Sample records for adulthood postnatal day

  1. Neonatal nicotine exposure alters leptin signaling in the hypothalamus-pituitary-thyroid axis in the late postnatal period and adulthood in rats.

    PubMed

    Santos-Silva, A P; Moura, E G; Pinheiro, C R; Rios, A S; Abreu-Villaça, Y; Passos, M C F; Oliveira, E; Lisboa, P C

    2010-07-31

    Postnatal nicotine exposure causes precocious primary hypothyroidism and programs for overweight, hyperleptinemia and secondary hypothyroidism in adulthood. As leptin and thyroid hormones share the ability to increase energy expenditure, we studied the effects of maternal nicotine exposure during lactation on the leptin signaling in the hypothalamus-pituitary-thyroid axis of suckling and adult offspring. Two days after delivery, osmotic minipumps were implanted in lactating rats, and nicotine (NIC, 6 mg/kg/day s.c.) or saline (C) was administered for 14days. Offspring were killed at 15 and 180 days-old. Proteins belonging to leptin signaling were analyzed by Western blot. Significant differences had p<0.05. In the hypothalamus, NIC offspring showed higher OB-R and pSTAT-3 content (+58%,+1.34x) at 15 days, and lower OB-R, JAK-2 and pSTAT-3 (-61%, -42%, -56%) at 180 days. In the pituitary gland, NIC offspring showed lower JAK-2 content (-52%) at 15 days, but no differences in adulthood. In the thyroid gland, the NIC group presented lower OB-R, JAK-2 and STAT-3 (-44%, -50%, -47%) and higher pSTAT-3 expression (+80%) at 15 days. At 180 days-old, NIC offspring presented higher thyroid OB-R (+1.54x) and lower pSTAT-3 content (-34%). Neonatal primary hypothyroidism induced by maternal nicotine exposure during lactation may be partially explained by decreased leptin signaling in the thyroid, though the early stimulation of the central leptin pathway did not prevent the thyroid dysfunction. Long-term effects of postnatal nicotine exposure on leptin signaling in the hypothalamus and thyroid appear to involve central and peripheral leptin resistance in adulthood. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Early postnatal nutrition determines adult physical activity and energy expenditure in female mice

    USDA-ARS?s Scientific Manuscript database

    Decades of research in rodent models has shown that early postnatal overnutrition induces excess adiposity and other components of metabolic syndrome that persist into adulthood. The specific biologic mechanisms explaining the persistence of these effects, however, remain unknown. On postnatal day 1...

  3. Chronic Postnatal Stress Induces Depressive-like Behavior in Male Mice and Programs second-Hit Stress-Induced Gene Expression Patterns of OxtR and AvpR1a in Adulthood.

    PubMed

    Lesse, Alexandra; Rether, Kathy; Gröger, Nicole; Braun, Katharina; Bock, Jörg

    2017-08-01

    Chronic stress (CS) during early life represents a major risk factor for the development of mental disorders, including depression. According to the Two/Multiple-Hit hypothesis, the etiology of neuropsychiatric disorders usually involves multiple stressors experienced subsequently during different phases of life. However, the molecular and cellular mechanisms modulating neuronal and behavioral changes induced by multiple stress experiences are just poorly understood. Since the oxytocinergic and vasopressinergic systems are neuroendocrine modulators involved in environmentally driven adaptations of stress sensitivity we hypothesized that postnatal CS programs oxytocinergic and vasopressinergic receptor expression changes in response to a second stress exposure in young adulthood. First we investigated if postnatal CS (maternal separation + social isolation) induces depressive-like behavior and alters oxytocin receptor (OxtR) and arginine vasopressin receptor type 1a (AvpR1a) gene expression in the hippocampus (HC) of male mice and (2) if a second single stressor (forced swimming, FS) in young adulthood affects gene expression of OxtR and AvpR1a at adulthood dependent on CS pre-experience. We found that postnatal CS induced depressive-like behavior and enhanced AvpR1a expression in HC at young adulthood. Moreover, in line with our hypothesis, only combined stress exposure (CS + FS), but not CS or FS alone, resulted in increased gene expression of OxtR in HC at adulthood. In contrast, AvpR1a expression was decreased in both adult FS and CS + FS animals. Overall, our results provide evidence that CS programs neuroendocrine systems and thereby influences stress responses in later life periods.

  4. Transient Overexposure of Neuregulin 3 during Early Postnatal Development Impacts Selective Behaviors in Adulthood

    PubMed Central

    Paterson, Clare; Law, Amanda J.

    2014-01-01

    Neuregulin 3 (NRG3), a specific ligand for ErbB4 and a neuronal-enriched neurotrophin is implicated in the genetic predisposition to a broad spectrum of neurodevelopmental, neurocognitive and neuropsychiatric disorders, including Alzheimer's disease, autism and schizophrenia. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, accompanied by increased expression of prefrontal cortical NRG3. Despite our expanding knowledge of genetic involvement of NRG3 in neurological disorders, little is known about the neurodevelopmental mechanisms of risk. Here we exploited the fact that a paralog of NRG3, NRG1, readily penetrates the murine blood brain barrier (BBB). In this study we synthesized the bioactive epidermal growth factor (EGF) domain of NRG3, and using previously validated in-vivo peripheral injection methodologies in neonatal mice, demonstrate that NRG3 successfully crosses the BBB, where it activates its receptor ErbB4 and downstream Akt signaling at levels of bioactivity comparable to NRG1. To determine the impact of NRG3 overexpression during one critical developmental window, C57BL/6 male mice were subcutaneously injected daily with NRG1-EGF, NRG3-EGF or vehicle from postnatal days 2–10. Mice were tested in adulthood using a comprehensive battery of behavioral tasks relevant to neurocognitive and psychiatric disorders. In agreement with previous studies, developmental overexposure to NRG1 induced multiple non-CNS mediated peripheral effects as well as severely disrupting performance of prepulse inhibition of the startle response. In contrast, NRG3 had no effect on any peripheral measures investigated or sensorimotor gating. Specifically, developmental NRG3 overexposure produced an anxiogenic-like phenotype and deficits in social behavior in adulthood. These results provide primary data to support a role for NRG3 in brain development and function, which appears to be distinct

  5. Relative importance of prenatal and postnatal androgen action in determining growth of the penis and anogenital distance in the rat before, during and after puberty.

    PubMed

    van den Driesche, S; Scott, H M; MacLeod, D J; Fisken, M; Walker, M; Sharpe, R M

    2011-12-01

    Experimental animal studies show that measurement of anogenital distance (AGD) and/or penis length may provide lifelong 'read-outs' of foetal androgen exposure during the masculinization programming window (MPW). However, variation in postnatal androgen exposure may complicate interpretation of such measurements. This is important to clarify if such measurements are to be applied to humans. The present aim was to evaluate effects of prenatal and/or postnatal manipulation of androgen production/action on growth of AGD and the penis in rats. Pregnant rats were treated daily before (e13.5-e21.5) and after birth (postnatal days 1-15) with either vehicle, 500 mg/kg di(n-butyl) phthalate (DBP) or 100 mg/kg flutamide (postnatal only) in prenatal + postnatal treatment combinations (N = 6 treatment combinations); DBP impairs androgen production whereas flutamide impairs androgen action. Male offspring were killed on postnatal day 8 (prepuberty), 25 (early puberty) or 90 (adulthood) when AGD was measured, the penis dissected out and its weight and length measured; plasma testosterone and ventral prostate weight were measured at day 90 to assess endogenous androgen exposure. In controls, penis length, girth and AGD increased 2.2-, 5.3-and 5.9-fold respectively from day 8 to day 90. Significant inhibition of penis growth and final length and girth was induced by treatments that inhibited postnatal androgen action. Conversely, growth and ultimate (adult) AGD was inhibited by prenatal inhibition of androgen production whereas postnatal androgen inhibition had negligible effect. Nevertheless, AGD and penis length were highly correlated at every age (R(2) > 0.33; p < 0.0001). However, altered endogenous androgen exposure may confound interpretation of changes in adults exposed prenatally/postnatally to DBP/flutamide. We conclude that AGD provides a lifelong guide to prenatal androgen exposure (in the MPW) whereas penis size reflects both prenatal + postnatal androgen exposure. At

  6. The nuclear receptor Tlx regulates motor, cognitive and anxiety-related behaviours during adolescence and adulthood.

    PubMed

    O'Leary, James D; Kozareva, Danka A; Hueston, Cara M; O'Leary, Olivia F; Cryan, John F; Nolan, Yvonne M

    2016-06-01

    The nuclear receptor Tlx is a key regulator of embryonic and adult hippocampal neurogenesis and has been genetically linked to bipolar disorder. Mice lacking Tlx (Nr2e1(-/-)) display deficits in adult hippocampal neurogenesis and behavioural abnormalities. However, whether Tlx regulates behaviour during adolescence or in a sex-dependent manner remains unexplored. Therefore, we investigated the role of Tlx in a series of behavioural tasks in adolescent male and female mice with a spontaneous deletion of Tlx (Nr2e1(-/-) mice). Testing commenced at adolescence (postnatal day 28) and continued until adulthood (postnatal day 67). Adolescent male and female Nr2e1(-/-) mice were hyperactive in an open field, an effect that persisted in adulthood. Male but not female Nr2e1(-/-) mice exhibited reduced thigmotaxis during adolescence and adulthood. Impairments in rotarod motor performance developed in male and female Nr2e1(-/-) mice at the onset of adulthood. Spontaneous alternation in the Y-maze, a hippocampus-dependent task, was impaired in adolescent but not adult male and female Nr2e1(-/-) mice. Contextual fear conditioning was impaired in adolescent male Nr2e1(-/-) mice only, but both male and female adolescent Nr2e1(-/-) mice showed impaired cued fear conditioning, a hippocampal-amygdala dependent cognitive process. These deficits persisted into adulthood in males but not females. In conclusion, deletion of Tlx impairs motor, cognitive and anxiety-related behaviours during adolescence and adulthood in male and female mice with most effects occurring during adolescence rather than adulthood, independent of housing conditions. This suggests that Tlx has functions beyond regulation of adult hippocampal neurogenesis, and may be an important target in understanding neurobiological disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Longitudinal 1H MR spectroscopy of rat forebrain from infancy to adulthood reveals adolescence as a distinctive phase of neurometabolite development

    PubMed Central

    Morgan, Jonathan J.; Kleven, Gale A.; Tulbert, Christina D.; Olson, John; Horita, David A.; Ronca, April E.

    2013-01-01

    The present study represents the first longitudinal, within-subject 1H MRS investigation of the developing rat brain spanning infancy, adolescence, and early adulthood. We obtained neurometabolite profiles from a voxel located in a central location of the forebrain, centered on the striatum, with smaller contributions for cortex, thalamus, and hypothalamus, on postnatal days 7, 35, and 60. Water-scaled metabolite signals were corrected for T1 effects and quantified using the automated processing software LCModel, yielding molal concentrations. Our findings indicate age-related concentration changes in N-acetylaspartate + N-acetylaspartylglutamate, myo-inositol, glutamate + glutamine, taurine, creatine + phosphocreatine, and glycerophosphocholine + phosphocholine. Using a repeated measures design and analysis, we identified significant neurodevelopment change across all three developmental ages and identified adolescence as a distinctive phase in normative neurometabolic brain development. Between postnatal days 35 and 60, changes were observed in concentrations of N-acetylaspartate + N-acetylaspartylglutamate, glutamate + glutamine, and glycerophosphocholine + phosphocholine observed between postnatal days 35 and 60. Our data replicate past studies of early neurometabolite development and, for the first time, link maturational profiles in the same subjects across infancy, adolescence, and adulthood. PMID:23322706

  8. Early-life risperidone enhances locomotor responses to amphetamine during adulthood.

    PubMed

    Lee Stubbeman, Bobbie; Brown, Clifford J; Yates, Justin R; Bardgett, Mark E

    2017-10-05

    Antipsychotic drug prescriptions for pediatric populations have increased over the past 20 years, particularly the use of atypical antipsychotic drugs such as risperidone. Most antipsychotic drugs target forebrain dopamine systems, and early-life antipsychotic drug exposure could conceivably reset forebrain neurotransmitter function in a permanent manner that persists into adulthood. This study determined whether chronic risperidone administration during development modified locomotor responses to the dopamine/norepinephrine agonist, D-amphetamine, in adult rats. Thirty-five male Long-Evans rats received an injection of one of four doses of risperidone (vehicle, .3, 1.0, 3.0mg/kg) each day from postnatal day 14 through 42. Locomotor activity was measured for 1h on postnatal days 46 and 47, and then for 24h once a week over the next two weeks. Beginning on postnatal day 75, rats received one of four doses of amphetamine (saline, .3, 1.0, 3.0mg/kg) once a week for four weeks. Locomotor activity was measured for 27h after amphetamine injection. Rats administered risperidone early in life demonstrated increased activity during the 1 and 24h test sessions conducted prior to postnatal day 75. Taking into account baseline group differences, these same rats exhibited significantly more locomotor activity in response to the moderate dose of amphetamine relative to controls. These results suggest that early-life treatment with atypical antipsychotic drugs, like risperidone, permanently alters forebrain catecholamine function and increases sensitivity to drugs that target such function. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Critical role of androgen receptor in the postnatal period in male sexual behavior in rats.

    PubMed

    Yamada, Shunji; Ohoya, Miku; Takanami, Keiko; Matsuda, Ken Ichi; Kawata, Mitsuhiro

    2015-11-16

    Gonadal hormones have a developmental role in organization of the nervous system that regulates sexually dimorphic behavior. It is well known that androgen secreted from testes in the perinatal period is converted to estrogen by aromatase in rodent brain, and that estrogen and its receptor play a pivotal role in masculinization of brain structure and function. Treatment with flutamide, an androgen receptor (AR) antagonist, during the perinatal period inhibits development of malespecific brain structure and function, suggesting that androgen signaling via AR also influences brain masculinization. In this study, we investigated which stage during the postnatal period is critical for androgen signaling in brain masculinization. The postnatal period was designated as postnatal days (PD) 0-22, and divided into stages I (PD 0-7), II (PD 8-14), and III (PD 15-22). Newborn male rats were given flutamide subcutaneously in each stage. After adulthood, the effects of postnatal flutamide treatment on brain masculinization were evaluated byanalysis of male sexual behavior. Continuous inhibition of AR throughout stages I and II caused a robust reduction of the intromission ratio and ejaculation frequency compared with other groups. AR inhibition in stage I, II, or III did not cause any change. AR inhibition had no effect onmount behavior. These results show that stage-specific AR activation in the first two postnatal weeks may contribute to brain masculinization mediating male sexual behavior in adulthood. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Deregulated Cardiac Specific MicroRNAs in Postnatal Heart Growth.

    PubMed

    Yu, Pujiao; Wang, Hongbao; Xie, Yuan; Zhou, Jinzhe; Yao, Jianhua; Che, Lin

    2016-01-01

    The heart is recognized as an organ that is terminally differentiated by adulthood. However, during the process of human development, the heart is the first organ with function in the embryo and grows rapidly during the postnatal period. MicroRNAs (miRNAs, miRs), as regulators of gene expression, play important roles during the development of multiple systems. However, the role of miRNAs in postnatal heart growth is still unclear. In this study, by using qRT-PCR, we compared the expression of seven cardiac- or muscle-specific miRNAs that may be related to heart development in heart tissue from mice at postnatal days 0, 3, 8, and 14. Four miRNAs-miR-1a-3p, miR-133b-3p, miR-208b-3p, and miR-206-3p-were significantly decreased while miR-208a-3p was upregulated during the postnatal heart growth period. Based on these results, GeneSpring GX was used to predict potential downstream targets by performing a 3-way comparison of predictions from the miRWalk, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to identify potential functional annotations and signaling pathways related to postnatal heart growth. This study describes expression changes of cardiac- and muscle-specific miRNAs during postnatal heart growth and may provide new therapeutic targets for cardiovascular diseases.

  11. Prenatal choline deficiency increases choline transporter expression in the septum and hippocampus during postnatal development and in adulthood in rats.

    PubMed

    Mellott, Tiffany J; Kowall, Neil W; Lopez-Coviella, Ignacio; Blusztajn, Jan Krzysztof

    2007-06-02

    Supplementation of maternal diet with the essential nutrient, choline, during the second half of pregnancy in rats causes long-lasting improvements in spatial memory in the offspring and protects them from the memory decline characteristic of old age. In contrast, prenatal choline deficiency is associated with poor performance in certain cognitive tasks. The mechanism by which choline influences learning and memory remains unclear; however, it may involve changes to the hippocampal cholinergic system. Previously, we showed that the hippocampi of prenatally [embryonic days (E) 11-17] choline-deficient animals have increased synthesis of acetylcholine (ACh) from choline transported by the high-affinity choline transporter (CHT) and reduced ACh content relative to the control and to the E11-17 choline-supplemented rats. In the current study, we found that, during postnatal period [postnatal days (P) 18-480], prenatal choline deficiency increased the expression of CHT mRNA in the septum and CHT mRNA and protein levels in the hippocampus and altered the pattern of CHT immunoreactivity in the dentate gyrus. CHT immunoreactivity was more prominent in the inner molecular layer in prenatally choline-deficient rats compared to controls and prenatally choline-supplemented animals. In addition, in all groups, we observed a population of hilar interneurons that were CHT-immunoreactive. These neurons are the likely source of the hippocampal CHT mRNA as their number correlated with the levels of this mRNA. The abundance of hippocampal CHT mRNA rose between P1 and P24 and then declined reaching 60% of the P1 value by P90. These data show that prenatal availability of choline alters its own metabolism (i.e., CHT expression). While the upregulated CHT expression during the period of prenatal choline deficiency may be considered as a compensatory mechanism that could enhance ACh synthesis when choline supply is low, the persistent upregulation of CHT expression subsequent to the

  12. Forced ethanol ingestion by Wistar rats from a juvenile age increased voluntary alcohol consumption in adulthood, with the involvement of orexin-A.

    PubMed

    Mendoza-Ruiz, Luis-Gabriel; Vázquez-León, Priscila; Martínez-Mota, Lucía; Juan, Eduardo Ramírez San; Miranda-Páez, Abraham

    2018-08-01

    Human adolescents who drink alcohol are more likely to become alcoholics in adulthood. Alcohol administration (intraperitoneally) or drinking (in a 2-bottle free choice paradigm) during the juvenile/adolescent age of rats promotes voluntary alcohol consumption in adulthood. On the other hand, there is growing evidence that the orexinergic system plays a role in several rewarded behaviors, including alcohol ingestion. Since it is unknown what effect is exerted in adulthood by forced oral ethanol intake and/or administration of orexin-A (OX-A) in juvenile rats, the present study aimed to evaluate this question. A group of male Wistar rats was forced to drink ethanol (10% v/v) as the only liquid in the diet from weaning (postnatal day 21) to postnatal day 67 (46 days), followed by a forced withdrawal period. An age-matched group was raised drinking tap water (control). OX-A or its vehicle was microinjected intracerebroventricularly (i.c.v.) (1 nmol/0.6 μL) to explore its effect as well. Locomotor activity and voluntary ethanol consumption were later assessed in all groups. The rats forced to consume ethanol early in life showed an elevated level of ambulation and alcohol ingestion in adulthood. A single injection of OX-A increased locomotor activity and acute ethanol intake in rats with or without prior exposure to alcohol at the juvenile stage. In conclusion, forced ethanol consumption in juvenile rats led to increased voluntary alcohol drinking behavior during adulthood, an effect likely facilitated by OX-A. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Prenatal lipopolysaccharide exposure affects maternal behavior and male offspring sexual behavior in adulthood.

    PubMed

    Bernardi, Maria M; Kirsten, Thiago B; Matsuoka, Suzana M; Teodorov, Elizabeth; Habr, Soraya F; Penteado, Sandra H W N; Palermo-Neto, João

    2010-01-01

    This study investigates the effects of prenatal lipopolysaccharide (LPS) exposure on the maternal behavior of pregnant rats and the physical development and sexual behavior of their male offspring in adulthood. For two experiments, pregnant rats were injected with LPS (250 microg/kg, i.p.) on gestation day (GD) 21. In the first experiment, the maternal behavior (postnatal day, PND, 6) and the dam's open-field general activity (PND7) were evaluated. In the second experiment, the maternal pre- and postnatal parameters, the pup's development, the offspring's sexual behavior in adulthood, and the pup's organ weights were assessed. Compared to the control group, the LPS-treated dams presented reduced maternal behavior, decreased general activity, a smaller body weight difference between GD21 and PND1, a greater number of perinatal deaths, and smaller litters. For the male pups, LPS treatment resulted in a decreased body weight on PND2, whereas the anogenital distance and the day of testis descent were not modified. The male sexual behavior was impaired by prenatal LPS. Particularly the number of ejaculating animals was reduced. The testis weight was also lower in the prenatally LPS-treated rats than in the control rats. We propose that prenatal LPS exposure on GD21 acts as an imprinting factor that interferes with the programming of brain sexual determination in offspring. Copyright 2009 S. Karger AG, Basel.

  14. Risky choice and brain CRF after adolescent ethanol vapor exposure and social stress in adulthood.

    PubMed

    Boutros, Nathalie; Der-Avakian, Andre; Semenova, Svetlana; Lee, Soon; Markou, Athina

    2016-09-15

    Adolescent ethanol exposure increases risky choice and alters corticotropin releasing factor (CRF) systems in adulthood. The impact of stress on risky choice after adolescent intermittent ethanol (AIE) exposure is not known. We investigated time-specific effects of AIE vapor exposure during early adolescence on risky choice after stress or no stress in adulthood. Male Wistar rats were exposed to air or AIE vapor on postnatal days 28-42 (adolescence) and were exposed to 10days of social defeat or no stress on postnatal days 172-181 (adulthood). Risky choice was assessed in the probability discounting task under baseline conditions and after days 1 and 10 of social defeat. CRF and CRF receptor 1 (CRFR1) mRNA levels were assessed in the prefrontal cortex (PFC) and the central nucleus of the amygdala (CeA) 24h post-stress to evaluate persistent effects of stress on the brain. AIE exposure had no effect on risky choice either at baseline or after social defeat. Additionally, neither acute nor chronic social defeat affected risky choice in air-exposed rats. In the PFC, chronic social defeat selectively decreased CRF mRNA levels in air-exposed rats and increased CRFR1 mRNA levels in all rats. AIE exposure increased CRF mRNA levels in the CeA with no effect of social stress. Our results indicate no effect of ethanol exposure via vapor during early adolescence on risky choice, while our previous findings indicated that AIE exposure via gavage affected risky choice. Both AIE exposure and social defeat altered CRF and CRFR1 mRNA levels in the brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. MEAL PARAMETERS AND VAGAL GASTROINTESTINAL AFFERENTS IN MICE THAT EXPERIENCED EARLY POSTNATAL OVERNUTRITION

    PubMed Central

    Biddinger, Jessica E.; Fox, Edward A.

    2010-01-01

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component - the vagus nerve - has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal-size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 hour/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. PMID:20403369

  16. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.

    PubMed

    Biddinger, Jessica E; Fox, Edward A

    2010-08-04

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component--the vagus nerve--has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 h/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Enriched dairy fat matrix diet prevents early life lipopolysaccharide-induced spatial memory impairment at adulthood.

    PubMed

    Dinel, A L; Rey, C; Baudry, C; Fressange-Mazda, C; Le Ruyet, P; Nadjar, A; Pallet, P; Joffre, C; Layé, S

    2016-10-01

    Polyunsaturated fatty acids (PUFAs) are essential fatty acids, which are critical for brain development and later life cognitive functions. The main brain PUFAs are docosahexaenoic acid (DHA) for the n-3 family and arachidonic acid (ARA) for the n-6 family, which are provided to the post-natal brain by breast milk or infant formula. Recently, the use of dairy lipids (DL) in replacement of vegetable lipids (VL) was revealed to potently promote the accretion of DHA in the developing brain. Brain DHA, in addition to be a key component of brain development, display potent anti-inflammatory activities, which protect the brain from adverse inflammatory events. In this work, we evaluated the protective effect of partial replacement of VL by DL, supplemented or not with DHA and ARA, on post-natal inflammation and its consequence on memory. Mice were fed with diets poor in vegetal n-3 PUFA (Def VL), balanced in vegetal n-3/n-6 PUFA (Bal VL), balanced in dairy lipids (Bal DL) or enriched in DHA and ARA (Supp VL; Supp DL) from the first day of gestation until adulthood. At post-natal day 14 (PND14), pups received a single administration of the endotoxin lipopolysaccharide (LPS) and brain cytokine expression, microglia phenotype and neurogenesis were measured. In a second set of experiments, memory and neurogenesis were measured at adulthood. Overall, our data showed that lipid quality of the diet modulates early life LPS effect on microglia phenotype, brain cytokine expression and neurogenesis at PND14 and memory at adulthood. In particular, Bal DL diet protects from the adverse effect of early life LPS exposure on PND14 neurogenesis and adult spatial memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Adolescent nicotine exposure disrupts context conditioning in adulthood in rats.

    PubMed

    Spaeth, Andrea M; Barnet, Robert C; Hunt, Pamela S; Burk, Joshua A

    2010-10-01

    Despite the prevalence of smoking among adolescents, few studies have assessed the effects of adolescent nicotine exposure on learning in adulthood. In particular, it remains unclear whether adolescent nicotine exposure has effects on hippocampus-dependent learning that persist into adulthood. The present experiment examined whether there were effects of adolescent nicotine exposure on context conditioning, a form of learning dependent on the integrity of the hippocampus, when tested during adulthood. Rats were exposed to nicotine during adolescence (postnatal days [PD] 28-42) via osmotic minipump (0, 3.0 or 6.0mg/kg/day). Context conditioning occurred in early adulthood (PD 65-70). Animals were exposed to an experimental context and were given 10 unsignaled footshocks or no shock. Additional groups were included to test the effects of adolescent nicotine on delay conditioning, a form of learning that is not dependent upon the hippocampus. Conditioning was assessed using a lick suppression paradigm. For animals in the context conditioning groups, adolescent nicotine resulted in significantly less suppression of drinking in the presence of context cues compared with vehicle-pretreated animals. For animals in the delay conditioning groups, there was a trend for adolescent nicotine (3.0mg/kg/day) to suppress drinking compared to vehicle-pretreated animals. There were no differences in extinction of contextual fear or cued fear between rats previously exposed to vehicle or nicotine. The data indicate that adolescent nicotine administration impairs context conditioning when animals are trained and tested as adults. The present data suggest that adolescent nicotine exposure may disrupt hippocampus-dependent learning when animals are tested during adulthood. (c) 2010 Elsevier Inc. All rights reserved.

  19. High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring: A model of post-partum stress and possible depression.

    PubMed

    Brummelte, Susanne; Pawluski, Jodi L; Galea, Liisa A M

    2006-09-01

    Post-partum stress and depression (PPD) have a significant effect on child development and behavior. Depression is associated with hypercortisolism in humans, and the fluctuating levels of hormones, including corticosterone, during pregnancy and the post-partum, may contribute to PPD. The present study was developed to investigate the effects of high-level corticosterone (CORT) post-partum in the mother on postnatal neurogenesis and behavior in the offspring. Sprague-Dawley dams were treated with either CORT (40 mg/kg) or sesame oil injections daily for 26 days beginning the day after giving birth. Dams were tested in the forced swim test (FST) and in the open field test (OFT) on days 24-26 post-partum. Results showed that the dams exposed to CORT expressed "depressive-like" behavior compared to controls, with decreased struggling behavior and increased immobility in the FST. To investigate the effects of treatment on hippocampal postnatal cell proliferation and survival in the offspring, males and females from treated dams were injected with BrdU (50 mg/kg) on postnatal day 21 and perfused either 24 h (cell proliferation) or 21 days (cell survival) later. Furthermore, male and female offspring from each litter were tested in adulthood on various behavioral tests, including the forced swim test, open field test, resistance to capture test and elevated plus maze. Intriguingly, male, but not female, offspring of CORT-treated dams exhibited decreased postnatal cell proliferation in the dentate gyrus. Both male and female offspring of CORT-treated dams showed higher resistance to capture and greater locomotor activity as assessed in the open field test. As high levels of CORT may be a characteristic of stress and/or depression, these findings support a model of 'CORT-induced' post-partum stress and possibly depression and demonstrate that the offspring of affected dams can exhibit changes in postnatal neurogenesis and behavior in adulthood.

  20. Melamine in prenatal and postnatal organs in rats.

    PubMed

    Chu, Ching Yan; Chu, Kai On; Ho, Chung Shun; Kwok, Sung Shing; Chan, Ho Ming; Fung, Kwok Pui; Wang, Chi Chiu

    2013-01-01

    Melamine can be transferred to fetus in utero through placenta and to infant ex utero by breast feeding. In this study, we characterized the pharmacokinetics of melamine in prenatal and postnatal organs in rats. Single bolus of melamine was administered to pregnant rats at different gestational stages and to infants at different postnatal stages. Distribution of melamine in maternal serum was about 30% higher in late pregnancy than that in early pregnancy; and it was 2 folds higher in postnatal serum in early infants in young adulthood. Distribution of melamine in all postnatal organs was higher than that in prenatal organs. Postnatal kidneys in early infants had the highest maximum concentration and the lowest clearance of melamine than the other postnatal organs. It may relate to the high vulnerability to the toxicity of melamine in this population. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome.

    PubMed

    Kaminen-Ahola, Nina; Ahola, Arttu; Flatscher-Bader, Traute; Wilkins, Sarah J; Anderson, Greg J; Whitelaw, Emma; Chong, Suyinn

    2010-10-01

    Growth restriction, craniofacial dysmorphology, and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal or postnatal, but the underlying mechanisms remain unknown.We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome (e.g., craniofacial changes and growth restriction in adolescent mice). In this study, we characterize in detail the growth restriction phenotype by measuring body weight at gestational day 16.5, cross-fostering from birth to weaning, and by extending our observations into adulthood. Furthermore, in an attempt to unravel the molecular events contributing to the growth phenotype, we have compared gene expression patterns in the liver and kidney of nonfostered, ethanol-exposed and control mice at postnatal day 28.We find that the ethanol-induced growth phenotype is not detectable prior to birth, but is present at weaning, even in mice that have been cross-fostered to unexposed dams. This finding suggests a postnatal growth restriction phenotype that is not due to deficient postpartum care by dams that drank ethanol, but rather a physiologic result of ethanol exposure in utero. We also find that, despite some catch-up growth after 5 weeks of age, the effect extends into adulthood, which is consistent with longitudinal studies in humans.Genome-wide gene expression analysis revealed interesting ethanol-induced changes in the liver, including genes involved in the metabolism of exogenous and endogenous compounds, iron homeostasis, and lipid metabolism. © 2010 Wiley-Liss, Inc.

  2. Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: a new model of neurodevelopment syndrome.

    PubMed

    Romero-Granados, Rocío; Fontán-Lozano, Ángela; Aguilar-Montilla, Francisco Javier; Carrión, Ángel Manuel

    2011-01-01

    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation.

  3. Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor

    PubMed Central

    Abi Ghanem, Charly; Degerny, Cindy; Hussain, Rashad; Liere, Philippe; Pianos, Antoine; Tourpin, Sophie; Habert, René; Schumacher, Michael

    2017-01-01

    The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis. PMID:29107990

  4. Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats

    PubMed Central

    2016-01-01

    Abstract Microglia are the primary immune cells of the brain and function in multiple ways to facilitate proper brain development. However, our current understanding of how these cells influence the later expression of normal behaviors is lacking. Using the laboratory rat, we administered liposomal clodronate centrally to selectively deplete microglia in the developing postnatal brain. We then assessed a range of developmental, juvenile, and adult behaviors. Liposomal clodronate treatment on postnatal days 0, 2, and 4 depleted microglia with recovery by about 10 days of age and induced a hyperlocomotive phenotype, observable in the second postnatal week. Temporary microglia depletion also increased juvenile locomotion in the open field test and decreased anxiety-like behaviors in the open field and elevated plus maze. These same rats displayed reductions in predator odor–induced avoidance behavior, but increased their risk assessment behaviors compared with vehicle-treated controls. In adulthood, postnatal microglia depletion resulted in significant deficits in male-specific sex behaviors. Using factor analysis, we identified two underlying traits—behavioral disinhibition and locomotion—as being significantly altered by postnatal microglia depletion. These findings further implicate microglia as being critically important to the development of juvenile and adult behavior. PMID:27957532

  5. Evidence for Hippocampus-Dependent Contextual Learning at Postnatal Day 17 in the Rat

    ERIC Educational Resources Information Center

    Foster, Jennifer A.; Burman, Michael A.

    2010-01-01

    Long-term memory for fear of an environment (contextual fear conditioning) emerges later in development (postnatal day; PD 23) than long-term memory for fear of discrete stimuli (PD 17). As contextual, but not explicit cue, fear conditioning relies on the hippocampus; this has been interpreted as evidence that the hippocampus is not fully…

  6. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model.

    PubMed

    Hu, Jianzhong; Raikhel, Vincent; Gopalakrishnan, Kalpana; Fernandez-Hernandez, Heriberto; Lambertini, Luca; Manservisi, Fabiana; Falcioni, Laura; Bua, Luciano; Belpoggi, Fiorella; L Teitelbaum, Susan; Chen, Jia

    2016-06-14

    This proof-of-principle study examines whether postnatal, low-dose exposure to environmental chemicals modifies the composition of gut microbiome. Three chemicals that are widely used in personal care products-diethyl phthalate (DEP), methylparaben (MPB), triclosan (TCS)-and their mixture (MIX) were administered at doses comparable to human exposure to Sprague-Dawley rats from birth through adulthood. Fecal samples were collected at two time points: postnatal day (PND) 62 (adolescence) and PND 181 (adulthood). The gut microbiome was profiled by 16S ribosomal RNA gene sequencing, taxonomically assigned and assessed for diversity. Metagenomic profiling revealed that the low-dose chemical exposure resulted in significant changes in the overall bacterial composition, but in adolescent rats only. Specifically, the individual taxon relative abundance for Bacteroidetes (Prevotella) was increased while the relative abundance of Firmicutes (Bacilli) was reduced in all treated rats compared to controls. Increased abundance was observed for Elusimicrobia in DEP and MPB groups, Betaproteobacteria in MPB and MIX groups, and Deltaproteobacteria in TCS group. Surprisingly, these differences diminished by adulthood (PND 181) despite continuous exposure, suggesting that exposure to the environmental chemicals produced a more profound effect on the gut microbiome in adolescents. We also observed a small but consistent reduction in the bodyweight of exposed rats in adolescence, especially with DEP and MPB treatment (p < 0.05), which is consistent with our findings of a reduced Firmicutes/Bacteroidetes ratio at PND 62 in exposed rats. This study provides initial evidence that postnatal exposure to commonly used environmental chemicals at doses comparable to human exposure is capable of modifying the gut microbiota in adolescent rats; whether these changes lead to downstream health effects requires further investigation.

  7. Postnatal TLR2 activation impairs learning and memory in adulthood.

    PubMed

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Adolescent mouse takes on an active transcriptomic expression during postnatal cerebral development.

    PubMed

    Xu, Wei; Xin, Chengqi; Lin, Qiang; Ding, Feng; Gong, Wei; Zhou, Yuanyuan; Yu, Jun; Cui, Peng; Hu, Songnian

    2014-06-01

    Postnatal cerebral development is a complicated biological process precisely controlled by multiple genes. To understand the molecular mechanism of cerebral development, we compared dynamics of mouse cerebrum transcriptome through three developmental stages using high-throughput RNA-seq technique. Three libraries were generated from the mouse cerebrum at infancy, adolescence and adulthood, respectively. Consequently, 44,557,729 (infancy), 59,257,530 (adolescence) and 72,729,636 (adulthood) reads were produced, which were assembled into 15,344, 16,048 and 15,775 genes, respectively. We found that the overall gene expression level increased from infancy to adolescence and decreased later on upon reaching adulthood. The adolescence cerebrum has the most active gene expression, with expression of a large number of regulatory genes up-regulated and some crucial pathways activated. Transcription factor (TF) analysis suggested the similar dynamics as expression profiling, especially those TFs functioning in neurogenesis differentiation, oligodendrocyte lineage determination and circadian rhythm regulation. Moreover, our data revealed a drastic increase in myelin basic protein (MBP)-coding gene expression in adolescence and adulthood, suggesting that the brain myelin may be generated since mouse adolescence. In addition, differential gene expression analysis indicated the activation of rhythmic pathway, suggesting the function of rhythmic movement since adolescence; Furthermore, during infancy and adolescence periods, gene expression related to axonrepulsion and attraction showed the opposite trends, indicating that axon repulsion was activated after birth, while axon attraction might be activated at the embryonic stage and declined during the postnatal development. Our results from the present study may shed light on the molecular mechanism underlying the postnatal development of the mammalian cerebrum. Copyright © 2014. Production and hosting by Elsevier Ltd.

  9. Late emerging effects of prenatal and early postnatal nicotine exposure on the cholinergic system and anxiety-like behavior.

    PubMed

    Eppolito, Amy K; Bachus, Susan E; McDonald, Craig G; Meador-Woodruff, James H; Smith, Robert F

    2010-01-01

    Animal models of prenatal nicotine exposure clearly indicate that nicotine is a neuroteratogen. Some of the persisting effects of prenatal nicotine exposure include low birth weight, behavioral changes and deficits in cognitive function, although few studies have looked for neurobehavioral and neurochemical effects that might persist throughout the lifespan. Pregnant rats were given continuous infusions of nicotine (0.96mg/kg/day or 2.0mg/kg/day, freebase) continuing through the third trimester equivalent, a period of rapid brain development. Because the third trimester equivalent occurs postnatally in the rat (roughly the first week of life) nicotine administration to neonate pups continued via maternal milk until postnatal day (P) 10. Exposure to nicotine during pre- and early postnatal development had an anxiogenic effect on adult rats (P75) in the elevated plus maze (EPM), and blocked extinction learning in a fear conditioning paradigm, suggesting that pre- and postnatal nicotine exposure affect anxiety-like behavior and cognitive function well into adulthood. In contrast, nicotine exposure had no effect on anxiety-like behaviors in the EPM in adolescent animals (P30). Analysis of mRNA for the alpha4, alpha7, and beta2 subunits of nicotinic acetylcholine receptors revealed lower expression of these subunits in the adult hippocampus and medial prefrontal cortex following pre- and postnatal nicotine exposure, suggesting that nicotine altered the developmental trajectory of the brain. These long-term behavioral and neurochemical changes strengthen the case for discouraging cigarette smoking during pregnancy and clearly indicate that the use of the patch as a smoking cessation aid during pregnancy is not a safe alternative.

  10. A post-weaning fish oil dietary intervention reverses adverse metabolic outcomes and 11β-hydroxysteroid dehydrogenase type 1 expression in postnatal overfed rats.

    PubMed

    Dai, Yanyan; Yang, Fan; Zhou, Nan; Sha, Lijun; Zhou, Shanshan; Wang, Junle; Li, Xiaonan

    2016-11-01

    Early life is considered a critical period for determining long-term metabolic health. Postnatal over-nutrition may alter glucocorticoid (GC) metabolism and increase the risk of developing obesity and metabolic disorders in adulthood. Our aim was to assess the effects of the dose and timing of a fish oil diet on obesity and the expression of GC-activated enzyme 11β-hydroxysteroid dehydrogenase type 1 (HSD1) in postnatal overfed rats. Litter sizes were adjusted to three (small litter (SL)) or ten (normal litter) rats on postnatal day 3 to induce overfeeding or normal feeding. The SL rats were divided into three groups after weaning: high-dose fish oil (HFO), low-dose fish oil (LFO) and standard-diet groups. After 10 weeks, the HFO diet reduced body weight gain (16 %, P0·05). In conclusion, the post-weaning HFO diet could reverse adverse outcomes and decrease tissue GC activity in postnatal overfed rats.

  11. Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood

    PubMed Central

    Clinton, Sarah M.; Glover, Matthew E.; Maltare, Astha; Laszczyk, Ann M.; Mehi, Stephen J.; Simmons, Rebecca K.; King, Gwendalyn D.

    2013-01-01

    Without the age-regulating protein klotho, mouse lifespan is shortened and the rapid onset of age-related disorders occurs. Conversely, overexpression of klotho extends mouse lifespan. Klotho is most abundant in kidney and expressed in a limited number of other organs, including the brain, where klotho levels are highest in choroid plexus. Reports vary on where klotho is expressed within the brain parenchyma, and no data is available as to whether klotho levels change across postnatal development. We used in situ hybridization to map klotho mRNA expression in the developing and adult rat brain and report moderate, widespread expression across grey matter regions. mRNA expression levels in cortex, hippocampus, caudate putamen, and amygdala decreased during the second week of life and then gradually rose to adult levels by postnatal day 21. Immunohistochemistry revealed a protein expression pattern similar to the mRNA results, with klotho protein expressed widely throughout the brain. Klotho protein co-localized with both the neuronal marker NeuN, as well as, oligodendrocyte marker olig2. These results provide the first anatomical localization of klotho mRNA and protein in rat brain parenchyma and demonstrate that klotho levels vary during early postnatal development. PMID:23838326

  12. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats.

    PubMed

    Beaudin, Stephane A; Strupp, Barbara J; Strawderman, Myla; Smith, Donald R

    2017-02-01

    Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1-21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230-237; http://dx.doi.org/10.1289/EHP258.

  13. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats

    PubMed Central

    Beaudin, Stephane A.; Strupp, Barbara J.; Strawderman, Myla; Smith, Donald R.

    2016-01-01

    Background: Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. Objectives: To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Methods: Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1–21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Results: Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. Conclusions: This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230–237; http://dx.doi.org/10.1289/EHP258 PMID:27384154

  14. Exercise in Adulthood after Irradiation of the Juvenile Brain Ameliorates Long-Term Depletion of Oligodendroglial Cells.

    PubMed

    Bull, Cecilia; Cooper, Christiana; Lindahl, Veronica; Fitting, Sylvia; Persson, Anders I; Grandér, Rita; Alborn, Ann-Marie; Björk-Eriksson, Thomas; Kuhn, H Georg; Blomgren, Klas

    2017-10-01

    Cranial radiation severely affects brain health and function, including glial cell production and myelination. Recent studies indicate that voluntary exercise has beneficial effects on oligodendrogenesis and myelination. Here, we hypothesized that voluntary running would increase oligodendrocyte numbers in the corpus callosum after irradiation of the juvenile mouse brain. The brains of C57Bl/6J male mice were 6 Gy irradiated on postnatal day 9 during the main gliogenic developmental phase, resulting in a loss of oligodendrocyte precursor cells. Upon adulthood, the mice were injected with bromodeoxyuridine and allowed to exercise on a running wheel for four weeks. Cell proliferation and survival, Ascl1 + oligodendrocyte precursor and Olig2 + oligodendrocyte cell numbers as well as CC1 + mature oligodendrocytes were quantified using immunohistology. Radiation induced a reduction in the number of Olig2 + oligodendrocytes by nearly 50% without affecting production or survival of new Olig2 + cells. Ascl1 + cells earlier in the oligodendroglial cell lineage were also profoundly affected, with numbers reduced by half. By three weeks of age, Olig2 + cell numbers had not recovered, and this was paralleled by a volumetric loss in the corpus callosum. The deficiency of Olig2 + oligodendrocytes persisted into adulthood. Additionally, the depletion of Ascl1 + progenitor cells was irreversible, and was even more pronounced at 12 weeks postirradiation compared to day 2 postirradiation. Furthermore, the overall number of CC1 + mature oligodendrocytes decreased by 28%. The depletion of Olig2 + cells in irradiated animals was reversed by 4 weeks of voluntary exercise. Moreover, voluntary exercise also increased the number of Ascl1 + progenitor cells in irradiated animals. Taken together, these results demonstrate that exercise in adulthood significantly ameliorates the profound and long-lasting effects of moderate exposure to immature oligodendrocytes during postnatal development.

  15. The Role of Endothelin System in Renal Structure and Function during the Postnatal Development of the Rat Kidney.

    PubMed

    Albertoni Borghese, María F; Ortiz, María C; Balonga, Sabrina; Moreira Szokalo, Rocío; Majowicz, Mónica P

    2016-01-01

    Renal development in rodents, unlike in humans, continues during early postnatal period. We aimed to evaluate whether the pharmacological inhibition of Endothelin system during this period affects renal development, both at structural and functional level in male and female rats. Newborn rats were treated orally from postnatal day 1 to 20 with vehicle or bosentan (Actelion, 20 mg/kg/day), a dual endothelin receptor antagonist (ERA). The animals were divided in 4 groups: control males, control females, ERA males and ERA females. At day 21, we evaluated renal function, determined the glomerular number by a maceration method and by morphometric analysis and evaluated possible structural renal alterations by three methods: 〈alpha〉-Smooth muscle actin (α-SMA) immunohistochemistry, Masson's trichrome and Sirius red staining. The pharmacological inhibition of Endothelin system with a dual ERA during the early postnatal period of the rat did not leads to renal damage in the kidneys of male and female rats. However, ERA administration decreased the number of glomeruli, the juxtamedullary filtration surface area and the glomerular filtration rate and increased the proteinuria. These effects could predispose to hypertension or renal diseases in the adulthood. On the other hand, these effects were more pronounced in male rats, suggesting that there are sex differences that could be greater later in life. These results provide evidence that Endothelin has an important role in rat renal postnatal development. However these results do not imply that the same could happen in humans, since human renal development is complete at birth.

