best choice for generating a surgical plane of anesthesia, metomidate hydrochloride and gradual cooling were useful for sedation and immobilization for nonpainful procedures. PMID:24602548

  5. Peripheral Axons of the Adult Zebrafish Maxillary Barbel Extensively Remyelinate During Sensory Appendage Regeneration

    PubMed Central

    Moore, Alex C.; Mark, Tiffany E.; Hogan, Ann K.; Topczewski, Jacek; LeClair, Elizabeth E.

    2013-01-01

    Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ~180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ~85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate. PMID:22592645

  6. Molecular characterization of retinal stem cells and their niches in adult zebrafish

    PubMed Central

    Raymond, Pamela A; Barthel, Linda K; Bernardos, Rebecca L; Perkowski, John J

    2006-01-01

    Background The persistence in adult teleost fish of retinal stem cells that exhibit all of the features of true 'adult stem cells' – self-renewal, multipotency, and the capacity to respond to injury by mitotic activation with the ability to regenerate differentiated tissues – has been known for several decades. However, the specialized cellular and molecular characteristics of these adult retinal stem cells and the microenvironmental niches that support their maintenance in the differentiated retina and regulate their activity during growth and regeneration have not yet been elucidated. Results Our data show that the zebrafish retina has two kinds of specialized niches that sustain retinal stem cells: 1) a neuroepithelial germinal zone at the interface between neural retina and ciliary epithelium, called the ciliary marginal zone (CMZ), a continuous annulus around the retinal circumference, and 2) the microenvironment around some Müller glia in the differentiated retina. In the uninjured retina, scattered Müller glia (more frequently those in peripheral retina) are associated with clusters of proliferating retinal progenitors that are restricted to the rod photoreceptor lineage, but following injury, the Müller-associated retinal progenitors can function as multipotent retinal stem cells to regenerate other types of retinal neurons. The CMZ has several features in common with the neurogenic niches in the adult mammalian brain, including access to the apical epithelial surface and a close association with blood vessels. Müller glia in the teleost retina have a complex response to local injury that includes some features of reactive gliosis (up-regulation of glial fibrillary acidic protein, GFAP, and re-entry into the cell cycle) together with dedifferentiation and re-acquisition of phenotypic and molecular characteristics of multipotent retinal progenitors in the CMZ (diffuse distribution of N-cadherin, activation of Notch-Delta signaling, and expression of

  7. Zebrafish Melanoma.

    PubMed

    Kaufman, Charles K

    2016-01-01

    Melanoma skin cancer is a potentially deadly disease in humans and has remained extremely difficult to treat once it has metastasized. In just the last 10 years, a number of models of melanoma have been developed in the zebrafish that are biologically faithful to the human disease and have already yielded important insights into the fundamental biology of melanoma and offered new potential avenues for treatment. With the diversity and breadth of the molecular genetic tools available in the zebrafish, these melanoma models will continue to be refined and expanded upon to keep pace with the rapidly evolving field of melanoma biology. PMID:27165365

  8. Reversible Deafferentation of the Adult Zebrafish Olfactory Bulb Affects Glomerular Distribution and Olfactory-Mediated Behavior

    PubMed Central

    Paskin, Taylor R.; Byrd-Jacobs, Christine A.

    2012-01-01

    The olfactory system is a useful model for studying central nervous system recovery from damage due to its neuroplasticity. We recently developed a novel method of deafferentation by repeated exposure of Triton X-100 to the olfactory organ of adult zebrafish. This long-term, reversible method of deafferentation allows both degeneration and regeneration to be observed in the olfactory bulb. The aim of the present study is to examine olfactory bulb innervation, glomerular patterns, and olfactory-mediated behavior with repeated Triton X-100 treatment and the potential for recovery following cessation of treatment. Olfactory bulbs of control, chronic-treated, and recovery animals were examined for the presence or absence of glomeruli that have been identified in the zebrafish glomerular map. Following chronic treatment, the number of glomeruli was dramatically reduced; however, partial innervation remained in the lateral region of the bulb. When animals were given time to recover, complete glomerular distribution returned. A behavioral assay was developed to determine if innervation remaining correlated with behavior of the fish. Chronic-treated fish did not respond to odorants involved with social behavior but continued to react to odorants that mediate feeding behavior. Following recovery, responses to odorants involved with social behavior returned. The morphological and behavioral effects of chronic Triton X-100 treatment in the olfactory system suggest there may be differential susceptibility or resistance to external damage in a subset of sensory neurons. The results of this study demonstrate the remarkable regenerative ability of the olfactory system following extensive and long-term injury. PMID:22963994

  9. Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon.

    PubMed

    Barbosa, Joana S; Di Giaimo, Rossella; Götz, Magdalena; Ninkovic, Jovica

    2016-08-01

    Adult neural stem cells (aNSCs) in zebrafish produce mature neurons throughout their entire life span in both the intact and regenerating brain. An understanding of the behavior of aNSCs in their intact niche and during regeneration in vivo should facilitate the identification of the molecular mechanisms controlling regeneration-specific cellular events. A greater understanding of the process in regeneration-competent species may enable regeneration to be achieved in regeneration-incompetent species, including humans. Here we describe a protocol for labeling and repetitive imaging of aNSCs in vivo. We label single aNSCs, allowing nonambiguous re-identification of single cells in repetitive imaging sessions using electroporation of a red-reporter plasmid in Tg(gfap:GFP)mi2001 transgenic fish expressing GFP in aNSCs. We image using two-photon microscopy through the thinned skull of anesthetized and immobilized fish. Our protocol allows imaging every 2 d for a period of up to 1 month. This methodology allowed the visualization of aNSC behavior in vivo in their natural niche, in contrast to previously available technologies, which rely on the imaging of either dissociated cells or tissue slices. We used this protocol to follow the mode of aNSC division, fate changes and cell death in both the intact and injured zebrafish telencephalon. This experimental setup can be widely used, with minimal prior experience, to assess key factors for processes that modulate aNSC behavior. A typical experiment with data analysis takes up to 1.5 months. PMID:27362338

  10. Reversible deafferentation of the adult zebrafish olfactory bulb affects glomerular distribution and olfactory-mediated behavior.

    PubMed

    Paskin, Taylor R; Byrd-Jacobs, Christine A

    2012-12-01

    The olfactory system is a useful model for studying central nervous system recovery from damage due to its neuroplasticity. We recently developed a novel method of deafferentation by repeated exposure of Triton X-100 to the olfactory organ of adult zebrafish. This long-term, reversible method of deafferentation allows both degeneration and regeneration to be observed in the olfactory bulb. The aim of the present study is to examine olfactory bulb innervation, glomerular patterns, and olfactory-mediated behavior with repeated Triton X-100 treatment and the potential for recovery following cessation of treatment. Olfactory bulbs of control, chronic-treated, and recovery animals were examined for the presence or absence of glomeruli that have been identified in the zebrafish glomerular map. Following chronic treatment, the number of glomeruli was dramatically reduced; however, partial innervation remained in the lateral region of the bulb. When animals were given time to recover, complete glomerular distribution returned. A behavioral assay was developed to determine if innervation remaining correlated with behavior of the fish. Chronic-treated fish did not respond to odorants involved with social behavior but continued to react to odorants that mediate feeding behavior. Following recovery, responses to odorants involved with social behavior returned. The morphological and behavioral effects of chronic Triton X-100 treatment in the olfactory system suggest there may be differential susceptibility or resistance to external damage in a subset of sensory neurons. The results of this study demonstrate the remarkable regenerative ability of the olfactory system following extensive and long-term injury. PMID:22963994

  11. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    SciTech Connect

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; Talbot, William S.

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils and excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.

  12. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    PubMed Central

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (−)-PCB149, and (+)-PCB149. Greater enrichment of (−)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (−)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149. PMID:26786282

  13. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149.

    PubMed

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2',3,4',5',6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (-)-PCB149, and (+)-PCB149. Greater enrichment of (-)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (-)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149. PMID:26786282

  14. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (-)-PCB149, and (+)-PCB149. Greater enrichment of (-)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (-)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149.

  15. Feed and Feeding Regime Affect Growth Rate and Gonadosomatic Index of Adult Zebrafish (Danio Rerio)

    PubMed Central

    Law, Sheran Hiu Wan

    2013-01-01

    Abstract A 5-week study was conducted to evaluate commercially available Artemia, Ziegler zebrafish diet, and Calamac diet fed in five different feeding regimes on the growth and reproductive development of 7-month-old zebrafish. Zebrafish were fed to satiation three times daily during the normal work week and twice daily during the weekend and holidays. Zebrafish in dietary groups CCC (Calamac three times daily) and CCA (Calamac twice daily, Artemia once daily) had a significantly (p<0.05) greater weight gain and specific growth rate as compared to all other dietary groups. Male zebrafish in dietary group 5 had significantly larger gonadosomatic index (GSI) values than all other groups, while female zebrafish in dietary group CCC had significantly larger GSI values than all other groups. No differences in the fatty acid content of female gonads were detected. Zebrafish fed solely Artemia had the greatest weight loss and lowest GSI values. Preliminary evidence of protein sparing in zebrafish is reported. Collectively, this study sheds more light into the effects of the use of commercially available feeds and feeding regime on the rearing of zebrafish. PMID:23902461

  16. Copper at low levels impairs memory of adult zebrafish (Danio rerio) and affects swimming performance of larvae.

    PubMed

    Acosta, Daiane da Silva; Danielle, Naissa Maria; Altenhofen, Stefani; Luzardo, Milene Dornelles; Costa, Patrícia Gomes; Bianchini, Adalto; Bonan, Carla Denise; da Silva, Rosane Souza; Dafre, Alcir Luiz

    2016-01-01

    Metal contamination at low levels is an important issue because it usually produces health and environmental effects, either positive or deleterious. Contamination of surface waters with copper (Cu) is a worldwide event, usually originated by mining, agricultural, industrial, commercial, and residential activities. Water quality criteria for Cu are variable among countries but allowed limits are generally in the μg/L range, which can disrupt several functions in the early life-stages of fish species. Behavioral and biochemical alterations after Cu exposure have also been described at concentrations close to the allowed limits. Aiming to search for the effects of Cu in the range of the allowed limits, larvae and adult zebrafish (Danio rerio) were exposed to different concentrations of dissolved Cu (nominally: 0, 5, 9, 20 and 60μg/L; measured: 0.4, 5.7, 7.2 16.6 and 42.3μg/L, respectively) for 96h. Larvae swimming and body length, and adult behavior and biochemical biomarkers (activity of glutathione-related enzymes in gills, muscle, and brain) were assessed after Cu exposure. Several effects were observed in fish exposed to 9μg/L nominal Cu, including increased larvae swimming distance and velocity, abolishment of adult inhibitory avoidance memory, and decreased glutathione S-transferase (GST) activity in gills of adult fish. At the highest Cu concentration tested (nominally: 60μg/L), body length of larvae, spatial memory of adults, and gill GST activity were decreased. Social behavior (aggressiveness and conspecific interaction), and glutathione reductase (GR) activity were not affected in adult zebrafish. Exposure to Cu, at concentrations close to the water quality criteria for this metal in fresh water, was able to alter larvae swimming performance and to induce detrimental effects on the behavior of adult zebrafish, thus indicating the need for further studies to reevaluate the currently allowed limits for Cu in fresh water. PMID:27012768

  17. Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis.

    PubMed

    Diotel, Nicolas; Beil, Tanja; Strähle, Uwe; Rastegar, Sepand

    2015-01-01

    Teleost fish display a remarkable ability to generate new neurons and to repair brain lesions during adulthood. They are, therefore, a very popular model to investigate the molecular mechanisms of constitutive and induced neurogenesis in adult vertebrates. In this study, we investigated the expression patterns of inhibitor of DNA binding (id) genes and of their potential transcriptional repressor, znf238, in the whole brain of adult zebrafish. We show that while id1 is exclusively expressed in ventricular cells in the whole brain, id2a, id3 and id4 genes are expressed in broader areas. Interestingly, znf238 was also detected in these regions, its expression overlapping with id2a, id3 and id4 expression. Further detailed characterization of the id-expressing cells demonstrated that (a) id1 is expressed in type 1 and type 2 neural progenitors as previously published, (b) id2a in type 1, 2 and 3 neural progenitors, (c) id3 in type 3 neural progenitors and (d) id4 in postmitotic neurons. Our data provide a detailed map of id and znf238 expression in the brain of adult zebrafish, supplying a framework for studies of id genes function during adult neurogenesis and brain regeneration in the zebrafish. PMID:26107416

  18. Embryonic Atrazine Exposure Elicits Alterations in Genes Associated with Neuroendocrine Function in Adult Male Zebrafish.

    PubMed

    Wirbisky, Sara E; Sepúlveda, Maria S; Weber, Gregory J; Jannasch, Amber S; Horzmann, Katharine A; Freeman, Jennifer L

    2016-09-01

    The developmental origins of health and disease (DOHaD) hypothesis states that exposure to environmental stressors early in life can elicit genome and epigenome changes resulting in an increased susceptibility of a disease state during adulthood. Atrazine, a common agricultural herbicide used throughout the Midwestern United States, frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. In our previous studies, zebrafish was exposed to 0, 0.3, 3, or 30 parts per billion (μg/l) atrazine through embryogenesis, rinsed, and allowed to mature to adulthood. A decrease in spawning was observed with morphological alterations in offspring. In addition, adult females displayed an increase in ovarian progesterone and follicular atresia, alterations in levels of a serotonin metabolite and serotonin turnover in brain tissue, and transcriptome changes in brain and ovarian tissue supporting neuroendocrine alterations. As reproductive dysfunction is also influenced by males, this study assessed testes histology, hormone levels, and transcriptomic profiles of testes and brain tissue in the adult males. The embryonic atrazine exposure resulted in no alterations in body or testes weight, gonadosomatic index, testes histology, or levels of 11-ketotestosterone or testosterone. To further investigate potential alterations, transcriptomic profiles of adult male testes and brain tissue was completed. This analysis demonstrated alterations in genes associated with abnormal cell and neuronal growth and morphology; molecular transport, quantity, and production of steroid hormones; and neurotransmission with an emphasis on the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-thyroid axes. Overall, this data indicate future studies should focus on additional neuroendocrine endpoints to determine potential functional impairments. PMID:27413107

  19. Spectral-Domain Optical Coherence Tomography as a Noninvasive Method to Assess Damaged and Regenerating Adult Zebrafish Retinas

    PubMed Central

    Bailey, Travis J.; Davis, Darin H.; Vance, Joseph E.; Hyde, David R.

    2012-01-01

    Purpose. These experiments assessed the ability of spectral-domain optical coherence tomography (SD-OCT) to accurately represent the structural organization of the adult zebrafish retina and reveal the dynamic morphologic changes during either light-induced damage and regeneration of photoreceptors or ouabain-induced inner retinal damage. Methods. Retinas of control dark-adapted adult albino zebrafish were compared with retinas subjected to 24 hours of constant intense light and recovered for up to 8 weeks or ouabain-damaged retinas that recovered for up to 3 weeks. Images were captured and the measurements of retinal morphology were made by SD-OCT, and then compared with those obtained by histology of the same eyes. Results. Measurements between SD-OCT and histology were very similar for the undamaged, damaged, and regenerating retinas. Axial measurements of SD-OCT also revealed vitreal morphology that was not readily visualized by histology. Conclusions. SD-OCT accurately represented retinal lamination and photoreceptor loss and recovery during light-induced damage and subsequent regeneration. SD-OCT was less accurate at detecting the inner nuclear layer in ouabain-damaged retinas, but accurately detected the undamaged outer nuclear layer. Thus, SD-OCT provides a noninvasive and quantitative method to assess the morphology and the extent of damage and repair in the zebrafish retina. PMID:22499984

  20. Acid-sensing ion channel immunoreactivities in the cephalic neuromasts of adult zebrafish.

    PubMed

    Abbate, F; Madrigrano, M; Scopitteri, T; Levanti, M; Cobo, J L; Germanà, A; Vega, J A; Laurà, R

    2016-09-01

    The neuromasts are the morphofunctional unit of the lateral line system serving as mechanosensors for water flow and movement. The mechanisms underlying the detection of the mechanical stimuli in the vertebrate mechanosensory cells remain poorly understood at the molecular level, and no information is available on neuromasts. Mechanotransduction is the conversion of a mechanical stimulus into an electrical signal via activation of ion channels. The acid-sensing ion channels (ASICs) are presumably involved in mechanosensation, and therefore are expected to be expressed in the mechanoreceptors. Here we used immunohistochemistry to investigate the occurrence and distribution of ASICs in the cephalic neuromasts of the adult zebrafish. Specific immunoreactivity for ASIC1 and ASIC4 was detected in the hair cells while ASIC2 was restricted to the nerves supplying neuromasts. Moreover, supporting and mantle cells; i.e., the non-sensory cells of the neuromasts, also displayed ASIC4. For the first time, these results demonstrate the presence of the putative mechanoproteins ASIC1, ASIC2 and ASIC4 in neuromasts, suggesting a role for these ion channels in mechanosensation. PMID:27443821

  1. Persistent Adult Zebrafish Behavioral Deficits Results from Acute Embryonic Exposure to Gold Nanoparticles

    PubMed Central

    Truong, Lisa; Saili, Katerine S.; Miller, John M.; Hutchison, James E.; Tanguay, Robert L.

    2011-01-01

    As the number of products containing nanomaterials increase, human exposure to nanoparticles (NPs) is unavoidable. Presently, few studies focus on the potential long-term consequences of developmental NP exposure. In this study, zebrafish embryos were acutely exposed to three gold NPs that possess functional groups with differing surface charge. Embryos were exposed to 50 μg/mL of 1.5 nm gold nanoparticles (AuNPs) possessing negatively charged 2-mercaptoethanesulfonic acid (MES) or neutral 2-(2-(2-mercaptoethoxy)ethoxy)ethanol (MEEE) ligands or 10 μg/mL of the AuNPs possessing positively charged trimethylammoniumethanethiol (TMAT). Both MES- and TMAT-AuNP exposed embryos exhibited hypo-locomotor activity, while those exposed to MEEE-AuNPs did not. A subset of embryos that were exposed to 1.5 nm MES- and TMAT-AuNPs during development from 6–120 hours post fertilization were raised to adulthood. Behavioral abnormalities and the number of survivors into adulthood were evaluated at 122 days post fertilization. We found that both treatments induced abnormal startle behavior following a tap stimulus. However, the MES-AuNPs exposed group also exhibited abnormal adult behavior in the light and had a lower survivorship into adulthood. This study demonstrates that acute, developmental exposure to 1.5 nm MES- and TMAT- AuNPs, two NPs differing only in the functional group, affects larval behavior, with behavioral effects persisting into adulthood. PMID:21946249

  2. Neurotoxicity of neem commercial formulation (Azadirachta indica A. Juss) in adult zebrafish (Danio rerio).

    PubMed

    Bernardi, M M; Dias, S G; Barbosa, V E

    2013-11-01

    The neurotoxic effects of a commercial formulation of Azadirachta indica A. Juss, also called neem or nim, in adult zebrafish were determined using behavioral models. General activity, anxiety-like effects, and learning and memory in a passive avoidance task were assessed after exposure to 20 or 40 μl/L neem. The results showed that 20 μl/L neem reduced the number of runs. Both neem concentrations increased the number of climbs to the water surface, and 40 μl/L increased the number of tremors. In the anxiety test, the 20 μl/L dose increased the number of entries in the light side compared with controls, but the latency to enter the dark side and the freezing behavior in this side did not changed. In relation to controls, the 40 μl/L neem reduced the latency to enter in the light side, did not change the number of entries in this side and increased freezing behavior in the light side. In the passive avoidance test, pre-training and pre-test neem exposure to 40 μl/L decreased the response to the learning task. Thus, no impairment was observed in this behavioral test. We conclude that neem reduced general activity and increased anxiety-like behavior but did not affect learning and memory. PMID:24211596

  3. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated. PMID:23328442

  4. A rapid throughput approach identifies cognitive deficits in adult zebrafish from developmental exposure to polybrominated flame retardants

    PubMed Central

    Truong, Lisa; Mandrell, David; Mandrell, Rick; Simonich, Michael; Tanguay, Robert L.

    2014-01-01

    A substantial body of evidence has correlated the human body burdens of some polybrominated diphenyl ether (PBDE) flame retardants with cognitive and other behavioral deficits. Adult zebrafish exhibit testable learning and memory, making them an increasingly attractive model for neurotoxicology. Our goal was to develop a rapid throughput means of identifying the cognitive impact of developmental exposure to flame retardants in the zebrafish model. We exposed embryos from 6 hours post fertilization to 5 days post fertilization to either PBDE 47 (0.1 uM), PBDE 99 (0.1 uM) or PBDE 153 (0.1 uM), vehicle (0.1% DMSO), or embryo medium (EM). The larvae were grown to adulthood and evaluated for the rate at which they learned an active-avoidance response in an automated shuttle box array. Zebrafish developmentally exposed to PBDE 47 learned the active avoidance paradigm significantly faster than the 0.1% DMSO control fish (P < 0.0001), but exhibited significantly poorer performance when retested suggestive of impaired memory retention or altered neuromotor activity. Learning in the PBDE 153 group was not significantly different from the DMSO group. Developmental exposure to 0.1% DMSO impaired adult active avoidance learning relative to the sham group (n = 39; P < 0.0001). PBDE 99 prevented the DMSO effect, yielding a learning rate not significantly different from the sham group (n = 36; P > 0.9). Our results underscore the importance of vehicle choice in accurately assessing chemical effects on behavior. Active avoidance response in zebrafish is an effective model of learning that, combined with automated shuttle box testing, will provide a highly efficient platform for evaluating persistent neurotoxic hazard from many chemicals. PMID:24674958

  5. Patterns of olfactory bulb neurogenesis in the adult zebrafish are altered following reversible deafferentation.

    PubMed

    Trimpe, Darcy M; Byrd-Jacobs, Christine A

    2016-09-01

    Adult brain plasticity can be investigated using reversible methods that remove afferent innervation but allow return of sensory input. Repeated intranasal irrigation with Triton X-100 in adult zebrafish diminishes innervation to the olfactory bulb, resulting in a number of alterations in bulb structure and function, and cessation of the treatment allows for reinnervation and recovery. Using bromodeoxyuridine, Hu, and caspase-3 immunoreactivity we examined cell proliferation, differentiation, migration, and survival under conditions of acute and chronic deafferentation and reafferentation. Cell proliferation within the olfactory bulb was not influenced by acute or chronic deafferentation or reafferentation, but cell fate (including differentiation, migration, and/or survival of newly formed cells) was affected. We found that chronic deafferentation caused a bilateral increase in the number of newly formed cells that migrated into the bulb, although the amount of cell death of these new cells was significantly increased compared to untreated fish. Reafferentation also increased the number of newly formed cells migrating into both bulbs, suggesting that the deafferentation effect on cell fate was maintained. Reafferentation resulted in a decrease in newly formed cells that became neurons and, although death of newly formed cells was not altered from control levels, survival was reduced in relation to that seen in chronically deafferented fish. The potential effect of age on cell genesis was also examined. While the amount of cell migration into the olfactory bulbs was not affected by fish age, more of the newly formed cells became neurons in older fish. Younger fish displayed more cell death under conditions of chronic deafferentation. In sum, our results show that reversible deafferentation affects several aspects of cell fate, including cell differentiation, migration, and survival, and age of the fish influences the response to deafferentation. PMID:27343831

  6. Increased cell proliferation and neural activity by physostigmine in the telencephalon of adult zebrafish.

    PubMed

    Lee, Yunkyoung; Lee, Bongkyu; Jeong, Sumin; Park, Ji-Won; Han, Inn-Oc; Lee, Chang-Joong

    2016-08-26

    Physostigmine, an acetylcholinesterase inhibitor, is known to affect the brain function in various aspects. This study was conducted to test whether physostigmine affects cell proliferation in the telencephalon of zebrafish. BrdU-labeled cells was prominently observed in the ventral zone of the ventral telencephalon of zebrafish. The increased number of BrdU- and proliferating cell nuclear antigen-labeled cells were shown in zebrafish treated with 200μM physostigmine, which was inhibited by pretreatment with 200μM scopolamine. iNOS mRNA expression was increased in the brain of zebrafish treated with 200μM physostigmine. Consistently, aminoguanidine, an iNOS inhibitor, attenuated the increase in the number of BrdU-labeled cells by physostigmine treatment. Zebrafish also showed seizure-like locomotor activity characterized by a rapid and abrupt movement during a 30min treatment with 200μM physostigmine. Neural activity in response to an electrical stimulus was increased in the isolated telencephalon of zebrafish continuously perfused with 200μM physostigmine. None of the number of BrdU-labeled cells, neural activity, or locomotor activity was affected by treatment with 20μM physostigmine. These results suggest that 200μM physostigmine increased neural activity and induced cell proliferation via nitric oxide production in zebrafish. PMID:27378362

  7. The spleen and skin wound healing in Xenopus adults.

    PubMed

    Franchini, Antonella; Della Rocca, Annalaura; Bertolotti, Evelina

    2016-07-01

    In most vertebrates, the regenerative capacity to restore lost/damage tissues to original structure and functionality decreases at some time during ontogenesis. To evaluate the role of the acquired immunity in the decline of regenerative potential, we examined the cellular responses elicited in the spleen during skin repair in Xenopus adults. Modifications in the architecture were found to be induced and were remarkable 14 days postinjury when the spleen increased significantly in size. In white pulp, the periarteriolar lymphoid sheaths were associated with follicles having central light zones, morphologically similar to germinal centers. With the progress of healing, pigment-containing cells were seen to accumulate in both white and red pulp regions. Moreover, compared to controls, the cells immunoreactive to anti-cytokines (TNF-α, TGF-β1) and -iNOS increased from the first days after wounding. The 14th day, the positive cells formed a dense network of reticular cells in central regions of lymphoid follicles and more frequent reactive leukocytes were detected within the red pulp. A higher number of lymphoid cells immunostained with anti-CD3ε were also observed in the perifollicular zone. The results suggest that the spleen of adult frogs is involved in skin wound healing with the expansion of lymphoid compartments. J. Morphol. 277:888-895, 2016. © 2016 Wiley Periodicals, Inc. PMID:27059432

  8. Midkine-a Protein Localization in the Developing and Adult Retina of the Zebrafish and Its Function During Photoreceptor Regeneration

    PubMed Central

    Taylor, Scott; Thummel, Ryan; Hitchcock, Peter F.

    2015-01-01

    Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka) regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury-induced photoreceptor progenitors. Here we provide the first data describing Mdka protein localization during different stages of retinal development and during the regeneration of photoreceptors in adults. We also experimentally test the role of Mdka during photoreceptor regeneration. The immuno-localization of Mdka reflects the complex spatiotemporal pattern of gene expression and also reveals the apparent secretion and extracellular trafficking of this protein. During embryonic retinal development the Mdka antibodies label all mitotically active cells, but at the onset of neuronal differentiation, immunostaining is also localized to the nascent inner plexiform layer. Starting at five days post fertilization through the juvenile stage, Mdka immunostaining labels the cytoplasm of horizontal cells and the overlying somata of rod photoreceptors. Double immunolabeling shows that in adult horizontal cells, Mdka co-localizes with markers of the Golgi complex. Together, these data are interpreted to show that Mdka is synthesized in horizontal cells and secreted into the outer nuclear layer. In adults, Mdka is also present in the end feet of Müller glia. Similar to mdka gene expression, Mdka in horizontal cells is regulated by circadian rhythms. After the light-induced death of photoreceptors, Mdka immuonolabeling is localized to Müller glia, the intrinsic stem cells of the zebrafish retina, and proliferating photoreceptor progenitors. Knockdown of Mdka during photoreceptor regeneration results in less proliferation and diminished regeneration of rod photoreceptors. These data

  9. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications

    PubMed Central

    Zou, Ming; De Koninck, Paul; Neve, Rachael L.; Friedrich, Rainer W.

    2014-01-01

    The zebrafish has various advantages as a model organism to analyze the structure and function of neural circuits but efficient viruses or other tools for fast gene transfer are lacking. We show that transgenes can be introduced directly into the adult zebrafish brain by herpes simplex type I viruses (HSV-1) or electroporation. We developed a new procedure to target electroporation to defined brain areas and identified promoters that produced strong long-term expression. The fast workflow of electroporation was exploited to express multiple channelrhodopsin-2 variants and genetically encoded calcium indicators in telencephalic neurons for measurements of neuronal activity and synaptic connectivity. The results demonstrate that HSV-1 and targeted electroporation are efficient tools for gene delivery into the zebrafish brain, similar to adeno-associated viruses and lentiviruses in other species. These methods fill an important gap in the spectrum of molecular tools for zebrafish and are likely to have a wide range of applications. PMID:24834028

  10. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration

    PubMed Central

    Schall, K. A.; Holoyda, K. A.; Grant, C. N.; Levin, D. E.; Torres, E. R.; Maxwell, A.; Pollack, H. A.; Moats, R. A.; Frey, M. R.; Darehzereshki, A.; Al Alam, D.; Lien, C.

    2015-01-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. PMID:26089336

  11. Decreased thyroid hormone signaling accelerates the reinnervation of the optic tectum following optic nerve crush in adult zebrafish.

    PubMed

    Bhumika, Stitipragyan; Lemmens, Kim; Vancamp, Pieter; Moons, Lieve; Darras, Veerle M

    2015-09-01

    The regenerative capacity of the adult mammalian central nervous system (CNS) is poor and finding ways to stimulate long distance axonal regeneration in humans remains a challenge for neuroscientists. Thyroid hormones, well known for their key function in CNS development and maturation, more recently also emerged as molecules influencing regeneration. While several studies investigated their influence on peripheral nerve regeneration, in vivo studies on their role in adult CNS regeneration remain scarce. We therefore investigated the effect of lowering T3 signaling on the regeneration of the optic nerve (ON) following crush in zebrafish, a species where full recovery occurs spontaneously. Adult zebrafish were exposed to iopanoic acid (IOP), which lowered intracellular 3,5,3'-triiodothyronine (T3) availability, or to the thyroid hormone receptor β antagonist methylsulfonylnitrobenzoate (C1). Both treatments accelerated optic tectum (OT) reinnervation. At 7days post injury (7dpi) there was a clear increase in the biocytin labeled area in the OT following anterograde tracing as well as an increased immunostaining of Gap43, a protein expressed in outgrowing axons. This effect was attenuated by T3 supplementation to IOP-treated fish. ON crush induced very limited cell death and proliferation at the level of the retina in control, IOP- and C1-treated fish. The treatments also had no effect on the mRNA upregulation of the regeneration markers gap43, tub1a, and socs3b at the level of the retina at 4 and 7dpi. We did, however, find a correlation between the accelerated OT reinnervation and a more rapid resolution of microglia/macrophages in the ON and the OT of IOP-treated fish. Taken together these data indicate that lowering T3 signaling accelerates OT reinnervation following ON crush in zebrafish and that this is accompanied by a more rapid resolution of the inflammatory response. PMID:25913150

  12. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformations in F1 offspring

    PubMed Central

    Chen, Jiangfei; Huang, Changjiang; Das, Siba R.; La Du, Jane; Corvi, Margaret M.; Bai, Chenglian; Chen, Yuanhong; Tanguay, Robert L.; Dong, Qiaoxiang

    2014-01-01

    Perfluorooctanesulphonicacid (PFOS) is an organic contaminant that is ubiquitous in the environment, wildlife, and humans. Few studies have assessed the effects of chronic PFOS exposure on central nervous system function in aquatic organisms. The present study defined the behavioral effects of varying life span chronic exposures to low dose PFOS in zebrafish. The zebrafish were treated with vehicle control or 0.5μM PFOS during 1–21, 21–120, or 1–120 day post fertilization (dpf). Chronic PFOS exposure impaired the adult zebrafish behavior mode under the tapping stimulus. The movement speed of 1–120 dpf exposed fish was significantly increased compared with control, while 1–21 and 21–120 dpf exposed groups were not severely affected. PFOS residues in F1 embryos derived from parental exposure during both the 1–120 and 21–120 dpf groups was significantly higher than control, and F1 embryos in these two groups showed obvious malformations, such as uninflated swim bladder (USB) and bent spine (BS). Larvae of the parental exposed to PFOS from 1–21 or 21–120 dpf elicited a higher swim rate than control in both the light and dark periods. Embryos derived from the 1–120 dpf group showed a statistically lower speed in the light period and a higher speed in the dark period as compared with control. Though there is little PFOS residue in 1–21 dpf group, the adverse behavioral effects on both adult and F1 larvae indicate that exposure during the first 21 dpf induce long-term neurobehavior toxicity. Our findings demonstrate that chronic exposure to low dose PFOS in different life stage adversely impacts adult behavior, subsequent offspring malformation, and larval behavior. PMID:23059794

  13. Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation

    PubMed Central

    Kassing, Vanessa

    2013-01-01

    The zebrafish (Danio rerio) has become one of the major animal models for in vivo examination of sensory and neuronal computation. Similar to Xenopus tadpoles neural activity in the optic tectum, the major region controlling visually guided behavior, can be examined in zebrafish larvae by optical imaging. Prerequisites of these approaches are usually the transparency of larvae up to a certain age and the use of two-photon microscopy. This principle of fluorescence excitation was necessary to suppress crosstalk between signals from individual neurons, which is a critical issue when using membrane-permeant dyes. This makes the equipment to study neuronal processing costly and limits the approach to the study of larvae. Thus there is lack of knowledge about the properties of neurons in the optic tectum of adult animals. We established a procedure to circumvent these problems, enabling in vivo calcium imaging in the optic tectum of adult zebrafish. Following local application of dextran-coupled dyes single-neuron activity of adult zebrafish can be monitored with conventional widefield microscopy, because dye labeling remains restricted to tens of neurons or less. Among the neurons characterized with our technique we found neurons that were selective for a certain pattern orientation as well as neurons that responded in a direction-selective way to visual motion. These findings are consistent with previous studies and indicate that the functional integrity of neuronal circuits in the optic tectum of adult zebrafish is preserved with our staining technique. Overall, our protocol for in vivo calcium imaging provides a useful approach to monitor visual responses of individual neurons in the optic tectum of adult zebrafish even when only widefield microscopy is available. This approach will help to obtain valuable insight into the principles of visual computation in adult vertebrates and thus complement previous work on developing visual circuits. PMID:23667529

  14. Matrix metalloproteinases as promising regulators of axonal regrowth in the injured adult zebrafish retinotectal system.

    PubMed

    Lemmens, Kim; Bollaerts, Ilse; Bhumika, Stitipragyan; de Groef, Lies; Van Houcke, Jessie; Darras, Veerle M; Van Hove, Inge; Moons, Lieve

    2016-05-01

    Overcoming the failure of axon regeneration in the mammalian central nervous system (CNS) after injury remains a major challenge, which makes the search for proregenerative molecules essential. Matrix metalloproteinases (MMPs) have been implicated in axonal outgrowth during CNS development and show increased expression levels during vertebrate CNS repair. In mammals, MMPs are believed to alter the suppressive extracellular matrix to become more permissive for axon regrowth. We investigated the role of MMPs in axonal regeneration following optic nerve crush (ONC) in adult zebrafish, which fully recover from such injuries due to a high intrinsic axon growth capacity and a less inhibitory environment. Lowering general retinal MMP activity through intravitreal injections of GM6001 after ONC strongly reduced retinal ganglion cell (RGC) axonal regrowth, without influencing RGC survival. Based on a recently performed transcriptome profiling study, the expression pattern of four MMPs after ONC was determined via combined use of western blotting and immunostainings. Mmp-2 and -13a were increasingly present in RGC somata during axonal regrowth. Moreover, Mmp-2 and -9 became upregulated in regrowing RGC axons and inner plexiform layer (IPL) synapses, respectively. In contrast, after an initial rise in IPL neurites and RGC axons during the injury response, Mmp-14 expression decreased during regeneration. Altogether, a phase-dependent expression pattern for each specific MMP was observed, implicating them in axonal regrowth and inner retina remodeling after injury. In conclusion, these data suggest a novel, neuron-intrinsic function for multiple MMPs in axon regrowth that is distinct from breaking down environmental barriers. J. Comp. Neurol. 524:1472-1493, 2016. © 2015 Wiley Periodicals, Inc. PMID:26509469

  15. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections.

    PubMed

    Cronan, Mark R; Rosenberg, Allison F; Oehlers, Stefan H; Saelens, Joseph W; Sisk, Dana M; Jurcic Smith, Kristen L; Lee, Sunhee; Tobin, David M

    2015-12-01

    Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ. PMID:26449262

  16. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections

    PubMed Central

    Cronan, Mark R.; Rosenberg, Allison F.; Oehlers, Stefan H.; Saelens, Joseph W.; Sisk, Dana M.; Jurcic Smith, Kristen L.; Lee, Sunhee; Tobin, David M.

    2015-01-01

    ABSTRACT Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ. PMID:26449262

  17. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish.

    PubMed

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  18. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish

    PubMed Central

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  19. Molecular psychiatry of zebrafish

    PubMed Central

    Stewart, Adam Michael; Ullmann, Jeremy F.P.; Norton, William H.J.; Brennan, Caroline H.; Parker, Matthew O.; Gerlai, Robert; Kalueff, Allan V.

    2014-01-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling CNS disorders. In particular, we outline recent genetic and technological developments allowing for in-vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern biological psychiatry research. PMID:25349164

  20. Molecular psychiatry of zebrafish.

    PubMed

    Stewart, A M; Ullmann, J F P; Norton, W H J; Parker, M O; Brennan, C H; Gerlai, R; Kalueff, A V

    2015-02-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research. PMID:25349164

  1. Dynamics of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion

    PubMed Central

    Graciarena, Mariana; Dambly-Chaudière, Christine; Ghysen, Alain

    2014-01-01

    Axonal regeneration is a major issue in the maintenance of adult nervous systems, both after nerve injuries and in neurodegenerative diseases. However, studying this process in vivo is difficult or even impossible in most vertebrates. Here we show that the posterior lateral line (PLL) of zebrafish is a suitable system to study axonal regeneration in vivo because of both the superficial location and reproducible spatial arrangement of neurons and targets, and the possibility of following reinnervation in live fish on a daily basis. Axonal regeneration after nerve cut has been demonstrated in this system during the first few days of life, leading to complete regeneration within 24 h. However, the potential for PLL nerve regeneration has not been tested yet beyond the early larval stage. We explore the regeneration potential and dynamics of the PLL nerve in adult zebrafish and report that regeneration occurs throughout adulthood. We observed that irregularities in the original branching pattern are faithfully reproduced after regeneration, suggesting that regenerating axons follow the path laid down by the original nerve branches. We quantified the extent of target reinnervation after a nerve cut and found that the latency before the nerve regenerates increases with age. This latency is reduced after a second nerve cut at all ages, suggesting that a regeneration-promoting factor induced by the first cut facilitates regeneration on a second cut. We provide evidence that this factor remains present at the site of the first lesion for several days and is intrinsic to the neurons. PMID:24474787

  2. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina

    PubMed Central

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M.

    2015-01-01

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. SIGNIFICANCE STATEMENT The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms

  3. In vivo spectroscopic photoacoustic tomography imaging of a far red fluorescent protein expressed in the exocrine pancreas of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Mengyang; Schmitner, Nicole; Sandrian, Michelle G.; Zabihian, Behrooz; Hermann, Boris; Salvenmoser, Willi; Meyer, Dirk; Drexler, Wolfgang

    2014-03-01

    Fluorescent proteins brought a revolution in life sciences and biological research in that they make a powerful tool for researchers to study not only the structural and morphological information, but also dynamic and functional information in living cells and organisms. While green fluorescent proteins (GFP) have become a common labeling tool, red-shifted or even near infrared fluorescent proteins are becoming the research focus due to the fact that longer excitation wavelengths are more suitable for deep tissue imaging. In this study, E2-Crimson, a far red fluorescent protein whose excitation wavelength is 611 nm, was genetically expressed in the exocrine pancreas of adult zebrafish. Using spectroscopic all optical detection photoacoustic tomography, we mapped the distribution of E2-Crimson in 3D after imaging the transgenic zebrafish in vivo using two different wavelengths. With complementary morphological information provided by imaging the same fish using a spectral domain optical coherence tomography system, the E2-Crimson distribution acquired from spectroscopic photoacoustic tomography was confirmed in 2D by epifluorescence microscopy and in 3D by histology. To the authors' knowledge, this is the first time a far red fluorescent protein is imaged in vivo by spectroscopic photoacoustic tomography. Due to the regeneration feature of zebrafish pancreas, this work preludes the longitudinal studies of animal models of diseases such as pancreatitis by spectroscopic photoacoustic tomography. Since the effective penetration depth of photoacoustic tomography is beyond the transport mean free path length, other E2-Crimson labeled inner organs will also be able to be studied dynamically using spectroscopic photoacoustic tomography.

  4. A New Anaesthetic Protocol for Adult Zebrafish (Danio rerio): Propofol Combined with Lidocaine

    PubMed Central

    Valentim, Ana M.; Félix, Luís M.; Carvalho, Leonor; Diniz, Enoque; Antunes, Luís M.

    2016-01-01

    Background The increasing use of zebrafish model has not been accompanied by the evolution of proper anaesthesia for this species in research. The most used anaesthetic in fishes, MS222, may induce aversion, reduction of heart rate, and consequently high mortality, especially during long exposures. Therefore, we aim to explore new anaesthetic protocols to be used in zebrafish by studying the quality of anaesthesia and recovery induced by different concentrations of propofol alone and in combination with different concentrations of lidocaine. Material and Methods In experiment A, eighty-three AB zebrafish were randomly assigned to 7 different groups: control, 2.5 (2.5P), 5 (5P) or 7.5 μg/ml (7.5P) of propofol; and 2.5 μg/ml of propofol combined with 50, (P/50L), 100 (P/100L) or 150 μg/ml (P/150L) of lidocaine. Zebrafish were placed in an anaesthetic water bath and time to lose the equilibrium, reflex to touch, reflex to a tail pinch, and respiratory rate were measured. Time to gain equilibrium was also assessed in a clean tank. Five and 24 hours after anaesthesia recovery, zebrafish were evaluated concerning activity and reactivity. Afterwards, in a second phase of experiments (experiment B), the best protocol of the experiment A was compared with a new group of 8 fishes treated with 100 mg/L of MS222 (100M). Results In experiment A, only different concentrations of propofol/lidocaine combination induced full anaesthesia in all animals. Thus only these groups were compared with a standard dose of MS222 in experiment B. Propofol/lidocaine induced a quicker loss of equilibrium, and loss of response to light and painful stimuli compared with MS222. However zebrafish treated with MS222 recovered quickly than the ones treated with propofol/lidocaine. Conclusion In conclusion, propofol/lidocaine combination and MS222 have advantages in different situations. MS222 is ideal for minor procedures when a quick recovery is important, while propofol/lidocaine is best to

  5. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio)

    PubMed Central

    McClelland, Grant B; Craig, Paul M; Dhekney, Kalindi; Dipardo, Shawn

    2006-01-01

    Both exercise training and cold acclimatization induce muscle remodelling in vertebrates, producing a more aerobic phenotype. In ectothermic species exercise training and cold-acclimatization represent distinct stimuli. It is currently unclear if these stimuli act through a common mechanism or if different mechanisms lead to a common phenotype. The goal of this study was to survey responses that represent potential mechanisms responsible for contraction- and temperature-induced muscle remodelling, using an ectothermic vertebrate. Separate groups of adult zebrafish (Danio rerio) were either swim trained or cold acclimatized for 4 weeks. We found that the mitochondrial marker enzyme citrate synthase (CS) was increased by 1.5× in cold and by 1.3× with exercise (P < 0.05). Cytochrome c oxidase (COx) was increased by 1.2× following exercise training (P < 0.05) and 1.2× (P = 0.07) with cold acclimatization. However, only cold acclimatization increased β-hydroxyacyl-CoA dehydrogenase (HOAD) compared to exercise-trained (by 1.3×) and pyruvate kinase (PK) relative to control zebrafish. We assessed the whole-animal performance outcomes of these treatments. Maximum absolute sustained swimming speed (Ucrit) was increased in the exercise trained group but not in the cold acclimatized group. Real-time PCR analysis indicated that increases in CS are primarily transcriptionally regulated with exercise but not with cold treatments. Both treatments showed increases in nuclear respiratory factor (NRF)-1 mRNA which was increased by 2.3× in cold-acclimatized and 4× in exercise-trained zebrafish above controls. In contrast, peroxisome proliferator-activated receptor (PPAR)-α mRNA levels were decreased in both experimental groups while PPAR-β1 declined in exercise training only. Moreover, PPAR-γ coactivator (PGC)-1α mRNA was not changed by either treatment. In zebrafish, both temperature and exercise produce a more aerobic phenotype, but there are stimulus-dependent responses

  6. Role of eosinophils and apoptosis in PDIMs/PGLs deficient mycobacterium elimination in adult zebrafish.

    PubMed

    Huang, Xinhua; Wang, Hui; Meng, Lu; Wang, Qinglan; Yu, Jia; Gao, Qian; Wang, Decheng

    2016-06-01

    The cell wall lipids phthiocerol dimycocerosates (PDIMs) and its structurally-related compound, phenolic glycolipids (PGLs) are major virulence factors of mycobacterium, as shown by the reduced growth of PDIMs/PGLs deficient mutants in various animal models. PDIMs/PGLs play active roles in modulating host immune responses. However, the cellular and molecular mechanisms of how PDIMs/PGLs deficient mutant was eliminated in vivo are still elusive. Our aim was to investigate what host immune responses have effect on mycobacterium elimination in vivo. Using microarray, we find PDIMs/PGLs modulate divergent host responses, including chemotaxis and focal adhesion's downstream pathway and apoptosis. We examine these two host responses by Diff-Quik stain, coupled with transmission electron microscopy and TUNEL stain respectively. The ultrastructure observation showed that eosinophils appeared in WT-infected zebrafish at day 1, however eosinophils arrived was delayed to day 7 in PDIMs/PGLs-deficient mutant-infected animals. More intriguingly, apoptosis was markedly increased in PDIMs/PGLs-mutant infected zebrafish at day 1 after infection, compared to WT-infected fishes at this time. However, apoptosis trend was fully reversed by day 7, with increased apoptosis were detected in WT-infected zebrafish compared with the PDIMs/PGLs-deficient mutant, especially more apoptosis within the granuloma. This study shows that the anti-apoptotic effects of PDIMs/PGLs and the recruitment of eosinophils in tissue during the early infection in zebrafish might promote bacterium growth in vivo. PMID:26855012

  7. Atomoxetine reduces anticipatory responding in a 5-choice serial reaction time task for adult zebrafish

    PubMed Central

    Parker, Matthew O.; Brock, Alistair J.; Sudwarts, Ari; Brennan, Caroline H.