  16. Intestinal absorption and renal reabsorption of calcium throughout postnatal development

    PubMed Central

    Beggs, Megan R

    2017-01-01

    Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving

  17. Beneficial effects of postnatal choline supplementation on long-Term neurocognitive deficit resulting from fetal-Neonatal iron deficiency.

    PubMed

    Kennedy, Bruce C; Tran, Phu V; Kohli, Maulika; Maertens, Jamie J; Gewirtz, Jonathan C; Georgieff, Michael K

    2018-01-15

    Early-life iron deficiency is a common nutrient condition worldwide and can result in cognitive impairment in adulthood despite iron treatment. In rodents, prenatal choline supplementation can diminish long-term hippocampal gene dysregulation and neurocognitive deficits caused by iron deficiency. Since fetal iron status is generally unknown in humans, we determined whether postnatal choline supplementation exerts similar beneficial effects. Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (3-6ppm Fe) from gestational day (G) 3 through postnatal day (P) 7, and an iron-sufficient (IS) diet (200ppm Fe) thereafter. Control pups were provided IS diet throughout. Choline (5ppm) was given to half the nursing dams and weanlings in each group from P11-P30. P65 rat cognitive performance was assessed by novel object recognition (NOR). Real-time PCR was performed to validate expression levels of synaptic plasticity genes known to be dysregulated by early-life iron deficiency. Postnatal choline supplementation prevented impairment of NOR memory in formerly iron-deficient (FID) adult rats but impaired NOR memory in IS controls. Gene expression analysis revealed a recovery of 4 out of 10 dysregulated genes compared to 8 of the same 10 genes that we previously demonstrated to recover following prenatal choline supplementation. Recognition memory deficits induced by early-life iron deficiency can be prevented by postnatal choline supplementation and disrupted expression of a subset of synaptic plasticity genes can be ameliorated. The positive response to postnatal choline represents a potential adjunctive therapeutic supplement to treat iron-deficient anemic children in order to spare long-term neurodevelopmental deficits. Copyright © 2017. Published by Elsevier B.V.

  18. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression-related behaviors in a time- and dose-dependent manner in adult mice.

    PubMed

    Salari, Ali-Akbar; Bakhtiari, Amir; Homberg, Judith R

    2015-08-01

    Disturbances of the gamma-amino butyric acid-ergic (GABAergic) system during postnatal development can have long-lasting consequences for later life behavior, like the individual's response to stress. However, it is unclear which postnatal windows of sensitivity to GABA-ergic modulations are associated with what later-life behavioral outcomes. Therefore, we sought to determine whether neonatal activation of the GABA-A receptor during two postnatal periods, an early window (postnatal day 3-5) and a late window (postnatal day 14-16), can affect anxiety- and depression-related behaviors in male mice in later life. To this end, mice were treated with either saline or muscimol (50, 100, 200, 300 and 500μg/kg) during the early and late postnatal periods. An additional group of mice was treated with the GABA-A receptor antagonist bicuculline+muscimol. When grown to adulthood male mice were exposed to behavioral tests to measure anxiety- and depression-related behaviors. Baseline and stress-induced corticosterone (CORT) levels were also measured. The results indicate that early postnatal and to a lesser extent later postnatal exposure to the GABA-A receptor agonist muscimol increased anxiety-like behavior and stress-induced CORT levels in adults. Moreover, the early postnatal treatment with muscimol increased depression-like behavior with increasing baseline CORT levels. The anxiogenic and depression-like later-life consequences could be antagonized by bicuculline. Our findings suggest that GABA-A receptor signaling during early-life can influence anxiety- and depression-related behaviors in a time- and dose-dependent manner in later life. Our findings help to increase insight in the developmental mechanisms contributing to stress-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  19. Sex-specific effects of developmental alcohol exposure on cocaine-induced place preference in adulthood.

    PubMed

    Macht, Victoria A; Kelly, Sandra J; Gass, Justin T

    2017-08-14

    Fetal Alcohol Syndrome (FAS) is associated with high rates of drug addiction in adulthood. One possible basis for increased drug use in this population is altered sensitivity to drug-associated contexts. This experiment utilized a rat model of FASD to examine behavioral and neural changes in the processing of drug cues in adulthood. Alcohol was given by intragastric intubation to pregnant rats throughout gestation and to rat pups during the early postnatal period (ET group). Controls consisted of a non-treated group (NC) and a pair-fed group given the intubation procedure without alcohol (IC). On postnatal day (PD) 90, rats from all treatment groups were given saline, 0.3mg/kg, 3.0mg/kg, or 10.0mg/kg cocaine pairings with a specific context in the conditioned place preference (CPP) paradigm. While control animals of both sexes showed cocaine CPP at the 3.0 and 10.0mg/kg doses, ET females also showed cocaine CPP at 0.3mg/kg. This was accompanied by a decrease in c-Fos/GAD 67 cells in the nucleus accumbens (NAc) shell and GAD 67 -only cells in the NAc shell and PFC at this 0.3mg/kg dose. ET males failed to show cocaine CPP at the 3.0mg/kg dose. This was associated with an increase in c-Fos only-labeled cells in the NAc core and PFC at this 3.0mg/kg dose. These results suggest that developmental alcohol exposure has a sexually-dimorphic effect on cocaine's conditioning effects in adulthood and the NAc. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Sex-dependent programming effects of prenatal glucocorticoid treatment on the developing serotonin system and stress-related behaviors in adulthood

    PubMed Central

    Hiroi, Ryoko; Carbone, David L.; Zuloaga, Damian G.; Bimonte-Nelson, Heather A.; Handa, Robert J.

    2016-01-01

    Prenatal stress and overexposure to glucocorticoids (GC) during development may be associated with an increased susceptibility to a number of diseases in adulthood including neuropsychiatric disorders, such as depression and anxiety. In animal models, prenatal overexposure to GC results in hyper-responsiveness to stress in adulthood, and females appear to be more susceptible than males. Here, we tested the hypothesis that overexposure to GC during fetal development has sex-specific programming effects on the brain, resulting in altered behaviors in adulthood. We examined the effects of dexamethasone (DEX; a synthetic GC) during prenatal life on stress-related behaviors in adulthood and on the tryptophan hydroxylase-2 (TpH2) gene expression in the adult dorsal raphe nucleus (DRN). TpH2 is the rate-limiting enzyme for serotonin (5-HT) synthesis and has been implicated in the etiology of human affective disorders. Timed-pregnant rats were treated with DEX from gestational days 18–22. Male and female offspring were sacrificed on the day of birth (postnatal day 0; P0), P7, and in adulthood (P80-84) and brains were examined for changes in TpH2 mRNA expression. Adult animals were also tested for anxiety- and depressive- like behaviors. In adulthood, prenatal DEX increased anxiety- and depressive- like behaviors selectively in females, as measured by decreased time spent in the center of the open field and increased time spent immobile in the forced swim test, respectively. Prenatal DEX increased TpH2 mRNA selectively in the female caudal DRN at P7, whereas it decreased TpH2 mRNA selectively in the female caudal DRN in adulthood. In animals challenged with restraint stress in adulthood, TpH2 mRNA was significantly lower in rostral DRN of prenatal DEX treated females compared to vehicle treated females. These data demonstrated that prenatal overexposure to GC alters the development of TpH2 gene expression and these alterations correlated with lasting behavioral changes

  1. Chronic postnatal stress induces voluntary alcohol intake and modifies glutamate transporters in adolescent rats.

    PubMed

    Odeon, María Mercedes; Andreu, Marcela; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2015-01-01

    Postnatal stress alters stress responses for life, with serious consequences on the central nervous system (CNS), involving glutamatergic neurotransmission and development of voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 °C) for 1 h daily for 20 days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7 days (5-7 rats per group), then killed. CPS: (1) increased voluntary ethanol intake, (2) did not affect body weight gain or produce signs of toxicity with alcohol exposure, (3) increased glutamate uptake by hippocampal synaptosomes in vitro and (4) reduced protein levels (Western measurements) in hippocampus and frontal cortex of glial glutamate transporter-1 (GLT-1) and excitatory amino-acid transporter-3 (EAAT-3) but increased glutamate aspartate transporter (GLAST) levels. We propose that CPS-induced decrements in GLT-1 and EAAT-3 expression levels are opposed by activation of a compensatory mechanism to prevent excitotoxicity. A greater role for GLAST in total glutamate uptake to prevent enlarged extracellular glutamate levels is inferred. Although CPS strongly increased intake of ethanol, this had little impact on effects of CPS on brain glutamate uptake or transporters. However, the impact of early life adverse events on glutamatergic neurotransmission may underlie increased alcohol consumption in adulthood.

  2. Early postnatal development of vasoactive intestinal polypeptide- and peptide histidine isoleucine-immunoreactive structures in the cat visual cortex.

    PubMed

    Wahle, P; Meyer, G

    1989-04-08

    The early postnatal development of neurons containing vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) has been analyzed in visual areas 17 and 18 of cats aged from postnatal day (P) 0 to adulthood. Neuronal types are established mainly by axonal criteria. Both peptides occur in the same neuronal types and display the same postnatal chronology of appearance. Several cell types are transient, which means that they are present in the cortex only for a limited period of development. According to their chronology of appearance the VIP/PHI-immunoreactive (ir) cell types are grouped into three neuronal populations. The first population comprises six cell types which appear early in postnatal life. The pseudohorsetail cells of layer I possess a vertically descending axon which initially gives rise to recurrent collaterals, then forms a bundle passing layers III to V, and finally, horizontal terminal fibers in layer VI. The neurons differentiate at P 4 and disappear by degeneration around P 30. The neurons with columnar dendritic fields of layers IV/V are characterized by a vertical arrangement of long dendrites ascending or descending parallel to each other, thus forming an up to 600 microns long dendritic column. Their axons always descend and terminate in broad fields in layer VI. The neurons appear at P 7 and are present until P 20. The multipolar neurons of layer VI occur in isolated positions and have broad axonal territories. The neurons differentiate at P 7 and persist into adulthood. Bitufted to multipolar neurons of layers II/III have axons descending as a single fiber to layer VI, where they terminate. The neurons appear at P 12 and persist into adulthood. The four cell types described above issue a vertically oriented fiber architecture in layers II-V and a horizontal terminal plexus in layer VI which is dense during the second, third and fourth week. Concurrent with the disappearance of the two transient types the number of

  3. Adolescent alcohol exposure alters lysine demethylase 1 (LSD1) expression and histone methylation in the amygdala during adulthood.

    PubMed

    Kyzar, Evan J; Zhang, Huaibo; Sakharkar, Amul J; Pandey, Subhash C

    2017-09-01

    Alcohol exposure in adolescence is an important risk factor for the development of alcoholism in adulthood. Epigenetic processes are implicated in the persistence of adolescent alcohol exposure-related changes, specifically in the amygdala. We investigated the role of histone methylation mechanisms in the persistent effects of adolescent intermittent ethanol (AIE) exposure in adulthood. Adolescent rats were exposed to 2 g/kg ethanol (2 days on/off) or intermittent n-saline (AIS) during postnatal days (PND) 28-41 and used for behavioral and epigenetic studies. We found that AIE exposure caused a long-lasting decrease in mRNA and protein levels of lysine demethylase 1(Lsd1) and mRNA levels of Lsd1 + 8a (a neuron-specific splice variant) in specific amygdaloid structures compared with AIS-exposed rats when measured at adulthood. Interestingly, AIE increased histone H3 lysine 9 dimethylation (H3K9me2) levels in the central nucleus of the amygdala (CeA) and medial nucleus of the amygdala (MeA) in adulthood without producing any change in H3K4me2 protein levels. Acute ethanol challenge (2 g/kg) in adulthood attenuated anxiety-like behaviors and the decrease in Lsd1 + 8a mRNA levels in the amygdala induced by AIE. AIE caused an increase in H3K9me2 occupancy at the brain-derived neurotrophic factor exon IV promoter in the amygdala that returned to baseline after acute ethanol challenge in adulthood. These results indicate that AIE specifically modulates epizymes involved in H3K9 dimethylation in the amygdala in adulthood, which are possibly responsible for AIE-induced chromatin remodeling and adult psychopathology such as anxiety. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Early post-natal neuroactive steroid manipulation modulates ondansetron effects on initial periods of alcohol consumption in rats.

    PubMed

    Bartolomé, Iris; Llidó, Anna; Darbra, Sònia; Pallarès, Marc

    2018-06-21

    Neuroactive steroids (NS) such as allopregnanolone are crucial for brain development and adult behaviour. Early post-natal alterations of NS by administering finasteride induce a decrease in the sensitivity to stimulant effects of low alcohol doses, an increase in alcohol consumption, and a decrease in ventrostriatal dopamine and serotonin levels. The aim of the present study is to observe if the effects of the 5HT3 receptor antagonist ondansetron on initial alcohol consumption are modulated by post-natal NS manipulation. For this purpose, allopregnanolone, finasteride, or vehicle was injected from day 5 to 9. In adulthood, a novel object preference test was carried out in order to detect a possible novelty-seeking pattern in our animals, which has been related to vulnerability to drug abuse. The subjects then had access to two bottles (alcohol or control solutions) one hour daily for two consecutive weeks. Ondansetron (0.01 mg/kg, 0.1 mg/kg or vehicle) was administered before the hour of consumption in the initial phase (days 1, 2, 3) of the procedure, and after prolonged alcohol intake (days 11, 12, 13). Results indicated that finasteride animals showed a higher preference to explore the new object, as well as a higher alcohol consumption than the rest of the groups. Moreover, 0.1 mg/kg of ondansetron decreased alcohol consumption, but only in the post-natal finasteride group, suggesting a possible increase in 5HT3 receptor sensitivity in these animals. In conclusion, NS manipulation in crucial stages of development, such as early post-natal periods, seems to play an important role on the effects of ondansetron on alcohol intake and in the vulnerability to develop drug use or abuse. Copyright © 2018. Published by Elsevier Inc.

  5. Brief postnatal exposure to phenobarbital impairs passive-avoidance learning and sensorimotor gating in rats

    PubMed Central

    Gutherz, Samuel B.; Kulick, Catherine V.; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A.

    2014-01-01

    Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference to cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition as compared to vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention as compared to matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. PMID:25112558

  6. Brief postnatal exposure to phenobarbital impairs passive avoidance learning and sensorimotor gating in rats.

    PubMed

    Gutherz, Samuel B; Kulick, Catherine V; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A

    2014-08-01

    Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80 mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference for cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition compared with vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention compared with matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood.

    PubMed

    Souza, K de Picoli; Nunes, M T

    2014-08-01

    Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.

  8. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    PubMed Central

    de Picoli Souza, K.; Nunes, M.T.

    2014-01-01

    Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood. PMID:25098716

  9. Postnatal changes of vesicular glutamate transporter (VGluT)1 and VGluT2 immunoreactivities and their colocalization in the mouse forebrain.

    PubMed

    Nakamura, Kouichi; Hioki, Hiroyuki; Fujiyama, Fumino; Kaneko, Takeshi

    2005-11-21

    Vesicular glutamate transporter 1 (VGluT1) and VGluT2 accumulate neurotransmitter glutamate into synaptic vesicles at presynaptic terminals, and their antibodies are thus considered to be a good marker for glutamatergic axon terminals. In the present study, we investigated the postnatal development and maturation of glutamatergic neuronal systems by single- and double-immunolabelings for VGluT1 and VGluT2 in mouse forebrain including the telencephalon and diencephalon. VGluT2 immunoreactivity was widely distributed in the forebrain, particularly in the diencephalon, from postnatal day 0 (P0) to adulthood, suggesting relatively early maturation of VGluT2-loaded glutamatergic axons. In contrast, VGluT1 immunoreactivity was intense only in the limbic regions at P0, and drastically increased in the other telencephalic and diencephalic regions during three postnatal weeks. Interestingly, VGluT1 immunoreactivity was frequently colocalized with VGluT2 immunoreactivity at single axon terminal-like profiles in layer IV of the primary somatosensory area from P5 to P10 and in the ventral posteromedial thalamic nucleus from P0 to P14. This was in sharp contrast to the finding that almost no colocalization was found in glomeruli of the olfactory bulb, patchy regions of the caudate-putamen, and the ventral posterolateral thalamic nucleus, where moderate to intense immunoreactivities for VGluT1 and VGluT2 were intermingled with each other in neuropil during postnatal development. The present results indicate that VGluT2-loaded glutamatergic axons maturate earlier than VGluT1-laden axons in the mouse telencephalic and diencephalic regions, and suggest that VGluT1 plays a transient developmental role in some glutamatergic systems that mainly use VGluT2 in the adulthood. (c) 2005 Wiley-Liss, Inc.

  10. Treatment with soy isoflavones during early adulthood improves metabolism in early postnatally overfed rats.

    PubMed

    Silva, Pamelli; Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Prates, Kelly Valério; Francisco, Flávio Andrade; Silveira, Sandra da Silva; Malta, Ananda; Lopes, Denise Alves; Miranda, Rosiane Aparecida; Palma-Rigo, Kesia; Torrezan, Rosana; Mathias, Paulo Cezar de Freitas

    2018-01-01

    The incidences of obesity and related diseases have reached epidemic proportions, and new therapeutic approaches are needed. Soy isoflavones have been identified as an important dietary factor for preventing and treating metabolic dysfunction. This study examined the effects of high doses of isoflavone on glucose and fat metabolism in a model of programmed obesity and evaluated its effects on the autonomic nervous system. Litters of Wistar rats were standardized at nine pups per dam in normal litters (NL) or reduced to three pups per dam at the third day of life (P3) in small litters (SL) to induce postnatal overfeeding. Gavage with a soy bean isoflavone mixture (1 g/day) diluted in water was started at P60 and continued for 30 days. The control animals received vehicle gavage. At P90, biometric and metabolic parameters as well as direct autonomic nerve activity were measured. Increases in glycaemia and insulinaemia observed in SL rats were reduced by isoflavone treatment, which also caused lower glucose-induced insulin secretion by pancreatic islets. Sympathetic activity in the major splanchnic nerve was increased, while vagus nerve activity was reduced by isoflavone treatment. The dyslipidaemia induced by overfeeding in SL rats was restored by isoflavone treatment. The present study shows that treatment with isoflavone reduces adiposity and improves glucose and lipid metabolism. Collectively, these effects may depend on autonomic changes.

  11. The postnatal 5-HT1A receptor regulates adult anxiety and depression differently via multiple molecules.

    PubMed

    Ishikawa, Chihiro; Shiga, Takashi

    2017-08-01

    Serotonin (5-HT) and the 5-HT 1A receptor during development are known to modulate anxiety and depression in later life. However, the brain mechanisms linking the postnatal 5-HT system and adult behavior remain unknown. Here, we examined the effects of pharmacological 5-HT 1A receptor activation during the postnatal period on anxiety and depression-like behavior in adult BALB/c male mice. To elucidate the underlying mechanisms, we measured mRNA expression of the 5-HT 1A receptor, brain-derived neurotrophic factor (BDNF), GABA A receptor subunits, and AMPA receptor subunits in the medial prefrontal cortex (mPFC), amygdala, and hippocampus. Treatment with the selective 5-HT reuptake inhibitor (fluoxetine) and 5-HT 1A receptor agonist (8-OH-DPAT) during the postnatal period decreased anxiety-like behavior in adulthood, whereas only 8-OH-DPAT treatment increased depression-like behavior. Concomitantly with the behavioral effects, postnatal treatment with fluoxetine and 8-OH-DPAT decreased the mRNA expression of the GABA A receptor α3 subunit in the mPFC and ventral hippocampus in adulthood, while 8-OH-DPAT, but not fluoxetine, decreased the mRNA expression of the 5-HT 1A receptor and BDNF in the mPFC and the GABA A receptor α2 subunit in the mPFC and ventral hippocampus. On the basis of the correlative changes between behavior and mRNA expression, these results suggest that the GABA A receptor α3 subunit in the mPFC and ventral hippocampus may regulate anxiety-like behavior. In contrast, depression-like behavior may be regulated by the 5-HT 1A receptor and BDNF in the mPFC and by the GABA A receptor α2 subunit in the mPFC and ventral hippocampus. In summary, activation of the 5-HT 1A receptor during the postnatal period may reduce anxiety levels, but increase depression levels during adulthood via different multiple molecules in the mPFC and ventral hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Developmental Injury to the Cerebellar Cortex Following Hydroxyurea Treatment in Early Postnatal Life: An Immunohistochemical and Electron Microscopic Study.

    PubMed

    Martí, Joaquín; Molina, Vanesa; Santa-Cruz, M C; Hervás, José P

    2017-02-01

    Postnatal development of the cerebellar cortex was studied in rats administered with a single dose (2 mg/g) of the cytotoxic agent hydroxyurea (HU) on postnatal day (P) 9 and collected at appropriate times ranging from 6 h to 45 days. Quantification of several parameters such as the density of pyknotic, mitotic, BrdU-positive, and vimentin-stained cells revealed that HU compromises the survival of the external granular layer (EGL) cells. Moreover, vimentin immunocytochemistry revealed overexpression and thicker immunoreactive glial processes in HU-treated rats. On the other hand, we also show that HU leads to the activation of apoptotic cellular events, resulting in a substantial number of dying EGL cells, as revealed by TUNEL staining and at the electron microscope level. Additionally, we quantified several features of the cerebellar cortex of rats exposed to HU in early postnatal life and collected in adulthood. Data analysis indicated that the analyzed parameters were less pronounced in rats administered with this agent. Moreover, we observed several alterations in the cerebellar cortex cytoarchitecture of rats injected with HU. Anomalies included ectopic placement of Purkinje cells and abnormities in the dendritic arbor of these macroneurons. Ectopic granule cells were also found in the molecular layer. These findings provide a clue for investigating the mechanisms of HU-induced toxicity during the development of the central nervous system. Our results also suggest that it is essential to avoid underestimating the adverse effects of this hydroxylated analog of urea when administered during early postnatal life.

  13. Postnatal dietary fatty acid composition permanently affects the structure of hypothalamic pathways controlling energy balance in mice.

    PubMed

    Schipper, Lidewij; Bouyer, Karine; Oosting, Annemarie; Simerly, Richard B; van der Beek, Eline M

    2013-12-01

    We previously reported that dietary lipid quality during early life can have long-lasting effects on metabolic health and adiposity. Exposure to a postnatal diet with low dietary omega-6 (n-6) or high omega-3 (n-3) fatty acid (FA) content resulted in reduced body fat accumulation when challenged with a moderate Western-style diet (WSD) beginning in adolescence. We determined whether this programming effect is accompanied by changes in hypothalamic neural projections or modifications in the postnatal leptin surge, which would indicate the altered development of hypothalamic circuits that control energy balance. Neonatal mice were subjected to a control diet (CTR) or experimental diet with altered relative n-6 and n-3 FA contents [ie, a diet with a relative reduction in n-6 fatty acid (LOW n-6) or a diet with a relative increase in n-3 fatty acid (HIGH n-3) compared with the CTR from postnatal day (PN) 2 to 42]. Compared with CTR mice, mice fed a LOW n-6 or HIGH n-3 during postnatal life showed significant reductions in the density of both orexigenic and anorexigenic neural projections to the paraventricular nucleus of the hypothalamus at PN 28. These impairments persisted into adulthood and were still apparent after the WSD challenge between PNs 42 and 98. However, the neuroanatomical changes were not associated with changes in the postnatal leptin surge. Although the exact mechanism remains to be elucidated, our data indicate that the quality of dietary FA during postnatal life affects the development of the central regulatory circuits that control energy balance and may do so through a leptin-independent mechanism.

  14. Lack of behavioral sensitization to repeated cocaine administration from postnatal days 1 to 10.

    PubMed

    Meyer, J S; Yacht, A C

    1993-09-01

    This research determined whether sensitization (or tolerance) to the behavioral effects of cocaine in rat pups would occur following repeated cocaine administration. Rats were injected daily with 20 mg/kg of cocaine HCl s.c. from postnatal day 1 to day 10, injected with saline vehicle only, or left untreated during this period. On day 11, animals from each group were challenged with either 0, .625, 1.25, or 2.50 mg/kg of cocaine and their behavioral responses were recorded. Prior cocaine treatment did not influence the acute effects of cocaine on ultrasonic vocalizations or on any observed motor responses. In contrast, the cocaine- and saline-treated pups differed in a similar manner from the untreated control group on several behavioral measures. These results indicate that the sensitizing effects of repeated cocaine administration are not manifested during the neonatal period. However, the stimulation (stress) of handling and injection may alter the subsequent responsivity of infant rats to a cocaine challenge.

  15. Impaired GABAergic inhibition in the prefrontal cortex of early postnatal phencyclidine (PCP)-treated rats.

    PubMed

    Kjaerby, Celia; Broberg, Brian V; Kristiansen, Uffe; Dalby, Nils Ole

    2014-09-01

    A compromised γ-aminobutyric acid (GABA)ergic system is hypothesized to be part of the underlying pathophysiology of schizophrenia. N-methyl-D-aspartate (NMDA) receptor hypofunction during neurodevelopment is proposed to disrupt maturation of interneurons causing an impaired GABAergic transmission in adulthood. The present study examines prefrontal GABAergic transmission in adult rats administered with the NMDA receptor channel blocker, phencyclidine (PCP), for 3 days during the second postnatal week. Whole-cell patch-clamp recordings from pyramidal cells in PCP-treated rats showed a 22% reduction in the frequency of miniature inhibitory postsynaptic currents in layer II/III, but not in layer V pyramidal neurons of the prefrontal cortex. Furthermore, early postnatal PCP treatment caused insensitivity toward effects of the GABA transporter 1 (GAT-1) inhibitor, 1,2,5,6-tetrahydro-1-[2-[[(diphenyl-methylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid, and also diminished currents passed by δ-subunit-containing GABAA receptors in layer II/III pyramidal neurons. The observed impairments in GABAergic function are compatible with the alteration of GABAergic markers as well as cognitive dysfunction observed in early postnatal PCP-treated rats and support the hypothesis that PCP administration during neurodevelopment affects the functionality of interneurons in later life. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Early Life Exposure to Chronic Intermittent Hypoxia Primes Increased Susceptibility to Hypoxia-Induced Weakness in Rat Sternohyoid Muscle during Adulthood

    PubMed Central

    McDonald, Fiona B.; Dempsey, Eugene M.; O'Halloran, Ken D.

    2016-01-01

    Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life. PMID:26973537

  17. Social instability stress in adolescence increases anxiety and reduces social interactions in adulthood in male Long-Evans rats.

    PubMed

    Green, Matthew R; Barnes, Brittany; McCormick, Cheryl M

    2013-12-01

    We investigated the effects of social instability stress (daily 1-hr isolation, change of cage partner, postnatal day 30-45) in adolescence in male rats on open field exploration and social behavior in adulthood. Social stressed rats had longer latencies to enter the center of an open field and then took longer to approach an object placed in the center of the field. When another rat was placed in the open field, stressed rats spent less time in social interaction than control rats, particularly when paired with another stressed, rather than a control, rat. The groups did not differ in social approach tests (when a stimulus rat was separated by wire mesh) nor in novel object exploration (when controlling for open field anxiety). The results suggest social stress in adolescence increases open field anxiety while maintaining exploratory behavior, and alters social interactions in adulthood. © 2012 Wiley Periodicals, Inc.

  18. Sexually dimorphic effects of postnatal treatment on the development of activity-based anorexia in adolescent and adult rats.

    PubMed

    Hancock, Stephanie D; Grant, Virginia L

    2009-12-01

    Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is a marked feature of anorexia nervosa. Using a modified version of the activity-based animal model of anorexia nervosa, we examine whether factors known to affect HPA axis activity influence the development of activity-based anorexia (ABA). Male and female rats were subjected to maternal separation or handling procedures during the first two postnatal weeks and tested in a mild version of the ABA paradigm, comprised of 2-hr daily running wheel access followed by 1-hr food access, either in adolescence or adulthood. Compared to handled females, maternally separated females demonstrated greater increases in wheel running and a more pronounced running-induced suppression of food intake during adolescence, but not in adulthood. In contrast, it was only in adulthood that wheel running produced more prolonged anorexic effects in maternally separated than in handled males. These findings highlight the interplay between early postnatal treatment, sex of the animal, and developmental age on running, food intake, and rate of body weight loss in a mild version of the ABA paradigm.

  19. Could post-weaning dietary chia seed mitigate the development of dyslipidemia, liver steatosis and altered glucose homeostasis in offspring exposed to a sucrose-rich diet from utero to adulthood?

    PubMed

    Fortino, M A; Oliva, M E; Rodriguez, S; Lombardo, Y B; Chicco, A

    2017-01-01

    The present work analyzes the effects of dietary chia seeds during postnatal life in offspring exposed to a sucrose-rich diet (SRD) from utero to adulthood. At weaning, chia seed (rich in α-linolenic acid) replaced corn oil (rich in linoleic acid) in the SRD. At 150 days of offspring life, anthropometrical parameters, blood pressure, plasma metabolites, hepatic lipid metabolism and glucose homeostasis were analyzed. Results showed that chia was able to prevent the development of hypertension, liver steatosis, hypertriglyceridemia and hypercholesterolemia. Normal triacylglycerol secretion and triacylglycerol clearance were accompanied by an improvement of de novo hepatic lipogenic and carnitine-palmitoyl transferase-1 enzymatic activities, associated with an accretion of n-3 polyunsaturated fatty acids in the total composition of liver homogenate. Glucose homeostasis and plasma free fatty acid levels were improved while visceral adiposity was slightly decreased. These results confirm that the incorporation of chia seed in the diet in postnatal life may provide a viable therapeutic option for preventing/mitigating adverse outcomes induced by an SRD from utero to adulthood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Germline deletion of FAK-related non-kinase delays post-natal cardiomyocyte mitotic arrest

    PubMed Central

    O’Neill, Thomas J.; Mack, Christopher P.; Taylor, Joan M.

    2012-01-01

    The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state impacts normal heart development and pathologic myocardial remodeling, yet the signaling mechanisms that regulate this vital process are incompletely understood. Studies from our lab and others indicate that focal adhesion kinase (FAK) is a critical regulator of cardiac growth and remodeling and we found that expression of the endogenous FAK inhibitor, FAK-related non kinase (FRNK) coincided with postnatal cardiomyocyte arrest. Mis-expression of FRNK in the embryonic heart led to pre-term lethality associated with reduced cardiomyocyte proliferation and led us to speculate that the postnatal FRNK surge might be required to promote quiescence in this growth promoting environment. Herein, we provide strong evidence that endogenous FRNK contributes to post-mitotic arrest. Depletion of FRNK promoted DNA synthesis in post-natal day (P) 10 hearts accompanied by a transient increase in DNA content and multi-nucleation by P14, indicative of DNA replication without cell division. Interestingly, a reduction in tri- and tetra-nucleated cardiomyocytes, concomitant with an increase in bi-nucleated cells by P21, indicated the possibility that FRNK-depleted cardiomyocytes underwent eventual cytokinesis. In support of this conclusion, Aurora B-labeled central spindles (a hallmark of cytokinesis) were observed in tetra-nucleated P20 FRNK−/− but not wt cardiomyocytes, while no evidence of apoptosis was observed. Moreover, hearts from FRNK null mice developed ventricular enlargement that persisted until young adulthood which resulted from myocyte expansion rather than myocyte hypertrophy or interstitial growth. These data indicate that endogenous FRNK serves an important role in limiting DNA synthesis and regulating the un-coupling between DNA synthesis and cytokinesis in the post-natal myocardium. PMID:22555221

  1. Alcohol drinking during adolescence increases consumptive responses to alcohol in adulthood in Wistar rats

    PubMed Central

    Amodeo, Leslie R.; Kneiber, Diana; Wills, Derek N.; Ehlers, Cindy L.

    2017-01-01

    Binge drinking and the onset of alcohol use disorders usually peak during the transition between late adolescence and early adulthood, and early adolescent onset of alcohol consumption has been demonstrated to increase the risk for alcohol dependence in adulthood. In the present study we describe an animal model of early adolescent alcohol consumption where animals drink unsweetened and unflavored ethanol in high concentrations (20%). Using this model we investigated the influence of drinking on alcohol-related appetitive behavior and alcohol consumption levels in early adulthood. Further, we also sought to investigate whether differences in alcohol-related drinking behaviors were specific to exposure in adolescence versus exposure in adulthood. Male Wistar rats were given a 2-bottle choice between 20% ethanol and water in one group and between two water bottles in another group during their adolescence (Postnatal Day (PD) PD26-59) to model voluntary drinking in adolescent humans. As young adults (PD85), rats were trained in a paradigm that provided free access to 20% alcohol for 25 min after completing up to a fixed ratio (FR) 16-lever press response. A set of young adult male Wistar rats was exposed to the same paradigm using the same time course beginning at PD92. The results indicate that adolescent exposure to alcohol increased consumption of alcohol in adulthood. Furthermore, when investigating differences between adolescent high and low adolescent drinkers in adulthood, high consumers continued to drink more alcohol, had fewer FR failures, and had faster completion of FR schedules in adulthood whereas the low consumers were no different than controls. Rats exposed to ethanol in young adulthood also increased future intake but there were no differences in any other components of drinking behavior. Both adolescent- and adult-exposed rats did not exhibit an increase in lever pressing during the appetitive challenge session. These data indicate that adolescent

  2. Maternal nutrient restriction during late gestation and early postnatal growth in sheep differentially reset the control of energy metabolism in the gastric mucosa.

    PubMed

    Sebert, S P; Dellschaft, N S; Chan, L L Y; Street, H; Henry, M; Francois, C; Sharma, V; Fainberg, H P; Patel, N; Roda, J; Keisler, D; Budge, H; Symonds, M E

    2011-07-01

    Fetal growth restriction followed by accelerated postnatal growth contributes to impaired metabolic function in adulthood. The extent to which these outcomes may be mediated centrally within the hypothalamus, as opposed to in the periphery within the digestive tract, remains unknown. In a sheep model, we achieved intrauterine growth restriction experimentally by maternal nutrient restriction (R) that involved a 40% reduction in food intake through late gestation. R offspring were then either reared singly to accelerate postnatal growth (RA) or as twins and compared with controls also reared singly. From weaning, all offspring were maintained indoors until adulthood. A reduced litter size accelerated postnatal growth for only the first month of lactation. Independently from postnatal weight gain and later fat mass, R animals developed insulin resistance as adults. However, restricted accelerated offspring compared with both the control accelerated and restricted restricted offspring ate less and had higher fasting plasma leptin as adults, an adaptation which was accompanied by changes in energy sensing and cell proliferation within the abomasum. Additionally, although fetal restriction down-regulated gene expression of mammalian target of rapamycin and carnitine palmitoyltransferase 1-dependent pathways in the abomasum, RA offspring compensated for this by exhibiting greater activity of AMP-activated kinase-dependent pathways. This study demonstrates a role for perinatal nutrition in the peripheral control of food intake and in energy sensing in the gastric mucosal and emphasizes the importance of diet in early life in regulating energy metabolism during adulthood.

  3. Postnatal Innate Immune Development: From Birth to Adulthood

    PubMed Central

    Georgountzou, Anastasia; Papadopoulos, Nikolaos G.

    2017-01-01

    It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed. PMID:28848557

  4. Measurements of postnatal growth of the skull of Pan troglodytes verus using lateral cephalograms.

    PubMed

    Arnold, Wolfgang H; Protsch von Zieten, Reiner; Schmidt, Ekehard

    2003-03-01

    The postnatal growth of the viscerocranium in relation to the neurocranium of Pan troglodytes verus has been investigated using standardized lateral cephalograms. Sex and age were determined on the basis of cranial morphology and the skulls were divided into four age groups: infantile, juvenile, subadult and adult. The cephalograms were traced on transparencies and specific anatomical landmarks were identified for the measurement of lines angles and the area of the neurocranium and viscerocranium. The results showed that the skull of Pan troglodytes verus exhibits klinorhynchy. During postnatal growth it develops towards airorhynchy, but never shows true airorhynchy. In the infantile age group the measured area of the neurocranium is larger than that of the viscerocranium. The measured area of the viscerocranium increases until adulthood and is larger than that of the neurocranium in the subadult and adult group. From the results we conclude that in Pan troglodytes verus growth of the neurocranium seizes early in juvenile individuals, whereas the viscerocranium grows until adulthood. This may reflect an adaptation to the masticatory system.

  5. Biochemical and pathological changes in the male rat kidney and bladder following exposure to continuous 900-MHz electromagnetic field on postnatal days 22-59.

    PubMed

    Türedi, Sibel; Kerimoğlu, Gökçen; Mercantepe, Tolga; Odacı, Ersan

    2017-09-01

    To investigate the effect on male rat kidney and bladder tissues of exposure to 900-megahertz (MHz) electromagnetic field (EMF) applied on postnatal days 22-59, inclusive. Twenty-four male Sprague Dawley rats, aged 21 days, were used. These were divided equally into one of three groups, control (CG), sham (SG) or EMF (EMFG). CG was not exposed to any procedure. SG rats were kept inside a cage, without being exposed to the effect of EMF, for 1 h a day on postnatal days 22-59, inclusive. EMFG rats were exposed to continuous 900-MHz EMF for 1 h a day under the same conditions as those for the SG rats. Rats were sacrificed on postnatal day 60, and the kidney and bladder tissues were removed. Tissues were stained with hematoxylin and eosin (H&E) and Masson trichrome for histomorphological evaluation. The TUNEL method was used to assess apoptosis. Transmission electron microscopy (TEM) was also used for the kidney tissue. Oxidant/antioxidant parameters were studied in terms of biochemical values. The findings showed that tissue malondialdehyde increased in EMFG compared to CG and SG in both kidney (p = 0.004 and p = 0.004, respectively) and bladder tissue (p = 0.004, p = 0.006, respectively), while catalase and glutathione levels decreased compared to CG (p = 0.004; p = 0.004, respectively) and SG (p = 0.004; p = 0.004, respectively). In the EMF group, pathologies such as dilatation and vacuolization in the distal and proximal tubules, degeneration in glomeruli and an increase in cells tending to apoptosis were observed in kidney tissue. In bladder tissue, degeneration in the transitional epithelium and stromal irregularity and an increase in cells tending to apoptosis were observed in EMFG. Additionally, EMFG samples exhibited glomerular capillary degeneration with capillary basement membranes under TEM. We conclude that continuous exposure to the effect of 900-MHz EMF for 1 h a day on postnatal days 22-59, inclusive, causes an

  6. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week.

    PubMed

    Nikodemova, Maria; Kimyon, Rebecca S; De, Ishani; Small, Alissa L; Collier, Lara S; Watters, Jyoti J

    2015-01-15

    During postnatal development, microglia, CNS resident innate immune cells, are essential for synaptic pruning, neuronal apoptosis and remodeling. During this period microglia undergo morphological and phenotypic transformations; however, little is known about how microglial number and density is regulated during postnatal CNS development. We found that after an initial increase during the first 14 postnatal days, microglial numbers in mouse brain began declining in the third postnatal week and were reduced by 50% by 6weeks of age; these "adult" levels were maintained until at least 9months of age. Microglial CD11b levels increased, whereas CD45 and ER-MP58 declined between P10 and adulthood, consistent with a maturing microglial phenotype. Our data indicate that both increased microglial apoptosis and a decreased proliferative capacity contribute to the developmental reduction in microglial numbers. We found no correlation between developmental reductions in microglial numbers and brain mRNA levels of Cd200, Cx3Cl1, M-Csf or Il-34. We tested the ability of M-Csf-overexpression, a key growth factor promoting microglial proliferation and survival, to prevent microglial loss in the third postnatal week. Mice overexpressing M-Csf in astrocytes had higher numbers of microglia at all ages tested. However, the developmental decline in microglial numbers still occurred, suggesting that chronically elevated M-CSF is unable to overcome the developmental decrease in microglial numbers. Whereas the identity of the factor(s) regulating microglial number and density during development remains to be determined, it is likely that microglia respond to a "maturation" signal since the reduction in microglial numbers coincides with CNS maturation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Antioxidant treatment improves neonatal survival and prevents impaired cardiac function at adulthood following neonatal glucocorticoid therapy

    PubMed Central

    Niu, Youguo; Herrera, Emilio A; Evans, Rhys D; Giussani, Dino A

    2013-01-01

    Glucocorticoids are widely used to treat chronic lung disease in premature infants but their longer-term adverse effects on the cardiovascular system raise concerns. We reported that neonatal dexamethasone treatment in rats induced in the short term molecular indices of cardiac oxidative stress and cardiovascular tissue remodelling at weaning, and that neonatal combined antioxidant and dexamethasone treatment was protective at this time. In this study, we investigated whether such effects of neonatal dexamethasone have adverse consequences for NO bioavailability and cardiovascular function at adulthood, and whether neonatal combined antioxidant and dexamethasone treatment is protective in the adult. Newborn rat pups received daily i.p. injections of a human-relevant tapering dose of dexamethasone (D; n= 8; 0.5, 0.3, 0.1 μg g−1) or D with vitamins C and E (DCE; n= 8; 200 and 100 mg kg−1, respectively) on postnatal days 1–3 (P1–3); vitamins were continued from P4 to P6. Controls received equal volumes of vehicle from P1 to P6 (C; n= 8). A fourth group received vitamins alone (CCE; n= 8). At P100, plasma NO metabolites (NOx) was measured and isolated hearts were assessed under both Working and Langendorff preparations. Relative to controls, neonatal dexamethasone therapy increased mortality by 18% (P < 0.05). Surviving D pups at adulthood had lower plasma NOx concentrations (10.6 ± 0.8 vs. 28.0 ± 1.5 μm), an increased relative left ventricular (LV) mass (70 ± 2 vs. 63 ± 1%), enhanced LV end-diastolic pressure (14 ± 2 vs. 8 ± 1 mmHg) and these hearts failed to adapt output with increased preload (Δcardiac output: 2.9 ± 2.0 vs. 10.6 ± 1.2 ml min−1) or afterload (Δcardiac output: −5.3 ± 2.0 vs.1.4 ± 1.2 ml min−1); all P < 0.05. Combined neonatal dexamethasone with antioxidant vitamins improved postnatal survival, restored plasma NOx and protected against cardiac dysfunction at adulthood. In conclusion, neonatal dexamethasone therapy promotes

  8. Prenatal Dexamethasone, as Used in Preterm Labor, Worsens the Impact of Postnatal Chlorpyrifos Exposure on Serotonergic Pathways

    PubMed Central

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2014-01-01

    This study explores how glucocorticoids sensitize the developing brain to the organophosphate pesticide, chlorpyrifos. Pregnant rats received a standard therapeutic dose (0.2 mg/kg) of dexamethasone on gestational days 17–19; pups were given subtoxic doses of chlorpyrifos on postnatal days 1–4, (1 mg/kg, <10% cholinesterase inhibition). We evaluated serotonin (5HT) synaptic function from postnatal day 30 to day 150, assessing the expression of 5HT receptors and the 5HT transporter, along with 5HT turnover (index of presynaptic impulse activity) in brain regions encompassing all the 5HT projections and cell bodies. These parameters are known targets for neurodevelopmental effects of dexamethasone and chlorpyrifos individually. In males, chlorpyrifos evoked overall elevations in the expression of 5HT synaptic proteins, with a progressive increase from adolescence to adulthood; this effect was attenuated by prenatal dexamethasone treatment. The chlorpyrifos-induced upregulation was preceded by deficits in 5HT turnover, indicating that the receptor upregulation was an adaptive response to deficient presynaptic activity. Turnover deficiencies were magnified by dexamethasone pretreatment, worsening the functional impairment caused by chlorpyrifos. In females, chlorpyrifos-induced receptor changes reflected relative sparing of adverse effects compared to males. Nevertheless, prenatal dexamethasone still worsened the 5HT turnover deficits and reduced 5HT receptor expression in females, demonstrating the same adverse interaction. Glucocorticoids are used in 10% of U.S. pregnancies, and are also elevated in maternal stress; accordingly, our results indicate that this group represents a large subpopulation that may have heightened vulnerability to developmental neurotoxicants such as the organophosphates. PMID:24280657

  9. Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain.

    PubMed

    Bogen, I L; Jensen, V; Hvalby, O; Walaas, S I

    2009-01-12

    Inactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30. The vesicular glutamate transporters (VGLUT) 1 and VGLUT2 showed synapsin-independent development during postnatal days 5-10, following which significant reductions were seen when synapsin-deficient brains were compared with wild-type brains following postnatal day 20. A similar, synapsin-dependent developmental profile of vesicular glutamate uptake occurred during the same age periods. Physiological analysis of the development of excitatory glutamatergic synapses, performed in the CA1 stratum radiatum of the hippocampus from the two genotypes, showed that both the synapsin-dependent part of the frequency facilitation and the synapsin-dependent delayed response enhancement were restricted to the period after postnatal day 10. Our data demonstrate that while both synaptic vesicle number and presynaptic short-term plasticity are essentially independent of synapsin I and II prior to postnatal day 10, maturation and function of excitatory synapses appear to be strongly dependent on synapsin I and II from postnatal day 20.

  10. Manipulation of pre and postnatal androgen environments and anogenital distance in rats.

    PubMed

    Kita, Diogo H; Meyer, Katlyn B; Venturelli, Amanda C; Adams, Rafaella; Machado, Daria L B; Morais, Rosana N; Swan, Shanna H; Gennings, Chris; Martino-Andrade, Anderson J

    2016-08-10

    We examined the anogenital distance (AGD) plasticity in rats through the manipulation of the androgen environment in utero and during puberty. Dams were treated from gestation days 13-20 with vehicle, flutamide (20mg/kg/day), di-(2-ethylhexyl) phthalate (DEHP, 750mg/kg/day), or testosterone (1.0mg/kg/day). After weaning, male pups were randomly assigned to one of four postnatal groups, which received the same treatments given prenatally. Sixteen treatment groups were established based on the combination of pre- and postnatal exposures. The postnatal treatments were conducted from postnatal days 23-53. In utero flutamide and DEHP exposure significantly shortened male AGD, although this effect was more pronounced in flutamide-exposed rats. Postnatal flutamide, DEHP, and testosterone induced slight but significant reductions in male AGD. Our study indicates that AGD is a stable anatomical landmark that reflects the androgen action in utero, although it can also be slightly responsive to changes in the androgen environment following pubertal exposure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Sulforaphane attenuates postnatal proteasome inhibition and improves spatial learning in adult mice.

    PubMed

    Sunkaria, Aditya; Bhardwaj, Supriya; Yadav, Aarti; Halder, Avishek; Sandhir, Rajat

    2018-01-01

    Proteasomes are known to degrade proteins involved in various processes like metabolism, signal transduction, cell-cycle regulation, inflammation, and apoptosis. Evidence showed that protein degradation has a strong influence on developing neurons as well as synaptic plasticity. Here, we have shown that sulforaphane (SFN) could prevent the deleterious effects of postnatal proteasomal inhibition on spatial reference and working memory of adult mice. One day old Balb/c mice received intracerebroventricular injections of MG132 and SFN. Sham received an equal volume of aCSF. We observed that SFN pre-administration could attenuate MG132 mediated decrease in proteasome and calpain activities. In vitro findings revealed that SFN could induce proteasomal activity by enhancing the expression of catalytic subunit-β5. SFN pre-administration prevented the hippocampus based spatial memory impairments during adulthood, mediated by postnatal MG132 exposure. Histological examination showed deleterious effects of MG132 on pyramidal neurons and granule cell neurons in DG and CA3 sub-regions respectively. Furthermore, SFN pre-administration has shown to attenuate the effect of MG132 on proteasome subunit-β5 expression and also induce the Nrf2 nuclear translocation. In addition, SFN pre-administered mice have also shown to induce expression of pCaMKII, pCreb, and mature/pro-Bdnf, molecules which play a crucial role in spatial learning and memory consolidation. Our findings have shown that proteasomes play an important role in hippocampal synaptic plasticity during the early postnatal period and SFN pre-administration could enhance the proteasomal activity as well as improve spatial learning and memory consolidation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The effects of early-life adversity on fear memories in adolescent rats and their persistence into adulthood.

    PubMed

    Chocyk, Agnieszka; Przyborowska, Aleksandra; Makuch, Wioletta; Majcher-Maślanka, Iwona; Dudys, Dorota; Wędzony, Krzysztof

    2014-05-01

    Adolescence is a developmental period characterized by extensive morphological and functional remodeling of the brain. The processes of brain maturation during this period may unmask malfunctions that originate earlier in life as a consequence of early-life stress (ELS). This is associated with the emergence of many psychopathologies during adolescence, particularly affective spectrum disorders. In the present study, we applied a maternal separation (MS) procedure (3h/day, on postnatal days 1-14) as a model of ELS to examine its effects on the acquisition, expression and extinction of fear memories in adolescent rats. Additionally, we studied the persistence of these memories into adulthood. We found that MS decreased the expression of both contextual (CFC) and auditory (AFC) fear conditioning in adolescent rats. Besides, MS had no impact on the acquisition of extinction learning. During the recall of extinction MS animals both, those previously subjected and not subjected to the extinction session, exhibited equally low levels of freezing. In adulthood, the MS animals (conditioned during adolescence) still displayed impairments in the expression of AFC (only in males) and CFC. Furthermore, the MS procedure had also an impact on the expression of CFC (but not AFC) after retraining in adulthood. Our findings imply that ELS may permanently affect fear learning and memory. The results also support the hypothesis that, depending on individual predispositions and further experiences, ELS may either lead to a resilience or a vulnerability to early- and late-onsets psychopathologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Consequences of ethanol exposure on cued and contextual fear conditioning and extinction in adulthood differ depending on timing of exposure

    PubMed Central

    Broadwater, Margaret; Spear, Linda P.

    2013-01-01

    Some evidence suggests that adolescents are more sensitive than adults to ethanol-induced cognitive deficits and that these effects may be long-lasting. The purpose of Exp 1 was to determine if early-mid adolescent [Postnatal day (P) 28-48] intermittent ethanol exposure would affect later learning and memory in a Pavlovian fear conditioning paradigm differently than comparable exposures in adulthood (P70-90). In Exp 2 animals were exposed to ethanol during mid-late adolescence (P35-55) to assess whether age of initiation within the adolescent period would influence learning and memory differentially. Male Sprague-Dawley rats were given 4 g/kg i.g. ethanol (25%) or water every 48 hours for a total of 11 exposures. After a 22 day non-ethanol period, animals were fear conditioned to a context (relatively hippocampal-dependent task) or tone (amygdala-dependent task), followed by retention tests and extinction (mPFC-dependent) of this conditioning. Despite similar acquisition, a deficit in context fear retention was evident in animals exposed to ethanol in early adolescence, an effect not observed after a comparable ethanol exposure in mid-late adolescence or adulthood. In contrast, animals that were exposed to ethanol in mid-late adolescence or adulthood showed enhanced resistance to context extinction. Together these findings suggest that repeated ethanol imparts long-lasting consequences on learning and memory, with outcomes that differ depending on age of exposure. These results may reflect differential influence of ethanol on the brain as it changes throughout ontogeny and may have implications for alcohol use not only throughout the developmental period of adolescence, but also in adulthood. PMID:23938333

  14. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats.

    PubMed

    Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina

    2018-06-01

    Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Hippocampal HDAC4 contributes to postnatal fluoxetine-evoked depression-like behavior.

    PubMed

    Sarkar, Ambalika; Chachra, Parul; Kennedy, Pamela; Pena, Catherine J; Desouza, Lynette A; Nestler, Eric J; Vaidya, Vidita A

    2014-08-01

    Fluoxetine treatment in adulthood evokes antidepressant and anxiolytic responses. Paradoxically, postnatal fluoxetine (PNFlx) induces persistent depression- and anxiety-like behaviors. The mechanistic underpinnings of this paradox remain poorly understood. Here, we examined specific molecular changes in the rat hippocampus that accompany perturbed emotionality observed across life following PNFlx. PNFlx-induced hippocampal gene regulation observed in microarray and quantitative PCR studies indicate functional enrichment of genes involved in response to organic substances, protein kinase pathways, DNA binding, and transcriptional repression. We noted specific transcripts (Hdac4, mammalian target of rapamycin (mTOR), Gnai1, protein kinase C gamma (Prkcc), and hyperpolarization-activated cyclic nucleotide-gated channel 1 (Hcn1)) that were consistently dysregulated across life, and selectively influenced by postnatal, but not adult, fluoxetine. Increased histone deacetylase-4 (HDAC4) recruitment, accompanied by decreased activating histone acetylation marks at the mTOR and Gnai1 promoters, indicate a role for HDAC4 in PNFlx-mediated gene dysregulation. Strikingly, coadministration of the HDAC inhibitor sodium butyrate with PNFlx prevented the dysregulation of Hdac4 and mTOR, and the emergence of depression- and anxiety-like behavior. Importantly, we also find that retreatment of PNFlx animals with fluoxetine in adulthood reversed the increased Hdac4 expression, prevented HDAC4 recruitment to the mTOR and Gnai1 promoters, and attenuated the decline in mTOR and Gnai1 expression, coincident with normalization of PNFlx-evoked depression- and anxiety-like behavior. Further, we show that viral-mediated hippocampal overexpression of Hdac4 was sufficient to induce depression-, but not anxiety-, like behavior in adulthood. Our results highlight the unique nature of molecular signatures evoked by PNFlx, and implicate HDAC4 in the dysregulated gene expression and emergence of

  16. Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO A-deficient mice

    PubMed Central

    Bortolato, Marco; Godar, Sean C.; Tambaro, Simone; Li, Felix G.; Devoto, Paola; Coba, Marcelo P.; Chen, Kevin; Shih, Jean C.

    2013-01-01

    Monoamine oxidase (MAO) A, the major enzyme catalyzing the oxidative degradation of serotonin (5-hydroxytryptamine, 5-HT), plays a key role in emotional regulation. In humans and mice, MAO-A deficiency results in high 5-HT levels, antisocial, aggressive, and perseverative behaviors. We previously showed that the elevation in brain 5-HT levels in MAO-A knockout (KO) mice is particularly marked during the first two weeks of postnatal life. Building on this finding, we hypothesized that the reduction of 5-HT levels during these early stages may lead to enduring attenuations of the aggression and other behavioral aberrances observed in MAO-A KO mice. To test this possibility, MAO-A KO mice were treated with daily injections of a 5-HT synthesis blocker, the tryptophan hydroxylase inhibitor p-chloro-phenylalanine (pCPA, 300 mg/kg/day, IP), from postnatal day 1 through 7. As expected, this regimen significantly reduced 5-HT forebrain levels in MAO-A KO pups. These neurochemical changes persisted throughout adulthood, and resulted in significant reductions in marble-burying behavior, as well as increases in spontaneous alternations within a T-maze. Conversely, pCPA-treated MAO-A KO mice did not exhibit significant changes in anxiety-like behaviors in a novel open-field and elevated plus-maze; furthermore, this regimen did not modify their social deficits, aggressive behaviors and impairments in tactile sensitivity. Treatment with pCPA from postnatal day 8 through 14 elicited similar, yet milder, behavioral effects on marble-burying behavior. These results suggest that early developmental enhancements in 5-HT levels have long-term effects on the modulation of behavioral flexibility associated with MAO-A deficiency. PMID:23871843

  17. Prenatal Nicotine Alters the Developmental Neurotoxicity of Postnatal Chlorpyrifos Directed Toward Cholinergic Systems: Better, Worse, or Just “Different?”

    PubMed Central

    Slotkin, Theodore A.; Seidler, Frederic J.

    2014-01-01

    This study examines whether prenatal nicotine exposure sensitizes the developing brain to subsequent developmental neurotoxicity evoked by chlorpyrifos, a commonly-used insecticide. We gave nicotine to pregnant rats throughout gestation at a dose (3 mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1–4, at a dose (1 mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of nicotine and chlorpyrifos given individually. By itself nicotine elicited overall upregulation of the ACh markers, albeit with selective differences by sex, region and age. Likewise, chlorpyrifos alone had highly sex-selective effects. Importantly, all the effects showed temporal progression between adolescence and adulthood, pointing to ongoing synaptic changes rather than just persistence after an initial injury. Prenatal nicotine administration altered the responses to chlorpyrifos in a consistent pattern for all three markers, lowering values relative to those of the individual treatments or to those expected from simple additive effects of nicotine and chlorpyrifos. The combination produced global interference with emergence of the ACh phenotype, an effect not seen with nicotine or chlorpyrifos alone. Given that human exposures to nicotine and chlorpyrifos are widespread, our results point to the creation of a subpopulation with heightened vulnerability. PMID:25510202

  18. Chronic alcohol intake during adolescence, but not adulthood, promotes persistent deficits in risk-based decision making.

    PubMed

    Schindler, Abigail G; Tsutsui, Kimberly T; Clark, Jeremy J

    2014-06-01

    Adolescent alcohol use is a major public health concern and is strongly correlated with the development of alcohol abuse problems in adulthood. Adolescence is characterized by maturation and remodeling of brain regions implicated in decision making and therefore may be uniquely vulnerable to environmental insults such as alcohol exposure. We have previously demonstrated that voluntary alcohol consumption in adolescence results in maladaptive risk-based decision making in adulthood. However, it is unclear whether this effect on risk-based decision making can be attributed to chronic alcohol use in general or to a selective effect of alcohol use during the adolescent period. Ethanol (EtOH) was presented to adolescent (postnatal day [PND] 30 to 49) and adult rats (PND 80 to 99) for 20 days, either 24 hours or 1 h/d, in a gel matrix consisting of distilled water, gelatin, polycose (10%), and EtOH (10%). The 24-hour time course of EtOH intake was measured and compared between adolescent and adult animals. Following 20 days of withdrawal from EtOH, we assessed risk-based decision making with a concurrent instrumental probability-discounting task. Blood EtOH concentrations (BECs) were taken from trunk blood and assessed using the Analox micro-stat GM7 in separate groups of animals at different time points. Unlike animals exposed to EtOH during adolescence, animals exposed to alcohol during adulthood did not display differences in risk preference compared to controls. Adolescent and adult rats displayed similar EtOH intake levels and patterns when given either 24- or 1-hour access per day. In addition, while both groups reached significant BEC levels, we failed to find a difference between adult and adolescent animals. Here, we show that adolescent, but not adult, EtOH intake leads to a persistent increase in risk preference which cannot be attributed to differences in intake levels or BECs attained. Our findings support previous work implicating adolescence as a time

  19. Prenatal nicotine alters the developmental neurotoxicity of postnatal chlorpyrifos directed toward cholinergic systems: better, worse, or just "different?".

    PubMed

    Slotkin, Theodore A; Seidler, Frederic J

    2015-01-01

    This study examines whether prenatal nicotine exposure sensitizes the developing brain to subsequent developmental neurotoxicity evoked by chlorpyrifos, a commonly-used insecticide. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of nicotine and chlorpyrifos given individually. By itself nicotine elicited overall upregulation of the ACh markers, albeit with selective differences by sex, region and age. Likewise, chlorpyrifos alone had highly sex-selective effects. Importantly, all the effects showed temporal progression between adolescence and adulthood, pointing to ongoing synaptic changes rather than just persistence after an initial injury. Prenatal nicotine administration altered the responses to chlorpyrifos in a consistent pattern for all three markers, lowering values relative to those of the individual treatments or to those expected from simple additive effects of nicotine and chlorpyrifos. The combination produced global interference with emergence of the ACh phenotype, an effect not seen with nicotine or chlorpyrifos alone. Given that human exposures to nicotine and chlorpyrifos are widespread, our results point to the creation of a subpopulation with heightened vulnerability. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Pre- and Postnatal Exposure to Low Dose Glufosinate Ammonium Induces Autism-Like Phenotypes in Mice

    PubMed Central

    Laugeray, Anthony; Herzine, Ameziane; Perche, Olivier; Hébert, Betty; Aguillon-Naury, Marine; Richard, Olivier; Menuet, Arnaud; Mazaud-Guittot, Séverine; Lesné, Laurianne; Briault, Sylvain; Jegou, Bernard; Pichon, Jacques; Montécot-Dubourg, Céline; Mortaud, Stéphane

    2014-01-01

    Glufosinate ammonium (GLA) is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior. Here, we addressed the developmental impact of GLA by exposing female mice to low dose GLA during both pre- and postnatal periods and analyzed potential developmental and behavioral changes of the offspring during infancy and adulthood. A neurobehavioral test battery revealed significant effects of GLA maternal exposure on early reflex development, pup communication, affiliative behaviors, and preference for social olfactory cues, but emotional reactivity and emotional memory remained unaltered. These behavioral alterations showed a striking resemblance to changes seen in animal models of Autistic Spectrum Disorders. At the brain level, GLA maternal exposure caused some increase in relative brain weight of the offspring. In addition, reduced expression of Pten and Peg3 – two genes implicated in autism-like deficits – was observed in the brain of GLA-exposed pups at postnatal day 15. Our work thus provides new data on the link between pre- and postnatal exposure to the herbicide GLA and the onset of autism-like symptoms later in life. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during critical developmental periods. PMID:25477793

  1. Recurrent Moderate Hypoglycemia Suppresses Brain-Derived Neurotrophic Factor Expression in the Prefrontal Cortex and Impairs Sensorimotor Gating in the Post-Hypoglycemia Period in Young Rats

    PubMed Central

    Rao, Raghavendra; Ennis, Kathleen; Mitchell, Eugena P.; Tran, Phu V.; Gewirtz, Jonathan C.

    2016-01-01

    Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, three-week-old male rats were subjected to five episodes of moderate hypoglycemia (blood glucose concentration, approximately 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing prepulse inhibition of the acoustic startle reflex on postnatal day 29 and two weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF and TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, prepulse inhibition had recovered at two weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the post-hypoglycemia period. PMID:26820887

  2. Pre- and postnatal bisphenol A treatment results in persistent deficits in the sexual behavior of male rats, but not female rats, in adulthood.

    PubMed

    Jones, Bryan A; Shimell, Jordan J; Watson, Neil V

    2011-02-01

    Perinatal administration of the endocrine disruptor bisphenol A (BPA) reportedly inhibits the sexual behavior of sexually naïve adult male rats. In order to evaluate the effects of BPA administration during early development on later reproductive behavior, we administered one of five doses of bisphenol A daily to pregnant female rats throughout gestation and lactation, and quantified the appetitive and consummatory sexual behaviors of the resultant male and female offspring over multiple sexual encounters in adulthood. Males receiving low dose perinatal BPA (50 μg/kg bw/day) showed persistent deficits in sexual behavior in adulthood. Males receiving the highest dose (5 mg/kg bw/day), however, were indistinguishable from controls with respect to consummatory sexual behaviors but showed decreased latencies to engage in those behaviors when sexually naïve, with significant non-linear, or U-shaped, dose-response relationships observed on the first and last day of testing. Adult female sexual behavior was not affected by early BPA administration at any dose tested. These results are consistent with previous reports that BPA exerts behavioral effects especially at low doses, and further indicates that BPA can cause lasting impairment of sexual behavior in males, but does not alter the normal development of female appetitive or consummatory sexual behaviors. To our knowledge, this is the first report indicating that adult sexual performance is impaired in sexually experienced animals following perinatal exposure to bisphenol A. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Effect of Gestational Exposure of Cypermethrin on Postnatal Development of Brain Cytochrome P450 2D1 and 3A1 and Neurotransmitter Receptors.

    PubMed

    Singh, Anshuman; Mudawal, Anubha; Shukla, Rajendra K; Yadav, Sanjay; Khanna, Vinay K; Sethumadhavan, Rao; Parmar, Devendra

    2015-08-01

    Oral administration of low doses (1.25, 2.5, or 5 mg/kg) of cypermethrin to pregnant Wistar rats from gestation days 5 to 21 led to dose-dependent differences in the induction of cytochrome P450 2D1 (CYP2D1) and 3A1 messenger RNA (mRNA) and protein in brain regions isolated from the offsprings postnatally at 3 weeks that persisted up to adulthood (12 weeks). Similar alterations were observed in the expression of GABAergic, muscarinic, dopaminergic, and serotonergic neurotransmitter receptors in brain regions of rat offsprings. Rechallenge of the prenatally exposed offsprings at adulthood (12 weeks old) with cypermethrin (p.o., 10 mg/kg for 6 days) led to a greater magnitude of alterations in the expression of CYPs, neurotransmitter receptors, and neurotransmitter receptor binding in the brain regions when compared to the control offsprings treated at adulthood with cypermethrin or prenatally exposed offsprings. A greater magnitude of decrease was also observed in the spontaneous locomotor activity (SLA) in prenatally exposed offsprings rechallenged with cypermethrin. The present data indicating similarities in the alterations in the expression of CYPs (2D1 and 3A1) and neurotransmitter receptors in brain has led us to suggest that endogenous function regulating CYPs is possibly associated with neurotransmission processes. A greater magnitude of alterations in CYP2D1, 3A1, neurotransmitter receptors, and SLA in rechallenged animals has further provided evidence that alterations in CYPs are possibly linked with neurotransmission processes.

  4. Early postnatal exposure to methylphenidate alters stress reactivity and increases hippocampal ectopic granule cells in adult rats

    PubMed Central

    Torres-Reveron, Annelyn; Gray, Jason D.; Melton, Jay T.; Punsoni, Michael; Tabori, Nora E.; Ward, Mary J.; Frys, Kelly; Iadecola, Costantino; Milner, Teresa A.

    2009-01-01

    To mimic clinical treatment with methylphenidate (MPH; Ritalin) for attention deficit/hyperactivity disorder (ADHD), rat pups were injected with MPH (5 mg/kg, I.P.) or placebo twice daily during their nocturnal active phase from postnatal day (PND) 7 to 35. Thirty-nine days after the last MPH administration (PND76), four litters of rats experienced stressful conditions during the 2003 New York City blackout. MPH-treated rats that endured the blackout lost more weight and regained it at a slower pace than controls (p<0.05; N=7–11/group). Furthermore, MPH-treated rats had elevated systolic arterial blood pressure (from 115.6 ± 1.2 to 126 ± 1.8 mmHg; p<0.05), assessed on PND130 by tail cuff plethysmography. Immunocytochemical studies of transmitter systems in the brain demonstrated rearrangements of catecholamine and neuropeptide Y fibers in select brain regions at PND135, which did not differ between blackout and control groups. However, MPH-treated rats that endured the blackout had more ectopic granule cells in the hilus of the dorsal hippocampal dentate gyrus compared to controls at PND 135 (p<0.05; N=6/group). These findings indicate that early postnatal exposure to high therapeutic doses of MPH can have long lasting effects on the plasticity of select brain regions and can induce changes in the reactivity to stress that persist into adulthood. PMID:19100815

  5. Prenatal nicotine changes the response to postnatal chlorpyrifos: Interactions targeting serotonergic synaptic function and cognition.

    PubMed

    Slotkin, Theodore A; Skavicus, Samantha; Levin, Edward D; Seidler, Frederic J

    2015-02-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that target serotonin systems. We examined whether prenatal nicotine exposure alters the subsequent response to chlorpyrifos given postnatally. Pregnant rats received nicotine throughout gestation at 3mg/kg/day, a regimen designed to achieve plasma levels seen in smokers; chlorpyrifos was given to pups on postnatal days (PN) 1-4 at 1mg/kg, just above the detection threshold for brain cholinesterase inhibition. We assessed long-term effects from adolescence (PN30) through full adulthood (PN150), measuring the expression of serotonin receptors and serotonin turnover (index of presynaptic impulse activity) in cerebrocortical brain regions encompassing the projections that are known targets for nicotine and chlorpyrifos. Nicotine or chlorpyrifos individually increased the expression of serotonin receptors, with greater effects on males than on females and with distinct temporal and regional patterns indicative of adaptive synaptic changes rather than simply an extension of initial injury. This interpretation was confirmed by our finding an increase in serotonin turnover, connoting presynaptic serotonergic hyperactivity. Animals receiving the combined treatment showed a reduction in these adaptive effects on receptor binding and turnover relative to the individual agents, or even an effect in the opposite direction; further, normal sex differences in serotonin receptor concentrations were dissipated or reversed, an effect that was confirmed by behavioral evaluations in the Novel Objection Recognition Test. In addition to the known liabilities associated with maternal smoking during pregnancy, our results point to additional costs in the form of heightened vulnerability to neurotoxic chemicals encountered later in life. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Prenatal Nicotine Changes the Response to Postnatal Chlorpyrifos: Interactions Targeting Serotonergic Synaptic Function and Cognition

    PubMed Central

    Slotkin, Theodore A.; Skavicus, Samantha; Levin, Edward D.; Seidler, Frederic J.

    2015-01-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that target serotonin systems. We examined whether prenatal nicotine exposure alters the subsequent response to chlorpyrifos given postnatally. Pregnant rats received nicotine throughout gestation at 3 mg/kg/day, a regimen designed to achieve plasma levels seen in smokers; chlorpyrifos was given to pups on postnatal days (PN) 1–4 at 1 mg/kg, just above the detection threshold for brain cholinesterase inhibition. We assessed long-term effects from adolescence (PN30) through full adulthood (PN150), measuring the expression of serotonin receptors and serotonin turnover (index of presynaptic impulse activity) in cerebrocortical brain regions encompassing the projections that are known targets for nicotine and chlorpyrifos. Nicotine or chlorpyrifos individually increased the expression of serotonin receptors, with greater effects on males than on females and with distinct temporal and regional patterns indicative of adaptive synaptic changes rather than simply an extension of initial injury. This interpretation was confirmed by our finding an increase in serotonin turnover, connoting presynaptic serotonergic hyperactivity. Animals receiving the combined treatment showed a reduction in these adaptive effects on receptor binding and turnover relative to the individual agents, or even an effect in the opposite direction; further, normal sex differences in serotonin receptor concentrations were dissipated or reversed, an effect that was confirmed by behavioral evaluations in the Novel Objection Recognition Test. In addition to the known liabilities associated with maternal smoking during pregnancy, our results point to additional costs in the form of heightened vulnerability to neurotoxic chemicals encountered later in life. PMID:25592617

  7. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants.

    PubMed

    Doyle, Lex W; Cheong, Jeanie L; Ehrenkranz, Richard A; Halliday, Henry L

    2017-10-24

    Bronchopulmonary dysplasia remains a major problem in neonatal intensive care units. Persistent inflammation in the lungs is the most likely underlying pathogenesis. Corticosteroids have been used to prevent or treat bronchopulmonary dysplasia because of their potent anti-inflammatory effects. To examine the relative benefits and adverse effects of systemic postnatal corticosteroids commenced within the first seven days of life for preterm infants at risk of developing bronchopulmonary dysplasia. For the 2017 update, we used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 1); MEDLINE via PubMed (January 2013 to 21 February 2017); Embase (January 2013 to 21 February 2017); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (January 2013 to 21 February 2017). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-randomised trials. For this review, we selected RCTs examining systemic postnatal corticosteroid treatment within the first seven days of life (early) in high-risk preterm infants. Most studies evaluated the use of dexamethasone, but we also included studies that assessed hydrocortisone, even when used primarily for management of hypotension. We used the GRADE approach to assess the quality of evidence.We extracted and analysed data regarding clinical outcomes that included mortality, bronchopulmonary dysplasia, death or bronchopulmonary dysplasia, failure to extubate, complications during primary hospitalisation, and long-term health outcomes. We included 32 RCTs enrolling a total of 4395 participants. The overall risk of bias of included studies was probably low, as all were RCTs, and most trials used rigorous methods. Investigators reported significant benefits for the following outcomes overall: lower rates of failure to extubate, decreased

  8. The Effect of Congenital and Postnatal Hypothyroidism on Depression-Like Behaviors in Juvenile Rats.

    PubMed

    Özgür, Erdoğan; Gürbüz Özgür, Börte; Aksu, Hatice; Cesur, Gökhan

    2016-12-01

    The aim of this study was to investigate depression-like behaviors of juvenile rats with congenital and postnatal hypothyroidism. Twenty-seven newborn rat pups were used. First, 6-month-old Wistar Albino female rats were impregnated. Methimazole (0.025% wt/vol) was given to dam rats from the first day of pregnancy until postnatal 21 days (P21) to generate pups with congenital hypothyroidism (n=8), whereas in the postnatal hypothyroidism group (n=10), methimazole was given from P0 to P21. In the control group (n=9), dam rats were fed ad libitum and normal tap water. Offspring were fed with breast milk from their mothers. The behavioral parameters were measured with the juvenile forced swimming test (JFST). The procedure of JFST consisted of two sessions in two consecutive days: the 15-minute pre-test on day 1 and the 5-minute test on day 2. Increased immobility and decreased climbing duration were observed in both congenital and postnatal hypothyroidism groups. Decreased swimming duration was detected in the postnatal hypothyroidism group. Both hypothyroidism groups had a lower body weight gain compared with the control group, while the congenital hypothyroidism group had the lowest body weight. Our results showed that hypothyroidism had negative effects on depression-like behavior as well as on growth and development. Both congenital and postnatal hypothyroidism caused an increase in immobility time in JFST. New studies are required to understand the differing results on depression-like behavior between congenital and postnatal hypothyroidism.

  9. Postnatal changes in skin water content in preterm infants.

    PubMed

    Ishiguro, Akio; Fujinuma, Sumie; Motojima, Yukiko; Oka, Shuntaro; Komaki, Takeshi; Saito, Aya; Kawasaki, Hidenori; Araki, Shunsuke; Kanai, Masayo; Sobajima, Hisanori; Tamura, Masanori

    2015-09-01

    Preterm infants have immature skin, which contributes to skin problems. Very little is known about postnatal changes in the skin, despite the clinical importance of this issue. To assess temporal changes in skin water content in preterm infants. A prospective observational study. Infants admitted to the neonatal intensive care unit were included in this study. Skin water content was measured at five different skin regions using dielectric methods at a depth of 1.5mm. Skin water content was measured on postnatal day 1 in 101 infants, and the correlation between skin water content and gestational week was analyzed. Measurements were also made on postnatal days 2, 3, and 7, and every 7days thereafter until the corrected age of 37weeks in 87 of the 101 infants. Temporal changes were statistically analyzed after dividing participants into seven groups by gestational age. On postnatal day 1, skin water content correlated inversely with gestational age at all skin regions. Skin water content decreased significantly over time, converging to the level of term infants by the corrected age of 32-35weeks. Skin water content at a depth of 1.5mm was related to corrected age and reached the level of term infants by the corrected age of approximately 32-35weeks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Postnatal Loss of Hap1 Reduces Hippocampal Neurogenesis and Causes Adult Depressive-Like Behavior in Mice

    PubMed Central

    Xiang, Jianxing; Yan, Sen; Li, Shi-Hua; Li, Xiao-Jiang

    2015-01-01

    Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression. PMID:25875952

  11. Postnatal loss of hap1 reduces hippocampal neurogenesis and causes adult depressive-like behavior in mice.

    PubMed

    Xiang, Jianxing; Yan, Sen; Li, Shi-Hua; Li, Xiao-Jiang

    2015-04-01

    Depression is a serious mental disorder that affects a person's mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression.

  12. Post-natal growth in the rat pineal gland: a stereological study.

    PubMed

    Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E

    2012-10-01

    The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies. © 2012 Blackwell Verlag GmbH.

  13. Prenatal Mechanistic Target of Rapamycin Complex 1 (m TORC1) Inhibition by Rapamycin Treatment of Pregnant Mice Causes Intrauterine Growth Restriction and Alters Postnatal Cardiac Growth, Morphology, and Function.

    PubMed

    Hennig, Maria; Fiedler, Saskia; Jux, Christian; Thierfelder, Ludwig; Drenckhahn, Jörg-Detlef

    2017-08-04

    Fetal growth impacts cardiovascular health throughout postnatal life in humans. Various animal models of intrauterine growth restriction exhibit reduced heart size at birth, which negatively influences cardiac function in adulthood. The mechanistic target of rapamycin complex 1 (mTORC1) integrates nutrient and growth factor availability with cell growth, thereby regulating organ size. This study aimed at elucidating a possible involvement of mTORC1 in intrauterine growth restriction and prenatal heart growth. We inhibited mTORC1 in fetal mice by rapamycin treatment of pregnant dams in late gestation. Prenatal rapamycin treatment reduces mTORC1 activity in various organs at birth, which is fully restored by postnatal day 3. Rapamycin-treated neonates exhibit a 16% reduction in body weight compared with vehicle-treated controls. Heart weight decreases by 35%, resulting in a significantly reduced heart weight/body weight ratio, smaller left ventricular dimensions, and reduced cardiac output in rapamycin- versus vehicle-treated mice at birth. Although proliferation rates in neonatal rapamycin-treated hearts are unaffected, cardiomyocyte size is reduced, and apoptosis increased compared with vehicle-treated neonates. Rapamycin-treated mice exhibit postnatal catch-up growth, but body weight and left ventricular mass remain reduced in adulthood. Prenatal mTORC1 inhibition causes a reduction in cardiomyocyte number in adult hearts compared with controls, which is partially compensated for by an increased cardiomyocyte volume, resulting in normal cardiac function without maladaptive left ventricular remodeling. Prenatal rapamycin treatment of pregnant dams represents a new mouse model of intrauterine growth restriction and identifies an important role of mTORC1 in perinatal cardiac growth. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Famine Exposure in the Young and the Risk of Type 2 Diabetes in Adulthood

    PubMed Central

    van Abeelen, Annet F.M.; Elias, Sjoerd G.; Bossuyt, Patrick M.M.; Grobbee, Diederick E.; van der Schouw, Yvonne T.; Roseboom, Tessa J.; Uiterwaal, Cuno S.P.M.

    2012-01-01

    The developmental origins hypothesis proposes that undernutrition during early development is associated with an increased type 2 diabetes risk in adulthood. We investigated the association between undernutrition during childhood and young adulthood and type 2 diabetes in adulthood. We studied 7,837 women from Prospect-EPIC (European Prospective Investigation Into Cancer and Nutrition) who were exposed to the 1944–1945 Dutch famine when they were between age 0 and 21 years. We used Cox proportional hazards regression models to explore the effect of famine on the risk of subsequent type 2 diabetes in adulthood. We adjusted for potential confounders, including age at famine exposure, smoking, and level of education. Self-reported famine exposure during childhood and young adulthood was associated with an increased type 2 diabetes risk in a dose-dependent manner. In those who reported moderate famine exposure, the age-adjusted type 2 diabetes hazard ratio (HR) was 1.36 (95% CI [1.09–1.70]); in those who reported severe famine exposure, the age-adjusted HR was 1.64 (1.26–2.14) relative to unexposed women. These effects did not change after adjustment for confounders. This study provides the first direct evidence, using individual famine exposure data, that a short period of moderate or severe undernutrition during postnatal development increases type 2 diabetes risk in adulthood. PMID:22648386

  15. Formation of alveoli in rats: postnatal effect of prenatal dexamethasone.

    PubMed

    Massaro, G D; Massaro, D

    1992-07-01

    We administered a glucocorticosteroid (dexamethasone) or its diluent to pregnant rats on gestation days 17, 18, and 19. In male offspring we determined the lung's gas exchange surface area (S(a)), the average volume (v) of gas exchange saccules at age 2 days and alveoli at age 14 days, and their number (N) on these days. S(a), v, and N at 2 days and v at 14 days were not affected by the prenatal administration of dexamethasone. However, S(a) and N were lower in 14-day-old pups from dexamethasone-treated dams than in pups from diluent-treated dams. In separate experiments we found the responsiveness to prenatal dexamethasone, as a depressor of the postnatal increase in S(a), appeared earlier in female than male fetuses; it was present in female but not in male fetuses on days 16-18 and was found in male fetuses on days 17-19. We conclude 1) prenatal administration of dexamethasone diminishes the postnatal increase in S(a), 2) responsiveness to this action of dexamethasone occurs earlier in gestation in female than in male fetuses, and 3) prenatal dexamethasone does not effect the postnatal volume of an average alveolus but diminishes their number in male pups.

  16. Update on Postnatal Steroids.

    PubMed

    Halliday, Henry L

    2017-01-01

    Antenatal steroid treatment to enhance fetal lung maturity and surfactant treatment to prevent or treat respiratory distress syndrome have been major advances in perinatal medicine in the past 40 years contributing to improved outcomes for preterm infants. Use of postnatal steroids to prevent or treat chronic lung disease in preterm infants has been less successful and associated with adverse neurodevelopmental outcomes. Although early (in the first week of life) postnatal steroid treatment facilitates earlier extubation and reduces the risk of chronic lung disease, it is associated with adverse effects, such as hyperglycemia, hypertension, gastrointestinal bleeding and perforation, hypertrophic cardiomyopathy, growth failure, and cerebral palsy, and cannot be recommended. Early treatment with hydrocortisone may also improve survival without chronic lung disease, but concerns remain about possible adverse effects such as gastrointestinal perforation and sepsis, particularly in very preterm infants. Early inhaled budesonide also reduces the incidence of chronic lung disease but there are concerns that this may occur at the expense of increased risk of death. More studies of early low-dose steroids with adequate long-term follow-up are needed before they can be recommended for the prevention of chronic lung disease. Late (after the first week of life) postnatal steroids may have a better benefit-to-harm ratio than early steroids. A Cochrane Review shows that late steroid treatment reduces chronic lung disease, the combination of death and chronic lung disease at both 28 days and 36 weeks' corrected age, and the need for later rescue dexamethasone. Adverse effects include hyperglycemia, hypertension, hypertrophic cardiomyopathy, and severe retinopathy of prematurity but without an increase in blindness. Long-term neurodevelopmental effects are not significantly increased by late postnatal steroid treatment. Current recommendations are that postnatal steroid treatment

  17. Oxidative stress in ventral prostate, ovary, and breast by 2,4-dichlorophenoxyacetic acid in pre- and postnatal exposed rats.

    PubMed

    Pochettino, Aristides A; Bongiovanni, Bettina; Duffard, Ricardo O; Evangelista de Duffard, Ana María

    2013-01-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used in agriculture and forestry since the 1940s. 2,4-D has been shown to produce a wide range of adverse effects-from embryotoxicity and teratogenicity to neurotoxicity-on animal and human health. The purpose of this study was to determine the possible effects of pre- and postnatal exposure to 2,4-D on oxidative stress in ventral prostate, ovary and breast. Pregnant rats were daily exposed to oral doses of 70 mg/kg/day of 2,4-D from 16 days of gestation up to 23 days after delivery. Then, the pups were sacrificed by decapitation at postnatal day (PND) 45, 60, or 90. Antioxidant enzyme activities and some parameters of the oxidative stress were assessed in ventral prostate, breast, and ovary. Results show that 2,4-D produced three different effects. First, it increased the concentration of some radical oxygen species and the rates of lipid peroxidation and protein oxidation in ventral prostate, thereby causing oxidative stress at all ages studied. Although an increase in the activity of some antioxidant enzymes was detected, this seemed to have been not enough to counteract the oxidative stress. Second, 2,4-D promoted the oxidative stress in the breasts, mainly during puberty and adulthood, probably because the developing gland is more sensitive to xenobiotics than the adult organ. Third, 2,4-D altered the activity of some antioxidant enzymes and increased lipid peroxide concentration in the ovary. This effect could reflect the variety of ovarian cell types and their different responses to endocrine changes during development. Copyright © 2011 Wiley Periodicals, Inc.

  18. Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans.

    PubMed

    Bell, Margaret R

    2018-05-14

    Postnatal development includes dramatic changes in gonadal hormones and the many social behaviors they help regulate, both in rodents and humans. Parental care-seeking is the most salient social interaction in neonates and infants, play and pro-social behaviors are commonly studied in juveniles, and the development of aggression and sexual behavior begins in peripubertal stages but continues through late adolescence into adulthood. While parental behaviors are shown after reproductive success in adulthood, alloparenting behaviors are actually high in juveniles as well. These behaviors are sensitive to both early life organizational effects of gonadal hormones and later life activational regulation. However, changes in circulating gonadal hormones and the display of the above behaviors over development differs between rats, mice and humans. These endpoints are of interest to endocrinologist, toxicologists, neuroscientists because of their relevance to mental health disorders and their vulnerability to effects of endocrine disrupting chemical exposure. As such, the goal of this minireview is to succinctly describe and relate the postnatal development of gonadal hormones and social behaviors to each other, over time and across animal models. Ideally, this will help identify appropriate animal models and age ranges for continued study of both normative development and in contexts of environmental disruption.

  19. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult.

    PubMed

    Rodgers, Shaefali P; Born, Heather A; Das, Pritam; Jankowsky, Joanna L

    2012-06-18

    Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. We show that overexpression of the Alzheimer's-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer's disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.

  20. Effects of Postnatal Enriched Environment in a Model of Parkinson's Disease in Adult Rats.

    PubMed

    Jungling, Adel; Reglodi, Dora; Karadi, Zsofia Nozomi; Horvath, Gabor; Farkas, Jozsef; Gaszner, Balazs; Tamas, Andrea

    2017-02-14

    Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson's disease (PD). The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA) lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life.

  1. Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala.

    PubMed

    O'Loughlin, Elaine; Pakan, Janelle M P; Yilmazer-Hanke, Deniz; McDermott, Kieran W

    2017-11-02

    Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders such as autism and schizophrenia, as well as seizure development. The amygdala is a brain region involved in the regulation of emotions, and amygdalar maldevelopment due to infection-induced MIA may lead to amygdala-related disorders. MIA priming of glial cells during development has been linked to abnormalities seen in later life; however, little is known about its effects on amygdalar biochemical and cytoarchitecture integrity. Time-mated C57BL6J mice were administered a single intraperitoneal injection of 50 μg/kg lipopolysaccharide (LPS) on embryonic day 12 (E12), and the effects of MIA were examined at prenatal, neonatal, and postnatal developmental stages using immunohistochemistry, real-time quantitative PCR, and stereological quantification of cytoarchitecture changes. Fetal brain expression of pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) was significantly upregulated at 4 h postinjection (E12) and remained elevated until the day of birth (P0). In offspring from LPS-treated dams, amygdalar expression of pro-inflammatory cytokines was also increased on day 7 (P7) and expression was sustained on day 40 (P40). Toll-like receptor (TLR-2, TLR-4) expression was also upregulated in fetal brains and in the postnatal amygdala in LPS-injected animals. Morphological examination of cells expressing ionized calcium-binding adaptor molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) suggested long-term microglial activation and astrogliosis in postnatal amygdalar regions. Our results showed that LPS-induced MIA at E12 induces a pro-inflammatory cytokine profile in the developing fetal brain that continues up to early adulthood in the amygdala. Inflammation elicited by MIA may activate cells in the fetal brain and lead to alterations in glial (microglia and astrocyte) cells observed in the postnatal amygdala. Moreover, increased pro-inflammatory cytokines and their

  2. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence.

    PubMed

    Cunningham, Miles Gregory; Bhattacharyya, Sujoy; Benes, Francine Mary

    2002-11-11

    Adolescence is a critical stage for the development of emotional maturity and diverse forms of psychopathology. The posterior basolateral nucleus of the amygdala is known to mediate fear and anxiety and is important in assigning emotional valence to cognitive processes. The medial prefrontal cortex, a homologue of the human anterior cingulate cortex, mediates emotional, attentional, and motivational behaviors at the cortical level. We postulate that the development of connectivity between these two corticolimbic regions contributes to an enhanced integration of emotion and cognition during the postnatal period. In order to characterize the development of this relay, injections of the anterograde tracer biocytin were stereotaxically placed within the posterior basolateral nucleus of the amygdala of rats at successive postnatal time points (postnatal days 6-120). Labeled fibers in the medial prefrontal cortex were evaluated using a combination of brightfield, confocal, and electron microscopy. We found that the density of labeled fibers originating from the posterior basolateral nucleus shows a sharp curvilinear increase within layers II and V of the anterior cingulate cortex and the infralimbic subdivisions of medial prefrontal cortex during the late postweanling period. This increase was paralleled by a linear rise in the number of axospinous and axodendritic synapses present in the neuropil. Based on these results, we propose that late maturation of amygdalo-cortical connectivity may provide an anatomical basis for the development and integration of normal and possibly abnormal emotional behavior during adolescence and early adulthood. Copyright 2002 Wiley-Liss, Inc.

  3. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling

    PubMed Central

    O’Neill, Casey E.; Newsom, Ryan J.; Stafford, Jacob; Scott, Talia; Archuleta, Solana; Levis, Sophia C.; Spencer, Robert L.; Campeau, Serge; Bachtell, Ryan K.

    2016-01-01

    Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3 g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24 h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24 h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence

  4. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea

    PubMed Central

    Brown, LaShardai N.; Xing, Yazhi; Noble, Kenyaria V.; Barth, Jeremy L.; Panganiban, Clarisse H.; Smythe, Nancy M.; Bridges, Mary C.; Zhu, Juhong; Lang, Hainan

    2017-01-01

    Hearing relies on the transmission of auditory information from sensory hair cells (HCs) to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs) in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation. PMID:29375297

  5. Maternal Deprivation of Lewis Rat Pups Increases the Severity of Experi-mental Periodontitis in Adulthood

    PubMed Central

    Breivik, Torbjørn; Gundersen, Yngvar; Murison, Robert; Turner, Jonathan D; Muller, Claude P; Gjermo, Per; Opstad, Kristian

    2015-01-01

    Background and Objective: Early life adverse events may influence susceptibility/resistance to chronic inflammatory diseases later in life by permanently dysregulating brain-controlled immune-regulatory systems. We have investigated the impact of infant-mother separation during early postnatal life on the severity of experimental periodontitis, as well as systemic stress and immune responses, in adulthood. Material and Methods: Pups of periodontitis resistant Lewis rats were separated from their mothers for 3 h daily during postnatal days 2-14 (termed maternal deprivation; MD), separated for 15 min daily during the same time period (termed handling; HD), or left undisturbed. As adults, their behaviour was tested in a novel stressful situation, and ligature-induced periodontitis applied for 21 days. Two h before sacrifice all rats were exposed to a gram-negative bacterial lipopolysaccharide (LPS) challenge to induce a robust immune and stress response. Results: Compared to undisturbed controls, MD rats developed significantly more periodontal bone loss as adults, whereas HD rats showed a tendency to less disease. MD and HD rats exhibited depression-like behaviour in a novel open field test, while MD rats showed higher glucocorticoid receptor (Gr) expression in the hippocampus, and HD rats had altered methylation of genes involved in the expression of hippocampal Gr. LPS provoked a significantly lower increase in circulating levels of the cytokine TGF-1β in MD and HD rats, but there were no significant differences in levels of the stress hormone corticosterone. Conclusion: Stressful environmental exposures in very early life may alter immune responses in a manner that influences susceptibility/resistance to periodontitis. PMID:25713634

  6. Maternal Deprivation of Lewis Rat Pups Increases the Severity of Experi-mental Periodontitis in Adulthood.

    PubMed

    Breivik, Torbjørn; Gundersen, Yngvar; Murison, Robert; Turner, Jonathan D; Muller, Claude P; Gjermo, Per; Opstad, Kristian

    2015-01-01

    Early life adverse events may influence susceptibility/resistance to chronic inflammatory diseases later in life by permanently dysregulating brain-controlled immune-regulatory systems. We have investigated the impact of infant-mother separation during early postnatal life on the severity of experimental periodontitis, as well as systemic stress and immune responses, in adulthood. Pups of periodontitis resistant Lewis rats were separated from their mothers for 3 h daily during postnatal days 2-14 (termed maternal deprivation; MD), separated for 15 min daily during the same time period (termed handling; HD), or left undisturbed. As adults, their behaviour was tested in a novel stressful situation, and ligature-induced periodontitis applied for 21 days. Two h before sacrifice all rats were exposed to a gram-negative bacterial lipopolysaccharide (LPS) challenge to induce a robust immune and stress response. Compared to undisturbed controls, MD rats developed significantly more periodontal bone loss as adults, whereas HD rats showed a tendency to less disease. MD and HD rats exhibited depression-like behaviour in a novel open field test, while MD rats showed higher glucocorticoid receptor (Gr) expression in the hippocampus, and HD rats had altered methylation of genes involved in the expression of hippocampal Gr. LPS provoked a significantly lower increase in circulating levels of the cytokine TGF-1β in MD and HD rats, but there were no significant differences in levels of the stress hormone corticosterone. Stressful environmental exposures in very early life may alter immune responses in a manner that influences susceptibility/resistance to periodontitis.