    2014-01-01

    Deficits in impulse control are related to a number of psychiatric diagnoses, including attention deficit hyperactivity disorder, addiction, and pathological gambling. Despite increases in our knowledge about the underlying neurochemical and neuroanatomical correlates, understanding of the molecular and cellular mechanisms is less well established. Understanding these mechanisms is essential in order to move towards individualized treatment programs and increase efficacy of interventions. Zebrafish are a very useful vertebrate model for exploring molecular processes underlying disease owing to their small size and genetic tractability. Their utility in terms of behavioral neuroscience, however, hinges on the validation and publication of reliable assays with adequate translational relevance. Here, we report an initial pharmacological validation of a fully automated zebrafish version of the commonly used five-choice serial reaction time task using a variable interval pre-stimulus interval. We found that atomoxetine reduced anticipatory responses (0.6 mg/kg), whereas a high-dose (4 mg/kg) methylphenidate increased anticipatory responses and the number of trials completed in a session. On the basis of these results, we argue that similar neurochemical processes in fish as in mammals may control impulsivity, as operationally defined by anticipatory responses on a continuous performance task such as this, making zebrafish potentially a good model for exploring the molecular basis of impulse control disorders and for first-round drug screening. PMID:24481568

  8. Live Imaging of Innate Immune and Preneoplastic Cell Interactions Using an Inducible Gal4/UAS Expression System in Larval Zebrafish Skin

    PubMed Central

    Ramezani, Thomas; Laux, Derek W.; Bravo, Isabel R.; Tada, Masazumi; Feng, Yi

    2015-01-01

    Here we describe a method to conditionally induce epithelial cell transformation by the use of the 4-Hydroxytamoxifen (4-OHT) inducible KalTA4-ERT2/UAS expression system1 in zebrafish larvae, and the subsequent live imaging of innate immune cell interaction with HRASG12V expressing skin cells. The KalTA4-ERT2/UAS system is both inducible and reversible which allows us to induce cell transformation with precise temporal/spatial resolution in vivo. This provides us with a unique opportunity to live image how individual preneoplastic cells interact with host tissues as soon as they emerge, then follow their progression as well as regression. Recent studies in zebrafish larvae have shown a trophic function of innate immunity in the earliest stages of tumorigenesis2,3. Our inducible system would allow us to live image the onset of cellular transformation and the subsequent host response, which may lead to important insights on the underlying mechanisms for the regulation of oncogenic trophic inflammatory responses. We also discuss how one might adapt our protocol to achieve temporal and spatial control of ectopic gene expression in any tissue of interest. PMID:25741625

  9. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish.

    PubMed

    Osborne, Olivia J; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Yu, Xuechen; Wang, Xiang; Lin, Shuo; Xia, Tian; Nel, André E

    2015-10-27

    We studied adult zebrafish to determine whether the size of 20 and 110 nm citrate-coated silver nanoparticles (AgC NPs) differentially impact the gills and intestines, known target organs for Ag toxicity in fish. Following exposure for 4 h, 4 days, or 4 days plus a 7 day depuration period, we obtained different toxicokinetic profiles for different particle sizes, as determined by Ag content of the tissues. Ionic AgNO3 served as a positive control. The gills showed a significantly higher Ag content for the 20 nm particles at 4 h and 4 days than the 110 nm particles, while the values were more similar in the intestines. Both particle types were retained in the intestines even after depuration. These toxicokinetics were accompanied by striking size-dependent differences in the ultrastructural features and histopathology in the target organs in response to the particulates. Ag staining of the gills and intestines confirmed prominent Ag deposition in the basolateral membranes for the 20 nm but not for the 110 nm particles. Furthermore, it was possible to link the site of tissue deposition to disruption of the Na(+)/K(+) ion channel, which is also localized to the basolateral membrane. This was confirmed by a reduction in ATPase activity and immunohistochemical detection of the α subunit of this channel in both target organs, with the 20 nm particles causing significantly higher inhibition and disruption than the larger size particles or AgNO3. These results demonstrate the importance of particle size in determining the hazardous impact of AgNPs in the gills and intestines of adult zebrafish. PMID:26327297

  10. Toxicity to embryo and adult zebrafish of copper complexes with two malonic acids as models for dissolved organic matter

    SciTech Connect

    Palmer, F.B.; Evans, C.W.; Butler, C.A.; Timperley, M.H.

    1998-08-01

    The toxicity to embryo and adult zebrafish (Danio rerio) of Cu complexes with two substituted malonic acids, benzyl- and n-hexadecyl-, chosen as models for low-molecular-weight natural dissolved organic matter, were investigated. Toxicity test solutions at pH 6.5 {+-} 0.1 with the required Cu ion-specific electrode. In the absence of malonic acids, concentrations of Cu{sup 2+} up to 1.13 {mu}mol/L increased the embryo hatching time from approx. 2 d in control solutions (no Cu or malonic acid) and solutions containing malonic acids without Cu to approx. 8 d. The Cu-benzylmalonic acid complex in the presence of inorganic Cu species did not delay hatching beyond that attributable to Cu{sup 2+}. In contrast, 0.60 {mu}mol/L Cu-n-hexadecylmalonic complexes delayed hatching by 5.5 d in excess of that attributable to 1.13 {mu}mol/L Cu{sup 2+}, assuming that the hatching delays caused by the different Cu species were additive, possibly because of Cu entry into the embryo as the lipophilic Cu-n-hexadecylmalonic complex. None of the Cu-malonic acid complexes was acutely toxic to adult zebrafish at concentrations up to 1.4 {mu}mol/L, possibly because Cu was removed from the Cu-malonic acid complexes by stronger chelating groups at the gill surface. Substituted malonic acids with similar proton and Cu association constants can be readily prepared with a variety of simple substituents, radiolabeled if required. Their results show that these acids could be useful ligands for investigating intracellular transport and metabolism of metal-organic complexes.

  11. Beliefs and Intentions for Skin Protection and UV Exposure in Young Adults

    ERIC Educational Resources Information Center

    Heckman, Carolyn J.; Manne, Sharon L.; Kloss, Jacqueline D.; Bass, Sarah Bauerle; Collins, Bradley; Lessin, Stuart R.

    2011-01-01

    Objective: To evaluate Fishbein's integrative model in predicting young adults' skin protection, sun exposure, and indoor tanning intentions. Methods: Two hundred twelve participants completed an online survey. Results: Damage distress, self-efficacy, and perceived control accounted for 34% of the variance in skin protection intentions. Outcome…

  12. Neuroendocrine control of ionic balance in zebrafish.

    PubMed

    Kwong, Raymond W M; Kumai, Yusuke; Perry, Steve F

    2016-08-01

    Zebrafish (Danio rerio) is an emerging model for integrative physiological research. In this mini-review, we discuss recent advances in the neuroendocrine control of ionic balance in this species, and identify current knowledge gaps and issues that would benefit from further investigation. Zebrafish inhabit a hypo-ionic environment and therefore are challenged by a continual loss of ions to the water. To maintain ionic homeostasis, they must actively take up ions from the water and reduce passive ion loss. The adult gill or the skin of larvae are the primary sites of ionic regulation. Current models for the uptake of major ions in zebrafish incorporate at least three types of ion transporting cells (also called ionocytes); H(+)-ATPase-rich cells for Na(+) uptake, Na(+)/K(+)-ATPase-rich cells for Ca(2+) uptake, and Na(+)/Cl(-)-cotransporter expressing cells for both Na(+) and Cl(-) uptake. The precise molecular mechanisms regulating the paracellular loss of ions remain largely unknown. However, epithelial tight junction proteins, including claudins, are thought to play a critical role in reducing ion losses to the surrounding water. Using the zebrafish model, several key neuroendocrine factors were identified as regulators of epithelial ion movement, including the catecholamines (adrenaline and noradrenaline), cortisol, the renin-angiotensin system, parathyroid hormone and prolactin. Increasing evidence also suggests that gasotransmitters, such as H2S, are involved in regulating ion uptake. PMID:27179885

  13. In vitro CYP1A activity in the zebrafish: temporal but low metabolite levels during organogenesis and lack of gender differences in the adult stage.

    PubMed

    Saad, Moayad; Verbueken, Evy; Pype, Casper; Casteleyn, Christophe; Van Ginneken, Chris; Maes, Louis; Cos, Paul; Van Cruchten, Steven

    2016-09-01

    The zebrafish (Danio rerio) is increasingly used as a screening model for acute, chronic and developmental toxicity. More specifically, the embryo is currently investigated as a replacement of in vivo developmental toxicity studies, although its biotransformation capacity remains a point of debate. As the cytochrome P450 1 (CYP1) family plays an important role in the biotransformation of several pollutants and drugs, a quantitative in vitro protocol was refined to assess gender- and age-related CYP1A activity in the zebrafish using the ethoxyresorufin-o-deethylase (EROD) assay. Microsomal protein fractions were prepared from livers of adult males and females, ovaries and whole embryo homogenates of different developmental stages. A large biological variation but no gender-related difference in CYP1A activity was observed in adult zebrafish. Embryos showed distinct temporal but low CYP1A activity during organogenesis. These in vitro data raise questions on the bioactivation capacity of zebrafish embryos in developmental toxicity studies. PMID:27046732

  14. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish

    PubMed Central

    Lisse, Thomas S.; Middleton, Leah J.; Pellegrini, Adriana D.; Martin, Paige B.; Spaulding, Emily L.; Lopes, Olivia; Brochu, Elizabeth A.; Carter, Erin V.; Waldron, Ashley; Rieger, Sandra

    2016-01-01

    Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions. PMID:27035978

  15. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish.

    PubMed

    Lisse, Thomas S; Middleton, Leah J; Pellegrini, Adriana D; Martin, Paige B; Spaulding, Emily L; Lopes, Olivia; Brochu, Elizabeth A; Carter, Erin V; Waldron, Ashley; Rieger, Sandra

    2016-04-12

    Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions. PMID:27035978

  16. Staphylococcal scalded skin syndrome: diagnosis and management in children and adults.

    PubMed

    Handler, M Z; Schwartz, R A

    2014-11-01

    Staphylococcal scalded skin syndrome is a potentially life-threatening disorder caused most often by a phage group II Staphylococcus aureus infection. Staphylococcal scalded skin syndrome is more common in newborns than in adults. Staphylococcal scalded skin syndrome tends to appear abruptly with diffuse erythema and fever. The diagnosis can be confirmed by a skin biopsy specimen, which can be expedited by frozen section processing, as staphylococcal scalded skin syndrome should be distinguished from life threatening toxic epidermal necrolysis. Histologically, the superficial epidermis is detached, the separation level being at the granular layer. The diffuse skin loss is due to a circulating bacterial exotoxin. The aetiological exfoliating toxin is a serine protease that splits only desmoglein 1. The exfoliative toxins are spread haematogenously from a localized source of infection, causing widespread epidermal damage at distant sites. Sepsis and pneumonia are the most feared complications. The purpose of this review is to summarize advances in understanding of this serious disorder and provide therapeutic options for both paediatric and adult patients. Recent epidemiological studies have demonstrated that paediatric patients have an increased incidence of Staphylococcal scalded skin syndrome during the summer and autumn. Mortality is less than 10% in children, but is between 40% and 63% in adults, despite antibacterial therapy. Previously, intravenous immunoglobulin had been recommended to combat Staphylococcal scalded skin syndrome, but a recent study associates its use with prolonged hospitalization. PMID:24841497

  17. Global DNA methylation in gonads of adult zebrafish Danio rerio under bisphenol A exposure.

    PubMed

    Liu, Yan; Zhang, Yingying; Tao, Shiyu; Guan, Yongjing; Zhang, Ting; Wang, Zaizhao

    2016-08-01

    Altered DNA methylation is pervasively associated with changes in gene expression and signal transduction after exposure to a wide range of endocrine disrupting chemicals. As a weak estrogenic chemical, bisphenol A (BPA) has been extensively studied for reproductive toxicity. In order to explore the effects of BPA on epigenetic modification in gonads of zebrafish Danio rerio, we measured the global DNA methylation together with the gene expression of DNA methyltransferase (dnmts), glycine N-methyltransferase (gnmt), and ten-eleven translocation (tets) in gonads of D. rerio under BPA exposure by ELISA and quantitative real-time PCR method, respectively. The global level of DNA methylation was significantly decreased in ovaries after exposed to BPA for 7 days, and testes following 35-day exposure. Moreover, the global level of DNA methylation was also significantly reduced in testes after exposed to 15μg/L BPA for 7 days. Besides the alteration of the global level of DNA methylation, varying degrees of transcriptional changes of dnmts, gnmt and tets were detected in gonads of D. rerio under BPA exposure. The present study suggested that BPA might cause the global DNA demethylation in gonads of zebrafish by regulating the transcriptional changes of the DNA methylation/demethylation-associated genes (dnmts, gnmt, and tets). PMID:27101439

  18. Significance of metabolite extraction method for evaluating sulfamethazine toxicity in adult zebrafish using metabolomics.

    PubMed

    De Sotto, Ryan; Medriano, Carl; Cho, Yunchul; Seok, Kwang-Seol; Park, Youngja; Kim, Sungpyo

    2016-05-01

    Recently, environmental metabolomics has been introduced as a next generation environmental toxicity method which helps in evaluating toxicity of bioactive compounds to non-target organisms. In general, efficient metabolite extraction from target cells is one of the keys to success to better understand the effects of toxic substances to organisms. In this regard, the aim of this study is (1) to compare two sample extraction methods in terms of abundance and quality of metabolites and (2) investigate how this could lead to difference in data interpretation using pathway analysis. For this purpose, the antibiotic sulfamethazine and zebrafish (Danio rerio) were selected as model toxic substance and target organism, respectively. The zebrafish was exposed to four different sulfamethazine concentrations (0, 10, 30, and 50mg/L) for 72h. Metabolites were extracted using two different methods (Bligh and Dyer and solid-phase extraction). A total of 13,538 and 12,469 features were detected using quadrupole time-of-flight liquid chromatography mass spectrometry (QTOF LC-MS). Of these metabolites, 4278 (Bligh and Dyer) and 332 (solid phase extraction) were found to be significant after false discovery rate adjustment at a significance threshold of 0.01. Metlin and KEGG pathway analysis showed comprehensive information from fish samples extracted using Bligh and Dyer compared to solid phase extraction. This study shows that proper selection of sample extraction method is critically important for interpreting and analyzing the toxicity data of organisms when metabolomics is applied. PMID:26827276

  19. Sustained Action of Developmental Ethanol Exposure on the Cortisol Response to Stress in Zebrafish Larvae and Adults

    PubMed Central

    Baiamonte, Matteo; Brennan, Caroline H.; Vinson, Gavin P.

    2015-01-01

    Background Ethanol exposure during pregnancy is one of the leading causes of preventable birth defects, leading to a range of symptoms collectively known as fetal alcohol spectrum disorder. More moderate levels of prenatal ethanol exposure lead to a range of behavioural deficits including aggression, poor social interaction, poor cognitive performance and increased likelihood of addiction in later life. Current theories suggest that adaptation in the hypothalamo-pituitary-adrenal (HPA) axis and neuroendocrine systems contributes to mood alterations underlying behavioural deficits and vulnerability to addiction. In using zebrafish (Danio rerio), the aim is to determine whether developmental ethanol exposure provokes changes in the hypothalamo-pituitary-interrenal (HPI) axis (the teleost equivalent of the HPA), as it does in mammalian models, therefore opening the possibilities of using zebrafish to elucidate the mechanisms involved, and to test novel therapeutics to alleviate deleterious symptoms. Results and Conclusions The results showed that developmental exposure to ambient ethanol, 20mM-50mM 1-9 days post fertilisation, had immediate effects on the HPI, markedly reducing the cortisol response to air exposure stress, as measured by whole body cortisol content. This effect was sustained in adults 6 months later. Morphology, growth and locomotor activity of the animals were unaffected, suggesting a specific action of ethanol on the HPI. In this respect the data are consistent with mammalian results, although they contrast with the higher corticosteroid stress response reported in rats after developmental ethanol exposure. The mechanisms that underlie the specific sensitivity of the HPI to ethanol require elucidation. PMID:25875496

  20. Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio).

    PubMed

    Nazario, Luiza Reali; Antonioli, Régis; Capiotti, Katiucia Marques; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S; Bonan, Carla Denise; da Silva, Rosane Souza

    2015-08-01

    Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine. PMID:26099242

  1. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  2. The common neural parasite Pseudoloma neurophilia is associated with altered startle response habituation in adult zebrafish (Danio rerio): Implications for the zebrafish as a model organism.

    PubMed

    Spagnoli, Sean; Xue, Lan; Kent, Michael L

    2015-09-15

    The zebrafish's potential as a model for human neurobehavioral research appears nearly limitless despite its relatively recent emergence as an experimental organism. Since the zebrafish has only been part of the research community for a handful of decades, pathogens from its commercial origins continue to plague laboratory stocks. One such pathogen is Pseudoloma neurophilia, a common microparasite in zebrafish laboratories world-wide that generally produces subclinical infections. Given its high prevalence, its predilection for the host's brain and spinal cord, and the delicate nature of neurobehavioral research, the behavioral consequences of subclinical P. neurophilia infection must be explored. Fish infected via cohabitation were tested for startle response habituation in parallel with controls in a device that administered ten taps over 10 min along with taps at 18 and 60 min to evaluate habituation extinction. After testing, fish were euthanized and evaluated for infection via histopathology. Infected fish had a significantly smaller reduction in startle velocity during habituation compared to uninfected tankmates and controls. Habituation was eliminated in infected and control fish at 18 min, whereas exposed negative fish retained partial habituation at 18 min. Infection was also associated with enhanced capture evasion: Despite the absence of external symptoms, infected fish tended to be caught later than uninfected fish netted from the same tank. The combination of decreased overall habituation, early extinction of habituation compared to uninfected cohorts, and enhanced netting evasion indicates that P. neurophilia infection is associated with a behavioral phenotype distinct from that of controls and uninfected cohorts. Because of its prevalence in zebrafish facilities, P. neurophilia has the potential to insidiously influence a wide range of neurobehavioral studies if these associations are causative. Rigorous health screening is therefore vital to the

  3. Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior.

    PubMed

    Glazer, Lilah; Hahn, Mark E; Aluru, Neelakanteswar

    2016-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. The most toxic PCBs are the non-ortho-substituted ("dioxin-like") congeners that act through the aryl hydrocarbon receptor (AHR) pathway. In humans, perinatal exposure to dioxin-like PCBs is associated with neurodevelopmental toxicity in children. Yet, the full potential for later-life neurobehavioral effects that result from early-life low level exposure to dioxin-like PCBs is not well understood. The objective of this study was to determine the effects of developmental exposure to low levels of dioxin-like PCBs on early- and later-life behavioral phenotypes using zebrafish as a model system. We exposed zebrafish embryos to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2nM) for 20h (4-24h post fertilization), and then reared them to adulthood in clean water. Locomotor activity was tested at two larval stages (7 and 14 days post fertilization). Adult fish were tested for anxiety-related behavior using the novel tank and shoaling assays. Adult behavioral assays were repeated several times on the same group of fish and effects on intra- and inter-trial habituation were determined. While there was no effect of PCB126 on larval locomotor activity in response to changes in light conditions, developmental exposure to PCB126 resulted in impaired short- and long-term habituation to a novel environment in adult zebrafish. Cyp1a induction was measured as an indicator for AHR activation. Despite high induction at early stages, cyp1a expression was not induced in the brains of developmentally exposed adult fish that showed altered behavior, suggesting that AHR was not activated at this stage. Our results demonstrate the effectiveness of the zebrafish model in detecting subtle and delayed behavioral effects resulting from developmental exposure to an environmental contaminant. PMID:26616910

  4. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin

    PubMed Central

    Collins, Charlotte A.; Jensen, Kim B.; MacRae, Elizabeth J.; Mansfield, William; Watt, Fiona M.

    2012-01-01

    Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells. PMID:22537489

  5. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin.

    PubMed

    Collins, Charlotte A; Jensen, Kim B; MacRae, Elizabeth J; Mansfield, William; Watt, Fiona M

    2012-06-15

    Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells. PMID:22537489

  6. Induction of Female-to-Male Sex Change in Adult Zebrafish by Aromatase Inhibitor Treatment

    NASA Astrophysics Data System (ADS)

    Takatsu, Kanae; Miyaoku, Kaori; Roy, Shimi Rani; Murono, Yuki; Sago, Tomohiro; Itagaki, Hideyuki; Nakamura, Masaru; Tokumoto, Toshinobu

    2013-12-01

    This study investigated whether undifferentiated germ and/or somatic stem cells remain in the differentiated ovary of a species that does not undergo sex changes under natural conditions and retain their sexual plasticity. The effect of aromatase inhibitor (AI)-treatment on sexually mature female zebrafish was examined. A 5-month AI treatment caused retraction of the ovaries after which testes-like organs appeared, and cyst structures filled with spermatozoa-like cells were observed in sections of these tissues. Electron microscopic observations revealed that these cells appeared as large sperm heads without tails. Sperm formation was re-examined after changing the diet to an AI-free food. A large number of normal sperm were obtained after eight weeks, and no formation of ovarian tissue was observed. Artificial fertilization using sperm from the sex-changed females was successful. These results demonstrated that sex plasticity remains in the mature ovaries of this species.

  7. Effect of olive and sunflower seed oil on the adult skin barrier: implications for neonatal skin care.

    PubMed

    Danby, Simon G; AlEnezi, Tareq; Sultan, Amani; Lavender, Tina; Chittock, John; Brown, Kirsty; Cork, Michael J

    2013-01-01

    Natural oils are advocated and used throughout the world as part of neonatal skin care, but there is an absence of evidence to support this practice. The goal of the current study was to ascertain the effect of olive oil and sunflower seed oil on the biophysical properties of the skin. Nineteen adult volunteers with and without a history of atopic dermatitis were recruited into two randomized forearm-controlled mechanistic studies. The first cohort applied six drops of olive oil to one forearm twice daily for 5 weeks. The second cohort applied six drops of olive oil to one forearm and six drops of sunflower seed oil to the other twice daily for 4 weeks. The effect of the treatments was evaluated by determining stratum corneum integrity and cohesion, intercorneocyte cohesion, moisturization, skin-surface pH, and erythema. Topical application of olive oil for 4 weeks caused a significant reduction in stratum corneum integrity and induced mild erythema in volunteers with and without a history of atopic dermatitis. Sunflower seed oil preserved stratum corneum integrity, did not cause erythema, and improved hydration in the same volunteers. In contrast to sunflower seed oil, topical treatment with olive oil significantly damages the skin barrier, and therefore has the potential to promote the development of, and exacerbate existing, atopic dermatitis. The use of olive oil for the treatment of dry skin and infant massage should therefore be discouraged. These findings challenge the unfounded belief that all natural oils are beneficial for the skin and highlight the need for further research. PMID:22995032

  8. Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements

    SciTech Connect

    Wharton, W.

    1984-01-01

    Cultures of human fibroblasts were prepared from chest skin obtained either from newborns (less than 3 months old) or adults (more than 35 years old) and maintained in vitro until they senesced. Adult cells grew logarithmically in medium supplemented with whole blood serum but not with platelet-poor plasma. Early passage cells obtained from newborns grew equally well in either plasma- or serum-supplemented medium. The difference in growth factor requirements between adult and newborn cells persisted through the lifespan of the cells; i.e., newborn cells did not develop adult hormonal requirements when maintained in culture. Thus, in vitro cellular aging can be distinguished from some types of differentiation.

  9. The Milwaukee Inventory for the Dimensions of Adult Skin Picking (MIDAS): initial development and psychometric properties.

    PubMed

    Walther, Michael R; Flessner, Christopher A; Conelea, Christine A; Woods, Douglas W

    2009-03-01

    This article describes the development and initial psychometric properties of the Milwaukee Inventory for the Dimensions of Adult Skin picking (MIDAS), a measure designed to assess "automatic" and "focused" skin picking. Data were collected from 92 participants who completed an anonymous internet-based survey. Results of an exploratory factor analysis revealed a two-factor solution. Factors 1 ("focused" picking scale) and 2 ("automatic" picking scale) each consisted of 6 items, and preliminary data demonstrated adequate internal consistency, good construct validity, and good discriminant validity. The MIDAS provides researchers with a reliable and valid assessment of "automatic" and "focused" skin picking. PMID:18725154

  10. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60) Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

    PubMed Central

    Dal Forno, Gonzalo Ogliari; Kist, Luiza Wilges; de Azevedo, Mariana Barbieri; Fritsch, Rachel Seemann; Pereira, Talita Carneiro Brandão; Britto, Roberta Socoowski; Guterres, Sílvia Stanisçuaski; Külkamp-Guerreiro, Irene Clemes; Bonan, Carla Denise; Monserrat, José María; Bogo, Maurício Reis

    2013-01-01

    Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure. PMID:23865059

  11. Fibroblast-Derived MMP-14 Regulates Collagen Homeostasis in Adult Skin.

    PubMed

    Zigrino, Paola; Brinckmann, Jürgen; Niehoff, Anja; Lu, Yinhui; Giebeler, Nives; Eckes, Beate; Kadler, Karl E; Mauch, Cornelia

    2016-08-01

    Proteolytic activities in the extracellular matrix by the matrix metalloproteinase (MMP)-14 have been implicated in the remodeling of collagenous proteins during development. To analyze the function of fibroblast-derived MMP-14 in adult skin homeostasis, we generated mice with inducible deletion of MMP-14 in the dermal fibroblast (MMP-14(Sf-/-)). These mice are smaller and display a fibrosis-like phenotype in the skin. The skin of these mice showed increased stiffness and tensile strength but no altered collagen cross-links. In vivo, we measured a significantly increased amount of collagen type I accumulated in the skin of MMP-14(Sf-/-) mice without an increase in collagen fibril diameters. However, bleomycin-induced fibrosis in skin proceeded in a comparable manner in MMP-14(Sf+/+) and MMP-14(Sf-/-) mice, but resolution over time was impaired in MMP-14(Sf-/-) mice. Increased accumulation of collagen type I was detected in MMP-14(Sf-/-) fibroblasts in culture without significant enhancement of collagen de novo synthesis. This points to a degradative but not synthetic phenotype. In support of this, MMP-14(Sf-/-) fibroblasts lost their ability to process fibrillar collagen type I and to activate proMMP-2. Taken together, these data indicate that MMP-14 expression in fibroblasts plays a crucial role in collagen remodeling in adult skin and largely contributes to dermal homeostasis underlying its pathogenic role in fibrotic skin disease. PMID:27066886

  12. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters

    PubMed Central

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  13. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring.

    PubMed

    Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S; Lin, Tsang-Long; Jannasch, Amber S; Freeman, Jennifer L

    2016-01-01

    The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring. PMID:26891955

  14. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Sepúlveda, Maria S.; Lin, Tsang-Long; Jannasch, Amber S.; Freeman, Jennifer L.

    2016-01-01

    The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring. PMID:26891955

  15. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment. PMID:26769247

  16. Neurochemical measurements in the zebrafish brain

    PubMed Central

    Jones, Lauren J.; McCutcheon, James E.; Young, Andrew M. J.; Norton, William H. J.

    2015-01-01

    The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain. PMID:26441575

  17. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish.

    PubMed

    Gombeau, Kewin; Pereira, Sandrine; Ravanat, Jean-Luc; Camilleri, Virginie; Cavalie, Isabelle; Bourdineaud, Jean-Paul; Adam-Guillermin, Christelle

    2016-04-01

    We examined the effects of chronic exposure to different concentrations (2 and 20 μg L(-)(1)) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5'-CCGG-3') and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 μg L(-)(1) DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 μg L(-)(1) DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 μg L(-)(1) DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects. PMID:26829549

  18. The side-by-side exploratory test: a simple automated protocol for the evaluation of adult zebrafish behavior simultaneously with social interaction.

    PubMed

    Schaefer, Isabel C; Siebel, Anna M; Piato, Angelo L; Bonan, Carla D; Vianna, Mônica R; Lara, Diogo R

    2015-10-01

    The assessment of shoaling in adult zebrafish is technically difficult, but important, given their social nature. The present study aimed to characterize a new protocol using simple automated tracking software to evaluate general behavior and social interaction simultaneously. To this end, we used a single tank with a central transparent glass division and placed one zebrafish on each side for 5 min. This strategy allows fish to interact visually at the same time that individual automated evaluation of behavior can be easily performed. Our results showed that, when two fish are placed side-by-side, there is an increase in their height in the tank compared with isolated fish and they remain close to each other. The pharmacological treatments with benzodiazepines (bromazepam and clonazepam) and the serotonergic drugs buspirone, fluoxetine, and escitalopram did not affect locomotion at the concentrations tested, except for the highest concentration of buspirone. Nevertheless, benzodiazepines increased interfish distance (i.e. reduced shoaling behavior) and serotonergic drugs elevated height in the tank. These results support the use of the side-by-side exploratory test for behavioral studies with the zebrafish, including high-throughput behavioral screening for antidepressants and anxiolytics. PMID:26061352

  19. No bioavailability of 17α-ethinylestradiol when associated with nC60 aggregates during dietary exposure in adult male zebrafish (Danio rerio).

    PubMed

    Park, June-Woo; Henry, Theodore B; Menn, Fu-Min; Compton, Robert N; Sayler, Gary

    2010-11-01

    The C(60) fullerene is a manufactured carbon nanoparticle (CNP) that could pose a risk to humans and other organisms after release into the environment. In surface waters, C(60) is likely to be present as aggregates of nC(60) and these aggregates can associate with other substances that are toxic. Our goal was to evaluate the association of a model contaminant [17α-ethinylestradiol (EE2)] with nC(60) and determine bioavailability of EE2 after accumulation by a filter feeding organism [Brine shrimp (BS) Artemia sp.] and subsequent dietary exposure in zebrafish. Aqueous suspensions of nC(60) were prepared (600 mg C(60)/900 mL, 6-month water stirred method) with/without EE2 (1 μg/L) and BS were exposed to these preparations. Accumulation of nC(60) in gut of BS was assessed by light microscopy, and C(60) were extracted from BS and concentration analyzed by HPLC. Adult male zebrafish were fed (5d) live BS according to the following treatments: BS (control); BS containing nC(60); BS containing nC(60)+EE2; or BS containing EE2. Liver was excised from exposed fish and total RNA was extracted for assessment of vitellogenin gene (vtg1A/B) expression. The vtg1A/B was highly up-regulated in fish exposed to BS containing EE2, but expression of vtg1A/B did not differ from controls in other treatments. The EE2 associated with nC(60) did not become bioavailable in zebrafish during passage through the intestinal tract of zebrafish. Results have implications on the effect of nC(60) on the bioavailability of co-contaminants in organisms during dietary exposure. PMID:20937515

  20. Comparative skin permeability of neonatal and adult timber rattlesnakes (Crotalus horridus).

    PubMed

    Agugliaro, Joseph; Reinert, Howard K

    2005-05-01

    Skin permeability and lipid content were determined using shed epidermis of neonatal and adult timber rattlesnakes (Crotalus horridus) from the Coastal Plain Pine Barrens of New Jersey and from the Appalachian Mountains of northern Pennsylvania. Differences between populations due to habitat and within populations due to age were tested. Skin permeability was not found to differ according to locality (P>0.05), but rates were significantly different for age. Permeability of adult epidermis was greater than that of neonates (P<0.01). Lipid content did not differ by locality (P>0.05), but differed between ages, paralleling the results found for permeation rates. Neonate sheds had a greater amount of extractable lipids than adult sheds (P<0.01). Despite the lower skin permeability of neonates, our estimates indicate that the percentage of their total body water content lost per hour may still be 2.2 times that of adults. Resistance to cutaneous water loss may be advantageous to neonates given their relatively large surface area-to-volume ratio. PMID:15893947

  1. Development of social behavior in young zebrafish

    PubMed Central

    Dreosti, Elena; Lopes, Gonçalo; Kampff, Adam R.; Wilson, Stephen W.

    2015-01-01

    Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same 1–3 weeks period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behavior in adult zebrafish. PMID:26347614

  2. Comparison of impedance measurements near the skin of newborns and adults.

    PubMed

    Amm, Bruce; Kao, Tzu-Jen; Newell, Jonathan; Isaacson, David; Saulnier, Gary; Shoudy, David; Boverman, Greg; Sahni, Rakesh; Weindler, Marilyn; Chong, David; DiBardino, David; Davenport, David; Ashe, Jeffrey

    2016-06-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technology that has been extensively studied for monitoring lung function of neonatal and adult subjects, especially in neonatal intensive care unit (NICU) and intensive care unit (ICU) environments. The sources of the total impedance in these applications include internal organs, near-boundary tissues, electrode-skin impedance, electrodes and conducting wires. This total impedance must be considered for system design and setting voltage gain since it will contribute to the measured voltage. To adapt a single instrument for use on infants and adults, we studied the difference between the impedance near the skin in both classes of patients. We used a simultaneous multi-source EIT (SMS-EIT) system to make impedance measurements. Characteristic resistance was calculated for two different current patterns: one that is more sensitive to boundary region impedance and another that is more sensitive to interior changes. We present ratios of these resistances to assess the relative contribution of near-skin effects to the overall impedance. Twenty adult ICU subjects (10 male, 10 female, age: 49.05  ±  16.32 years (mean  ±  standard deviation)) and 45 neonates (23 male, 22 female, gestational age: 37.67  ±  2.11 weeks, postnatal age, 2.56  ±  2.67 d) were studied at Columbia University Medical Center. Impedance measurements at 10 kHz were collected for approximately one hour from each subject. The characteristic resistance ratio for each subject was computed and analyzed. The result shows the impedance at or near the skin of newborns is significantly higher than in adult subjects. PMID:27203362

  3. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation.

    PubMed

    Foronda, Miguel; Morgado-Palacin, Lucia; Gómez-López, Gonzalo; Domínguez, Orlando; Pisano, David G; Blasco, Maria A

    2015-12-01

    Adult stem cells (ASCs) reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014). Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013). Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4 (cKO) mice), we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC) activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4 (cKO) mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014). Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155. PMID:26697322

  4. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation

    PubMed Central

    Foronda, Miguel; Morgado-Palacin, Lucia; Gómez-López, Gonzalo; Domínguez, Orlando; Pisano, David G.; Blasco, Maria A.

    2015-01-01

    Adult stem cells (ASCs) reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014). Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013). Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4cKO mice), we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC) activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4cKO mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014). Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155. PMID:26697322

  5. Stereoselective induction by 2,2',3,4',6-pentachlorobiphenyl in adult zebrafish (Danio rerio): Implication of chirality in oxidative stress and bioaccumulation.

    PubMed

    Chai, Tingting; Cui, Feng; Mu, Xiyan; Yang, Yang; Qi, Suzhen; Zhu, Lizhen; Wang, Chengju; Qiu, Jing

    2016-08-01

    This study aimed to investigate the oxidative stress process and bioaccumulation the racemic/(-)-/(+)- 2,2',3,4',6-pentachlorobiphenyl were administered to adult zebrafish (Danio rerio) after prolonged exposure of 56-days uptake and 49-days depuration experiments. Stereoselective accumulation was observed in adult samples after racemic exposure as revealed by decreased enantiomer fractions. The two enantiomers of PCB91 accumulated at different rates with logBCFk values close to 3.7, suggesting that they were highly hazardous and persistent pollutants. Exposure to racemic/(-)-/(+)- PCB91 stereoselectively induced oxidative stress owing to changes in reactive oxygen species, malondialdehyde contents, antioxidant enzyme activities and gene expressions in brain and liver tissues. In addition, the stereoselective relationship between bioconcentration and oxidative stress were also presented in this study. Our findings might be helpful for elucidating the environmental risk of the two enantiomers of PCB91 that induce toxicity in aquatic organisms. PMID:27179325

  6. Tolerance of fragranced and fragrance-free facial cleansers in adults with clinically sensitive skin.

    PubMed

    Draelos, Zoe D; Fowler, Joseph; Larsen, Walter G; Hornby, Sidney; Walters, Russel M; Appa, Yohini

    2015-10-01

    Although mild, fragrance-free, nonfoaming cleansers generally are recommended for individuals with sensitive skin, many consumers choose fragranced foaming cleansers. The addition of hydrophobically modified polymers (HMPs) to mild facial cleansers has been shown to improve product tolerability in individuals with sensitive skin while facilitating foaming. The objective of the 2 studies reported here was to assess the tolerability of a mild, HMP-containing, foaming facial cleanser with a fragrance that was free of common allergens and irritating essential oils in patients with sensitive skin. In the first study, 8 participants with clinically diagnosed fragrance sensitivity used a gentle foaming HMP-containing facial cleanser with or without fragrance for 3 weeks. Both cleansers improved global disease severity, irritation, and erythema with similar cleansing effectiveness. The second study was a 3-week, prospective, double-blind, randomized, 2-center study of 153 participants with clinically diagnosed sensitive skin. In this study, the fragranced gentle foaming cleanser with HMP was as well tolerated as a benchmark gentle, fragrance-free, nonfoaming cleanser. Itching, irritation, and desquamation were most improved from baseline in both groups. The participant-rated effectiveness of the cleanser with HMP was similar or better than the benchmark cleanser after 3 weeks of use. In conclusion, the gentle facial cleanser with HMPs and a fragrance offers a new option for adults with sensitive skin who may prefer, and commonly use, a fragranced and foaming product. PMID:26682289

  7. Predicting skin deficits through surface area measurements in ear reconstruction and adult ear surface area norms.

    PubMed

    Yazar, Memet; Sevim, Kamuran Zeynep; Irmak, Fatih; Yazar, Sevgi Kurt; Yeşilada, Ayşin Karasoy; Karşidağğ, Semra Hacikerim; Tatlidede, Hamit Soner

    2013-07-01

    Ear reconstruction is one of the most challenging procedures in plastic surgery practice. Many studies and techniques have been described in the literature for carving a well-pronounced framework. However, just as important as the cartilage framework is the ample amount of delicate skin coverage of the framework. In this report, we introduce an innovative method of measuring the skin surface area of the auricle from a three-dimensional template created from the healthy ear.The study group consisted of 60 adult Turkish individuals who were randomly selected (30 men and 30 women). The participant ages ranged from 18 to 45 years (mean, 31.5 years), and they had no history of trauma or congenital anomalies. The template is created by dividing the ear into aesthetic subunits and using ImageJ software to estimate the necessary amount of total skin surface area required.Reconstruction of the auricle is a complicated process that requires experience and patience to provide the auricular details. We believe this estimate will shorten the learning curve for residents and surgeons interested in ear reconstruction and will help surgeons obtain adequate skin to drape over the well-sculpted cartilage frameworks by providing a reference list of total ear skin surface area measurements for Turkish men and women. PMID:23851770

  8. Transcriptional impact of organophosphate and metal mixtures on olfaction: Copper dominates the chlorpyrifos-induced response in adult zebrafish

    PubMed Central

    Tilton, Fred A.; Tilton, Susan C.; Bammler, Theo K.; Beyer, Richard P.; Stapleton, Patricia L.; Scholz, Nathaniel L.; Gallagher, Evan P.

    2013-01-01

    Chemical exposures in fish have been linked to loss of olfaction leading to an inability to detect predators and prey and decreased survival. However, the mechanisms underlying olfactory neurotoxicity are not well characterized, especially in environmental exposures which involve chemical mixtures. We used zebrafish to characterize olfactory transcriptional responses by two model olfactory inhibitors, the pesticide chlorpyrifos (CPF) and mixtures of CPF with the neurotoxic metal copper (Cu). Microarray analysis was performed on RNA from olfactory tissues of zebrafish exposed to CPF alone or to a mixture of CPF and Cu. Gene expression profiles were analyzed using Principal Component Analysis and hierarchical clustering, whereas gene set analysis was used to identify biological themes in the microarray data. Microarray results were confirmed by real-time PCR on genes serving as potential biomarkers of olfactory injury. In addition, we mined our previously published Cu-induced zebrafish olfactory transcriptional response database (Tilton et al., 2008) for the purposes of discriminating pathways of olfaction impacted by either the individual agents or the CPF-Cu mixture transcriptional signatures. CPF exposure altered the expression of gene pathways associated with cellular morphogenesis and odorant binding, but not olfactory signal transduction, a known olfactory pathway for Cu. The mixture profiles shared genes from the Cu and CPF datasets, whereas some genes were altered only by the mixtures. The transcriptional signature of the mixtures was more similar to that in zebrafish exposed to Cu alone then for CPF. In conclusion, exposure to a mixture containing a common environmental metal and pesticide causes a unique transcriptional signature that is heavily influenced by the metal, even when organophosphate predominates. Our findings support using zebrafish microarray analysis to elucidate mechanisms of olfactory loss and to identify the components of mixtures which

  9. Location and phenotype of human adult keratinocyte stem cells of the skin.

    PubMed

    Webb, Angela; Li, Amy; Kaur, Pritinder

    2004-10-01

    The location and identity of interfollicular epidermal stem cells of adult human skin remain undefined. Based on our previous work in both adult murine and neonatal human foreskin, we demonstrate that cell surface levels of the alpha6 integrin and the transferrin receptor (CD71) are valid markers for resolving a putative stem cell, transit amplifying and differentiating compartment in adult human skin by flow cytometry. Specifically, epidermal cells expressing high levels of alpha6 integrin and low levels of the transferrin receptor CD71 (phenotype alpha6 (bri)CD71(dim)) exhibit several stem cell characteristics, comprising a minor population (2%-5%) of the K14(bri) fraction, enriched for quiescent and small blast-like cells with high clonogenic capacity, lacking the differentiation marker K10. Conversely, the majority of K14(bri) K10(neg) epidermal cells express high levels of CD71 (phenotype alpha6 (bri)CD71(bri)), and represent the actively cycling fraction of keratinocytes displaying greater cell size due to an increase in cytoplasmic area, consistent with their being transient amplifying cells. The alpha6 (bri)CD71(bri) population exhibited intermediate clonogenic capacity. A third population of K14(dim) but K10 positive epidermal cells could be identified by their low levels of alpha6 integrin expression (i.e. alpha6 (dim) cells), representing the differentiation compartment; predictably, this subpopulation exhibited poor clonogenic efficiency. Flow cytometric analysis for the hair follicle bulge region (stem cell) marker K15 revealed preferential expression of this keratin in alpha6 (bri) cells (i.e., both stem and transient amplifying fractions), but not the alpha6 (dim) population. Given that K15 positive cells could only be detected in the deep rete ridges of adult skin in situ, we conclude that stem and transient amplifying cells reside in this location, while differentiating (K15 negative) cells are found in the shallow rete ridges. PMID:15606498

  10. Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin.

    PubMed

    Sada, Aiko; Jacob, Fadi; Leung, Eva; Wang, Sherry; White, Brian S; Shalloway, David; Tumbar, Tudorita

    2016-06-01

    The interfollicular epidermis regenerates from heterogeneous basal skin cell populations that divide at different rates. It has previously been presumed that infrequently dividing basal cells known as label-retaining cells (LRCs) are stem cells, whereas non-LRCs are short-lived progenitors. Here we employ the H2B-GFP pulse-chase system in adult mouse skin and find that epidermal LRCs and non-LRCs are molecularly distinct and can be differentiated by Dlx1(CreER) and Slc1a3(CreER) genetic marking, respectively. Long-term lineage tracing and mathematical modelling of H2B-GFP dilution data show that LRCs and non-LRCs constitute two distinct stem cell populations with different patterns of proliferation, differentiation and upward cellular transport. During homeostasis, these populations are enriched in spatially distinct skin territories and can preferentially produce unique differentiated lineages. On wounding or selective killing, they can temporarily replenish each other's territory. These two discrete interfollicular stem cell populations are functionally interchangeable and intrinsically well adapted to thrive in distinct skin environments. PMID:27183471

  11. Histology and Ultrastructure of Transitional Changes in Skin Morphology in the Juvenile and Adult Four-Striped Mouse (Rhabdomys pumilio)

    PubMed Central

    Stewart, Eranée; Ajao, Moyosore Salihu

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin. PMID:24288469

  12. Assessing Quality of Life in Older Adult Patients with Skin Disorders

    PubMed Central

    Farage, Miranda A.; Miller, Kenneth W.; Sherman, Susan N.; Tsevat, Joel

    2012-01-01

    Significance for Public Health The global population is aging. In the industrial world, adults over 65 outnumber children and comprise almost 20% of the population in some countries. Older adults experience a number of skin diseases and disorders that substantially affect their quality of life. Opportunity exists for developing and validating health-related quality of life (HRQoL) measures specifically for dermatological conditions most pertinent to older patients. Older adults experience a number of skin diseases and disorders that substantially affect quality of life. In the last two decades, a number of instruments have been developed for use among general dermatology patients to assess the effects of treatment and disease progression, perceptions of well-being, and the value that patients place on their dermatologic state of health. This chapter reviews some health-related quality of life (HRQoL) (HRQoL) measures developed and validated specifically for dermatological conditions. However, opportunity exists for developing and validating HRQoL measures specifically for dermatological conditions most pertinent to older patients. PMID:22980159

  13. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding.

    PubMed

    Ito, Mayumi; Yang, Zaixin; Andl, Thomas; Cui, Chunhua; Kim, Noori; Millar, Sarah E; Cotsarelis, George

    2007-05-17

    The mammalian hair follicle is a complex 'mini-organ' thought to form only during development; loss of an adult follicle is considered permanent. However, the possibility that hair follicles develop de novo following wounding was raised in studies on rabbits, mice and even humans fifty years ago. Subsequently, these observations were generally discounted because definitive evidence for follicular neogenesis was not presented. Here we show that, after wounding, hair follicles form de novo in genetically normal adult mice. The regenerated hair follicles establish a stem cell population, express known molecular markers of follicle differentiation, produce a hair shaft and progress through all stages of the hair follicle cycle. Lineage analysis demonstrated that the nascent follicles arise from epithelial cells outside of the hair follicle stem cell niche, suggesting that epidermal cells in the wound assume a hair follicle stem cell phenotype. Inhibition of Wnt signalling after re-epithelialization completely abrogates this wounding-induced folliculogenesis, whereas overexpression of Wnt ligand in the epidermis increases the number of regenerated hair follicles. These remarkable regenerative capabilities of the adult support the notion that wounding induces an embryonic phenotype in skin, and that this provides a window for manipulation of hair follicle neogenesis by Wnt proteins. These findings suggest treatments for wounds, hair loss and other degenerative skin disorders. PMID:17507982

  14. Isolation and culture of adult epithelial stem cells from human skin.

    PubMed

    Guo, Zhiru; Draheim, Kyle; Lyle, Stephen

    2011-01-01

    The homeostasis of all self-renewing tissues is dependent on adult stem cells. As undifferentiated stem cells undergo asymmetric divisions, they generate daughter cells that retain the stem cell phenotype and transit-amplifying cells (TA cells) that migrate from the stem cell niche, undergo rapid proliferation and terminally differentiate to repopulate the tissue. Epithelial stem cells have been identified in the epidermis, hair follicle, and intestine as cells with a high in vitro proliferative potential and as slow-cycling label-retaining cells in vivo (1-3). Adult, tissue-specific stem cells are responsible for the regeneration of the tissues in which they reside during normal physiologic turnover as well as during times of stress (4-5). Moreover, stem cells are generally considered to be multi-potent, possessing the capacity to give rise to multiple cell types within the tissue (6). For example, rodent hair follicle stem cells can generate epidermis, sebaceous glands, and hair follicles (7-9). We have shown that stem cells from the human hair follicle bulge region exhibit multi-potentiality (10). Stem cells have become a valuable tool in biomedical research, due to their utility as an in vitro system for studying developmental biology, differentiation, tumorigenesis and for their possible therapeutic utility. It is likely that adult epithelial stem cells will be useful in the treatment of diseases such as ectodermal dysplasias, monilethrix, Netherton syndrome, Menkes disease, hereditary epidermolysis bullosa and alopecias (11-13). Additionally, other skin problems such as burn wounds, chronic wounds and ulcers will benefit from stem cell related therapies (14,15). Given the potential for reprogramming of adult cells into a pluripotent state (iPS cells)(16,17), the readily accessible and expandable adult stem cells in human skin may provide a valuable source of cells for induction and downstream therapy for a wide range of disease including diabetes and

  15. Distribution of carnosine-like peptides in the nervous system of developing and adult zebrafish (Danio rerio) and embryonic effects of chronic carnosine exposure

    PubMed Central

    Azher, Seema; Margolis, Frank L.; Patel, Kamakshi; Mousa, Ahmad; Majid, Arshad

    2013-01-01

    Carnosine-like peptides (carnosine-LP) are a family of histidine derivatives that are present in the nervous system of various species and that exhibit antioxidant, anti-matrix-metalloproteinase, anti-excitotoxic, and free-radical scavenging properties. They are also neuroprotective in animal models of cerebral ischemia. Although the function of carnosine-LP is largely unknown, the hypothesis has been advanced that they play a role in the developing nervous system. Since the zebrafish is an excellent vertebrate model for studying development and disease, we have examined the distribution pattern of carnosine-LP in the adult and developing zebrafish. In the adult, immunoreactivity for carnosine-LP is specifically concentrated in sensory neurons and non-sensory cells of the olfactory epithelium, the olfactory nerve, and the olfactory bulb. Robust staining has also been observed in the retinal outer nuclear layer and the corneal epithelium. Developmental studies have revealed immunostaining for carnosine-LP as early as 18 h, 24 h, and 7 days post-fertilization in, respectively, the olfactory, corneal, and retinal primordia. These data suggest that carnosine-LP are involved in olfactory and visual function. We have also investigated the effects of chronic (7 days) exposure to carnosine on embryonic development and show that 0.01 μM to 10 mM concentrations of carnosine do not elicit significant deleterious effects. Conversely, treatment with 100 mM carnosine results in developmental delay and compromised larval survival. These results indicate that, at lower concentrations, exogenously administered carnosine can be used to explore the role of carnosine in development and developmental disorders of the nervous system. PMID:19440736

  16. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis

    PubMed Central

    Urban, Mark D.; Richetti, Stefânia K.; Skuster, Kimberly J.; Harm, Rhianna M.; Lopez Cervera, Roberto; Umemoto, Noriko; McNulty, Melissa S.; Clark, Karl J.; Hammerschmidt, Matthias; Ekker, Stephen C.