  7. Postnatal change in sulcal length asymmetry in cerebrum of cynomolgus monkeys (Macaca fascicularis).

    PubMed

    Sakamoto, Kazuhito; Sawada, Kazuhiko; Fukunishi, Katsuhiro; Noritaka, Imai; Sakata-Haga, Hiromi; Yoshihiro, Fukui

    2014-02-01

    The purpose of this study was to determine the timing of the onset of adult-type sulcal length asymmetry during postnatal development of the male cynomolgus monkey cerebrum. The monkey brain has already reached adult size by 3 months of age, although the body weight only represents 1/8 of the adult body weight by that time. The fronto-occipital length and the cerebral width also reached adult levels by that postnatal age with no left/right bias. Consistently, lengths of the major primary sulci reached adult levels by 3 months of age, and then decreased slightly in sexually mature monkeys (4-6.5 years of age). Asymmetry quotient analysis showed that sulcal length asymmetry patterns gradually changed during postnatal development. The male adult pattern of sulcal length asymmetry was acquired after 24 months of age. In particular, age-dependent rightward lateralization of the arcuate sulcal length was revealed during cerebral maturation by three-way ANOVA. The results suggest that the regional difference in cerebral maturation from adolescence to young adulthood modifies the sulcal morphology with characteristic asymmetric patterns in male cynomolgus monkeys. Copyright © 2013 Wiley Periodicals, Inc.

  8. The effects of prenatal and postnatal (via nursing) exposure to alcohol in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekvasil, N.; Baggio, C.

    Pregnant and post-partum rats were given daily doses of 20% alcohol during days 13-21 gestation and postnatal days 3-12, respectively. Following exposure, all rat pups, were tested for balance, blood pressure, right and left cerebral hemisphere weights, and cerebellar weight. Results were grouped according to exposure and gender. The postnatal group was the only one to demonstrate difficulties with balance. The mean arterial pressure in males exposed postnatally was significantly lower than the control and prenatal males. Females exposed postnatally had a significantly higher blood pressure than control females. Within the postnatal group, males had a significantly lower blood pressuremore » than the females. Prenatal and control females differed significantly for left cerebral hemisphere (LCH) weight with the prenatal weighing less. Male pups exposed prenatally had significantly heavier LCH than the postnatal and control males. For both males and females, postnatal LCH weights did not differ from those of the control pups. Within the prenatal group, the LCH weight in females was significantly lower than in males. Mean cerebellar weights were significantly lower in postnatal animals compared to control animals. A major finding of this study is that the effect of alcohol exposure on rat pups depends on gender and developmental age.« less

  9. Examining Japanese women's preferences for a new style of postnatal care facility and its attributes.

    PubMed

    Shen, Junyi; Nakashima, Takako; Karasawa, Izumi; Furui, Tatsuro; Morishige, Kenichiro; Saijo, Tatsuyoshi

    2018-05-21

    Perinatal care in rural Japan is currently facing a crisis because of the lack of medical staff, especially obstetricians. In this study, a new style of postnatal care facility that combines both medical and nonmedical support is considered. Contrary to most postnatal care facilities in Japan, this new postnatal care facility accepts a puerperant from the cooperating maternity facility soon after birth (≤2 days). We conducted a hypothetical choice experiment to investigate whether this new postnatal care facility could be accepted by women in Gero City, Hida, Gifu Prefecture and how these women evaluate different kinds of postnatal care services. The results show that after a 2-day hospital stay, women from Gero City preferred to move to the new postnatal care facility over the other alternatives (continued hospitalization or discharge home). In addition, the estimated choice probabilities for selecting the postnatal care facility under different scenarios show a high level of acceptance for this new postnatal care facility. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Daily Physical Activity and Life Satisfaction across Adulthood

    PubMed Central

    Maher, Jaclyn P.; Pincus, Aaron L.; Ram, Nilam; Conroy, David E.

    2015-01-01

    Physical activity is considered a valuable tool for enhancing life satisfaction. However, the processes linking these constructs likely differ across the adult lifespan. In older adults the association between physical activity and life satisfaction appears to involve usual levels of physical activity (i.e., a between-person association driven by differences between more and less active people). In younger adults the association has consistently been based on day-to-day physical activity (i.e., a within-person association driven by differences between more and less active days). To resolve this inconsistency, a daily diary study was conducted with a lifespan sample of community-dwelling adults (age 18– 89 years; N = 150) over three 21-day measurement bursts. Usual physical activity was positively associated with life satisfaction in middle and older adulthood; however, this association was not present in young adulthood. When present, this between-person association was mediated by physical and mental health. A within-person association between physical activity and life satisfaction was also present (and did not differ across age). Generally, on days when people were more physically active then was typical for them, they experienced greater life satisfaction. Age differences in life satisfaction followed a cubic trajectory: lower during emerging adulthood, higher during midlife, and lower during older adulthood. This study adds to accumulating evidence that daily fluctuations in physical activity have important implications for well-being regardless of age, and clarifies developmental differences in life satisfaction dynamics that can inform strategies for enhancing life satisfaction. PMID:26280838

  11. Transient postnatal fluoxetine leads to decreased brain arachidonic acid metabolism and cytochrome P450 4A in adult mice.

    PubMed

    Ramadan, Epolia; Blanchard, Helene; Cheon, Yewon; Fox, Meredith A; Chang, Lisa; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I; Basselin, Mireille

    2014-05-01

    Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would alter brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-(14)C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10mg/kg i.p.) or saline during postnatal days P4-P21. Expression of brain ARA metabolic enzymes and other relevant markers also was measured. On neuroimaging, k* and Jin was decreased widely in early fluoxetine- compared to saline-treated adult mice. Of the enzymes measured, cPLA2 activity was unchanged, while Ca(2+)-independent iPLA2 activity was increased. There was a significant 74% reduced protein level of cytochrome P450 (CYP) 4A, which can convert ARA to 20-HETE. Reduced brain ARA metabolism in adult mice transiently exposed to postnatal fluoxetine, and a 74% reduction in CYP4A protein, suggest long-term effects independent of drug presence in brain ARA metabolism, and in CYP4A metabolites. These changes might contribute to reported altered behavior following early SSRI in rodents. Published by Elsevier Ltd.

  12. Expression of glucocorticoid receptor and early growth response gene 1 during postnatal development of two inbred strains of mice exposed to early life stress.

    PubMed

    Navailles, Sylvia; Zimnisky, Ross; Schmauss, Claudia

    2010-07-01

    Early life stress can elicit profound changes in adult gene expression and behavior. One consequence of early life stress is a decreased expression of glucocorticoid receptors (GRs) in the frontal cortex and hippocampus. However, neither the time of onset nor the mechanism(s) leading to decreased GR expression during postnatal development are known. The present study used two inbred strains of mice that differ in their behavioral responsiveness to stress (Balb/c and C57Bl/6), exposed them to an established paradigm of early life stress (infant maternal separation), and measured their expression of frontal cortical and hippocampal GRs and the putative transcriptional activator of the GR gene, early growth response gene (egr)-1, at defined stages of postnatal development. In both strains, real-time RT-PCR experiments revealed that decreased expression of GR in adolescence and adulthood is, in fact, preceded by increased GR expression during early life stress exposure. Thus, the early life stress-induced disruption of the normal stress-hyporesponsive period during infancy is accompanied by increased GR expression. Moreover, chronic treatment with the antidepressant drug fluoxetine during adolescence or adulthood reversed the effect of early life stress on adult GR mRNA expression. In contrast to the strain-independent effect of early life stress on GR expression, however, changes in egr-1 expression occurred only in Balb/c mice, and unlike the biphasic developmental changes in GR mRNA expression, egr-1 mRNA was decreased throughout postnatal development. Moreover, there was no consistent overlap of anatomic regions affected by decreased GR and egr-1 protein expression. Thus, in Balb/c mice, changes in GR and egr-1 expression can independently contribute to the phenotypes resulting from early life stress exposure. These findings illustrate that the impact of early life stress on gene expression changes is modulated by the genetic background and that the persistent

  13. High sodium intake during postnatal phases induces an increase in arterial blood pressure in adult rats.

    PubMed

    Moreira, M C S; da Silva, E F; Silveira, L L; de Paiva, Y B; de Castro, C H; Freiria-Oliveira, A H; Rosa, D A; Ferreira, P M; Xavier, C H; Colombari, E; Pedrino, Gustavo R

    2014-12-28

    Epigenetic studies suggest that diseases that develop in adulthood are related to certain conditions to which the individual is exposed during the initial stages of life. Experimental evidence has demonstrated that offspring born to mothers maintained on high-Na diets during pregnancy have higher mean arterial pressure (MAP) in adulthood. Although these studies have demonstrated the importance of prenatal phases to hypertension development, no evidence regarding the role of high Na intake during postnatal phases in the development of this pathology has been reported. Therefore, in the present study, the effects of Na overload during childhood on induced water and Na intakes and on cardiovascular parameters in adulthood were evaluated. Experiments were carried out in two groups of 21-d-old rats: experimental group, maintained on hypertonic saline (0.3 m-NaCl) solution and food for 60 d, and control group, maintained on tap water and food. Later, both groups were given water and food for 15 d (recovery period). After the recovery period, chronic cannulation of the right femoral artery was performed in unanaesthetised rats to record baseline MAP and heart rate (HR). The experimental group was found to have increased basal MAP (98.6 (sem 2.6) v. 118.3 (sem 2.7) mmHg, P< 0.05) and HR (365.4 (sem 12.2) v. 398.2 (sem 7.5) beats per min, P< 0.05). There was a decrease in the baroreflex index in the experimental group when compared with that in the control group. A water and Na intake test was performed using furosemide. Na depletion was found to induce an increase in Na intake in both the control and experimental groups (12.1 (sem 0.6) ml and 7.8 (sem 1.1), respectively, P< 0.05); however, this increase was of lower magnitude in the experimental group. These results demonstrate that postnatal Na overload alters behavioural and cardiovascular regulation in adulthood.

  14. Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis

    PubMed Central

    Tarussio, David; Metref, Salima; Seyer, Pascal; Mounien, Lourdes; Vallois, David; Magnan, Christophe; Foretz, Marc; Thorens, Bernard

    2013-01-01

    How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function. PMID:24334455

  15. Transient postnatal fluoxetine decreases brain concentrations of 20-HETE and 15-epi-LXA4, arachidonic acid metabolites in adult mice.

    PubMed

    Yuan, Zhi-Xin; Rapoport, Stanley I

    2015-10-01

    Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation. Published by Elsevier Ltd.

  16. Yolk testosterone reduces oxidative damages during postnatal development

    PubMed Central

    Noguera, José Carlos; Alonso-Alvarez, Carlos; Kim, Sin-Yeon; Morales, Judith; Velando, Alberto

    2011-01-01

    Conditions experienced during early life can influence the development of an organism and several physiological traits, even in adulthood. An important factor is the level of oxidative stress experienced during early life. In birds, extra-genomic egg substances, such as the testosterone hormone, may exert a widespread influence over the offspring phenotype. Interestingly, testosterone can also upregulate the bioavailability of certain antioxidants but simultaneously increases the susceptibility to oxidative stress in adulthood. However, little is known about the effects of maternally derived yolk testosterone on oxidative stress in developing birds. Here, we investigated the role of yolk testosterone on oxidative stress of yellow-legged gull chicks during their early development by experimentally increasing yolk testosterone levels. Levels of antioxidants, reactive oxygen species and lipid oxidative damage were determined in plasma during nestlings' growth. Our results revealed that, contrary to control chicks, birds hatched from testosterone-treated eggs did not show an increase in the levels of oxidative damage during postnatal development. Moreover, the same birds showed a transient increase in plasma antioxidant levels. Our results suggest that yolk testosterone may shape the oxidative stress-resistance phenotype of the chicks during early development owing to an increase in antioxidant defences and repair processes. PMID:20659922

  17. Organizational influence of the postnatal testosterone surge on the circadian rhythm of core body temperature of adult male rats.

    PubMed

    Zuloaga, Damian G; McGivern, Robert F; Handa, Robert J

    2009-05-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates physiological and behavioral circadian rhythms such as activity, body temperature, and hormone secretion. Circadian rhythms coordinated by the SCN often show sex differences arising from both organizational and activational effects of gonadal hormones. In males, little is known about the organizational role of testosterone on the circadian regulation of core body temperature (CBT) in adulthood. To explore this, we castrated or sham-operated male rats on the day of birth, and at 4 months of age, implanted them with transmitters that measured CBT rhythms under a 12:12 light/dark cycle. This study revealed a significantly earlier rise in CBT during the light phase in neonatally castrated males. Subsequently, we found that treating neonatally castrated males with testosterone propionate (TP) in adulthood did not reverse the effect of neonatal castration, thus indicating an organizational role for testosterone. In contrast, a single injection of TP at the time of neonatal surgery, to mimic the postnatal surge of testosterone, coupled with TP treatment in adulthood, normalized the circadian rise in CBT. In a final study we examined CBT circadian rhythms in intact adult male and female rats and detected no differences in the rise of CBT during the light phase, although there was a greater overall elevation in female CBT. Together, results of these studies reveal an early organizational role of testosterone in males on the timing of the circadian rise of CBT, a difference that does not appear to reflect "defeminization".

  18. Postnatal epigenetic modification of glucocorticoid receptor gene in preterm infants: a prospective cohort study

    PubMed Central

    Kantake, Masato; Yoshitake, Hiroshi; Ishikawa, Hitoshi; Araki, Yoshihiko; Shimizu, Toshiaki

    2014-01-01

    Objective To examine the environmental effects on cytosine methylation of preterm infant's DNA, because early life experiences are considered to influence the physiological and mental health of an individual through epigenetic modification of DNA. Design A prospective cohort study, comparison of epigenetic differences in the glucocorticoid receptor (GR) gene between healthy term and preterm infants. Setting Neonatal Intensive Care Unit in a Japanese University Hospital. Participants A cohort of 40 (20 term and 20 preterm) infants was recruited on the day of birth, and peripheral blood was obtained from each infant at birth and on postnatal day 4. Main outcome measures The methylation rates in the 1-F promoter region of the GR gene using the Mquant method. Results The methylation rate increased significantly between postnatal days 0 and 4 in preterm infants but remained stable in term infants. Thus, the methylation rate was significantly higher in preterm than in term infants at postnatal day 4. Several perinatal parameters were significantly correlated with this change in the methylation rate. Logistic regression analysis revealed that methylation rates at postnatal day 4 predicted the occurrence of later complications that required glucocorticoid administration during the neonatal period. No gene polymorphism was detected within the GR promoter region analysed. Conclusions Although further large-scale studies are needed to detect the environmental factors that explain the difference in epigenetic modification among infants after birth, our data show that the postnatal environment influences epigenetic programming of GR expression through methylation of the GR gene promoter in premature infants, which may result in relative glucocorticoid insufficiency during the postnatal period. PMID:25023132

  19. Localization and expression of Orexin A and its receptor in mouse testis during different stages of postnatal development.

    PubMed

    Joshi, Deepanshu; Singh, Shio Kumar

    2017-01-15

    Orexin A (OXA), a hypothalamic neuropeptide, is involved in regulation of various biological functions and its actions are mediated through G-protein-coupled receptor, OX1R. This neuropeptide has emerged as a central neuroendocrine modulator of reproductive functions. Both OXA and OX1R have been shown to be expressed in peripheral organs such as gastrointestinal and genital tracts. In the present study, localization and expression of OXA and OX1R in mouse testis during different stages of postnatal development have been investigated. Immunohistochemical results demonstrated localization of OXA and OX1R in both the interstitial and the tubular compartments of the testis throughout the period of postnatal development. In testicular sections on 0day postpartum (dpp), gonocytes, Sertoli cells and foetal Leydig cells showed OXA and OX1R-immunopositive signals. At 10dpp, Sertoli cells, spermatogonia, early spermatocytes and Leydig cells showed immunopositive signals for both, the ligand and the receptor. On 30 and 90dpp, the spermatogonia, Sertoli cells, spermatocytes, spermatids and Leydig cells showed the OXA and OX1R-immunopositive signals. At 90dpp, strong OXA-positive signals were seen in Leydig cells, primary spermatocytes and spermatogonia, while OX1R-immunopositive intense signals were observed in Leydig cells and elongated spermatids. Further, semiquantitative RT-PCR and immunoblot analyses showed that OXA and OX1R were expressed in the testis both at transcript and protein levels during different stages of postnatal development. The expression of OXA and OX1R increased progressively from day of birth (0dpp) until adulthood (90dpp), with maximal expression at 90 dpp. The results suggest that OXA and OX1R are expressed in the testis and that they may help in proliferation and development of germ cells, Leydig cells and Sertoli cells, and in the spermatogenic process and steroidogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Postnatal handling does not normalize hypothalamic corticotropin-releasing factor mRNA levels in animals prenatally exposed to ethanol.

    PubMed

    Gabriel, Kara I; Glavas, Maria M; Ellis, Linda; Weinberg, Joanne

    2005-06-09

    Postnatal handling has been shown to attenuate some of the deficits in developmental outcome observed following prenatal ethanol exposure (E) although it appears to be ineffective at ameliorating the hypothalamic-pituitary-adrenal (HPA) hyperresponsiveness to stressors that has been observed in adult E animals. However, the effects of postnatal handling on central regulation of HPA activity in E animals, particularly with regard to alterations in steady-state hypothalamic corticotropin-releasing factor (CRF) activity, have not been examined. In the present study, offspring from E, pair-fed (PF), and ad-libitum-fed control (C) groups were exposed to daily handling during the first 2 weeks of life (H) or were left entirely undisturbed until weaning (NH). Basal CRF and arginine vasopressin (AVP) mRNA in the parvocellular portion of the paraventricular nucleus (pPVN) of the hypothalamus were assessed at 90-110 days of age. Prenatal ethanol exposure resulted in elevated basal pPVN CRF mRNA levels compared to those in ad-libitum-fed controls. Handling altered CRF mRNA levels in a sex-specific and prenatal treatment-specific manner. Females showed no significant effects of handling. In contrast, handling decreased CRF mRNA levels in PF and C but not E males compared to their NH counterparts. There were no effects of prenatal ethanol or postnatal handling on AVP mRNA levels. These findings indicate that prenatal ethanol exposure results in elevated basal CRF mRNA levels in adulthood and that handling appears to be ineffective in normalizing those elevations, supporting the suggestion that altered basal HPA regulation in E animals may, at least in part, underlie their HPA hyperresponsiveness to stressors.

  1. The reinforcing properties of ethanol are quantitatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin, consumption in female alcohol-preferring (P) rats.

    PubMed

    Toalston, Jamie E; Deehan, Gerald A; Hauser, Sheketha R; Engleman, Eric A; Bell, Richard L; Murphy, James M; McBride, William J; Rodd, Zachary A

    2015-08-01

    Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30-60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood. Published by Elsevier Inc.

  2. Differential Effects of Ethanol on c-Jun N-Terminal Kinase, 14-3-3 Proteins, and Bax in Postnatal Day 4 and Postnatal Day 7 Rat Cerebellum

    PubMed Central

    Heaton, Marieta Barrow; Paiva, Michael; Kubovic, Stacey; Kotler, Alexandra; Rogozinski, Jonathan; Swanson, Eric; Madorsky, Vladimir; Posados, Michelle

    2011-01-01

    These studies investigated ethanol effects on upstream cellular elements and interactions which contribute to Bax-related apoptosis in neonatal rat cerebellum at ages of peak ethanol sensitivity (postnatal day 4 [P4]), compared to later ages of relative resistance (P7). Analyses were made of basal levels of the pro-apoptotic c-jun N-termimal kinase (JNK), Bax, and the 14-3-3 anchoring proteins, as well as the responsiveness of these substances to ethanol at P4 versus P7. Dimerization of Bax with 14-3-3 was also investigated at the two ages following ethanol treatment, a process which sequesters Bax in the cytosol, thus inhibiting its mitochondrial translocation and disruption of the mitochondrial membrane potential. Cultured cerebellar granule cells were used to examine the protective potential of JNK inhibition on ethanol-mediated cell death. Basal levels of JNK were significantly higher at P4 than P7, but no differences in the other proteins were found. Activated JNK, and cytosolic and mitochondrially-translocated Bax were increased in P4 but not P7 animals following ethanol exposure, while protective 14-3-3 proteins were increased only at P7. Ethanol treatment resulted in decreases in Bax:14-3-3 heterodimers at P4, but not at P7. Inhibition of JNK activity in vitro provided partial protection against ethanol neurotoxicity. Thus, differential temporal vulnerability to ethanol in this CNS region correlates with differences in both levels of apoptosis-related substances (e.g., JNK), and differential cellular responsiveness, favoring apoptosis at the most sensitive age and survival at the resistant age. The upstream elements contributing to this vulnerability can be targets for future therapeutic strategies. PMID:22169498

  3. Fetal MRI versus postnatal imaging in the MR-compatible incubator.

    PubMed

    Bekiesinska-Figatowska, Monika; Romaniuk-Doroszewska, Anna; Duczkowska, Agnieszka; Duczkowski, Marek; Iwanowska, Beata; Szkudlińska-Pawlak, Sylwia

    2016-09-01

    One of the aims of fetal magnetic resonance imaging (MRI) is to avoid postnatal scanning. However, clinicians sometimes wish to have postnatal confirmation of prenatal findings. This study's purpose was to check whether there was indeed the added value of neonatal MRI performed in the MR-compatible incubator (INC) after fetal examination. Material consists of 25 neonates (14 girls) who underwent prenatal and postnatal MRI in a 1.5 T scanner, the latter in INC. Mean time of prenatal MRI was 30th gestational week, of postnatal MRI-16th day of life. In 14 cases (56 %) postnatal findings were the same as prenatal ones. In 11 (44 %) postnatal MRI showed some different/new/more precise results, in two the differences were attributed to other factors than the advantage of postnatal MRI over prenatal one. Altogether then postnatal results were partly discordant with prenatal ones in 9/25 cases (36 %). In most cases there was no added value of postnatal MRI as compared to prenatal one. This value lied in small details that could not have been noticed on prenatal MRI or required contrast medium administration to be noticed. On the other hand, MR examination performed with use of the dedicated neonatal coils in the MR-compatible incubator is a safe and reliable method of visualization of these small details with better spatial resolution thus helping to establish final diagnosis, treatment plan and prognosis.

  4. Acute exposure to ethanol on gestational day 15 affects social motivation of female offspring.

    PubMed

    Varlinskaya, Elena I; Mooney, Sandra M

    2014-03-15

    Alterations in social behavior are a hallmark of many neurodevelopmental disorders in humans. In rodents, social behavior is affected by prenatal insults. The outcomes are dependent on the timing of the insult as well as the sex and age of the animal tested. The limbic system is particularly important for social behavior, and a peak of neurogenesis within this system occurs on gestational day (G)15. Neurons appear particularly vulnerable to ethanol insult around the time they become post-mitotic. We tested the hypothesis that acute exposure to ethanol on G15 would result in significant social behavior deficits. Accordingly, Long Evans pregnant females were injected with ethanol (2.9 g/kg) or an equivalent volume of saline on G15. Offspring were assessed in a modified social interaction test on postnatal day (P) 28, P42, or P75, i.e., during early adolescence, late adolescence, or young adulthood. Prenatal ethanol exposure decreased social investigation in P28 females and transformed social preference into social avoidance in 75-day-old females. Contact behavior, play fighting, and locomotor activity differed as a function of age, but were not significantly affected by ethanol exposure. Males demonstrated significantly more contact behavior and play fighting at P42 than at P28 or P70, whereas there were no age-related changes in females. Adult females showed more locomotor activity than adult males. Overall, prenatal ethanol exposure on G15 enhanced social anxiety in females, with these effects seen in adulthood only. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Nestin in the epididymis is expressed in vascular wall cells and is regulated during postnatal development and in case of testosterone deficiency.

    PubMed

    Reckmann, Ansgar N; Tomczyk, Claudia U M; Davidoff, Michail S; Michurina, Tatyana V; Arnhold, Stefan; Müller, Dieter; Mietens, Andrea; Middendorff, Ralf

    2018-01-01

    Vascular smooth muscle cells (SMCs), distinguished by the expression of the neuronal stem cell marker nestin, may represent stem cell-like progenitor cells in various organs including the testis. We investigated epididymal tissues of adult nestin-GFP mice, rats after Leydig cell depletion via ethane dimethane sulfonate (EDS), rats and mice during postnatal development and human tissues. By use of Clarity, a histochemical method to illustrate a three-dimensional picture, we could demonstrate nestin-GFP positive cells within the vascular network. We localized nestin in the epididymis in proliferating vascular SMCs by colocalization with both smooth muscle actin and PCNA, and it was distinct from CD31-positive endothelial cells. The same nestin localization was found in the human epididymis. However, nestin was not found in SMCs of the epididymal duct. Nestin expression is high during postnatal development of mouse and rat and down-regulated towards adulthood when testosterone levels increase. Nestin increases dramatically in rats after Leydig cell ablation with EDS and subsequently low testosterone levels. Interestingly, during this period, the expression of androgen receptor in the epididymis is low and increases until nestin reaches normal levels of adulthood. Here we show that nestin, a common marker for neuronal stem cells, is also expressed in the vasculature of the epididymis. Our results give new insights into the yet underestimated role of proliferating nestin-expressing vascular SMCs during postnatal development and repair of the epididymis.

  6. Early-in-life dietary zinc deficiency and supplementation and mammary tumor development in adulthood female rats.

    PubMed

    da Silva, Flávia R M; Grassi, Tony F; Zapaterini, Joyce R; Bidinotto, Lucas T; Barbisan, Luis F

    2017-06-01

    Zinc deficiency during pregnancy and postnatal life can adversely increase risk of developing human diseases at adulthood. The present study was designed to evaluate whether dietary zinc deficiency or supplementation during the pregnancy, lactation and juvenile stages interferes in the development of mammary tumors induced by 7,12-dimethylbenzanthracene (DMBA) in female Sprague-Dawley (SD) rats. Pregnant female SD rats were allocated into three groups: zinc-adequate diet (ZnA - 35-mg/kg chow), zinc-deficient diet (ZnD - 3-mg/kg chow) or zinc-supplemented diet (ZnS - 180-mg/kg chow) during gestational day 10 (GD 10) until the litters' weaning. Female offspring received the same diets as their dams until postnatal day (PND) 51. At PND 51, the animals received a single dose of DMBA (50 mg/kg, ig) and zinc-adequate diets. At PND 180, female were euthanized, and tumor samples were processed for histological evaluation and gene expression microarray analysis. The ZnD induced a significant reduction in female offspring body weight evolution and in mammary gland development. At late in life, the ZnD or ZnS did not alter the latency, incidence, multiplicity, volume or histological types of mammary tumors in relation to the ZnA group. However, the total tumor number in ZnS group was higher than in ZnA group, accompanied by distinct expression of 4 genes up- and 15 genes down-regulated. The present findings indicate that early-in-life dietary zinc supplementation, differently to zinc deficiency, has a potential to modify the susceptibility to the development of mammary tumors induced by DMBA. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring.

    PubMed

    Walton, Sarah L; Singh, Reetu R; Tan, Tiffany; Paravicini, Tamara M; Moritz, Karen M

    2016-03-01

    Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  8. Social stress during adolescence in Wistar rats induces social anxiety in adulthood without affecting brain monoaminergic content and activity.

    PubMed

    Vidal, Jose; Bie, Josien de; Granneman, Ramon A; Wallinga, Alinde E; Koolhaas, Jaap M; Buwalda, Bauke

    2007-12-05

    Adolescence has been described as an important period to acquire social competences required for adult life. It has been suggested that early stress experiences could affect the development of the brain at different levels. These changes in the brain during adolescence may be related with the development of psychopathologies such as depression and social anxiety in adulthood. In the first experiment, we examined long-term effects of repeated social stress during adolescence on adult social approach-avoidance behavior. For that purpose, adolescent male Wistar rats were exposed twice at postnatal day (Pnd) 45 and Pnd48 to the resident-intruder paradigm followed by three times psychosocial threat with the same resident. Three weeks after the last psychosocial threat experience the animals were behaviorally tested in a social approach-avoidance test. Socially stressed animals spent less time in the interaction zone with an unfamiliar male adult rat. These data suggest that animals exposed to social stress during adolescence show a higher level of social anxiety in adulthood. In the second experiment, we investigated whether these long-term effects of social stress during adolescence on behavior draw a parallel with changes in brain monoamine content, biosynthesis and turnover. Using the same experimental design as in the first experiment, HPLC analysis of various brain regions showed that there were no differences in monoamine content, monoamine biosynthesis and monoamines activity in the prefrontal cortex, hippocampus, hypothalamus and striatum in adulthood. These results indicate that long-lasting changes in social behavior following social stress during adolescence are not accompanied by changes in brain monoamine content, biosynthesis and turnover.

  9. Nicotine administration in adolescence reprograms the subsequent response to nicotine treatment and withdrawal in adulthood: sex-selective effects on cerebrocortical serotonergic function.

    PubMed

    Slotkin, Theodore A; Card, Jennifer; Seidler, Frederic J

    2014-03-01

    Nicotine exposure in adolescence produces lasting changes in subsequent behavioral responses to addictive agents. We gave nicotine to adolescent rats (postnatal days PN30-47), simulating plasma levels in smokers, and then examined the subsequent effects of nicotine given again in adulthood (PN90-107), focusing on cerebrocortical serotonin levels and utilization (turnover) as an index of presynaptic activity of circuits involved in emotional state. Our evaluations encompassed responses during the period of adult nicotine treatment (PN105) and withdrawal (PN110, PN120, PN130), as well as long-term changes (PN180). In males, prior exposure to nicotine in adolescence greatly augmented the increase in serotonin turnover evoked by nicotine given in adulthood, an interaction that was further exacerbated during withdrawal. The effect was sufficiently large that it led to significant depletion of serotonin stores, an effect that was not seen with nicotine given alone in either adolescence or adulthood. In females, adolescent nicotine exposure blunted or delayed the spike in serotonin turnover evoked by withdrawal from adult nicotine treatment, a totally different effect from the interaction seen in males. Combined with earlier work showing persistent dysregulation of serotonin receptor expression and receptor coupling, the present results indicate that adolescent nicotine exposure reprograms future responses of 5HT systems to nicotine, changes that may contribute to life-long vulnerability to relapse and re-addiction. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Trends in Video Game Play through Childhood, Adolescence, and Emerging Adulthood

    PubMed Central

    Ream, Geoffrey L.; Elliott, Luther C.; Dunlap, Eloise

    2013-01-01

    This study explored the relationship between video gaming and age during childhood, adolescence, and emerging adulthood. It also examined whether “role incompatibility,” the theory that normative levels of substance use decrease through young adulthood as newly acquired adult roles create competing demands, generalizes to video gaming. Emerging adult video gamers (n = 702) recruited from video gaming contexts in New York City completed a computer-assisted personal interview and life-history calendar. All four video gaming indicators—days/week played, school/work day play, nonschool/work day play, and problem play—had significant curvilinear relationships with age. The “shape” of video gaming's relationship with age is, therefore, similar to that of substance use, but video gaming appears to peak earlier in life than substance use, that is, in late adolescence rather than emerging adulthood. Of the four video gaming indicators, role incompatibility only significantly affected school/work day play, the dimension with the clearest potential to interfere with life obligations. PMID:24236277

  11. CRF type 1 receptor antagonism in ventral tegmental area of adolescent rats during social defeat: Prevention of escalated cocaine self-administration in adulthood and behavioral adaptations during adolescence

    PubMed Central

    Burke, Andrew R.; DeBold, Joseph F.; Miczek, Klaus A.

    2016-01-01

    Background Activation of corticotropin releasing factor type 1 receptors (CRF-R1) in the ventral tegmental area (VTA) represents a critical mechanism for social defeat to escalate cocaine self-administration in adult rats. Objective We determined the acute effect of a CRF-R1 antagonist (CP376395) microinfusion into the VTA prior to each episode of social defeat in adolescent rats and determined whether this drug treatment could prevent later escalation of cocaine taking in early adulthood. Methods Rats were implanted with bilateral cannulae aimed at the VTA five days before the first social defeat. Bilateral microinfusion of CP376395 (500ng/side) or vehicle occurred 20 min before each episode of social defeat on postnatal days (P) 35, 38, 41, and 44. Behavior was quantified on P35 and P44. On P57, rats were implanted with intra-jugular catheters, and subsequent cocaine self-administration was analyzed. Results CP376395-treated adolescent rats walked less and were attacked more slowly, but were socially investigated more than vehicle-treated adolescents. Vehicle-treated rats showed increased social and decreased non-social exploration from P35 to P44, while CP376395-treated rats did not. Socially defeated, vehicle-treated adolescents took more cocaine during a 24-hour unlimited access binge during adulthood. The latency to supine posture on P44 was inversely correlated with later cocaine self-administration during fixed and progressive ratio schedules of reinforcement and during the binge. Conclusions CP376395 treatment in adolescence blocked escalation of cocaine taking in adulthood. Episodes of social defeat stress engender neuroadaptation in CRF-R1s in the VTA that alter coping with social stress and that persist into adulthood. PMID:27251131

  12. Prolonged prenatal hypoxia selectively disrupts collecting duct patterning and postnatal function in male mouse offspring.

    PubMed

    Walton, Sarah L; Singh, Reetu R; Little, Melissa H; Bowles, Josephine; Li, Joan; Moritz, Karen M

    2018-04-20

    In this study we investigated whether hypoxia during late pregnancy impairs kidney development in mouse offspring, and also whether this has long-lasting consequences affecting kidney function in adulthood. Hypoxia disrupted growth of the kidney, particularly the collecting duct network, in juvenile male offspring. By mid-late adulthood, these mice developed early signs of kidney disease, notably a compromised response to water deprivation. Female offspring showed no obvious signs of impaired kidney development and did not develop kidney disease, suggesting a underlying protection mechanism from the hypoxia insult. These results help us better understand the long-lasting impact of gestational hypoxia on kidney development and the increased risk of chronic kidney disease. Prenatal hypoxia is a common perturbation to arise during pregnancy, and can lead to adverse health outcomes in later life. The long-lasting impact of prenatal hypoxia on postnatal kidney development and maturation of the renal tubules, particularly the collecting duct system, is relatively unknown. Here, we used a model of moderate chronic maternal hypoxia throughout late gestation (12% O 2 exposure from E14.5 until birth). Histological analyses revealed marked changes in the tubular architecture of male hypoxia-exposed neonates as early as postnatal day 7, with disrupted medullary development and altered expression of Ctnnb1, and Crabp2 (encoding a retinoic acid binding protein). Kidneys of RARElacZ line offspring exposed to hypoxia showed reduced β-galactosidase activity indicating reduced retinoic acid-directed transcriptional activation. Wildtype male mice exposed to hypoxia had an early decline in urine concentrating capacity, evident at 4 months of age. At 12 months of age, hypoxia-exposed male mice displayed a compromised response to a water deprivation challenge which was was correlated with altered cellular composition of the collecting duct and diminished expression of AQP2. There

  13. Maternal deprivation decelerates postnatal morphological lung development of F344 rats.

    PubMed

    Hupa, Katharina Luise; Schmiedl, Andreas; Pabst, Reinhard; Von Hörsten, Stephan; Stephan, Michael

    2014-02-01

    Intensive medical care at premature born infants is often associated with separation of neonates from their mothers. Here, early artificial prolonged separation of rat pups from their dams (Maternal Deprivation, MD) was used to study potential impact on morphological lung maturation. Furthermore, we investigated the influence of an endogenous deficiency of the neuropeptide-cleaving dipeptidyl peptidase IV (DPP4), since the effects of MD are known to be partly mediated via neuropeptidergic effects, hypothesizing that MD will lead to a retardation of postnatal lung development, DPP4-dependendly. We used wild type and CD26/DPP4 deficient rats. For MD, the dam was placed each day into a separate cage for 2 h, while the pups remained in the nest on their own. Morphological lung maturation and cell proliferation at the postnatal days 7, 10, 14, and 21 were determined morphometrically. Maternally deprived wild types showed a retarded postnatal lung development compared with untreated controls in both substrains. During alveolarization, an increased thickness of alveolar septa and a decreased surface of septa about 50% were found. At the end of the morphological lung maturation, the surface of the alveolar septa was decreased at about 25% and the septal thickness remained increased about 20%. The proliferation rate was also decreased about 50% on day 14. However, the MD induced effects were less pronounced in DPP4-deficient rats, due to a significant deceleration already induced by DPP4-deficiency. Thus, MD as a model for postnatal stress experience influences remarkably postnatal development of rats, which is significantly modulated by the DPP4-system. Copyright © 2013 Wiley Periodicals, Inc.

  14. Postnatal iron-induced motor behaviour alterations following chronic neuroleptic administration in mice.

    PubMed

    Fredriksson, A; Eriksson, P; Archer, T

    2006-02-01

    C57/BL6 mice were administered either 7.5 mg Fe(2+)/kg or vehicle (saline) postnatally on days 10-12 after birth. From 61 days of age onwards for 21 days, groups of mice were administered either clozapine (1 or 5 mg/kg, s.c.) or haloperidol (1 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Following this, each animal was removed, injected apomorphine (1 mg/kg, s.c.) and replaced in the same test chamber. It was found that postnatal administration of Fe(2+) at the 7.5 mg/kg dose level reduced activity during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hypoactivity in by postnatal Fe(2+) during the 1(st) two 20-min periods over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hyperactivity in by postnatal Fe(2+) during the 3(rd) and final 20-min period. Subchronic administration of haloperidol, without postnatal iron, increased the level of both locomotion (1(st) 20 min) and rearing (2(nd) 20 min) activity. Postnatal administration of Fe(2+) at the 7.5 mg/kg dose increased the levels of both locomotion and rearing, but not total activity, following administration of apomorphine (1 mg/kg). Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, reduced the increased locomotor activity caused by postnatal Fe(2+), whereas clozapine, 5 mg/kg, elevated further the postnatal Fe(2+)-induced increased in rearing. Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, and haloperidol, 1 mg/kg, increased the level of locomotor following administration of apomorphine (1 mg/kg) in mice treated postnatally with vehicle, whereas only

  15. Postnatal light alters hypothalamic-pituitary-adrenal axis function and induces a depressive-like phenotype in adult mice.

    PubMed

    Coleman, Georgia; Gigg, John; Canal, Maria Mercè

    2016-11-01

    The postnatal light environment that a mouse experiences during the critical first three postnatal weeks has long-term effects on both its circadian rhythm output and clock gene expression. Furthermore, data from our lab suggest that postnatal light may also impact the hypothalamic-pituitary-adrenal (HPA) axis, which is a key regulator of stress. To test the effect of postnatal light exposure on adult stress responses and circadian rhythmicity, we raised mice under either 24-h light-dark cycles (LD), constant light (LL) or constant dark (DD) during the first three postnatal weeks. After weaning we then exposed all animals to LD cycles (basal conditions), followed by LL (stressed conditions) environments. We examined brain neuropeptide and glucocorticoid receptor (GR) expression, plasma corticosterone concentration rhythm and body temperature rhythm, together with depression- and anxiety-related behaviour. Results showed that LL- and DD-raised mice exhibited decreased GR expression in the hippocampus, increased plasma corticosterone concentration at the onset of the dark phase and a depressive phenotype when exposed to LD cycles later in life. Furthermore, LL-raised mice showed increased corticotrophin-releasing hormone mRNA expression in the paraventricular nucleus of the hypothalamus. When exposed to LL as adults, LL-raised mice showed a significant circadian rhythm of plasma corticosterone concentration, together with a shorter period and stronger circadian rhythm of body temperature compared to DD-raised mice. Taken together, these data suggest that altered postnatal light environments have long-term effects on the HPA axis and the circadian system, which can lead to altered stress responses and a depressive phenotype in adulthood. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Clinical presentation of postnatal and non-postnatal depressive episodes.

    PubMed

    Cooper, Carly; Jones, Lisa; Dunn, Emma; Forty, Liz; Haque, Sayeed; Oyebode, Femi; Craddock, Nick; Jones, Ian

    2007-09-01

    The relationship of postnatal (postpartum) depression (PND) to episodes of depression occurring at other times is not well understood. Despite a number of studies of clinical presentation, there is little consistency in the literature. We have undertaken within- and between-individual comparisons of the clinical presentation of postnatal (PN) and non-postnatal (NPN) depressive episodes in women with recurrent depression. In a sample of well-characterized, parous women meeting DSM-IV and ICD-10 criteria for recurrent major depressive disorder, the clinical presentation of episodes of major depression with onset within 4 weeks of giving birth (PND group, n=50) were compared with (i) the non-postnatal episodes of women with PND, and (ii) episodes of major depression in parous women who had not experienced episodes of mood disorder in relation to childbirth (NPND group, n=132). In addition, the non-postnatal episodes of the PND group of women were compared with the depressive episodes of the NPND group. The small number of differences found between PN and NPN depressive episodes, such as reduced early morning wakening in postnatal episodes, are likely to be explicable by the context of having a new baby rather than by any difference in the nature of the underlying depression. The results do not point to substantial differences in clinical presentation between episodes of major depression occurring in relation to childbirth and at other times. Other avenues of research are therefore required to demonstrate a specific relationship between childbirth and depression.

  17. Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine.

    PubMed

    Benetti, Fernando; Mello, Pâmela Billig; Bonini, Juliana Sartori; Monteiro, Siomara; Cammarota, Martín; Izquierdo, Iván

    2009-02-01

    Early postnatal maternal deprivation is known to cause long-lasting neurobiological effects. Here, we investigated whether some of the cognitive aspects of these deficits might be related to a disruption of the cholinergic system. Pregnant Wistar rats were individually housed and maintained on a 12:12h light/dark cycle with food and water freely available. The mothers were separated from their pups for 3h per day from postnatal day 1 (PND-1) to PND-10. To do that, the dams were moved to a different cage and the pups maintained in the original home cage, which was transferred to a different room kept at 32 degrees C. After they reached 120-150 days of age, maternal-deprived and non-deprived animals were either sacrificed for brain acetylcholinesterase measurement, or trained and tested in an object recognition task and in a social recognition task as described by Rossato et al. (2007) [Rossato, J.I., Bevilaqua, L. R.M., Myskiw, J.C., Medina, J.H., Izquierdo, I., Cammarota, M. 2007. On the role hippocampal synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36-46] and Lévy et al. (2003) [Lévy, F., Melo. A.I., Galef. B.G. Jr., Madden, M., Fleming. A.S. 2003. Complete maternal deprivation affects social, but not spatial, learning in adult rats. Dev. Psychobiol. 43, 177-191], respectively. There was increased acetylcholinesterase activity in hippocampus and perirhinal cortex of the deprived animals. In addition, they showed a clear impairment in memory of the two recognition tasks measured 24h after training. Oral administration of the acetylcholinesterase inhibitors, donepezil or galantamine (1mg/kg) 30min before training reversed the memory impairments caused by maternal deprivation. The findings suggest that maternal deprivation affects memory processing at adulthood through a change in brain cholinergic systems.

  18. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  19. Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient.

    PubMed

    Nakamura, Kouichi; Watakabe, Akiya; Hioki, Hiroyuki; Fujiyama, Fumino; Tanaka, Yasuyo; Yamamori, Tetsuo; Kaneko, Takeshi

    2007-12-01

    Vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 show complementary distribution in neocortex; VGLUT1 is expressed mainly in axon terminals of neocortical neurons, whereas VGLUT2 is located chiefly in thalamocortical axon terminals. However, we recently reported a frequent colocalization of VGLUT1 and VGLUT2 at a subset of axon terminals in postnatal developing neocortex. We here quantified the frequency of colocalization between VGLUT1 and VGLUT2 immunoreactivities at single axon terminals by using the correlation coefficient (CC) as an indicator in order to determine the time course and spatial extent of the colocalization during postnatal development of mouse neocortex. The colocalization was more frequent in the primary somatosensory (S1) area than in both the primary visual (V1) and the motor areas; of area S1 cortical layers, colocalization was most evident in layer IV barrels at postnatal day (P) 7 and in adulthood. CC in layer IV showed a peak at P7 in area S1, and at P10 in area V1 though the latter peak was much smaller than the former. These results suggest that thalamocortical axon terminals contained not only VGLUT2 but also VGLUT1, especially at P7-10. Double fluorescence in situ hybridization confirmed coexpression of VGLUT1 and VGLUT2 mRNAs at P7 in the somatosensory thalamic nuclei and later in the thalamic dorsal lateral geniculate nucleus. As VGLUT1 is often used in axon terminals that show synaptic plasticity in adult brain, the present findings suggest that VGLUT1 is used in thalamocortical axons transiently during the postnatal period when plasticity is required.

  20. Long-Term Impacts of Foetal Malnutrition Followed by Early Postnatal Obesity on Fat Distribution Pattern and Metabolic Adaptability in Adult Sheep

    PubMed Central

    Khanal, Prabhat; Johnsen, Lærke; Axel, Anne Marie Dixen; Hansen, Pernille Willert; Kongsted, Anna Hauntoft; Lyckegaard, Nette Brinch; Nielsen, Mette Olaf

    2016-01-01

    We aimed to investigate whether over- versus undernutrition in late foetal life combined with obesity development in early postnatal life have differential implications for fat distribution and metabolic adaptability in adulthood. Twin-pregnant ewes were fed NORM (100% of daily energy and protein requirements), LOW (50% of NORM) or HIGH (150%/110% of energy/protein requirements) diets during the last trimester. Postnatally, twin-lambs received obesogenic (HCHF) or moderate (CONV) diets until 6 months of age, and a moderate (obesity correcting) diet thereafter. At 2½ years of age (adulthood), plasma metabolite profiles during fasting, glucose, insulin and propionate (in fed and fasted states) tolerance tests were examined. Organ weights were determined at autopsy. Early obesity development was associated with lack of expansion of perirenal, but not other adipose tissues from adolescence to adulthood, resulting in 10% unit increased proportion of mesenteric of intra-abdominal fat. Prenatal undernutrition had a similar but much less pronounced effect. Across tolerance tests, LOW-HCHF sheep had highest plasma levels of cholesterol, urea-nitrogen, creatinine, and lactate. Sex specific differences were observed, particularly with respect to fat deposition, but direction of responses to early nutrition impacts were similar. However, prenatal undernutrition induced greater metabolic alterations in adult females than males. Foetal undernutrition, but not overnutrition, predisposed for adult hypercholesterolaemia, hyperureaemia, hypercreatinaemia and hyperlactataemia, which became manifested only in combination with early obesity development. Perirenal expandability may play a special role in this context. Differential nutrition recommendations may be advisable for individuals with low versus high birth weights. PMID:27257993

  1. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytesmore » and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.« less

  2. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    PubMed

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  3. Active retinitis in an infant with postnatally acquired cytomegalovirus infection.

    PubMed

    Piersigilli, F; Catena, G; De Gasperis, M R; Lozzi, S; Auriti, C

    2012-07-01

    Congenital cytomegalovirus (CMV) is frequently associated with active retinitis. In contrast, in the immunocompetent neonate with postnatally acquired CMV infection retinitis is rarely present and usually does not progress. We describe the case of an infant with postnatal CMV infection and active retinitis diagnosed at 20 days of life. Owing to the rapid progression of the retinitis, therapy with intravenous ganciclovir was performed, with prompt regression of the retinitis. Therapy was then continued with oral valganciclovir for one further week. Although very unusual, CMV retinitis has to be taken into consideration in neonates with early postnatally acquired CMV infection, as an early diagnosis and treatment may be crucial to avoid visual impairment.

  4. The role of self-esteem instability in the development of postnatal depression: A prospective study testing a diathesis-stress account.

    PubMed

    Franck, Erik; Vanderhasselt, Marie-Anne; Goubert, Liesbet; Loeys, Tom; Temmerman, Marleen; De Raedt, Rudi

    2016-03-01

    Understanding vulnerability factors involved in the development of postnatal depression has important implications for theory and practice. In this prospective study, we investigated whether self-esteem instability during pregnancy would better predict postnatal depressive symptomatology than level of self-esteem. In addition, going beyond former studies, we tested the possible origin of this instability, examining whether day-to-day fluctuations in self-esteem could be explained by fluctuations in mood state, and whether this day-to-day self-esteem reactivity would predict postnatal depressive symptoms. 114 healthy never-depressed women were tested during the late second or third trimester of their gestation (Time 1) and at 12 weeks after delivery (Time 2). Day-to-day levels of self-esteem and depressed mood state were assessed at Time 1. At Time 2, postnatal depressive symptoms were assessed. The results show that, after controlling for initial depressive symptomatology, age and socio-economic status, postnatal depressive symptomatology at 12 weeks after childbirth could be predicted by self-esteem instability and not level of self-esteem. In addition, multi-level analyses demonstrated that these changes in day-to-day levels of self-esteem are associated with changes in day-to-day levels of depressed mood state and that those subjects with greater prenatal self-esteem reactivity upon depressed mood report higher levels of depressive symptoms post-partum. We used paper and pencil day-to-day measures of state self-esteem, which can be subject to bias. These results provide evidence for a diathesis-stress account of postnatal depression, highlighting the importance of a multi-dimensional view of self-esteem and the predictive role of self-esteem instability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Postnatal establishment of allelic Gαs silencing as a plausible explanation for delayed onset of parathyroid hormone-resistance due to heterozygous Gαs disruption

    PubMed Central

    Turan, Serap; Fernandez-Rebollo, Eduardo; Aydin, Cumhur; Zoto, Teuta; Reyes, Monica; Bounoutas, George; Chen, Min; Weinstein, Lee S.; Erben, Reinhold G.; Marshansky, Vladimir; Bastepe, Murat

    2013-01-01

    Pseudohypoparathyroidism type-Ia (PHP-Ia), characterized by renal proximal tubular resistance to parathyroid hormone (PTH), results from maternal mutations of GNAS that lead to loss of Gαs activity. Gαs expression is paternally silenced in the renal proximal tubule, and this genomic event is critical for the development of PTH-resistance, as patients display impaired hormone action only if the mutation is inherited maternally. The primary clinical finding of PHP-Ia is hypocalcemia, which can lead to various neuromuscular defects including seizures. PHP-Ia patients frequently do not present with hypocalcemia until after infancy, but it has remained uncertain whether PTH-resistance occurs in a delayed fashion. Analyzing reported cases of PHP-Ia with documented GNAS mutations and mice heterozygous for disruption of Gnas, we herein determined that the manifestation of PTH-resistance caused by the maternal loss of Gαs, i.e. hypocalcemia and elevated serum PTH, occurs after early postnatal life. To investigate whether this delay could reflect gradual development of paternal Gαs silencing, we then analyzed renal proximal tubules isolated by laser capture microdissection from mice with either maternal or paternal disruption of Gnas. Our results revealed that, whereas expression of Gαs mRNA in this tissue is predominantly from the maternal Gnas allele at weaning (three-weeks postnatal) and in adulthood, the contributions of the maternal and paternal Gnas alleles to Gαs mRNA expression are equal at postnatal day 3. In contrast, we found that paternal Gαs expression is already markedly repressed in brown adipose tissue at birth. Thus, the mechanisms silencing the paternal Gαs allele in renal proximal tubules are not operational during early postnatal development, and this finding correlates well with the latency of PTH-resistance in patients with PHP-Ia. PMID:23956044

  6. Postnatal development of the myenteric plexus in cat stomach.

    PubMed

    Lolova, I; Itsev, D

    1983-01-01

    The postnatal development of the myenteric plexus in cat stomach has been studied at birth, on the 14th, 30th, 45th and 180th postnatal days, using light- and electronmicroscopic methods. In newborn kittens the main network of the Auerbach plexus is well formed, but the myenteric ganglia are composed of nerve cells with different maturity and a scarce neuropile. During the first two postnatal weeks the dimensions of the ganglia increase owing to the increase of the nerve bodies and the rising number of glials cells and intercellular fibres. This is accompanied by a potentiation of the AChE-activity, mainly in the nerve cell bodies and to a lesser extent in the neuropile. Impregnation reveals different in calibre and form nerve fibres and terminals. Different ultrastructural types of neurones are identified on the 14th day. Later development is expressed in the formation of large compact ganglia and thick connecting strands. The number of AChE-positive fibres in the neuropile increases. Owing to the increase in the cell organelles and their more advanced maturity, it is possible to define the ultrastructural type of an ever increasing number of neurones.

  7. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth1

    PubMed Central

    Tarry-Adkins, Jane L; Fernandez-Twinn, Denise S; Hargreaves, Iain P; Neergheen, Viruna; Aiken, Catherine E; Martin-Gronert, Malgorzata S; McConnell, Josie M; Ozanne, Susan E

    2016-01-01

    Background: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. Objectives: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. Design: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed “recuperated”). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase–polymerase chain reaction. Results: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 μg/mL per μg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). Conclusions: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was

  8. Maternal depression during pregnancy and the postnatal period: risks and possible mechanisms for offspring depression at age 18 years.

    PubMed

    Pearson, Rebecca M; Evans, Jonathan; Kounali, Daphne; Lewis, Glyn; Heron, Jon; Ramchandani, Paul G; O'Connor, Tom G; Stein, Alan

    2013-12-01

    maternal depression. The findings suggest that treating maternal depression antenatally could prevent offspring depression during adulthood and that prioritizing less advantaged mothers postnatally may be most effective.

  9. Home-based versus hospital-based postnatal care: a randomised trial.

    PubMed

    Boulvain, Michel; Perneger, Thomas V; Othenin-Girard, Véronique; Petrou, Stavros; Berner, Michel; Irion, Olivier

    2004-08-01

    To compare a shortened hospital stay with midwife visits at home to usual hospital care after delivery. Randomised controlled trial. Maternity unit of a Swiss teaching hospital. Four hundred and fifty-nine women with a single uncomplicated pregnancy at low risk of caesarean section. Women were randomised to either home-based (n= 228) or hospital-based postnatal care (n= 231). Home-based postnatal care consisted of early discharge from hospital (24 to 48 hours after delivery) and home visits by a midwife; women in the hospital-based care group were hospitalised for four to five days. Breastfeeding 28 days postpartum, women's views of their care and readmission to hospital. Women in the home-based care group had shorter hospital stays (65 vs 106 hours, P < 0.001) and more midwife visits (4.8 vs 1.7, P < 0.001) than women in the hospital-based care group. Prevalence of breastfeeding at 28 days was similar between the groups (90%vs 87%, P= 0.30), but women in the home-based care group reported fewer problems with breastfeeding and greater satisfaction with the help received. There were no differences in satisfaction with care, women's hospital readmissions, postnatal depression scores and health status scores. A higher percentage of neonates in the home-based care group were readmitted to hospital during the first six months (12%vs 4.8%, P= 0.004). In low risk pregnancies, early discharge from hospital and midwife visits at home after delivery is an acceptable alternative to a longer duration of care in hospital. Mothers' preferences and economic considerations should be taken into account when choosing a policy of postnatal care.

  10. Postnatal Development of Intrinsic Horizontal Axons in Macaque Inferior Temporal and Primary Visual Cortices.

    PubMed

    Wang, Quanxin; Tanigawa, Hisashi; Fujita, Ichiro

    2017-04-01

    Two distinct areas along the ventral visual stream of monkeys, the primary visual (V1) and inferior temporal (TE) cortices, exhibit different projection patterns of intrinsic horizontal axons with patchy terminal fields in adult animals. The differences between the patches in these 2 areas may reflect differences in cortical representation and processing of visual information. We studied the postnatal development of patches by injecting an anterograde tracer into TE and V1 in monkeys of various ages. At 1 week of age, labeled patches with distribution patterns reminiscent of those in adults were already present in both areas. The labeling intensity of patches decayed exponentially with projection distance in monkeys of all ages in both areas, but this trend was far less evident in TE. The number and extent of patches gradually decreased with age in V1, but not in TE. In V1, axonal and bouton densities increased postnatally only in patches with short projection distances, whereas in TE this density change occurred in patches with various projection distances. Thus, patches with area-specific distribution patterns are formed early in life, and area-specific postnatal developmental processes shape the connectivity of patches into adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. In Utero and Postnatal Propylthiouracil-Induced Mild Hypothyroidism Impairs Maternal Behavior in Mice.

    PubMed

    Khairinisa, Miski Aghnia; Takatsuru, Yusuke; Amano, Izuki; Kokubo, Michifumi; Haijima, Asahi; Miyazaki, Wataru; Koibuchi, Noriyuki

    2018-01-01

    Thyroid hormones (THs) play crucial roles in general and brain development. Even if the hypothyroidism is mild, it may alter brain function, resulting in irreversible behavioral alterations. Although various behavioral analyses have been conducted, the effects of propylthiouracil (PTU) treatment during in utero and postnatal periods on maternal behavior have not yet been studied. The present study examined in mice whether THs insufficiency during development induce behavioral changes. Pregnant C57BL/6j mice were divided into three groups, and each group was administered different dosages of PTU (0, 5, or 50 ppm) in drinking water during in utero and postnatal periods (from gestational day 14 to postnatal day 21). First, locomotor activity and cognitive function were assessed in the offspring at 10 weeks. Next, female offspring were mated with normal mice and they and their offspring were used to assess several aspects of maternal behavior (identifying first pup, returning all pups to nest, time spent nursing, and licking pups). As expected, locomotor and cognitive functions in these mice were disrupted in a PTU dose-dependent manner. On postpartum day 2, dams who had been exposed 50 ppm PTU during in utero and postnatal periods displayed a significantly longer time identifying the first pup and returning all three pups back to the nest, less time nursing, and decreased licking behavior. The decrease in maternal behavior was significantly correlated with a decrease in cognition. These results indicate that insufficiency of THs during in utero and postnatal periods impairs maternal behavior, which may be partly induced by impaired cognitive function.

  12. Prenatal and Early Postnatal Exposure to Cigarette Smoke Decreases BDNF/TrkB Signaling and Increases Abnormal Behaviors Later in Life

    PubMed Central

    Xiao, Lan; Kish, Vincent L.; Benders, Katherine M.

    2016-01-01

    Background: Cigarette smoke exposure during prenatal and early postnatal periods increases the incidence of a variety of abnormal behaviors later in life. The purpose of this study was to identify the possible critical period of susceptibility to cigarette smoke exposure and evaluate the possibe effects of cigarette smoke during early life on brain-derived neurotrophic factor/neurotrophic tyrosine kinase receptor B signaling in the brain. Methods: Three different age of imprinting control region mice were exposed to cigarette smoke or filtered air for 10 consecutive days beginning on either gestational day 7 by maternal exposure, or postnatal days 2 or 21 by direct inhalation. A series of behavioral profiles and neurotrophins in brain were measured 24 hours after mice received acute restraint stress for 1 hour on postnatal day 59. Results: Cigarette smoke exposure in gestational day 7 and postnatal day 2 produced depression-like behaviors as evidenced by significantly increased immobility in both tail suspension and forced-swim test. Increased entry latencies, but not ambulation in the open field test, were also observed in the gestational day 7 and postnatal day 2 cigarette smoke exposure groups. Genetic analysis showed that gestational day 7 cigarette smoke exposure significantly altered mRNA level of brain-derived neurotrophic factor/tyrosine kinase receptor B in the hippocampus. However, behavioral profiles and brain-derived neurotrophic factor/tyrosine kinase receptor B signaling were not significantly changed in PND21 cigarette smoke exposure group compared with FA group. Conclusions: These results suggest that a critical period of susceptibility to cigarette smoke exposure exists in the prenatal and early postnatal period, which results a downregulation in brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in the hippocampus and enhances depression-like behaviors later in life. PMID:26503133

  13. Post natal use of analgesics: comparisons between conventional postnatal wards and a maternity hotel.

    PubMed

    Nordeng, Hedvig; Eskild, Anne; Nesheim, Britt-Ingjerd

    2010-04-01

    To investigate factors related to analgesic use after delivery, and especially whether rates of analgesic use were different in a midwife-managed maternity hotel as compared to conventional postnatal wards. One maternity hotel and two conventional postnatal wards at Ullevål University Hospital in Oslo, Norway. Data were obtained from hospital records for 804 women with vaginal deliveries. Postnatal analgesic use. Overall, approximately half the women used analgesics after vaginal delivery in both conventional postnatal wards and maternity hotel. The factors that were significantly associated with use of analgesics postnatally in multivariate analysis were multiparity, having a non-Western ethnicity, smoking in pregnancy, younger age, instrumental delivery, analgesic use during labour, maternal complications post partum, and duration of postnatal stay 4 days or more. The use of analgesics is determined by socio-demographic and obstetric factors rather than the organisation of the ward.

  14. Glial glycine transporter 1 function is essential for early postnatal survival but dispensable in adult mice.

    PubMed

    Eulenburg, Volker; Retiounskaia, Marina; Papadopoulos, Theofilos; Gomeza, Jesús; Betz, Heinrich

    2010-07-01

    The glycine transporter 1 (GlyT1) is expressed in astrocytes and selected neurons of the mammalian CNS. In newborn mice, GlyT1 is crucial for efficient termination of glycine-mediated inhibitory neurotransmission. Furthermore, GlyT1 has been implicated in the regulation of excitatory N-methyl-D-asparate (NMDA) receptors. To evaluate whether glial and neuronal GlyT1 have distinct roles at inhibitory synapses, we inactivated the GlyT1 gene cell type-specifically using mice carrying floxed GlyT1 alleles GlyT1((+)/+)). GlyT1((+)/(+)) mice expressing Cre recombinase in glial cells developed severe neuromotor deficits during the first postnatal week, which mimicked the phenotype of conventional GlyT1 knock-out mice and are consistent with glycinergic over-inhibition. In contrast, Cre-mediated inactivation of the GlyT1 gene in neuronal cells did not result in detectable motor impairment. Notably, some animals deficient for glial GlyT1 survived the first postnatal week and did not develop neuromotor deficits throughout adulthood, although GlyT1 expression was efficiently reduced. Thus, glial GlyT1 is critical for the regulation of glycine levels at inhibitory synapses only during early postnatal life. Copyright 2010 Wiley-Liss, Inc.

  15. Should prenatal hydronephrosis that resolves before birth be followed postnatally? Analysis and comparison to persistent prenatal hydronephrosis.

    PubMed

    Scarborough, Patrick L; Ferrara, Elizabeth; Storm, Douglas W

    2015-09-01

    Prenatal ultrasonography has greatly enhanced detection of congenital genitourinary abnormalities. However, although persistent prenatal hydronephrosis (PPH) is typically imaged and followed postnatally, it remains unclear if prenatal hydronephrosis that resolves in utero (RPH) should be similarly managed. We determined postnatal abnormalities associated with RPH and compared these to those associated with PPH. We performed a retrospective review of all consecutive patients evaluated for prenatal hydronephrosis over 24 months. Patients were followed prenatally with serial ultrasounds and postnatally with ultrasonography and a voiding cystourethrogram. Of the consecutive 165 patients enrolled in the study, 72 had RPH. The average prenatal anterior-posterior renal pelvis length was significantly longer in patients with PPH (5.5 mm) than in those with RPH (4.9 mm) (p = 0.01). Recurrent postnatal hydronephrosis occurred in 44% of patients with RPH, with eventual resolution in 34% of those affected. In comparison, 29% of PPH cases resolved postnatally. Mean time to resolution was statistically shorter for PPH (116 days) than for RPH (175 days) (p = 0.01). Seven PPH patients required surgery, while no RPH patients needed intervention (difference was statistically significant). A significant number of RPH children had postnatal hydronephrosis. Despite a slower resolution time, no children with RPH required intervention. Although RPH may recur postnatally, the significantly lower chance of intervention being required suggests that these children may not require postnatal imaging.

  16. Postnatal development of autonomic and sensory innervation of thoracic hairy skin in the rat. A histochemical, immunocytochemical, and radioenzymatic study.

    PubMed

    Schotzinger, R J; Landis, S C

    1990-05-01

    Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in

  17. Chronic Nicotine Treatment During Adolescence Attenuates the Effects of Acute Nicotine in Adult Contextual Fear Learning.

    PubMed

    Holliday, Erica D; Gould, Thomas J

    2017-01-01

    Adolescent onset of nicotine abuse is correlated with worse chances at successful abstinence in adulthood. One reason for this may be due to enduring learning deficits resulting from nicotine use during adolescence. Previous work has indicated that chronic nicotine administration beginning in late adolescence (PND38) caused learning deficits in contextual fear when tested in adulthood. The purpose of this study was to determine if chronic nicotine treatment during adolescence would alter sensitivity to nicotine's cognitive enhancing properties in adulthood. C57BL/6J mice received saline or chronic nicotine (12.6mg/kg/day) during adolescence (postnatal day 38) or adulthood (postnatal day 54) for a period of 12 days. Following a 30-day protracted abstinence, mice received either an acute injection of saline or nicotine (0.045, 0.18, and 0.36mg/kg) prior to training and testing a mouse model of contextual fear. It was found that chronic nicotine administration in adult mice did not alter sensitivity to acute nicotine following a protracted abstinence. In adolescent mice, chronic nicotine administration disrupted adult learning and decreased sensitivity to acute nicotine in adulthood as only the highest dose tested (0.36mg/kg) was able to enhance contextual fear learning. These results suggest that adolescent nicotine exposure impairs learning in adulthood, which could increase the risk for continued nicotine use in adulthood by requiring administration of higher doses of nicotine to reverse learning impairments caused by adolescent nicotine exposure. Results from this study add to the growing body of literature suggesting chronic nicotine exposure during adolescence leads to impaired learning in adulthood and demonstrates that nicotine exposure during adolescence attenuates the cognitive enhancing effects of acute nicotine in adulthood, which suggests altered cholinergic function. © The Author 2016. Published by Oxford University Press on behalf of the Society for

  18. Adolescent Alcohol Exposure-Induced Changes in Alpha-Melanocyte Stimulating Hormone and Neuropeptide Y Pathways via Histone Acetylation in the Brain During Adulthood.

    PubMed

    Kokare, Dadasaheb M; Kyzar, Evan J; Zhang, Huaibo; Sakharkar, Amul J; Pandey, Subhash C

    2017-09-01

    Adolescent intermittent ethanol exposure causes long-lasting alterations in brain epigenetic mechanisms. Melanocortin and neuropeptide Y signaling interact and are affected by ethanol exposure in the brain. Here, the persistent effects of adolescent intermittent ethanol on alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and their regulation by histone acetylation mechanisms were investigated in adulthood. Male rats were exposed to adolescent intermittent ethanol (2 g/kg, i.p.) or volume-matched adolescent intermittent saline from postnatal days 28 to 41 and allowed to grow to postnatal day 92. Anxiety-like behaviors were measured by the elevated plus-maze test. Brain regions from adult rats were used to examine changes in alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and the histone acetylation status of their promoters. Adolescent intermittent ethanol-exposed adult rats displayed anxiety-like behaviors and showed increased pro-opiomelanocortin mRNA levels in the hypothalamus and increased melanocortin 4 receptor mRNA levels in both the amygdala and hypothalamus compared with adolescent intermittent saline-exposed adult rats. The alpha-Melanocyte stimulating hormone and melanocortin 4 receptor protein levels were increased in the central and medial nucleus of the amygdala, paraventricular nucleus, and arcuate nucleus of the hypothalamus in adolescent intermittent ethanol-exposed compared with adolescent intermittent saline-exposed adult rats. Neuropeptide Y protein levels were decreased in the central and medial nucleus of the amygdala of adolescent intermittent ethanol-exposed compared with adolescent intermittent saline-exposed adult rats. Histone H3K9/14 acetylation was decreased in the neuropeptide Y promoter in the amygdala but increased in the melanocortin 4 receptor gene promoter in the amygdala and the melanocortin 4 receptor and pro-opiomelanocortin promoters in the

  19. The Effects of Maternal Exposure to Bisphenol A on Allergic Lung Inflammation into Adulthood

    PubMed Central

    Lawrence, B. Paige

    2012-01-01

    Bisphenol A (BPA) is a high–production volume chemical classified as an environmental estrogen and used primarily in the plastics industry. BPA’s increased usage correlates with rising BPA levels in people and a corresponding increase in the incidence of asthma. Due to limited studies, the contribution of maternal BPA exposure to allergic asthma pathogenesis is unclear. Using two established mouse models of allergic asthma, we examined whether developmental exposure to BPA alters hallmarks of allergic lung inflammation in adult offspring. Pregnant C57BL/6 dams were gavaged with 0, 0.5, 5, 50, or 500 μg BPA/kg/day from gestational day 6 until postnatal day 21. To induce allergic inflammation, adult offspring were mucosally sensitized with inhaled ovalbumin containing low-dose lipopolysaccharide or ip sensitized using ovalbumin with alum followed by ovalbumin aerosol challenge. In the mucosal sensitization model, female offspring that were maternally exposed to ≥ 50 μg BPA/kg/day displayed enhanced airway lymphocytic and lung inflammation, compared with offspring of control dams. Peritoneally sensitized, female offspring exposed to ≤ 50 μg BPA/kg/day presented dampened lung eosinophilia, compared with vehicle controls. Male offspring did not exhibit these differences in either sensitization model. Our data demonstrate that maternal exposure to BPA has subtle and qualitatively different effects on allergic inflammation, which are critically dependent upon route of allergen sensitization and sex. However, these subtle, yet persistent changes due to developmental exposure to BPA did not lead to significant differences in overall airway responsiveness, suggesting that early life exposure to BPA does not exacerbate allergic inflammation into adulthood. PMID:22821851

  20. Supplementation with fish oil and coconut fat prevents prenatal stress-induced changes in early postnatal development.

    PubMed

    Borsonelo, Elizabethe C; Suchecki, Deborah; Calil, Helena Maria; Galduróz, José Carlos F

    2011-08-01

    Adequate development of the central nervous system depends on prenatal and postnatal factors. On one hand, prenatal stress (PNS) has been implicated in impaired development of the offspring. On other hand, nutritional factors during pregnancy and lactation can influence fetal and postnatal growth. This study assessed the postnatal development of rat offspring exposed to PNS, which consisted of restraint and bright lights, 3 times/day, from days 14 to 20 of pregnancy, whose mothers were fed different diets during pregnancy and lactation: regular diet, diet supplemented with coconut fat or fish oil. When pregnancy was confirmed, they were distributed into control (CTL) or PNS groups. At birth, PNS males and females weighed less than those in the group CTL. At 21 days of age, this alteration was no longer observed with fish oil and coconut fat groups. PNS and coconut fat diet induced increased locomotor activity in 13 day old male and female pups, and this effect was prevented by fish oil supplementation only in females. In conclusion, postnatal development from birth to weaning was influenced by PNS and diet and some of those alterations were prevented by coconut fat and fish oil. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. Coverage, quality of and barriers to postnatal care in rural Hebei, China: a mixed method study.

    PubMed

    Chen, Li; Qiong, Wu; van Velthoven, Michelle Helena; Yanfeng, Zhang; Shuyi, Zhang; Ye, Li; Wei, Wang; Xiaozhen, Du; Ting, Zhang

    2014-01-18

    Postnatal care is an important link in the continuum of care for maternal and child health. However, coverage and quality of postnatal care are poor in low- and middle-income countries. In 2009, the Chinese government set a policy providing free postnatal care services to all mothers and their newborns in China. Our study aimed at exploring coverage, quality of care, reasons for not receiving and barriers to providing postnatal care after introduction of this new policy. We carried out a mixed method study in Zhao County, Hebei Province, China from July to August 2011. To quantify the coverage, quality of care and reasons for not using postnatal care, we conducted a household survey with 1601 caregivers of children younger than two years of age. We also conducted semi-structured interviews with 24 township maternal and child healthcare workers to evaluate their views on workload, in-service training and barriers to postnatal home visits. Of 1442 (90% of surveyed caregivers) women who completed the postnatal care survey module, 8% received a timely postnatal home visit (within one week after delivery) and 24% of women received postnatal care within 42 days after delivery. Among women who received postnatal care, 37% received counseling or guidance on infant feeding and 32% on cord care. 24% of women reported that the service provider checked jaundice of their newborns and 18% were consulted on danger signs and thermal care of their newborns. Of 991 mothers who did not seek postnatal care within 42 days after birth, 65% of them said that they did not knew about postnatal care and 24% of them thought it was unnecessary. Qualitative findings revealed that staff shortages and inconvenient transportation limited maternal and child healthcare workers in reaching out to women at home. In addition, maternal and child healthcare workers said that in-service training was inadequate and more training on postnatal care, hands-on practice, and supervision were needed. Coverage

  2. Associations Between Fetal Growth and Self-Perceived Health Throughout Adulthood: A Co-twin Control Study.

    PubMed

    Mosing, Miriam A; Cnattingius, Sven; Gatz, Margaret; Neiderhiser, Jenae M; Pedersen, Nancy L

    2016-05-01

    The literature shows evidence for long-lasting effects of low birth weight (LBW) on many health outcomes, but little is known about effects on self-perceived health. Findings are mixed and studies are small, mostly focusing on LBW effects on health outcomes before adulthood. Further, as LBW and most health conditions including self-perceived health are partly heritable, associations between birth weight (BW) and adverse health outcomes may also be due to shared genetic as well as other (pre- and postnatal) unmeasured environmental influences. We explored LBW effects on self-perceived health in early and later adulthood using a very large and genetically informative sample of more than 50,000 Swedish twins. In addition, analyses within twin pairs (the co-twin control design) were used to examine potential associations between BW and the offspring's risk for poor self-perceived health independent of shared environmental or genetic factors, evidence which is critical for the understanding of underlying mechanisms. Results showed that lower BW was significantly associated with poorer self-perceived health during adulthood, although the effect size was small. Co-twin control analyses suggested that this increased risk may be due to shared underlying liability (environmental or genetic) rather than a direct effect of BW, but findings were not conclusive.

  3. Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: Role of social experience and adaptive coping behavior

    PubMed Central

    Burke, Andrew R.; Miczek, Klaus A.

    2015-01-01

    Background The link between adolescent social stress and substance abuse is modeled in social defeat of adolescent male rats, at an age when social experiences are essential for neurobehavioral maturation. Objective We investigated the role of social experience and social defeat stress during adolescence on social behavior and cocaine self administration (CocSelfAd) in early adulthood. Methods We manipulated social experience by housing male rats in pairs (PH) or singly (SH) on postnatal day (P) 21. In addition, rats were subjected to social defeat from P35-44. Social behavior was measured during the first and last social defeat in PH and SH adolescents and PH adults. After assessing the behavioral response to novelty and cocaine (P57-61), intra-jugular catheters were implanted and CocSelfAd was analyzed. Results Residents were less aggressive toward PH adolescent intruders compared to PH adult intruders. Adults were submissive and defensive when attacked, whereas PH adolescents froze. In the course of repeated defeats, adolescent PH rats increased freezing, while SH rats decreased freezing. Longer attack-induced freezing after repeated defeats predicted escalated CocSelfAd in adulthood. PH controls acquired CocSelfAd more slowly than PH defeated and SH rats. Defeated PH rats increased CocSelfAd during progressive ratio schedules of reinforcement and during a 24-hour continuous access binge compared to PH controls and SH defeated rats. Conclusions Social defeat in adolescence of PH rats caused persistent increases in adult CocSelfAd. Adolescent PH rats coped with attacks adaptively by increasing freezing behavior after repeated social defeats, a measure that predicted CocSelfAd in adulthood. PMID:25943168

  4. Postnatal glucocorticoid-induced hypomyelination, gliosis, neurologic deficits are dose-dependent, preparation-specific, and reversible

    PubMed Central

    Zia, Muhammad TK; Vinukonda, Govindaiah; Vose, Linnea; Bhimavarapu, Bala B.R.; Iacobas, Sanda; Pandey, Nishi K.; Beall, Ann Marie; Dohare, Preeti; LaGamma, Edmund F.; Iacobas, Dumitru A.; Ballabh, Praveen

    2014-01-01

    Postnatal glucocorticoids (GCs) are widely used in the prevention of chronic lung disease in premature infants. Their pharmacologic use is associated with neurodevelopmental delay and cerebral palsy. However, the effect of GC dose and preparation (dexamethasone versus betamethasone) on short and long-term neurological outcomes remains undetermined, and the mechanisms of GC-induced brain injury are unclear. We hypothesized that postnatal GC would induce hypomyelination and motor impairment in a preparation- and dose-specific manner, and that GC receptor (GR) inhibition might restore myelination and neurological function in GC-treated animals. Additionally, GC-induced hypomyelination and neurological deficit might be transient. To test our hypotheses, we treated prematurely delivered rabbit pups with high (0.5 mg/kg/day) or low (0.2 mg/kg/day) doses of dexamethasone or betamethasone. Myelin basic protein (MBP), oligodendrocyte proliferation and maturation, astrocytes, transcriptomic profile, and neurobehavioral functions were evaluated. We found that high-dose GC treatment, but not low-dose, reduced MBP expression and impaired motor function at postnatal day 14. High-dose dexamethasone induced astrogliosis, betamethasone did not. Mifepristone, a GR antagonist, reversed dexamethasone-induced myelination, but not astrogliosis. Both GCs inhibited oligodendrocyte proliferation and maturation. Moreover, high-dose dexamethasone altered genes associated with myelination, cell-cycle, GR, and Mitogen-activated protein kinase. Importantly, GC-induced hypomyelination, gliosis, and motor-deficit, observed at day 14, completely recovered by day 21. Hence, high-dose, but not low-dose, postnatal GC causes reversible reductions in myelination and motor functions. GC treatment induces hypomyelination by GR-dependent genomic mechanisms, but astrogliosis by non-genomic mechanisms. GC-induced motor impairment and neurodevelopmental delay might be transient and recover spontaneously in

  5. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats

    PubMed Central

    Yu, Hong-Ren; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Chen, Chih-Cheng; Kuo, Ho-Chang; Hung, Pi-Lien; Hsieh, Kai-Sheng; Huang, Li-Tung

    2016-01-01

    Overexposure to prenatal glucocorticoid (GC) disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF) diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14–21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF), and prenatal dexamethasone exposure plus a postnatal HF diet (DHF). The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ) production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming. PMID:27669212

  6. Postnatal Weight Gain Modifies Severity and Functional Outcome of Oxygen-Induced Proliferative Retinopathy

    PubMed Central

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R.; Krah, Nathan M.; Dennison, Roberta J.; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D.; Smith, Lois E.H.

    2010-01-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r2 = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome. PMID:21056995

  7. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy.

    PubMed

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R; Krah, Nathan M; Dennison, Roberta J; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D; Smith, Lois E H

    2010-12-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r(2) = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome.

  8. Postnatal Day 2 to 11 Constitutes a 5-HT-Sensitive Period Impacting Adult mPFC Function

    PubMed Central

    Rebello, Tahilia J.; Yu, Qinghui; Goodfellow, Nathalie M.; Caffrey Cagliostro, Martha K.; Teissier, Anne; Morelli, Emanuela; Demireva, Elena Y.; Chemiakine, Alexei; Rosoklija, Gorazd B.; Dwork, Andrew J.; Lambe, Evelyn K.; Ansorge, Mark S.

    2014-01-01

    Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2–P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2–P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors. PMID:25209278

  9. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy

    Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murinemore » lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 928 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. Finally, this multi-omic view provides a unique resource and deeper insight into normal pulmonary development.« less

  10. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

    DOE PAGES

    Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy; ...

    2017-02-01

    Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murinemore » lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 928 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. Finally, this multi-omic view provides a unique resource and deeper insight into normal pulmonary development.« less

  11. Inferior Vena Cava Oxygen Saturation during the First Three Postnatal Days in Preterm Newborns with and without Patent Ductus Arteriosus

    PubMed Central

    Yapakçı, Ece; Ecevit, Ayşe; İnce, Deniz Anuk; Gökdemir, Mahmut; Tekindal, M. Agah; Gülcan, Hande; Tarcan, Aylin

    2014-01-01

    Background: Inferior vena cava (IVC) oxygen saturation as an indicator of mixed venous oxygenation may be valuable for understanding postnatal adaptations in newborn infants. It is unknown how this parameter progresses in critically ill premature infants. Aims: To investigate IVC oxygen saturation during the first three days of life in preterm infants with and without patent ductus arteriosus (PDA). Study Design: Case-control study. Methods: Twenty-seven preterm infants were admitted to the Neonatal Intensive Care. Preterm infants with umbilical venous catheterization were included in the study. Six umbilical venous blood gas values were obtained from each infant during the first 72 hours of life. Preterm infants in the study were divided into two groups. Haemodynamically significant PDA was diagnosed by echocardiography in 11 (41%) infants before the 72nd hour of life in the study group and ibuprofen treatment was started, whereas 16 (59%) infants who didn’t have haemodynamically significant PDA were included in the control group. Results: In the entire group, the highest value of mean IVC oxygen saturation was 79.9% at the first measurement and the lowest was 64.8% at the 72nd hour. Inferior vena cava oxygen saturations were significantly different between the study and control groups. Post-hoc analysis revealed that the first and 36th hour measurements made the difference (p=0.01). Conclusion: Inferior vena cava oxygen saturation was found to be significantly different between preterm infants with and without PDA. Further studies are needed to understand the effect of foetal shunts on venous oxygenation during postnatal adaptation in newborn infants. PMID:25337418

  12. The effects of pre- and postnatal exposure to the nonsteroidal antiandrogen flutamide on testis descent and morphology in the Albino Swiss rat

    PubMed Central

    KASSIM, NORMADIAH M.; McDONALD, S. W.; REID, O.; BENNETT, N. K.; GILMORE, D. P.; PAYNE, A. P.

    1997-01-01

    Exposure of male Albino Swiss rats to the nonsteroidal antiandrogen flutamide during the period from gestational day (d) 10 to birth resulted in feminisation of the external genitalia and the suppression of growth of the male reproductive tract. In adulthood, testes were found to be located in diverse positions. True cryptorchidism occurred in 10% of cases, whereas 50% of testes descended to the scrotum and 40% were located in a suprainguinal ectopic region. Varying degrees of tubule abnormality were seen in the testes of flutamide-treated animals, ranging from completely normal tubules with full spermatogenesis (and the expected frequency of the stages of spermatogenesis) to severely abnormal tubules lined with Sertoli cells only. For each individual testis, the overall severity of tubule damage was strongly correlated with its adult location, with intra-abdominal testes worst affected and scrotally-located testes least; only the latter contained normal tubules. Similarly, intra-abdominal testes were the smallest in weight and contained the least testosterone. By contrast, postnatal treatment of male rats with flutamide from birth to postnatal d 14 did not impair development of the external genitalia, the process of testicular descent or adult spermatogenesis. These findings confirm that androgen blockade during embryonic development interferes with testicular descent but also demonstrate that (1) prenatal flutamide treatment per se has a detrimental effect on adult testis morphology but (2) the degree of abnormality of the testes is strongly influenced by location. PMID:9183680

  13. Widespread neuronal degeneration in rats following oral administration of methylmercury during the postnatal developing phase: a model of fetal-type minamata disease.

    PubMed

    Sakamoto, M; Wakabayashi, K; Kakita, A; Hitoshi Takahashi; Adachi, T; Nakano, A

    1998-02-16

    The neurotoxicity of methylmercury (MeHg) treatment during the postnatal developing phase in rats was studied. Rats on postnatal day 1 were orally administered 5 mg/kg/day methylmercury chloride (MMC) for more than 30 consecutive days. Body weight loss began 26 days after MMC was administered, and severe paralysis of the hind-limbs and unsteadiness appeared subsequently. Histopathologically, the widespread neuronal degeneration was observed in the cerebral neocortex, neostriatum, red nucleus, brainstem, cerebellum and spinal dorsal root ganglia on day 32. The widespread distribution of the lesions was quite similar to that in fetal cases of MeHg intoxication in Minamata, Japan. These findings suggest that MMC treatment during the postnatal development phase in rats produce a good model of fetal-type Minamata disease. Copyright 1998 Elsevier Science B.V.

  14. Pre- and Post-Natal Maternal Depressive Symptoms in Relation with Infant Frontal Function, Connectivity, and Behaviors

    PubMed Central

    Soe, Ni Ni; Wen, Daniel J.; Poh, Joann S.; Li, Yue; Broekman, Birit F. P.; Chen, Helen; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Gluckman, Peter D.; Meaney, Michael J.; Rifkin-Graboi, Anne; Qiu, Anqi

    2016-01-01

    This study investigated the relationships between pre- and early post-natal maternal depression and their changes with frontal electroencephalogram (EEG) activity and functional connectivity in 6- and 18-month olds, as well as externalizing and internalizing behaviors in 24-month olds (n = 258). Neither prenatal nor postnatal maternal depressive symptoms independently predicted neither the frontal EEG activity nor functional connectivity in 6- and 18-month infants. However, increasing maternal depressive symptoms from the prenatal to postnatal period predicted greater right frontal activity and relative right frontal asymmetry amongst 6-month infants but these finding were not observed amongst 18-month infants after adjusted for post-conceptual age on the EEG visit day. Subsequently increasing maternal depressive symptoms from the prenatal to postnatal period predicted lower right frontal connectivity within 18-month infants but not among 6-month infants after controlling for post-conceptual age on the EEG visit day. These findings were observed in the full sample and the female sample but not in the male sample. Moreover, both prenatal and early postnatal maternal depressive symptoms independently predicted children’s externalizing and internalizing behaviors at 24 months of age. This suggests that the altered frontal functional connectivity in infants born to mothers whose depressive symptomatology increases in the early postnatal period compared to that during pregnancy may reflect a neural basis for the familial transmission of phenotypes associated with mood disorders, particularly in girls. PMID:27073881

  15. Pre- and postnatal toxicity induced in guinea pigs by N-nitrosomethylurea.

    PubMed

    Hasumi, K; Wilber, J H; Berkowitz, J; Wilber, R G; Epstein, S S

    1975-10-01

    Oral administration of N-nitrosomethylurea at maximally tolerated doses to guinea pigs on alternate days from days 34-58 of pregnancy induced prenatal toxicity, as evidenced by a high frequency of stillbirths and intrauterine growth retardation, and postnatal toxicity, as evidenced by stunting and progressive mortality. Similar administration of N-nitrosomethylurethane at maximally tolerated doses did not induce such toxic effects.

  16. Persistent neurochemical and behavioral abnormalities in adulthood despite early iron supplementation for perinatal iron deficiency anemia in rats⋆

    PubMed Central

    Felt, Barbara T.; Beard, John L.; Schallert, Timothy; Shao, Jie; Aldridge, J. Wayne; Connor, James R.; Georgieff, Michael K.; Lozoff, Betsy

    2006-01-01

    Background Iron deficiency anemia (IDA) has been associated with altered cognitive, motor, and social-emotional outcomes in human infants. We recently reported that rats with chronic perinatal IDA, had altered regional brain iron, monoamines, and sensorimotor skill emergence during early development. Objective To examine the long-term consequences of chronic perinatal IDA on behavior, brain iron and monoamine systems after dietary iron treatment in rats. Methods Sixty dams were randomly assigned to iron-sufficient (CN) or low-iron (EID) diets during gestation and lactation. Thereafter, all offspring were fed the iron-sufficient diet, assessed for hematology and behavior after weaning and into adulthood and for brain measures as adults (regional brain iron, monoamines, dopamine and serotonin transporters, and dopamine receptor). Behavioral assessments included sensorimotor function, general activity, response to novelty, spatial alternation, and spatial water maze performance. Results Hematology and growth were similar for EID and CN rats by postnatal day 35. In adulthood, EID thalamic iron content was lower. Monoamines, dopamine transporter, and dopamine receptor concentrations did not differ from CN. EID serotonin transporter concentration was reduced in striatum and related regions. EID rats had persisting sensorimotor deficits (delayed vibrissae-evoked forelimb placing, longer sticker removal time, and more imperfect grooming chains), were more hesitant in novel settings, and had poorer spatial water maze performance than CN. General activity and spatial alternation were similar for EID and CN. Conclusion Rats that had chronic perinatal IDA showed behavioral impairments that suggest persistent striatal dopamine and hippocampal dysfunction despite normalization of hematology, growth and most brain measures. PMID:16713640

  17. Low oral doses of bisphenol A increase volume of the sexually dimorphic nucleus of the preoptic area in male, but not female, rats at postnatal day 21.