    2015-01-01

    Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes—fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a—had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a) – ErbB2/3 – AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a – ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity

  17. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice

    PubMed Central

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Evercooren, Anne Baron-Van

    2015-01-01

    Induced pluripotent stem cell–derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent–derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin–derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS. PMID:26301815

  18. Zebrafish Rhabdomyosarcoma.

    PubMed

    Phelps, Michael; Chen, Eleanor

    2016-01-01

    In vivo models of Rhabdomyosarcoma (RMS) have proven instrumental in understanding the development and progression of this devastating pediatric sarcoma. Both vertebrate and invertebrate model systems have been developed to study the tumor biology of both embryonal (ERMS) and alveolar (ARMS) RMS subtypes. Zebrafish RMS models have been particularly amenable for high-throughput studies to identify drug targetable pathways because of their short tumor latency, ease of ex vivo manipulation and conserved tumor biology. The transgenic KRASG12D-induced ERMS model allows for molecular and cellular characterization of distinct tumor cell subpopulations including the tumor propagating cells. Comparative genomic approaches have also been utilized in zebrafish ERMS to identify conserved candidate driver genes. Recent advances in zebrafish genome engineering have further enabled the ability to probe the functional significance of potential driver genes. Using the unique strengths of the zebrafish model organisms with the wealth of cellular and molecular tools currently available, zebrafish RMS models provide a powerful in vivo system for which to study RMS tumorigenesis. PMID:27165362

  19. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-08-01

    Mercury (Hg) is a prominent environmental contaminant that causes a variety of adverse effects on aquatic organisms. However, the mechanisms underlying inorganic Hg-induced reproductive impairment in fish remains largely unknown. In this study, adult zebrafish were exposed to 0 (control), 15 and 30μg Hg/l (added as mercuric chloride, HgCl2) for 30days, and the effects on histological structure, antioxidant status and sex hormone levels in the ovary and testis, as well as the mRNA expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Exposure to Hg caused pathological lesions in zebrafish gonads, and changed the activities and mRNA levels of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) as well as the content of glutathione (GSH) and malondialdehyde (MDA). In females, although ovarian 17β-estradiol (E2) content remained relatively stable, significant down-regulation of lhβ, gnrh2, gnrh3, lhr and erα were observed. In males, testosterone (T) levels in the testis significantly decreased after Hg exposure, accompanied by down-regulated expression of gnrh2, gnrh3, fshβ and lhβ in the brain as well as fshr, lhr, ar, cyp17 and cyp11b in the testis. Thus, our study indicated that waterborne inorganic Hg exposure caused histological damage and oxidative stress in the gonads of zebrafish, and altered sex hormone levels by disrupting the transcription of related HPG-axis genes, which could subsequently impair the reproduction of fish. Different response of the antioxidant defense system, sex hormone and HPG-axis genes between females and males exposed to inorganic Hg indicated the gender-specific regulatory effect by Hg. To our knowledge, this is the first time to explore the effects and mechanisms of inorganic Hg exposure on reproduction at the histological, enzymatic and molecular levels, which will greatly extend our understanding on the mechanisms underlying of reproductive

  20. Comparative effects of nodularin and microcystin-LR in zebrafish: 2. Uptake and molecular effects in eleuthero-embryos and adult liver with focus on endoplasmic reticulum stress.

    PubMed

    Faltermann, Susanne; Grundler, Verena; Gademann, Karl; Pernthaler, Jakob; Fent, Karl

    2016-02-01

    . In contrast to adult liver, MC-LR and nodularin did not result in detectable changes of mRNA levels of selected target genes involved in ER-stress in zebrafish eleuthero-embryos, nor was the abundance of transcripts belonging to the MAPK and pro-apoptosis pathways altered. In conclusion, our data indicate that MC-LR and nodularin have similar transcriptional effects. They lead to changes in mRNA levels of genes that suggest induction of ER-stress, and furthermore, lead to increased level of tnfα mRNA in the adult liver, which suggests a novel (transcriptional) mode of action in fish. However, although taken up by eleuthero-embryos, no transcriptional changes induced by these cyanobacterial toxins were detected. This is probably due to action to specific organs such as liver and kidneys that could not be identified by whole-embryo sampling. PMID:26748408

  1. Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Wanjing; Chen, Chuanyue; Chen, Liang; Wang, Li; Li, Jian; Chen, Yuanyuan; Jin, Jienan; Kawan, Atufa; Zhang, Xuezhen

    2016-03-01

    While microcystins (MCs) have been reported to exert reproductive toxicity on fish with a sex-dependent effect, the underlying mechanism has been rarely investigated. In the present study, zebrafish were exposed to 1, 5 and 20 μg/L MC-LR for 30 d. The gonad-somatic index declined in all treated males. 17β-estradiol (E2), testosterone (T), 11-keto testosterone (11-KT) and follicle-stimulating hormone (FSH) levels increased in serum from all treated females, while T, FSH and luteinizing hormone (LH) levels changed in all treated males. Histomorphological observation showed that MC-LR exposure evidently retarded oogenesis and spermatogenesis. Transcriptional changes of 22 genes of the hypothalamic-pituitary-gonad (HPG) axis exhibited sex-specific responses, and the relationship between gene transcriptions and gametogenesis was evaluated by principle component analysis (PCA). Major contributors to PC1 (gnrh2, gnrhr3, ar, lhr, hmgra, hmgrb and cyp19a) were positively correlated with the number of post-vitellogenic oocytes, while PC1 (gnrh2, lhβ, erβ, fshr, cyp11a and 17βhsd) were positively correlated with the number of spermatozoa. The protein levels of 17βHSD and CYP19a were affected in both females and males. In conclusion, this study first investigated the sex-dependent effects of microcystins on fish reproduction and revealed some important molecular biomarkers related to gametogenesis in zebrafish suffered from MC-LR.

  2. Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish.

    PubMed

    Liu, Wanjing; Chen, Chuanyue; Chen, Liang; Wang, Li; Li, Jian; Chen, Yuanyuan; Jin, Jienan; Kawan, Atufa; Zhang, Xuezhen

    2016-01-01

    While microcystins (MCs) have been reported to exert reproductive toxicity on fish with a sex-dependent effect, the underlying mechanism has been rarely investigated. In the present study, zebrafish were exposed to 1, 5 and 20 μg/L MC-LR for 30 d. The gonad-somatic index declined in all treated males. 17β-estradiol (E2), testosterone (T), 11-keto testosterone (11-KT) and follicle-stimulating hormone (FSH) levels increased in serum from all treated females, while T, FSH and luteinizing hormone (LH) levels changed in all treated males. Histomorphological observation showed that MC-LR exposure evidently retarded oogenesis and spermatogenesis. Transcriptional changes of 22 genes of the hypothalamic-pituitary-gonad (HPG) axis exhibited sex-specific responses, and the relationship between gene transcriptions and gametogenesis was evaluated by principle component analysis (PCA). Major contributors to PC1 (gnrh2, gnrhr3, ar, lhr, hmgra, hmgrb and cyp19a) were positively correlated with the number of post-vitellogenic oocytes, while PC1 (gnrh2, lhβ, erβ, fshr, cyp11a and 17βhsd) were positively correlated with the number of spermatozoa. The protein levels of 17βHSD and CYP19a were affected in both females and males. In conclusion, this study first investigated the sex-dependent effects of microcystins on fish reproduction and revealed some important molecular biomarkers related to gametogenesis in zebrafish suffered from MC-LR. PMID:26960901

  3. Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish

    PubMed Central

    Liu, Wanjing; Chen, Chuanyue; Chen, Liang; Wang, Li; Li, Jian; Chen, Yuanyuan; Jin, Jienan; Kawan, Atufa; Zhang, Xuezhen

    2016-01-01

    While microcystins (MCs) have been reported to exert reproductive toxicity on fish with a sex-dependent effect, the underlying mechanism has been rarely investigated. In the present study, zebrafish were exposed to 1, 5 and 20 μg/L MC-LR for 30 d. The gonad-somatic index declined in all treated males. 17β-estradiol (E2), testosterone (T), 11-keto testosterone (11-KT) and follicle-stimulating hormone (FSH) levels increased in serum from all treated females, while T, FSH and luteinizing hormone (LH) levels changed in all treated males. Histomorphological observation showed that MC-LR exposure evidently retarded oogenesis and spermatogenesis. Transcriptional changes of 22 genes of the hypothalamic-pituitary-gonad (HPG) axis exhibited sex-specific responses, and the relationship between gene transcriptions and gametogenesis was evaluated by principle component analysis (PCA). Major contributors to PC1 (gnrh2, gnrhr3, ar, lhr, hmgra, hmgrb and cyp19a) were positively correlated with the number of post-vitellogenic oocytes, while PC1 (gnrh2, lhβ, erβ, fshr, cyp11a and 17βhsd) were positively correlated with the number of spermatozoa. The protein levels of 17βHSD and CYP19a were affected in both females and males. In conclusion, this study first investigated the sex-dependent effects of microcystins on fish reproduction and revealed some important molecular biomarkers related to gametogenesis in zebrafish suffered from MC-LR. PMID:26960901

  4. IN VIVO EVALUATION OF SKIN IRRITATION POTENTIAL, MELASMA AND SEBUM CONTENT FOLLOWING LONG TERM APPLICATION OF SKIN CARE CREAM IN HEALTHY ADULTS, USING NON-INVASIVE BIOMETROLOGICAL TECHNIQUES.

    PubMed

    Arshad, Atif I; Khan, Shoaib H M; Akhtar, Naveed; Mahmood, Asif; Sarfraz, Rai Muhammad

    2016-01-01

    The present investigation was conducted to evaluate non-invasively, various functional skin parameters i.e., irritation potential, melasma and sebum contents following long term application of topical cream (w/o) loaded with 2% methanolic extract of Ananas comosus L. versus placebo control (base) in healthy adults. Healthy human volunteers (n = 11, aged 20-30 years) were recruited for investigation and written informed consent was taken from each volunteer. In this single blinded study every volunteer applied formulation on one side of face and placebo on the other side of face twice daily for a period of 12 weeks (three months). Different skin parameters i.e., skin irritancy, melasma, and sebum contents were measured on both sides of face at baseline and after two weeks interval, using photometric device Mexameter and Sebumeter in a draught free room with modulated conditions of temperature (22-25°C) and humidity (55-60%). It was evident from the results that no primary skin irritancy was observed with patch test. Besides, statistical interpretation indicates that treatment with formulation is superior to placebo because it significantly (p ≤ 0.05) reduced the skin irritancy, melasma and sebum secretions throughout the study and reaching maximum -20.76 ± 0.89, -54.2 ± 0.37 and -40.71 ± 0.75%, respectively, at the end of study period. Antioxidant activity of extract was 92% compared to standard antioxidant. Conclusively, active cream loaded with fruit extract was well tolerated by all the volunteers and suitable to treat contact dermatitis, greasy skin, acne and seborrheic dermatitis and augmenting beauty and attraction by depigmentation of human skin. So, in the future, there is need to clinically evaluate these formulations in patients with compromised skin functions i.e., contact dermatitis, melasma, and acne vulgaris in order to explore the actual potential of this fruit. PMID:27008816

  5. Effects of low-level laser therapy, electroacupuncture, and radiofrequency on the pigmentation and skin tone of adult women.

    PubMed

    Kim, Hee-Kyoung; Min, Kyoung-Ok; Choi, Jung-Hyun; Kim, Soon-Hee

    2016-05-01

    [Purpose] In this study, the effects of low-level laser therapy (LLLT), electroacupuncture (EA), and radiofrequency (RF), which are used in physical therapy, on the pigmentation and skin tone of adult women's faces were investigated to provide basic data for skin interventions. [Subjects and Methods] Thirty adult females were assigned to either an LLLT group (n=10), an EA group (n=10), or an RF group (n=10). The intervention was performed in two 15-minute sessions per week for six weeks. Subjects' skin tone and pigmentation were observed before and after the intervention. [Results] The EA group showed significant reductions in pigmentation in the left and right eye rims, as well as in the left cheek. The RF group showed significant post-intervention reductions in pigmentation under the left eye, as well as in the left and right eye rims and the left cheek. The LLLT group showed significant increases in skin tone in the forehead and both eye rims. The RF group showed significant increases in skin tone under both eyes. [Conclusion] The application of LLLT, EA, and RF had positive effects on pigmentation and skin tone of adult women's faces. PMID:27313340

  6. Effects of low-level laser therapy, electroacupuncture, and radiofrequency on the pigmentation and skin tone of adult women

    PubMed Central

    Kim, Hee-Kyoung; Min, Kyoung-Ok; Choi, Jung-Hyun; Kim, Soon-Hee

    2016-01-01

    [Purpose] In this study, the effects of low-level laser therapy (LLLT), electroacupuncture (EA), and radiofrequency (RF), which are used in physical therapy, on the pigmentation and skin tone of adult women’s faces were investigated to provide basic data for skin interventions. [Subjects and Methods] Thirty adult females were assigned to either an LLLT group (n=10), an EA group (n=10), or an RF group (n=10). The intervention was performed in two 15-minute sessions per week for six weeks. Subjects’ skin tone and pigmentation were observed before and after the intervention. [Results] The EA group showed significant reductions in pigmentation in the left and right eye rims, as well as in the left cheek. The RF group showed significant post-intervention reductions in pigmentation under the left eye, as well as in the left and right eye rims and the left cheek. The LLLT group showed significant increases in skin tone in the forehead and both eye rims. The RF group showed significant increases in skin tone under both eyes. [Conclusion] The application of LLLT, EA, and RF had positive effects on pigmentation and skin tone of adult women’s faces. PMID:27313340

  7. Zebrafish as an emerging model for studying complex brain disorders

    PubMed Central

    Kalueff, Allan V.; Stewart, Adam Michael; Gerlai, Robert

    2014-01-01

    The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, for example, depression, autism, psychoses, drug abuse and cognitive disorders), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions have become a rapidly emerging critical field in translational neuropharmacology research. PMID:24412421

  8. Reprint of "Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio)".

    PubMed

    Nazario, Luiza Reali; Antonioli, Régis Junior; Capiotti, Katiucia Marques; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S; Bonan, Carla Denise; da Silva, Rosane Souza

    2015-12-01

    Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine. PMID:26569549

  9. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity.

    PubMed

    Chakraborty, Chiranjib; Sharma, Ashish Ranjan; Sharma, Garima; Lee, Sang-Soo

    2016-01-01

    Presently, nanotechnology is a multi-trillion dollar business sector that covers a wide range of industries, such as medicine, electronics and chemistry. In the current era, the commercial transition of nanotechnology from research level to industrial level is stimulating the world's total economic growth. However, commercialization of nanoparticles might offer possible risks once they are liberated in the environment. In recent years, the use of zebrafish (Danio rerio) as an established animal model system for nanoparticle toxicity assay is growing exponentially. In the current in-depth review, we discuss the recent research approaches employing adult zebrafish and their embryos for nanoparticle toxicity assessment. Different types of parameters are being discussed here which are used to evaluate nanoparticle toxicity such as hatching achievement rate, developmental malformation of organs, damage in gill and skin, abnormal behavior (movement impairment), immunotoxicity, genotoxicity or gene expression, neurotoxicity, endocrine system disruption, reproduction toxicity and finally mortality. Furthermore, we have also highlighted the toxic effect of different nanoparticles such as silver nanoparticle, gold nanoparticle, and metal oxide nanoparticles (TiO2, Al2O3, CuO, NiO and ZnO). At the end, future directions of zebrafish model and relevant assays to study nanoparticle toxicity have also been argued. PMID:27544212

  10. Assessing Skin Blood Flow Dynamics in Older Adults Using a Modified Sample Entropy Approach

    PubMed Central

    Liao, Fuyuan; Jan, Yih-Kuen

    2015-01-01

    The aging process may result in attenuated microvascular reactivity in response to environmental stimuli, which can be evaluated by analyzing skin blood flow (SBF) signals. Among various methods for analyzing physiological signals, sample entropy (SE) is commonly used to quantify the degree of regularity of time series. However, we found that for temporally correlated data, SE value depends on the sampling rate. When data are oversampled, SE may give misleading results. To address this problem, we propose to modify the definition of SE by using time-lagged vectors in the calculation of the conditional probability that any two vectors of successive data points are within a tolerance r for m points remain within the tolerance at the next point. The lag could be chosen as the first minimum of the auto mutual information function. We tested the performance of modified SE using simulated signals and SBF data. The results showed that modified SE is able to quantify the degree of regularity of the signals regardless of sampling rate. Using this approach, we observed a more regular behavior of blood flow oscillations (BFO) during local heating-induced maximal vasodilation period compared to the baseline in young and older adults and a more regular behavior of BFO in older adults compared to young adults. These results suggest that modified SE may be useful in the study of SBF dynamics. PMID:25570060

  11. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    SciTech Connect

    Zucchi, Sara; Bluethgen, Nancy; Ieronimo, Andrea; Fent, Karl

    2011-01-15

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. In eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.

  12. Evaluation of skin temperature over carotid artery for temperature monitoring in comparison to nasopharyngeal temperature in adults under general anesthesia

    PubMed Central

    Selvaraj, Venkatesh; Gnanaprakasam, Pughal Vendan

    2016-01-01

    Background: Thermoregulation is markedly affected in patients undergoing surgical procedures under anesthesia. Monitoring of temperature is very important during such conditions. Skin temperature is one of the easy and noninvasive ways of temperature monitoring. Common skin temperature monitoring sites are unreliable and did not correlate to the core temperature measurement. Aim: To compare and study the correlation of skin temperature over carotid artery in the neck to that of simultaneously measured nasopharyngeal temperature in adult patients undergoing surgical procedures under general anesthesia. Settings and Design: Prospective double-blinded study in a Tertiary Care Center. Materials and Methods: Ninety-seven consecutive American Society of Anesthesiologists I–II patients of age 18–40 years posted for elective surgical procedures under general anesthesia were included. Two temperature sites are monitored: The skin temperature over the carotid artery in the neck with a skin temperature probe T (skin-carotid) and the nasopharyngeal temperature T (naso) with another nasopharyngeal probe. The temperature readings are taken at 0, 15, 30, 45, and 60 min after induction of general anesthesia. Statistical Analysis: Paired t-test, Pearson correlation and Bland–Altman analysis for the rate of agreement. Results: The skin over the carotid artery in the neck showed statistically significant lower values than simultaneously measured nasopharyngeal temperature. This comparison is done with paired t-test at P< 0.05 significance. Bland–Altman plots showed good agreement between the two sites of temperature measurement. Conclusion: This study has shown that the skin temperature over the carotid artery in the neck was strongly correlated to the nasopharyngeal temperature in adult patients undergoing surgical procedures under general anesthesia. PMID:27212763

  13. Zebrafish Sensitivity to Botulinum Neurotoxins.

    PubMed

    Chatla, Kamalakar; Gaunt, Patricia S; Petrie-Hanson, Lora; Ford, Lorelei; Hanson, Larry A

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight) at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg)/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins. PMID:27153088

  14. Zebrafish Sensitivity to Botulinum Neurotoxins

    PubMed Central

    Chatla, Kamalakar; Gaunt, Patricia S.; Petrie-Hanson, Lora; Ford, Lorelei; Hanson, Larry A.

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight) at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg)/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins. PMID:27153088

  15. Imaging blood vessels in the zebrafish.

    PubMed

    Kamei, Makoto; Isogai, Sumio; Pan, Weijun; Weinstein, Brant M

    2010-01-01

    Understanding on the mechanisms of vascular branching morphogenesis has become a subject of enormous scientific and clinical interest. Zebrafish, which have small, accessible, transparent embryos and larvae, provides a unique living animal model to facilitating high-resolution imaging on ubiquitous and deep localization of vessels within embryo development and also in adult tissues. In this chapter, we have summarized various methods for vessel imaging in zebrafish, including in situ hybridization for vascular-specific genes, resin injection- or dye injection-based vessel visualization, and alkaline phosphatase staining. We also described detail protocols for live imaging of vessels by microangiography or using various transgenic zebrafish lines. PMID:21111213

  16. An Assessment of the Long-Term Effects of Simulated Microgravity on Cranial Neural Crest Cells in Zebrafish Embryos with a Focus on the Adult Skeleton

    PubMed Central

    Edsall, Sara C.; Franz-Odendaal, Tamara A.

    2014-01-01

    It is becoming increasingly important to address the long-term effects of exposure to simulated microgravity as the potential for space tourism and life in space become prominent topics amongst the World’s governments. There are several studies examining the effects of exposure to simulated microgravity on various developmental systems and in various organisms; however, few examine the effects beyond the juvenile stages. In this study, we expose zebrafish embryos to simulated microgravity starting at key stages associated with cranial neural crest cell migration. We then analyzed the skeletons of adult fish. Gross observations and morphometric analyses show that exposure to simulated microgravity results in stunted growth, reduced ossification and severe distortion of some skeletal elements. Additionally, we investigated the effects on the juvenile skull and body pigmentation. This study determines for the first time the long-term effects of embryonic exposure to simulated microgravity on the developing skull and highlights the importance of studies investigating the effects of altered gravitational forces. PMID:24586670

  17. The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water.

    PubMed

    Yu, Shilin; Lin, Tao; Chen, Wei; Tao, Hui

    2015-11-01

    The detection method of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in chlorinated drinking water, was established using a gas chromatograph coupled with a micro-electron capture detector. The chlorinated water samples were taken from ten drinking water treatment plants around Yangtze River or Taihu Lake in China. The concentration of DCAcAm was detected ranging from 0.5 to 1.8μg/L in the waterworks around Yangtze River, and 1.5-2.6μg/L around Taihu Lake. The toxicity of DCAcAm on adult zebrafish was assessed by investigating the metabolism damage with multiple metabolic biomarkers and the accumulation capability with bio-concentration factor. The results showed that DCAcAm could cause the acute metabolism damage and was easily accumulated in zebrafish, and should be extremely cautioned. PMID:26037958

  18. Effects of Pro-Tex on zebrafish (Danio rerio) larvae, adult common carp (Cyprinus carpio) and adult yellowtail kingfish (Seriola lalandi).

    PubMed

    Boerrigter, Jeroen G J; van de Vis, Hans W; van den Bos, Ruud; Abbink, Wout; Spanings, Tom; Zethof, Jan; Martinez, Laura Louzao; van Andel, Wouter F M; Lopez-Luna, Javier; Flik, Gert

    2014-08-01

    Aquaculture practices bring several stressful events to fish. Stressors not only activate the hypothalamus-pituitary-interrenal-axis, but also evoke cellular stress responses. Up-regulation of heat shock proteins (HSPs) is among the best studied mechanisms of the cellular stress response. An extract of the prickly pear cactus (Opuntia ficus indica), Pro-Tex, a soluble variant of TEX-OE(®), may induce expression of HSPs and reduce negative effects of cellular stress. Pro-Tex therefore is used to ameliorate conditions during stressful aquaculture-related practices. We tested Pro-Tex in zebrafish (Danio rerio), common carp (Cyprinus carpio L.) and yellowtail kingfish (Seriola lalandi) exposed to aquaculture-relevant stressors (thermal stress, net confinement, transport) and assessed its effects on stress physiology. Heat shock produced a mild increase in hsp70 mRNA expression in 5-day-old zebrafish larvae. Pro-Tex increased basal hsp70 mRNA expression, but decreased heat-shock-induced expression of hsp70 mRNA. In carp, Pro-Tex increased plasma cortisol and glucose levels, while it did not affect the mild stress response (increased plasma cortisol and glucose) to net confinement. In gills, and proximal and distal intestine, stress increased hsp70 mRNA expression; in the distal intestine, an additive enhancement of hsp70 mRNA expression by Pro-Tex was seen under stress. In yellowtail kingfish, Pro-Tex reduced the negative physiological effects of transport more efficiently than when fish were sedated with AQUI-S(®). Overall, our data indicate that Pro-Tex has protective effects under high levels of stress only. As Pro-Tex has potential for use in aquaculture, its functioning and impact on health and welfare of fish should be further studied. PMID:24493298

  19. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio) Using a GFP-Tagged Yersinia ruckeri.

    PubMed

    Korbut, Rozalia; Mehrdana, Foojan; Kania, Per Walter; Larsen, Marianne Halberg; Frees, Dorte; Dalsgaard, Inger; Jørgensen, Louise von Gersdorff

    2016-01-01

    Immersion-vaccines (bacterins) are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr). During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms and subsequent antigen transport in fish. A genetically modified Yr was developed to constitutively express green fluorescent protein (GFP) and was used for bacterin production. Larval, juvenile and adult transparent zebrafish (tra:nac mutant) received a bath in the bacterin for up to 30 minutes. Samples were taken after 1 min, 15 min, 30 min, 2 h, 12 h and 24 h. At each sampling point fish were used for live imaging of the uptake using a fluorescence stereomicroscope and for immunohistochemistry (IHC). In adult fish, the bacterin could be traced within 30 min in scale pockets, skin, oesophagus, intestine and fins. Within two hours post bath (pb) Yr-antigens were visible in the spleen and at 24 h in liver and kidney. Bacteria were associated with the gills, but uptake at this location was limited. Antigens were rarely detected in the blood and never in the nares. In juvenile fish uptake of the bacterin was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species. PMID:27404564

  20. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio) Using a GFP-Tagged Yersinia ruckeri

    PubMed Central

    Korbut, Rozalia; Mehrdana, Foojan; Kania, Per Walter; Larsen, Marianne Halberg; Frees, Dorte; Dalsgaard, Inger; Jørgensen, Louise von Gersdorff

    2016-01-01

    Immersion-vaccines (bacterins) are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr). During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms and subsequent antigen transport in fish. A genetically modified Yr was developed to constitutively express green fluorescent protein (GFP) and was used for bacterin production. Larval, juvenile and adult transparent zebrafish (tra:nac mutant) received a bath in the bacterin for up to 30 minutes. Samples were taken after 1 min, 15 min, 30 min, 2 h, 12 h and 24 h. At each sampling point fish were used for live imaging of the uptake using a fluorescence stereomicroscope and for immunohistochemistry (IHC). In adult fish, the bacterin could be traced within 30 min in scale pockets, skin, oesophagus, intestine and fins. Within two hours post bath (pb) Yr-antigens were visible in the spleen and at 24 h in liver and kidney. Bacteria were associated with the gills, but uptake at this location was limited. Antigens were rarely detected in the blood and never in the nares. In juvenile fish uptake of the bacterin was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species. PMID:27404564

  1. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells

    PubMed Central

    2013-01-01

    Introduction The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. Methods We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. Results We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. Conclusions For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics. PMID:23388106

  2. Biochemical response of diverse organs in adult Danio rerio (zebrafish) exposed to sub-lethal concentrations of microcystin-LR and microcystin-RR: a balneation study.

    PubMed

    Pavagadhi, Shruti; Gong, Zhiyuan; Hande, M Prakash; Dionysiou, Dionysios D; de la Cruz, Armah A; Balasubramanian, Rajasekhar

    2012-03-01

    The present study was carried out to examine the dose-response of microcystin-LR (MC-LR) and microcystin-RR (MC-RR) toxicity in adult Danio rerio (zebrafish) under balneation conditions at various time points. The differential responses of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) as biomarkers were assessed for oxygen mediated toxicity in liver, gills, intestine and brain tissues of zebrafish exposed to dissolved MC-LR and MC-RR (0.1-10.0 μgl(-1)). To investigate the time related response of biomarkers, fish were sampled after 4, 7 and 15 days of exposure. Responses varied (i) between MC-LR and MC-RR (for certain groups), (ii) for different enzymes at all time points, and (iii) for different tissues. In general, most of the enzymes followed a bell shaped curve, with an abrupt increase in activity at a particular concentration. It was observed that upon exposure to MC-LR and MC-RR, some enzymes showed an adaptive response after the first time point wherein the enzyme activity increased in some tissues. The increase in enzyme activity is suggestive of their cellular and metabolic adaptations to the continued stress and toxin exposure. Enzyme activities in general increased at lower concentrations (≤ 5.0 μgl(-1)) and decreased at higher concentrations (≥ 5.0 μgl(-1)). An abrupt change in enzyme activities was observed at a particular concentration in all the tissue enzymes. For GPx and GR, there was a differential response in the case of fish exposed to MC-LR and MC-RR, which could be due to the difference in toxicity potentials of these cyanotoxins. In general, initial stress conditions were observed in most of the tissue enzymes following the exposure to microcystins (MCs). This observation suggests that MCs found in trace levels are likely to have deleterious effects on aquatic organisms and can trigger a variety of biochemical responses depending on their specific toxicity

  3. Skin Ulcers and Mortality Among Adolescents and Young Adults With Spina Bifida in South Carolina During 2000-2010.

    PubMed

    Cai, Bo; McDermott, Suzanne; Wang, Yinding; Royer, Julie A; Mann, Joshua R; Hardin, James W; Ozturk, Orgul; Ouyang, Lijing

    2016-03-01

    The authors investigated 48 deaths (7% death rate) among 690 adolescents and young adults with spina bifida in South Carolina during 2000-2010. The authors used Medicaid and other administrative data and a retrospective cohort design that included people with spina bifida identified using ICD-9 codes. Cox regression models with time-dependent and time-invariant covariates, and Kaplan-Meier survival curves were constructed. The authors found that 21.4% of the study group had a skin ulcer during the study period and individuals with skin ulcers had significantly higher mortality than those without ulcers (P < .0001). People who had their first skin ulcer during adolescence had higher mortality than those who had the first skin ulcer during young adulthood (P = .0002; hazard ratio = 10.70, 95% confidence interval for hazard ratio: 3.01, 38.00) and those without skin ulcers, controlling for other covariates. This study showed that age at which individuals first had a skin ulcer was associated with mortality. PMID:26239488

  4. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish.

    PubMed

    Haldi, Maryann; Ton, Christopher; Seng, Wen Lin; McGrath, Patricia

    2006-01-01

    In this research, we optimized parameters for xenotransplanting WM-266-4, a metastatic melanoma cell line, including zebrafish site and stage for transplantation, number of cells, injection method, and zebrafish incubation temperature. Melanoma cells proliferated, migrated and formed masses in vivo. We transplanted two additional cancer cell lines, SW620, a colorectal cancer cell line, and FG CAS/Crk, a pancreatic cancer cell line and these human cancers also formed masses in zebrafish. We also transplanted CCD-1092Sk, a human fibroblast cell line established from normal foreskin and this cell line migrated, but did not proliferate or form masses. We quantified the number of proliferating melanoma and normal skin fibroblasts by dissociating xenotransplant zebrafish, dispensing an aliquot of CM-DiI labeled human cells from each zebrafish onto a hemocytometer slide and then visually counting the number of fluorescently labeled cancer cells. Since zebrafish are transparent until approximately 30 dpf, the interaction of labeled melanoma cells and zebrafish endothelial cells (EC) can be visualized by whole-mount immunochemical staining. After staining with Phy-V, a mouse anti-zebrafish monoclonal antibody (mAb) that specifically labels activated EC and angioblasts, using immunohistology and 2-photon microscopy, we observed activated zebrafish EC embedded in human melanoma cell masses. The zebrafish model offers a rapid efficient approach for assessing human cancer cells at various stages of tumorigenesis. PMID:17051341

  5. Somatic cell nuclear transfer in zebrafish.

    PubMed

    Siripattarapravat, Kannika; Pinmee, Boonya; Venta, Patrick J; Chang, Chia-Cheng; Cibelli, Jose B

    2009-10-01

    We developed a method for somatic cell nuclear transfer in zebrafish using laser-ablated metaphase II eggs as recipients, the micropyle for transfer of the nucleus and an egg activation protocol after nuclear reconstruction. We produced clones from cells of both embryonic and adult origins, although the latter did not give rise to live adult clones. PMID:19718031

  6. Measuring thigmotaxis in larval zebrafish.

    PubMed

    Schnörr, S J; Steenbergen, P J; Richardson, M K; Champagne, D L

    2012-03-17

    One of the most commonly used behavioral endpoints measured in preclinical studies using rodent models is thigmotaxis (or "wall-hugging"). Thigmotaxis is a well-validated index of anxiety in animals and humans. While assays measuring thigmotaxis in adult zebrafish have been developed, a thigmotaxis assay has not yet been validated in larval zebrafish. Here we present a novel assay for measurement of thigmotaxis in zebrafish larvae that is triggered by a sudden change in illumination (i.e. sudden light-to-darkness transition) and performed in a standard 24-well plate. We show that zebrafish larvae as young as 5 days post fertilization respond to this challenge by engaging in thigmotaxis. Thigmotaxis was significantly attenuated by anxiolytic (diazepam) and significantly enhanced by anxiogenic (caffeine) drugs, thus representing the first validated thigmotaxis assay for larval zebrafish. We also show that exposure to sudden darkness per se may represent an anxiogenic situation for larval zebrafish since less contrasting light-to-darkness transitions (achieved by lowering darkness degrees) significantly decreased thigmotaxis levels in a manner similar to what was achieved with diazepam. These findings suggest that stimuli such as exposure to sudden darkness could be used proficiently to trigger the expression of anxiety-like behaviors in laboratory settings. In sum, this is a versatile protocol allowing testing of both anxiolytic and anxiogenic drugs in a cost-effective manner (only 10 min). This assay is also amenable to medium to high-throughput capacity while constituting a valuable tool for stress and central nervous system research as well as for preclinical drug screening and discovery. PMID:22197677

  7. What is the Thalamus in Zebrafish?

    PubMed Central

    Mueller, Thomas

    2012-01-01

    Current research on the thalamus and related structures in the zebrafish diencephalon identifies an increasing number of both neurological structures and ontogenetic processes as evolutionary conserved between teleosts and mammals. The patterning processes, for example, which during the embryonic development of zebrafish form the thalamus proper appear largely conserved. Yet also striking differences between zebrafish and other vertebrates have been observed, particularly when we look at mature and histologically differentiated brains. A case in point is the migrated preglomerular complex of zebrafish which evolved only within the lineage of ray-finned fish and has no counterpart in mammals or tetrapod vertebrates. Based on its function as a sensory relay station with projections to pallial zones, the preglomerular complex has been compared to specific thalamic nuclei in mammals. However, no thalamic projections to the zebrafish dorsal pallium, which corresponds topologically to the mammalian isocortex, have been identified. Merely one teleostean thalamic nucleus proper, the auditory nucleus, projects to a part of the dorsal telencephalon, the pallial amygdala. Studies on patterning mechanisms identify a rostral and caudal domain in the embryonic thalamus proper. In both, teleosts and mammals, the rostral domain gives rise to GABAergic neurons, whereas glutamatergic neurons originate in the caudal domain of the zebrafish thalamus. The distribution of GABAergic derivatives in the adult zebrafish brain, furthermore, revealed previously overlooked thalamic nuclei and redefined already established ones. These findings require some reconsideration regarding the topological origin of these adult structures. In what follows, I discuss how evolutionary conserved and newly acquired features of the developing and adult zebrafish thalamus can be compared to the mammalian situation. PMID:22586363

  8. Hyaluronan and Fibrin Biomaterial as Scaffolds for Neuronal Differentiation of Adult Stem Cells Derived from Adipose Tissue and Skin

    PubMed Central

    Gardin, Chiara; Vindigni, Vincenzo; Bressan, Eriberto; Ferroni, Letizia; Nalesso, Elisa; Puppa, Alessandro Della; D’Avella, Domenico; Lops, Diego; Pinton, Paolo; Zavan, Barbara

    2011-01-01

    Recently, we have described a simple protocol to obtain an enriched culture of adult stem cells organized in neurospheres from two post-natal tissues: skin and adipose tissue. Due to their possible application in neuronal tissue regeneration, here we tested two kinds of scaffold well known in tissue engineering application: hyaluronan based membranes and fibrin-glue meshes. Neurospheres from skin and adipose tissue were seeded onto two scaffold types: hyaluronan based membrane and fibrin-glue meshes. Neurospheres were then induced to acquire a glial and neuronal-like phenotype. Gene expression, morphological feature and chromosomal imbalance (kariotype) were analyzed and compared. Adipose and skin derived neurospheres are able to grow well and to differentiate into glial/neuron cells without any chromosomal imbalance in both scaffolds. Adult cells are able to express typical cell surface markers such as S100; GFAP; nestin; βIII tubulin; CNPase. In summary, we have demonstrated that neurospheres isolated from skin and adipose tissues are able to differentiate in glial/neuron-like cells, without any chromosomal imbalance in two scaffold types, useful for tissue engineering application: hyaluronan based membrane and fibrin-glue meshes. PMID:22072917

  9. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography.

    PubMed

    Lee, Ling; Genge, Christine E; Cua, Michelle; Sheng, Xiaoye; Rayani, Kaveh; Beg, Mirza F; Sarunic, Marinko V; Tibbits, Glen F

    2016-01-01

    The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA- 18°C; warm acclimated WA- 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling. PMID:26730947

  10. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography

    PubMed Central

    Cua, Michelle; Sheng, Xiaoye; Rayani, Kaveh; Beg, Mirza F.; Sarunic, Marinko V.; Tibbits, Glen F.

    2016-01-01

    The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA– 18°C; warm acclimated WA– 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling. PMID:26730947

  11. A comparative study of baby immature and adult shoots of Aloe vera on UVB-induced skin photoaging in vitro.

    PubMed

    Hwang, Eunson; Kim, Su Hyeon; Lee, Sarah; Lee, Choong Hwan; Do, Seon-Gil; Kim, Jinwan; Kim, Sun Yeou

    2013-12-01

    Ultraviolet (UV) irradiation induces photo-damage of the skin, which in turn causes depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkle formations are associated with collagen synthesis and matrix metalloproteinase (MMP) expression. The production of type I procollagen is regulated by transforming growth factor-β1 (TGF-β1) expression; the activation of MMP is also correlated with an increase of interleukin-6 (IL-6). Aloe barbadensis M. (Aloe vera) is widely used in cosmetic and pharmaceutical products. In this study, we examined whether baby aloe shoot extract (BAE, immature aloe extract), which is from the one-month-old shoots of Aloe vera, and adult aloe shoot extract (AE), which is from the four-month-old shoots of Aloe vera, have a protective effect on UVB-induced skin photoaging in normal human dermal fibroblasts (NHDFs). The effects of BAE and AE on UVB-induced photoaging were tested by measuring the levels of reactive oxygen species, MMP-1, MMP-3, IL-6, type I procollagen, and TGF-β1 after UVB irradiation. We found that NHDF cells treated with BAE after UVB-irradiation suppressed MMP-1, MMP-3, and IL-6 levels compared to the AE-treated cells. Furthermore, BAE treatment elevated type I procollagen and TGF-β1 levels. Our results suggest that BAE may potentially protect the skin from UVB-induced damage more than AE. PMID:23505091

  12. Axillary and thoracic skin temperatures poorly comparable to core body temperature circadian rhythm: results from 2 adult populations.

    PubMed

    Thomas, Karen A; Burr, Robert; Wang, Shu-Yuann; Lentz, Martha J; Shaver, Joan

    2004-01-01

    Data from 2 separate studies were used to examine the relationships of axillary or thoracic skin temperature to rectal temperature and to determine the phase relationships of the circadian rhythms of these temperatures. In study 1, axillary skin and rectal temperatures were recorded in 19 healthy women, 21 to 36 years of age. In study 2, thoracic skin and rectal temperatures were recorded in 74 healthy women, 39 to 59 years of age. In both studies, temperatures were recorded continuously for 24 h while subjects carried out normal activities. Axillary and thoracic probes were insulated purposely to prevent ambient effects. Cosinor analysis was employed to estimate circadian rhythm mesor, amplitude, and acrophase. In addition, correlations between temperatures at various measurement sites were calculated and agreement determined. The circadian timing of axillary and skin temperature did not closely approximate that of rectal temperature: the mean acrophase (clock time) for study 1 was 18:57 h for axillary temperature and 16:12 h for rectal; for study 2, it was 03:05 h for thoracic and 15:05 h for rectal. Across individual subjects, the correlations of axillary or thoracic temperatures with rectal temperatures were variable. Results do not support the use of either axillary or skin temperature as a substitute for rectal temperature in circadian rhythm research related to adult women. PMID:14737919

  13. Environment and activity affect skin temperature in breeding adult male elephant seals (Mirounga angustirostris).

    PubMed

    Norris, A L; Houser, D S; Crocker, D E

    2010-12-15

    The large body size and high rates of metabolic heat production associated with male mating success in polygynous systems creates potential thermoregulatory challenges for species breeding in warm climates. This is especially true for marine predators carrying large blubber reserves intended for thermoregulation in cold water and fuel provision during extended fasts. Thermographic images were used to measure changes in skin temperature (T(S)) in adult male northern elephant seals (Mirounga angustirostris) over the breeding season. Environmental variables, primarily ambient temperature and solar radiation, were the principal determinants of mean and maximum T(S). When controlled for environmental variables, dominance rank significantly impacted mean T(S), being highest in alpha males. Behavioral activity significantly influenced T(S) but in a counter-intuitive way, with inactive males exhibiting the highest T(S). This was likely due to strong impacts of environmental variables on the kinds of behavior exhibited, with males being less active on warm, humid days at peak solar radiation. We classified thermal windows as areas in which T(S) was one standard deviation greater than mean T(S) for the individual seal within a thermograph. Thermal features suggest active physiological thermoregulation during and after combat and significant circulatory adaptations for heat dumping, as evidenced by recurring locations of thermal windows representing widely varying T(S) values. Frequent observations of localized T(S) above 37°C, particularly after combat, suggest the production of thermoregulatory stress during breeding behavior. Our findings demonstrate the importance of environmental drivers in shaping activity patterns during breeding and provide evidence for thermoregulatory costs of successful breeding in large polygynous males. PMID:21113001

  14. Prevalence and heritability of skin picking in an adult community sample: a twin study.

    PubMed

    Monzani, Benedetta; Rijsdijk, Fruhling; Cherkas, Lynn; Harris, Juliette; Keuthen, Nancy; Mataix-Cols, David

    2012-07-01

    Skin-picking disorder (SPD) is a disabling psychiatric condition that can lead to skin damage and other medical complications. Epidemiological data is scarce and its causes are unknown. The present study examined the prevalence and heritability of skin-picking symptoms in a large sample of twins. A total of 2,518 twins completed a valid and reliable self-report measure of skin-picking behavior. The prevalence of clinically significant skin picking was established using empirically derived cut-offs. Twin modeling methods were employed to decompose the variance in the liability to skin picking into additive genetic and shared and non-shared environmental factors. A total of 1.2% of twins scored above the cut-off, indicative of clinically significant skin picking. All these participants were women. Univariate model-fitting analyses (female twins only, N = 2,191) showed that genetic factors accounted for approximately 40% (95% CI 19-58%) of the variance in skin picking, with non-shared environmental factors and measurement error accounting for the remaining variance (60% [95% CI 42-81%]). Shared environmental factors were negligible. It is concluded that pathological skin picking is relatively prevalent problem, particularly among women, and that it tends to run in families primarily due to genetic factors. Non-shared environmental factors are also likely to play an important role in its etiology. PMID:22619132

  15. Preliminary Study of Altered Skin Temperature at Body Sites Associated with Self-Injurious Behavior in Adults Who Have Developmental Disabilities.

    ERIC Educational Resources Information Center

    Symons, Frank J.; Sutton, Kelly A.; Bodfish, James W.

    2001-01-01

    The sensory status of four nonverbal adults with mental retardation and severe self-injury was examined using skin temperature measures prior to opiate antagonist treatment. For each participant, the body site targeted most frequently for self-injury was associated with altered skin temperature and reduced by naltrexone treatment. In all cases,…

  16. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity.

    PubMed

    Plikus, Maksim V; Van Spyk, Elyse N; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S; Andersen, Bogi

    2015-06-01

    Historically, work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as the liver, fat, and muscle. In recent years, skin has emerged as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging, and carcinogenesis. Morphologically, skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable, and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration: the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell type-specific circadian mutants. Also, due to the accessibility of skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar ultraviolet (UV) radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it also represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. Skin also provides opportunities to interrogate the clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model

  17. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity

    PubMed Central

    Plikus, Maksim V.; Van Spyk, Elyse Noelani; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S.; Andersen, Bogi

    2015-01-01

    Historically work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as liver, fat and muscle. In recent years, skin is emerging as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging and carcinogenesis. Morphologically skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration -- the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell-type specific circadian mutants. Also, due to the accessibility of the skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar UV radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. The skin also provides opportunities to interrogate clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model for investigating the

  18. New Wine in Old Skins: Changing Patterns in the Governing of the Adult Learner in Sweden

    ERIC Educational Resources Information Center

    Fejes, Andreas

    2005-01-01

    This paper explores the ways in which the adult learner has been governed in recent years and whether the techniques for doing this have changed over the last 50 years. The focus is first on which adult subject (adult learner) is constructed in the material analysed. What kinds of subjects are governed? This is followed by an analysis of what…

  19. All-trans retinoic acid (RA) stimulates events in organ-cultured human skin that underlie repair. Adult skin from sun-protected and sun-exposed sites responds in an identical manner to RA while neonatal foreskin responds differently.