    PubMed

    He, Zhen; Paule, Merle G; Ferguson, Sherry A

    2012-01-01

    Perinatal treatment with relatively high doses of bisphenol A (BPA) appears to have little effect on volume of the rodent sexually dimorphic nucleus of the preoptic area (SDN-POA). However, doses more relevant to human exposures have not been examined. Here, effects of pre- and post-natal treatment with low BPA doses on SDN-POA volume of postnatal day (PND) 21 Sprague-Dawley rats were evaluated. Pregnant rats were orally gavaged with vehicle, 2.5 or 25.0 μg/kg BPA, or 5.0 or 10.0 μg/kg ethinyl estradiol (EE₂) on gestational days 6-21. Beginning on the day after birth, offspring were orally treated with the same dose their dam had received. On PND 21, offspring (n=10-15/sex/group; 1/sex/litter) were perfused and volume evaluation was conducted blind to treatment. SDN-POA outline was delineated using calbindin D28K immunoreactivity. Pairwise comparisons of the significant treatment by sex interaction indicated that neither BPA dose affected female volume. However, females treated with 5.0 or 10.0 μg/kg EE₂ exhibited volumes that were larger than same-sex controls, respectively (p<0.001). Males treated with either BPA dose or 10.0 μg/kg/day EE₂ had larger volumes than same-sex controls (p<0.006). These data indicate that BPA can have sex-specific effects on SDN-POA volume and that these effects manifest as larger volumes in males. Sensitivity of the methodology as well as the treatment paradigm was confirmed by the expected EE₂-induced increase in female volume. These treatment effects might lead to organizational changes within sexually dimorphic neuroendocrine pathways which, if persistent, could theoretically alter adult reproductive physiology and socio-sexual behavior in rats. Published by Elsevier Inc.

  18. Mild prenatal protein malnutrition increases alpha 2C-adrenoceptor expression in the rat cerebral cortex during postnatal life.

    PubMed

    Sierralta, Walter; Hernández, Alejandro; Valladares, Luis; Pérez, Hernán; Mondaca, Mauricio; Soto-Moyano, Rubén

    2006-05-15

    Mild reduction in the protein content in the diet of pregnant rats from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but results in significant changes of the concentration and release of cortical noradrenaline during postnatal life, together with impaired long-term potentiation and memory formation. Since some central noradrenergic receptors are critically involved in neuroplasticity, the present study evaluated, by utilizing immunohistochemical methods, the effect of mild prenatal protein malnutrition on the alpha 2C-adrenoceptor expression in the frontal and occipital cortices of 8- and 60-day-old rats. At day 8 of postnatal age, prenatally malnourished rats exhibited a three-fold increase of alpha 2C-adrenoceptor expression in both the frontal and the occipital cortices, as compared to well-nourished controls. At 60 days of age, prenatally malnourished rats showed normal expression levels scores of alpha 2C-adrenoceptor in the neocortex. Results suggest that overexpression of neocortical alpha 2C-adrenoceptors during early postnatal life, subsequent to mild prenatal protein malnutrition, could in part be responsible for neural and behavioral disturbances showing prenatally malnourished animals during the postnatal life.

  19. Adolescent silymarin treatment increases anxiety-like behaviors in adult mice.

    PubMed

    Kosari-Nasab, Morteza; Rabiei, Afshin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-08-01

    Adolescence is one of the most important periods of brain development in mammals. There is increasing evidence that some medicines during this period can affect brain and behavioral functions in adulthood. Silymarin (SM), a mixture of flavonolignans extracted from the milk thistle Silybum marianum, is known as a hepatoprotective, anti-inflammatory, and neuroprotective drug. Although researchers have extensively studied the effects of SM during adulthood, to date there is no information on the effects of this drug during the stages of brain development on behavioral functions in adulthood. In the current study, we investigated the effects of adolescent SM treatment on body weight and anxiety-like behaviors in adult male and female mice. Adolescent NMRI mice (postnatal day 30-50) were treated orally with water or SM (50 and 100 mg/kg). Animals were weighed during drug treatment and were then subjected to open field, elevated plus maze, and light-dark box tests from postnatal day 70. The results indicated that adolescent SM treatment increased anxiety-like behaviors in open field, elevated plus maze, and light-dark box in adult mice, while not altering body weight. Collectively, these findings suggest that adolescent SM treatment may have profound effects on the development of brain and behavior in adulthood.

  20. Chronic exposure of adult, postnatal and in utero rat models to low-dose 137Cesium: impact on circulating biomarkers

    PubMed Central

    Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar

    2016-01-01

    The presence of 137Cesium (137Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l−1) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (–11%) levels, but only for the rats exposed to 137Cs intake in adulthood. Large changes in 17β-estradiol (–69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. PMID:27466399

  1. Estrogen Sensitivity of Target Genes and Expression of Nuclear Receptor Co-Regulators in Rat Prostate after Pre- and Postnatal Exposure to the Ultraviolet Filter 4-Methylbenzylidene Camphor

    PubMed Central

    Durrer, Stefan; Ehnes, Colin; Fuetsch, Michaela; Maerkel, Kirsten; Schlumpf, Margret; Lichtensteiger, Walter

    2007-01-01

    Background and objectives In previous studies, we found that the ultraviolet filter 4-methyl-benzylidene camphor (4-MBC) exhibits estrogenic activity, is a preferential estrogen receptor (ER)-β ligand, and interferes with development of female reproductive organs and brain of both sexes in rats. Here, we report effects on male development. Methods 4-MBC (0.7, 7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to offspring until adulthood. mRNA was determined in prostate lobes by real-time reverse transcription–polymerase chain reaction and protein was determined by Western blot analysis. Results 4-MBC delayed male puberty, decreased adult prostate weight, and slightly increased testis weight. Androgen receptor (AR), insulin-like growth factor-1 (IGF-1), ER-α, and ER-β expression in prostate were altered at mRNA and protein levels, with stronger effects in dorsolateral than ventral prostate. To assess sensitivity of target genes to estrogens, offspring were castrated on postnatal day 70, injected with 17β-estradiol (E2; 10 or 50 μg/kg, sc) or vehicle on postnatal day 84, and sacrificed 6 hr later. Acute repression of AR and IGF-1 mRNAs by E2, studied in ventral prostate, was reduced by 4-MBC exposure. This was accompanied by reduced co-repressor N-CoR (nuclear receptor co-repressor) protein in ventral and dorsolateral prostate, whereas steroid receptor coactivator-1 (SRC-1) protein levels were unaffected. Conclusions Our data indicate that 4-MBC affects development of male reproductive functions and organs, with a lowest observed adverse effect level of 0.7 mg/kg. Nuclear receptor coregulators were revealed as targets for endocrine disruptors, as shown for N-CoR in prostate and SRC-1 in uterus. This may have widespread effects on gene regulation. PMID:18174949

  2. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep.

    PubMed

    Veiga-Lopez, Almudena; Moeller, Jacob; Sreedharan, Rohit; Singer, Kanakadurga; Lumeng, Carey; Ye, Wen; Pease, Anthony; Padmanabhan, Vasantha

    2016-02-01

    Among potential contributors for the increased incidence of metabolic diseases is the developmental exposure to endocrine-disrupting chemicals such as bisphenol A (BPA). BPA is an estrogenic chemical used in a variety of consumer products. Evidence points to interactions of BPA with the prevailing environment. The aim of this study was to assess the effects of prenatal exposure to BPA on postnatal metabolic outcomes, including insulin resistance, adipose tissue distribution, adipocyte morphometry, and expression of inflammatory markers in adipose tissue as well as to assess whether postnatal overfeeding would exacerbate these effects. Findings indicate that prenatal BPA exposure leads to insulin resistance in adulthood in the first breeder cohort (study 1), but not in the second cohort (study 2), which is suggestive of potential differences in genetic susceptibility. BPA exposure induced adipocyte hypertrophy in the visceral fat depot without an accompanying increase in visceral fat mass or increased CD68, a marker of macrophage infiltration, in the subcutaneous fat depot. Cohens effect size analysis found the ratio of visceral to subcutaneous fat depot in the prenatal BPA-treated overfed group to be higher compared with the control-overfed group. Altogether, these results suggest that exposure to BPA during fetal life at levels found in humans can program metabolic outcomes that lead to insulin resistance, a forerunner of type 2 diabetes, with postnatal obesity failing to manifest any interaction with prenatal BPA relative to insulin resistance and adipocyte hypertrophy. Copyright © 2016 the American Physiological Society.

  3. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep

    PubMed Central

    Veiga-Lopez, Almudena; Moeller, Jacob; Sreedharan, Rohit; Singer, Kanakadurga; Ye, Wen; Pease, Anthony

    2015-01-01

    Among potential contributors for the increased incidence of metabolic diseases is the developmental exposure to endocrine-disrupting chemicals such as bisphenol A (BPA). BPA is an estrogenic chemical used in a variety of consumer products. Evidence points to interactions of BPA with the prevailing environment. The aim of this study was to assess the effects of prenatal exposure to BPA on postnatal metabolic outcomes, including insulin resistance, adipose tissue distribution, adipocyte morphometry, and expression of inflammatory markers in adipose tissue as well as to assess whether postnatal overfeeding would exacerbate these effects. Findings indicate that prenatal BPA exposure leads to insulin resistance in adulthood in the first breeder cohort (study 1), but not in the second cohort (study 2), which is suggestive of potential differences in genetic susceptibility. BPA exposure induced adipocyte hypertrophy in the visceral fat depot without an accompanying increase in visceral fat mass or increased CD68, a marker of macrophage infiltration, in the subcutaneous fat depot. Cohens effect size analysis found the ratio of visceral to subcutanous fat depot in the prenatal BPA-treated overfed group to be higher compared with the control-overfed group. Altogether, these results suggest that exposure to BPA during fetal life at levels found in humans can program metabolic outcomes that lead to insulin resistance, a forerunner of type 2 diabetes, with postnatal obesity failing to manifest any interaction with prenatal BPA relative to insulin resistance and adipocyte hypertrophy. PMID:26646100

  4. A mouse model with postnatal endolymphatic hydrops and hearing loss

    PubMed Central

    Megerian, Cliff A.; Semaan, Maroun T.; Aftab, Saba; Kisley, Lauren B.; Zheng, Qing Yin; Pawlowski, Karen S.; Wright, Charles G.; Alagramam, Kumar N.

    2010-01-01

    Endolymphatic hydrops (ELH), hearing loss and neuronal degeneration occur together in a variety of clinically significant disorders, including Meniere’s disease (MD). However, the sequence of these pathological changes and their relationship to each other are not well understood. In this regard, an animal model that spontaneously develops these features postnatally would be useful for research purposes. A search for such a model led us to the PhexHyp-Duk mouse, a mutant allele of the Phex gene causing X-linked hypophosphatemic rickets. The hemizygous male (PhexHyp-Duk/Y) was previously reported to exhibit various abnormalities during adulthood, including thickening of bone, ELH and hearing loss. The reported inner-ear phenotype was suggestive of progressive pathology and spontaneous development of ELH postnatally, but not conclusive. The main focuses of this report are to further characterize the inner ear phenotype in PhexHyp-Duk/Y mice and to test the hypotheses that (a) the PhexHyp-Duk/Y mouse develops ELH and hearing loss postnatally, and (b) the development of ELH in the PhexHyp-Duk/Y mouse is associated with obstruction of the endolymphatic duct (ED) due to thickening of the surrounding bone. Auditory brainstem response (ABR) recordings at various times points and histological analysis of representative temporal bones reveal that PhexHyp-Duk/Y mice typically develop adult onset, asymmetric, progressive hearing loss closely followed by the onset of ELH. ABR and histological data show that functional degeneration precedes structural degeneration. The major degenerative correlate of hearing loss and ELH in the mutants is the primary loss of spiral ganglion cells. Further, PhexHyp-Duk/Y mice develop ELH without evidence of ED obstruction, supporting the idea that ELH can be induced by a mechanism other than the blockade of longitudinal flow of endolymphatic fluid, and occlusion of ED is not a prerequisite for the development of ELH in patients. PMID:18289812

  5. Early Postnatal Cardiomyocyte Proliferation Requires High Oxidative Energy Metabolism.

    PubMed

    de Carvalho, Ana Elisa Teófilo Saturi; Bassaneze, Vinícius; Forni, Maria Fernanda; Keusseyan, Aline Alfonso; Kowaltowski, Alicia Juliana; Krieger, José Eduardo

    2017-11-13

    Cardiac energy metabolism must cope with early postnatal changes in tissue oxygen tensions, hemodynamics, and cell proliferation to sustain development. Here, we tested the hypothesis that proliferating neonatal cardiomyocytes are dependent on high oxidative energy metabolism. We show that energy-related gene expression does not correlate with functional oxidative measurements in the developing heart. Gene expression analysis suggests a gradual overall upregulation of oxidative-related genes and pathways, whereas functional assessment in both cardiac tissue and cultured cardiomyocytes indicated that oxidative metabolism decreases between the first and seventh days after birth. Cardiomyocyte extracellular flux analysis indicated that the decrease in oxidative metabolism between the first and seventh days after birth was mostly related to lower rates of ATP-linked mitochondrial respiration, suggesting that overall energetic demands decrease during this period. In parallel, the proliferation rate was higher for early cardiomyocytes. Furthermore, in vitro nonlethal chemical inhibition of mitochondrial respiration reduced the proliferative capacity of early cardiomyocytes, indicating a high energy demand to sustain cardiomyocyte proliferation. Altogether, we provide evidence that early postnatal cardiomyocyte proliferative capacity correlates with high oxidative energy metabolism. The energy requirement decreases as the proliferation ceases in the following days, and both oxidative-dependent metabolism and anaerobic glycolysis subside.

  6. Role of Neurotrophins on Postnatal Neurogenesis in the Thalamus: Prenatal Exposure to Ethanol

    PubMed Central

    Mooney, Sandra M.; Miller, Michael W.

    2011-01-01

    A second wave of neuronal generation occurs in the ventrobasal nucleus of the rat thalamus (VB) during the first three postnatal weeks. The present study tested the hypotheses (1) that postnatal neurogenesis in the VB is neurotrophin-regulated and (2) that ethanol-induced changes in this proliferation are mediated by neurotrophins. The first studies examined the effects of neurotrophins on the numbers of cycling cells in ex vivo preparations of the VB from three-day-old rats. The proportion of cycling (Ki-67-positive) VB cells was higher in cultured thalamic slices treated with neurotrophins than in controls. Interestingly, this increase occurred with nerve growth factor (NGF) alone or with a combination of NGF and brain-derived neurotrophic factor (BDNF), but not with BDNF alone. Based on these data, the VBs from young offspring of pregnant rats fed an ethanol-containing or an isocaloric non-alcoholic liquid diet were examined between postnatal day (P) 1 and P31. Studies used enzyme-linked immunosorbent assays and immunoblots to explore the effects of ethanol on the expression of neurotrophins, their receptors, and representative signaling proteins. Ethanol altered the expression of neurotrophins and receptors throughout the first postnatal month. Expression of NGF increased, but there was no change in the expression of BDNF. The high affinity receptors (TrkA and TrkB) were unchanged but ethanol decreased expression of the low affinity receptor, p75. One downstream signaling protein, extracellular signal-regulated kinase (ERK), decreased but Akt expression was unchanged. Thus, postnatal cell proliferation in the VB of young rat pups is neurotrophin-responsive and is affected by ethanol. PMID:21277941

  7. Autoshaping in adolescence enhances sign-tracking behavior in adulthood: impact on ethanol consumption.

    PubMed

    Anderson, Rachel I; Spear, Linda P

    2011-04-01

    Autoshaping refers to a procedure during which a cue repeatedly paired with a reward elicits a conditioned response directed at either the reward delivery location ("goal-tracking") or the cue itself ("sign- tracking"). Individual differences in expression of sign-tracking behavior may be predictive of voluntary ethanol intake. The present study was designed to explore the development of differences in sign-tracking behavior in adolescent and adult male and female rats in an 8-day autoshaping procedure. Consistency of sign-tracking and goal-tracking across age was examined by retesting adolescents again in adulthood and comparing their adult data with animals tested only as adults to explore pre-exposure effects on adult responding. In order to assess the relationship between sign-tracking and ethanol intake, voluntary ethanol consumption was measured in an 8-day, 2-hr limited access drinking paradigm following the 8-day autoshaping procedure in adulthood. Animals tested as adolescents showed notably less sign-tracking behavior than animals tested as adults, and sign-tracking behavior was not correlated across age. Animals exposed to the autoshaping procedure as adolescents demonstrated greater sign-tracking behavior as adults when compared to control animals tested only in adulthood. When examining the relationship in adulthood between sign-tracking and ethanol intake, an increase in ethanol intake among sign-trackers was found only in animals pre-exposed to autoshaping as adolescents. Whether or not these results reflect an adolescent-specific experience effect is unclear without further work to determine whether comparable pre-exposure effects are seen if the initial autoshaping sessions are delayed into adulthood. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Autoshaping in adolescence enhances sign-tracking behavior in adulthood: Impact on ethanol consumption

    PubMed Central

    Anderson, Rachel I.; Spear, Linda P.

    2011-01-01

    Autoshaping refers to a procedure during which a cue repeatedly paired with a reward elicits a conditioned response directed at either the reward delivery location (“goal-tracking”) or the cue itself (“sign-tracking”). Individual differences in expression of sign-tracking behavior may be predictive of voluntary ethanol intake. The present study was designed to explore the development of differences in sign-tracking behavior in adolescent and adult male and female rats in an 8-day autoshaping procedure. Consistency of sign-tracking and goal-tracking across age was examined by retesting adolescents again in adulthood and comparing their adult data with animals tested only as adults to explore pre-exposure effects on adult responding. In order to assess the relationship between sign-tracking and ethanol intake, voluntary ethanol consumption was measured in an 8-day, 2-hr limited access drinking paradigm following the 8-day autoshaping procedure in adulthood. Animals tested as adolescents showed notably less sign-tracking behavior than animals tested as adults, and sign-tracking behavior was not correlated across age. Animals exposed to the autoshaping procedure as adolescents demonstrated greater sign-tracking behavior as adults when compared to control animals tested only in adulthood. When examining the relationship in adulthood between sign-tracking and ethanol intake, an increase in ethanol intake among sign-trackers was found only in animals pre-exposed to autoshaping as adolescents. Whether or not these results reflect an adolescent-specific experience effect is unclear without further work to determine whether comparable pre-exposure effects are seen if the initial autoshaping sessions are delayed into adulthood. PMID:21238477

  9. (+/-)3,4-Methylenedioxymethamphetamine (MDMA) dose-dependently impairs spatial learning in the morris water maze after exposure of rats to different five-day intervals from birth to postnatal day twenty.

    PubMed

    Vorhees, Charles V; Schaefer, Tori L; Skelton, Matthew R; Grace, Curtis E; Herring, Nicole R; Williams, Michael T

    2009-01-01

    During postnatal days (PD) 11-20, (+/-)3,4-methylenedioxymethamphetamine (MDMA) treatment impairs egocentric and allocentric learning, and reduces spontaneous locomotor activity; however, it does not have these effects during PD 1-10. How the learning impairments relate to the stress hyporesponsive period (SHRP) is unknown. To test this association, the preweaning period was subdivided into 5-day periods from PD 1-20. Separate pups within each litter were injected subcutaneously with 0, 10, 15, 20, or 25 mg/kg MDMA x4/day on PD 1-5, 6-10, 11-15, or 16-20, and tested as adults. The 3 highest MDMA dose groups showed reduced locomotor activity during the first 10 min (of 60 min), especially in the PD 1-5 and 6-10 dosing regimens. MDMA groups in all dosing regimens showed impaired allocentric learning in the Morris water maze (on acquisition and reversal, all MDMA groups were affected; on the small platform phase, the 2 high-dose groups were affected). No effects of MDMA were found on anxiety (elevated zero maze), novel object recognition, or egocentric learning (although a nonsignificant trend was observed). The Morris maze results did not support the idea that the SHRP is critical to the effects of MDMA on allocentric learning. However, since no effects on egocentric learning were found, but were apparent after PD 11-20 treatment, the results show that these 2 forms of learning have different exposure-duration sensitivities. 2009 S. Karger AG, Basel.

  10. The impact of early postnatal environmental enrichment on maternal care and offspring behaviour following weaning.

    PubMed

    Li, Ki Angel; Lund, Emilie Torp; Voigt, Jörg-Peter W

    2016-01-01

    The early postnatal period is a sensitive period in rodents as behavioural systems are developing and maturing during this time. However, relatively little information is available about the impact of environmental enrichment on offspring behaviour if enrichment is implemented only during this period. Here, environmental enrichment was provided from postnatal day 1 until weaning. On post-natal day 9, maternal behaviour and nonmaternal behaviour of the dam was observed. Nursing time in the enriched group was reduced but dams showed more non-maternal appetitive behaviours. Offspring were exposed to either the open field or the elevated plus maze (EPM) after weaning. In the open field, rats from the enriched group approached the more aversive inner zone of the open field later than control rats. Offspring from the enriched group made fewer entries into the inner zone and spent less time in this part of the arena. Enrichment had no impact on behaviour in the EPM. The present study provides evidence that postnatal enrichment can interfere with maternal behaviour in rats and can possibly lead to increased anxiety in the offspring. The findings suggest that enrichment procedures can have potentially unintended effects, interfering with the development of emotional behaviours in rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. EFFECTS OF ETHANOL EXPOSURE DURING ADOLESCENCE OR IN ADULTHOOD ON PAVLOVIAN CONDITIONED APPROACH IN SPRAGUE-DAWLEY RATS

    PubMed Central

    McClory, Alexander James; Spear, Linda

    2014-01-01

    Human studies have shown that adolescents who repeatedly use alcohol are more likely to be dependent on alcohol and are more likely to suffer from psychological problems later in life. There has been limited research examining how ethanol exposure in adolescence might contribute to later abuse or addiction in adulthood. The present experiment examined effects of intermittent ethanol exposure during adolescence on sign-tracking behavior in adulthood, indexed by a Pavlovian conditioned approach (PCA) task wherein an 8-s lever presentation served as a cue predicting subsequent delivery of a flavored food pellet. Although no response was required for food delivery, after multiple pairings, 1 of 2 different responses often emerged during the lever presentation: goal tracking (head entries into the food trough) or sign tracking (engagement with the lever when presented). Sign tracking is thought to reflect the attribution of incentive salience to reward-paired cues and has been previously correlated with addiction-like behaviors. Following the last PCA session, blood samples were collected for analysis of post-session corticosterone levels. Sixty-two rats (n = 10–12/group) were pseudo-randomly assigned to 1 of 2 intragastric (i.g.) exposure groups (water or 4 g/kg ethanol) or a non-manipulated (NM) control group. Animals were intubated with ethanol or water every other session from postnatal session (PND) 28–48 or PND 70–90. Rats were then tested in adulthood (PND 71–79 or PND 113–122) on the PCA task. Animals exposed chronically to ethanol during adolescence exhibited significantly higher levels of sign-tracking behavior in adulthood than NM and water-treated animals, and showed higher corticosterone than NM control animals. These effects were not seen after comparable ethanol exposure in adulthood. These results suggest that adolescent alcohol exposure has long-term consequences on the expression of potential addiction-relevant behaviors in adulthood. PMID

  12. Effects of ethanol exposure during adolescence or in adulthood on Pavlovian conditioned approach in Sprague-Dawley rats.

    PubMed

    McClory, Alexander James; Spear, Linda Patia

    2014-12-01

    Human studies have shown that adolescents who repeatedly use alcohol are more likely to be dependent on alcohol and are more likely to suffer from psychological problems later in life. There has been limited research examining how ethanol exposure in adolescence might contribute to later abuse or addiction in adulthood. The present experiment examined effects of intermittent ethanol exposure during adolescence on sign-tracking behavior in adulthood, indexed by a Pavlovian conditioned approach (PCA) task wherein an 8s lever presentation served as a cue predicting subsequent delivery of a flavored food pellet. Although no response was required for food delivery, after multiple pairings, 1 of 2 different responses often emerged during the lever presentation: goal tracking (head entries into the food trough) or sign tracking (engagement with the lever when presented). Sign tracking is thought to reflect the attribution of incentive salience to reward-paired cues and has been previously correlated with addiction-like behaviors. Following the last PCA session, blood samples were collected for analysis of post-session corticosterone levels. Sixty-two rats (n = 10-12/group) were pseudo-randomly assigned to 1 of 2 intragastric (i.g.) exposure groups (water or 4 g/kg ethanol) or a non-manipulated (NM) control group. Animals were intubated with ethanol or water every other session from postnatal session (PND) 28-48 or PND 70-90. Rats were then tested in adulthood (PND 71-79 or PND 113-122) on the PCA task. Animals exposed chronically to ethanol during adolescence exhibited significantly higher levels of sign-tracking behavior in adulthood than NM and water-treated animals, and showed higher corticosterone than NM control animals. These effects were not seen after comparable ethanol exposure in adulthood. These results suggest that adolescent alcohol exposure has long-term consequences on the expression of potential addiction-relevant behaviors in adulthood. Copyright © 2014

  13. Postnatal expression and androgen regulation of HOXBES2 homeoprotein in rat epididymis.

    PubMed

    Prabagaran, Esakki; Hegde, Uma C; Moodbidri, Sudhir B; Bandivdekar, Atmaram H; Raghavan, Vijaya P

    2007-01-01

    The multifunctional and androgen-regulated epididymis is known to provide a conducive microenvironment for the maturation and storage of mature spermatozoa. HOXB2 homeodomain-containing epididymis-specific sperm protein (HOXBES2), a molecule first reported by our group, exhibits cell- and region-specific expression. It was found in the cytoplasm of the principal epithelial cells with maximum in the distal segments of the rat epididymis. The present study was undertaken to determine whether HOXBES2 expression is regulated by androgens and postnatal epididymal development. Toward this, the epididymis was disallowed access to circulating androgens either by chemical or biologic castration. In bilaterally orchidectomized animals, the levels of immunoreactive HOXBES2 declined to <5 % of those seen in sham-operated animals. Exogenous dihydrotestosterone (DHT) supplementation (250 microg/kg body weight) for 7 days restored the expression levels to >or= 90 % of that observed in intact animals. Ethylene dimethane sulfonate (EDS) administration completely abolished HOXBES2 expression in the epididymis, and supplementation with DHT or DHT + estradiol for 10 days re-established HOXBES2 expression to near normalcy. However, in the estradiol alone-supplemented EDS-treated group, HOXBES2 remained undetected. The unaltered HOXBES2 expression following efferent duct ligation suggested that HOXBES2 is not critically dependent on testicular factors. During postnatal development, protein expression in the epididymis begins to appear from day 40 and 50 and increased from day 60 onward, coinciding with the mature levels of circulating androgens and the well-differentiated epididymis. Thus, the data obtained from this study suggests that HOXBES2 expression could be regulated by androgens, and its expression level is closely associated with the postnatal development of the epididymis.

  14. Postnatal cocaine exposure: effects on behavior of rats in forced swim test.

    PubMed

    Magalhães, Ana; Tavares, Maria Amélia; de Sousa, Liliana

    2002-06-01

    Exposure to cocaine in early periods of postnatal life has adverse effects on behavior, namely, it induces the display of anxiety and fear-like behaviors that are associated with stress and depression. This study examined the effects of early developmental cocaine exposure in several categories of behavior observed in forced swim test. Male and female Wistar rats were given 15 mg/kg of cocaine hydrochloride/body weight/day, subcutaneously, in two daily doses, from postnatal day (PND) 1 to PND27. Controls were saline injected in the same protocol. In PND26-PND27, rats were placed in a swimming pool during 5 min in two sessions. The categories of behavior studied in this work included horizontal and vertical rotation, vibrissae clean, head clean, fast and slow swim, struggling, floating, sliding, diving, head-diving, and wagging head. Results showed differences in the frequencies of several behavioral categories that allowed the discrimination of the behaviors that may constitute "behavioral despair" indicators, as well as which behaviors are most affected by cocaine exposure. Cocaine groups were less active and more immobile than controls. These results suggest that postnatal exposure to cocaine can produce depression-like effects and affect the ability of these animals to cope with stress situations.

  15. The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development.

    PubMed

    Linden, D C; Guillery, R W; Cucchiaro, J

    1981-12-01

    The anterograde transport of 3H proline and of horseradish peroxidase has been used to study the retinogeniculate pathway in normal adult ferrets and in young ferrets during postnatal development. the lateral geniculate nucleus in adults shows a characteristic "carnivore" pattern, with layers A, A1, C, C1, C2, and C3, and a medial interlaminar nucleus recognizable either cytoarchitectonically or on the basis ofth retinogeniculate innervation. In addition, there is a well-defined, rather large perigeniculate nucleus. At birth the lateral geniculate nucleus is unlaminated and essentially all parts are reached by afferents from both eyes. The crossed component is by far the larger. It extends from the optic tract medially well into the perigeniculate field, in contrast to the uncrossed component which barely reaches the perigeniculate field. During the first 3 postnatal days the uncrossed fibers restrict their arbors to a small posterior and medial region, the precursor of the biocular segment of the nucleus. The crossed fibers gradually retreat from the region within which the uncrossed fibers have concentrated. Between the fourth and eighth postnatal days the field occupied by the ipsilateral component expands again to form a major focus that will define lamina A1 and a minor focus that will define C1. At this stage the crossed and the uncrossed fibers overlap at the borders of lamina A1 and the whole region of lamina C1 is also occupied by arbors of the crossed component. The perigeniculate field becomes clearly distinguishable from the lateral geniculate nucleus and the medial interlaminar nucleus is becoming clearly recognizable between days 3 and 8. Between days 8 and 15 the cytoarchitectonic borders between layers A and A1 become clearly defined, but the retinogeniculate axons from each eye still extend across this border. These axons retreat into their appropriate lamina after the 15th postnatal day an the nucleus reaches its essentially adult structure by

  16. Stress during a Critical Postnatal Period Induces Region-Specific Structural Abnormalities and Dysfunction of the Prefrontal Cortex via CRF1

    PubMed Central

    Yang, Xiao-Dun; Liao, Xue-Mei; Uribe-Mariño, Andrés; Liu, Rui; Xie, Xiao-Meng; Jia, Jiao; Su, Yun-Ai; Li, Ji-Tao; Schmidt, Mathias V; Wang, Xiao-Dong; Si, Tian-Mei

    2015-01-01

    During the early postnatal period, environmental influences play a pivotal role in shaping the development of the neocortex, including the prefrontal cortex (PFC) that is crucial for working memory and goal-directed actions. Exposure to stressful experiences during this critical period may disrupt the development of PFC pyramidal neurons and impair the wiring and function of related neural circuits. However, the molecular mechanisms of the impact of early-life stress on PFC development and function are not well understood. In this study, we found that repeated stress exposure during the first postnatal week hampered dendritic development in layers II/III and V pyramidal neurons in the dorsal agranular cingulate cortex (ACd) and prelimbic cortex (PL) of neonatal mice. The deleterious effects of early postnatal stress on structural plasticity persisted to adulthood only in ACd layer V pyramidal neurons. Most importantly, concurrent blockade of corticotropin-releasing factor receptor 1 (CRF1) by systemic antalarmin administration (20 μg/g of body weight) during early-life stress exposure prevented stress-induced apical dendritic retraction and spine loss in ACd layer V neurons and impairments in PFC-dependent cognitive tasks. Moreover, the magnitude of dendritic regression, especially the shrinkage of apical branches, of ACd layer V neurons predicted the degree of cognitive deficits in stressed mice. Our data highlight the region-specific effects of early postnatal stress on the structural plasticity of prefrontal pyramidal neurons, and suggest a critical role of CRF1 in modulating early-life stress-induced prefrontal abnormalities. PMID:25403725

  17. The impact of postnatal leuprolide acetate treatment on reproductive characteristics in a rodent model of polycystic ovary syndrome.

    PubMed

    Serrano Mujica, Lady Katerine; Bertolin, Kalyne; Bridi, Alessandra; Glanzner, Werner Giehl; Rissi, Vitor Braga; de Camargo, Flávia de Los Santos; Zanella, Renato; Prestes, Osmar Damian; Moresco, Rafael Noal; Antoniazzi, Alfredo Quites; Dias Gonçalves, Paulo Bayard; Premaor, Melissa Orlandin; Comim, Fabio Vasconcellos

    2017-02-15

    In this study, a GnRH agonist, leuprolide acetate (LA), was given as a single depot injection before 48 h of life to Wistar female rats allotted to prenatal (E16-18) and postnatal androgenization (day 5 of life) by the use of testosterone propionate, looking for reproductive endpoints. Remarkably, a single injection of LA increased the estrus cycles in the postnatal group (PostN) from 0% to 25% of the estrus cycles in the postnatal LA treated group (PostN L). LA also reduced the serum testosterone levels and cysts and atretic follicles in PostN L in contrast with rats (>100 days) from the PostN group (p = 0.04). Prenatally androgenized rats (PreN) exhibited significant modifications in the hypothalamic genes, such as Gnrh. To the best of our knowledge, this is the first study to show that blockage of the GnRH axis with leuprolide acetate depot prevented the development of typical features (anovulation, cysts, atretic follicles) in a postnatal testosterone propionate rat model of PCOS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Chronic exposure of adult, postnatal and in utero rat models to low-dose 137Cesium: impact on circulating biomarkers.

    PubMed

    Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar

    2016-11-01

    The presence of 137 Cesium ( 137 Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137 Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l -1 ) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (-11%) levels, but only for the rats exposed to 137 Cs intake in adulthood. Large changes in 17β-estradiol (-69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. A qualitative study of the acceptability of routine screening of postnatal women using the Edinburgh Postnatal Depression Scale.

    PubMed Central

    Shakespeare, Judy; Blake, Fiona; Garcia, Jo

    2003-01-01

    BACKGROUND: Screening for postnatal depression using the Edinburgh Postnatal Depression Scale (EPDS) has been widely recommended and implemented in primary care, although little is known about how acceptable it is to women. AIM: To explore the acceptability to women of postnatal screening by health visitors with the EPDS. DESIGN OF STUDY: Qualitative interview study. SETTING: Postnatal patients from 22 general practices within the area of Oxford City Primary Care Group. METHOD: Thirty-nine postnatal women from a purposive sample were interviewed, chosen on the basis of different general practices, EPDS results at eight weeks and eight months postnatal, and whether 'listening visits' were received. The interviews were analysed using the constant comparative method. RESULTS: Just over half of the women interviewed found screening with the EPDS less than acceptable, whatever their postnatal emotional health. The main themes identified were problems with the process of screening and, in particular, the venue, the personal intrusion of screening and stigma. The women interviewed had a clear preference for talking about how they felt, rather than filling out a questionnaire. CONCLUSION: For this sample, routine screening with the EPDS was less than acceptable for the majority of women. This is of concern, as universal screening with the EPDS for the detection of postnatal depression is already recommended and widespread in primary care. PMID:14601337

  20. Mouse models for the study of postnatal cardiac hypertrophy.

    PubMed

    Del Olmo-Turrubiarte, A; Calzada-Torres, A; Díaz-Rosas, G; Palma-Lara, I; Sánchez-Urbina, R; Balderrábano-Saucedo, N A; González-Márquez, H; Garcia-Alonso, P; Contreras-Ramos, A

    2015-06-01

    The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH), in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP) isoproterenol (ISO) was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB), neonates (7-15 days) and young adults (6 weeks of age). Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR), alpha and beta myosins (α-MHC, β-MHC) and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS). Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  1. Regionally Impaired Redox Homeostasis in the Brain of Rats Subjected to Global Perinatal Asphyxia: Sustained Effect up to 14 Postnatal Days.

    PubMed

    Lespay-Rebolledo, Carolyne; Perez-Lobos, Ronald; Tapia-Bustos, Andrea; Vio, Valentina; Morales, Paola; Herrera-Marschitz, Mario

    2018-06-29

    The present report evaluates the effect of global perinatal asphyxia on several parameters of oxidative stress and cell viability in rat brain tissue sampled at an extended neonatal period up to 14 days, a period characterised by intensive neuritogenesis, synaptogenesis, synaptic consolidation, pruning and delayed cell death. Perinatal asphyxia was induced by immersing foetus-containing uterine horns removed by a caesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling caesarean-delivered foetuses were manually resucitated and nurtured by surrogate dams for 1 to 14 postnatal (P) days. Brain samples (mesencephalon, telencephalon and hippocampus) were assayed for glutathione (reduced and oxidated levels; spectrophotometry), tissue reducing capacity (potassium ferricyanide reducing assay, FRAP), catalase (the key enzyme protecting against oxidative stress and reactive oxygen species, Western blots and ELISA) and cleaved caspase-3 (the key executioner of apoptosis, Western blots) levels. It was found that global PA produced a regionally specific and sustained increase in GSSG/GSH ratio, a regionally specific decrease in tissue reducing capacity and a regionally and time specific decrease of catalase activity and increase of cleaved caspase-3 levels. The present study provides evidence for regionally impaired redox homeostasis in the brain of rats subjected to global PA, an effect observed up to P14, mainly affecting mesencephalon and hippocampus, suggesting a sustained oxidative stress after the posthypoxia period. The oxidative stress observed postnatally can in part be associated to a respiratory apneic-like deficit, since there was a statistically significant decrease in respiration frequency in AS compared to CS neonates, also up to P14, together with the signs of a decreased peripheral blood perfusion (pink-blue skin colour in AS, compared to the pink colour observed in all CS neonates). It is proposed that PA

  2. Perinatal alcohol exposure enhances nocistatin levels in adulthood.

    PubMed

    Tekes, Kornélia; Hantos, Mónika; Gyenge, Melinda; Csaba, Gyorgy

    2007-06-01

    In earlier experiments perinatal hormonal imprinting by alcohol decreased the hormone content of immune cells for life. In the present study, both a single day (15% on the third postnatal day) and a long-term treatment schedule of alcohol exposure (3% for 21 days) of dams during lactation significantly (P < 0.01) enhanced endogenous levels of nocistatin in the blood plasma as well as in the cerebrospinal fluid of the offspring, measured in 3-month-old rats. Our data suggest that alcohol consumption during lactation can cause a life-long influence on nocistatin levels in the offspring and most likely modify nocistatin-related functions such as pain tolerance.

  3. Postnatal depression screening in a paediatric primary care setting in Italy.

    PubMed

    Clavenna, Antonio; Seletti, Elena; Cartabia, Massimo; Didoni, Anna; Fortinguerra, Filomena; Sciascia, Teresa; Brivio, Luca; Malnis, Daniela; Bonati, Maurizio

    2017-01-25

    Postnatal depression is a non-psychotic depressive disorder that begins within 4 weeks of childbirth and occurs in 13% of mothers and 10% of fathers. A prospective study with the aim to evaluate the prevalence of postnatal depression by screening parents with the Edinburgh Postnatal Depression Scale (EPDS) in the Italian paediatric primary care setting was performed. Mothers and fathers of infants born between 1 February and 31 July 2012, living in Italy's Milan-1 local health unit area, represented the target population of this pilot study. Parents attending well-child visits at any of the family paediatricians' offices between 60 to 90 days postpartum were asked to participate in the screening and to fill out the EPDS questionnaire. A cut-off score of 12 was used to identify parents with postnatal depression symptoms. Maternal and paternal socio-demographic variables and information concerning pregnancy and delivery were also collected. To investigate the association between screening positivity (dependent variable) and socio-demographic variables and factors related to pregnancy and delivery, a Pearson's χ2 test was used. Moreover, a stepwise multivariate logistic regression was carried out to evaluate the risk factors that most influence the probability of suffering from postnatal depression. In all, 126 out of 2706 (4.7%, 95% CI 3.9-5.5%) mothers and 24 out of 1420 (1.7%, 95% CI 1.0-2.4%) fathers were found to be positive for depressive symptoms. Women with mood disorders and anxiety during pregnancy were at increased risk of postpartum depression (OR 22.9, 95% CI 12.1-43.4). Only 11 mothers (8.7%) positive to EPDS screening attended a psychiatric service, and for 8 of them the diagnosis of postnatal depression was confirmed. The prevalence of postnatal depression was lower than previously reported. Routine screening resulted ineffective, since few mothers found positive for depression symptoms decided to attend psychiatric services.

  4. Spaceflight Affects Postnatal Development of the Aortic Wall in Rats

    PubMed Central

    Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; Nagayama, Tadanori; Miyamoto, Yukako; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi

    2014-01-01

    We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713

  5. Prenatal Exposure to Paint Thinner Alters Postnatal Development and Behavior in Mice

    PubMed Central

    Malloul, Hanaa; Mahdani, Ferdaousse M.; Bennis, Mohammed; Ba-M’hamed, Saadia

    2017-01-01

    Occupational exposure and sniffing of volatile organic solvents continue to be a worldwide health problem, raising the risk for teratogenic sequelae of maternal inhalant abuse. Real life exposures usually involve simultaneous exposures to multiple solvents, and almost all the abused solvents contain a mixture of two or more different volatile compounds. However, several studies examined the teratogenicity due to industrial exposure to a single volatile solvent but investigating the teratogenic potential of complex chemical mixture such as thinner remains unexplored. This study was undertaken to evaluate developmental neurotoxicity of paint thinner using a mouse model. Mated female mice (N = 21) were, therefore, exposed to repeated and brief inhalation episodes of 0, 300 or 600 ppm of thinner during the entire period of pregnancy. Females weigh was recorded and their standard fertility and reproductive parameters were assessed. After birth postnatal day 1 (PND1), offspring (N = 88) length and body weight were measured in a daily basis. At PND5, the pups were assessed for their postnatal growth, physical maturation, reflex development, neuromotor abilities, sensory function, activity level, anxiety, depression, learning and memory functions. At adulthood, structural changes of the hippocampus were examined by estimating the total volume of the dentate gyrus. Except one case of thinner induced abortion at the higher dose, our results showed that the prenatal exposure to the solvent did not cause any maternal toxicity or decrease in the viability of the offspring. Therefore, a lower birth weight, decrease in the litter size and delayed reflexes ontogeny were registered in prenatally exposed offspring to both 300 ppm and 600 ppm of thinner. In addition, prenatally exposure to thinner resulted in increased anxiolytic- and depression-like behaviors. In contrast, impaired learning and memory functions and decreased hippocampal dentate gyrus volume were revealed only in the

  6. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits

    PubMed Central

    Niwa, Minae; Kamiya, Atsushi; Murai, Rina; Kubo, Ken-ichiro; Gruber, Aaron J; Tomita, Kenji; Lu, Lingling; Tomisato, Shuta; Jaaro-Peled, Hanna; Seshadri, Saurav; Hiyama, Hideki; Huang, Beverly; Kohda, Kazuhisa; Noda, Yukihiro; O’Donnell, Patricio; Nakajima, Kazunori; Sawa, Akira; Nabeshima, Toshitaka

    2011-01-01

    SUMMARY Adult brain function and behavior are influenced by neuronal network formation during development. Genetic susceptibility factors for adult psychiatric illnesses, such as Neuregulin-1 and Disrupted-in-Schizophrenia-1 (DISC1), influence adult high brain functions, including cognition and information processing. These factors have roles during neurodevelopment and are likely to cooperate, forming “pathways” or “signalosomes.” Here we report the potential to generate an animal model via in utero gene transfer in order to address an important question of how nonlethal deficits in early development may affect postnatal brain maturation and high brain functions in adulthood, which are impaired in various psychiatric illnesses, such as schizophrenia. We show that transient knockdown of DISC1 in the pre- and peri-natal stages, specifically in a lineage of pyramidal neurons mainly in the prefrontal cortex, leads to selective abnormalities in postnatal mesocortical dopaminergic maturation and behavioral abnormalities associated with disturbed cortical neurocircuitry after puberty. PMID:20188653

  7. Age-dependent long-term structural and functional effects of early life seizures: evidence for a hippocampal critical period influencing plasticity in adulthood

    PubMed Central

    Meyerand, M.E.; Sutula, T.

    2015-01-01

    Neural activity promotes circuit formation in developing systems and during critical periods permanently modifies circuit organization and functional properties. These observations suggest that excessive neural activity, as occurs during seizures, might influence developing neural circuitry with long-term outcomes that depend on age at the time of seizures. We systematically examined long-term structural and functional consequences of seizures induced in rats by kainic acid, pentylenetetrazol, and hyperthermia across postnatal ages from birth through postnatal day 90 in adulthood (P90). Magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and electrophysiological methods at ≥P95 following seizures induced from P1 to P90 demonstrated consistent patterns of gross atrophy, microstructural abnormalities in the corpus callosum and hippocampus, and functional alterations in hippocampal circuitry at ≥P95 that were independent of the method of seizure induction and varied systematically as a function of age at the time of seizures. Three distinct epochs were observed in which seizures resulted in distinct long-term structural and functional outcomes at ≥P95. Seizures prior to P20 resulted in DTI abnormalities in corpus callosum and hippocampus in the absence of gross cerebral atrophy, and increased paired pulse inhibition (PPI) in the dentate gyrus at ≥P95. Seizures after P30 induced a different pattern of DTI abnormalities in the fimbria and hippocampus accompanied by gross cerebral atrophy with increases in lateral ventricular volume, as well as increased PPI in the dentate gyrus at ≥P95. In contrast, seizures between P20-P30 did not result in cerebral atrophy or significant imaging abnormalities in the hippocampus or white matter, but irreversibly decreased PPI in the dentate gyrus compared to normal adult controls. These age-specific long-term structural and functional outcomes identify P20-P30 as a potential critical period in hippocampal

  8. Genetic control of postnatal human brain growth

    PubMed Central

    van Dyck, Laura I.; Morrow, Eric M.

    2017-01-01

    Purpose of review Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. Recent findings Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, postmortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. Summary In order to understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders. PMID:27898583

  9. Understanding adolescent and family influences on intimate partner psychological violence during emerging adulthood and adulthood.