    PubMed Central

    Varani, J; Perone, P; Griffiths, C E; Inman, D R; Fligiel, S E; Voorhees, J J

    1994-01-01

    Adult human skin from a sun-protected site (hip) and from a sun-exposed site (forearm) was maintained in organ culture for 12 d in the presence of a serum-free, growth factor-free basal medium. Cultures were incubated under conditions optimized for keratinocyte growth (i.e., in 0.15 mM extracellular Ca2+) or for fibroblast growth (i.e., in 1.4 mM extracellular Ca2+). Treatment with all-trans retinoic acid (RA) induced histological changes in the organ-cultured skin under both conditions which were similar to the changes seen in intact skin after topical application. These included expansion of the viable portion of the epidermis and activation of cells in the dermis. In sun-damaged skin samples, which were characterized by destruction of normal connective tissue elements and presence of thick, dark-staining elastotic fibers, a zone of healthy connective tissue could be seen immediately below the dermo-epidermal junction. This zone was more prominent in RA-treated organ cultures than in matched controls. Associated with these histological changes was an increase in overall protein and extracellular matrix synthesis. In concomitant studies, it was found that RA treatment enhanced survival and proliferation of adult keratinocytes and adult dermal fibroblasts under both low- and high-Ca2+ conditions. In all of these assays, responses of sun-protected and sun-exposed skin were identical. In contrast, responses of neonatal foreskin to RA were similar to those of adult skin in the presence of low-Ca2+ culture medium, but under conditions of high extracellular Ca2+ RA provided little or no additional stimulus. Together these studies suggest that the ability of RA to enhance repair of sun-damaged skin (documented in previous studies) may reflect its ability to influence the behavior of skin in a manner that is age dependent but independent of sun-exposure status. Images PMID:7962521

  20. The Skin-Ego: Dyadic Sensuality, Trauma in Infancy, and Adult Narcissistic Issues.

    PubMed

    Anzieu-Premmereur, Christine

    2015-10-01

    The skin-ego is a metaphor created by the French psychoanalyst Didier Anzieu to describe the process by which the infant's emerging ego develops a container for psychic contents and achieves a secure feeling of well-being. The ego encloses the psychic apparatus as the skin encloses the body. The ego becomes able to fix barriers protecting the internal world and to screen exchanges with the id, the superego, and the outside world. The skin-ego is an envelope that contains thoughts and gives to thinking activity some limits, continuity, and a protection against the instincts. The functions of the skin-ego are to maintain thoughts, to contain ideas and affects, to provide a protective shield, to register traces of primary communication with the outside world, to manage inter-sensorial correspondences, to individuate, to support sexual excitation, and to recharge the libido. The skin-ego is the foundation of the container-contained relationship. An important part of psychoanalytic work with borderline patients is the reconstruction of the earliest phases of the skin-ego and their consequences for mental organization. PMID:26485486

  1. Skin-piercing blood-sucking moths II: Studies on a further 3 adult Calyptra [Calpe] sp. (Lepid., Noctuidae).

    PubMed

    Bänziger, H

    1979-03-01

    1. Of the scarce Calyptra minuticornis, C. orthograpta and C. labilis, 51, 24, and 7 adults, respectively, were observed during some 600 night inspections at over 100 sites in 1965--1967 and 1971--1977. 2. Hitherto biologically completely unknown, and not recorded before in S.E. Asia, the latter two species flew in or near tropical monsoon forests in hilly regions (300--600 m) of N. Thailand (C. orthograpta also N. Laos). C. minuticornis was found in these and in tropical evergreen and semi-evergreen rain forests of S. Thailand and N.W. Malaysia. 3. In N. Thailand the three species were more common at the end of the cool season/start of the hot season and at the start of the rainy season. They were active mainly during the first half of the night 4. Flight and piercing behaviour, alighting, resting, enemies, and the lack of females, were similar to virtually identical with the "classical" skin-piercing blood-sucking C. eustrigata. 5. C. labilis was seen attacking elephant, C. orthograpta also water buffalo and sambar, C. minuticornis also zebu and tapir but not sambar. C. minuticornis settled on man also but did not pierce. 6. Through no piercing of hosts' skin has actually been seen in nature, indirect evidence suggests that the 3 moths are likely to be occasional blood-suckers. They pierced and sucked blood from the author's skin in experiments. 7. Reasons for lack of direct evidence may be: less developed hematophagy, less favoured hosts, lack of easy-to-pierce injured skin (which also trigger the piercing response), different climatic and phytoecological environment, fewer specimens than in the case of C. eustrigata. 8. Field observations and experiments indicate that the closely related, fruit-piercing Oraesia emarginata is not skin-piercing blood-sucking--a habit likely to be exhibited mainly in humid equatorial regions by a few Calyptra only. PMID:35931

  2. Pseudoloma neurophilia Infection Combined with Gamma Irradiation Causes Increased Mortality in Adult Zebrafish (Danio rerio) Compared to Infection or Irradiation Alone: New Implications for Studies Involving Immunosuppression.

    PubMed

    Spagnoli, Sean T; Sanders, Justin L; Watral, Virginia; Kent, Michael L

    2016-07-01

    Gamma irradiation is commonly used as a bone marrow suppressant in studies of the immune system and hematopoiesis, most commonly in mammals. With the rising utility and popularity of the zebrafish (Danio rerio), gamma irradiation is being used for similar studies in this species. Pseudoloma neurophilia, a microparasite and common contaminant of zebrafish facilities, generally produces subclinical disease. However, like other microsporidia, P. neurophilia is a disease of opportunity and can produce florid infections with high morbidity and mortality, secondary to stress or immune suppression. In this study, we exposed zebrafish to combinations of P. neurophilia infection and gamma irradiation to explore the interaction between this immunosuppressive experimental modality and a normally subclinical infection. Zebrafish infected with P. neurophilia and exposed to gamma irradiation exhibited higher mortality, increased parasite loads, and increased incidences of myositis and extraneural parasite infections than fish exposed either to P. neurophilia or gamma irradiation alone. This experiment highlights the devastating effects of opportunistic diseases on immunosuppressed individuals and should caution researchers utilizing immunosuppressive modalities to carefully monitor their stocks to ensure that their experimental animals are not infected. PMID:27123755

  3. Characterization of two novel small molecules targeting melanocyte development in zebrafish embryogenesis.

    PubMed

    Chen, Lu; Ren, Xi; Liang, Fang; Li, Song; Zhong, Hanbing; Lin, Shuo

    2012-07-01

    Melanocytes are pigment cells that are closely associated with many skin disorders, such as vitiligo, piebaldism, Waardenburg syndrome, and the deadliest skin cancer, melanoma. Through studies of model organisms, the genetic regulatory network of melanocyte development during embryogenesis has been well established. This network also seems to be shared with adult melanocyte regeneration and melanoma formation. To identify chemical regulators of melanocyte development and homeostasis, we screened a small-molecule library of 6000 compounds using zebrafish embryos and identified five novel compounds that inhibited pigmentation. Here we report characterization of two compounds, 12G9 and 36E9, which disrupted melanocyte development. TUNEL assay indicated that these two compounds induced apoptosis of melanocytes. Furthermore, compound 12G9 specifically inhibited the viability of mammalian melanoma cells in vitro. These two compounds should be useful as chemical biology tools to study melanocytes and could serve as drug candidates against melanocyte-related diseases. PMID:22574862

  4. Homotypic cell competition regulates proliferation and tiling of zebrafish pigment cells during colour pattern formation

    PubMed Central

    Walderich, Brigitte; Singh, Ajeet Pratap; Mahalwar, Prateek; Nüsslein-Volhard, Christiane

    2016-01-01

    The adult striped pattern of zebrafish is composed of melanophores, iridophores and xanthophores arranged in superimposed layers in the skin. Previous studies have revealed that the assembly of pigment cells into stripes involves heterotypic interactions between all three chromatophore types. Here we investigate the role of homotypic interactions between cells of the same chromatophore type. Introduction of labelled progenitors into mutants lacking the corresponding cell type allowed us to define the impact of competitive interactions via long-term in vivo imaging. In the absence of endogenous cells, transplanted iridophores and xanthophores show an increased rate of proliferation and spread as a coherent net into vacant space. By contrast, melanophores have a limited capacity to spread in the skin even in the absence of competing endogenous cells. Our study reveals a key role for homotypic competitive interactions in determining number, direction of migration and individual spacing of cells within chromatophore populations. PMID:27118125

  5. Process and Outcomes of a Skin Protection Intervention for Young Adults

    PubMed Central

    Zhu, Fang; Manne, Sharon L.; Kloss, Jacqueline D.; Collins, Bradley N.; Bass, Sarah Bauerle; Lessin, Stuart R.

    2012-01-01

    Background Efforts to reduce skin cancer risk behaviors using appearance-oriented interventions (e.g., ultraviolet [UV] light photos showing skin damage) or Motivational Interviewing (MI) have shown promise in recent trials. Method A randomized 2 (UV photo versus no UV photo) × 2 (MI versus no MI) factorial design with longitudinal follow up. Results Progression in stage of change (SOC) was significantly more likely in the photo than the education condition. Treatment credibility as rated by participants and counselor perceived positive therapeutic alliance predicted SOC progression. There was also preliminary evidence for differential intervention effectiveness by baseline SOC. Conclusions Implications are discussed. PMID:22843632

  6. Self-Antigen Presentation by Keratinocytes in the Inflamed Adult Skin Modulates T-Cell Auto-Reactivity.

    PubMed

    Meister, Michael; Tounsi, Amel; Gaffal, Evelyn; Bald, Tobias; Papatriantafyllou, Maria; Ludwig, Julia; Pougialis, Georg; Bestvater, Felix; Klotz, Luisa; Moldenhauer, Gerhard; Tüting, Thomas; Hämmerling, Günter J; Arnold, Bernd; Oelert, Thilo

    2015-08-01

    Keratinocytes have a pivotal role in the regulation of immune responses, but the impact of antigen presentation by these cells is still poorly understood, particularly in a situation where the antigen will be presented only in adult life. Here, we generated a transgenic mouse model in which keratinocytes exclusively present a myelin basic protein (MBP) peptide covalently linked to the major histocompatibility complex class II β-chain, solely under inflammatory conditions. In these mice, inflammation caused by epicutaneous contact sensitizer treatment resulted in keratinocyte-mediated expansion of MBP-specific CD4(+) T cells in the skin. Moreover, repeated contact sensitizer application preceding a systemic MBP immunization reduced the reactivity of the respective CD4(+) T cells and lowered the symptoms of the resulting experimental autoimmune encephalomyelitis. This downregulation was CD4(+) T-cell-mediated and dependent on the presence of the immune modulator Dickkopf-3. Thus, presentation of a neo self-antigen by keratinocytes in the inflamed, adult skin can modulate CD4(+) T-cell auto-aggression at a distal organ. PMID:25835957

  7. The Zebrafish as a Tool to Cancer Drug Discovery

    PubMed Central

    Huiting, LN; Laroche, FJF; Feng, H

    2015-01-01

    The ability of zebrafish to faithfully recapitulate a variety of human cancers provides a unique in vivo system for drug identification and validation. Zebrafish models of human cancer generated through methodologies such as transgenesis, gene inactivation, transplantation, and carcinogenic induction have proven similar to their human counterparts both molecularly and pathologically. Suppression of cancer-relevant phenotypes provides opportunities to both identify and evaluate efficacious compounds using embryonic and adult zebrafish. After relevant compounds are selected, preclinical evaluation in mammalian models can occur, delivering lead compounds to human trials swiftly and rapidly. The advantages of in vivo imaging, large progeny, and rapid development that the zebrafish provides make it an attractive model to promote novel cancer drug discovery and reduce the hurdles and cost of clinical trials. This review explores the current methodologies to model human cancers in zebrafish, and how these cancer models have aided in formation of novel therapeutic hypotheses. PMID:26835511

  8. Development of sensory systems in zebrafish (Danio rerio)

    NASA Technical Reports Server (NTRS)

    Moorman, S. J.

    2001-01-01

    Zebrafish possess all of the classic sensory modalities: taste, tactile, smell, balance, vision, and hearing. For each sensory system, this article provides a brief overview of the system in the adult zebrafish followed by a more detailed overview of the development of the system. By far the majority of studies performed in each of the sensory systems of the zebrafish have involved some aspect of molecular biology or genetics. Although molecular biology and genetics are not major foci of the paper, brief discussions of some of the mutant strains of zebrafish that have developmental defects in each specific sensory system are included. The development of the sensory systems is only a small sampling of the work being done using zebrafish and provides a mere glimpse of the potential of this model for the study of vertebrate development, physiology, and human disease.

  9. Zebrafish Models of Human Liver Development and Disease

    PubMed Central

    Wilkins, Benjamin J.; Pack, Michael

    2016-01-01

    The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease. PMID:23897685

  10. Stressing Zebrafish for Behavioral Genetics

    PubMed Central

    Clark, Karl J.; Boczek, Nicole J.; Ekker, Stephen C.

    2012-01-01

    Synopsis The stress response is a normal reaction to a real or perceived threat. However, stress response systems that are overwhelmed or out of balance can increase both the incidence and severity of diseases including addiction and mood and anxiety disorders. Using an animal model with both genetic diversity and large family size can help discover the specific genetic and environmental contributions to these behavioral diseases. The stress response has been studied extensively in teleosts because of their importance in food production. The zebrafish (Danio rerio) is a major model organism with a strong record for use in developmental biology, genetic screening, and genomic studies. More recently, the stress response of larval and adult zebrafish has been documented. High-throughput automated tracking systems make possible behavioral readouts of the stress response in zebrafish. This non-invasive measure of the stress response can be combined with mutagenesis methods to dissect the genes involved in complex stress response behaviors in vertebrates. Understanding the genetic and epigenetic basis for the stress response in vertebrates will help to develop advanced screening and therapies for stress-aggravated diseases like addiction and mood and anxiety disorders. PMID:21615261

  11. The Skin Cancer and Sun Knowledge (SCSK) Scale: Validity, Reliability, and Relationship to Sun-Related Behaviors Among Young Western Adults.

    PubMed

    Day, Ashley K; Wilson, Carlene; Roberts, Rachel M; Hutchinson, Amanda D

    2014-08-01

    Increasing public knowledge remains one of the key aims of skin cancer awareness campaigns, yet diagnosis rates continue to rise. It is essential we measure skin cancer knowledge adequately so as to determine the nature of its relationship to sun-related behaviors. This study investigated the psychometric properties of a new measure of skin cancer knowledge, the Skin Cancer and Sun Knowledge (SCSK) scale. A total of 514 Western young adults (females n = 320, males n = 194) aged 18 to 26 years completed measures of skin type, skin cancer knowledge, tanning behavior, sun exposure, and sun protection. Two-week test-retest of the SCSK was conducted with 52 participants. Internal reliability of the SCSK scale was acceptable (KR-20 = .69), test-retest reliability was high (r = .83, n = 52), and acceptable levels of face, content, and incremental validity were demonstrated. Skin cancer knowledge (as measured by SCSK) correlated with sun protection, sun exposure, and tanning behaviors in the female sample, but not in the males. Skin cancer knowledge appears to be more relevant to the behavior of young women than that of young males. We recommend that future research establish the validity of the SCSK across a range of participant groups. PMID:24722215

  12. Prolongation of GFP-expressed skin graft after intrathymic injection of GFP positive splenocytes in adult rat

    NASA Astrophysics Data System (ADS)

    Hakamata, Yoji; Igarashi, Yuka; Murakami, Takashi; Kobayashi, Eiji

    2006-02-01

    GFP is a fluorescent product of the jellyfish Aequorea victoria and has been used for a variety of biological experiments as a reporter molecule. While GFP possesses advantages for the non-invasive imaging of viable cells, GFP-positive cells are still considered potential xeno-antigens. It is difficult to observe the precise fate of transplanted cells/organs in recipients without immunological control. The aim of this study was to determine whether intrathymic injection of GFP to recipients and the depletion of peripheral lymphocytes could lead to donor-specific unresponsiveness to GFP-expressed cell. LEW rats were administered intraperitoneally with 0.2 ml of anti-rat lymphocyte serum (ALS) 1 day prior to intrathymic injection of donor splenocytes or adeno-GFP vector. Donor cells and vector were non-invasively inoculated into the thymus under high frequency ultrasound imaging using an echo-guide. All animals subsequently received a 7 days GFP-expressed skin graft from the same genetic background GFP LEW transgenic rat. Skin graft survival was greater in rats injected with donor splenocytes (23.6+/-9.1) compared with adeno-GFP (13.0+/-3.7) or untreated control rats (9.5+/-1.0). Intrathymic injection of donor antigen into adult rats can induce donor-specific unresponsiveness. Donor cells can be observed for a long-term in recipients with normal immunity using this strategy.

  13. Multifractal analysis of nonlinear complexity of sacral skin blood flow oscillations in older adults

    PubMed Central

    Liao, Fuyuan; Struck, Bryan D.; MacRobert, Margo

    2011-01-01

    The objective of this study was to investigate the relationship between cutaneous vasodilatory function and nonlinear complexity of blood flow oscillations (BFO) in older people. A non-painful fast local heating protocol was applied to the sacral skin in 20 older subjects with various vasodilatory functions. Laser Doppler flowmetry was used to measure skin blood oscillations. The complexity of the characteristic frequencies (i.e., metabolic (0.0095–0.02 Hz), neurogenic (0.02–0.05 Hz), myogenic (0.05–0.15 Hz), respiratory (0.15–0.4 Hz), and cardiac (0.4–2 Hz)) of BFO was quantified using the multifractal detrended fluctuation analysis. Compared with the 65–75 years group, the complexity of metabolic BFO in the 75–85 years group was significantly lower at the baseline (P < 0.05) and the second peak (P < 0.001). Compared with baseline BFO, subjects in the 65–75 years group had a significant increase in the complexity of metabolic BFO (P < 0.01) in response to local heating; while subjects in the 75–85 years group did not. Our findings support the use of multifractal analysis to assess aging-related microvascular dysfunction. PMID:21487818

  14. Contractile properties of skinned muscle fibres from young and adult normal and dystrophic (mdx) mice.

    PubMed Central

    Williams, D A; Head, S I; Lynch, G S; Stephenson, D G

    1993-01-01

    1. Single muscle fibres were enzymatically isolated from the soleus and extensor digitorum longus (EDL) muscles of genetically dystrophic mdx and normal (C57BL/10) mice aged 3-6 or 17-23 weeks. 2. Fibres of both muscles were chemically skinned with the non-ionic detergent Triton X-100 (2% v/v). Ca(2+)- and Sr(2+)-activated contractile responses were recorded and comparisons were made between several contractile parameters of various fibre types of normal and dystrophic mice of similar age. 3. There were no significant differences in the following contractile parameters of skinned fibres of normal and mdx mice of the same age: sensitivity to activating Ca2+ (pCa50) or Sr2+ (pSr50) and differential sensitivity to the activating ions (pCa50-pSr50). However the maximum isometric tension (Po) and the frequency of myofibrillar force oscillations in EDL fast-twitch fibres of young mdx mice were significantly lower than those of soleus fast-twitch fibres of the same animals, or fast-twitch fibres (EDL or soleus) of normal mice. 4. Age-related differences were apparent in some contractile parameters of both normal and mdx mice. In particular the steepness of force-pCa and force-pSr curves increased with age in normal mice, yet decreased with age in fibres of mdx mice. 5. A fluorescent probe, ethidium bromide, which interchelates with DNA, was used with laser-scanning confocal microscopy to determine the distribution of myonuclei in fibres. Fibres isolated from either muscle type of normal animals displayed a characteristic peripheral spiral of myonuclei. Fibres from muscles of mdx mice displayed three major patterns of nuclear distribution; the normal peripheral spiral, long central strands of nuclei, and a mixture of these two patterns. 6. The contractile characteristics of mdx fibres were not markedly influenced by the nuclear distribution pattern in that there were no discernible differences in the major contractile parameters (the Hill coefficients nCa and nSr, which

  15. Successful placement of an adult sternal intraosseous line through burned skin.

    PubMed

    Frascone, Ralph; Kaye, Koren; Dries, David; Solem, Lynn

    2003-01-01

    Obtaining vascular access can be difficult in the critical adult patient. This can be especially true in a severely burned patient, where the usual insertion site may be involved in the burn injury. We present a case in which a sternal intraosseous line was placed through a full-thickness injury, in a patient in full arrest, who subsequently underwent a successful cardiac resuscitation. PMID:14501399

  16. IgE Sensitization Patterns to Commonly Consumed Foods Determined by Skin Prick Test in Korean Adults.

    PubMed

    Kim, Sung Ryeol; Park, Hye Jung; Park, Kyung Hee; Lee, Jae-Hyun; Park, Jung-Won

    2016-08-01

    Offending food allergens can vary with regional preferences in food consumption. In this study, we analysed sensitization rates to commonly consumed foods in Korean adults suspected of having food allergy. One hundred and thirty four subjects underwent a skin prick test (SPT) with 55 food allergens, of which 13 were made by our laboratory and the rest were commercially purchased. Of the 134 patients, 73 (54.5%) were sensitized to one or more food allergens. Sensitization to chrysalis was detected most frequently, at a rate of 25.4%. Sensitization rates to other food allergens were as follows: maize grain (13.4%), shrimp (11.9%), almond (11.1%), wheat flour (8.2%), lobster (8.2%), buckwheat (8.2%), mackerel (5.2%), pollack (5.2%), halibut (4.5%), peanut (4.5%), anchovy (4.4%), squid (3.7%), saury (3.0%), common eel (3.0%), yellow corvina (3.0%), hairtail (2.2%), octopus (2.2%), and others. In addition to well-known food allergens, sensitivity to mackerel, chrysalis, pollack, and halibut, which are popular foods in Korea, was observed at high rates in Korean adults. We suggest that the SPT panel for food allergy in Korea should include these allergens. PMID:27478328

  17. IgE Sensitization Patterns to Commonly Consumed Foods Determined by Skin Prick Test in Korean Adults

    PubMed Central

    2016-01-01

    Offending food allergens can vary with regional preferences in food consumption. In this study, we analysed sensitization rates to commonly consumed foods in Korean adults suspected of having food allergy. One hundred and thirty four subjects underwent a skin prick test (SPT) with 55 food allergens, of which 13 were made by our laboratory and the rest were commercially purchased. Of the 134 patients, 73 (54.5%) were sensitized to one or more food allergens. Sensitization to chrysalis was detected most frequently, at a rate of 25.4%. Sensitization rates to other food allergens were as follows: maize grain (13.4%), shrimp (11.9%), almond (11.1%), wheat flour (8.2%), lobster (8.2%), buckwheat (8.2%), mackerel (5.2%), pollack (5.2%), halibut (4.5%), peanut (4.5%), anchovy (4.4%), squid (3.7%), saury (3.0%), common eel (3.0%), yellow corvina (3.0%), hairtail (2.2%), octopus (2.2%), and others. In addition to well-known food allergens, sensitivity to mackerel, chrysalis, pollack, and halibut, which are popular foods in Korea, was observed at high rates in Korean adults. We suggest that the SPT panel for food allergy in Korea should include these allergens. PMID:27478328

  18. Zebrafish Embryo Model of Bartonella henselae Infection

    PubMed Central

    Lima, Amorce; Cha, Byeong J.; Amin, Jahanshah; Smith, Lisa K.

    2014-01-01

    Abstract Bartonella henselae (Bh) is an emerging zoonotic pathogen that has been associated with a variety of human diseases, including bacillary angiomatosis that is characterized by vasoproliferative tumor-like lesions on the skin of some immunosuppressed individuals. The study of Bh pathogenesis has been limited to in vitro cell culture systems due to the lack of an animal model. Therefore, we wanted to investigate whether the zebrafish embryo could be used to model human infection with Bh. Our data showed that Tg(fli1:egfp)y1 zebrafish embryos supported a sustained Bh infection for 7 days with >10-fold bacterial replication when inoculated in the yolk sac. We showed that Bh recruited phagocytes to the site of infection in the Tg(mpx:GFP)uwm1 embryos. Infected embryos showed evidence of a Bh-induced angiogenic phenotype and an increase in the expression of genes encoding pro-inflammatory factors and pro-angiogenic markers. However, infection of zebrafish embryos with a deletion mutant in the major adhesin (BadA) resulted in little or no bacterial replication and a diminished host response, providing the first evidence that BadA is critical for in vivo infection. Thus, the zebrafish embryo provides the first practical model of Bh infection that will facilitate efforts to identify virulence factors and define molecular mechanisms of Bh pathogenesis. PMID:25026365

  19. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive. PMID:17901404

  20. Zebrafish models of Tauopathy

    PubMed Central

    Bai, Qing; Burton, Edward A.

    2016-01-01

    Tauopathies are a group of incurable neurodegenerative diseases, in which loss of neurons is accompanied by intracellular deposition of fibrillar material composed of hyper phosphorylated forms of the microtubule associated protein Tau. A zebrafish model of Tauopathy could complement existing murine models by providing a platform for genetic and chemical screens, in order to identify novel therapeutic targets and compounds with disease-modifying potential. In addition, Tauopathy zebrafish would be useful for hypothesis-driven experiments, especially those exploiting the potential to deploy in vivo imaging modalities. Several considerations, including conservation of specialized neuronal and other cellular populations, and biochemical pathways implicated in disease pathogenesis, suggest that the zebrafish brain is an appropriate setting in which to model these complex disorders. Novel transgenic zebrafish lines expressing wild-type and mutant forms of human Tau inCNS neurons have recently been reported. These studies show evidence that human Tau undergoes disease-relevant changes in zebrafish neurons, including somato-dendritic relocalization, hyper phosphorylation and aggregation. In addition, preliminary evidence suggests that Tau transgene expression can precipitate neuronal dysfunction and death. These initial studies are encouraging that the zebrafish holds considerable promise as a model in which to study Tauopathies. Further studies are necessary to clarify the phenotypes of transgenic lines and to develop assays and models suitable for unbiased high-throughput screening approaches. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. PMID:20849952

  1. Molecular characterization and functions of zebrafish ABCC2 in cellular efflux of heavy metals.

    PubMed

    Long, Yong; Li, Qing; Zhong, Shan; Wang, Youhui; Cui, Zongbin

    2011-05-01

    Multidrug-resistance associated protein 2 (MRP2/ABCC2) plays crucial roles in bile formation and detoxification by transporting a wide variety of endogenous compounds and xenobiotics, but its functions in zebrafish (Danio rerio) remain to be characterized. In this study, we obtained the full-length cDNA of zebrafish abcc2, analyzed its expression in developing embryos and adult tissues, investigated its transcriptional response to heavy metals, and evaluated its roles in efflux of heavy metals including cadmium, mercury and lead. Zebrafish abcc2 gene is located on chromosome 13 and composed of 32 exons. The deduced polypeptide of zebrafish ABCC2 consists of 1567 amino acids and possesses most of functional domains and critical residues defined in human ABCC2. Zebrafish abcc2 gene is not maternally expressed and its earliest expression was detected in embryos at 72hpf. In larval zebrafish, abcc2 gene was found to be exclusively expressed in liver, intestine and pronephric tubules. In adult zebrafish, the highest expression of abcc2 gene was found in intestine followed by those in liver and kidney, while relative low expression was detected in brain and muscle. Expression of abcc2 in excretory organs including kidney, liver and intestine of zebrafish larvae was induced by exposure to 0.5μM mercury or 5μM lead. Moreover, exposure to 0.125-1μM of mercury or lead also significantly induced abcc2 expression in these excretory organs of adult zebrafish. Furthermore, overexpression of zebrafish ABCC2 in ZF4 cells and zebrafish embryos decreased the cellular accumulation of heavy metals including cadmium, mercury and lead as determined by MRE (metal responsive element)- or EPRE (electrophile response element)-driven luciferase reporters and atomic absorption spectrometry. These results suggest that zebrafish ABCC2/MRP2 is capable of effluxing heavy metals from cells and may play important roles in the detoxification of toxic metals. PMID:21266201

  2. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    PubMed Central

    Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N

    2007-01-01

    Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease. PMID:17937808

  3. Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells.

    PubMed

    Brevini, T A L; Pennarossa, G; Acocella, F; Brizzola, S; Zenobi, A; Gandolfi, F

    2016-05-01

    Diabetes is among the most frequently diagnosed endocrine disorder in dogs and its prevalence continues to increase. Medical management of this pathology is lifelong and challenging because of the numerous serious complications. A therapy based on the use of autologous viable insulin-producing cells to replace the lost β cell mass would be very advantageous. A protocol to enable the epigenetic conversion of canine dermal fibroblasts, obtained from a skin biopsy, into insulin-producing cells (EpiCC) is described in the present manuscript. Cells were briefly exposed to the DNA methyltransferase inhibitor 5-azacytidine (5-aza-CR) in order to increase their plasticity. This was followed by a three-step differentiation protocol that directed the cells towards the pancreatic lineage. After 36 days, 38 ± 6.1% of the treated fibroblasts were converted into EpiCC that expressed insulin mRNA and protein. Furthermore, EpiCC were able to release insulin into the medium in response to an increased glucose concentration. This is the first evidence that generating a renewable autologous, functional source of insulin-secreting cells is possible in the dog. This procedure represents a novel and promising potential therapy for diabetes in dogs. PMID:27033591

  4. Prevention and treatment of intertrigo in large skin folds of adults: a systematic review

    PubMed Central

    2010-01-01

    Background Intertrigo in the large skin folds is a common problem. There is a plethora of treatments, but a lack of evidence about their efficacy. A nursing guideline on this matter had to be updated and broadened in scope to other health care professionals. Methods A systematic review was performed. Thirteen databases were sensitively searched, supplemented by reference tracking and forward citation searches. All types of empirical research relating to the prevention or treatment of intertrigo were included. Study selection, assessment of bias, data-extraction and analysis were done by two independent review-authors. Results Sixty-eight studies fulfilled the inclusion criteria. Only 4 studies were RCTs and even these had a considerable risk of bias. Study populations were generally small. No studies were found about the prevention of intertrigo. The therapies concerned mostly the topical application of antimycotics, corticosteroids, antibiotics, antiseptics or a combination of these. Besides these pharmaceutical interventions, surgical breast reduction was also studied. Although most study-authors were positive, we could not draw firm conclusions about any of the pharmaceutical interventions. Even patients that received placebo intervention showed improvement. There is weak evidence that reduction mammaplasty may be helpful to treat inframammary intertrigo. All research found had considerable risk of bias, prohibiting firm conclusions. Conclusions There is no evidence at all about the prevention of intertrigo and there is no firm evidence about its treatment. Well designed studies are needed. PMID:20626853

  5. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function

    PubMed Central

    Parker, Matthew O.; Brock, Alistair J.; Walton, Robert T.; Brennan, Caroline H.

    2013-01-01

    Zebrafish have great potential to contribute to our understanding of behavioral genetics and thus to contribute to our understanding of the etiology of psychiatric disease. However, progress is dependent upon the rate at which behavioral assays addressing complex behavioral phenotypes are designed, reported and validated. Here we critically review existing behavioral assays with particular focus on the use of adult zebrafish to explore executive processes and phenotypes associated with human psychiatric disease. We outline the case for using zebrafish as models to study impulse control and attention, discussing the validity of applying extant rodent assays to zebrafish and evidence for the conservation of relevant neural circuits. PMID:23580329

  6. Crowdsourced Data Indicate Widespread Multidrug Resistance in Skin Flora of Healthy Young Adults.

    PubMed

    Freeman, Scott; Okoroafor, Nnadozie O; Gast, Christopher M; Koval, Mikhail; Nowowiejski, David; O'Connor, Eileen; Harrington, Robert D; Parks, John W; Fang, Ferric C

    2016-03-01

    In a laboratory exercise for undergraduate biology majors, students plated bacteria from swabs of their facial skin under conditions that selected for coagulase-negative Staphylococcus; added disks containing the antibiotics penicillin, oxacillin, tetracycline, and erythromycin; and measured zones of inhibition. Students also recorded demographic and lifestyle variables and merged this information with similar data collected from 9,000 other students who had contributed to the database from 2003 to 2011. Minimum inhibitory concentration (MIC) testing performed at the Harborview Medical Center Microbiology Laboratory (Seattle, WA) indicated a high degree of accuracy for student-generated data; species identification with a matrix-assisted laser desorption ionization (MALDI) Biotyper revealed that over 88% of the cells analyzed by students were S. epidermidis or S. capitus. The overall frequency of resistant cells was high, ranging from 13.2% of sampled bacteria resistant to oxacillin to 61.7% resistant to penicillin. Stepwise logistic regressions suggested that recent antibiotic use was strongly associated with resistance to three of the four antibiotics tested (p = 0.0003 for penicillin, p < 0.0001 for erythromycin and tetracycline), and that age, gender, use of acne medication, use of antibacterial soaps, or makeup use were associated with resistance to at least one of the four antibiotics. Furthermore, drug resistance to one antibiotic was closely linked to resistance to the other three antibiotics in every case (all p values < 0.0001), suggesting the involvement of multidrug-resistant strains. The data reported here suggest that citizen science could not only provide an important educational experience for undergraduates, but potentially play a role in efforts to expand antibiotic resistance (ABR) surveillance. PMID:27047615

  7. Toxic effects of thifluzamide on zebrafish (Danio rerio).

    PubMed

    Yang, Yang; Qi, Suzhen; Wang, Donghui; Wang, Kai; Zhu, Lizhen; Chai, Tingting; Wang, Chengju

    2016-04-15

    Thifluzamide is a fungicide widely used to control crop diseases, and it therefore constitutes a hazard to the environment. In this study, zebrafish were selected to assess the aquatic toxicity of thifluzamide. The acute and development toxicity of thifluzamide to embryos, larvae, and adult zebrafish were measured and the corresponding 96h-LC50 values were as follows: adult fish (4.19mg/L) zebrafish, including abnormal spontaneous movement, slow heartbeat, hatching inhibition, growth regression, and morphological deformities. In addition, for adult zebrafish, distinct pathological changes were noted in liver and kidney 21 days post exposure (dpe) to 0.19, 1.33, and 2.76mg/L. Liver damage was more severe than kidney damage. In another 28 days exposure of adult zebrafish to 0.019, 0.19, and 1.90mg/L, negative changes in mitochondrial structure and enzymes activities [succinate dehydrogenase (SDH) and respiratory chain complexes] were found. These might be responsible for the adverse expansion of the apoptosis- and immune-related genes, which would facilitate the action of these factors in programmed cell death and might play a key role during the toxic events. PMID:26780700

  8. An element in the alpha1-tubulin promoter is necessary for retinal expression during optic nerve regeneration but not after eye injury in the adult zebrafish.

    PubMed

    Senut, Marie-Claude; Gulati-Leekha, Abhilasha; Goldman, Daniel

    2004-09-01

    We have shown previously that a 1.696 kb upstream fragment of the goldfish alpha1-tubulin promoter was capable of driving green fluorescent protein (GFP) expression in the developing and regenerating zebrafish CNS in a pattern closely mimicking the endogenous alpha1-tubulin gene. Comparison of fish and rat alpha1-tubulin promoters identified a 64 bp region with a conserved repetitive homeodomain (HD) consensus sequence core (TAAT) and a nearby basic helix-loop-helix binding E-box sequence (CANNTG), which led us to speculate that it could be of importance for regulating alpha1-tubulin gene transcription. To address this issue, we examined the ability of deletion mutants of the 1.696 kb promoter to drive expression of GFP in zebrafish retinal cells under normal conditions and after injury. Interestingly, although wild-type 1.696 kb and mutant promoters, lacking the E-box and/or HD sequences, exhibited rather similar patterns of GFP expression in the developing retina, significant differences were noticed in the mature retina. First, although the 1.696 kb promoter directed transgene expression to retinal neurons and progenitor cells, the activity of mutant promoters was drastically reduced. Second, we found that the E-box and HD sequences were necessary for transgene reinduction during optic nerve regeneration, but were not as important for transgene expression in regenerating retinal neurons after eye injury. In this latter lesion model, remarkably, both 1.696 kb and mutant promoters targeted GFP expression to Müller glia-like cells, some of which re-entered the cell cycle. These new findings will be useful for identifying the molecular signals necessary for successful CNS regeneration. PMID:15342733

  9. Angiogenesis in zebrafish.

    PubMed

    Schuermann, Annika; Helker, Christian S M; Herzog, Wiebke

    2014-07-01

    The vasculature consists of an extensively branched network of blood and lymphatic vessels that ensures the efficient circulation and thereby the supply of all tissues with oxygen and nutrients. Research within the last decade has tremendously advanced our understanding of how this complex network is formed, how angiogenic growth is controlled and how differences between individual endothelial cells contribute to achieving this complex pattern. The small size and the optical clarity of the zebrafish embryo in combination with the advancements in imaging technologies cleared the way for the zebrafish as an important in vivo model for elucidating the mechanisms of angiogenesis. In this review we discuss the recent contributions of the analysis of zebrafish vascular development on how vessels establish their characteristic morphology and become patent. We focus on the morphogenetic cellular behaviors as well as the molecular mechanisms that drive these processes in the developing zebrafish embryo. PMID:24813365

  10. Towards a Comprehensive Catalog of Zebrafish Behavior 1.0 and Beyond

    PubMed Central

    Gebhardt, Michael; Stewart, Adam Michael; Cachat, Jonathan M.; Brimmer, Mallorie; Chawla, Jonathan S.; Craddock, Cassandra; Kyzar, Evan J.; Roth, Andrew; Landsman, Samuel; Gaikwad, Siddharth; Robinson, Kyle; Baatrup, Erik; Tierney, Keith; Shamchuk, Angela; Norton, William; Miller, Noam; Nicolson, Teresa; Braubach, Oliver; Gilman, Charles P.; Pittman, Julian; Rosemberg, Denis B.; Gerlai, Robert; Echevarria, David; Lamb, Elisabeth; Neuhauss, Stephan C.F.; Weng, Wei; Bally-Cuif, Laure; Schneider, Henning

    2013-01-01

    Abstract Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish ‘do’, and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species. PMID:23590400

  11. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond.

    PubMed

    Kalueff, Allan V; Gebhardt, Michael; Stewart, Adam Michael; Cachat, Jonathan M; Brimmer, Mallorie; Chawla, Jonathan S; Craddock, Cassandra; Kyzar, Evan J; Roth, Andrew; Landsman, Samuel; Gaikwad, Siddharth; Robinson, Kyle; Baatrup, Erik; Tierney, Keith; Shamchuk, Angela; Norton, William; Miller, Noam; Nicolson, Teresa; Braubach, Oliver; Gilman, Charles P; Pittman, Julian; Rosemberg, Denis B; Gerlai, Robert; Echevarria, David; Lamb, Elisabeth; Neuhauss, Stephan C F; Weng, Wei; Bally-Cuif, Laure; Schneider, Henning

    2013-03-01

    Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish 'do', and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species. PMID:23590400

  12. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model.

    PubMed

    Capiotti, Katiucia Marques; Antonioli, Régis; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2014-05-01

    Diabetes mellitus (DM) affects over 10% of the world's population. Hyperglycemia is the main feature for the diagnosis of this disease. The zebrafish (Danio rerio) is an established model organism for the study of various metabolic diseases. In this paper, hyperglycemic zebrafish, when immersed in a 111 mM glucose solution for 14 days, developed increased glycation of proteins from the eyes, decreased mRNA levels of insulin receptors in the muscle, and a reversion of high blood glucose level after treatment with anti-diabetic drugs (glimepiride and metformin) even after 7 days of glucose withdrawal. Additionally, hyperglycemic zebrafish developed an impaired response to exogenous insulin, which was recovered after 7 days of glucose withdrawal. These data suggest that the exposure of adult zebrafish to high glucose concentration is able to induce persistent metabolic changes probably underlined by a hyperinsulinemic state and impaired peripheral glucose metabolism. PMID:24704522

  13. Imaging blood vessels and lymphatic vessels in the zebrafish.

    PubMed

    Jung, H M; Isogai, S; Kamei, M; Castranova, D; Gore, A V; Weinstein, B M

    2016-01-01

    Blood vessels supply tissues and organs with oxygen, nutrients, cellular, and humoral factors, while lymphatic vessels regulate tissue fluid homeostasis, immune trafficking, and dietary fat absorption. Understanding the mechanisms of vascular morphogenesis has become a subject of intense clinical interest because of the close association of both types of vessels with pathogenesis of a broad spectrum of human diseases. The zebrafish provides a powerful animal model to study vascular morphogenesis because of their small, accessible, and transparent embryos. These unique features of zebrafish embryos permit sophisticated high-resolution live imaging of even deeply localized vessels during embryonic development and even in adult tissues. In this chapter, we summarize various methods for blood and lymphatic vessel imaging in zebrafish, including nonvital resin injection-based or dye injection-based vessel visualization, and alkaline phosphatase staining. We also provide protocols for vital imaging of vessels using microangiography or transgenic fluorescent reporter zebrafish lines. PMID:27263409

  14. Blood Sugar Measurement in Zebrafish Reveals Dynamics of Glucose Homeostasis

    PubMed Central

    Eames, Stefani C.; Philipson, Louis H.; Prince, Victoria E.

    2010-01-01

    Abstract The adult zebrafish has the potential to become an important model for diabetes-related research. To realize this potential, small-scale methods for analyzing pancreas function are required. The measurement of blood glucose level is a commonly used method for assessing β-cell function, but the small size of the zebrafish presents challenges both for collecting blood samples and for measuring glucose. We have developed methods for collecting microsamples of whole blood and plasma for the measurement of hematocrit and blood glucose. We demonstrate that two hand-held glucose meters designed for use by human diabetics return valid results with zebrafish blood. Additionally, we present methods for fasting and for performing postprandial glucose and intraperitoneal glucose tolerance tests. We find that the dynamics of zebrafish blood glucose homeostasis are consistent with patterns reported for other omnivorous teleost fish. PMID:20515318

  15. Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity.

    PubMed

    Stewart, Adam Michael; Kaluyeva, Alexandra A; Poudel, Manoj K; Nguyen, Michael; Song, Cai; Kalueff, Allan V

    2015-10-01

    Zebrafish are emerging as an important model organism for neurobehavioral phenomics research. Given the likely variation of zebrafish behavioral phenotypes between and within laboratories, in this study, we examine the influence and variability of several common environmental modifiers on adult zebrafish anxiety and locomotor activity. Utilizing the novel tank paradigm, this study assessed the role of various laboratory factors, including experimenter/handling, testing time and days, batch, and the order of testing, on the behavior of a large population of experimentally naive control fish. Although time of the day, experimenter identity, and order of testing had little effect on zebrafish anxiety and locomotor activity levels, subtle differences were found for testing days and batches. Our study establishes how zebrafish behaviors are modulated by common environmental/laboratory factors and outlines several implications for zebrafish neurobehavioral phenomics research. PMID:26244595

  16. Gelsolin is a dorsalizing factor in zebrafish

    PubMed Central

    Kanungo, Jyotshnabala; Kozmik, Zbynek; Swamynathan, Shivalingappa K.; Piatigorsky, Joram

    2003-01-01

    The gene for gelsolin (an actin-binding, cytoskeletal regulatory protein) was shown earlier to be specialized for high corneal expression in adult zebrafish. We show here that zebrafish gelsolin is required for proper dorsalization during embryogenesis. Inhibition of gelsolin expression by injecting fertilized eggs with a specific morpholino oligonucleotide resulted in a range of concentration-dependent ventralized phenotypes, including those lacking a brain and eyes. These were rescued by coinjection of zebrafish gelsolin or chordin (a known dorsalizing agent) mRNAs, or human gelsolin protein. Moreover, injection of gelsolin mRNA or human gelsolin protein by itself dorsalized the developing embryos, often resulting in axis duplication. Injection of the gelsolin-specific morpholino oligonucleotide enhanced the expression of Vent mRNA, a ventral marker downstream of bone morphogenetic proteins, whereas injection of gelsolin mRNA enhanced the expression of chordin and goosecoid mRNAs, both dorsal markers. Our results indicate that gelsolin also modulates embryonic dorsal/ventral pattern formation in zebrafish. PMID:12629212

  17. Optimization of an ex vivo wound healing model in the adult human skin: Functional evaluation using photodynamic therapy.

    PubMed

    Mendoza-Garcia, Jenifer; Sebastian, Anil; Alonso-Rasgado, Teresa; Bayat, Ardeshir

    2015-09-01

    Limited utility of in vitro tests and animal models of human repair, create a demand for alternative models of cutaneous healing capable of functional testing. The adult human skin Wound Healing Organ Culture (WHOC) provides a useful model, to study repair and enable evaluation of therapies such as the photodynamic therapy (PDT). Thus, the aim here was to identify the optimal WHOC model and to evaluate the role of PDT in repair. Wound geometry, system of support, and growth media, cellular and matrix biomarkers were investigated in WHOC models. Subsequently, cellular activity, extracellular matrix remodeling, and oxidative stress plus gene and protein levels of makers of wound repair measured the effect of PDT on the optimized WHOC. WHOCs embedded in collagen and supplemented DMEM were better organized showing stratified epidermis and compact dermis with developing neo-epidermis. Post-PDT, the advancing reepithelialization tongue was 3.5 folds longer, and was highly proliferative with CK-14 plus p16 increased (p < 0.05) compared to controls. The neo-epidermis was fully differentiated forming neo-collagen. Proliferating nuclear antigen, p16, COLI, COLIII, MMP3, MMP19, and α-SMA were significantly more expressed (p < 0.05) in dermis surrounding the healing wound. In conclusion, an optimal model of WHOC treated with PDT shows increased reepithelialization and extracellular matrix reconstruction and remodeling, supporting evidence toward development of an optimal ex vivo wound healing model. PMID:26094764

  18. [Adult-onset Hartnup disease presenting with neuropsychiatric symptoms but without skin lesions].

    PubMed

    Mori, E; Yamadori, A; Tsutsumi, A; Kyotani, Y

    1989-06-01

    Hartnup disease is an inborn abnormality of renal and intestinal transport involving the neutral amino acids. Intermittent pellagra-like rash, attacks of cerebellar ataxia and psychiatric disturbance are characteristic symptoms of this disease. We described here a patient with adult-onset Hartnup disease who presented unique neuropsychiatric symptoms but no dermatologic symptoms, and reported features of amino acids transport in this patient and his family. The patient, a man aged 37 years, was referred to us because of lasting daytime bruxism. He is the second child of healthy parents who are first cousin; his elder brother who has been mentally retarded became bed-ridden and died at 32 years of age. His younger brother is completely healthy. Although the patient's development in infancy has been slightly retarded, he completed compulsory 9-year education. At 29 years of age, he experienced episodes of diplopia, ataxic gait and insomnia, and at 33 years of age, of transient stupor. There had been no history of photosensitivity or dermatitis. On neurological examination, there were trunkal ataxia, increased muscular tone and decreased mental activity besides bruxism. These symptoms remained unchanged despite of several medications including trihexyphenidyl, diazepam, halloperidol, tiapride and sulpiride. Two months later, the patient became stuporous; bruxism and hypertonicity became exaggerated. Myerson's sign, sucking reflex and grasp reflex in both hand appeared. There was no dermal lesion. A cranial computed tomography revealed a small calcification in the right frontal subcortical region and a single photon emission tomography indicated possible bifrontal hypoperfusion. Electroencephalograms demonstrated non-specific slowing. Somatosensory evoked potentials and nerve conduction velocities were normal. There were constant indicanuria and amino-aciduria.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2582682

  19. Cadmium potentiates toxicity of cypermethrin in zebrafish.

    PubMed

    Yang, Ye; Ye, Xiaoqing; He, Buyuan; Liu, Jing

    2016-02-01

    Co-occurrence of pesticides such as synthetic pyrethroids and metals in aquatic ecosystems raises concerns over their combined ecological effects. Cypermethrin, 1 of the top 5 synthetic pyrethroids in use, has been extensively detected in surface water. Cadmium (Cd) has been recognized as 1 of the most toxic metals and is a common contaminant in the aquatic system. However, little information is available regarding their joint toxicity. In the present study, combined toxicity of cypermethrin and Cd and the underlying mechanisms were investigated. Zebrafish embryos and adults were exposed to the individual contaminant or binary mixtures. Co-exposure to cypermethrin and Cd produced synergistic effects on the occurrence of crooked body, pericardial edema, and noninflation of swim bladder. The addition of Cd significantly potentiated cypermethrin-induced spasms and caused more oxidative stress in zebrafish larvae. Cypermethrin-mediated induction of transcription levels and catalytic activities of cytochrome P450 (CYP) enzyme were significantly down-regulated by Cd in both zebrafish larvae and adults. Chemical analytical data showed that in vitro elimination of cypermethrin by CYP1A1 was inhibited by Cd. The addition of Cd caused an elevation of in vivo cypermethrin residue levels in the mixture-exposed adult zebrafish. These results suggest that the enhanced toxicity of cypermethrin in the presence of Cd results from the inhibitory effects of Cd on CYP-mediated biotransformation of this pesticide. The authors' findings provide a deeper understanding of the mechanistic basis accounting for the joint toxicity of cypermethrin and Cd. PMID:26267556

  20. Cardiac and somatic parameters in zebrafish: tools for the evaluation of cardiovascular function.

    PubMed

    Vargas, Rafael; Vásquez, Isabel Cristina

    2016-04-01

    Cardiovascular diseases are a worldwide public health problem. To date, extensive research has been conducted to elucidate the pathophysiological mechanisms that trigger cardiovascular diseases and to evaluate therapeutic options. Animal models are widely used to achieve these goals, and zebrafish have emerged as a low-cost model that produces rapid results. Currently, a large body of research is devoted to the cardiovascular development and diverse cardiovascular disorders of zebrafish embryos and larvae. However, less research has been conducted on adult zebrafish specimens. In this study, we evaluated a method to obtain and to evaluate morphometric parameters (of both the entire animal and the heart) of adult zebrafish. We used these data to calculate additional parameters, such as body mass index, condition factor and cardiac somatic index. This method and its results can be used as reference for future studies that aim to evaluate the pathophysiological aspects of the zebrafish cardiovascular system. PMID:26553553

  1. Skin turgor

    MedlinePlus

    Doughy skin; Poor skin turgor; Good skin turgor; Decreased skin turgor ... Call your health care provider if: Poor skin turgor occurs with vomiting, diarrhea, or fever. The skin is very slow to return to normal, or the skin "tents" up ...

  2. Kita Driven Expression of Oncogenic HRAS Leads to Early Onset and Highly Penetrant Melanoma in Zebrafish

    PubMed Central

    Santoriello, Cristina; Gennaro, Elisa; Anelli, Viviana; Distel, Martin; Kelly, Amanda; Köster, Reinhard W.; Hurlstone, Adam; Mione, Marina

    2010-01-01

    Background Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed. Methodology and Principal Findings Using the combinatorial Gal4 –UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2–4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1–3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period. Conclusions and Significance This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens. PMID:21170325

  3. Improvement of green tea polyphenol with milk on skin with respect to antioxidation in healthy adults: a double-blind placebo-controlled randomized crossover clinical trial.

    PubMed

    Chiu, Hui-Fang; Lin, Tung-Yi; Shen, You-Cheng; Venkatakrishnan, Kamesh; Wang, Chin-Kun

    2016-02-01

    Green tea polyphenols (GTP) have been widely tested for their effects on several metabolic syndromes and degenerative diseases such as cancer, cardiovascular diseases, and diabetes. The present study was formulated to assess the physiological efficacy of green tea polyphenol infused with milk (GTPM) on skin integrity in correlation with antioxidative status in healthy adults. Forty-four healthy voluntary subjects were recruited and assigned to two groups, who drank 240 ml of mineral water mixed with either an experimental (GTPM) or placebo package (2 packs per day) for the following 6 months. The experimental group then switched to the placebo package, and vice versa, for a further 6 months, with one month of washout period in between. During the initial, 3(rd), 6(th), 10(th), and 13(th) month anthropometric measurements were performed and fasting blood samples were withdrawn for various biochemical assays. Skin examination was performed at the initial, 6(th) and 13(th) month. No significant alterations were observed in any of the anthropometric measurements. Administration of GTPM significantly increased (p < 0.05) the antioxidant index and antioxidant enzyme activities when compared with the placebo group, whereas a concomitant decrease in the levels of lipid peroxidation were noted. Moreover, GTPM intake notably improved skin integrity and texture by markedly lowering (p < 0.05) skin wrinkles and roughness in elderly subjects. GTPM proved to be an effective antioxidant by lowering oxidative stress and thereby ameliorating skin texture and integrity. PMID:26686527

  4. Magnetite-Based Magnetoreceptor Cells in the Olfactory Organ of Rainbow Trout and Zebrafish

    NASA Astrophysics Data System (ADS)

    Kirschvink, J. L.; Cadiou, H.; Dixson, A. D.; Eder, S.; Kobayashi, A.; McNaughton, P. A.; Muhamad, A. N.; Raub, T. D.; Walker, M. M.; Winklhofer, M.; Yuen, B. B.

    2011-12-01

    Many vertebrate and invertebrate animals have a geomagnetic sensory system, but the biophysics and anatomy of how magnetic stimuli are transduced to the nervous system is a challenging problem. Previous work in our laboratories identified single-domain magnetite chains in olfactory epithelium in cells proximal to the ros V nerve, which, in rainbow trout, responds to magnetic fields. Our objectives are to characterize these magnetite-containing cells and determine whether they form part of the mechanism of magnetic field transduction in teleost fishes, as a model for other Vertebrates. Using a combination of reflection mode confocal microscopy and a Prussian Blue technique modified to stain specifically for magnetite, our Auckland group estimated that both juvenile rainbow trout (ca. 7 cm total length) olfactory rosettes have ~200 magnetite-containing cells. The magnetite present in two types of cells within the olfactory epithelium appears to be arranged in intracellular chains. All of our groups (Munich, Auckland, Cambridge and Caltech) have obtained different types of structural evidence that magnetite chains closely associate with the plasma membrane in the cells, even in disaggregated tissues. In addition, our Cambridge group used Ca2+ imaging to demonstrate a clear response by individual magnetite-containing cells to a step change in the intensity of the external magnetic field and a slow change in Ca2+ activity when the external magnetic field was cancelled. In the teleost, zebrafish (Danio rerio), a small (~4 cm adult length in captivity) genetic and developmental biology model organism, our Caltech group detected ferromagnetic material throughout the body, but concentrated in the rostral trunk, using NRM and IRM scans of whole adults. Our analysis suggests greater than one million, 80-100 nm crystals, with Lowrie-Fuller curves strongly consistent with single-domain magnetite in 100-100,000 magnetocytes. Ferromagentic resonance (FMR) spectra show crystals

  5. Anxiogenic-like effects of chronic nicotine exposure in zebrafish.

    PubMed

    Stewart, Adam Michael; Grossman, Leah; Collier, Adam D; Echevarria, David J; Kalueff, Allan V

    2015-12-01

    Nicotine is one of the most widely used and abused legal drugs. Although its pharmacological profile has been extensively investigated in humans and rodents, nicotine CNS action remains poorly understood. The importance of finding evolutionarily conserved signaling pathways, and the need to apply high-throughput in vivo screens for CNS drug discovery, necessitate novel efficient experimental models for nicotine research. Zebrafish (Danio rerio) are rapidly emerging as an excellent organism for studying drug abuse, neuropharmacology and toxicology and have recently been applied to testing nicotine. Anxiolytic, rewarding and memory-modulating effects of acute nicotine treatment in zebrafish are consistently reported in the literature. However, while nicotine abuse is more relevant to long-term exposure models, little is known about chronic effects of nicotine on zebrafish behavior. In the present study, chronic 4-day exposure to 1-2mg/L nicotine mildly increased adult zebrafish shoaling but did not alter baseline cortisol levels. We also found that chronic exposure to nicotine evokes robust anxiogenic behavioral responses in zebrafish tested in the novel tank test paradigm. Generally paralleling clinical and rodent data on anxiogenic effects of chronic nicotine, our study supports the developing utility of zebrafish for nicotine research. PMID:25643654

  6. The zebrafish lens proteome during development and aging

    PubMed Central

    Greiling, Teri M.S.; Houck, Scott A.

    2009-01-01

    Purpose Changes in lens protein expression during zebrafish development results in a smooth gradient of refractive index necessary for excellent optical function. Age-related changes in crystallin expression have been well documented in mammals but are poorly understood in the zebrafish. Methods In the zebrafish lens, a systematic analysis of protein content with age was performed using size exclusion chromatography (SEC) combined with linear trap quadrupole Fourier transform tandem mass spectrometry (LTQ-FT LC-MS/MS; rank-order shotgun) proteomics in lenses of larval, juvenile, and adult zebrafish. Results α-Crystallins, previously shown to have low abundance in the zebrafish lens, were found to increase dramatically with maturation and aging. SEC determined that β-crystallin was predominant at 4.5 days. With age, the α- and γ-crystallins increased, and a high molecular weight fraction appeared between six weeks and six months to become the dominant component by 2.5 years. Similarly, shotgun proteomics determined that β-crystallins were the predominant proteins in the young lens. With age, the proportion of α- and γ-crystallins increased dramatically. After crystallins, calpain 3, membrane, and cytoskeletal proteins were most abundant. Five new β-crystallins and 13 new γ-crystallins were identified. Conclusions As expected, SEC and proteomics demonstrated changing levels of protein expression with age, especially among the crystallins. The results also confirmed the existence of novel crystallins in the zebrafish genome. PMID:19936306

  7. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish.

    PubMed

    Lundegaard, Pia R; Anastasaki, Corina; Grant, Nicola J; Sillito, Rowland R; Zich, Judith; Zeng, Zhiqiang; Paranthaman, Karthika; Larsen, Anders Peter; Armstrong, J Douglas; Porteous, David J; Patton, E Elizabeth

    2015-10-22

    Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance the repositioning of MEK inhibitors as behavior stabilizers in the context of increased cAMP. PMID:26388333

  8. Impaired Lymphocytes Development and Xenotransplantation of Gastrointestinal Tumor Cells in Prkdc-Null SCID Zebrafish Model.

    PubMed

    Jung, In Hye; Chung, Yong-Yoon; Jung, Dawoon E; Kim, Young Jin; Kim, Do Hee; Kim, Kyung-Sik; Park, Seung Woo

    2016-08-01

    Severe combined immunodeficiency (SCID) mice have widely been used as hosts for human tumor cell xenograft study. This animal model, however, is labor intensive. As zebrafish is largely emerging as a promising model system for studying human diseases including cancer, developing efficient immunocompromised strains for tumor xenograft study are also demanded in zebrafish. Here, we have created the Prkdc-null SCID zebrafish model which provides the stable immune-deficient background required for xenotransplantation of tumor cell. In this study, the two transcription activator-like effector nucleases that specifically target the exon3 of the zebrafish Prkdc gene were used to induce a frame shift mutation, causing a complete knockout of the gene function. The SCID zebrafish showed susceptibility to spontaneous infection, a well-known phenotype found in the SCID mutation. Further characterization revealed that the SCID zebrafish contained no functional T and B lymphocytes which reflected the phenotypes identified in the mice SCID model. Intraperitoneal injection of human cancer cells into the adult SCID zebrafish clearly showed tumor cell growth forming into a solid mass. Our present data show the suitability of using the SCID zebrafish strain for xenotransplantation experiments, and in vivo monitoring of the tumor cell growth in the zebrafish demonstrates use of the animal model as a new platform of tumor xenograft study. PMID:27566103

  9. Molecular analysis, developmental function and heavy metal-induced expression of ABCC5 in zebrafish.

    PubMed

    Long, Yong; Li, Qing; Li, Jie; Cui, Zongbin

    2011-01-01

    ABCC5/MRP5 is an organic anion transporter that participates in tissue defense and cellular signal transduction through efflux of anticancer drugs, toxicants and a second messenger cGMP, but its physiological functions in zebrafish remain to be defined. Herein, we report the characterization, spatiotemporal expression and developmental function of zebrafish ABCC5 and its transcriptional responses to heavy metals. Zebrafish abcc5 gene is located on chromosome 18 and comprised of 28 exons. The deduced polypeptide of zebrafish ABCC5 consists of 1426 amino acids, which shares high sequence identity with those from other species. Zebrafish abcc5 is maternally expressed and its transcripts are mainly distributed in brain, lens, liver and intestine of developing embryos. In adults, zebrafish abcc5 is extensively expressed, at higher levels in testis, brain, eye, ovary, intestine and kidney, but at relatively lower levels in gill, liver, heart and muscle. Blockage of endogenous ABCC5 activity by its dominant-negative led to the developmental retardation of zebrafish embryos in which activity of p21 signaling was markedly stimulated and cellular cGMP content was significantly increased. In addition, expression of abcc5 in ZF4 cells and zebrafish embryos was significantly induced by cadmium (Cd), lead (Pb), mercury (Hg) or arsenic (As). The induced expression of ABCC5 by heavy metals was mainly detected in the liver of embryos at 96-h post-fertilization (hpf). In adult zebrafish, expression of abcc5 in brain, intestine, liver, kidney and ovary was significantly induced by one or more of these heavy metals. Furthermore, overexpression of ABCC5 attenuated the toxicity of Cd to zebrafish embryos, but did not affect the toxicity of Hg or As. Thus, ABCC5 is likely to play an active role in embryonic development and heavy metal detoxification through the export of second messenger molecules and toxicants out of cells in zebrafish. PMID:20869459

  10. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans

    PubMed Central

    Sorribes, Amanda; Þorsteinsson, Haraldur; Arnardóttir, Hrönn; Jóhannesdóttir, Ingibjörg Þ.; Sigurgeirsson, Benjamín; de Polavieja, Gonzalo G.; Karlsson, Karl Æ.

    2013-01-01

    Zebrafish (Danio rerio) are used extensively in sleep research; both to further understanding of sleep in general and also as a model of human sleep. To date, sleep studies have been performed in larval and adult zebrafish but no efforts have been made to document the ontogeny of zebrafish sleep–wake cycles. Because sleep differs across phylogeny and ontogeny it is important to validate the use of zebrafish in elucidating the neural substrates of sleep. Here we describe the development of sleep and wake across the zebrafish lifespan and how it compares to humans. We find power-law distributions to best fit wake bout data but demonstrate that exponential distributions, previously used to describe sleep bout distributions, fail to adequately account for the data in either species. Regardless, the data reveal remarkable similarities in the ontogeny of sleep cycles in zebrafish and humans. Moreover, as seen in other organisms, zebrafish sleep levels are highest early in ontogeny and sleep and wake bouts gradually consolidate to form the adult sleep pattern. Finally, sleep percentage, bout duration, bout number, and sleep fragmentation are shown to allow for meaningful comparisons between zebrafish and human sleep. PMID:24312015

  11. Microgavage of zebrafish larvae.

    PubMed

    Cocchiaro, Jordan L; Rawls, John F

    2013-01-01

    The zebrafish has emerged as a powerful model organism for studying intestinal development(1-5), physiology(6-11), disease(12-16), and host-microbe interactions(17-25). Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae(26). Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results. We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be

  12. Changes in zebrafish (Danio rerio) lens crystallin content during development

    PubMed Central

    Wages, Phillip; Horwitz, Joseph; Ding, Linlin; Corbin, Rebecca W.

    2013-01-01

    Purpose The roles that crystallin proteins play during lens development are not well understood. Similarities in the adult crystallin composition of mammalian and zebrafish lenses have made the latter a valuable model for examining lens function. In this study, we describe the changing zebrafish lens proteome during development to identify ontogenetic shifts in crystallin expression that may provide insights into age-specific functions. Methods Two-dimensional gel electrophoresis and size exclusion chromatography were used to characterize the lens crystallin content of 4.5-day to 27-month-old zebrafish. Protein spots were identified with mass spectrometry and comparisons with previously published proteomic maps, and quantified with densitometry. Constituents of size exclusion chromatography elution peaks were identified with sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Results Zebrafish lens crystallins were expressed in three ontogenetic patterns, with some crystallins produced at relatively constant levels throughout development, others expressed primarily before 10 weeks of age (βB1-, βA1-, and γN2-crystallins), and a third group primarily after 10 weeks (α-, βB3-, and γS-crystallins). Alpha-crystallins comprised less than 1% of total lens protein in 4.5-day lenses and increased to less than 7% in adult lenses. The developmental period between 6 weeks and 4 months contained the most dramatic shifts in lens crystallin expression. Conclusions These data provide the first two-dimensional gel electrophoresis maps of the developing zebrafish lens, with quantification of changing crystallin abundance and visualization of post-translational modification. Results suggest that some crystallins may play stage specific roles during lens development. The low levels of zebrafish lens α-crystallin relative to mammals may be due to the high concentrations of γ-crystallins in this aquatic lens. Similarities with mammalian crystallin expression continue

  13. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression

    PubMed Central

    Hawke, Molly; LaCava, Carrie; Prince, Courtney J.; Bellanco, Nicholas R.; Corbin, Rebecca W.

    2008-01-01

    Purpose To characterize the crystallin content of the zebrafish lens using two-dimensional gel electrophoresis (2-DE). These data will facilitate future investigations of vertebrate lens development, function, and disease. Methods Adult zebrafish lens proteins were separated by 2-DE, and the resulting spots were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). The relative proportion of each crystallin was quantified by image analysis, and phosphospecific staining was used to identify phosphorylated α-crystallins. The proportion of each crystallin in the soluble and insoluble fraction of the lens was also determined by resolving these lens fractions separately by 2-DE. Results α-, β-, and γ-crystallins comprised 7.8, 36.0, and 47.2% of the zebrafish lens, respectively. While the α-crystallin content of the zebrafish lens is less than the amounts found in the human lens, the ratio of αA:αB crystallin is very similar. The phosphorylation pattern of zebrafish αA-crystallins was also similar to that of humans. The most abundant γ-crystallins were the diverse γMs, comprising 30.5% of the lens. Intact zebrafish crystallins were generally more common in the soluble fraction with truncated versions more common in the insoluble fraction. Conclusions While the total α- and γ-crystallin content of the zebrafish lens differs from that of humans, similarities in α-crystallin ratios and modifications and a link between crystallin truncation and insolubility suggest that the zebrafish is a suitable model for the vertebrate lens. The proteome map provided here will be of value to future studies of lens development, function, and disease. PMID:18449354

  14. Zebrafish needle EMG: a new tool for high-throughput drug screens.

    PubMed

    Cho, Sung-Joon; Nam, Tai-Seung; Byun, Donghak; Choi, Seok-Yong; Kim, Myeong-Kyu; Kim, Sohee

    2015-09-01

    Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. With the use of the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days postfertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of ∼10 ms, whereas the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics. PMID:26180124

  15. Zebrafish needle EMG: a new tool for high-throughput drug screens

    PubMed Central

    Cho, Sung-Joon; Nam, Tai-Seung; Byun, Donghak; Choi, Seok-Yong; Kim, Myeong-Kyu

    2015-01-01

    Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. With the use of the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days postfertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of ∼10 ms, whereas the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics. PMID:26180124

  16. Overexpression of Akt1 Enhances Adipogenesis and Leads to Lipoma Formation in Zebrafish

    PubMed Central

    Rajendran, R. Samuel; Shen, Chia-Ning; Chen, Te-Hao; Yen, Chueh-Chuan; Chuang, Chih-Kuang; Lin, Dar-Shong; Hsiao, Chung-Der

    2012-01-01

    Background Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the Akt1 gene. Methodology/Principal Findings Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1)cy18 displays severely obese phenotypes at the adult stage. In Tg(krt4:Hsa.myrAkt1)cy18, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3α/β, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(krt4:Hsa.myrAkt1)cy18 caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(krt4:Hsa.myrAkt1)cy18. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(krt4:Hsa.myrAkt1)cy18, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues. Conclusion/Significance Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an

  17. The Zebrafish Breathes New Life into the Study of Tuberculosis

    PubMed Central

    Myllymäki, Henna; Bäuerlein, Carina A.; Rämet, Mika

    2016-01-01

    Tuberculosis (TB) is a global health emergency. Up to one-third of the world’s population is infected with Mycobacterium tuberculosis, and the pathogen continues to kill 1.5 million people annually. Currently, the means for preventing, diagnosing, and treating TB are unsatisfactory. One of the main reasons for the poor progress in TB research has been a lack of good animal models to study the latency, dormancy, and reactivation of the disease. Although sophisticated in vitro and in silico methods suitable for TB research are constantly being developed, they cannot reproduce the complete vertebrate immune system and its interplay with pathogens and vaccines. However, the zebrafish has recently emerged as a useful alternative to more traditional models, such as mice, rabbits, guinea pigs, and non-human primates, for studying the complex pathophysiology of a mycobacterial infection. The model is based on the similarity between Mycobacterium marinum – a natural fish pathogen – and M. tuberculosis. In both zebrafish larvae and adult fish, an infection with M. marinum leads to the formation of macrophage aggregates and granulomas, which resemble the M. tuberculosis infections in humans. In this review, we will summarize the current status of the zebrafish model in TB research and highlight the advantages of using zebrafish to dissect mycobacterial virulence strategies as well as the host immune responses elicited against them. In addition, we will discuss the possibilities of using the adult zebrafish model for studying latency, dormancy, and reactivation in a mycobacterial infection. PMID:27242801

  18. Skin Dictionary

    MedlinePlus

    ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ...

  19. Skin graft

    MedlinePlus

    Skin transplant; Skin autografting; FTSG; STSG; Split thickness skin graft; Full thickness skin graft ... site. Most people who are having a skin graft have a split-thickness skin graft. This takes ...

  20. Optimizing methods for the study of intravascular lipid metabolism in zebrafish.

    PubMed

    Chen, Kan; Wang, Chang-Qian; Fan, Yu-Qi; Xie, Yu-Shui; Yin, Zhao-Fang; Xu, Zuo-Jun; Zhang, Hui-Li; Cao, Jia-Tian; Han, Zhi-Hua; Wang, Yue; Song, Dong-Qiang

    2015-03-01

    The zebrafish (Danio rerio) is a useful vertebrate model for use in cardiovascular drug discovery. The present study aimed to construct optimized methods for the study of intravascular lipid metabolism of zebrafish. The lipophilic dye, Oil Red O, was used to stain fasting zebrafish one to eight days post-fertilization (dpf) and to stain 7-dpf zebrafish incubated in a breeding system containing 0.1% egg yolk as a high-fat diet (HFD) for 48 h. Three-dpf zebrafish were kept in CholEsteryl boron-dipyrromethene (BODIPY) 542/563 C11 water for 24 h which indicated the efficiency of CholEsteryl BODIPY 542/563 C11 intravascular cholesterol staining. Subsequently, 7-dpf zebrafish were incubated in water containing the fluorescent probe CholEsteryl BODIPY 542/563 C11 and fed a high-cholesterol diet (HCD) for 10 d. Two groups of 7-dpf zebrafish were incubated in regular breeding water and fed with a regular or HCD containing CholEsteryl BODIPY 542/563 C11 for 10 d. Finally, blood lipids of adult zebrafish fed with regular or HFD for seven weeks were measured. Oil Red O was not detected in the blood vessels of 7-8-dpf zebrafish. Increased intravascular lipid levels were detected in 7-dpf zebrafish incubated in 0.1% egg yolk, indicated by Oil Red O staining. Intravascular cholesterol was efficiently stained in 3-dpf zebrafish incubated in breeding water containing CholEsteryl BODIPY 542/563 C11; however, this method was inappropriate for the calculation of intravascular fluorescence intensity in zebrafish >7‑dpf. In spite of this, intra-aortic fluorescence intensity of zebrafish fed a HCD containing CholEsteryl BODIPY 542/563 C11 was significantly higher (P<0.05) than that of those fed a regular diet containing CholEsteryl BODIPY 542/563 C11. The serum total cholesterol and triglyceride levels of adult zebrafish fed a HFD were markedly increased compared to those of the control group (P<0.05). In conclusion, the use of Oil Red O staining and CholEsteryl BODIPY 542/563 C11 may

  1. Effects of combined exposure to 17α-ethynylestradiol and dibutyl phthalate on the growth and reproduction of adult male zebrafish (Danio rerio).

    PubMed

    Xu, Nan; Chen, Pengyu; Liu, Lei; Zeng, Yaqiong; Zhou, Haixia; Li, Song

    2014-09-01

    To evaluate the combined effects of 17α-ethynylestradiol (EE2) and dibutyl phthalate (DBP) on the growth and reproduction of male zebrafish, three-month-old fish were exposed to 0.005 or 0.020µg/L EE2, 100 or 500µg/L DBP or their binary mixtures under semi-static conditions. Investigated parameters include the length, weight, condition factor, vitellogenin (VTG) induction, acyl-CoA oxidase (AOX) protein level, histopathological alteration of testis, liver and gill, and reproductive capacity. After 21d exposure, no statistical difference was found among the weights, lengths and condition factors of different treatment groups. In all binary mixture groups, decreased VTG levels were detected compared to EE2-only groups; and the AOX levels were significantly lower than DBP-only treatments while both chemicals can individually induce AOX synthesis. Therefore, EE2 and DBP may act additively on VTG and antagonistically on AOX induction in males. After 45d exposure, delayed gametogenesis was observed for the DBP-only groups, indicated by fewer spermatozoa and more spermatocytes, which was further aggravated with the addition of EE2. The developmental delay of testis partially recovered after a 30d depuration in clean water. Combined exposure also caused liver and gill lesions, which were not alleviated during the 30d depuration, suggesting a nonreversible harmful effect the same as single exposure. Mixed EE2 and DBP were observed to impair the reproductive capability (the fecundity and fertilization rate) of males, while single exposure did not. Co-exposed to 0.020µg/L EE2 and 100µg/L DBP promoted the early hatching of offspring (F1 generation) at 48h post-fertilization (hpf), but the survival rates of the F1 generation were similar in all treatments. Our findings indicate that the effects of mixed EE2 and DBP at environmentally relevant levels can be either antagonistic or additive relying on the specific toxicological endpoints and the respective doses of each

  2. Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model.

    PubMed

    Hsu, Shan-Hui; Hsieh, Pai-Shan

    2015-01-01

    Adult adipose-derived stem cells (ASCs) are a type of multipotent mesenchymal stem cells (MSCs) with easy availability and serve as a potential cell source for cell-based therapy. Three-dimensional MSC spheroids may be derived from the self-assembly of individual MSCs grown on certain polymer membranes. In this study, we demonstrated that the self-assembled ASC spheroids on chitosan-hyaluronan membranes expressed more cytokine genes (fibroblast growth factor 1, vascular endothelial growth factor, and chemokine [C-C motif] ligand 2) as well as migration-associated genes (chemokine [C-X-C motif] receptor type 4 and matrix metalloprotease 1) compared with ASC dispersed single cells grown on culture dish. To evaluate the in vivo effects of these spheroids, we applied ASC single cells and ASC spheroids in a designed rat skin repair model. Wounds of 15 × 15 mm were created on rat dorsal skin, where ASCs were administered and covered with hyaluronan gel/chitosan sponge to maintain a moist environment. Results showed that skin wounds treated with ASC spheroids had faster wound closure and a significantly higher ratio of angiogenesis. Tracking of fluorescently labeled ASCs showed close localization of ASC spheroids to microvessels, suggesting enhanced angiogenesis through paracrine effects. Based on the in vitro and in vivo results, the self-assembled ASC spheroids may be a promising cellular source for skin tissue engineering and wound regeneration. PMID:25421559

  3. Technical brief: Constant intense light exposure to lesion and initiate regeneration in normally pigmented zebrafish.

    PubMed

    Rajaram, Kamya; Summerbell, Emily R; Patton, James G

    2014-01-01

    Zebrafish are capable of robust and spontaneous regeneration of injured retina. Constant intense light exposure to adult albino zebrafish specifically causes apoptosis of rod and cone photoreceptor cells and is an excellent model to study the molecular mechanisms underlying photoreceptor regeneration. However, this paradigm has only been applied to lesion zebrafish of the nonpigmented albino genetic background, which precludes the use of numerous transgenic reporter lines that are widely used to study regeneration. Here, we explored the effectiveness of constant intense light exposure in causing photoreceptor apoptosis and stimulating regeneration in normally pigmented zebrafish retinas. We show that constant intense light exposure causes widespread photoreceptor damage in the dorsal-central retinas of pigmented zebrafish. Photoreceptor loss triggers dedifferentiation and proliferation of Müller glia as well as progenitor cell proliferation. We also demonstrate that the timeline of regeneration response is comparable between the albino and the pigmented retinas. PMID:25324680

  4. Skin conductance biofeedback training in adults with drug-resistant temporal lobe epilepsy and stress-triggered seizures: a proof-of-concept study.

    PubMed

    Micoulaud-Franchi, Jean-Arthur; Kotwas, Iliana; Lanteaume, Laura; Berthet, Christelle; Bastien, Mireille; Vion-Dury, Jean; McGonigal, Aileen; Bartolomei, Fabrice

    2014-12-01

    The present proof-of-concept study investigated the feasibility of skin conductance biofeedback training in reducing seizures in adults with drug-resistant temporal lobe epilepsy (TLE), whose seizures are triggered by stress. Skin conductance biofeedback aims to increase levels of peripheral sympathetic arousal in order to reduce cortical excitability. This might seem somewhat counterintuitive, since such autonomic arousal may also be associated with increased stress and anxiety. Thus, this sought to verify that patients with TLE and stress-triggered seizures are not worsened in terms of stress, anxiety, and negative emotional response to this nonpharmacological treatment. Eleven patients with drug-resistant TLE with seizures triggered by stress were treated with 12 sessions of biofeedback. Patients did not worsen on cognitive evaluation of attentional biases towards negative emotional stimuli (P>.05) or on psychometric evaluation with state anxiety inventory (P = .059); in addition, a significant improvement was found in the Negative Affect Schedule (P = .014) and in the Beck Depression Inventory (P = .009). Biofeedback training significantly reduced seizure frequency with a mean reduction of -48.61% (SD = 27.79) (P = .005). There was a correlation between the mean change in skin conductance activity over the biofeedback treatment and the reduction of seizure frequency (r(11) = .62, P = .042). Thus, the skin conductance biofeedback used in the present study, which teaches patients to achieve an increased level of peripheral sympathetic arousal, was a well-tolerated nonpharmacological treatment. Further, well-controlled studies are needed to confirm the therapeutic value of this nonpharmacological treatment in reducing seizures in adults with drug-resistant TLE with seizures triggered by stress. PMID:25461224

  5. Evaluation of educational videos to increase skin cancer risk awareness and sun-safe behaviors among adult Hispanics.

    PubMed

    Hernandez, Claudia; Wang, Stephanie; Abraham, Ivy; Angulo, Maria Isabel; Kim, Hajwa; Meza, Joyce R; Munoz, Anastasia; Rodriguez, Lizbeth; Uddin, Sabrina

    2014-09-01

    Although skin cancer is less common in Hispanics, they are at higher risk for presenting with more advanced stage skin cancer. We performed semi-structured interviews with Hispanic women that found high concern for photoaging from sun exposure. Based on these results, we developed two short Spanish-language films. The first emphasized photoaging benefits of sun protection, while the second focused on its benefits for skin cancer prevention. Our hypothesis was that the reduction of photoaging would be a more persuasive argument than skin cancer prevention for the adoption of sunscreen use by Hispanic women. Study participants were recruited from beauty salons located in predominantly Hispanic neighborhoods. Each of the two Spanish-language films was approximately 3 min long. A pre-intervention questionnaire assessed subjects' general knowledge and sunscreen habits, and a second questionnaire administered after viewing both films assessed for improvements in risk perception and inquired about which film was more persuasive. Eighty Hispanics participated ranging in age from 19 to 75. The pre-education survey found that 54 out of 80 believed that fair-skin Hispanics (FS) were at risk for skin cancer, and 44 out of 80 believed that dark-skin Hispanics (DS) were at risk. These numbers increased to 72 (FS) and 69 (DS) after the intervention (p value: <0.0002 FS, <0.0001 DS). Hispanics overwhelmingly selected the video emphasizing the benefits of sun protection for skin cancer prevention as the more persuasive film (74 out of 80). A Spanish-language video has the potential to make an impact in healthy sun-protective behaviors, and information on how to properly apply sunscreen should be included in educational messages. PMID:24595966

  6. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. PMID:27085002

  7. Characterization of Snakehead Rhabdovirus Infection in Zebrafish (Danio rerio)†

    PubMed Central

    Phelan, Peter E.; Pressley, Meagan E.; Witten, P. Eckhard; Mellon, Mark T.; Blake, Sharon; Kim, Carol H.

    2005-01-01

    The zebrafish, Danio rerio, has become recognized as a valuable model for the study of development, genetics, and toxicology. Recently, the zebrafish has been recognized as a useful model for infectious disease and immunity. In this study, the pathogenesis and antiviral immune response of zebrafish to experimental snakehead rhabdovirus (SHRV) infection was characterized. Zebrafish 24 h postfertilization to 30 days postfertilization were susceptible to infection by immersion in 106 50% tissue culture infective doses (TCID50) of SHRV/ml, and adult zebrafish were susceptible to infection by intraperitoneal (i.p.) injection of 105 TCID50 of SHRV/ml. Mortalities exceeded 40% in infected fish, and clinical presentation of infection included petechial hemorrhaging, redness of the abdomen, and erratic swim behavior. Virus reisolation and reverse transcription-PCR analysis of the viral nucleocapsid gene confirmed the presence of SHRV. Histological sections of moribund embryonic and juvenile fish revealed necrosis of the pharyngeal epithelium and liver, in addition to congestion of the swim bladder by cell debris. Histopathology in adult fish injected i.p. was confined to the site of injection. The antiviral response in zebrafish was monitored by quantitative real-time PCR analysis of zebrafish interferon (IFN) and Mx expression. IFN and Mx levels were elevated in zebrafish exposed to SHRV, although expression and intensity differed with age and route of infection. This study is the first to examine the pathogenesis of SHRV infection in zebrafish. Furthermore, this study is the first to describe experimental infection of zebrafish embryos with a viral pathogen, which will be important for future experiments involving targeted gene disruption and forward genetic screens. PMID:15650208

  8. Building neurophenomics in zebrafish: Effects of prior testing stress and test batteries.

    PubMed

    Song, Cai; Yang, Lei; Wang, JiaJia; Chen, Peirong; Li, Shaomin; Liu, Yingcong; Nguyen, Michael; Kaluyeva, Aleksandra; Kyzar, Evan J; Gaikwad, Siddharth; Kalueff, Allan V

    2016-09-15

    The zebrafish (Danio rerio) is a promising model organism for neurophenomics - a new field of neuroscience linking neural phenotypes to various genetic and environmental factors. However, the effects of prior experimental manipulations on zebrafish performance in different behavioral paradigms remain unclear. Here, we examine the influence of selected stressful procedures and test batteries on adult zebrafish anxiety-like behaviors in two commonly used models - the novel tank (NTT) and the light-dark box (LDB) tests. While no overt behavioral differences between outbred short-fin wild-type (WT) and mutant 'pink' glowfish were seen in both tests under baseline (control) conditions, an acute severe stressor (a 30-min car transportation) detected significantly lower mutant fish anxiety-like behavior in these tests. In contrast, WT zebrafish showed no overt NTT or LDB responses following a mild stressor (5-min 40-Wt light) exposure, also showing no differences in batteries of NTT and LDB run immediately one after another, or with a 1-day interval. Collectively, these findings suggest that zebrafish may be relatively less sensitive (e.g., than other popular species, such as rodents) to the test battery effect, and show that stronger stressors may be needed (to complement low-to-moderate stress aquatic screens) to better reveal phenotypical variance in zebrafish assays. Strengthening the value of zebrafish models in neurophenotyping research, this study indicates the potential of using more test batteries and a wider spectrum of pre-test stressors in zebrafish behavioral assays. PMID:27155502

  9. The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare).

    PubMed

    Azimirad, Mahmood; Meshkini, Saeed; Ahmadifard, Nasrollah; Hoseinifar, Seyed Hossein

    2016-07-01

    The aim of this study was to evaluate the effects of feeding on synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia franciscana on skin mucus immune responses, stress resistance, intestinal microbiota and growth performance of angelfish (Pterophyllum scalare). Three hundred and sixty fish with initial weight 3.2 ± 0.13 g were randomly divided into twelve aquaria (50 L) assigned to four groups in triplicates. Fish were fed for 7 weeks with dietary treatments, including treatment 1: feeding adult Artemia without enrichment (control group), treatment 2: feeding adult Artemia enriched with lyophilised probiotic P. acidilactici (700 mg L(-1)), 3: feeding adult Artemia enriched with prebiotic fructooligosaccharide (FOS) (100 mg L(-1)), group 4: feeding adult Artemia enriched with synbiotic (P. acidilactici (700 mg L(-1)) + FOS (100 mg L(-1))). Skin mucus immune responses (lysozyme activity, total Immunoglobulin and protease), stress resistance against environmental stress (acute decrease of temperature and increase salinity), intestinal microbiota as well as growth indices were measured at the end of feeding trial. Artemia enriched with synbiotic significantly improved growth performance compared to other treatments (P < 0.05). The highest weight gain and specific growth rate (SGR) was observed in synbiotic fed fish (P < 0.05). Compared to the other treatments, the population of lactic acid bacteria was significantly higher in the intestinal microbiota of fish fed synbiotic supplemented diet (P < 0.05). In the environmental stress challenge test, the maximum resistance to abrupt decrease of temperature (17 °C) or elevation of salinity (12 g per liter) was observed in the synbiotic treatment. Also, the total immunoglobulin and lysozyme activity level of skin mucus was significantly elevated in fish fed Artemia enriched with synbiotic (P < 0.05). These results revealed that feeding angelfish with synbiotic

  10. The role of hydrogen sulphide in the control of breathing in hypoxic zebrafish (Danio rerio)

    PubMed Central

    Porteus, Cosima S; Abdallah, Sara J; Pollack, Jacob; Kumai, Yusuke; Kwong, Raymond W M; Yew, Hong M; Milsom, William K; Perry, Steve F

    2014-01-01

    The current study investigated the role of hydrogen sulphide (H2S) in oxygen sensing, intracellular signalling and promotion of ventilatory responses to hypoxia in adult and larval zebrafish (Danio rerio). Both larval and adult zebrafish exhibited a dose-dependent increase in ventilation to sodium sulphide (Na2S), an H2S donor. In vertebrates, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are enzymes that catalyse the endogenous production of H2S. In adult zebrafish, inhibition of both CBS and CSE with aminooxyacetate (AOA) and propargyl glycine (PPG) blunted or abolished the hypoxic hyperventilation, and the addition of Na2S to the water partially rescued the effects of inhibiting endogenous H2S production. In zebrafish larvae (4 days post-fertilization), gene knockdown of either CBS or CSE using morpholinos attenuated the hypoxic ventilatory response. Furthermore, the intracellular calcium concentration of isolated neuroepithelial cells (NECs), which are putative oxygen chemoreceptors, increased significantly when these cells were exposed to 50 μm Na2S, supporting a role for H2S in Ca2+-evoked neurotransmitter release in these cells. Finally, immunohistochemical labelling showed that NECs dissociated from adult gill contained CBS and CSE, whereas cutaneous NECs in larval zebrafish expressed only CSE. Taken together, these data show that H2S can be produced in the putative oxygen-sensing cells of zebrafish, the NECs, in which it appears to play a pivotal role in promoting the hypoxic ventilatory response. PMID:24756639

  11. Sagging Skin

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  12. Skin Diseases: Skin Health and Skin Diseases

    MedlinePlus

    ... the sun. Photo: PhotoDisc Care for conditions from acne to wrinkles Did you know that your skin ... other skin conditions. Many skin problems, such as acne, also affect your appearance. Your skin can also ...

  13. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish.

    PubMed

    Chen, Minjie; Yin, Junfa; Liang, Yong; Yuan, Shaopeng; Wang, Fengbang; Song, Maoyong; Wang, Hailin

    2016-05-01

    Graphene oxide (GO) has been extensively explored as a promising nanomaterial for applications in biology because of its unique properties. Therefore, systematic investigation of GO toxicity is essential to determine its fate in the environment and potential adverse effects. In this study, acute toxicity, oxidative stress and immunotoxicity of GO were investigated in zebrafish. No obvious acute toxicity was observed when zebrafish were exposed to 1, 5, 10 or 50mg/L GO for 14 days. However, a number of cellular alterations were detected by histological analysis of the liver and intestine, including vacuolation, loose arrangement of cells, histolysis and disintegration of cell boundaries. As evidence for oxidative stress, malondialdehyde levels and superoxide dismutase and catalase activities were increased and glutathione content was decreased in the liver after treatment with GO. GO treatment induced an immune response in zebrafish, as demonstrated by increased expression of tumor necrosis factor α, interleukin-1 β, and interleukin-6 in the spleen. Our findings demonstrated that GO administration in an aquatic system can cause oxidative stress and immune toxicity in adult zebrafish. To our knowledge, this is the first report of immune toxicity of GO in zebrafish. PMID:26921726

  14. Zebrafish Craniofacial Development: A Window into Early Patterning

    PubMed Central

    Mork, Lindsey; Crump, Gage

    2016-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928

  15. A jump persistent turning walker to model zebrafish locomotion

    PubMed Central

    Mwaffo, Violet; Anderson, Ross P.; Butail, Sachit; Porfiri, Maurizio

    2015-01-01

    Zebrafish are gaining momentum as a laboratory animal species for the investigation of several functional and dysfunctional biological processes. Mathematical models of zebrafish behaviour are expected to considerably aid in the design of hypothesis-driven studies by enabling preliminary in silico tests that can be used to infer possible experimental outcomes without the use of zebrafish. This study is motivated by observations of sudden, drastic changes in zebrafish locomotion in the form of large deviations in turn rate. We demonstrate that such deviations can be captured through a stochastic mean reverting jump diffusion model, a process that is commonly used in financial engineering to describe large changes in the price of an asset. The jump process-based model is validated on trajectory data of adult subjects swimming in a shallow circular tank obtained from an overhead camera. Through statistical comparison of the empirical distribution of the turn rate against theoretical predictions, we demonstrate the feasibility of describing zebrafish as a jump persistent turning walker. The critical role of the jump term is assessed through comparison with a simplified mean reversion diffusion model, which does not allow for describing the heavy-tailed distributions observed in the fish turn rate. PMID:25392396

  16. Zebrafish screen identifies novel compound with selective toxicity against leukemia

    PubMed Central

    Ridges, Suzanne; Heaton, Will L.; Joshi, Deepa; Choi, Henry; Eiring, Anna; Batchelor, Lance; Choudhry, Priya; Manos, Elizabeth J.; Sofla, Hossein; Sanati, Ali; Welborn, Seth; Agarwal, Archana; Spangrude, Gerald J.; Miles, Rodney R.; Cox, James E.; Frazer, J. Kimble; Deininger, Michael; Balan, Kaveri; Sigman, Matthew; Müschen, Markus; Perova, Tatiana; Johnson, Radia; Montpellier, Bertrand; Guidos, Cynthia J.; Jones, David A.

    2012-01-01

    To detect targeted antileukemia agents we have designed a novel, high-content in vivo screen using genetically engineered, T-cell reporting zebrafish. We exploited the developmental similarities between normal and malignant T lymphoblasts to screen a small molecule library for activity against immature T cells with a simple visual readout in zebrafish larvae. After screening 26 400 molecules, we identified Lenaldekar (LDK), a compound that eliminates immature T cells in developing zebrafish without affecting the cell cycle in other cell types. LDK is well tolerated in vertebrates and induces long-term remission in adult zebrafish with cMYC-induced T-cell acute lymphoblastic leukemia (T-ALL). LDK causes dephosphorylation of members of the PI3 kinase/AKT/mTOR pathway and delays sensitive cells in late mitosis. Among human cancers, LDK selectively affects survival of hematopoietic malignancy lines and primary leukemias, including therapy-refractory B-ALL and chronic myelogenous leukemia samples, and inhibits growth of human T-ALL xenografts. This work demonstrates the utility of our method using zebrafish for antineoplastic candidate drug identification and suggests a new approach for targeted leukemia therapy. Although our efforts focused on leukemia therapy, this screening approach has broad implications as it can be translated to other cancer types involving malignant degeneration of developmentally arrested cells. PMID:22490804

  17. Characteristics of Adult T-Cell Leukemia/Lymphoma Patients with Long Survival: Prognostic Significance of Skin Lesions and Possible Beneficial Role of Valproic Acid.

    PubMed

    Yves, Plumelle; Stephane, Michel; Rishika, Banydeen; Christine, Delaunay; Gérard, Panelatti

    2015-01-01

    We describe the clinical and biological features of ten patients with a survival superior to ten years (long survival), out of 175 patients diagnosed with Adult T-cell Leukemia/Lymphoma (ATL) in Martinique (1983-2013). There were 5 lymphoma and 5 chronic subtypes. Five of them (3 chronic, 2 lymphoma) had been treated with valproic acid (VA) for neurological disorders developed before or after ATL diagnosis, suggesting a beneficial role for VA as a histone deacetylase inhibitor (HDI) in ATL treatment. Total duration of uninterrupted VA treatment ranged from 8 to 37 years. Overall, the 175 incident ATL cases presented with a median survival of 5.43 months. The five VA-treated (VA(+)) patients presented with longer survival compared to VA treatment-free patients (VA(-)). For chronic subtypes, survival periods were of 213 months for 3 VA(+) patients and of 33 months for 11 VA(-) patients (p = 0.023). For lymphoma subtypes, survival periods were of 144 months for 2 VA(+) patients versus 6 months for 49 VA(-) patients (p = 0.0046). ATL cases with skin lesions, particularly lymphoma subtypes, had a longer survival (13.96 months) compared to those without skin lesions (6.06 months, p = 0.002). Eight out of the 10 patients presenting with long survival had skin lesions. PMID:26199759

  18. Characteristics of Adult T-Cell Leukemia/Lymphoma Patients with Long Survival: Prognostic Significance of Skin Lesions and Possible Beneficial Role of Valproic Acid

    PubMed Central

    Yves, Plumelle; Stephane, Michel; Rishika, Banydeen; Christine, Delaunay; Gérard, Panelatti

    2015-01-01

    We describe the clinical and biological features of ten patients with a survival superior to ten years (long survival), out of 175 patients diagnosed with Adult T-cell Leukemia/Lymphoma (ATL) in Martinique (1983–2013). There were 5 lymphoma and 5 chronic subtypes. Five of them (3 chronic, 2 lymphoma) had been treated with valproic acid (VA) for neurological disorders developed before or after ATL diagnosis, suggesting a beneficial role for VA as a histone deacetylase inhibitor (HDI) in ATL treatment. Total duration of uninterrupted VA treatment ranged from 8 to 37 years. Overall, the 175 incident ATL cases presented with a median survival of 5.43 months. The five VA-treated (VA+) patients presented with longer survival compared to VA treatment-free patients (VA−). For chronic subtypes, survival periods were of 213 months for 3 VA+ patients and of 33 months for 11 VA− patients (p = 0.023). For lymphoma subtypes, survival periods were of 144 months for 2 VA+ patients versus 6 months for 49 VA− patients (p = 0.0046). ATL cases with skin lesions, particularly lymphoma subtypes, had a longer survival (13.96 months) compared to those without skin lesions (6.06 months, p = 0.002). Eight out of the 10 patients presenting with long survival had skin lesions. PMID:26199759

  19. Inter-Individual and Inter-Strain Variations in Zebrafish Locomotor Ontogeny

    PubMed Central

    Lange, Merlin; Neuzeret, Frederic; Fabreges, Benoit; Froc, Cynthia; Bedu, Sebastien; Bally-Cuif, Laure; Norton, William H. J.