    PubMed

    Lohman, Brenda J; Neppl, Tricia K; Senia, Jennifer M; Schofield, Thomas J

    2013-04-01

    The intergenerational transmission of violence directed toward intimate partners has been documented for the past three decades. Overall, the literature shows that violence in the family of origin leads to violence in the family of destination. However, this predominately cross-sectional or retrospective literature is limited by self-selection, endogeneity, and reporter biases as it has not been able to assess how individual and family behaviors simultaneously experienced during adolescence influence intimate partner violence throughout adulthood. The present study used data from the Iowa Youth and Families Project (IYFP; N = 392; 52 % Female), a multi-method, multi-trait prospective approach, to overcome this limitation. We focused on psychological intimate partner violence in both emerging adulthood (19-23 years) and adulthood (27-31 years), and include self and partner ratings of violence as well as observational data in a sample of rural non-Hispanic white families. Controlling for a host of individual risk factors as well as interparental psychological violence from adolescence (14-15 years), the results show that exposure to parent-to-child psychological violence during adolescence is a key predictor of intimate partner violence throughout adulthood. In addition, negative emotionality and the number of sexual partners in adolescence predicted intimate partner violence in both emerging adulthood and adulthood. Exposure to family stress was associated positively with intimate partner violence in adulthood but not in emerging adulthood, whereas academic difficulties were found to increase violence in emerging adulthood only. Unlike previous research, results did not support a direct effect of interparental psychological violence on psychological violence in the next generation. Gender differences were found only in emerging adulthood. Implications of these findings are discussed in light of the current literature and future directions.

  10. Understanding Adolescent and Family Influences on Intimate Partner Psychological Violence During Emerging Adulthood and Adulthood

    PubMed Central

    Lohman, Brenda J.; Neppl, Tricia K.; Senia, Jennifer M.; Schofield, Thomas J.

    2013-01-01

    The intergenerational transmission of violence directed toward intimate partners has been documented for the past three decades. Overall, the literature shows that violence in the family of origin leads to violence in the family of destination. However, this predominately cross–sectional or retrospective literature is limited by self–selection, endogeneity, and reporter biases as it has not been able to assess how individual and family behaviors simultaneously experienced during adolescence influence intimate partner violence throughout adulthood. The present study used data from the Iowa Youth and Families Project (IYFP; N = 392; 52 % Female), a multi–method, multi–trait prospective approach, to overcome this limitation. We focused on psychological intimate partner violence in both emerging adulthood (19 – 23 years) and adulthood (27 – 31 years), and include self and partner ratings of violence as well as observational data in a sample of rural non-Hispanic white families. Controlling for a host of individual risk factors as well as interparental psychological violence from adolescence (14 – 15 years), the results show that exposure to parent–to–child psychological violence during adolescence is a key predictor of intimate partner violence throughout adulthood. In addition, negative emotionality and the number of sexual partners in adolescence predicted intimate partner violence in both emerging adulthood and adulthood. Exposure to family stress was associated positively with intimate partner violence in adulthood but not in emerging adulthood, whereas academic difficulties were found to increase violence in emerging adulthood only. Unlike previous research, results did not support a direct effect of interparental psychological violence on psychological violence in the next generation. Gender differences were found only in emerging adulthood. Implications of these findings are discussed in light of the current literature and future directions

  11. Cognitive style, personality and vulnerability to postnatal depression.

    PubMed

    Jones, Lisa; Scott, Jan; Cooper, Caroline; Forty, Liz; Smith, Katherine Gordon; Sham, Pak; Farmer, Anne; McGuffin, Peter; Craddock, Nick; Jones, Ian

    2010-03-01

    Only some women with recurrent major depressive disorder experience postnatal episodes. Personality and/or cognitive styles might increase the likelihood of experiencing postnatal depression. To establish whether personality and cognitive style predicts vulnerability to postnatal episodes over and above their known relationship to depression in general. We compared personality and cognitive style in women with recurrent major depressive disorder who had experienced one or more postnatal episodes (postnatal depression (PND) group, n=143) with healthy female controls (control group, n=173). We also examined parous women with recurrent major depressive disorder who experienced no perinatal episodes (non-postnatal depression (NPND) group, n=131). The PND group had higher levels of neuroticism and dysfunctional beliefs, and lower self-esteem than the control group. However, there were no significant differences between the PND and NPND groups. Established personality and cognitive vulnerabilities for depression were reported by women with a history of postnatal depression, but there was no evidence that any of these traits or styles confer a specific risk for the postnatal onset of episodes.

  12. Postnatal brain and skull growth in an Apert syndrome mouse model

    PubMed Central

    Hill, Cheryl A.; Martínez-Abadías, Neus; Motch, Susan M.; Austin, Jordan R.; Wang, Yingli; Jabs, Ethylin Wang; Richtsmeier, Joan T.; Aldridge, Kristina

    2012-01-01

    Craniofacial and neural tissues develop in concert throughout pre- and postnatal growth. FGFR-related craniosynostosis syndromes, such as Apert syndrome (AS), are associated with specific phenotypes involving both the skull and the brain. We analyzed the effects of the FGFR P253R mutation for Apert syndrome using the Fgfr2+/P253R mouse to evaluate the effects of this mutation on these two tissues over the course of development from day of birth (P0) to postnatal day 2 (P2). Three-dimensional magnetic resonance microscopy and computed tomography images were acquired from Fgfr2+/P253R mice and unaffected littermates at P0 (N=28) and P2 (N=23). 3D coordinate data for 23 skull and 15 brain landmarks were statistically compared between groups. Results demonstrate that the Fgfr2+/P253R mice show reduced growth in the facial skeleton and the cerebrum, while the height and width of the neurocranium and caudal regions of the brain show increased growth relative to unaffected littermates. This localized correspondence of differential growth patterns in skull and brain point to their continued interaction through development and suggest that both tissues display divergent postnatal growth patterns relative to unaffected littermates. However, the change in the skull-brain relationship from P0 to P2 implies that each tissue affected by the mutation retains a degree of independence, rather than one tissue directing the development of the other. PMID:23495236

  13. Dirty and 40 days in the wilderness: Eliciting childbirth and postnatal cultural practices and beliefs in Nepal.

    PubMed

    Sharma, Sheetal; van Teijlingen, Edwin; Hundley, Vanora; Angell, Catherine; Simkhada, Padam

    2016-07-05

    Pregnancy and childbirth are socio-cultural events that carry varying meanings across different societies and cultures. These are often translated into social expectations of what a particular society expects women to do (or not to do) during pregnancy, birth and/or the postnatal period. This paper reports a study exploring beliefs around childbirth in Nepal, a low-income country with a largely Hindu population. The paper then sets these findings in the context of the wider global literature around issues such as periods where women are viewed as polluted (or dirty even) after childbirth. A qualitative study comprising five in-depth face-to-face interviews and 14 focus group discussions with mainly women, but also men and health service providers. The qualitative findings in Nepal were compared and contrasted with the literature on practices and cultural beliefs related to the pregnancy and childbirth period across the globe and at different times in history. The themes that emerged from the analysis included: (a) cord cutting & placenta rituals; (b) rest & seclusion; (c) purification, naming & weaning ceremonies and (d) nutrition and breastfeeding. Physiological changes in mother and baby may underpin the various beliefs, ritual and practices in the postnatal period. These practices often mean women do not access postnatal health services. The cultural practices, taboos and beliefs during pregnancy and around childbirth found in Nepal largely resonate with those reported across the globe. This paper stresses that local people's beliefs and practices offer both opportunities and barriers to health service providers. Maternity care providers need to be aware of local values, beliefs and traditions to anticipate and meet the needs of women, gain their trust and work with them.

  14. Tauroursodeoxycholic acid preserves photoreceptor structure and function in the rd10 mouse through post-natal day 30

    PubMed Central

    Phillips, M. Joe; Walker, Tiffany A.; Choi, Hee-young; Faulkner, Amanda E.; Kim, Moon K.; Sidney, Sheree; Boyd, Amber; Nickerson, John M.; Boatright, Jeffrey H.; Pardue, Machelle T.

    2008-01-01

    Purpose Retinitis Pigmentosa (RP) is a progressive neurodegenerative disease resulting in blindness for which there is no current treatment. While the members of the family of RP diseases differ in etiology, their outcomes are the same: apoptosis of rods followed by cones. Recently, the bile acid, tauroursodeoxycholic acid (TUDCA), has been shown to have anti-apoptotic properties in neurodegenerative diseases, including those of the retina. In this study we examine the efficacy of TUDCA on preserving rod and cone function and morphology at post-natal day 30 (P30) in the rd10 mouse, a model of RP. Methods Wild-type C57BL/6J and rd10 mice were systemically injected with TUDCA (500 mg/kg) every three days from P6-P30 and compared to vehicle (0.15M NaHCO3). At P30, retinal function was measured with electroretinography (ERG) and morphological preservation of the rods and cones assessed with immunohistochemistry. Results Dark-adapted ERG responses were two-fold greater in rd10 mice treated with TUDCA compared to vehicle, while light-adapted responses were two-fold larger in TUDCA-treated mice compared to controls, at the brightest ERG flash intensities. TUDCA-treated rd10 retinas had five-fold more photoreceptors than vehicle-treated. TUDCA treatments did not alter retinal function or morphology of wild-type mice when administered to age-matched mice. Conclusions TUDCA is efficacious and safe in preserving vision in the rd10 mouse model of RP when treated between P6 and P30. At P30, a developmental stage at which nearly all rods are absent in the rd10 mouse model of RP, TUDCA treatment preserved both rod and cone function and greatly preserved overall photoreceptor numbers. PMID:18436848

  15. A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring

    PubMed Central

    Castiblanco-Urbina, Maria A.; Winzeck, Stefan; Sundermeier, Julia; Theis, Fabian J.; Fouad, Karim; Huber, Andrea B.

    2015-01-01

    The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination

  16. Expression pattern of Anosmin-1 during pre- and postnatal rat brain development.

    PubMed

    Clemente, Diego; Esteban, Pedro F; Del Valle, Ignacio; Bribián, Ana; Soussi-Yanicostas, Nadia; Silva, Augusto; De Castro, Fernando

    2008-09-01

    Anosmin-1 participates in the development of the olfactory and GnRH systems. Defects in this protein are responsible for both the anosmia and the hypogonadotrophic hypogonadism found in Kallmann's syndrome patients. Sporadically, these patients also manifest some neurological symptoms that are not explained in terms of the developmental defects in the olfactory system. We describe the pattern of Anosmin-1 expression in the central nervous system during rat development using a novel antibody raised against Anosmin-1 (Anos1). The areas with Anos1-stained neurons and glial cells were classified into three groups: (1) areas with immunoreactivity from embryonic day 16 to postnatal day (P) 15; (2) areas with Anosmin-1 expression only at postnatal development; (3) nuclei with immunoreactivity only at P15. Our data show that Anos1 immunoreactivity is detected in projecting neurons and interneurons within areas of the brain that may be affected in patients with Kallmann's syndrome that develop both the principal as well as sporadic symptoms.

  17. Developmental post-natal stress can alter the effects of pre-natal stress on the adult redox balance.

    PubMed

    Marasco, Valeria; Spencer, Karen A; Robinson, Jane; Herzyk, Pawel; Costantini, David

    2013-09-15

    Across diverse vertebrate taxa, stressful environmental conditions during development can shape phenotypic trajectories of developing individuals, which, while adaptive in the short-term, may impair health and survival in adulthood. Regardless, the long-lasting benefits or costs of early life stress are likely to depend on the conditions experienced across differing stages of development. Here, we used the Japanese quail (Coturnix coturnix japonica) to experimentally manipulate exposure to stress hormones in developing individuals. We tested the hypothesis that interactions occurring between pre- and post-natal developmental periods can induce long-term shifts on the adult oxidant phenotype in non-breeding sexually mature individuals. We showed that early life stress can induce long-term alterations in the basal antioxidant defences. The magnitude of these effects depended upon the timing of glucocorticoid exposure and upon interactions between the pre- and post-natal stressful stimuli. We also found differences among tissues with stronger effects in the erythrocytes than in the brain in which the long-term effects of glucocorticoids on antioxidant biomarkers appeared to be region-specific. Recent experimental work has demonstrated that early life exposure to stress hormones can markedly reduce adult survival (Monaghan et al., 2012). Our results suggest that long-term shifts in basal antioxidant defences might be one of the potential mechanisms driving such accelerated ageing processes and that post-natal interventions during development may be a potential tool to shape the effects induced by pre-natally glucococorticoid-exposed phenotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Behavioral alterations induced in rats by a pre- and postnatal exposure to 2,4-dichlorophenoxyacetic acid.

    PubMed

    Bortolozzi, A A; Duffard, R O; Evangelista de Duffard, A M

    1999-01-01

    The purpose of this study was to determine whether the behavioral development pattern was altered by a pre- and postnatal exposure to 2,4-Dichlorophenoxyacetic acid (2,4-D). Pregnant rats were daily orally exposed to 70 mg/kg/day of 2,4-D from gestation day (GD) 16 to postnatal day (PND) 23. After weaning, the pups were assigned to one of the two subgroups: T1 (fed with untreated diet until PND 90) and T2 (maintained with 2,4-D diet until PND 90). Effects on offsprings were evaluated with a neurotoxicological test battery. Neuromotor reflexes, spontaneous motor activity, serotonin syndrome, circling, and catalepsy were analyzed during various postnatal ages. 2,4-D neonatal exposure induced delay of the ontogeny of righting reflex and negative geotaxis accompanied by motor abnormalities, stereotypic behaviors (excessive grooming and vertical head movements), and hyperactivity in the open field. Adult rats of both sexes (T2 group) showed a diminution of ambulation and rearing, while excessive grooming responses were only observed in T2 males. Besides, these animals manifested serotonin syndrome behaviors, catalepsy, and right-turning preference. Some behaviors were reversible, but others were permanent, and some were only expressed after pharmacological challenges.

  19. Both antenatal and postnatal inflammation contribute information about the risk of brain damage in extremely preterm newborns

    PubMed Central

    Yanni, Diana; Korzeniewski, Steven J.; Allred, Elizabeth N.; Fichorova, Raina N.; O'Shea, T. Michael; Kuban, Karl; Dammann, Olaf; Leviton, Alan

    2017-01-01

    Background Preterm newborns exposed to intrauterine inflammation are at increased risk of neurodevelopmental disorders. We hypothesized that adverse outcomes are more strongly associated with a combination of antenatal and postnatal inflammation than with either of them alone. Methods We defined antenatal inflammation as histologic inflammation in the placenta. We measured the concentrations of seven inflammation-related proteins in blood obtained on postnatal days 1, 7, and 14 from 763 infants born before 28 weeks of gestation. We defined postnatal inflammation as a protein concentration in the highest quartile on at least 2 days. We used logistic regression models to evaluate the contribution of antenatal and postnatal inflammation to the risk of neurodevelopmental disorders. Results The risk of white matter damage was increased when placental inflammation was followed by sustained elevation of CRP or ICAM-1. We found the same for spastic cerebral palsy when placental inflammation was followed by elevation of TNF-α or IL-8. The presence of both placental inflammation and elevated levels of IL-6, TNF-α, or ICAM-1 was associated with an increased risk for microcephaly. Conclusion Compared to a single hit, two inflammatory hits are associated with stronger risk for abnormal cranial ultrasound, spastic cerebral palsy, and microcephaly at 2 years. PMID:28549057

  20. Postnatal LPS Challenge Impacts Escape Learning and Expression of Plasticity Factors Mmp9 and Timp1 in Rats: Effects of Repeated Training.

    PubMed

    Trofimov, Alexander; Strekalova, Tatyana; Mortimer, Niall; Zubareva, Olga; Schwarz, Alexander; Svirin, Evgeniy; Umriukhin, Aleksei; Svistunov, Andrei; Lesch, Klaus-Peter; Klimenko, Victor

    2017-08-01

    Bacterial intoxication associated with inflammatory conditions during development can impair brain functions, in particular evolutionarily novel forms of memory, such as explicit learning. Little is known about the dangers of early-life inflammation on more basic forms of learning, for example, the acquisition of motor escape abilities, which are generally better preserved under pathological conditions. To address this limitation in knowledge, an inflammatory response was elicited in Wistar pups by lipopolysaccharide (LPS) injections (25 μg/kg) on postnatal days P15, P18 and P21. The acquisition of escape behaviour was tested from P77 by active avoidance footshock model and water maze. Open-field behaviour and blood corticosterone levels were also measured. Rat brain tissue was collected from pups 2 h post-injection and from adult rats which either underwent escape training on P77-P81 or remained untrained. mRNA levels of developmental brain plasticity factors MMP-9 and TIMP-1 were investigated in the medial prefrontal cortex and ventral/dorsal hippocampus. LPS-challenged rats displayed moderately deficient escape responses in both memory tests, increased freezing behaviour and, surprisingly, reduced blood cortisol levels. Mmp9 and Timp1, and their ratio to one another, were differentially altered in pups versus adult untrained rats but remained unchanged overall in rats trained in either learning task. Together, our data indicate that systemic pro-inflammatory response during early postnatal development has long-lasting effects, including on the acquisition of motor escape abilities and plasticity factor expression, into adulthood. Our data suggest that altered stress response could possibly mediate these deviations and repeated training might generate positive effects on plasticity under the employed conditions.

  1. Characteristics of 22q 11.2 deletion syndrome undiagnosed until adulthood: an example suggesting the importance of psychiatric manifestations

    PubMed Central

    Furuya, Kenta; Sasaki, Yosuke; Takeuchi, Taizo; Urita, Yoshihisa

    2015-01-01

    Patients with chromosome 22q11.2 deletion syndrome (22q11.2DS) exhibit various combinations of signs and symptoms including facial dysmorphism, thymus absence, hypoparathyroidism, cellular immunodeficiency and cardiac abnormalities caused by microdeletion of chromosome 22q11.2. Most cases are diagnosed during post-natal cardiac evaluation, though some are diagnosed at later stages. We report the case of a 39-year-old man with 22q11.2DS presenting with seizure due to tardily manifested hypocalcaemia and anxiety disorder. Our experience suggests that 22q11.2DS patients lacking fatal or well-recognised manifestations such as cardiac defects, immunodeficiency and facial dysmorphism tend to survive without medical attention, and are therefore overlooked. Recognition of the age-related variance of the manifestations, and specifically of tardily manifested hypocalcaemia and psychiatric or developmental disorders as manifestations of 22q11.2DS in adulthood, is important for diagnosis and can also help us provide appropriate medical and psychosocial support for newly diagnosed 22q11.2DS patients in adolescence or adulthood and their families. PMID:26055589

  2. Sex Differences in Early Postnatal Microglial Colonization of the Developing Rat Hippocampus Following a Single-Day Alcohol Exposure.

    PubMed

    Ruggiero, M J; Boschen, K E; Roth, T L; Klintsova, A Y

    2018-06-01

    Microglia are involved in various homeostatic processes in the brain, including phagocytosis, apoptosis, and synaptic pruning. Sex differences in microglia colonization of the developing brain have been reported, but have not been established following alcohol insult. Developmental alcohol exposure represents a neuroimmune challenge that may contribute to cognitive dysfunction prevalent in humans with Fetal Alcohol Spectrum Disorders (FASD) and in rodent models of FASD. Most studies have investigated neuroimmune activation following adult alcohol exposure or following multiple exposures. The current study uses a single day binge alcohol exposure model (postnatal day [PD] 4) to examine sex differences in the neuroimmune response in the developing rat hippocampus on PD5 and 8. The neuroimmune response was evaluated through measurement of microglial number and cytokine gene expression at both time points. Male pups had higher microglial number compared to females in many hippocampal subregions on PD5, but this difference disappeared by PD8, unless exposed to alcohol. Expression of pro-inflammatory marker CD11b was higher on PD5 in alcohol-exposed (AE) females compared to AE males. After alcohol exposure, C-C motif chemokine ligand 4 (CCL4) was significantly increased in female AE pups on PD5 and PD8. Tumor necrosis factor-α (TNF-α) levels were also upregulated by AE in males on PD8. The results demonstrate a clear difference between the male and female neuroimmune response to an AE challenge, which also occurs in a time-dependent manner. These findings are significant as they add to our knowledge of specific sex-dependent effects of alcohol exposure on microglia within the developing brain.

  3. Sensitivity to cocaine in adult mice is due to interplay between genetic makeup, early environment and later experience.

    PubMed

    Di Segni, Matteo; Andolina, Diego; Coassin, Alessandra; Accoto, Alessandra; Luchetti, Alessandra; Pascucci, Tiziana; Luzi, Carla; Lizzi, Anna Rita; D'Amato, Francesca R; Ventura, Rossella

    2017-10-01

    Although early aversive postnatal events are known to increase the risk to develop psychiatric disorders later in life, rarely they determine alone the nature and outcome of the psychopathology, indicating that interaction with genetic factors is crucial for expression of psychopathologies in adulthood. Moreover, it has been suggested that early life experiences could have negative consequences or confer adaptive value in different individuals. Here we suggest that resilience or vulnerability to adult cocaine sensitivity depends on a "triple interaction" between genetic makeup x early environment x later experience. We have recently showed that Repeated Cross Fostering (RCF; RCF pups were fostered by four adoptive mothers from postnatal day 1 to postnatal day 4. Pups were left with the last adoptive mother until weaning) experienced by pups affected the response to a negative experience in adulthood in opposite direction in two genotypes leading DBA2/J, but not C57BL/6J mice, toward an "anhedonia-like" phenotype. Here we investigate whether exposure to a rewarding stimulus, instead of a negative one, in adulthood induces an opposite behavioral outcome. To test this hypothesis, we investigated the long-lasting effects of RCF on cocaine sensitivity in C57 and DBA female mice by evaluating conditioned place preference induced by different cocaine doses and catecholamine prefrontal-accumbal response to cocaine using a "dual probe" in vivo microdialysis procedure. Moreover, cocaine-induced c-Fos activity was assessed in different brain regions involved in processing of rewarding stimuli. Finally, cocaine-induced spine changes were evaluated in the prefrontal-accumbal system. RCF experience strongly affected the behavioral, neurochemical and morphological responses to cocaine in adulthood in opposite direction in the two genotypes increasing and reducing, respectively, the sensitivity to cocaine in C57 and DBA mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. T-2 mycotoxin treatment of newborn rat pups does not significantly affect nervous system functions in adulthood.

    PubMed

    Varró, Petra; Béldi, Melinda; Kovács, Melinda; Világi, Ildikó

    2018-03-01

    T-2 toxin is primarily produced by Fusarium sp. abundant under temperate climatic conditions. Its main harmful effect is the inhibition of protein synthesis. Causing oxidative stress, it also promotes lipid peroxidation and changes plasma membrane phospholipid composition; this may lead to nervous system alterations. The aim of the present study was to examine whether a single dose of T-2 toxin administered at newborn age has any long-lasting effects on nervous system functions. Rat pups were treated on the first postnatal day with a single intraperitoneal dose of T-2 toxin (0.2 mg/bwkg). Body weight of treated pups was lower during the second and third week of life, compared to littermates; later, weight gain was recovered. At young adulthood, behavior was tested in the open field, and no difference was observed between treated and control rats. Field potential recordings from somatosensory cortex and hippocampus slices did not reveal any significant difference in neuronal network functions. In case of neocortical field EPSP, the shape was slightly different in treated pups. Long-term synaptic plasticity was also comparable in both groups. Seizure susceptibility of the slices was not different, either. In conclusion, T-2 toxin did not significantly affect basic nervous system functions at this dose.

  5. Exploratory behavior in rats postnatally exposed to cocaine and housed in an enriched environment.

    PubMed

    Magalhães, Ana; Melo, Pedro; Alves, Cecília Juliana; Tavares, Maria Amélia; de Sousa, Liliana; Summavielle, Teresa

    2008-10-01

    Exposure to cocaine in early periods of postnatal life is usually associated with changes in development of neurotransmitter systems and structure of the central nervous system. Such changes are most likely correlated with behavioral alterations. Environmental enrichment conditions (EC) in early stages is a factor that affects structural and behavioral development. The purpose of this study is to examine the effects of EC on rats postnatally exposed to cocaine on exploratory behavior. Wistar rats were assigned to four groups-Group 1: pups exposed to cocaine hydrochloride (15 mg/kg body weight/day) s.c., in two daily doses, from postnatal day (PND) 1 to 28 and reared in EC; Group 2: pups exposed to cocaine as previously described and reared in a standard environmental conditions (SC); Group 3: pups saline-injected and reared in EC; and Group 4: pups saline-injected and reared in SC. On PND 21, 24, and 28, groups of four rats (to reduce anxiety) were placed for 10 minutes into an arena with several objects. The following exploratory behavioral categories were examined: object interaction, exploration, manipulation, approximation, and total time of object contact. Animals from Group 2 showed decreased object interaction and total contact on PND 21. Control offspring reared in EE showed decreases in exploratory behavior at all ages analyzed compared with the control SE group, while cocaine-exposed animals reared in EC showed decreased object interaction, object approximation, and total exploratory behavior. The results in this group suggest that EC improved information acquisition and memory processes in animals postnatally exposed to cocaine.

  6. Postnatal development of plasma amino acids in hyperphagic rats.

    PubMed

    Salvadó, M J; Segués, T; Arola, L

    1991-01-01

    The effect of feeding a highly palatable high-energy cafeteria diet on individual amino acid levels in plasma during postnatal development of the rat has been evaluated and compared to chow-fed controls. The cafeteria diet selected by the rats was hypercaloric and hyperlipidic, with practically the same amount of carbohydrate as the control diet, and slightly hyperproteic. In response to cafeteria feeding, significant decreases were observed in plasma serine and cysteine along the period studied. Significant changes with age during the growth period were shown by cafeteria-fed animals, which were not observed in control rats. Citrulline levels were lower on days 10 and 14 in cafeteria pups than in chow pups. Methionine was highest on day 30. Threonine was also higher at days 20 and 30, as was valine but with a nadir at day 10. Lysine showed maximal values on days 14 and 30.

  7. Postnatal Ontogeny of the Circadian Expression of the Adrenal Clock Genes and Corticosterone Rhythm in Male Rats.

    PubMed

    Roa, Silvia Liliana Ruiz; Martinez, Edson Zangiacomi; Martins, Clarissa Silva; Antonini, Sonir Rauber; de Castro, Margaret; Moreira, Ayrton Custódio

    2017-05-01

    The postnatal synchronization of the circadian variation of the adrenal clock genes in mammals remains unknown. We evaluated the postnatal ontogeny of daily variation of clock genes (Clock/Bmal1/Per1/Per2/Per3/Cry1/Cry2/Rorα/Rev-Erbα) and steroidogenesis-related genes (Star and Mc2r) in rat adrenals and its relationship with the emergence of plasma corticosterone rhythm using cosinor analysis. Plasma corticosterone circadian rhythm was detected from postnatal day (P)1, with morning acrophase, between zeitgeber time (ZT)0 and ZT2. From P14, there was a nocturnal acrophase of corticosterone at ZT20, which was associated with pups' eye opening. From P3 there was a circadian variation of the mRNA expression of Bmal1, Per2, Per3, and Cry1 genes with morning acrophase, whereas Rev-Erbα had nocturnal acrophase. From P14, Bmal1, Per2, Per3, and Cry1 acrophases advanced by approximately 10 hours, as compared with early neonatal days, becoming vespertine-nocturnal. In all postnatal ages, Per2 and Cry1 circadian profiles were synchronized in phase with the circadian rhythm of plasma corticosterone, whereas Bmal1 was in antiphase. An adult-like Star circadian rhythm profile was observed only from P21. In conclusion, our original data demonstrated a progressive postnatal maturation of the circadian variation of the adrenal clock genes in synchrony with the development of the corticosterone circadian rhythm in rats. Copyright © 2017 Endocrine Society.

  8. Postnatal changes and sexual dimorphism in collagen expression in mouse skin

    PubMed Central

    Arai, Koji Y.; Hara, Takuya; Nagatsuka, Toyofumi; Kudo, Chikako; Tsuchiya, Sho; Nomura, Yoshihiro; Nishiyama, Toshio

    2017-01-01

    To investigate sexual dimorphism and postnatal changes in skin collagen expression, mRNA levels of collagens and their regulatory factors in male and female skin were examined during the first 120 days of age by quantitative realtime PCR. Levels of mRNAs encoding extracellular matrices did not show any differences between male and female mice until day 15. Col1a1 and Col1a2 mRNAs noticeably increased at day 30 and remained at high levels until day 120 in male mice, while those in female mice remained at low levels during the period. Consistent with the mRNA expression, pepsin-soluble type I collagen contents in skin was very high in mature male as compared to female. Col3a1 mRNA in male mice also showed significantly high level at day 120 as compared to female. On the other hand, expression of mRNAs encoding TGF-ßs and their receptors did not show apparent sexual dimorphism although small significant differences were observed at some points. Castration at 60 days of age resulted in a significant decrease in type I collagen mRNA expression within 3 days, and noticeably decreased expression of all fibril collagen mRNAs examined within 14 days, while administration of testosterone tube maintained the mRNA expression at high levels. Despite the in vivo effect of testosterone, administration of physiological concentrations of testosterone did not affect fibril collagen mRNA expression in either human or mouse skin fibroblasts in vitro, suggesting that testosterone does not directly affect collagen expression in fibroblasts. In summary, present study demonstrated dynamic postnatal changes in expression of collagens and their regulatory factors, and suggest that testosterone and its effects on collagen expression are responsible for the skin sexual dimorphism but the effects of testosterone is not due to direct action on dermal fibroblasts. PMID:28494009

  9. In vivo analysis of Purkinje cell firing properties during postnatal mouse development

    PubMed Central

    Arancillo, Marife; White, Joshua J.; Lin, Tao; Stay, Trace L.

    2014-01-01

    Purkinje cell activity is essential for controlling motor behavior. During motor behavior Purkinje cells fire two types of action potentials: simple spikes that are generated intrinsically and complex spikes that are induced by climbing fiber inputs. Although the functions of these spikes are becoming clear, how they are established is still poorly understood. Here, we used in vivo electrophysiology approaches conducted in anesthetized and awake mice to record Purkinje cell activity starting from the second postnatal week of development through to adulthood. We found that the rate of complex spike firing increases sharply at 3 wk of age whereas the rate of simple spike firing gradually increases until 4 wk of age. We also found that compared with adult, the pattern of simple spike firing during development is more irregular as the cells tend to fire in bursts that are interrupted by long pauses. The regularity in simple spike firing only reached maturity at 4 wk of age. In contrast, the adult complex spike pattern was already evident by the second week of life, remaining consistent across all ages. Analyses of Purkinje cells in alert behaving mice suggested that the adult patterns are attained more than a week after the completion of key morphogenetic processes such as migration, lamination, and foliation. Purkinje cell activity is therefore dynamically sculpted throughout postnatal development, traversing several critical events that are required for circuit formation. Overall, we show that simple spike and complex spike firing develop with unique developmental trajectories. PMID:25355961

  10. Comparison of Birth-and Conception-Based Definitions of Postnatal Age in Developmental and Reproductive Rodent Toxicity Studies: lnfluence of Gestation Length on Measurements of Offspring Body Weight and Puberty in Controls

    EPA Science Inventory

    Most laboratories conducting developmental and reproductive toxicity studies in rodents assign age by defining postnatal day (PND) 0 or 1 as the day of birth (DOB); i.e., gestation length affects PND and the timing of postnatal measurements. Some laboratories, however, define age...

  11. Quantification of healthy and atretic germ cells and follicles in the developing and post-natal ovary of the South American plains vizcacha, Lagostomus maximus: evidence of continuous rise of the germinal reserve.

    PubMed

    Inserra, P I F; Leopardo, N P; Willis, M A; Freysselinard, A L; Vitullo, A D

    2014-02-01

    The female germ line in mammals is subjected to massive cell death that eliminates 60-85% of the germinal reserve by birth and continues from birth to adulthood until the exhaustion of the germinal pool. Germ cell demise occurs mainly through apoptosis by means of a biased expression in favour of pro-apoptotic members of the BCL2 gene family. By contrast, the South American plains vizcacha, Lagostomus maximus, exhibits sustained expression of the anti-apoptotic BCL2 gene throughout gestation and a low incidence of germ cell apoptosis. This led to the proposal that, in the absence of death mechanisms other than apoptosis, the female germ line should increase continuously from foetal life until after birth. In this study, we quantified all healthy germ cells and follicles in the ovaries of L. maximus from early foetal life to day 60 after birth using unbiased stereological methods and detected apoptosis by labelling with TUNEL assay. The healthy germ cell population increased continuously from early-developing ovary reaching a 50 times higher population number by the end of gestation. TUNEL-positive germ cells were <0.5% of the germ cell number, except at mid-gestation (3.62%). Mitotic proliferation, entrance into prophase I stage and primordial follicle formation occurred as overlapping processes from early pregnancy to birth. Germ cell number remained constant in early post-natal life, but a remnant population of non-follicular VASA- and PCNA-positive germ cells still persisted at post-natal day 60. L. maximus is the first mammal so far described in which female germ line develops in the absence of constitutive massive germ cell elimination.

  12. Effect of Sustained Postnatal Systemic Inflammation on Hippocampal Volume and Function in Mice

    PubMed Central

    Malaeb, Shadi N.; Davis, Jonathan M.; Pinz, Ilka M.; Newman, Jennifer L.; Dammann, Olaf; Rios, Maribel

    2014-01-01

    Background Premature infants are at risk for persistent neurodevelopmental impairment. Children born preterm often exhibit reduced hippocampal volumes that correlate with deficits in working memory. Perinatal inflammation is associated with preterm birth and brain abnormalities. Here we examine the effects of postnatal systemic inflammation on the developing hippocampus in mice. Methods Pups received daily intraperitoneal injections of lipopolysaccharide (LPS) or saline between days 3–13. Ex-vivo magnetic resonance imaging (MRI) and microscopic analysis of brain tissue was performed on day 14. Behavioral testing was conducted at 8–9 weeks of age. Results MR and microscopic analysis revealed a 15–20% reduction in hippocampal volume in LPS-treated mice compared to controls. Behavioral testing revealed deficits in hippocampal-related tasks in LPS-treated animals. Adult mice exposed to LPS during the postnatal period were unable to select a novel environment when re-placed within a 1-minute delay, were less able to remember a familiar object after a 1-hour delay and had impaired retention of associative fear learning after 24 hours. Conclusion Systemic inflammation sustained during the postnatal period contributes to reduced hippocampal volume and deficits in hippocampus-dependent working memory. These findings support the novel and emerging concept that sustained systemic inflammation contributes to neurodevelopmental impairment among preterm infants. PMID:25003911

  13. Age-dependent plasticity in endocannabinoid modulation of pain processing through postnatal development.

    PubMed

    Kwok, Charlie H-T; Devonshire, Ian M; Imraish, Amer; Greenspon, Charles M; Lockwood, Stevie; Fielden, Catherine; Cooper, Andrew; Woodhams, Stephen; Sarmad, Sarir; Ortori, Catherine A; Barrett, David A; Kendall, David; Bennett, Andrew J; Chapman, Victoria; Hathway, Gareth J

    2017-11-01

    Significant age- and experience-dependent remodelling of spinal and supraspinal neural networks occur, resulting in altered pain responses in early life. In adults, endogenous opioid peptide and endocannabinoid (ECs) pain control systems exist which modify pain responses, but the role they play in acute responses to pain and postnatal neurodevelopment is unknown. Here, we have studied the changing role of the ECs in the brainstem nuclei essential for the control of nociception from birth to adulthood in both rats and humans. Using in vivo electrophysiology, we show that substantial functional changes occur in the effect of microinjection of ECs receptor agonists and antagonists in the periaqueductal grey (PAG) and rostroventral medulla (RVM), both of which play central roles in the supraspinal control of pain and the maintenance of chronic pain states in adulthood. We show that in immature PAG and RVM, the orphan receptor, GPR55, is able to mediate profound analgesia which is absent in adults. We show that tissue levels of endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol, within the PAG and RVM are developmentally regulated (using mass spectrometry). The expression patterns and levels of ECs enzymes and receptors were assessed using quantitative PCR and immunohistochemistry. In human brainstem, we show age-related alterations in the expression of key enzymes and receptors involved in ECs function using PCR and in situ hybridisation. These data reveal that significant changes on ECs that to this point have been unknown and which shed new light into the complex neurochemical changes that permit normal, mature responses to pain.

  14. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis.

    PubMed

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J

    2014-02-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Postnatal growth standards for preterm infants: the Preterm Postnatal Follow-up Study of the INTERGROWTH-21(st) Project.

    PubMed

    Villar, José; Giuliani, Francesca; Bhutta, Zulfiqar A; Bertino, Enrico; Ohuma, Eric O; Ismail, Leila Cheikh; Barros, Fernando C; Altman, Douglas G; Victora, Cesar; Noble, Julia A; Gravett, Michael G; Purwar, Manorama; Pang, Ruyan; Lambert, Ann; Papageorghiou, Aris T; Ochieng, Roseline; Jaffer, Yasmin A; Kennedy, Stephen H

    2015-11-01

    Charts of size at birth are used to assess the postnatal growth of preterm babies on the assumption that extrauterine growth should mimic that in the uterus. The INTERGROWTH-21(st) Project assessed fetal, newborn, and postnatal growth in eight geographically defined populations, in which maternal health care and nutritional needs were met. From these populations, the Fetal Growth Longitudinal Study selected low-risk women starting antenatal care before 14 weeks' gestation and monitored fetal growth by ultrasonography. All preterm births from this cohort were eligible for the Preterm Postnatal Follow-up Study, which included standardised anthropometric measurements, feeding practices based on breastfeeding, and data on morbidity, treatments, and development. To construct the preterm postnatal growth standards, we selected all live singletons born between 26 and before 37 weeks' gestation without congenital malformations, fetal growth restriction, or severe postnatal morbidity. We did analyses with second-degree fractional polynomial regression models in a multilevel framework accounting for repeated measures. Fetal and neonatal data were pooled from study sites and stratified by postmenstrual age. For neonates, boys and girls were assessed separately. From 4607 women enrolled in the study, there were 224 preterm singleton births, of which 201 (90%) were enrolled in the Preterm Postnatal Follow-up Study. Variance component analysis showed that only 0·2% and 4·0% of the total variability in postnatal length and head circumference, respectively, could be attributed to between-site differences, justifying pooling the data from all study sites. Preterm growth patterns differed from those for babies in the INTERGROWTH-21(st) Newborn Size Standards. They overlapped with the WHO Child Growth Standards for term babies by 64 weeks' postmenstrual age. Our data have yielded standards for postnatal growth in preterm infants. These standards should be used for the assessment of

  16. Psychiatric Disorders in Adolescence and Early Adulthood and Risk for Child-Rearing Difficulties during Middle Adulthood

    ERIC Educational Resources Information Center

    Johnson, Jeffrey G.; Cohen, Patricia; Kasen, Stephanie; Brook, Judith S.

    2008-01-01

    Data from a community-based longitudinal study were used to investigate the associations of parental psychiatric disorders evident by early adulthood with child-rearing behavior during middle adulthood. A series of psychiatric assessments was conducted during the adolescence (mean ages 14 and 16) and early adulthood (mean age 22) of 153 males and…

  17. Maternal exposure to silver nanoparticles are associated with behavioral abnormalities in adulthood: Role of mitochondria and innate immunity in developmental toxicity.

    PubMed

    Amiri, Shayan; Yousefi-Ahmadipour, Aliakbar; Hosseini, Mir-Jamal; Haj-Mirzaian, Arya; Momeny, Majid; Hosseini-Chegeni, Heshmat; Mokhtari, Tahmineh; Kharrazi, Sharmin; Hassanzadeh, Gholamreza; Amini, Seyed Mohammad; Jafarinejad, Somayeh; Ghazi-Khansari, Mahmoud

    2018-05-01

    Silver nanoparticles (Ag-NPs) are currently used in a wide range of consumer products. Considering the small size of Ag-NPs, they are able to pass through variety of biological barriers and exert their effects. In this regard, the unique physicochemical properties of Ag-NPs along with its high application in the industry have raised concerns about their negative effects on human health. Therefore, it investigated whether prenatal exposure to low doses of Ag-NPs is able to induce any abnormality in the cognitive and behavioral performance of adult offspring. We gavaged pregnant NMRI mice with, 1) Deionized water as vehicle, 2) Ag-NPs 10 nm (0.26 mg/kg/day), 3) Ag-NPs 30 nm (0.26 mg/kg/day), and 4) AgNO 3 (0.26 mg/kg/day) from gestational day (GD) 0 until delivery day. At the postnatal day (PD) 1, our results showed that high concentration of silver is present in the brain of pups. Further, we observed mitochondrial dysfunction and upregulation of the genes relevant to innate immune system in the brain. At PD 60, results revealed that prenatal exposure to Ag-NPs provoked severe cognitive and behavioral abnormalities in male offspring. In addition, we found that prenatal exposure to Ag-NPs was associated with abnormal mitochondrial function and significant up-regulation of the genes relevant to innate immunity in the brain. Although the Ag-NPs have been considered as safe compounds at low doses, our results indicate that prenatal exposure to low doses of Ag-NPs is able to induce behavioral and cognitive abnormalities in adulthood. Also, we found that these effects are at least partly associated with hippocampal mitochondrial dysfunction and the activation of sterile inflammation during early stages of life. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  19. Prenatal and postnatal toxicity induced in guinea-pigs by nitrosomethylurea.

    PubMed

    Epstein, S S; Hasumi, K; Iobal, Z M

    1976-01-01

    Oral administration of NMU at maximally tolerated doses of guinea-pigs from day 34 to 58 of pregnancy induced embryotoxic effects, as evidenced by a high incidence of stillbirths and reduction in birth weight, and postnatal toxic effects, as evidenced by stunting, progressive mortality and extensive fatty degeneration of the liver in F1 progeny. Similar administration of NMUT at maximally tolerated doses did not induce such toxic effects.

  20. Influence of socio-economic factors on emotional changes during the postnatal period.

    PubMed

    Wszołek, Katarzyna; Żak, Ewa; Żurawska, Joanna; Olszewska, Jolanta; Pięta, Beata; Bojar, Iwona

    2018-03-14

    The aim of the study was to identify socio-economic factors that may influence the emotional changes which occur among new mothers in the first days postpartum. A group of 541 women completed a questionnaire consisting of 30 multiple-choice questions, Edinburgh Postnatal Depression Scale (EPDS), and Hospital Anxiety and Depression Scale (HADS). Statistical calculations were performed with the use of Statistica v.10 and Cytel Studio v. 9.0.0. The findings revealed the presence of factors which might increase the risk of mood disorders during the postpartum period. Women who demonstrate warning symptoms should be screened for postnatal emotional changes and mood swings during their hospitalization after delivery. EPDS seems to be a suitable tool for early detection of emotional disturbances.

  1. Changes in gravity influence rat postnatal motor system development: from simulation to space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.; Heffernan, C.; Sulica, D.; Benavides, L.

    1997-01-01

    Our research examines the role of the environment in postnatal nervous system development. Recently we have been studying the effects of changes in gravity on the motor system of rats from postnatal day (P) 2 to 31 using kinematic analysis of swimming, walking, and righting reflexes. Using the tail suspension model of weightlessness we identified sensitive and critical periods of motor system development corresponding to the time during which a motor skill is first achieved. Motor performance in suspended animals was marked by slow swimming, walking, and air-righting, all of which were characterized by hindlimb extension. (Walton et al, Neurosci. 52,763,1992). The critical periods identified in these studies contributed to determining the age of animals for a small payload, NIH.R3. This 9-day mission (STS-72) included 2 litters at P5, P7, or P15 at launch. The P7-16 and P15-24 groups were studied post-flight. On the landing day (R+0) surface righting, swimming and walking were slower in flight compared to control animals. Differences were more marked in the younger animals and the hindlimbs were more affected than the forelimbs with marked, prolonged extension of, at least, the ankle joint angle. Readaptation to 1G was slower in the P7-16 group with righting reflexes adapting first, walking last. We have shown that gravity is an important factor in postnatal nervous system development and that its affect depends on the age of the animal, duration of the perturbation, and the motor function studied.

  2. Postnatal development of EEG patterns, catecholamine contents and myelination, and effect of hyperthyroidism in Suncus brain.

    PubMed

    Takeuchi, T; Sitizyo, K; Harada, E

    1998-03-01

    The postnatal development of the central nervous system (CNS) in house musk shrew in the early stage of maturation was studied. The electroencephalogram (EEG) and visual evoked potential (VEP) in association with catecholamine contents and myelin basic protein (MBP) immunoreactivity were carried out from the 1st to the 20th day of postnatal age. Different EEG patterns which were specific to behavioral states (awake and drowsy) were first recorded on the 5th day, and the total power which was obtained by power spectrum analysis increased after this stage. The latencies of all peaks in VEP markedly shortened between the 5th and the 7th day. Noradrenalin (NA) content of the brain showed a slight increase after the 3rd day, and reached maximum levels on the 7th day, which was delayed a few days compared to dopamine (DA). In hyperthyroidism, the peak latency of VEP was shortened and biosynthesis of NA in cerebral cortex and DA in hippocampus was accelerated. The most obvious change in MBP-immunoreactivity of the telencephalon occurred from the 7th to the 10th day. These morphological changes in the brain advanced at the identical time-course to those in the electrophysiological development and increment of DA and NA contents.

  3. A Postnatal Diet Containing Phospholipids, Processed to Yield Large, Phospholipid-Coated Lipid Droplets, Affects Specific Cognitive Behaviors in Healthy Male Mice.