    2013-01-01

    Zebrafish exhibit remarkable alterations in behaviour and morphology as they develop from early larval stages to mature adults. In this study we compare the locomotion parameters of six common zebrafish strains from two different laboratories to determine the stability and repeatability of these behaviours. Our results demonstrate large variability in locomotion and fast swim events between strains and between laboratories across time. These data highlight the necessity for careful, strain-specific controls when analysing locomotor phenotypes and open up the possibility of standardising the quantification of zebrafish behaviour at multiple life stages. PMID:23950910

  20. Associative learning in the multichamber tank: A new learning paradigm for zebrafish.

    PubMed

    Fernandes, Yohaan M; Rampersad, Mindy; Luchiari, Ana C; Gerlai, Robert

    2016-10-01

    The zebrafish has been gaining prominence in the field of behavioural brain research as this species offers a good balance between system complexity and practical simplicity. While the number of studies examining the behaviour of zebrafish has exponentially increased over the past decade, the need is still substantial for paradigms capable of assessing cognitive and mnemonic characteristics of this species. Here we describe and utilize a novel visual discrimination task with which we evaluated acquisition of CS (colour)-US (sight of conspecifics) association in adult zebrafish. We report significant acquisition of CS-US association indicated by the increased time the fish spent in and the increased frequency of visits of the target chamber during a probe trial in the absence of reward. Given the simplicity of the apparatus and procedure, we conclude that the new task may be employed to assay learning and memory in adult zebrafish in an efficient manner. PMID:27345425

  1. A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish.

    PubMed

    Mohanty, Soumitra; Jagannathan, Lakshmanan; Ganguli, Geetanjali; Padhi, Avinash; Roy, Debasish; Alaridah, Nader; Saha, Pratip; Nongthomba, Upendra; Godaly, Gabriela; Gopal, Ramesh Kumar; Banerjee, Sulagna; Sonawane, Avinash

    2015-05-22

    Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs. PMID:25825498

  2. A Mycobacterial Phosphoribosyltransferase Promotes Bacillary Survival by Inhibiting Oxidative Stress and Autophagy Pathways in Macrophages and Zebrafish*

    PubMed Central

    Mohanty, Soumitra; Jagannathan, Lakshmanan; Ganguli, Geetanjali; Padhi, Avinash; Roy, Debasish; Alaridah, Nader; Saha, Pratip; Nongthomba, Upendra; Godaly, Gabriela; Gopal, Ramesh Kumar; Banerjee, Sulagna; Sonawane, Avinash

    2015-01-01

    Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs. PMID:25825498

  3. Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders.

    PubMed

    Verkerk, Arie O; Remme, Carol Ann

    2012-01-01

    The zebrafish is a cold-blooded tropical freshwater teleost with two-chamber heart morphology. A major advantage of the zebrafish for heart studies is that the embryo is transparent, allowing for easy assessment of heart development, heart rate analysis and phenotypic characterization. Moreover, rapid and effective gene-specific knockdown can be achieved using morpholino oligonucleotides. Lastly, zebrafish are small in size, are easy to maintain and house, grow fast, and have large offspring size, making them a cost-efficient research model. Zebrafish embryonic and adult heart rates as well as action potential (AP) shape and duration and electrocardiogram morphology closely resemble those of humans. However, whether the zebrafish is truly an attractive alternative model for human cardiac electrophysiology depends on the presence and gating properties of the various ion channels in the zebrafish heart, but studies into the latter are as yet limited. The rapid component of the delayed rectifier K(+) current (I(Kr)) remains the best characterized and validated ion current in zebrafish myocytes, and zebrafish may represent a valuable model to investigate human I(Kr) channel-related disease, including long QT syndrome. Arguments against the use of zebrafish as model for human cardiac (patho)electrophysiology include its cold-bloodedness and two-chamber heart morphology, absence of t-tubuli, sarcoplamatic reticulum function, and a different profile of various depolarizing and repolarizing ion channels, including a limited Na(+) current density. Based on the currently available literature, we propose that zebrafish may constitute a relevant research model for investigating ion channel disorders associated with abnormal repolarization, but may be less suitable for studying depolarization disorders or Ca(2+)-modulated arrhythmias. PMID:22934012

  4. Zebrafish (Danio rerio) bioassay for visceral toxicosis of catfish and botulinum neurotoxin serotype E.

    PubMed

    Chatla, Kamalakar; Gaunt, Patricia; Petrie-Hanson, Lora; Hohn, Claudia; Ford, Lorelei; Hanson, Larry

    2014-03-01

    Visceral toxicosis of catfish (VTC), a sporadic disease of cultured channel catfish (Ictalurus punctatus) often with high mortality, is caused by botulinum neurotoxin serotype E (BoNT/E). Presumptive diagnosis of VTC is based on characteristic clinical signs and lesions, and the production of these signs and mortality after sera from affected fish is administered to sentinel catfish. The diagnosis is confirmed if the toxicity is neutralized with BoNT/E antitoxin. Because small catfish are often unavailable, the utility of adult zebrafish (Danio rerio) was evaluated in BoNT/E and VTC bioassays. Channel catfish and zebrafish susceptibilities were compared using trypsin-activated BoNT/E in a 96-hr trial by intracoelomically administering 0, 1.87, 3.7, 7.5, 15, or 30 pg of toxin per gram of body weight (g-bw) of fish. All of the zebrafish died at the 7.5 pg/g-bw and higher, while the catfish died at the 15 pg/g-bw dose and higher. To test the bioassay, sera from VTC-affected fish or control sera were intracoelomically injected at a dose of 10 µl per zebrafish and 20 µl/g-bw for channel catfish. At 96 hr post-injection, 78% of the zebrafish and 50% of the catfish receiving VTC sera died, while no control fish died. When the VTC sera were preincubated with BoNT/E antitoxin, they became nontoxic to zebrafish. Histology of zebrafish injected with either VTC serum or BoNT/E demonstrated renal necrosis. Normal catfish serum was toxic to larval zebrafish in immersion exposures, abrogating their utility in VTC bioassays. The results demonstrate bioassays using adult zebrafish for detecting BoNT/E and VTC are sensitive and practical. PMID:24518279

  5. Monitoring tectal neuronal activities and motor behavior in zebrafish larvae.

    PubMed

    Sumbre, Germán; Poo, Mu-Ming

    2013-09-01

    To understand how visuomotor behaviors are controlled by the nervous system, it is necessary to monitor the activity of large populations of neurons with single-cell resolution over a large area of the brain in a relatively simple, behaving organism. The zebrafish larva, a small lower vertebrate with transparent skin, serves as an excellent model for this purpose. Immediately after the larva hatches, it needs to catch prey and avoid predators. This strong evolutionary pressure leads to the rapid development of functional sensory systems, particularly vision. By 5 d postfertilization (dpf), tectal cells show distinct visually evoked patterns of activation, and the larvae are able to perform a variety of visuomotor behaviors. During the early larval stage, zebrafish breathe mainly through the skin and can be restrained under the microscope using a drop of low-melting-point agarose, without the use of anesthetics. Moreover, the transparency of the skin, the small diameter of the neurons (4-5 µm), and the high-neuronal density enable the use of in vivo noninvasive imaging techniques to monitor neuronal activities of up to ∼500 cells within the central nervous system, still with single-cell resolution. This article describes a method for simultaneously monitoring spontaneous and visually evoked activities of large populations of neurons in the optic tectum of the zebrafish larva, using a synthetic calcium dye (Oregon Green BAPTA-1 AM) and a conventional confocal or two-photon scanning fluorescence microscope, together with a method for measuring the tail motor behavior of the head-immobilized zebrafish larva. PMID:24003199

  6. Bacterial skin and soft tissue infections in adults: A review of their epidemiology, pathogenesis, diagnosis, treatment and site of care

    PubMed Central

    Ki, Vincent; Rotstein, Coleman

    2008-01-01

    Skin and soft tissue infections (SSTIs) involve microbial invasion of the skin and underlying soft tissues. They have variable presentations, etiologies and severities. The challenge of SSTIs is to efficiently differentiate those cases that require immediate attention and intervention, whether medical or surgical, from those that are less severe. Approximately 7% to 10% of hospitalized patients are affected by SSTIs, and they are very common in the emergency care setting. The skin has an extremely diverse ecology of organisms that may produce infection. The clinical manifestations of SSTIs are the culmination of a two-step process involving invasion and the interaction of bacteria with host defences. The cardinal signs of SSTIs involve the features of inflammatory response, with other manifestations such as fever, rapid progression of lesions and bullae. The diagnosis of SSTIs is difficult because they may commonly masquerade as other clinical syndromes. To improve the management of SSTIs, the development of a severity stratification approach to determine site of care and appropriate empirical treatment is advantageous. The selection of antimicrobial therapy is predicated on knowledge of the potential pathogens, the instrument of entry, disease severity and clinical complications. For uncomplicated mild to moderate infections, the oral route suffices, whereas for complicated severe infections, intravenous administration of antibiotics is warranted. Recognition of the potential for resistant pathogens causing SSTIs can assist in guiding appropriate selection of antibiotic therapy. PMID:19352449

  7. Behavioral and biochemical adjustments of the zebrafish Danio rerio exposed to the β-blocker propranolol.

    PubMed

    Mitchell, Kimberly M; Moon, Thomas W

    2016-09-01

    Propranolol (PROP) is a β-blocker prescribed mainly to treat human cardiovascular diseases and as a result of its wide usage and persistence, it is reported in aquatic environments. This study examined whether PROP alters developmental patterns and catecholamine (CA)-regulated processes in the zebrafish (Danio rerio) and if exposure during early life alters the stress response and behaviors of adults. The calculated 48h larva LC50 was 21.6mg/L, well above reported environmental levels (0.01-0.59μg/L). Stressed and PROP-exposed adult zebrafish had reduced testosterone and estradiol levels and exhibited behaviors indicating less anxiety than control fish. Furthermore, adults previously PROP-exposed as embryos/larvae had decreased growth in terms of body length and mass. Finally, these adults showed increased cholesterol and a dose-dependent decrease in testosterone levels compared with unexposed zebrafish. Thus PROP-exposure of zebrafish embryos/larvae alters developmental patterns and CA-regulated processes that may affect normal behaviors and responses to stressors, and at least some of these changes persist in the adult zebrafish. PMID:26520238

  8. The Effect of Zeaxanthin on the Visual Acuity of Zebrafish

    PubMed Central

    Saidi, Eric A.; Davey, Pinakin Gunvant; Cameron, D. Joshua

    2015-01-01

    Oral supplementation of carotenoids such as zeaxanthin or lutein which naturally occur in human retina have been shown to improve vision and prevent progression of damage to advanced AMD in some studies. The zebrafish eye shares many physiological similarities with the human eye and is increasingly being used as model for vision research. We hypothesized that injection of zeaxanthin into the zebrafish eye would improve the visual acuity of the zebrafish over time. Visual acuity, calculated in cycles per degree, was measured in adult zebrafish to establish a consistent baseline using the optokinetic response. Zeaxanthin dissolved into phosphate buffered saline (PBS) or PBS only was injected into the anterior chamber of the right and left eyes of the Zebrafish. Visual acuities were measured at 1 week and 3, 8 and 12 weeks post-injection to compare to baseline values. Repeated measures ANOVA was used to compare visual acuities between fish injected with PBS and zeaxanthin. A significant improvement in visual acuity, 14% better than before the injection (baseline levels), was observed one week after injection with zeaxanthin (p = 0.04). This improvement peaked at more than 30% for some fish a few weeks after the injection and improvement in vision persisted at 3 weeks after injection (p = 0.006). The enhanced visual function was not significantly better than baseline at 8 weeks (p = 0.19) and returned to baseline levels 12 weeks after the initial injection (p = 0.50). Zeaxanthin can improve visual acuity in zebrafish eyes. Further studies are required to develop a better understanding of the role zeaxanthin and other carotenoids play during normal visual function. PMID:26267864

  9. Zebrafish vimentin: molecular characterization, assembly properties and developmental expression.

    PubMed

    Cerdà, J; Conrad, M; Markl, J; Brand, M; Herrmann, H

    1998-11-01

    To provide a basis for the investigation of the intermediate filament (IF) protein vimentin in one of the most promising experimental vertebrate systems, the zebrafish (Danio rerio), we have isolated a cDNA clone of high sequence identity to and with the characteristic features of human vimentin. Using this clone we produced recombinant zebrafish vimentin and studied its assembly behaviour. Unlike other vimentins, zebrafish vimentin formed unusually thick filaments when assembled at temperatures below 21 degrees C. At 37 degrees C few filaments were observed, which often also terminated in aggregated masses, indicating that its assembly was severely disturbed at this temperature. Between 21 and 34 degrees C apparently normal IFs were generated. By viscometry, the temperature optimum of assembly was determined to be around 28 degrees C. At this temperature, zebrafish vimentin partially rescued, in mixing experiments, the temperature-dependent assembly defect of trout vimentin. Therefore it is apparently able to "instruct" the misorganized trout vimentin such that it can enter normal IFs. This feature, that assembly is best at the normal body temperature of various species, puts more weight on the assumption that vimentin is vital for some aspects of generating functional adult tissues. Remarkably, like in most other vertebrates, zebrafish vimentin appears to be an abundant factor in the lens and the retina as well as transiently, during development, in various parts of the central and peripheral nervous system. Therefore, promising cell biological investigations may now be performed with cells involved in the generation of the vertebrate eye and brain, and, in particular, the retina. Moreover, the power of genetics of the zebrafish system may be employed to investigate functional properties of vimentin in vivo. PMID:9860133

  10. Oceans of Opportunity: Exploring Vertebrate Hematopoiesis in Zebrafish

    PubMed Central

    Carroll, Kelli J.; North, Trista E.

    2015-01-01

    Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell (HSPC) biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor and effector cell emergence, expansion and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell-types can be identified and characterized. Further, a myriad of transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of HSPC biology during development, in response to infection or injury, or in the setting of hematological malignancy, continues to deepen, zebrafish will remain essential for exploring the spatio-temporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease. PMID:24816275

  11. Antibiotic toxicity and absorption in zebrafish using liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10-1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish. PMID:25938774

  12. Depletion of Myostatin b Promotes Somatic Growth and Lipid Metabolism in Zebrafish.

    PubMed

    Gao, Yanping; Dai, Ziru; Shi, Chuang; Zhai, Gang; Jin, Xia; He, Jiangyan; Lou, Qiyong; Yin, Zhan

    2016-01-01

    Myostatin (MSTN) is a negative regulator of myogenesis in vertebrates. Depletion of mstn resulted in elevated muscle growth in several animal species. However, the report on the complete ablation of mstn in teleost fish has not yet become available. In this study, two independent mstnb-deficient mutant lines in zebrafish were generated with the TALENs technique. In the mstnb-deficient zebrafish, enhanced muscle growth with muscle fiber hyperplasia was achieved. Beginning at the adult stage (80 days postfertilization), the mstnb-deficient zebrafish exhibited increased circumferences and body weights compared with the wild-type sibling control fish. Although the overall total lipid/body weight ratios remained similar between the mstnb-deficient zebrafish and the control fish, the distribution of lipids was altered. The size of the visceral adipose tissues became smaller while more lipids accumulated in skeletal muscle in the mstnb-deficient zebrafish than in the wild-type control fish. Based on the transcriptional expression profiles, our results revealed that lipid metabolism, including lipolysis and lipogenesis processes, was highly activated in the mstnb-deficient zebrafish, which indicated the transition of energy metabolism from protein-dependent to lipid-dependent in mstnb-deficient zebrafish. Our mstnb-deficient model could be valuable in understanding not only the growth trait regulation in teleosts but also the mechanisms of teleost energy metabolism. PMID:27458428

  13. Depletion of Myostatin b Promotes Somatic Growth and Lipid Metabolism in Zebrafish

    PubMed Central

    Gao, Yanping; Dai, Ziru; Shi, Chuang; Zhai, Gang; Jin, Xia; He, Jiangyan; Lou, Qiyong; Yin, Zhan

    2016-01-01

    Myostatin (MSTN) is a negative regulator of myogenesis in vertebrates. Depletion of mstn resulted in elevated muscle growth in several animal species. However, the report on the complete ablation of mstn in teleost fish has not yet become available. In this study, two independent mstnb-deficient mutant lines in zebrafish were generated with the TALENs technique. In the mstnb-deficient zebrafish, enhanced muscle growth with muscle fiber hyperplasia was achieved. Beginning at the adult stage (80 days postfertilization), the mstnb-deficient zebrafish exhibited increased circumferences and body weights compared with the wild-type sibling control fish. Although the overall total lipid/body weight ratios remained similar between the mstnb-deficient zebrafish and the control fish, the distribution of lipids was altered. The size of the visceral adipose tissues became smaller while more lipids accumulated in skeletal muscle in the mstnb-deficient zebrafish than in the wild-type control fish. Based on the transcriptional expression profiles, our results revealed that lipid metabolism, including lipolysis and lipogenesis processes, was highly activated in the mstnb-deficient zebrafish, which indicated the transition of energy metabolism from protein-dependent to lipid-dependent in mstnb-deficient zebrafish. Our mstnb-deficient model could be valuable in understanding not only the growth trait regulation in teleosts but also the mechanisms of teleost energy metabolism. PMID:27458428

  14. Antibiotic Toxicity and Absorption in Zebrafish Using Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10–1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish. PMID:25938774

  15. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration

    PubMed Central

    Gerlach, Gary F.; Wingert, Rebecca A.

    2012-01-01

    Vertebrates form a progressive series of up to three kidney organs during development—the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways. PMID:24014448

  16. A zebrafish (Danio rerio) model of infectious spleen and kidney necrosis virus (ISKNV) infection

    SciTech Connect

    Xu Xiaopeng; Zhang Lichun; Weng Shaoping; Huang Zhijian; Lu Jing; Lan Dongming; Zhong Xuejun; Yu Xiaoqiang; Xu Anlong He Jianguo

    2008-06-20

    Zebrafish is a model animal for studies of genetics, development, toxicology, oncology, and immunology. In this study, infectious spleen and kidney necrosis virus (ISKNV) was used to establish an infection in zebrafish, and the experimental conditions were established and characterized. Mortality of adult zebrafish infected with ISKNV by intraperitoneal (i.p.) injection exceeded 60%. ISKNV can be passed stably in zebrafish for over ten passages. The ailing zebrafish displayed petechial hemorrhaging and scale protrusion. Histological analysis of moribund fish revealed necrosis of tissue and enlarged cells in kidney and spleen. The real-time RT-PCR analysis of mRNA level confirmed that ISKNV was replicated in zebrafish. Immunohistochemistry and immunofluorescence analyses further confirmed the presence of ISKNV-infected cells in almost all organs of the infected fish. Electron microscope analyses showed that the ISKNV particle was present in the infected tissues. The establishment of zebrafish infection model of ISKNV can offer a valuable tool for studying the interactions between ISKNV and its host.

  17. Influence of skin-to-muscle and muscle-to-bone thickness on depth of needle penetration in adults at the deltoid intramuscular injection site

    PubMed Central

    Shankar, Nachiket; Saxena, Deepali; Lokkur, Pooja P.; Kumar, Nikhil M.; William, Neena Chris; Vijaykumar, Nirupama

    2014-01-01

    Background The objectives of the study were to estimate the following in adults of Indian origin: a) Gender and side differences in the skin-to-muscle (SM) and muscle-to-bone thickness (MB) at the deltoid intramuscular injection site; b) Correlation of SM thickness with the BMI, age and gender; c) The prevalence of under and over-penetration assuming a standard needle length of 25 mm and following prescribed guidelines for IM injection. Methods The SM, MB and skin-to-bone (SB) thicknesses were bilaterally estimated in two hundred adult Indian subjects (100 male and 100 female) using an ultrasound probe at a pre-determined point on the upper arms of the subjects. The BMI of each subject was calculated. The unpaired sample ‘t’ test and paired ‘t’ test were used to analyse differences between groups. Pearson's correlation coefficient was used in correlation analysis and suitable linear regression equations were generated. Results Females had a significantly higher SM thickness and lower MB thickness. The SM thickness was significantly greater on the left side, while the SB and MB thickness were significantly greater on the right. Multiple linear regression equations for both the dominant and non-dominant arms had good model fit properties. Under-penetration would have occurred in 2 (1%) subjects while over-penetration would have occurred in 50% of the subjects. Conclusion Over-penetration of deltoid IM injections is likely to be more prevalent as compared to under-penetration. Therefore, the technique of IM injection needs to be modified based on the body type of the individual patient. PMID:25382907

  18. Development of ramified microglia from early macrophages in the zebrafish optic tectum.

    PubMed

    Svahn, Adam J; Graeber, Manuel B; Ellett, Felix; Lieschke, Graham J; Rinkwitz, Silke; Bennett, Maxwell R; Becker, Thomas S

    2013-01-01

    Microglia, the resident macrophage precursors of the brain, are necessary for the maintenance of tissue homeostasis and activated by a wide range of pathological stimuli. They have a key role in immune and inflammatory responses. Early microglia stem from primitive macrophages, however the transition from early motile forms to the ramified mature resident microglia has not been assayed in real time. In order to provide such an assay, we used zebrafish transgenic lines in which fluorescent reporter expression is driven by the promoter of macrophage expressed gene 1 (mpeg1; Ellet et al. [2011]: Blood 117(4): e49-e56,). This enabled the investigation of the development of these cells in live, intact larvae. We show that microglia develop from highly motile amoeboid cells that are engaged in phagocytosis of apoptotic cell bodies into a microglial cell type that rapidly morphs back and forth between amoeboid and ramified morphologies. These morphing microglia eventually settle into a typical mature ramified morphology. Developing microglia frequently come into contact with blood capillaries in the brain, and also frequently contact each other. Up to 10 days postfertilization, microglia were observed to undergo symmetric division. In the adult optic tectum, the microglia are highly branched, resembling mammalian microglia. In addition, the mpeg1 transgene also labeled highly branched cells in the skin overlying the optic tectum from 8-9 days postfertilization, which likely represent Langerhans cells. Thus, the development of zebrafish microglia and their cellular interactions was studied in the intact developing brain in real time and at cellular resolution. PMID:22648905

  19. Fingerprinting of Psychoactive Drugs in Zebrafish Anxiety-Like Behaviors

    PubMed Central

    Maximino, Caio; da Silva, Annanda Waneza Batista; Araújo, Juliana; Lima, Monica Gomes; Miranda, Vanessa; Puty, Bruna; Benzecry, Rancés; Picanço-Diniz, Domingos Luiz Wanderley; Gouveia, Amauri; Oliveira, Karen Renata Matos; Herculano, Anderson Manoel

    2014-01-01

    A major hindrance for the development of psychiatric drugs is the prediction of how treatments can alter complex behaviors in assays which have good throughput and physiological complexity. Here we report the development of a medium-throughput screen for drugs which alter anxiety-like behavior in adult zebrafish. The observed phenotypes were clustered according to shared behavioral effects. This barcoding procedure revealed conserved functions of anxiolytic, anxiogenic and psychomotor stimulating drugs and predicted effects of poorly characterized compounds on anxiety. Moreover, anxiolytic drugs all decreased, while anxiogenic drugs increased, serotonin turnover. These results underscore the power of behavioral profiling in adult zebrafish as an approach which combines throughput and physiological complexity in the pharmacological dissection of complex behaviors. PMID:25079766

  20. Fingerprinting of psychoactive drugs in zebrafish anxiety-like behaviors.

    PubMed

    Maximino, Caio; da Silva, Annanda Waneza Batista; Araújo, Juliana; Lima, Monica Gomes; Miranda, Vanessa; Puty, Bruna; Benzecry, Rancés; Picanço-Diniz, Domingos Luiz Wanderley; Gouveia, Amauri; Oliveira, Karen Renata Matos; Herculano, Anderson Manoel

    2014-01-01

    A major hindrance for the development of psychiatric drugs is the prediction of how treatments can alter complex behaviors in assays which have good throughput and physiological complexity. Here we report the development of a medium-throughput screen for drugs which alter anxiety-like behavior in adult zebrafish. The observed phenotypes were clustered according to shared behavioral effects. This barcoding procedure revealed conserved functions of anxiolytic, anxiogenic and psychomotor stimulating drugs and predicted effects of poorly characterized compounds on anxiety. Moreover, anxiolytic drugs all decreased, while anxiogenic drugs increased, serotonin turnover. These results underscore the power of behavioral profiling in adult zebrafish as an approach which combines throughput and physiological complexity in the pharmacological dissection of complex behaviors. PMID:25079766

  1. Low back skin sensitivity has minimal impact on active lumbar spine proprioception and stability in healthy adults.

    PubMed

    Beaudette, Shawn M; Larson, Katelyn J; Larson, Dennis J; Brown, Stephen H M

    2016-08-01

    The purpose of the current work was to (1) determine whether low back cutaneous sensitivity could be reduced through the use of a topical lidocaine-prilocaine anesthetic (EMLA(®)) to mirror reductions reported in chronic lower back pain (CLBP) patients, as well as to (2) identify whether reductions in cutaneous sensitivity resulted in decreased lumbar spine proprioception, neuromuscular control and dynamic stability. Twenty-eight healthy participants were divided equally into matched EMLA and PLACEBO treatment groups. Groups completed cutaneous minimum monofilament and two-point discrimination (TPD) threshold tests, as well as tests of sagittal and axial lumbar spine active repositioning error, seated balance and repeated lifting dynamic stability. These tests were administered both before and after the application of an EMLA or PLACEBO treatment. Results show that low back minimum monofilament and TPD thresholds were significantly increased within the EMLA group. Skin sensitivity remained unchanged in the PLACEBO group. In the EMLA group, decreases in low back cutaneous sensitivity had minimal effect on low back proprioception (active sagittal and axial repositioning) and dynamic stability (seated balance and repeated lifting). These findings demonstrate that treating the skin of the low back with an EMLA anesthetic can effectively decrease the cutaneous sensitivity of low back region. Further, these decreases in peripheral cutaneous sensitivity are similar in magnitude to those reported in CLBP patients. Within this healthy population, decreased cutaneous sensitivity of the low back region has minimal influence on active lumbar spine proprioception, neuromuscular control and dynamic stability. PMID:27010722

  2. Immunostaining of dissected zebrafish embryonic heart.

    PubMed

    Yang, Jingchun; Xu, Xiaolei

    2012-01-01

    Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects. The expression of any gene can be manipulated via morpholino technology or RNA injection. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals. PMID:22258109

  3. Learning and memory in zebrafish (Danio rerio).

    PubMed

    Gerlai, R

    2016-01-01

    Learning and memory are defining features of our own species inherently important to our daily lives and to who we are. Without our memories we cease to exist as a person. Without our ability to learn individuals and collectively our society would cease to function. Diseases of the mind still remain incurable. The interest in understanding of the mechanisms of learning and memory is thus well founded. Given the complexity of such mechanisms, concerted efforts have been made to study them under controlled laboratory conditions, ie, with laboratory model organisms. The zebrafish, although new in this field, is one such model organism. The rapidly developing forward- and reverse genetic methods designed for the zebrafish and the increasing use of pharmacological tools along with numerous neurobiology techniques make this species perhaps the best model for the analysis of the mechanisms of complex central nervous system characteristics. The fact that it is an evolutionarily ancient and simpler vertebrate, but at the same time it possesses numerous conserved features across multiple levels of biological organization makes this species an excellent tool for the analysis of the mechanisms of learning and memory. The bottleneck lies in our understanding of its cognitive and mnemonic features, the topic of this chapter. The current paper builds on a chapter published in the previous edition and continues to focus on associative learning, but now it extends the discussion to other forms of learning and to recent discoveries on memory-related features and findings obtained both in adults and larval zebrafish. PMID:27312505

  4. Novel biomarkers of perchlorate exposure in zebrafish

    USGS Publications Warehouse

    Mukhi, S.; Carr, J.A.; Anderson, T.A.; Patino, R.

    2005-01-01

    Perchlorate inhibits iodide uptake by thyroid follicles and lowers thyroid hormone production. Although several effects of perchlorate on the thyroid system have been reported, the utility of these pathologies as markers of environmental perchlorate exposures has not been adequately assessed. The present study examined time-course and concentration-dependent effects of perchlorate on thyroid follicle hypertrophy, colloid depletion, and angiogenesis; alterations in whole-body thyroxine (T4) levels; and somatic growth and condition factor of subadult and adult zebrafish. Changes in the intensity of the colloidal T4 ring previously observed in zebrafish also were examined immunohistochemically. Three-month-old zebrafish were exposed to ammonium perchlorate at measured perchlorate concentrations of 0, 11, 90, 1,131, and 11,480 ppb for 12 weeks and allowed to recover in clean water for 12 weeks. At two weeks of exposure, the lowest-observed-effective concentrations (LOECs) of perchlorate that induced angiogenesis and depressed the intensity of colloidal T4 ring were 90 and 1,131 ppb, respectively; other parameters were not affected (whole-body T4 was not determined at this time). At 12 weeks of exposure, LOECs for colloid depletion, hypertrophy, angiogenesis, and colloidal T4 ring were 11,480, 1,131, 90, and 11 ppb, respectively. All changes were reversible, but residual effects on angiogenesis and colloidal T4 ring intensity were still present after 12 weeks of recovery (LOEC, 11,480 ppb). Whole-body T 4 concentration, body growth (length and weight), and condition factor were not affected by perchlorate. The sensitivity and longevity of changes in colloidal T4 ring intensity and angiogenesis suggest their usefulness as novel markers of perchlorate exposure. The 12-week LOEC for colloidal T4 ring is the lowest reported for any perchlorate biomarker in aquatic vertebrates. ?? 2005 SETAC.

  5. Developmental and Persistent Toxicities of Maternally Deposited Selenomethionine in Zebrafish (Danio rerio).

    PubMed

    Thomas, Jith K; Janz, David M

    2015-08-18

    The objectives of this study were (1) to establish egg selenium (Se) toxicity thresholds for mortality and deformities in early life stages of zebrafish (Danio rerio) after exposure to excess selenomethionine (SeMet, the dominant chemical species of Se in diets) via in ovo maternal transfer and (2) to investigate the persistent effects of developmental exposure to excess SeMet on swim performance and metabolic capacities in F1-generation adult zebrafish. Adult zebrafish were fed either control food (1.3 μg Se/g, dry mass or d.m.) or food spiked with increasing measured concentrations of Se (3.4, 9.8, or 27.5 μg Se/g, d.m.) in the form of SeMet for 90 d. In ovo exposure to SeMet increased mortality and deformities in larval zebrafish in a concentration-dependent fashion with threshold egg Se concentrations (EC10s) of 7.5 and 7.0 μg Se/g d.m., respectively. Impaired swim performance and greater respiration and metabolic rates were observed in F1-generation zebrafish exposed in ovo to 6.8 and 12.7 μg Se/g d.m and raised to adulthood in clean water. A species sensitivity distribution (SSD) based on egg Se developmental toxicity thresholds suggests that zebrafish are the most sensitive fish species studied to date. PMID:26197219

  6. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish.

    PubMed

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7-9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  7. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish

    PubMed Central

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7–9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  8. Molecular cloning and developmental expression of plakophilin 2 in zebrafish

    SciTech Connect

    Moriarty, Miriam A.; Martin, Eva D.; Byrnes, Lucy; Grealy, Maura

    2008-02-29

    Armadillo proteins are involved in providing strength and support to cells and tissues, nuclear transport, and transcriptional activation. In this report, we describe the identification and characterisation of the cDNA of the desmosomal armadillo protein plakophilin 2 in zebrafish. The 2448 bp coding sequence encodes a predicted 815 amino acid protein, with nine armadillo repeats characteristic of the p120-catenin subfamily. It shares conserved N-glycosylation, myristoylation, and glycogen synthase kinase 3, casein kinase 2, and protein kinase C phosphorylation sites with mammalian armadillo proteins including plakoglobin and {beta}-catenin. Semi-quantitative reverse transcription polymerase chain reaction and whole mount in situ hybridisation show that it is expressed both maternally and zygotically. It is ubiquitously expressed during blastula stages but becomes restricted to epidermal and cardiac tissue during gastrulation. These results provide evidence that zebrafish plakophilin 2 is developmentally regulated with potential roles in cell adhesion, signalling, and cardiac and skin development.

  9. Subacute toxicity assessment of water disinfection byproducts on zebrafish.

    PubMed

    Rácz, Gergely; Csenki, Zsolt; Kovács, Róbert; Hegyi, Arpád; Baska, Ferenc; Sujbert, László; Zsákovics, Ivett; Kis, Renáta; Gustafson, Ryan; Urbányi, Béla; Szende, Béla

    2012-07-01

    Disinfection of raw water is essential to the production of drinking water. However, by-products of disinfection may exert toxic effects. The potential toxic effects of two of these compounds, 4-ethylbenzaldehyde (EBA) and 2,4-difluoroaniline (DFA) were investigated using the zebrafish (Danio rerio) model. The two compounds, dissolved, were introduced in duplicate aquariums containing zebrafish in two different concentrations based on LC50 values. The aquarium water containing EBA or DFA was changed every 96 h throughout the 3 months of treatment. Behavior of the fish in each replicate was inspected twice daily. In course of treatment with both concentrations, fish exposed to DFA displayed behavior associated with visible anxiety, while EBA treated were lethargic and did not evade capture. Application of both concentrations of each component into the aquarium water resulted in dystrophic lesions in the liver, kidney and skin of the fish while preneoplastic lesions and tumors were not observed. PMID:22161134

  10. Chemical screening with zebrafish embryos.

    PubMed

    Zhong, Hanbing; Lin, Shuo

    2011-01-01

    Functional chemicals are very useful tools for molecular biology studies. Due to its small size, large progeny clutch, and embryonic transparency, zebrafish serves as a superb in vivo animal model for chemical compound screens and characterization. During zebrafish embryogenesis, multiple developmental phenotypes can be easily examined under the microscope, therefore allowing a more comprehensive evaluation for identifying novel functional chemicals than cell-based assays. Ever since the first zebrafish-based chemical screen was conducted in the year 2000, many functional chemicals have been discovered using this strategy. In this chapter, we describe how to perform a typical zebrafish-based chemical screen and discuss the details of the protocol by using the example of the identification and characterization of two new Smo inhibitors with a Gli:GFP transgenic line. PMID:21318908

  11. Zebrafish sp7:EGFP: a transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration

    PubMed Central

    DeLaurier, April; Eames, B. Frank; Blanco-Sánchez, Bernardo; Peng, Gang; He, Xinjun; Swartz, Mary E.; Ullmann, Bonnie; Westerfield, Monte; Kimmel, Charles B.

    2010-01-01

    Summary We report the expression pattern and construction of a transgenic zebrafish line for a transcription factor involved in otic vesicle formation and skeletogenesis. The zinc finger transcription factor sp7 (formerly called osterix) is reported as a marker of osteoblasts. Using bacterial artificial chromosome (BAC)-mediated transgenesis, we generated a zebrafish transgenic line for studying skeletal development, Tg(sp7:EGFP)b1212. Using a zebrafish BAC, EGFP was introduced downstream of the regulatory regions of sp7 and injected into 1 cell-stage embryos. In this transgenic line, GFP expression reproduces endogenous sp7 gene expression in the otic placode and vesicle, and in forming skeletal structures. GFP-positive cells were also detected in adult fish, and were found associated with regenerating fin rays post-amputation. This line provides an essential tool for the further study of zebrafish otic vesicle formation and the development and regeneration of the skeleton. PMID:20506187

  12. Environmental and Pharmacological Manipulations Blunt the Stress Response of Zebrafish in a Similar Manner.

    PubMed

    Giacomini, Ana Cristina V V; Abreu, Murilo S; Zanandrea, Rodrigo; Saibt, Natália; Friedrich, Maria Tereza; Koakoski, Gessi; Gusso, Darlan; Piato, Angelo L; Barcellos, Leonardo J G

    2016-01-01

    Here we provide evidence that both pharmacological and environmental manipulations similarly blunt the cortisol release in response to an acute stressor in adult zebrafish. Different groups of fish were maintained isolated or group-housed in barren or enriched tanks, and then exposed or not to diazepam or fluoxetine. Acute stress increased cortisol levels in group-housed zebrafish maintained in barren environment. Single-housed zebrafish displayed a blunted cortisol response to stress. Environmental enrichment also blunted the stress response and this was observed in both isolated and group-housed fish. The same blunting effect was observed in zebrafish exposed to diazepam or fluoxetine. We highlighted environmental enrichment as an alternative and/or complimentary therapeutic for reducing stress and as a promoter of animal welfare. PMID:27351465

  13. Environmental and Pharmacological Manipulations Blunt the Stress Response of Zebrafish in a Similar Manner

    PubMed Central

    Giacomini, Ana Cristina V. V.; Abreu, Murilo S.; Zanandrea, Rodrigo; Saibt, Natália; Friedrich, Maria Tereza; Koakoski, Gessi; Gusso, Darlan; Piato, Angelo L.; Barcellos, Leonardo J. G.

    2016-01-01

    Here we provide evidence that both pharmacological and environmental manipulations similarly blunt the cortisol release in response to an acute stressor in adult zebrafish. Different groups of fish were maintained isolated or group-housed in barren or enriched tanks, and then exposed or not to diazepam or fluoxetine. Acute stress increased cortisol levels in group-housed zebrafish maintained in barren environment. Single-housed zebrafish displayed a blunted cortisol response to stress. Environmental enrichment also blunted the stress response and this was observed in both isolated and group-housed fish. The same blunting effect was observed in zebrafish exposed to diazepam or fluoxetine. We highlighted environmental enrichment as an alternative and/or complimentary therapeutic for reducing stress and as a promoter of animal welfare. PMID:27351465

  14. The Zebrafish Annexin Gene Family

    PubMed Central

    Farber, Steven A.; De Rose, Robert A.; Olson, Eric S.; Halpern, Marnie E.

    2003-01-01

    The Annexins (ANXs) are a family of calcium- and phospholipid-binding proteins that have been implicated in many cellular processes, including channel formation, membrane fusion, vesicle transport, and regulation of phospholipase A2 activity. As a first step toward understanding in vivo function, we have cloned 11 zebrafish anx genes. Four genes (anx1a, anx2a, anx5,and anx11a) were identified by screening a zebrafish cDNA library with a Xenopus anx2 fragment. For these genes, full-length cDNA sequences were used to cluster 212 EST sequences generated by the Zebrafish Genome Resources Project. The EST analysis revealed seven additional anx genes that were subsequently cloned. The genetic map positions of all 11 genes were determined by using a zebrafish radiation hybrid panel. Sequence and syntenic relationships between zebrafish and human genes indicate that the 11 genes represent orthologs of human anx1,2,4,5,6,11,13,and suggest that several zebrafish anx genes resulted from duplications that arose after divergence of the zebrafish and mammalian genomes. Zebrafish anx genes are expressed in a wide range of tissues during embryonic and larval stages. Analysis of the expression patterns of duplicated genes revealed both redundancy and divergence, with the most similar genes having almost identical tissue-specific patterns of expression and with less similar duplicates showing no overlap. The differences in gene expression of recently duplicated anx genes could explain why highly related paralogs were maintained in the genome and did not rapidly become pseudogenes. PMID:12799347

  15. Two Zebrafish hsd3b Genes Are Distinct in Function, Expression, and Evolution.

    PubMed

    Lin, Jen-Chieh; Hu, Shing; Ho, Pei-Hung; Hsu, Hwei-Jan; Postlethwait, John H; Chung, Bon-chu

    2015-08-01

    HSD3B catalyzes the synthesis of δ4 steroids such as progesterone in the adrenals and gonads. Individuals lacking HSD3B2 activity experience congenital adrenal hyperplasia with imbalanced steroid synthesis. To develop a zebrafish model of HSD3B deficiency, we characterized 2 zebrafish hsd3b genes. Our phylogenetic and conserved synteny analyses showed that the tandemly duplicated human HSD3B1 and HSD3B2 genes are coorthologs of zebrafish hsd3b1 on chromosome 9 (Dre9), whereas the gene called hsd3b2 resides on Dre20 in an ancestral chromosome segment, from which its ortholog was lost in the tetrapod lineage. Zebrafish hsd3b1(Dre 9) was expressed in adult gonads and headkidney, which contains interrenal glands, the zebrafish counterpart of the tetrapod adrenal. Knockdown of hsd3b1(Dre 9) caused the interrenal and anterior pituitary to expand and pigmentation to increase, resembling human HSD3B2 deficiency. The zebrafish hsd3b2(Dre 20) gene was expressed in zebrafish early embryos as maternal transcripts that disappeared 1 day after fertilization. Morpholino inactivation of hsd3b2(Dre 20) led to embryo elongation, which was rescued by the injection of hsd3b2 mRNA. Thus, zebrafish hsd3b2(Dre 20) evolved independently of hsd3b1(Dre 9) with a morphogenetic function during early embryogenesis. Zebrafish hsd3b1(Dre 9), on the contrary, functions like mammalian HSD3B2, whose deficiency leads to congenital adrenal hyperplasia. PMID:25974401

  16. Acquisition of glial cells missing 2 Enhancers Contributes to a Diversity of Ionocytes in Zebrafish

    PubMed Central

    Shono, Takanori; Kurokawa, Daisuke; Miyake, Tsutomu; Okabe, Masataka

    2011-01-01

    Glial cells missing 2 (gcm2) encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid), gills, and H+-ATPase–rich cells (HRCs), a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na+-Cl− co-transporter–rich cells (NCCCs), another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes) and fugu (Fugu niphobles), the extant primitive ray-finned fishes Polypterus (Polypterus senegalus) and sturgeon (a hybrid of Huso huso × Acipenser ruhenus), and the amphibian Xenopus (Xenopus laevis). Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution. PMID:21858216

  17. Children (but not adults) judge similarity in own- and other-race faces by the color of their skin

    PubMed Central

    Balas, Benjamin; Peissig, Jessie; Moulson, Margaret

    2014-01-01

    Face shape and pigmentation are both diagnostic cues for face identification and categorization. In particular, both shape and pigmentation contribute to observers’ categorization of faces by race. Though many theoretical accounts of the behavioral other-race effect either explicitly or implicitly depend on differential use of visual information as a function of category expertise, there is little evidence that observers do in fact differentially rely upon distinct visual cues for own- and other-race faces. Presently, we examined how Asian and Caucasian children (4–6 years old) and adults use 3D shape and 2D pigmentation to make similarity judgments of White, Black, and Asian faces. Children in this age range are both capable of making category judgments about race, but are also sufficiently plastic with regard to the behavioral other-race effect that it seems as though their representations of facial appearance across different categories are still emerging. Using a simple match-to-sample similarity task, we found that children tend to use pigmentation to judge facial similarity more than adults, and also that own- vs. other-group category membership appears to influence how quickly children learn to use shape information more readily. We therefore suggest that children continue to adjust how different visual information is weighted during early and middle childhood and that experience with faces affects the speed at which adult-like weightings are established. PMID:25462031

  18. New facets of keratin K77: interspecies variations of expression and different intracellular location in embryonic and adult skin of humans and mice.

    PubMed

    Langbein, Lutz; Reichelt, Julia; Eckhart, Leopold; Praetzel-Wunder, Silke; Kittstein, Walter; Gassler, Nikolaus; Schweizer, Juergen

    2013-12-01

    The differential expression of keratins is central to the formation of various epithelia and their appendages. Structurally, the type II keratin K77 is closely related to K1, the prototypical type II keratin of the suprabasal epidermis. Here, we perform a developmental study on K77 expression in human and murine skin. In both species, K77 is expressed in the suprabasal fetal epidermis. While K77 appears after K1 in the human epidermis, the opposite is true for the murine tissue. This species-specific pattern of expression is also found in conventional and organotypic cultures of human and murine keratinocytes. Ultrastructure investigation shows that, in contrast to K77 intermediate filaments of mice, those of the human ortholog are not attached to desmosomes. After birth, K77 disappears without deleterious consequences from human epidermis while it is maintained in the adult mouse epidermis, where its presence has so far gone unnoticed. After targeted Krt1 gene deletion in mice, K77 is normally expressed but fails to functionally replace K1. Besides the epidermis, both human and mouse K77 are present in luminal duct cells of eccrine sweat glands. The demonstration of a K77 ortholog in platypus but not in non-mammalian vertebrates identifies K77 as an evolutionarily ancient component of the mammalian integument that has evolved different patterns of intracellular distribution and adult tissue expression in primates. PMID:24057875

  19. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish.

    PubMed

    Harrison, Michael R M; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C Geoffrey; Burns, Caroline E; Sucov, Henry M; Siekmann, Arndt F; Lien, Ching-Ling

    2015-05-26

    Interruption of the coronary blood supply severely impairs heart function with often fatal consequences for patients. However, the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  20. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  1. Automated Processing of Zebrafish Imaging Data: A Survey

    PubMed Central

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  2. Mitragynine Attenuates Withdrawal Syndrome in Morphine-Withdrawn Zebrafish

    PubMed Central

    Khor, Beng-Siang; Amar Jamil, Mohd Fadzly; Adenan, Mohamad Ilham; Chong Shu-Chien, Alexander

    2011-01-01

    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway. PMID:22205946

  3. Preference for ethanol in zebrafish following a single exposure

    PubMed Central

    Mathur, Priya; Berberoglu, Michael; Guo, Su

    2012-01-01

    Ethanol is one of the most widely abused drugs in the world. Its addictive property is believed to primarily stem from its ability to influence the brain reinforcement pathway evolved for mediating natural rewards. Although dopamine is a known component of the reinforcement pathway, clear molecular and cellular compositions of this pathway and its sensitivity to ethanol remain not well understood. Zebrafish has been increasingly used to model and understand human disease states, due to its genetic tractability and ease of maintenance. In this study, we determine whether adult zebrafish develop ethanol preference after a single exposure using a conditioned place preference (CPP) paradigm. Moreover, we establish a procedure that can be carried out in an automated and relatively high-throughput fashion. We find that zebrafish of the AB strain display significantly increased preference for the compartment where they received ethanol during a single 20 -minute exposure. The largest increase in preference is in response to a 1.5% ethanol administered in the tank water. The results demonstrate robust ethanol preference in zebrafish. Such a relatively high-throughput assay with automated tracking and response to a single ethanol exposure provides a potential means for a large-scale screening aimed at understanding the brain reinforcement pathway and its sensitivity to ethanol in this genetically tractable vertebrate. PMID:20974186

  4. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish.

    PubMed

    Khor, Beng-Siang; Jamil, Mohd Fadzly Amar; Adenan, Mohamad Ilham; Shu-Chien, Alexander Chong

    2011-01-01

    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway. PMID:22205946

  5. Determinism and stochasticity during maturation of the zebrafish antibody repertoire

    PubMed Central

    Jiang, Ning; Weinstein, Joshua A.; Penland, Lolita; White, Richard A.; Fisher, Daniel S.; Quake, Stephen R.

    2011-01-01

    It is thought that the adaptive immune system of immature organisms follows a more deterministic program of antibody creation than is found in adults. We used high-throughput sequencing to characterize the diversifying antibody repertoire in zebrafish over five developmental time points. We found that the immune system begins in a highly stereotyped state with preferential use of a small number of V (variable) D (diverse) J (joining) gene segment combinations, but that this stereotypy decreases dramatically as the zebrafish mature, with many of the top VDJ combinations observed in 2-wk-old zebrafish virtually disappearing by 1 mo. However, we discovered that, in the primary repertoire, there are strong correlations in VDJ use that increase with zebrafish maturity, suggesting that VDJ recombination involves a level of deterministic programming that is unexpected. This stereotypy is masked by the complex diversification processes of antibody maturation; the variation and lack of correlation in full repertoires between individuals appears to be derived from randomness in clonal expansion during the affinity maturation process. These data provide a window into the mechanisms of VDJ recombination and diversity creation and allow us to better understand how the adaptive immune system achieves diversity. PMID:21393572

  6. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish

    PubMed Central

    deCarvalho, Tagide N.; Subedi, Abhignya; Rock, Jason; Harfe, Brian D.; Thisse, Christine; Thisse, Bernard; Halpern, Marnie E.; Hong, Elim

    2014-01-01

    The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. While many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions. PMID:24753112

  7. Thrombin Generation in Zebrafish Blood

    PubMed Central

    Hemker, Coenraad; Lindhout, Theo; Kelchtermans, Hilde; de Laat, Bas

    2016-01-01

    To better understand hypercoagulability as an underlying cause for thrombosis, the leading cause of death in the Western world, new assays to study ex vivo coagulation are essential. The zebrafish is generally accepted as a good model for human hemostasis and thrombosis, as the hemostatic system proved to be similar to that in man. Their small size however, has been a hurdle for more widespread use in hemostasis related research. In this study we developed a method that enables the measurement of thrombin generation in a single drop of non-anticoagulated zebrafish blood. Pre-treatment of the fish with inhibitors of FXa and thrombin, resulted in a dose dependent diminishing of thrombin generation, demonstrating the validity of the assay. In order to establish the relationship between whole blood thrombin generation and fibrin formation, we visualized the resulting fibrin network by scanning electron microscopy. Taken together, in this study we developed a fast and reliable method to measure thrombin generation in whole blood collected from a single zebrafish. Given the similarities between coagulation pathways of zebrafish and mammals, zebrafish may be an ideal animal model to determine the effect of novel therapeutics on thrombin generation. Additionally, because of the ease with which gene functions can be silenced, zebrafish may serve as a model organism for mechanistical research in thrombosis and hemostasis. PMID:26872266

  8. Afferent Connectivity of the Zebrafish Habenulae

    PubMed Central

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  9. The first characterization of multidrug and toxin extrusion (MATE/SLC47) proteins in zebrafish (Danio rerio).

    PubMed

    Lončar, Jovica; Popović, Marta; Krznar, Petra; Zaja, Roko; Smital, Tvrtko

    2016-01-01

    Multidrug and toxin extrusion (MATE) proteins are involved in the extrusion of endogenous compounds and xenobiotics across the plasma membrane. They are conserved from bacteria to mammals, with different numbers of genes within groups. Here, we present the first data on identification and functional characterization of Mate proteins in zebrafish (Danio rerio). Phylogenetic analysis revealed six Mates in teleost fish, annotated as Mate3-8, which form a distinct cluster separated from the tetrapod MATEs/Mates. Synteny analysis showed that zebrafish mate genes are orthologous to human MATEs. Gene expression analysis revealed that all the mate transcripts were constitutively and differentially expressed during embryonic development, followed by pronounced and tissue-specific expression in adults. Functional analyses were performed using transport activity assays with model substrates after heterologous overexpression of five zebrafish Mates in HEK293T cells. The results showed that zebrafish Mates interact with both physiological and xenobiotic substances but also substantially differ with respect to the interacting compounds and interaction strength in comparison to mammalian MATEs/Mates. Taken together, our data clearly indicate a potentially important role for zebrafish Mate transporters in zebrafish embryos and adults and provide a basis for detailed functional characterizations of single zebrafish Mate transporters. PMID:27357367

  10. The first characterization of multidrug and toxin extrusion (MATE/SLC47) proteins in zebrafish (Danio rerio)

    PubMed Central

    Lončar, Jovica; Popović, Marta; Krznar, Petra; Zaja, Roko; Smital, Tvrtko

    2016-01-01

    Multidrug and toxin extrusion (MATE) proteins are involved in the extrusion of endogenous compounds and xenobiotics across the plasma membrane. They are conserved from bacteria to mammals, with different numbers of genes within groups. Here, we present the first data on identification and functional characterization of Mate proteins in zebrafish (Danio rerio). Phylogenetic analysis revealed six Mates in teleost fish, annotated as Mate3–8, which form a distinct cluster separated from the tetrapod MATEs/Mates. Synteny analysis showed that zebrafish mate genes are orthologous to human MATEs. Gene expression analysis revealed that all the mate transcripts were constitutively and differentially expressed during embryonic development, followed by pronounced and tissue-specific expression in adults. Functional analyses were performed using transport activity assays with model substrates after heterologous overexpression of five zebrafish Mates in HEK293T cells. The results showed that zebrafish Mates interact with both physiological and xenobiotic substances but also substantially differ with respect to the interacting compounds and interaction strength in comparison to mammalian MATEs/Mates. Taken together, our data clearly indicate a potentially important role for zebrafish Mate transporters in zebrafish embryos and adults and provide a basis for detailed functional characterizations of single zebrafish Mate transporters. PMID:27357367

  11. Nail psoriasis in an adult successfully treated with a series of herbal skin care products family – a case report.

    PubMed

    Tirant, M; Hercogovấ, J; Fioranelli, M; Gianfaldoni, S; Chokoeva, A A; Tchernev, G; Wollina, U; Novotny, F; Roccia, M G; Maximov, G K; França, K; Lotti, T

    2016-01-01

    Psoriasis is a common chronic inflammatory dermatosis that causes significant distress and morbidity. Approximately 50% of patients with cutaneous psoriasis and 90% of patients with psoriatic arthritis demonstrate nail involvement of their psoriasis. Left untreated, nail psoriasis may progress to debilitating nail disease that leads to not only impairment of function but also on quality of life. We report the case of a 50-year-old male patient with recalcitrant nail dystrophies on the fingers since the age of 40, who responded successfully to Dr. Michaels® product family. The patient had a 35-year history of plaque psoriasis localised on the scalp, ears, groin, limbs, and trunk and with psoriatic arthritis. The nail symptoms consisted of onycholysis, onychomycosis, leukonychia, transverse grooves, nail plate crumbling and paronychia of the periungal skin. This case represents the efficacy and safety of the Dr. Michaels® (Soratinex® and Nailinex®) product family with successful resolution of nail dystrophies and surrounding paronychia with no reported adverse events. PMID:27498654

  12. INDUCED AND SPONTANEOUS NEOPLASIA IN ZEBRAFISH.

    EPA Science Inventory

    To address the potential of zebrafish as a cancer model, it is important to determine the susceptibility of zebrafish to tumors, and to compare zebrafish tumors with human tumors. To determine whether the commonly-used germ line mutagen, ethylnitrosourea (ENU) induces tumors, we ...

  13. Zebrafish as a cancer model.

    PubMed

    Feitsma, Harma; Cuppen, Edwin

    2008-05-01

    The zebrafish has developed into an important model organism for biomedical research over the last decades. Although the main focus of zebrafish research has traditionally been on developmental biology, keeping and observing zebrafish in the lab led to the identification of diseases similar to humans, such as cancer, which subsequently became a subject for study. As a result, about 50 articles have been published since 2000 in which zebrafish were used as a cancer model. Strategies used include carcinogenic treatments, transplantation of mammalian cancer cells, forward genetic screens for proliferation or genomic instability, reverse genetic target-selected mutagenesis to inactivate known tumor suppressor genes, and the generation of transgenics to express human oncogenes. Zebrafish have been found to develop almost any tumor type known from human, with similar morphology and, according to gene expression array studies, comparable signaling pathways. However, tumor incidences are relatively low, albeit highly comparable between different mutants, and tumors develop late in life. In addition, tumor spectra are sometimes different when compared with mice and humans. Nevertheless, the zebrafish model has created its own niche in cancer research, complementing existing models with its specific experimental advantages and characteristics. Examples of these are imaging of tumor progression in living fish by fluorescence, treatment with chemical compounds, and screening possibilities not only for chemical modifiers but also for genetic enhancers and suppressors. This review aims to provide a comprehensive overview of the state of the art of zebrafish as a model in cancer research. (Mol Cancer Res 2008;6(5):685-94). PMID:18505914

  14. Elevated high-mobility group B1 levels in active adult-onset Still's disease associated with systemic score and skin rash.

    PubMed

    Jung, Ju-Yang; Suh, Chang-Hee; Sohn, Seonghyang; Nam, Jin-Young; Kim, Hyoun-Ah

    2016-08-01

    High-mobility group box-1 (HMGB1) is a nuclear protein, and such prototypical damage-associated molecular patterns mediate the immune response in the noninfectious inflammatory response. Adult-onset Still's disease (AOSD) is a systemic inflammatory disorder involved in the dysregulation of innate immunity. We investigated the serum HMGB1 level in patients with AOSD and evaluated its clinical significance. Blood samples were collected from 40 patients with active AOSD and 40 healthy controls (HC). Of the patients with AOSD, follow-up samples were collected from 16 patients after a resolution of AOSD disease activity. Serum HMGB1 levels in patients with AOSD were higher than those of the HC (10.0 ± 5.85 vs. 5.15 ± 1.79 ng/mL, p < 0.001). Serum HMGB1 levels were found to be correlated with C-reactive protein (CRP) and the systemic score. The AOSD patient who had a sore throat showed a higher serum HMGB1 level than those patients who did not, and the patient with a skin rash had higher levels than the patients without. In addition, the serum HMGB1 levels were decreased after the resolution of disease activity in the AOSD patients who were followed up. The serum HMGB1 levels were elevated in AOSD patients compared to the HC and were correlated with both CRP and the systemic score. The HMGB1 levels were associated with skin rash and a sore throat in AOSD patients. After the resolution of disease activity, serum HMGB1 levels were found to have decreased. PMID:27225247

  15. Adult burn patients with more than 60% TBSA involved-Meek and other techniques to overcome restricted skin harvest availability--the Viennese Concept.

    PubMed

    Lumenta, David B; Kamolz, Lars-Peter; Frey, Manfred

    2009-01-01

    Despite the fact that early excision and grafting has significantly improved outcome over the last decades, the management of severely burned adult patients with >/=60% total body surface area (% TBSA) burned still represents a challenging task for burn care specialists all over the world. In this article, we present our current treatment concept for this entity of severely burned patients and analyze its effect in a comparative cohort study. Surgical strategy comprised the use of split-thickness skin grafts (Meek, mesh) for permanent coverage, fluidized microsphere bead-beds for wound conditioning, temporary coverage (polyurethane sheets, Epigard; nanocrystalline silver dressings, Acticoat; synthetic copolymer sheets based on lactic acid, Suprathel; acellular bovine derived collagen matrices, Matriderm; allogeneic cultured keratinocyte sheets; and allogeneic split-thickness skin grafts), and negative-pressure wound therapy (vacuum-assisted closure). The autologous split-thickness skin graft expansion using the Meek technique for full-thickness burns and the delayed approach for treating dorsal burn wounds is discussed in detail. To demonstrate differences before and after the introduction of the Meek technique, we have compared patients of 2007 with >/=60% TBSA (n = 10) to those in a matched observation period (n = 7). In the first part of the comparative analysis, all patients of the two samples were analyzed with regard to age, abbreviated burn severity index, Baux, different entities of % TBSA, and survival. In the second step, only the survivors of both years were separated in two groups as follows: patients receiving skin grafts, using the Meek technique (n = 6), were compared with those without Meek grafting (n = 4). When comparing the severely burned patients of 2007 with a cohort of 2006, there were no differences for age (2007: 46.4 +/- 13.4 vs. 2006: 39.1 +/- 14.8 years), abbreviated burn severity index score (2007: 12.2 +/- 1.0 vs. 2006: 12.1 +/- 1

  16. Skin Cancer

    MedlinePlus

    ... are specialized skin cells that produce pigment called melanin. The melanin pigment produced by melanocytes gives skin its color. ... absorbing and scattering the energy. People with more melanin have darker skin and better protection from UV ...

  17. Skin Conditions

    MedlinePlus

    Your skin is your body's largest organ. It covers and protects your body. Your skin Holds body fluids in, preventing dehydration Keeps harmful ... it Anything that irritates, clogs, or inflames your skin can cause symptoms such as redness, swelling, burning, ...

  18. Maintenance of Zebrafish Lines at the European Zebrafish Resource Center

    PubMed Central

    Borel, Nadine; Ferg, Marco; Maier, Jana Viktoria; Strähle, Uwe

    2016-01-01

    Abstract We have established a European Zebrafish Resource Center (EZRC) at the KIT. This center not only maintains and distributes a large number of existing mutant and transgenic zebrafish lines but also gives zebrafish researchers access to screening services and technologies such as imaging and high-throughput sequencing, provided by the Institute of Toxicology and Genetics (ITG). The EZRC maintains and distributes the stock collection of the Nüsslein-Volhard laboratory, comprising over 2000 publicly released mutations, as frozen sperm samples. Within the framework of the ZF-HEALTH EU project, the EZRC distributes over 10,000 knockout mutations from the Sanger Institute (United Kingdom), as well as over 100 mutant and transgenic lines from other sources. In this article, we detail the measures we have taken to ensure the health of our fish, including hygiene, quarantine, and veterinary inspections. PMID:27351617

  19. Laser-inflicted injury of zebrafish embryonic skeletal muscle.

    PubMed

    Otten, Cécile; Abdelilah-Seyfried, Salim

    2013-01-01

    , intensity, and number of pulses. Due to its transparency and external embryonic development, the zebrafish embryo is highly amenable for both laser-induced injury and for studying the subsequent recovery. Between 1 and 2 days post-fertilization, somitic skeletal muscle cells progressively undergo maturation from anterior to posterior due to the progression of somitogenesis from the trunk to the tail. At these stages, embryos spontaneously twitch and initiate swimming. The zebrafish has recently been recognized as an important vertebrate model organism for the study of tissue regeneration, as many types of tissues (cardiac, neuronal, vascular etc.) can be regenerated after injury in the adult zebrafish. PMID:23407156

  20. New zebrafish models of neurodegeneration.

    PubMed

    Martín-Jiménez, Rebeca; Campanella, Michelangelo; Russell, Claire

    2015-06-01

    In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms. PMID:25903297

  1. Cryotherapy - skin

    MedlinePlus

    Cryosurgery - skin; Warts - freezing; Warts - cryotherapy ... Cryotherapy or cryosurgery may be used to: Remove warts Destroy precancerous skin lesions (actinic keratoses or solar keratoses) In rare cases, ...

  2. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish

    PubMed Central

    Lundegaard, Pia R.; Anastasaki, Corina; Grant, Nicola J.; Sillito, Rowland R.; Zich, Judith; Zeng, Zhiqiang; Paranthaman, Karthika; Larsen, Anders Peter; Armstrong, J. Douglas; Porteous, David J.; Patton, E. Elizabeth

    2015-01-01

    Summary Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance the repositioning of MEK inhibitors as behavior stabilizers in the context of increased cAMP. PMID:26388333

  3. Retro-orbital blood acquisition facilitates circulating microRNA measurement in zebrafish with paracetamol hepatotoxicity

    PubMed Central

    Vliegenthart, A D B; Lewis, P Starkey; Tucker, C S; Del Pozo, J; Rider, S; Antoine, D J; Dubost, V; Westphal, M; Moulin, P; Bailey, M A; Moggs, J G; Goldring, C E; Park, B K; Dear, J W

    2014-01-01

    Paracetamol is the commonest cause of acute liver failure in the Western world and biomarkers are needed that report early hepatotoxicity. The liver enriched microRNA, miR-122, is a promising biomarker currently being qualified in humans. For biomarker development and drug toxicity screening the zebrafish has advantages over rodents, however, blood acquisition in this model remains technically challenging. We developed a method for collecting blood from the adult zebrafish by retro-orbital (RO) bleeding and compared it to the commonly used ‘lateral incision’ (LI) method. The RO technique was more reliable in terms of the blood yield and minimum amount per fish. This new RO technique was used in a zebrafish model of paracetamol toxicity. Paracetamol induced dose-dependent increases in liver cell necrosis, serum ALT activity and mortality. In situ hybridization localised expression of miR-122 to the cytoplasm of zebrafish hepatocytes. After collection by RO bleeding, serum miR-122 could be measured and this microRNA was substantially increased by paracetamol 24 hours after exposure, an increase that was prevented by delayed (3 hours post start of paracetamol exposure) treatment with acetylcysteine. In summary, collection of blood by RO bleeding facilitated measurement of miR-122 in a zebrafish model of paracetamol hepatotoxicity. The zebrafish represents a new species for measurement of circulating microRNA biomarkers that are translational and can bridge between fish and humans. PMID:24625211

  4. The smell of "anxiety": Behavioral modulation by experimental anosmia in zebrafish.

    PubMed

    Abreu, Murilo S; Giacomini, Ana C V V; Kalueff, Allan V; Barcellos, Leonardo J G

    2016-04-01

    Olfaction is strongly involved in the regulation of fish behavior, including reproductive, defensive, social and migration behaviors. In fish, anosmia (the lack of olfaction) can be induced experimentally, impairing their ability to respond to various olfactory stimuli. Here, we examine the effects of experimental lidocaine-induced anosmia on anxiety-like behavior and whole-body cortisol levels in adult zebrafish (Danio rerio). We show that experimentally-induced anosmia reduces anxiolytic-like behavioral effects of fluoxetine and seems to interact with anxiogenic effect of stress also paralleling cortisol responses in zebrafish. These findings provide first experimental evidence that temporary anosmia modulates anxiety-like behaviors and physiology in adult zebrafish. PMID:26821184

  5. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation

    PubMed Central

    Guh, Ying-Jey; Lin, Chia-Hao; Hwang, Pung-Pung

    2015-01-01

    Fish, like mammals, have to maintain their body fluid ionic and osmotic homeostasis through sophisticated iono-/osmoregulation mechanisms, which are conducted mainly by ionocytes of the gill (the skin in embryonic stages), instead of the renal tubular cells in mammals. Given the advantages in terms of genetic database availability and manipulation, zebrafish is an emerging model for research into regulatory and integrative physiology. At least five types of ionocytes, HR, NaR, NCC, SLC26, and KS cells, have been identified to carry out Na+ uptake/H+ secretion/NH4+ excretion, Ca2+ uptake, Na+/Cl- uptake, K+ secretion, and Cl- uptake/HCO3- secretion, respectively, through distinct sets of transporters. Several hormones, namely isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyorid hormone 1, catecholamines, and the renin-angiotensin-system, have been demonstrated to positively or negatively regulate ion transport through specific receptors at different ionocytes stages, at either the transcriptional/translational or posttranslational level. The knowledge obtained using zebrafish answered many long-term contentious or unknown issues in the field of fish iono-/osmoregulation. The homology of ion transport pathways and hormone systems also means that the zebrafish model informs studies on mammals or other animal species, thereby providing insights into related fields. PMID:26600749

  6. A crystal-clear zebrafish for in vivo imaging

    PubMed Central

    Antinucci, Paride; Hindges, Robert

    2016-01-01

    The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes. PMID:27381182

  7. A crystal-clear zebrafish for in vivo imaging.

    PubMed

    Antinucci, Paride; Hindges, Robert

    2016-01-01

    The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes. PMID:27381182

  8. Cloning, localization, and functional expression of the electrogenic Na+ bicarbonate cotransporter (NBCe1) from zebrafish.

    PubMed

    Sussman, Caroline R; Zhao, Jinhua; Plata, Consuelo; Lu, Jing; Daly, Christopher; Angle, Nathan; DiPiero, Jennifer; Drummond, Iain A; Liang, Jennifer O; Boron, Walter F; Romero, Michael F; Chang, Min-Hwang

    2009-10-01

    Mutations in the electrogenic Na+/nHCO3- cotransporter (NBCe1, SLC4A4) cause severe proximal renal tubular acidosis, glaucoma, and cataracts in humans, indicating NBCe1 has a critical role in acid-base homeostasis and ocular fluid transport. To better understand the homeostatic roles and protein ontogeny of NBCe1, we have cloned, localized, and downregulated NBCe1 expression in zebrafish, and examined its transport characteristics when expressed in Xenopus oocytes. Zebrafish NBCe1 (zNBCe1) is 80% identical to published mammalian NBCe1 cDNAs. Like other fish NBCe1 clones, zebrafish NBCe1 is most similar to the pancreatic form of mammalian NBC (Slc4a4-B) but appears to be the dominant isoform found in zebrafish. In situ hybridization of embryos demonstrated mRNA expression in kidney pronephros and eye by 24 h postfertilization (hpf) and gill and brain by 120 hpf. Immunohistochemical labeling demonstrated expression in adult zebrafish eye and gill. Morpholino knockdown studies demonstrated roles in eye and brain development and caused edema, indicating altered fluid and electrolyte balance. With the use of microelectrodes to measure membrane potential (Vm), voltage clamp (VC), intracellular pH (pH(i)), or intracellular Na+ activity (aNa(i)), we examined the function of zNBCe1 expressed in Xenopus oocytes. Zebrafish NBCe1 shared transport properties with mammalian NBCe1s, demonstrating electrogenic Na+ and HCO3- transport as well as similar drug sensitivity, including inhibition by 4,4'-diiso-thiocyano-2,2'-disulfonic acid stilbene and tenidap. These data indicate that NBCe1 in zebrafish shares many characteristics with mammalian NBCe1, including tissue distribution, importance in systemic water and electrolyte balance, and electrogenic transport of Na+ and HCO3-. Thus zebrafish promise to be useful model system for studies of NBCe1 physiology. PMID:19625604

  9. Quantifying Aggressive Behavior in Zebrafish.

    PubMed

    Teles, Magda C; Oliveira, Rui F

    2016-01-01

    Aggression is a complex behavior that influences social relationships and can be seen as adaptive or maladaptive depending on the context and intensity of expression. A model organism suitable for genetic dissection of the underlying neural mechanisms of aggressive behavior is still needed. Zebrafish has already proven to be a powerful vertebrate model organism for the study of normal and pathological brain function. Despite the fact that zebrafish is a gregarious species that forms shoals, when allowed to interact in pairs, both males and females express aggressive behavior and establish dominance hierarchies. Here, we describe two protocols that can be used to quantify aggressive behavior in zebrafish, using two different paradigms: (1) staged fights between real opponents and (2) mirror-elicited fights. We also discuss the methodology for the behavior analysis, the expected results for both paradigms, and the advantages and disadvantages of each paradigm in face of the specific goals of the study. PMID:27464816

  10. Mayo Clinic Zebrafish Facility Overview.

    PubMed

    Leveque, Ryan E; Clark, Karl J; Ekker, Stephen C

    2016-07-01

    The zebrafish (Danio rerio) is a premier nonmammalian vertebrate model organism. This small aquatic fish is utilized in multiple disciplines in the Mayo Clinic community and by many laboratories around the world because of its biological similarity to humans, its advanced molecular genetics, the elucidation of its genome sequence, and the ever-expanding and outstanding new biological tools now available to the zebrafish researcher. The Mayo Clinic Zebrafish Facility (MCZF) houses ∼2,000 tanks annotated using an in-house, Internet cloud-based bar-coding system tied to our established zfishbook.org web infrastructure. Paramecia are the primary food source for larval fish rearing, using a simplified culture protocol described herein. The MCZF supports the specific ongoing research in a variety of laboratories, while also serving as a local hub for new scientists as they learn to tap into the potential of this model system for understanding normal development, disease, and as models of health. PMID:27023741

  11. Developmental toxicity screening in zebrafish.

    PubMed

    McCollum, Catherine W; Ducharme, Nicole A; Bondesson, Maria; Gustafsson, Jan-Ake

    2011-06-01

    Given the ever-increasing toxic exposure ubiquitously present in our environment as well as emerging evidence that these exposures are hazardous to human health, the current rodent-based regulations are proving inadequate. In the process of overhauling risk assessment methodology, a nonrodent test organism, the zebrafish, is emerging as tractable for medium- and high-throughput assessments, which may help to accelerate the restructuring of standards. Zebrafish have high developmental similarity to mammals in most aspects of embryo development, including early embryonic processes, and on cardiovascular, somite, muscular, skeletal, and neuronal systems. Here, we briefly describe the development of these systems and then chronicle the toxic impacts assessed following chemical exposure. We also compare the available data in zebrafish toxicity assays with two databases containing mammalian toxicity data. Finally, we identify gaps in our collective knowledge that are ripe for future studies. PMID:21671351

  12. The Skin Cancer and Sun Knowledge (SCSK) Scale: Validity, Reliability, and Relationship to Sun-Related Behaviors among Young Western Adults

    ERIC Educational Resources Information Center

    Day, Ashley K.; Wilson, Carlene; Roberts, Rachel M.; Hutchinson, Amanda D.

    2014-01-01

    Increasing public knowledge remains one of the key aims of skin cancer awareness campaigns, yet diagnosis rates continue to rise. It is essential we measure skin cancer knowledge adequately so as to determine the nature of its relationship to sun-related behaviors. This study investigated the psychometric properties of a new measure of skin cancer…

  13. The Effects of Cocaine on Heart Rate and Electrocardiogram in Zebrafish (Danio rerio)

    PubMed Central

    Mersereau, Erik J.; Poitra, Shelby L.; Espinoza, Ana; Crossley, Dane A.; Darland, Tristan

    2015-01-01

    Zebrafish (Danio rerio) have been used as a model organism to explore the genetic basis for responsiveness to addictive drugs like cocaine. However, very little is known about how the physiological response to cocaine is mediated in zebrafish. In the present study electrocardiograms (ECG) were recorded from adult zebrafish treated with cocaine. Treatment with cocaine resulted in a bell-shaped dose response curve with a maximal change in heart rate seen using 5mg/L cocaine. Higher doses resulted in a higher percentage of fish showing bradycardia. The cocaine-induced tachycardia was blocked by co-treatment with propranolol, a ß-adrenergic antagonist, but potentiated by co-treatment with phentolamine, a α-adrenergic antagonist. Co-treatment with atropine, a classic cholinergic antagonist, had no effect on cocaine-induced tachycardia. Cocaine treatment of adult fish changed the ECG of treated fish, inducing a dose-dependent increase in QT interval after adjusting for heart rate (QTc), while not affecting the PR or QRS intervals. The acute effects of cocaine on heart rate were examined in 5-day old embryos to see if zebrafish might serve as a suitable model organism to study possible links of embryonic physiological response to subsequent adult behavioral response to the drug. Cocaine treatment of 5-day old zebrafish embryos also resulted in a bell-shaped dose response curve, with maximal tachycardia achieved with 10mg/L. The response in embryonic fish was thus comparable to that in adults and raises the possibility that the effects of embryonic exposure to cocaine on the developing cardiovascular system can be effectively modeled in zebrafish. PMID:25847362

  14. Object recognition memory in zebrafish.

    PubMed

    May, Zacnicte; Morrill, Adam; Holcombe, Adam; Johnston, Travis; Gallup, Joshua; Fouad, Karim; Schalomon, Melike; Hamilton, Trevor James

    2016-01-01

    The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour. PMID:26376244

  15. Sensitivity to dioxin decreases as zebrafish mature.

    PubMed

    Lanham, Kevin A; Peterson, Richard E; Heideman, Warren

    2012-06-01

    The embryos of teleost fish are exquisitely sensitive to the toxic effects of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, several lines of evidence suggest that adults are less sensitive to TCDD. To better understand and characterize this difference between early life stage and adults, we exposed zebrafish (Danio rerio) to graded TCDD concentrations at different ages. The LD(50) for embryos exposed at 1 day post-fertilization (dpf) was more than an order of magnitude lower than it was for juveniles exposed at 30 dpf. The latency between exposure and response also increased with age. Embryo toxicity was characterized by marked cardiovascular collapse and heart malformation, whereas juveniles exposed at 30 dpf had no detectable cardiovascular toxicity. In juveniles, the effects of TCDD exposure included stunted growth, altered pigmentation, and skeletal malformations. Furthermore, the transcriptional profile produced in hearts exposed to TCDD as embryos had very little overlap with the transcriptional changes induced by TCDD at 30 dpf. The early cardiotoxic response was associated with fish exposed prior to metamorphosis from the larval to the adult body plan at approximately 14 dpf. Our results show conclusively that the developmental stage at the time of exposure controls the toxic response to TCDD. PMID:22403156

  16. Skin Biomes.

    PubMed

    Fyhrquist, N; Salava, A; Auvinen, P; Lauerma, A

    2016-05-01

    The cutaneous microbiome has been investigated broadly in recent years and some traditional perspectives are beginning to change. A diverse microbiome exists on human skin and has a potential to influence pathogenic microbes and modulate the course of skin disorders, e.g. atopic dermatitis. In addition to the known dysfunctions in barrier function of the skin and immunologic disturbances, evidence is rising that frequent skin disorders, e.g. atopic dermatitis, might be connected to a dysbiosis of the microbial community and changes in the skin microbiome. As a future perspective, examining the skin microbiome could be seen as a potential new diagnostic and therapeutic target in inflammatory skin disorders. PMID:27056560

  17. Pax7 is required for establishment of the xanthophore lineage in zebrafish embryos

    PubMed Central

    Nord, Hanna; Dennhag, Nils; Muck, Joscha; von Hofsten, Jonas

    2016-01-01

    The pigment pattern of many animal species is a result of the arrangement of different types of pigment-producing chromatophores. The zebrafish has three different types of chromatophores: black melanophores, yellow xanthophores, and shimmering iridophores arranged in a characteristic pattern of golden and blue horizontal stripes. In the zebrafish embryo, chromatophores derive from the neural crest cells. Using pax7a and pax7b zebrafish mutants, we identified a previously unknown requirement for Pax7 in xanthophore lineage formation. The absence of Pax7 results in a severe reduction of xanthophore precursor cells and a complete depletion of differentiated xanthophores in embryos as well as in adult zebrafish. In contrast, the melanophore lineage is increased in pax7a/pax7b double-mutant embryos and larvae, whereas juvenile and adult pax7a/pax7b double-mutant zebrafish display a severe decrease in melanophores and a pigment pattern disorganization indicative of a xanthophore- deficient phenotype. In summary, we propose a novel role for Pax7 in the early specification of chromatophore precursor cells. PMID:27053658

  18. Carbon Quantum Dots for Zebrafish Fluorescence Imaging.

    PubMed

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  19. Zebrafish orthologs of human muscular dystrophy genes

    PubMed Central

    Steffen, Leta S; Guyon, Jeffrey R; Vogel, Emily D; Beltre, Rosanna; Pusack, Timothy J; Zhou, Yi; Zon, Leonard I; Kunkel, Louis M

    2007-01-01

    Background Human muscular dystrophies are a heterogeneous group of genetic disorders which cause decreased muscle strength and often result in premature death. There is no known cure for muscular dystrophy, nor have all causative genes been identified. Recent work in the small vertebrate zebrafish Danio rerio suggests that mutation or misregulation of zebrafish dystrophy orthologs can also cause muscular degeneration phenotypes in fish. To aid in the identification of new causative genes, this study identifies and maps zebrafish orthologs for all known human muscular dystrophy genes. Results Zebrafish sequence databases were queried for transcripts orthologous to human dystrophy-causing genes, identifying transcripts for 28 out of 29 genes of interest. In addition, the genomic locations of all 29 genes have been found, allowing rapid candidate gene discovery during genetic mapping of zebrafish dystrophy mutants. 19 genes show conservation of syntenic relationships with humans and at least two genes appear to be duplicated in zebrafish. Significant sequence coverage on one or more BAC clone(s) was also identified for 24 of the genes to provide better local sequence information and easy updating of genomic locations as the zebrafish genome assembly continues to evolve. Conclusion This resource supports zebrafish as a dystrophy model, suggesting maintenance of all known dystrophy-associated genes in the zebrafish genome. Coupled with the ability to conduct genetic screens and small molecule screens, zebrafish are thus an attractive model organism for isolating new dystrophy-causing genes/pathways and for use in high-throughput therapeutic discovery. PMID:17374169

  20. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    PubMed Central

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  1. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-07-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.

  2. Microsporidiosis in Zebrafish Research Facilities

    PubMed Central

    Sanders, Justin L.; Watral, Virginia; Kent, Michael L.

    2014-01-01

    Pseudoloma neurophilia (Microsporidia) is the most common pathogen detected in zebrafish (Danio rerio) from research facilities. The parasite infects the central nervous system and muscle and may be associated with emaciation and skeletal deformities. However, many fish exhibit sub-clinical infections. Another microsporidium, Pleistophora hyphessobryconis, has recently been detected in a few zebrafish facilities. Here, we review the methods for diagnosis and detection, modes of transmission, and approaches used to control microsporidia in zebrafish, focusing on P. neurophilia. The parasite can be readily transmitted by feeding spores or infected tissues, and we show that cohabitation with infected fish is also an effective means of transmission. Spores are released from live fish in various manners, including through the urine, feces, and sex products during spawning. Indeed, P. neurophilia infects both the eggs and ovarian tissues, where we found concentrations ranging from 12,000 to 88,000 spores per ovary. Hence, various lines of evidence support the conclusion that maternal transmission is a route of infection: spores are numerous in ovaries and developing follicles in infected females, spores are present in spawned eggs and water from spawning tanks based on polymerase chain reaction tests, and larvae are very susceptible to the infection. Furthermore, egg surface disinfectants presently used in zebrafish laboratories are ineffective against microsporidian spores. At this time, the most effective method for prevention of these parasites is avoidance. PMID:23382342

  3. Caffeine neuroprotects against dexamethasone-induced anxiety-like behaviour in the Zebrafish (Danio rerio).

    PubMed

    Khor, Yee Min; Soga, Tomoko; Parhar, Ishwar S

    2013-01-15

    The early-life stress has critical impact on brain development which can lead to long-term effects on brain functions during adulthood. It has been reported that caffeine possesses a protective effect in neurodegenerative diseases. Thus, this study investigates the potential of caffeine to protect brain functions from adverse effects due to stress exposure during early-life development in the male zebrafish. In the first part of this study, synthetic glucocorticoid, dexamethasone (DEX) (2-200 mg/L for 24 h) was used to induce stress effects in the zebrafish larvae from 4 to 5 days post-fertilisation (dpf) and the effect of DEX administration on zebrafish larvae on anxiety-like behaviour during adulthood in novel tank test was investigated. Next, the possible protective effect of caffeine pre-treatment (5-50 mg/L for 24 h from 3 to 4dpf) before DEX administration was studied. DEX-treated adult male zebrafish showed higher anxiety levels in behavioural tests, as seen in longer latency to enter the top part of the tank, lower transition numbers between the top and bottom parts with more time spent at the bottom and lesser time spent at the top and lower distance travelled at top part. The effect of DEX on anxiety-like behaviour was dose-dependent. Importantly, adult male zebrafish pre-treated with caffeine before DEX treatment did not show any anxiety-like behaviour. These results show that exposure to stress during early-life leads to anxiety-like behaviour in the adult male zebrafish but pre-treatment with caffeine protects from stress-induced anxiety. PMID:23044054

  4. Phosphodiesterase 1A Modulates Cystogenesis in Zebrafish

    PubMed Central

    Ward, Christopher J.; Leightner, Amanda C.; Smith, Jordan L.; Agarwal, Reema; Harris, Peter C.; Torres, Vicente E.

    2014-01-01

    Substantial evidence indicates the importance of elevated cAMP in polycystic kidney disease (PKD). Accumulation of cAMP in cystic tissues may be, in part, caused by enhanced adenylyl cyclase activity, but inhibition of cAMP degradation by phosphodiesterases (PDE) likely has an important role, because cAMP is inactivated much faster than it is synthesized. PDE1 is the only PDE family activated by Ca2+, which is reduced in PKD cells. To assess the contribution of the PDE1A subfamily to renal cyst formation, we examined the expression and function of PDE1A in zebrafish. We identified two splice isoforms with alternative starts corresponding to human PDE1A1 and PDE1A4. Expression of the two isoforms varied in embryos and adult tissues, and both isoforms hydrolyzed cAMP with Ca2+/calmodulin dependence. Depletion of PDE1A in zebrafish embryos using splice- and translation-blocking morpholinos (MOs) caused pronephric cysts, hydrocephalus, and body curvature. Human PDE1A RNA and the PKA inhibitors, H89 and Rp-cAMPS, partially rescued phenotypes of pde1a morphants. Additionally, MO depletion of PDE1A aggravated phenotypes in pkd2 morphants, causing more severe body curvature, and human PDE1A RNA partially rescued pkd2 morphant phenotypes, pronephric cysts, hydrocephalus, and body curvature. Together, these data indicate the integral role of PDE1A and cAMP signaling in renal development and cystogenesis, imply that PDE1A activity is altered downstream of polycystin-2, and suggest that PDE1A is a viable drug target for PKD. PMID:24700876

  5. Senescence marker protein 30 (SMP30)/regucalcin (RGN) expression decreases with aging, acute liver injuries and tumors in zebrafish

    SciTech Connect

    Fujisawa, Koichi; Terai, Shuji; Hirose, Yoshikazu; Takami, Taro; Yamamoto, Naoki; Sakaida, Isao

    2011-10-22

    Highlights: {yields} Zebrafish SMP30/RGN mRNA expression decreases with aging. {yields} Decreased expression was observed in liver tumors as compared to the surrounding area. {yields} SMP30/RGN is important for liver proliferation and tumorigenesis. -- Abstract: Senescence marker protein 30 (SMP30)/regucalcin (RGN) is known to be related to aging, hepatocyte proliferation and tumorigenesis. However, expression and function of non-mammalian SMP30/RGN is poorly understood. We found that zebrafish SMP30/RGN mRNA expression decreases with aging, partial hepatectomy and thioacetamide-induced acute liver injury. SMP30/RGN expression was also greatly decreased in a zebrafish liver cell line. In addition, we induced liver tumors in adult zebrafish by administering diethylnitrosamine. Decreased expression was observed in foci, hepatocellular carcinomas, cholangiocellular carcinomas and mixed tumors as compared to the surrounding area. We thus showed the importance of SMP30/RGN in liver proliferation and tumorigenesis.

  6. Studying rod photoreceptor development in zebrafish

    PubMed Central

    Morris, A.C.; Fadool, J.M.

    2009-01-01

    The zebrafish has rapidly become a favored model vertebrate organism, well suited for studies of developmental processes using large-scale genetic screens. In particular, zebrafish morphological and behavioral genetic screens have led to the identification of genes important for development of the retinal photoreceptors. This may help clarify the genetic mechanisms underlying human photoreceptor development and dysfunction in retinal diseases. In this review, we present the advantages of zebrafish as a vertebrate model organism, summarize retinal and photoreceptor cell development in zebrafish, with emphasis on the rod photoreceptors, and describe zebrafish visual behaviors that can be used for genetic screens. We then describe some of the photoreceptor cell mutants that have been isolated in morphological and behavioral screens and discuss the limitations of current screening methods for uncovering mutations that specifically affect rod function. Finally, we present some alternative strategies to target the rod developmental pathway in zebrafish. PMID:16199068

  7. Dioxin Induction of Transgenerational Inheritance of Disease in Zebrafish

    PubMed Central

    Baker, Tracie R.; King-Heiden, Tisha C.; Peterson, Richard E.; Heideman, Warren

    2014-01-01

    Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD) is an aryl hydrocarbon receptor (AHR) agonist, an endocrine disruptor, and a potent global pollutant. TCDD exposure is associated with diseases of almost every organ system, and its toxicity is highly conserved across vertebrates. While the acute developmental effects of dioxin exposure have been extensively studied, the ability of early sublethal exposure to produce toxicity in adulthood or subsequent generations is poorly understood. This type of question is difficult to study because of the time frame of the effects. With human subjects, such a study could span more than a lifetime. We have chosen zebrafish (Danio rerio) as a model because they are vertebrates with short generation times and consistent genetic backgrounds. Zebrafish have very modest housing needs, facilitating single and multigenerational studies with minimal time and expense. We have used this model to identify transgenerational effects of TCDD on skeletal development, sex ratio, and male-mediated decreases in reproductive capacity. Here we compare these findings with transgenerational effects described in laboratory rodent species. We propose that the zebrafish is a cost-effective model system for evaluating the transgenerational effects of toxic chemicals and their role in the fetal basis of adult disease. PMID:25194296

  8. Assessing memory in zebrafish using the one-trial test.

    PubMed

    Lucon-Xiccato, Tyrone; Dadda, Marco

    2014-07-01

    Zebrafish represents a very promising model to study memory function and impairment in vertebrates. The one-trial memory test has proven to be a reliable method to assess memory in mammals without the need for an extensive training procedure or the learning of a rule. To investigate whether such a test is suitable for zebrafish we observed adult fish in a modification of the original one-trial memory test developed for rats. Subjects were allowed to familiarize themselves with a new object for 25 min (exposure phase) and were then required to discriminate between the familiar object and a novel object that differed in shape and color (test phase). In both phases zebrafish showed a clear tendency to explore a new object, can memorize the characteristics of this object and use this information when a second object was presented irrespective of the delay (2, 6 or 24h) that separated the two phases. These results suggest that memory performance in fish could be also assessed using this very simple test. PMID:24704579

  9. Recent findings on vertebrate developmental immunity using the zebrafish model.

    PubMed

    Galindo-Villegas, Jorge

    2016-01-01

    To grant survival against sterile or microbe induced inflammation, all animals rely on correct immune system functioning. The development of immunity occurs in vertebrates during embryogenesis in a process called hematopoiesis, which is characterized by the formation of blood cellular components such as embryonic erythrocytes and primitive macrophages. These cells are formed in a sterile environment from a rare subset of pluripotent hematopoietic stem cells (HSC) during a brief period of the primitive hematopoietic wave. Diverse signals, like Notch, are indispensable in HSC emergence and differentiation. However, to successfully replicate the process in vitro using pluripotent precursors, the full set of required signals is still a matter of debate. Among the latest findings, proinflammatory signals produced by transient primitive myelocites in zebrafish have been seen to act as essential mediators in establishing the HSC program of the adult vertebrate hematopoietic system. In this regard, the zebrafish immune model has emerged as a feasible live vertebrate model for examining developmental immunity and related host-microbe interactions, both at the molecular and cellular level. Thus, using the zebrafish embryo, this review summarizes recent findings, on the signals required for immune development and further maturation of the system, in a context where no adaptive immune response has yet been developed. PMID:26589453

  10. Analyzing the structure and function of neuronal circuits in zebrafish

    PubMed Central

    Friedrich, Rainer W.; Genoud, Christel; Wanner, Adrian A.

    2013-01-01

    The clever choice of animal models has been instrumental for many breakthrough discoveries in life sciences. One of the outstanding challenges in neuroscience is the in-depth analysis of neuronal circuits to understand how interactions between large numbers of neurons give rise to the computational power of the brain. A promising model organism to address this challenge is the zebrafish, not only because it is cheap, transparent and accessible to sophisticated genetic manipulations but also because it offers unique advantages for quantitative analyses of circuit structure and function. One of the most important advantages of zebrafish is its small brain size, both at larval and adult stages. Small brains enable exhaustive measurements of neuronal activity patterns by optical imaging and facilitate large-scale reconstructions of wiring diagrams by electron microscopic approaches. Such information is important, and probably essential, to obtain mechanistic insights into neuronal computations underlying higher brain functions and dysfunctions. This review provides a brief overview over current methods and motivations for dense reconstructions of neuronal activity and connectivity patterns. It then discusses selective advantages of zebrafish and provides examples how these advantages are exploited to study neuronal computations in the olfactory bulb. PMID:23630467

  11. Chromatin immunoprecipitation and an open chromatin assay in zebrafish erythrocytes.

    PubMed

    Yang, S; Ott, C J; Rossmann, M P; Superdock, M; Zon, L I; Zhou, Y

    2016-01-01

    Zebrafish is an excellent genetic and developmental model for the study of vertebrate development and disease. Its ability to produce an abundance of transparent, externally developed embryos has facilitated large-scale genetic and chemical screens for the identification of critical genes and chemical factors that modulate developmental pathways. These studies can have profound implications for the diagnosis and treatment of a variety of human diseases. Recent advancements in molecular and genomic studies have provided valuable tools and resources for comprehensive and high-resolution analysis of epigenomes during cell specification and lineage differentiation throughout development. In this chapter, we describe two simple methods to evaluate protein-DNA interaction and chromatin architecture in erythrocytes from adult zebrafish. These are chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) and an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). These techniques, together with gene expression profiling, are useful for analyzing epigenomic regulation of cell specification, differentiation, and function during zebrafish development in both normal and disease models. PMID:27443937

  12. Regionalisation of the skin.

    PubMed

    Johansson, Jeanette A; Headon, Denis J

    2014-01-01

    The skin displays marked anatomical variation in thickness, colour and in the appendages that it carries. These regional distinctions arise in the embryo, likely founded on a combinatorial positional code of transcription factor expression. Throughout adult life, the skin's distinct anatomy is maintained through both cell autonomous epigenetic processes and by mesenchymal-epithelial induction. Despite the readily apparent anatomical differences in skin characteristics across the body, several fundamental questions regarding how such regional differences first arise and then persist are unresolved. However, it is clear that the skin's positional code is at the molecular level far more detailed than that discernible at the phenotypic level. This provides a latent reservoir of anatomical complexity ready to surface if perturbed by mutation, hormonal changes, ageing or experiment. PMID:24361971

  13. The defective expression of gtpbp3 related to tRNA modification alters the mitochondrial function and development of zebrafish.

    PubMed

    Chen, Danni; Li, Feng; Yang, Qingxian; Tian, Miao; Zhang, Zengming; Zhang, Qinghai; Chen, Ye; Guan, Min-Xin

    2016-08-01

    Human mitochondrial DNA (mtDNA) mutations have been associated with a wide spectrum of clinical abnormalities. However, nuclear modifier gene(s) modulate the phenotypic expression of pathogenic mtDNA mutations. In our previous investigation, we identified the human GTPBP3 related to mitochondrial tRNA modification, acting as a modifier to influence of deafness-associated mtDNA mutation. Mutations in GTPBP3 have been found to be associated with other human diseases. However, the pathophysiology of GTPBP3-associated disorders is still not fully understood. Here, we reported the generation and characterization of Gtpbp3 depletion zebrafish model using antisense morpholinos. Zebrafish gtpbp3 has three isoforms localized at mitochondria. Zebrafish gtpbp3 is expressed at various embryonic stages and in multiple tissues. In particular, the gtpbp3 was expressed more abundantly in adult zebrafish ovary and testis. The expression of zebrafish gtpbp3 can functionally restore the growth defects caused by the mss1/gtpbp3 mutation in yeast. A marked decrease of mitochondrial ATP generation accompanied by increased levels of apoptosis and reactive oxygen species were observed in gtpbp3 knockdown zebrafish embryos. The Gtpbp3 morphants exhibited defective in embryonic development including bleeding, melenin, oedema and curved tails within 5days post fertilization, as compared with uninjected controls. The co-injection of wild type gtpbp3 mRNA partially rescued these defects in Gtpbp3 morphants. These data suggest that zebrafish Gtpbp3 is a structural and functional homolog of human and yeast GTPBP3. The mitochondrial dysfunction caused by defective Gtpbp3 may alter the embryonic development in the zebrafish. In addition, this zebrafish model of mitochondrial disease may provide unique opportunities for studying defective tRNA modification, mitochondrial biogenesis, and pathophysiology of mitochondrial disorders. PMID:27184967

  14. Hooked! Modeling human disease in zebrafish.

    PubMed

    Santoriello, Cristina; Zon, Leonard I

    2012-07-01

    Zebrafish have been widely used as a model system for studying developmental processes, but in the last decade, they have also emerged as a valuable system for modeling human disease. The development and function of zebrafish organs are strikingly similar to those of humans, and the ease of creating mutant or transgenic fish has facilitated the generation of disease models. Here, we highlight the use of zebrafish for defining disease pathways and for discovering new therapies. PMID:22751109

  15. Shuttle box learning in zebrafish (Danio rerio)

    PubMed Central

    Pather, Shalini; Gerlai, Robert

    2009-01-01

    Zebrafish is used in forward genetic and drug screening and is gaining popularity in behavioral brain research but high throughput learning paradigms are lacking. The sight of conspecifics has been shown to be rewarding in zebrafish. Here, in a novel paradigm, subjects learn to respond to alternating presentation of computer animated zebrafish images. The simplicity and computerization of the paradigm will make it useful for high throughput screening. PMID:18926855

  16. Skin Aging

    MedlinePlus

    ... too. Sunlight is a major cause of skin aging. You can protect yourself by staying out of ... person has smoked. Many products claim to revitalize aging skin or reduce wrinkles, but the Food and ...

  17. Skin Complications

    MedlinePlus

    ... drugs that can help clear up this condition. Day-to-Day Skin Care See our tips for daily skin ... Risk? Diagnosis Lower Your Risk Risk Test Alert Day Prediabetes My Health Advisor Tools to Know Your ...

  18. Skin lumps

    MedlinePlus

    ... and contains fluid or semisolid material Benign skin growths such as seborrheic keratoses or neurofibromas Boils , painful, red bumps usually involving an infected hair follicle Corn or callus, caused by skin thickening in response ...

  19. Skin Pigment

    MedlinePlus

    ... Professional Version Pigment Disorders Overview of Skin Pigment Albinism Vitiligo Hyperpigmentation Melasma Melanin is the brown pigment ... dark-skinned people produce the most. People with albinism have little or no melanin and thus their ...

  20. Development of oxygen sensing in the gills of zebrafish.

    PubMed

    Jonz, Michael G; Nurse, Colin A

    2005-04-01

    Previous studies have described the morphology, innervation and O(2)-chemoreceptive properties of neuroepithelial cells (NECs) of the zebrafish gill filaments. The present work describes the ontogenesis of these cells, and the formation of functional O(2)-sensing pathways in developing zebrafish. Confocal immunofluorescence was performed on whole-mount gill preparations using antibodies against serotonin (5-HT) and a zebrafish-derived neuronal marker (zn-12) to identify the appearance and innervation of gill NECs during larval stages. NECs were first expressed in gill filament primordia of larvae at 5 days postfertilization (d.p.f.) and were fully innervated by 7 d.p.f. In vivo ventilation frequency analysis revealed that a behavioural response to hypoxia (11.2+/-2.8 min(-1)) developed in embryos as early as 2 d.p.f., and a significant increase (P<0.05) in the ventilatory response to hypoxia (200.8+/-23.0 min(-1)) coincided with innervation of NECs of the filaments. In addition, exogenous application of quinidine, a blocker of O(2)-sensitive background K(+) channels in NECs, induced hyperventilation in adults in a dose-dependent manner and revealed the development of a quinidine-sensitive ventilatory response in 7 d.p.f. larvae. This study shows that NEC innervation in the gill filaments may account for the development of a functional O(2)-sensing pathway and the hyperventilatory response to hypoxia in zebrafish larvae. At earlier stages, however, O(2)-sensing must occur through another pathway. The possibility that a new type of 5-HT-positive NEC of the gill arches may account for this earlier hypoxic response is discussed. PMID:15802677

  1. Pharmacological and Toxicological Effects of Lithium in Zebrafish

    PubMed Central

    2014-01-01

    Lithium is the paradigmatic treatment for bipolar disorder and has been widely used as a mood stabilizer due to its ability to reduce manic and depressive episodes, efficiency in long-term mood stabilization, and effectiveness in reducing suicide risks. Despite many decades of clinical use, the molecular targets of lithium are not completely understood. However, they are credited at least partially to glycogen synthase kinase 3 (GSK3) inhibition, mimicking and exacerbating Wnt signaling pathway activation. There has been a great effort to characterize lithium cellular and system actions, aiming to improve treatment effectiveness and reduce side effects. There is also a growing concern about lithium’s impact as an environmental contaminant and its effects on development. In this scenario, zebrafish is a helpful model organism to gather more information on lithium’s effects in different systems and developmental stages. The rapid external development, initial transparency, capacity to easily absorb substances, and little space required for maintenance and experimentation, among other advantages, make zebrafish a suitable model. In addition, zebrafish has been established as an effective model organism in behavioral and neuropharmacological studies, reacting to a wide range of psychoactive drugs, including lithium. So far only a limited number of studies evaluated the toxicological impact of lithium on zebrafish development and demonstrated morphological, physiological, and behavioral effects that may be informative regarding human findings. Further studies dedicated to characterize and evaluate the underlying mechanisms of the toxic effects and the potential impact of exposure on developing and adult individuals are necessary to establish safe clinical management guidelines for women with bipolar disorder of childbearing age and safety disposal guidelines for pharmaceutical neuroactive compounds. PMID:24798681

  2. Neurobehavioral Impairments Caused by Developmental Imidacloprid Exposure in Zebrafish

    PubMed Central

    Crosby, Emily B.; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.

    2015-01-01

    BACKGROUND Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. METHODS Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4 h to 5 d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. RESULTS In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strain of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. DISCUSSION Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. PMID:25944383

  3. Correlated expression of retrocopies and parental genes in zebrafish.

    PubMed

    Zhong, Zaixuan; Yang, Liandong; Zhang, Yong E; Xue, Yu; He, Shunping

    2016-04-01

    Previous studies of the function and evolution of retrocopies in plants, Drosophila and non-mammalian chordates provided new insights into the origin of novel genes. However, little is known about retrocopies and their parental genes in teleosts, and it remains obscure whether there is any correlation between them. The present study aimed to characterize the spatial and temporal expression profiles of retrogenes and their parental genes based on RNA-Seq data from Danio rerio embryos and tissues from adult. Using a modified pipeline, 306 retrocopies were identified in the zebrafish genome, most of which exhibited ancient retroposition, and 76 of these showed a Ks < 2.0. Expression of a retrocopy is generally expected to present no correlation with its parental gene, as regulatory regions are not part of the retroposition event. Here, this assumption was tested based on RNA-Seq data from eight stages and thirteen tissue types of zebrafish. However, the result suggested that retrocopies displayed correlated expression with their parental genes. The level of correlation was found to decrease during embryogenesis, but to increase slightly within a tissue using Ks as the proxy for the divergence time. Tissue specificity was also observed: retrocopies were found to be expressed at a more specific level compared with their parental genes. Unlike Drosophila, which has sex chromosomes, zebrafish do not show testis-biased expression. Our study elaborated temporal and spatial patterns of expression of retrocopies in zebrafish, examined the correlation between retrocopies and parental genes and analyzed potential source of regulated elements of retrocopies, which lay a foundation for further functional study of retrocopies. PMID:26561303

  4. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish

    PubMed Central

    Jeong, Yun-Mi; Ryu, Jeong-Im; Choi, Tae-Young; Bae, Myung-Ae; Son, Woo-Chan

    2016-01-01

    MicroRNA-122 (miRNA-122), also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen) at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM) and cell death in larval liver (5 μM) at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish. PMID:27563662

  5. Fibroblast growth factor (Fgf) signaling pathway regulates liver homeostasis in zebrafish.

    PubMed

    Tsai, Su-Mei; Liu, Da-Wei; Wang, Wen-Pin

    2013-04-01

    In mammals, fibroblast growth factor (FGF) signaling controls liver specification and regulates the metabolism of lipids, cholesterol, and bile acids. FGF signaling also promotes hepatocyte proliferation, and helps detoxify hepatotoxin during liver regeneration after partial hepatectomy. However, the function of Fgf in zebrafish liver is not yet well understood, specifically for postnatal homeostasis. The current study analyzed the expression of fgf receptors (fgfrs) in the liver of zebrafish. We then investigated the function of Fgf signaling in the zebrafish liver by expressing a dominant-negative Fgf receptor in hepatocytes (lfabp:dnfgfr1-egfp, lf:dnfr). Histological analysis showed that our genetic intervention resulted in a small liver size with defected medial expansion of developing livers in transgenic (Tg) larvae. Morphologically, the liver lobe of lf:dnfr adult fish was shorter than that of control. Ballooning degeneration of hepatocytes was observed in fish as young as 3 months. Further examination revealed the development of hepatic steatosis and cholestasis. In adult Tg fish, we unexpectedly observed increased liver-to-body-weight ratios, with higher percentages of proliferating hepatocytes. Considering all these findings, we concluded that as in mammals, in adult zebrafish the metabolism of lipid and bile acids in the liver are regulated by Fgf signaling. Disruption of the Fgf signal-mediated metabolism might indirectly affect hepatocyte proliferation. PMID:22820869

  6. Skin graft

    MedlinePlus

    ... caused a large amount of skin loss Burns Cosmetic reasons or reconstructive surgeries where there has been skin damage or skin ... anesthesia are: Reactions to medicines Problems with breathing Risks for this surgery are: Bleeding Chronic pain (rarely) Infection Loss of ...

  7. Skin Aging

    MedlinePlus

    Your skin changes as you age. You might notice wrinkles, age spots and dryness. Your skin also becomes thinner and loses fat, making it ... heal, too. Sunlight is a major cause of skin aging. You can protect yourself by staying out ...

  8. Differential Expression Patterns and Developmental Roles of Duplicated Scinderin-Like Genes in Zebrafish

    PubMed Central

    Jia, Sujuan; Nakaya, Naoki; Piatigorsky, Joram

    2011-01-01

    Scinderin, the closest homologue of the actin-severing protein, gelsolin, has two similar paralogs (Scinla and Scinlb) in zebrafish. Scinla is abundant in the adult cornea; Scinlb comprises considerably less corneal protein. Here we show that scinla is expressed in the nose, lens, brain, cornea and annular ligament of the iridocorneal angle; by contrast, scinlb is expressed in the hatching gland, floor plate, notochord, otic vesicle, brain, pharynx, cartilage, swim bladder and cornea. Activity of scinla and scinlb promoter fragments driving the EGFP reporter gene in transgenic zebrafish resembled scinla or scinlb expression. Previously, we showed that reduction of scinla by injection of antisense morpholino oligonucleotides ventralized embryos; here specific reduction of scinlb expression led to subtle brain abnormalities associated with increased cell death, decreased shhb expression in the floor plate, and slightly reduced eye distance. Thus, scinla and scinlb have different expression patterns and developmental roles during zebrafish development. PMID:19681161

  9. The zebrafish as a model of heart regeneration.

    PubMed

    Raya, Angel; Consiglio, Antonella; Kawakami, Yasuhiko; Rodriguez-Esteban, Concepcion; Izpisúa-Belmonte, Juan Carlos

    2004-01-01

    Regeneration is a complex biological process by which animals can restore the shape, structure and function of body parts lost after injury, or after experimental amputation. Only a few species of vertebrates display the capacity to regenerate body parts during adulthood. In the case of the heart, newts display a remarkable ability to regenerate large portions of myocardium after amputation, although the mechanisms underlying this process have not been addressed. Recently, it has been shown that adult zebrafish can also regenerate their hearts, thus offering new possibilities for experimentally approaching this fascinating biological phenomenon. The first insights into heart regeneration gained by studying this model organism are reviewed here. PMID:15671662

  10. Developmental role of acetylcholinesterase in impulse control in zebrafish

    PubMed Central

    Parker, Matthew O.; Brock, Alistair J.; Sudwarts, Ari; Teh, Muy-Teck; Combe, Fraser J.; Brennan, Caroline H.

    2015-01-01

    Cellular and molecular processes that mediate individual variability in impulsivity, a key behavioral component of many neuropsychiatric disorders, are poorly understood. Zebrafish heterozygous for a nonsense mutation in ache (achesb55/+) showed lower levels of impulsivity in a 5-choice serial reaction time task (5-CSRTT) than wild type and ache+∕+. Assessment of expression of cholinergic (nAChR), serotonergic (5-HT), and dopamine (DR) receptor mRNA in both adult and larval (9 dpf) achesb55/+ revealed significant downregulation of chrna2, chrna5, and drd2 mRNA in achesb55/+ larvae, but no differences in adults. Acute exposure to cholinergic agonist/antagonists had no effect on impulsivity, supporting the hypothesis that behavioral effects observed in adults were due to lasting impact of developmental alterations in cholinergic and dopaminergic signaling. This shows the cross-species role of cholinergic signaling during brain development in impulsivity, and suggests zebrafish may be a useful model for the role of cholinergic pathways as a target for therapeutic advances in addiction medicine. PMID:26528153

  11. Childhood Physical and Sexual Abuse in Caribbean Young Adults and Its Association with Depression, Post-Traumatic Stress, and Skin Bleaching

    PubMed Central

    James, Caryl; Seixas, Azizi A; Harrison, Abigail; Jean-Louis, Girardin; Butler, Mark; Zizi, Ferdinand; Samuels, Alafia

    2016-01-01

    Background The global prevalence of skin depigmentation/skin bleaching among blacks, estimated at 35%, is on the rise and is associated with a host of negative health and medical consequences. Current etiological approaches do not fully capture the emotional and psychological underpinnings of skin bleaching. The current study investigated the potential mediating role of depression, or post-traumatic stress symptoms (avoidance and hyperarousal) on the relationship between childhood physical and sexual abuse (CPSA) and skin bleaching. Methods A total of 1226 university participants (ages 18–30 years and 63.4% female) from three Caribbean countries (Jamaica, Barbados, and Grenada) provided data for the current analysis. They all completed self-reported measures of general demographic information along with the short screening scale for posttraumatic stress disorder (DSM-IV), childhood trauma, and skin bleaching questions. Results The prevalence of skin bleaching in our study was 25.4%. Our findings showed that individuals who bleached their skin were more likely to have been abused as children (21.6% versus 13.5%, p<0.001), were more likely to have significant symptoms of trauma (34.1% versus 24.0%, p=0.005), and were more likely to have significant depression (43.7% versus 35.1%, p=0.032). We found that trauma-related hyperarousal symptoms positively mediated the relationship between childhood physical and sexual abuse and skin bleaching (Indirect Effect=0.03, p<0.05), while avoidance (Indirect Effect=0.000, p>0.05) and depressive (Indirect Effect=0.005, p>0.05) symptoms did not. Conclusion The presence of trauma symptoms and childhood physical and sexual abuse (CPSA) may increase the likelihood of skin bleaching. Findings suggest that further exploration is needed to ascertain if the presence of skin bleaching warrants being also screened for trauma. PMID:27019771

  12. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis.

    PubMed

    Singh, Ajeet Pratap; Dinwiddie, April; Mahalwar, Prateek; Schach, Ursula; Linker, Claudia; Irion, Uwe; Nüsslein-Volhard, Christiane

    2016-08-01

    The neural crest is a transient, multipotent embryonic cell population in vertebrates giving rise to diverse cell types in adults via intermediate progenitors. The in vivo cell-fate potential and lineage segregation of these postembryonic progenitors is poorly understood, and it is unknown if and when the progenitors become fate restricted. We investigate the fate restriction in the neural crest-derived stem cells and intermediate progenitors in zebrafish, which give rise to three distinct adult pigment cell types: melanophores, iridophores, and xanthophores. By inducing clones in sox10-expressing cells, we trace and quantitatively compare the pigment cell progenitors at four stages, from embryogenesis to metamorphosis. At all stages, a large fraction of the progenitors are multipotent. These multipotent progenitors have a high proliferation ability, which diminishes with fate restriction. We suggest that multipotency of the nerve-associated progenitors lasting into metamorphosis may have facilitated the evolution of adult-specific traits in vertebrates. PMID:27453500

  13. Use of the TetON System to Study Molecular Mechanisms of Zebrafish Regeneration.

    PubMed

    Wehner, Daniel; Jahn, Christopher; Weidinger, Gilbert

    2015-01-01

    The zebrafish has become a very important model organism for studying vertebrate development, physiology, disease, and tissue regeneration. A thorough understanding of the molecular and cellular mechanisms involved requires experimental tools that allow for inducible, tissue-specific manipulation of gene expression or signaling pathways. Therefore, we and others have recently adapted the TetON system for use in zebrafish. The TetON system facilitates temporally and spatially-controlled gene expression and we have recently used this tool to probe for tissue-specific functions of Wnt/beta-catenin signaling during zebrafish tail fin regeneration. Here we describe the workflow for using the TetON system to achieve inducible, tissue-specific gene expression in the adult regenerating zebrafish tail fin. This includes the generation of stable transgenic TetActivator and TetResponder lines, transgene induction and techniques for verification of tissue-specific gene expression in the fin regenerate. Thus, this protocol serves as blueprint for setting up a functional TetON system in zebrafish and its subsequent use, in particular for studying fin regeneration. PMID:26168286

  14. Generation of Parabiotic Zebrafish Embryos by Surgical Fusion of Developing Blastulae.

    PubMed

    Hagedorn, Elliott J; Cillis, Jennifer L; Curley, Caitlyn R; Patch, Taylor C; Li, Brian; Blaser, Bradley W; Riquelme, Raquel; Zon, Leonard I; Shah, Dhvanit I

    2016-01-01

    Surgical parabiosis of two animals of different genetic backgrounds creates a unique scenario to study cell-intrinsic versus cell-extrinsic roles for candidate genes of interest, migratory behaviors of cells, and secreted signals in distinct genetic settings. Because parabiotic animals share a common circulation, any blood or blood-borne factor from one animal will be exchanged with its partner and vice versa. Thus, cells and molecular factors derived from one genetic background can be studied in the context of a second genetic background. Parabiosis of adult mice has been  used extensively to research aging, cancer, diabetes, obesity, and brain development. More recently, parabiosis of zebrafish embryos has been used to study the developmental biology of hematopoiesis. In contrast to mice, the transparent nature of zebrafish embryos permits the direct visualization of cells in the parabiotic context, making it a uniquely powerful method for investigating fundamental cellular and molecular mechanisms. The utility of this technique, however, is limited by a steep learning curve for generating the parabiotic zebrafish embryos. This protocol provides a step-by-step method on how to surgically fuse the blastulae of two zebrafish embryos of different genetic backgrounds to investigate the role of candidate genes of interest. In addition, the parabiotic zebrafish embryos are tolerant to heat shock, making temporal control of gene expression possible. This method does not require a sophisticated set-up and has broad applications for studying cell migration, fate specification, and differentiation in vivo during embryonic development. PMID:27341538

  15. Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration.

    PubMed

    Magno, Lílian Danielle Paiva; Fontes, Aldo; Gonçalves, Beatriz Maria Necy; Gouveia, Amauri

    2015-08-01

    Anxiety is a complex disorder; thus, its mechanisms remain unclear. Zebrafish (Danio rerio) are a promising pharmacological model for anxiety research. Light/dark preference test is a behaviorally validated measure of anxiety in zebrafish; however, it requires pharmacological validation. We sought to evaluate the sensitivity of the light/dark preference test in adult zebrafish by immersing them in drug solutions containing clonazepam, buspirone, imipramine, fluoxetine, paroxetine, haloperidol, risperidone, propranolol, or ethanol. The time spent in the dark environment, the latency time to first crossing, and the number of midline crossings were analyzed. Intermediate concentrations of clonazepam administered for 600s decreased the time spent in the dark and increased locomotor activity. Buspirone reduced motor activity. Imipramine and fluoxetine increased time spent in the dark and the first latency, and decreased the number of alternations. Paroxetine did not alter the time in the dark; however, it increased the first latency time and decreased locomotor activity. Haloperidol decreased the time spent in the dark at low concentrations. Risperidone and propranolol did not change any parameters. Ethanol reduced the time spent in the dark and increased the number of crossings at intermediate concentrations. These results corroborate the previous work using intraperitoneal drug administration in zebrafish and rodents, suggesting that water drug delivery in zebrafish can effectively be used as an animal anxiety model. PMID:26026898

  16. A novel TRIM family member, Trim69, regulates zebrafish development through p53-mediated apoptosis.

    PubMed

    Han, Ruiqin; Zhao, Qing; Zong, Shudong; Miao, Shiying; Song, Wei; Wang, Linfang

    2016-05-01

    Trim69 contains the hallmark domains of a tripartite motif (TRIM) protein, including a Ring-finger domain, B-box domain, and coiled-coil domain. Trim69 is structurally and evolutionarily conserved in zebrafish, mouse, rat, human, and chimpanzee. The role of this protein is unclear, however, so we investigated its function in zebrafish development. Trim69 is extensively expressed in zebrafish adults and developing embryos-particularly in the testis, brain, ovary, and heart-and its expression decreases in a time- and stage-dependent manner. Loss of trim69 in zebrafish induces apoptosis and activates apoptosis-related processes; indeed, the tp53 pathway was up-regulated in response to the knockdown. Expression of human trim69 rescued the apoptotic phenotype, while overexpression of trim69 does not increase cellular apoptosis. Taken together, our results suggest that trim69 participates in tp53-mediated apoptosis during zebrafish development. Mol. Reprod. Dev. 83: 442-454, 2016. © 2016 Wiley Periodicals, Inc. PMID:27031046

  17. The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome

    PubMed Central

    Miller, Galen W.; Truong, Lisa; Barton, Carrie L.; Labut, Edwin M.; Lebold, Katie M.; Traber, Maret G.; Tanguay, Robert L.

    2014-01-01

    The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin Edeficient parental diet (E−) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E− diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E− embryos at 48 h post-fertilization (hpf), embryos were collected from each group at 36 hpf. Lab embryos differentially expressed (p < 0.01) 946 transcripts compared with the E+ embryos, and 2656 transcripts compared with the E− embryos. The differences in protein, fat and micronutrient intakes in zebrafish fed the Lab compared with the E + diet demonstrate that despite overt morphologic consistency, significant differences in gene expression occurred. Moreover, functional analysis of the significant transcripts in the E−embryos suggested perturbed energy metabolism, leading to overt malformations and mortality. Thus, these findings demonstrate that parental zebrafish diet has a direct impact on the embryonic transcriptome. PMID:24657723

  18. The zebrafish anatomy and stage ontologies: representing the anatomy and development of Danio rerio

    PubMed Central

    2014-01-01

    Background The Zebrafish Anatomy Ontology (ZFA) is an OBO Foundry ontology that is used in conjunction with the Zebrafish Stage Ontology (ZFS) to describe the gross and cellular anatomy and development of the zebrafish, Danio rerio, from single cell zygote to adult. The zebrafish model organism database (ZFIN) uses the ZFA and ZFS to annotate phenotype and gene expression data from the primary literature and from contributed data sets. Results The ZFA models anatomy and development with a subclass hierarchy, a partonomy, and a developmental hierarchy and with relationships to the ZFS that define the stages during which each anatomical entity exists. The ZFA and ZFS are developed utilizing OBO Foundry principles to ensure orthogonality, accessibility, and interoperability. The ZFA has 2860 classes representing a diversity of anatomical structures from different anatomical systems and from different stages of development. Conclusions The ZFA describes zebrafish anatomy and development semantically for the purposes of annotating gene expression and anatomical phenotypes. The ontology and the data have been used by other resources to perform cross-species queries of gene expression and phenotype data, providing insights into genetic relationships, morphological evolution, and models of human disease. PMID:24568621

  19. Advances in the Study of Heart Development and Disease Using Zebrafish

    PubMed Central

    Brown, Daniel R.; Samsa, Leigh Ann; Qian, Li; Liu, Jiandong

    2016-01-01

    Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications. PMID:27335817

  20. Characterization of Sleep in Zebrafish and Insomnia in Hypocretin Receptor Mutants

    PubMed Central

    Yokogawa, Tohei; Marin, Wilfredo; Faraco, Juliette; Pézeron, Guillaume; Appelbaum, Lior; Zhang, Jian; Rosa, Frédéric; Mourrain, Philippe; Mignot, Emmanuel

    2007-01-01

    Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin) in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates. PMID:17941721

  1. The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome.

    PubMed

    Miller, Galen W; Truong, Lisa; Barton, Carrie L; Labut, Edwin M; Lebold, Katie M; Traber, Maret G; Tanguay, Robert L

    2014-06-01

    The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin E-deficient parental diet (E-) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E- diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E- embryos at 48h post-fertilization (hpf), embryos were collected from each group at 36hpf. Lab embryos differentially expressed (p<0.01) 946 transcripts compared with the E+ embryos, and 2656 transcripts compared with the E- embryos. The differences in protein, fat and micronutrient intakes in zebrafish fed the Lab compared with the E+ diet demonstrate that despite overt morphologic consistency, significant differences in gene expression occurred. Moreover, functional analysis of the significant transcripts in the E- embryos suggested perturbed energy metabolism, leading to overt malformations and mortality. Thus, these findings demonstrate that parental zebrafish diet has a direct impact on the embryonic transcriptome. PMID:24657723

  2. Upregulation of Leukemia Inhibitory Factor (LIF) during the Early Stage of Optic Nerve Regeneration in Zebrafish

    PubMed Central

    Ogai, Kazuhiro; Kuwana, Ayaka; Hisano, Suguru; Nagashima, Mikiko; Koriyama, Yoshiki; Sugitani, Kayo; Mawatari, Kazuhiro; Nakashima, Hiroshi; Kato, Satoru

    2014-01-01

    Fish retinal ganglion cells (RGCs) can regenerate their axons after optic nerve injury, whereas mammalian RGCs normally fail to do so. Interleukin 6 (IL-6)-type cytokines are involved in cell differentiation, proliferation, survival, and axon regrowth; thus, they may play a role in the regeneration of zebrafish RGCs after injury. In this study, we assessed the expression of IL-6-type cytokines and found that one of them, leukemia inhibitory factor (LIF), is upregulated in zebrafish RGCs at 3 days post-injury (dpi). We then demonstrated the activation of signal transducer and activator of transcription 3 (STAT3), a downstream target of LIF, at 3–5 dpi. To determine the function of LIF, we performed a LIF knockdown experiment using LIF-specific antisense morpholino oligonucleotides (LIF MOs). LIF MOs, which were introduced into zebrafish RGCs via a severed optic nerve, reduced the expression of LIF and abrogated the activation of STAT3 in RGCs after injury. These results suggest that upregulated LIF drives Janus kinase (Jak)/STAT3 signaling in zebrafish RGCs after nerve injury. In addition, the LIF knockdown impaired axon sprouting in retinal explant culture in vitro; reduced the expression of a regeneration-associated molecule, growth-associated protein 43 (GAP-43); and delayed functional recovery after optic nerve injury in vivo. In this study, we comprehensively demonstrate the beneficial role of LIF in optic nerve regeneration and functional recovery in adult zebrafish. PMID:25162623

  3. Smyd5 plays pivotal roles in both primitive and definitive hematopoiesis during zebrafish embryogenesis

    PubMed Central

    Fujii, Tomoaki; Tsunesumi, Shin-ichiro; Sagara, Hiroshi; Munakata, Miyo; Hisaki, Yoshihiro; Sekiya, Takao; Furukawa, Yoichi; Sakamoto, Kazuhiro; Watanabe, Sumiko

    2016-01-01

    Methylation of histone tails plays a pivotal role in the regulation of a wide range of biological processes. SET and MYND domain-containing protein (SMYD) is a methyltransferase, five family members of which have been identified in humans. SMYD1, SMYD2, SMYD3, and SMYD4 have been found to play critical roles in carcinogenesis and/or the development of heart and skeletal muscle. However, the physiological functions of SMYD5 remain unknown. To investigate the function of Smyd5 in vivo, zebrafish were utilised as a model system. We first examined smyd5 expression patterns in developing zebrafish embryos. Smyd5 transcripts were abundantly expressed at early developmental stages and then gradually decreased. Smyd5 was expressed in all adult tissues examined. Loss-of-function analysis of Smyd5 was then performed in zebrafish embryos using smyd5 morpholino oligonucleotide (MO). Embryos injected with smyd5-MO showed normal gross morphological development, including of heart and skeletal muscle. However, increased expression of both primitive and definitive hematopoietic markers, including pu.1, mpx, l-plastin, and cmyb, were observed. These phenotypes of smyd5-MO zebrafish embryos were also observed when we introduced mutations in smyd5 gene with the CRISPR/Cas9 system. As the expression of myeloid markers was elevated in smyd5 loss-of-function zebrafish, we propose that Smyd5 plays critical roles in hematopoiesis. PMID:27377701

  4. Smyd5 plays pivotal roles in both primitive and definitive hematopoiesis during zebrafish embryogenesis.

    PubMed

    Fujii, Tomoaki; Tsunesumi, Shin-Ichiro; Sagara, Hiroshi; Munakata, Miyo; Hisaki, Yoshihiro; Sekiya, Takao; Furukawa, Yoichi; Sakamoto, Kazuhiro; Watanabe, Sumiko

    2016-01-01

    Methylation of histone tails plays a pivotal role in the regulation of a wide range of biological processes. SET and MYND domain-containing protein (SMYD) is a methyltransferase, five family members of which have been identified in humans. SMYD1, SMYD2, SMYD3, and SMYD4 have been found to play critical roles in carcinogenesis and/or the development of heart and skeletal muscle. However, the physiological functions of SMYD5 remain unknown. To investigate the function of Smyd5 in vivo, zebrafish were utilised as a model system. We first examined smyd5 expression patterns in developing zebrafish embryos. Smyd5 transcripts were abundantly expressed at early developmental stages and then gradually decreased. Smyd5 was expressed in all adult tissues examined. Loss-of-function analysis of Smyd5 was then performed in zebrafish embryos using smyd5 morpholino oligonucleotide (MO). Embryos injected with smyd5-MO showed normal gross morphological development, including of heart and skeletal muscle. However, increased expression of both primitive and definitive hematopoietic markers, including pu.1, mpx, l-plastin, and cmyb, were observed. These phenotypes of smyd5-MO zebrafish embryos were also observed when we introduced mutations in smyd5 gene with the CRISPR/Cas9 system. As the expression of myeloid markers was elevated in smyd5 loss-of-function zebrafish, we propose that Smyd5 plays critical roles in hematopoiesis. PMID:27377701

  5. Sensitive skin.

    PubMed

    Misery, L; Loser, K; Ständer, S

    2016-02-01

    Sensitive skin is a clinical condition defined by the self-reported facial presence of different sensory perceptions, including tightness, stinging, burning, tingling, pain and pruritus. Sensitive skin may occur in individuals with normal skin, with skin barrier disturbance, or as a part of the symptoms associated with facial dermatoses such as rosacea, atopic dermatitis and psoriasis. Although experimental studies are still pending, the symptoms of sensitive skin suggest the involvement of cutaneous nerve fibres and neuronal, as well as epidermal, thermochannels. Many individuals with sensitive skin report worsening symptoms due to environmental factors. It is thought that this might be attributed to the thermochannel TRPV1, as it typically responds to exogenous, endogenous, physical and chemical stimuli. Barrier disruptions and immune mechanisms may also be involved. This review summarizes current knowledge on the epidemiology, potential mechanisms, clinics and therapy of sensitive skin. PMID:26805416

  6. Multilevel assessment of ivermectin effects using different zebrafish life stages.

    PubMed

    Oliveira, Rhaul; Grisolia, Cesar K; Monteiro, Marta S; Soares, Amadeu M V M; Domingues, Inês

    2016-09-01

    Several studies have shown high toxicity of the veterinary pharmaceutical ivermectin (a semisynthetic avermectin) for aquatic invertebrates however, few data is found for fish species. The present study evaluated the toxicity of ivermectin, to embryos, juveniles, and adults of zebrafish at different levels of biological organization including developmental, behavioural and biochemical. Toxicity tests were performed based on OECD protocols and mortality and behavioural changes were assed for all stages. Biochemical responses were assessed in adults and embryos and included cholinesterases (ChEs), catalase (CAT) (only in embryos), glutathione-S-Transferase (GST), lactate dehydrogenase (LDH) and vitellogenin (VTG) like proteins (only in embryos). Genotoxicity was evaluated in adults. Results showed a higher sensitivity of juvenile and adults of zebrafish (96h-LC10 values of 14.0 and 55.4μg/L, respectively). For embryos a 96h-LC10 of 147.1μg/L was calculated, moreover developmental anomalies and hatching inhibition were observed only at high concentrations (>400μg/L), whereas biochemical and behavioural responses occurred at lower concentrations (<60μg/L). Behavioural responses (lethargy) occurred in all life stages. Biochemical responses were observed including the inhibition of GST in adults and changes in ChE, CAT, LDH activities and VTG levels in embryos. Ivermectin did not show to be genotoxic for adult fish. The species sensitivity distribution analysis, based on fish and invertebrate species, indicated a Hazardous Concentration for 5% of the population (HC5) value of 0.057μg/L; suggesting high sensitivity of both groups to ivermectin and a high risk of this compound to aquatic ecosystems. PMID:27153811

  7. Divergent requirements for FGF signaling in zebrafish maxillary barbel and caudal fin regeneration

    PubMed Central

    Duszynski, Robert J.; Topczewski, Jacek; LeClair, Elizabeth E.

    2013-01-01

    The zebrafish maxillary barbel is an integumentary organ containing skin, glands, pigment cells, taste buds, nerves, and endothelial vessels. The maxillary barbel can regenerate (LeClair & Topczewski, 2010); however, little is know about its molecular regulation. We have studied FGF-related signaling molecules during barbel regeneration, comparing these to a well-known regenerating appendage, the zebrafish caudal fin. Multiple FGF ligands (fgf20a, fgf24), receptors (fgfr1–4) and downstream targets (pea3, il17d) are expressed in normal and regenerating barbel tissue, confirming FGF activation. To test if specific FGF pathways were required for barbel regeneration, we performed simultaneous barbel and caudal fin amputations in two temperature-dependent zebrafish lines. Zebrafish homozygous for a point mutation in fgf20a, a factor essential for caudal fin blastema formation, regrew maxillary barbels normally, indicating that the requirement for this ligand is appendage-specific. Global overexpression of a dominant negative FGF receptor, Tg(hsp70l:dn-fgfr1:EGFP)pd1 completely blocked fin outgrowth but only partially inhibited barbel outgrowth, suggesting reduced requirements for FGFs in barbel tissue. Maxillary barbels expressing dn-fgfr1 regenerated peripheral nerves, dermal connective tissue, endothelial tubes, and a glandular epithelium; in contrast to a recent report in which dn-fgfr1 overexpression blocks pharyngeal taste bud formation in zebrafish larvae (Kapsimali et al., 2011), we observed robust formation of calretinin-positive tastebuds. These are the first experiments to explore the molecular mechanisms of maxillary barbel regeneration. Our results suggest heterogeneous requirements for FGF signaling in the regeneration of different zebrafish appendages (caudal fin vs. maxillary barbel) and taste buds of different embryonic origin (pharyngeal endoderm vs. barbel ectoderm). PMID:23350700

  8. Skin interaction with absorbent hygiene products.

    PubMed

    Runeman, Bo

    2008-01-01

    Skin problems due to the use of absorbent hygiene products, such as diapers, incontinence pads, and feminine sanitary articles, are mostly due to climate or chafing discomfort. If these conditions are allowed to prevail, these may develop into an irritant contact dermatitis and eventually superficial skin infections. Skin humidity and aging skin are among the most significant predisposing and aggravating factors for dermatitis development. Improved product design features are believed to explain the decline in observed diaper dermatitis among infants. Where adult incontinence-related skin problems are concerned, it is very important to apply a holistic perspective to understand the influences due to the individual's incontinence level and skin condition, as well as the hygiene and skin care measures provided. Individuals with frail, sensitive skin or with skin diseases may preferably have to use high-quality products, equipped with superabsorbent polymers and water vapor-permeable back sheets, to minimize the risk of skin complications. PMID:18280904

  9. A prospective, descriptive study of characteristics associated with skin failure in critically ill adults.

    PubMed

    Curry, Kim; Kutash, Mary; Chambers, Theresa; Evans, Amy; Holt, Molly; Purcell, Stacey

    2012-05-01

    Critically ill patients with multi-organ failure are especially susceptible to problems with skin integrity, including skin failure. An 18-month, prospective, descriptive study was conducted to identify and describe characteristics of intensive care unit (ICU) patients with skin failure and examine the relationships among patient demographics, nutritional status, laboratory parameters, the presence of other organ system failures, and use of mechanical assistive devices, support surfaces, and vasopressive and sedative medications. A total of 29 patients with acute skin failure were identified. All (100%) patients with skin failure were diagnosed with failure of at least one other organ system. Ninety percent (90%) had failure of more than one organ system other than skin, and 90% had an albumin level <3.5 mg/dL. In addition, generalized edema, ventilator use, age >50 years, weight >150 lb, creatinine >1.5 mg/dL, mean arterial pressure <70 mm Hg, and/or the use of sedatives and/or analgesic medications were observed in >75% of patients with skin failure. Significant positive correlations were seen between several pairs of variables, including sepsis and renal failure, and the concurrent use of several types of vasopressive agents. This is the first known study of its type and results confirm that nonskin organ system failure and skin failure can be expected to be observed at the same time. Research to ascertain whether skin failure occurs at the same time, precedes, or follows the development of nonskin organ system failure is needed, as are studies to understand the relationship among the various risk factors in order to optimize preventive care. PMID:22562938

  10. The Zebrafish- Danio rerio – Is a Useful Model for Measuring the Effects of Small-molecule Mitigators of Late Effects of Ionizing Irradiation

    PubMed Central

    EPPERLY, MICHAEL W.; BAHARY, NATHAN; QUADER, MUBINA; DEWALD, VALERIE; GREENBERGER, JOEL S.

    2013-01-01

    Background/Aim Use of zebrafish models may decrease the cost of screening new irradiation protectors and mitigators. Materials and Methods Zebrafish (Danio rerio) models were tested for screening water-soluble radiation protectors and mitigators. Irradiation of embryos and monitoring survival, and measuring fibrosis of the caudal musculature of adults allowed for testing of acute and late effects, respectively. Results Incubation of zebrafish embryos either before or after irradiation in ethyl pyruvate (1 mM) increased survival. Irradiation of adults to 15 to 75 Gy, delivered in single-fraction at 13 Gy/min, showed dose-dependent fibrosis at 30 days, quantitated as physiological decrease in swimming tail movement, and histopathological detection of collagen deposition in the dorsal musculature. Continuous administration of small-molecule radioprotector drugs in the water after irradiation reduced both acute and chronic injuries. Conclusion The zebrafish is cost-effective for screening new radiation countermeasures. PMID:23160669

  11. Inflammatory diseases modelling in zebrafish.

    PubMed

    Morales Fénero, Camila Idelí; Colombo Flores, Alicia Angelina; Câmara, Niels Olsen Saraiva

    2016-02-20

    The ingest of diets with high content of fats and carbohydrates, low or no physical exercise and a stressful routine are part of the everyday lifestyle of most people in the western world. These conditions are triggers for different diseases with complex interactions between the host genetics, the metabolism, the immune system and the microbiota, including inflammatory bowel diseases (IBD), obesity and diabetes. The incidence of these disorders is growing worldwide; therefore, new strategies for its study are needed. Nowadays, the majority of researches are in use of murine models for understand the genetics, physiopathology and interaction between cells and signaling pathways to find therapeutic solutions to these diseases. The zebrafish, a little tropical water fish, shares 70% of our genes and conserves anatomic and physiological characteristics, as well as metabolical pathways, with mammals, and is rising as a new complementary model for the study of metabolic and inflammatory diseases. Its high fecundity, fast development, transparency, versatility and low cost of maintenance makes the zebrafish an interesting option for new researches. In this review, we offer a discussion of the existing genetic and induced zebrafish models of two important Western diseases that have a strong inflammatory component, the IBD and the obesity. PMID:26929916

  12. The zebrafish genome editing toolkit.

    PubMed

    Ata, H; Clark, K J; Ekker, S C

    2016-01-01

    Zebrafish (Danio rerio) is a unique model organism at the functional intersection between a high fecundity and conserved vertebrate physiology while being amenable to a multitude of genome editing techniques. The genome engineering field has experienced an unprecedented rate of growth in the recent years since the introduction of designer endonucleases, such as zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats-Cas9 systems. With the ever-evolving toolset available to the scientific community, the important question one should ask is not simply how to make a mutant line, but rather how best to do so. For this purpose, understanding the toolset is just one end of the equation; understanding how DNA is repaired once double-strand breaks are induced by designer endonucleases, as well as understanding proper fish handling and line maintenance techniques, are also essential to rapidly edit the zebrafish genome. This chapter is outlined to provide a bird's-eye view on each of these three components. The goal of this chapter is to facilitate the adoption of the zebrafish as a model to study human genetic disease and to rapidly analyze the function of the vertebrate genome. PMID:27443924

  13. Inflammatory diseases modelling in zebrafish

    PubMed Central

    Morales Fénero, Camila Idelí; Colombo Flores, Alicia Angelina; Câmara, Niels Olsen Saraiva

    2016-01-01

    The ingest of diets with high content of fats and carbohydrates, low or no physical exercise and a stressful routine are part of the everyday lifestyle of most people in the western world. These conditions are triggers for different diseases with complex interactions between the host genetics, the metabolism, the immune system and the microbiota, including inflammatory bowel diseases (IBD), obesity and diabetes. The incidence of these disorders is growing worldwide; therefore, new strategies for its study are needed. Nowadays, the majority of researches are in use of murine models for understand the genetics, physiopathology and interaction between cells and signaling pathways to find therapeutic solutions to these diseases. The zebrafish, a little tropical water fish, shares 70% of our genes and conserves anatomic and physiological characteristics, as well as metabolical pathways, with mammals, and is rising as a new complementary model for the study of metabolic and inflammatory diseases. Its high fecundity, fast development, transparency, versatility and low cost of maintenance makes the zebrafish an interesting option for new researches. In this review, we offer a discussion of the existing genetic and induced zebrafish models of two important Western diseases that have a strong inflammatory component, the IBD and the obesity. PMID:26929916

  14. Quercitrin protects against ultraviolet B-induced cell death in vitro and in an in vivo zebrafish model.

    PubMed

    Yang, Hye-Mi; Ham, Young-Min; Yoon, Weon-Jong; Roh, Seong Woon; Jeon, You-Jin; Oda, Tatsuya; Kang, Sung-Myung; Kang, Min-Cheol; Kim, Eun-A; Kim, Daekyung; Kim, Kil-Nam

    2012-09-01

    Chronic exposure of skin to ultraviolet (UV) B radiation induces oxidative stress, which in turn, plays a crucial role in the induction of skin aging. The search for strategies to reverse skin aging is being constantly pursued. Here, the cytoprotective effect of quercitrin (QR) on UVB-induced cell injury in HaCaT human keratinocytes and in the zebrafish was investigated. Intracellular reactive oxygen species (ROS) generated by the exposure of HaCaT cells to UVB radiation were significantly decreased after treatment with QR, and significantly so with QR at 50 μM. As a result, QR reduced UVB-induced cell death and apoptosis in HaCaT cells. QR similarly reduced UVB-induced ROS generation and cell death in live zebrafish. PMID:22727929

  15. Skin aging and dry skin.

    PubMed

    Hashizume, Hideo

    2004-08-01

    Skin aging appears to be the result of both scheduled and continuous "wear and tear" processes that damage cellular DNA and proteins. Two types of aging, chronological skin aging and photoaging, have distinct clinical and histological features. Chronological skin aging is a universal and inevitable process characterized primarily by physiologic alterations in skin function. In this case, keratinocytes are unable to properly terminally differentiate to form a functional stratum corneum, and the rate of formation of neutral lipids that contribute to the barrier function slows, causing dry, pale skin with fine wrinkles. In contrast, photoaging results from the UVR of sunlight and the damage thus becomes apparent in sun-exposed skin. Characteristics of this aging type are dry and sallow skin displaying fine wrinkles as well as deep furrows, resulting from the disorganization of epidermal and dermal components associated with elastosis and heliodermatitis. Understanding of the functions of the skin and the basic principles of moisturizer use and application is important for the prevention of skin aging. Successful treatment of dry skin with appropriate skin care products gives the impression of eternal youth. PMID:15492432

  16. Zebrafish as a model for human osteosarcoma.

    PubMed

    Mohseny, A B; Hogendoorn, P C W

    2014-01-01

    For various reasons involving biological comparativeness, expansive technological possibilities, accelerated experimental speed, and competitive costs, zebrafish has become a comprehensive model for cancer research. Hence, zebrafish embryos and full-grown fish have been instrumental for studies of leukemia, melanoma, pancreatic cancer, bone tumors, and other malignancies. Although because of its similarities to human osteogenesis zebrafish appears to be an appealing model to investigate osteosarcoma, only a few osteosarcoma specific studies have been accomplished yet. Here, we review interesting related and unrelated reports of which the findings might be extrapolated to osteosarcoma. More importantly, rational but yet unexplored applications of zebrafish are debated to expand the window of opportunities for future establishment of osteosarcoma models. Accordingly technological advances of zebrafish based cancer research, such as robotic high-throughput multicolor injection systems and advanced imaging methods are discussed. Furthermore, various use of zebrafish embryos for screening drug regimens by combinations of chemotherapy, novel drug deliverers, and immune system modulators are suggested. Concerning the etiology, the high degree of genetic similarity between zebrafish and human cancers indicates that affected regions are evolutionarily conserved. Therefore, zebrafish as a swift model system that allows for the investigation of multiple candidate gene-defects is presented. PMID:24924177

  17. Wnt signaling in skin organogenesis.

    PubMed

    Widelitz, Randall B

    2008-04-01

    While serving as the interface between an organism and its environment, the skin also can elaborate a wide range of skin appendages to service specific purposes in a region-specific fashion. As in other organs, Wnt signaling plays a key role in regulating the proliferation, differentiation and motility of skin cells during their morphogenesis. Here I will review some of the recent work that has been done on skin organogenesis. I will cover dermis formation, the development of skin appendages, cycling of appendages in the adult, stem cell regulation, patterning, orientation, regional specificity and modulation by sex hormone nuclear receptors. I will also cover their roles in wound healing, hair regeneration and skin related diseases. It appears that Wnt signaling plays essential but distinct roles in different hierarchical levels of morphogenesis and organogenesis. Many of these areas have not yet been fully explored but are certainly promising areas of future research. PMID:19279724

  18. Wnt signaling in skin organogenesis

    PubMed Central

    2008-01-01

    While serving as the interface between an organism and its environment, the skin also can elaborate a wide range of skin appendages to service specific purposes in a region-specific fashion. As in other organs, Wnt signaling plays a key role in regulating the proliferation, differentiation and motility of skin cells during their morphogenesis. Here I will review some of the recent work that has been done on skin organogenesis. I will cover dermis formation, the development of skin appendages, cycling of appendages in the adult, stem cell regulation, patterning, orientation, regional specificity and modulation by sex hormone nuclear receptors. I will also cover their roles in wound healing, hair regeneration and skin related diseases. It appears that Wnt signaling plays essential but distinct roles in different hierarchical levels of morphogenesis and organogenesis. Many of these areas have not yet been fully explored but are certainly promising areas of future research. PMID:19279724

  19. Anatomy and ontogeny of a novel hemodynamic organ in zebrafish.

    PubMed

    Binelli, Erica A; Luna, Alejandra N; LeClair, Elizabeth E

    2014-12-01

    The zebrafish maxillary barbel can protract and retract in response to stimuli, and appears connected to a prominent blood sinus on the lateral aspect of the maxillary bone. However, the mechanism of barbel movement is not described. Using whole-mount phalloidin staining of the sinus region, we observed long filamentous actin cables, suggesting highly organized vascular smooth muscle cells, surrounding an endothelial chamber. Although the chamber is variably filled by erythrocytes in vivo, cardiac injection of fluorescent dextrans shows that it consistently contains plasma. Full-thickness confocal imaging of dextran-injected adults containing EGFP(+) endothelial cells revealed a vascular complex with three compartments, here named the distal bulb, central chamber, and accessory chamber. The early ontogeny of all three compartments was confirmed in a whole-mount series of Tg(fli1a:EGFP) juveniles. In wild type adults, the fine structure of each chamber was studied using paraffin- and plastic-section histochemistry and transmission electron microscopy. The distal bulb and central chamber have smooth muscle coats with luminally-elongated septa, forming semi-detached blood-filled lacunae. The central chamber walls and septa are extensively innervated by small, unmyelinated axons, as confirmed by immunohistochemical detection of acetylated tubulin, a component of axonal cytoplasm. The accessory chamber appears neither innervated nor muscularized, but is an endothelial cul-de-sac with a thickened elastic adventitia, suggesting an extensible fluid reservoir. We propose that we have identified a new organ in