    PubMed

    Schipper, Lidewij; van Dijk, Gertjan; Broersen, Laus M; Loos, Maarten; Bartke, Nana; Scheurink, Anton Jw; van der Beek, Eline M

    2016-06-01

    Infant cognitive development can be positively influenced by breastfeeding rather than formula feeding. The composition of breast milk, especially lipid quality, and the duration of breastfeeding have been linked to this effect. We investigated whether the physical properties and composition of lipid droplets in milk may contribute to cognitive development. From postnatal day (P) 16 to P44, healthy male C57BL/6JOlaHsd mice were fed either a control or a concept rodent diet, in which the dietary lipid droplets were large and coated with milk phospholipids, resembling more closely the physical properties and composition of breast milk lipids. Thereafter, all mice were fed an AIN-93M semisynthetic rodent diet. The mice were subjected to various cognitive tests during adolescence (P35-P44) and adulthood (P70-P101). On P102, mice were killed and brain phospholipids were analyzed. The concept diet improved performance in short-term memory tasks that rely on novelty exploration during adolescence (T-maze; spontaneous alternation 87% in concept-fed mice compared with 74% in mice fed control diet; P < 0.05) and adulthood (novel object recognition; preference index 0.48 in concept-fed mice compared with 0.05 in control-fed mice; P < 0.05). Cognitive performance in long-term memory tasks, however, was unaffected by diet. Brain phospholipid composition at P102 was not different between diet groups. Exposure to a diet with lipids mimicking more closely the structure and composition of lipids in breast milk improved specific cognitive behaviors in mice. These data suggest that lipid structure should be considered as a relevant target to improve dietary lipid quality in infant milk formulas. © 2016 American Society for Nutrition.

  4. Maternal Forced Swimming Reduces Cell Proliferation in the Postnatal Dentate Gyrus of Mouse Offspring

    PubMed Central

    Wasinski, Frederick; Estrela, Gabriel R.; Arakaki, Aline M.; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C.

    2016-01-01

    Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring. PMID:27621701

  5. Developmental Programming: Postnatal Estradiol Modulation of Prenatally Organized Reproductive Neuroendocrine Function in Sheep

    PubMed Central

    Puttabyatappa, Muraly; Cardoso, Rodolfo C.; Herkimer, Carol; Veiga-Lopez, Almudena; Padmanabhan, Vasantha

    2016-01-01

    Gestational testosterone (T) excess, acting via both the androgenic and estrogenic pathways, advances puberty and disrupts the neuroendocrine estradiol (E) feedback and periovulatory hormonal dynamics in female sheep. These prenatally programmed defects may be subject to postnatal modifications by continued organizational and/or activational effects of steroids. The present study investigated 1) the organizational contribution of prenatal estrogen excess and 2) the impact of postnatal exposure to E in modulating the effects of prenatal androgen excess (T and dihydrotestosterone [DHT]) on puberty, neuroendocrine feedback mechanisms, and periovulatory hormonal dynamics in sheep. Pregnant Suffolk sheep were treated with T, DHT, E, or E plus DHT (ED) from days 30 to 90 of gestation. A subset of the control (C), T, and DHT female offspring received a constant-release E implant postnatally. Findings revealed that 1) prenatal E-treatment failed to reproduce the neuroendocrine disruptions predicted to be programmed by the estrogenic pathway and 2) prenatal ED-treatment did not adequately replicate the reproductive neuroendocrine defects induced by prenatal T excess. More importantly, continuous postnatal E-treatment, while delaying the onset of puberty and reducing the inhibitory effects of E on tonic luteinizing hormone (LH) release, failed to amplify the E positive feedback and periovulatory defects induced by prenatal T-treatment. Our results indicate that disruptions in E positive feedback mechanisms and periovulatory gonadotropin secretion induced by prenatal T-treatment are programmed predominantly during the prenatal life with postnatal exposure to E excess not contributing further to these disruptions. PMID:27222598

  6. Retinal dehydrogenase gene expression in stomach and small intestine of rats during postnatal development and in vitamin A deficiency.

    PubMed

    Bhat, P V

    1998-04-17

    Retinal dehydrogenase (RALDH) catalyzes the oxidation of retinal to all-trans and 9-cis retinoic acid, which function as ligands controlling RAR and RXR nuclear receptor-signaling pathways. We have recently shown the expression of RALDH transcript in the stomach and small intestine by reverse transcription polymerase chain reaction [Bhat, P.V., Labrecque J., Dumas, F., Lacroix, A. and Yoshida, A. (1995) Gene 166, 303-306]. We have examined RALDH expression in the stomach and small intestine before and during postnatal development and in vitamin A deficiency by assaying for mRNA levels and protein as well as for enzyme activity. In -2 day fetuses, RALDH expression was high in the small intestine, whereas RALDH protein was not detectable in the stomach. However, expression of RALDH was seen in the stomach after birth, and gradually increased with age and reached the highest level at postnatal day 42. In the intestine, RALDH expression decreased postnatally. Vitamin A deficiency up-regulated RALDH expression in the stomach and small intestine, and administration of retinoids down-regulated the RALDH expression in these tissues. These results show the differential expression of RALDH in the stomach and small intestine during postnatal development, and that vitamin A status regulates the expression of RALDH gene in these tissues.

  7. Postnatally acquired cytomegalovirus infection via breast milk: effects on hearing and development in preterm infants.

    PubMed

    Vollmer, Brigitte; Seibold-Weiger, Karin; Schmitz-Salue, Christine; Hamprecht, Klaus; Goelz, Rangmar; Krageloh-Mann, Ingeborg; Speer, Christian P

    2004-04-01

    In preterm infants there is a high risk of transmission of cytomegalovirus (CMV) via breast milk from seropositive mothers with reactivation of the virus during lactation. There is little information about the long term sequel of early postnatally acquired CMV infection in pre-term infants. This study aimed to investigate whether there was an increased frequency of impaired neurodevelopmental outcome and sensorineural hearing loss in preterm infants with postnatally acquired CMV infection through transmission by CMV-positive breast milk. Twenty-two preterm infants [median birth weight, 1020 g (range, 600 to 1870 g); median gestational age, 27.6 weeks (range, 23.6 to 32 weeks] with early postnatally acquired CMV infection by breast-feeding (onset of viruria between Days 23 and 190 postnatally) were compared with 22 CMV-negative preterm infants individually matched for gestational age, birth weight, gender, intracranial hemorrhage and duration of ventilation. At 2 to 4.5 years of age, follow-up assessments were conducted consisting of neurologic examination, neurodevelopmental assessment and detailed audiologic tests. None of the children had sensorineural hearing loss. There was no difference between the groups with regard to neurologic, speech and language or motor development. The results of this study suggest that early postnatally acquired CMV infection via CMV-positive breast milk does not have a negative effect on neurodevelopment and hearing in this group of patients. Because we studied a small number of infants, further follow-up studies are warranted in preterm infants with early postnatally acquired CMV infection.

  8. Reaching Mothers and Babies with Early Postnatal Home Visits: The Implementation Realities of Achieving High Coverage in Large-Scale Programs

    PubMed Central

    Sitrin, Deborah; Guenther, Tanya; Murray, John; Pilgrim, Nanlesta; Rubayet, Sayed; Ligowe, Reuben; Pun, Bhim; Malla, Honey; Moran, Allisyn

    2013-01-01

    Background Nearly half of births in low-income countries occur without a skilled attendant, and even fewer mothers and babies have postnatal contact with providers who can deliver preventive or curative services that save lives. Community-based maternal and newborn care programs with postnatal home visits have been tested in Bangladesh, Malawi, and Nepal. This paper examines coverage and content of home visits in pilot areas and factors associated with receipt of postnatal visits. Methods Using data from cross-sectional surveys of women with live births (Bangladesh 398, Malawi: 900, Nepal: 615), generalized linear models were used to assess the strength of association between three factors - receipt of home visits during pregnancy, birth place, birth notification - and receipt of home visits within three days after birth. Meta-analytic techniques were used to generate pooled relative risks for each factor adjusting for other independent variables, maternal age, and education. Findings The proportion of mothers and newborns receiving home visits within three days after birth was 57% in Bangladesh, 11% in Malawi, and 50% in Nepal. Mothers and newborns were more likely to receive a postnatal home visit within three days if the mother received at least one home visit during pregnancy (OR2.18, CI1.46–3.25), the birth occurred outside a facility (OR1.48, CI1.28–1.73), and the mother reported a CHW was notified of the birth (OR2.66, CI1.40–5.08). Checking the cord was the most frequently reported action; most mothers reported at least one action for newborns. Conclusions Reaching mothers and babies with home visits during pregnancy and within three days after birth is achievable using existing community health systems if workers are available; linked to communities; and receive training, supplies, and supervision. In all settings, programs must evaluate what community delivery systems can handle and how to best utilize them to improve postnatal care access. PMID

  9. Postnatal Brain Growth Assessed by Sequential Cranial Ultrasonography in Infants Born <30 Weeks' Gestational Age.

    PubMed

    Cuzzilla, R; Spittle, A J; Lee, K J; Rogerson, S; Cowan, F M; Doyle, L W; Cheong, J L Y

    2018-06-01

    Brain growth in the early postnatal period following preterm birth has not been well described. This study of infants born at <30 weeks' gestational age and without major brain injury aimed to accomplish the following: 1) assess the reproducibility of linear measures made from cranial ultrasonography, 2) evaluate brain growth using sequential cranial ultrasonography linear measures from birth to term-equivalent age, and 3) explore perinatal predictors of postnatal brain growth. Participants comprised 144 infants born at <30 weeks' gestational age at a single center between January 2011 and December 2013. Infants with major brain injury seen on cranial ultrasonography or congenital or chromosomal abnormalities were excluded. Brain tissue and fluid spaces were measured from cranial ultrasonography performed as part of routine clinical care. Brain growth was assessed in 3 time intervals: <7, 7-27, and >27 days' postnatal age. Data were analyzed using intraclass correlation coefficients and mixed-effects regression. A total of 429 scans were assessed for 144 infants. Several linear measures showed excellent reproducibility. All measures of brain tissue increased with postnatal age, except for the biparietal diameter, which decreased within the first postnatal week and increased thereafter. Gestational age of ≥28 weeks at birth was associated with slower growth of the biparietal diameter and ventricular width compared with gestational age of <28 weeks. Postnatal corticosteroid administration was associated with slower growth of the corpus callosum length, transcerebellar diameter, and vermis height. Sepsis and necrotizing enterocolitis were associated with slower growth of the transcerebellar diameter. Postnatal brain growth in infants born at <30 weeks' gestational age can be evaluated using sequential linear measures made from routine cranial ultrasonography and is associated with perinatal predictors of long-term development. © 2018 by American Journal of

  10. Failure of post-natal ductus arteriosus closure in prostaglandin transporter-deficient mice

    PubMed Central

    Chang, Hee-Yoon; Locker, Joseph; Lu, Run; Schuster, Victor L.

    2010-01-01

    Background Prostaglandin E2 (PGE2) plays a major role both in maintaining patency of the fetal ductus arteriosus (DA) and in closure of the DA after birth. The rate- limiting step in PGE2 signal termination is PGE2 uptake by the transporter PGT. Methods and results To determine the role of PGT in DA closure, we used a gene-targeting strategy to produce mice in which PGT exon 1 was flanked by loxP sites. Successful targeting was obtained since neither mice hypomorphic at the PGT allele (PGT Neo/Neo) nor global PGT knockout mice (PGT −/−) exhibited PGT protein expression; moreover, embryonic fibroblasts isolated from targeted mice failed to exhibit carrier-mediated PGE2 uptake. Although born in a normal Mendelian ratio, no PGT −/− mice survived past post-natal day 1, and no PGT Neo/Neo mice survived past post-natal day 2. Necropsy revealed patent DA with normal intimal thickening but with dilated cardiac chambers. Both PGT Neo/Neo and PGT −/− mice could be rescued through the post-natal period by giving the mother indomethacin before birth. Rescued mice grew normally and had no abnormalities by gross and microscopic post-mortem analysis. In accord with PGT’s known role in metabolizing PGE2, rescued adult PGT −/− mice had lower plasma PGE2 metabolite levels, and higher urinary PGE2 excretion rates, than wild type mice. Conclusions PGT plays a critical role in closure of the DA after birth by ensuring a reduction in local and/or circulating PGE2 concentrations. PMID:20083684

  11. Antenatal and postnatal care practices among mothers in rural Bangladesh: A community based cross-sectional study.

    PubMed

    Shahjahan, Md; Chowdhury, Hasina Akhter; Al-Hadhrami, Ahmed Y; Harun, Golam Dostogir

    2017-09-01

    appropriate utilization of antenatal and postnatal care can prevent complications and ensures better maternal and child health care. Although under-five mortality in South Asia, including Bangladesh, has reduced substantially, the rate of neonatal mortality is still high. The study aims to identify factors associated with the practice of antenatal and/or postnatal care amongst mothers of newborns from a healthcare facility in a selected area of rural Bangladesh. RESEARCH DESIGN/SETTING: a community-based cross-sectional study was conducted among 360 postnatal mothers, who were within 42 days of delivery. The study was conducted at Madhupur Upazila (sub-district) in Tangail district of Bangladesh from January 2012 to June 2012. A structured questionnaire was used to collect relevant information from the study subjects. only one in seven (14.2%) of the mothers visited health care facility for 4 or more times to receive antenatal care. A higher proportion of mothers delivered at home, thirty-five percent of the respondents experienced post-delivery complications. About 18% of mothers received postnatal care from the health care facility. Several variables revealed significant associations in bivariate analyses; few variables remained significant for antenatal care and post-natal care categories in the multinomial logistic regression analysis. The likelihood of receiving either antenatal care or post-natal care (OR =0.30, 95% CI =0.10-0.96) was significantly lower among mothers who had either no education or less education (1-5 years of schooling); and was found significantly higher for women who watched TV (OR = 2.79; 95% CI = 1.45-5.37); family income showed significant association for receiving both antenatal care and postnatal care services as well. mother's education appears to have a strong and significant association with antenatal care and postnatal care practices in rural Bangladesh. Community based intervention and regular home visits by health care providers

  12. Postnatal Administration of Dizocilpine Inhibits Neuronal Excitability in PFC and Induces Social Deficits Detected by MiceProfiler.

    PubMed

    Zhu, Dexiao; Wang, Hui; Wu, Jintao; Wang, Qian; Xu, Ling; Zhao, Yue; Pang, Kunkun; Shi, Qingqing; Zhao, Wenbo; Zhang, Jing; Sun, Jinhao

    2017-12-01

    Schizophrenia is a devastating mental disease with social deficit as its core component of negative symptoms, which could be induced in rodents by dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist. NMDA receptors are highly expressed during the postnatal period. However, less attention has been paid to the effects of postnatal MK-801 administration on social interaction. In this study, we evaluated the effects of postnatal administration of MK-801 on social interaction and explored the possible mechanisms. Postnatal day-7 mice were intraperitoneally injected with MK-801 twice daily for 5 days, and their social interaction repertoire was monitored by a computerized video in the 10th week. The contact event, relative position event, stop-state, and dynamic event were analyzed with MiceProfiler automatic idTracker system. The results showed that MK-801 reduced the number of the contact events, relative position events, and stop-states, while increased the number and duration of dynamic events. These changes implied that MK-801-injected mice had indifference and lower motivation in social interaction and could be a useful model for studies on the social deficit of schizophrenia. The prefrontal cortex is the key region for social interaction behaviors. Slice patch clamp was performed to analyze the cellular excitability of prefrontal cortical neurons after postnatal treatment with MK-801 in mice. The results demonstrated that MK-801 injection reduced the frequency and amplitude of action potentials, but increased the frequency of miniature inhibitory postsynaptic currents. These data illustrated that the excitability of neurons in the prefrontal cortex was inhibited. Finally, immunoblotting data demonstrated that MK-801 significantly decreased the levels of sirtuin 1 (SIRT1) and phosphorylated protein kinase B (p-PKB) in the prefrontal cortex (both P < 0.05). Taken together, our results indicated that administration of MK-801 to postnatal mice induces

  13. Profiling analysis of long non-coding RNAs in early postnatal mouse hearts

    PubMed Central

    Sun, Xiongshan; Han, Qi; Luo, Hongqin; Pan, Xiaodong; Ji, Yan; Yang, Yao; Chen, Hanying; Wang, Fangjie; Lai, Wenjing; Guan, Xiao; Zhang, Qi; Tang, Yuan; Chu, Jianhong; Yu, Jianhua; Shou, Weinian; Deng, Youcai; Li, Xiaohui

    2017-01-01

    Mammalian cardiomyocytes undergo a critical hyperplastic-to-hypertrophic growth transition at early postnatal age, which is important in establishing normal physiological function of postnatal hearts. In the current study, we intended to explore the role of long non-coding (lnc) RNAs in this transitional stage. We analyzed lncRNA expression profiles in mouse hearts at postnatal day (P) 1, P7 and P28 via microarray. We identified 1,146 differentially expressed lncRNAs with more than 2.0-fold change when compared the expression profiles of P1 to P7, P1 to P28, and P7 to P28. The neighboring genes of these differentially expressed lncRNAs were mainly involved in DNA replication-associated biological processes. We were particularly interested in one novel cardiac-enriched lncRNA, ENSMUST00000117266, whose expression was dramatically down-regulated from P1 to P28 and was also sensitive to hypoxia, paraquat, and myocardial infarction. Knockdown ENSMUST00000117266 led to a significant increase of neonatal mouse cardiomyocytes in G0/G1 phase and reduction in G2/M phase, suggesting that ENSMUST00000117266 is involved in regulating cardiomyocyte proliferative activity and is likely associated with hyperplastic-to-hypertrophic growth transition. In conclusion, our data have identified a large group of lncRNAs presented in the early postnatal mouse heart. Some of these lncRNAs may have important functions in cardiac hyperplastic-to-hypertrophic growth transition. PMID:28266538

  14. From antenatal to postnatal depression: associated factors and mitigating influences.

    PubMed

    Redshaw, Maggie; Henderson, Jane

    2013-06-01

    Postnatal depression has a serious impact on new mothers and their children and families. Risk factors identified include a history of depression, multiparity, and young age. The study aimed to investigate factors associated with experiencing antenatal depression and developing subsequent postnatal depression. The study utilized survey data from 5332 women about their experience and well-being during pregnancy, in labor, and postnatally up to 3 months. Prespecified sociodemographic and clinical variables were tabulated against the incidence of antenatal depression and postnatal depression. Binary logistic regression was used to estimate the effects of the principal underlying variables. Risk factors for antenatal depression were multiparity, black and minority ethnic (BME) status, physical or mental health problems, living in a deprived area, and unplanned pregnancy. Different factors for postnatal depression were evident among women who had experienced antenatal depression: multiparity and BME status were protective, whereas being left alone in labor and experiencing poor postnatal health increased the risk of postnatal depression. This study confirms previous research on risk factors for antenatal depression and stresses the importance of continuous support in labor and vigilance in the postnatal period regarding the potential ill effects of continuing postnatal health problems.

  15. Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis

    PubMed Central

    Coleman, Leon G.; Oguz, Ipek; Lee, Joohwi; Styner, Martin; Crews, Fulton T.

    2013-01-01

    Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure (Ikonomidou et al., 2000). To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5g/kg, s.c., 2 hours apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV+IR) interneurons (18-33%) and reduced Cux1+IR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology. PMID:22572057

  16. Oligodendrocytes as Regulators of Neuronal Networks during Early Postnatal Development

    PubMed Central

    Ramos, Maria; Ikrar, Taruna; Kinoshita, Chisato; De Mei, Claudia; Tirotta, Emanuele; Xu, Xiangmin; Borrelli, Emiliana

    2011-01-01

    Oligodendrocytes are the glial cells responsible for myelin formation. Myelination occurs during the first postnatal weeks and, in rodents, is completed during the third week after birth. Myelin ensures the fast conduction of the nerve impulse; in the adult, myelin proteins have an inhibitory role on axon growth and regeneration after injury. During brain development, oligodendrocytes precursors originating in multiple locations along the antero-posterior axis actively proliferate and migrate to colonize the whole brain. Whether the initial interactions between oligodendrocytes and neurons might play a functional role before the onset of myelination is still not completely elucidated. In this article, we addressed this question by transgenically targeted ablation of proliferating oligodendrocytes during cerebellum development. Interestingly, we show that depletion of oligodendrocytes at postnatal day 1 (P1) profoundly affects the establishment of cerebellar circuitries. We observed an impressive deregulation in the expression of molecules involved in axon growth, guidance and synaptic plasticity. These effects were accompanied by an outstanding increase of neurofilament staining observed 4 hours after the beginning of the ablation protocol, likely dependent from sprouting of cerebellar fibers. Oligodendrocyte ablation modifies localization and function of ionotropic glutamate receptors in Purkinje neurons. These results show a novel oligodendrocyte function expressed during early postnatal brain development, where these cells participate in the formation of cerebellar circuitries, and influence its development. PMID:21589880

  17. Differential Effects of Intermittent versus Continuous Haloperidol Treatment throughout Adolescence on Haloperidol Sensitization and Social Behavior in Adulthood

    PubMed Central

    Gao, Jun; Li, Ming

    2014-01-01

    Animal work on the behavioral effects of antipsychotic treatment suggests that different dosing regimens could affect drug sensitivity differently, with an intermittent treatment regimen tending to cause a sensitization effect, while a continuous treatment causing a tolerance. In this study, we explored how haloperidol (HAL) sensitization induced throughout adolescence and tested in adulthood was differentially impacted by these two dosing regimens in the conditioned avoidance response (CAR) test. We also examined how these two dosing regiments affected social interaction and social memory in adulthood. Male adolescent Sprague-Dawley rats were treated with HAL via either osmotic minipump (HAL-0.25 CONT; 0.25 mg/kg/day, n = 14) or daily injection (HAL-0.05 INT; 0.05 mg/kg/injection/day, sc, n = 14), or sterile water (n = 14) from postnatal days (PND) 44 to 71. HAL sensitization was assessed in a challenge test in which all rats were injected with HAL (0.025 and 0.05 mg/kg, sc) on PND 80 and PND 82. Two days later, half of the rats from each group (n = 7/group) were assayed in two 4-trial social interaction tests in which a subject rat was given four 5-min social encounters with a familiar or novel juvenile rat (PND 35–40) at 10 min intervals. Another half were tested in a quinpirole-induced hyperlocomotion assay to assess the potential HAL-induced change in D2-mediated function. Results show that only the intermittent dosing group under the HAL 0.05 mg/kg challenge showed a robust sensitization effect as rats in this group made significantly fewer avoidance responses than those in the vehicle and HAL-0.25 CONT groups. Adolescent HAL treatment did not affect social behavior and social memory, as rats from all 3 groups exhibited a similar level of social interaction and showed a similar level of sensitivity to the change of social stimuli. Similarly, adolescent HAL treatment also did not produce a long-lasting change in D2 function, as all 3 groups exhibited a

  18. Fast and efficient: postnatal growth and energy expenditure in an Arctic-breeding waterbird, the Red-throated Loon (Gavia stellata)

    USGS Publications Warehouse

    Rizzolo, Daniel; Schmutz, Joel A.; Speakman, John R.

    2015-01-01

    Environmental conditions can exert a strong influence on the growth and energy demands of chicks. We hypothesized that postnatal growth in a cold, aquatic environment would require a high level of energy metabolism in semiprecocial Red-throated Loon (Gavia stellata) chicks. We measured body-mass growth and daily energy expenditure (DEE) of free-ranging chicks in the Arctic. We used daily gains in body mass and DEE to estimate daily metabolizable energy (DME, kJ day-1) and total metabolizable energy (TME, kJ chick-1). Chicks gained body mass quickly, with a logistic growth rate constant 57% greater than the allometric prediction, yet were at only 60% of adult body mass at fledging. Males grew at a rate similar to that of females but for a slightly longer duration and so reached an asymptotic body mass 23% greater, and tarsus length 8% longer, than that of females. Chick growth performance was similar between first- and second-hatched chicks within broods of 2, which suggests that food availability was not limited. DEE increased in proportion to body mass, and DME peaked at 1,214 kJ day-1 on day 25 posthatching. Over the average 49-day postnatal period, TME was 49.0 MJ, which is within the range of error of the allometric prediction. Parents provided 58.6 MJ as food to meet this energy requirement. Given this chick energy requirement and the range of energy content of prey observed in the chick diet, selecting prey with higher energy content would greatly reduce adult provisioning effort. Red-throated Loon chicks did not have a high postnatal energy requirement, but rather grew quickly and fledged at a small size-with the effect of reducing the length of the postnatal period and, consequently, parental energy investment in chicks.

  19. Fruit and vegetable consumption in adolescence and early adulthood and risk of breast cancer: population based cohort study

    PubMed Central

    Chen, Wendy Y; Michels, Karin B; Cho, Eunyoung; Willett, Walter C; Eliassen, A Heather

    2016-01-01

    Objective To evaluate the association between fruit and vegetable intake during adolescence and early adulthood and risk of breast cancer. Design Prospective cohort study. Setting Health professionals in the United States. Participants 90 476 premenopausal women aged 27-44 from the Nurses’ Health Study II who completed a questionnaire on diet in 1991 as well as 44 223 of those women who completed a questionnaire about their diet during adolescence in 1998. Main outcome measure Incident cases of invasive breast cancer, identified through self report and confirmed by pathology report. Results There were 3235 cases of invasive breast cancer during follow-up to 2013. Of these, 1347 cases were among women who completed a questionnaire about their diet during adolescence (ages 13-18). Total fruit consumption during adolescence was associated with a lower risk of breast cancer. The hazard ratio was 0.75 (95% confidence interval 0.62 to 0.90; P=0.01 for trend) for the highest (median intake 2.9 servings/day) versus the lowest (median intake 0.5 serving/day) fifth of intake. The association for fruit intake during adolescence was independent of adult fruit intake. There was no association between risk and total fruit intake in early adulthood and total vegetable intake in either adolescence or early adulthood. Higher early adulthood intake of fruits and vegetables rich in α carotene was associated with lower risk of premenopausal breast cancer. The hazard ratio was 0.82 (0.70 to 0.96) for the highest fifth (median intake 0.5 serving/day) versus the lowest fifth (median intake 0.03 serving/day) intake. The association with adolescent fruit intake was stronger for both estrogen and progesterone receptor negative cancers than estrogen and progesterone receptor positive cancers (P=0.02 for heterogeneity). For individual fruits and vegetables, greater consumption of apple, banana, and grapes during adolescence and oranges and kale during early adulthood was

  20. Antenatal iron/folic acid supplements, but not postnatal care, prevents neonatal deaths in Indonesia: analysis of Indonesia Demographic and Health Surveys 2002/2003–2007 (a retrospective cohort study)

    PubMed Central

    Titaley, Christiana Rialine; Dibley, Michael John

    2012-01-01

    Objective This study aimed to assess the contribution of postnatal services to the risk of neonatal mortality, and the relative contributions of antenatal iron/folic acid supplements and postnatal care in preventing neonatal mortality in Indonesia. Design Retrospective cohort study. Setting and participants Data used in this study were the 2002–2007 Indonesia Demographic and Health Surveys, nationally representative surveys. The pooled data provided survival information of 26 591 most recent live-born infants within the 5-years prior to each interview. Primary outcomes Primary outcomes were early neonatal mortality, that is, deaths in the first week, and all neonatal mortality, that is, deaths in the first month of life. Exposures were antenatal iron/folic acid supplementation and postnatal care from days 1 to 7. Potential confounders were community, socio-economic status and birthing characteristics and perinatal healthcare. Cox regression was used to assess the association between study factors and neonatal mortality. Results Postnatal care services were not associated with newborn survival. Postnatal care on days 1–7 after birth did not reduce neonatal death (HR=1.00, 95% CI 0.55 to 1.83, p=1.00) and early postnatal care on day 1 was associated with an increased risk of early neonatal death (HR=1.27, 95% CI 0.69 to 2.32, p=0.44) possibly reflecting referral of ill newborns. Early postnatal care on day 1 was not protective for neonatal deaths on days 2–7 whether provided by doctors (HR 3.61, 95% CI 1.54 to 8.45, p<0.01), or by midwives or nurses (HR 1.38, 95% CI 0.53 to 3.57, p=0.512). In mothers who took iron/folic acid supplements during pregnancy, the risk of early neonatal death was reduced by 51% (HR=0.49, 95% CI 0.30 to 0.79, p<0.01). Conclusions We found no protective effect of postnatal care against neonatal deaths in Indonesia. However, important reductions in the risk of neonatal death were found for women who reported use of antenatal iron

  1. A Subtype-Specific Critical Period for Neurogenesis in the Postnatal Development of Mouse Olfactory Glomeruli

    PubMed Central

    Ito, Keishi; Arakawa, Sousuke; Murakami, Shingo; Sawamoto, Kazunobu

    2012-01-01

    Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training. PMID:23133633

  2. Development of putative inhibitory neurons in the embryonic and postnatal mouse superficial spinal dorsal horn.

    PubMed

    Balázs, Anita; Mészár, Zoltán; Hegedűs, Krisztina; Kenyeres, Annamária; Hegyi, Zoltán; Dócs, Klaudia; Antal, Miklós

    2017-07-01

    The superficial spinal dorsal horn is the first relay station of pain processing. It is also widely accepted that spinal synaptic processing to control the modality and intensity of pain signals transmitted to higher brain centers is primarily defined by inhibitory neurons in the superficial spinal dorsal horn. Earlier studies suggest that the construction of pain processing spinal neural circuits including the GABAergic components should be completed by birth, although major chemical refinements may occur postnatally. Because of their utmost importance in pain processing, we intended to provide a detailed knowledge concerning the development of GABAergic neurons in the superficial spinal dorsal horn, which is now missing from the literature. Thus, we studied the developmental changes in the distribution of neurons expressing GABAergic markers like Pax2, GAD65 and GAD67 in the superficial spinal dorsal horn of wild type as well as GAD65-GFP and GAD67-GFP transgenic mice from embryonic day 11.5 (E11.5) till postnatal day 14 (P14). We found that GABAergic neurons populate the superficial spinal dorsal horn from the beginning of its delineation at E14.5. We also showed that the numbers of GABAergic neurons in the superficial spinal dorsal horn continuously increase till E17.5, but there is a prominent decline in their numbers during the first two postnatal weeks. Our results indicate that the developmental process leading to the delineation of the inhibitory and excitatory cellular assemblies of pain processing neural circuits in the superficial spinal dorsal horn of mice is not completed by birth, but it continues postnatally.

  3. Immunolocalization of NR1, NR2A, and PSD-95 in rat hippocampal subregions during postnatal development.

    PubMed

    Ling, Wei; Chang, Lirong; Song, Yizhi; Lu, Tao; Jiang, Yuhua; Li, Youxiang; Wu, Yan

    2012-05-01

    Although the expression of NMDARs and synaptic-associated proteins has been widely studied, the temporospatial distribution of NMDAR subunits and synaptic proteins in different hippocampal subregions during postnatal development still lacks detailed information, and the relationship between NR1 or NR2 subunits and PSD-95 family proteins is controversial. In this study, we used immunofluorescent staining to assess NR1 or NR2A and PSD-95 expressions and the relationship between them in CA1, CA3, and DG of rat hippocampus on postnatal (P) days: P0, P4, P7, P10, P14, P21, P28, P56. The results showed that from P0 to P56, NR1, NR2A, and PSD-95 expressions increased gradually, and the time points of their expression peak differed in CA1, CA3, and DG during postnatal development. Interestingly, although the expression of PSD-95 was positively correlated to both NR1 and NR2A, the NR1 and PSD-95 coexpressed puncta were greatest in CA3, while NR2A and PSD-95 coexpressed puncta were greatest in CA1, compared to other subregions. Surprisingly, at P21, among different strata of CA1, the area of highest expression of NR2A was dramatically changed from stratum pyramidale to stratum polymorphum and stratum moleculare, and returned to stratum pyramidale gradually on the later observed days again, indicating that P21 may be one critical timepoint during postnatal development in CA1. The specific temporospatial distribution pattern of NR1, NR2A, and PSD-95 might be related to the different physiological functions during postnatal development. Discovering the alteration of the relationship between PSD-95 and NMDAR subunits expression may be helpful for understanding mechanisms and therapy of neurodegenerative diseases. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Postnatal ocular expression of tyrosinase and related proteins: disruption by the pink-eyed unstable (p(un)) mutation.

    PubMed

    Chiu, E; Lamoreux, M L; Orlow, S J

    1993-09-01

    Ocular pigmentation in the mouse occurs primarily postnatally as a result of the melanization of neural crest-derived melanocytes. Using immunologic and biochemical techniques, we demonstrate that in normal mice the expression of tyrosinase and the related proteins TRP-1 and TRP-2, rises during the first week of life, remains elevated for a week, and then steadily declines to low levels by adulthood. Sucrose gradient density centrifugation demonstrates that tyrosinase, TRP-1 and TRP-2 are present in high molecular weight forms in the eyes of wild-type mice. The normal time course is disrupted in mice carrying the pink-eyed unstable (p(un)) mutation at the P-locus, a model for tyrosinase-positive albinism in man. Tyrosinase and TRP-2 are present at wild-type levels in the eyes of p(un)/p(un) mice at birth, but, rather than rising, their levels rapidly decline over the first week of life. TRP-1 is almost undetectable, even at birth. High molecular weight complexes could not be detected in eyes of p(un)/p(un) mice. Our results suggest that postnatal ocular melanogenesis in the mouse presents an attractive model for the study of the orderly expression and action of the proteins involved in eumelanin synthesis, and that the p(un) mutation disrupts this temporally controlled process.

  5. Developmental programming: postnatal estradiol modulation of prenatally organized reproductive neuroendocrine function in sheep.

    PubMed

    Puttabyatappa, Muraly; Cardoso, Rodolfo C; Herkimer, Carol; Veiga-Lopez, Almudena; Padmanabhan, Vasantha

    2016-08-01

    Gestational testosterone (TS) excess, acting via both the androgenic and estrogenic pathways, advances puberty and disrupts the neuroendocrine estradiol (E2) feedback and periovulatory hormonal dynamics in female sheep. These prenatally programmed defects may be subject to postnatal modifications by continued organizational and/or activational effects of steroids. This study investigated (1) the organizational contribution of prenatal estrogen excess and (2) the impact of postnatal exposure to E2 in modulating the effects of prenatal androgen excess (TS and dihydrotestosterone (DHT)) on puberty, neuroendocrine feedback mechanisms, and periovulatory hormonal dynamics in sheep. Pregnant Suffolk sheep were treated with TS, DHT, E2, or E2 plus DHT (ED) from days 30 to 90 of gestation. A subset of the control (C), TS, and DHT female offspring received a constant-release E2 implant postnatally. Findings revealed that (1) prenatal E2-treatment failed to reproduce the neuroendocrine disruptions predicted to be programmed by the estrogenic pathway and (2) prenatal E2D-treatment did not adequately replicate the reproductive neuroendocrine defects induced by prenatal TS excess. More importantly, continuous postnatal E2-treatment, while delaying the onset of puberty and reducing the inhibitory effects of E2 on tonic luteinizing hormone (LH) release, failed to amplify the E2-positive feedback and periovulatory defects induced by prenatal TS-treatment. Our results indicate that disruptions in E2-positive feedback mechanisms and periovulatory gonadotropin secretion induced by prenatal TS-treatment are programmed predominantly during the prenatal life with postnatal exposure to E2 excess not contributing further to these disruptions. © 2016 Society for Reproduction and Fertility.

  6. The transition to adulthood of young adults with IDD: Parents' joint projects.

    PubMed

    Young, Richard A; Marshall, Sheila K; Stainton, Tim; Wall, Jessie M; Curle, Deirdre; Zhu, Ma; Munro, David; Murray, John; El Bouhali, Asmae; Parada, Filomena; Zaidman-Zait, Anat

    2018-03-01

    Parents have found the transition to adulthood for their sons or daughters with intellectual and/or developmental disabilities (IDD) particularly challenging. The literature has not examined how parents work together and with others in face of this transition nor has it highlighted parental goals in this process. This study used a perspective based on joint, goal-direct action to describe the projects that Canadian parents engaged in together and with others relative to this transition. Using the qualitative action-project method, joint projects between parents and with others were identified from their conversations and followed for 6 months. Three groups of projects were described: equipping the young adult for adult life, connecting for personal support and managing day-to-day while planning for the future. Parents act together and with others relative to the transition to adulthood of their young adult children with IDD. These projects are complex and differ in goals, steps, resources and emotional regulation and motivation. © 2017 John Wiley & Sons Ltd.

  7. Pre- and Early-Postnatal Nutrition Modify Gene and Protein Expressions of Muscle Energy Metabolism Markers and Phospholipid Fatty Acid Composition in a Muscle Type Specific Manner in Sheep

    PubMed Central

    Hou, Lei; Kongsted, Anna H.; Ghoreishi, Seyed M.; Takhtsabzy, Tasnim K.; Friedrichsen, Martin; Hellgren, Lars I.; Kadarmideen, Haja N.; Vaag, Allan; Nielsen, Mette O.

    2013-01-01

    We previously reported that undernutrition in late fetal life reduced whole-body insulin sensitivity in adult sheep, irrespective of dietary exposure in early postnatal life. Skeletal muscle may play an important role in control of insulin action. We therefore studied a range of putative key muscle determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD) and biceps femoris (BF)) and in the cardiac muscle (ventriculus sinister cordis (VSC)) of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM) or 50% (LOW) of their energy and protein requirements during the last trimester of gestation. From day-3 postpartum to 6-months of age (around puberty), twin offspring received a high-carbohydrate-high-fat (HCHF) or a moderate-conventional (CONV) diet, whereafter all males were slaughtered. Females were subsequently raised on a moderate diet and slaughtered at 2-years of age (young adults). The only long-term consequences of fetal undernutrition observed in adult offspring were lower expressions of the insulin responsive glucose transporter 4 (GLUT4) protein and peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC1α) mRNA in BF, but increased PGC1α expression in VSC. Interestingly, the HCHF diet in early postnatal life was associated with somewhat paradoxically increased expressions in LD of a range of genes (but not proteins) related to glucose uptake, insulin signalling and fatty acid oxidation. Except for fatty acid oxidation genes, these changes persisted into adulthood. No persistent expression changes were observed in BF and VSC. The HCHF diet increased phospholipid ratios of n-6/n-3 polyunsaturated fatty acids in all muscles, even in adults fed identical diets for 1½ years. In conclusion, early postnatal, but not late gestation, nutrition had long-term consequences for a number of determinants of insulin action and metabolism in LD. Tissues other than muscle may account for reduced whole

  8. An Increased Dietary Supply of Medium-Chain Fatty Acids during Early Weaning in Rodents Prevents Excessive Fat Accumulation in Adulthood

    PubMed Central

    van de Heijning, Bert J. M.; Oosting, Annemarie; Kegler, Diane; van der Beek, Eline M.

    2017-01-01

    Medium-chain fatty acids (MCFA) are a directly and readily absorbed source of energy. Exposure early-in-life to increased MCFA levels might affect development and impact (lipid) metabolism later in life. We tested whether an increased MCFA intake early-in-life positively affects adult body composition and metabolic status when challenged by a western-style diet (WSD). Male offspring of C57Bl/6j mice and Wistar rats were fed a control diet (CTRL; 10 w% fat, 14% MCFA) or a medium-chain triglycerides (MCT) diet with 20% MCFA until postnatal (PN) day 42, whereupon animals were fed a WSD (10 w% fat) until PN day 98. Body composition was monitored by Dual Energy X-ray Absorptiometry (DEXA). In rats, glucose homeostasis was assessed by glucose tolerance test (GTT) and insulin tolerance test (ITT); in mice, the HOmeostasis Model Assessment of Insulin Resistance (HOMA-IR) was calculated. At autopsy on PN day 98, plasma lipid profiles, glucose, insulin, and adipokines were measured; organs and fat pads were collected and the adipocyte size distribution was analysed. Milk analysis in mice showed that the maternal MCT diet was not translated into milk, and pups were thus only exposed to high MCT levels from early weaning onward: PN day 16 until 42. Mice exposed to MCT showed 28% less fat accumulation vs. CTRL during WSD. The average adipocyte cell size, fasting plasma triglycerides (TG), and leptin levels were reduced in MCT mice. In rats, no effects were found on the adult body composition, but the adipocyte cell size distribution shifted towards smaller adipocytes. Particularly mice showed positive effects on glucose homeostasis and insulin sensitivity. Increased MCFA intake early-in-life protected against the detrimental effects of an obesogenic diet in adulthood. PMID:28632178

  9. Blood pressure in young adulthood and residential greenness in the early-life environment of twins.

    PubMed

    Bijnens, Esmée M; Nawrot, Tim S; Loos, Ruth Jf; Gielen, Marij; Vlietinck, Robert; Derom, Catherine; Zeegers, Maurice P

    2017-06-05

    Previous research shows that, besides risk factors in adult life, the early-life environment can influence blood pressure and hypertension in adults. However, the effects of residential traffic exposure and residential greenness in the early-life on blood pressure in young adulthood are currently unknown. Ambulatory (24-h) blood pressures of 278 twins (132 pairs) of the East Flanders Prospective Twins Study were obtained at the age of 18 to 25 years. Prenatal and adulthood residential addresses were geocoded and used to assign prenatal and postnatal traffic and greenness indicators. Mixed modelling was performed to investigate blood pressure in association with greenness while adjusting for potential confounding factors. Night-time systolic blood pressure was inversely associated with greenness at the residential address in twins living at the same address their entire life (non-movers, n = 97, 34.9%). An interquartile increase in residential greenness exposure (1000 m radius) was associated with a 3.59 mmHg (95% CI: -6.0 to -1.23; p = 0.005) lower adult night systolic blood pressure. Among twins who were living at a different address than their birth address at time of the measurement (n = 181, 65.1%), night-time blood pressure was inversely associated with residential surrounding greenness at adult age as well as with residential greenness in early-life. However after additional adjustment for residential greenness exposure in adulthood, only residential greenness exposure in early-life was significantly associated with night systolic blood pressure. While no significant effect of adult residential greenness with adult blood pressure was observed, while accounting for the early-life greenness exposure. Lower residential greenness in the early-life environment was independently associated with a higher adult blood pressure. This indicates that residential greenness has persistent effects on blood pressure.

  10. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation

    EPA Science Inventory

    The postnatal effects of in utero exposure to perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestation day (GD) 2 to GD 21; pregnant CD-1 mice were treated ...

  11. Comparative Analyses between Skeletal Muscle miRNAomes from Large White and Min Pigs Revealed MicroRNAs Associated with Postnatal Muscle Hypertrophy.

    PubMed

    Sheng, Xihui; Wang, Ligang; Ni, Hemin; Wang, Lixian; Qi, Xiaolong; Xing, Shuhan; Guo, Yong

    2016-01-01

    The molecular mechanism regulated by microRNAs (miRNAs) that underlies postnatal hypertrophy of skeletal muscle is complex and remains unclear. Here, the miRNAomes of longissimus dorsi muscle collected at five postnatal stages (60, 120, 150, 180, and 210 days after birth) from Large White (commercial breed) and Min pigs (indigenous breed of China) were analyzed by Illumina sequencing. We identified 734 miRNAs comprising 308 annotated miRNAs and 426 novel miRNAs, of which 307 could be considered pig-specific. Comparative analysis between two breeds suggested that 60 and 120 days after birth were important stages for skeletal muscle hypertrophy and intramuscular fat accumulation. A total of 263 miRNAs were significantly differentially expressed between two breeds at one or more developmental stages. In addition, the differentially expressed miRNAs between every two adjacent developmental stages in each breed were determined. Notably, ssc-miR-204 was significantly more highly expressed in Min pig skeletal muscle at all postnatal stages compared with its expression in Large White pig skeletal muscle. Based on gene ontology and KEGG pathway analyses of its predicted target genes, we concluded that ssc-miR-204 may exert an impact on postnatal hypertrophy of skeletal muscle by regulating myoblast proliferation. The results of this study will help in elucidating the mechanism underlying postnatal hypertrophy of skeletal muscle modulated by miRNAs, which could provide valuable information for improvement of pork quality and human myopathy.

  12. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood

    PubMed Central

    2012-01-01

    Background Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. Methods Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. Results A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2

  13. Tooth-bone morphogenesis during postnatal stages of mouse first molar development

    PubMed Central

    Lungová, Vlasta; Radlanski, Ralf J; Tucker, Abigail S; Renz, Herbert; Míšek, Ivan; Matalová, Eva

    2011-01-01

    The first mouse molar (M1) is the most common model for odontogenesis, with research particularly focused on prenatal development. However, the functional dentition forms postnatally, when the histogenesis and morphogenesis of the tooth is completed, the roots form and the tooth physically anchors into the jaw. In this work, M1 was studied from birth to eruption, assessing morphogenesis, proliferation and apoptosis, and correlating these with remodeling of the surrounding bony tissue. The M1 completed crown formation between postnatal (P) days 0–2, and the development of the tooth root was initiated at P4. From P2 until P12, cell proliferation in the dental epithelium reduced and shifted downward to the apical region of the forming root. In contrast, proliferation was maintained or increased in the mesenchymal cells of the dental follicle. At later stages, before tooth eruption (P20), cell proliferation suddenly ceased. This withdrawal from the cell cycle correlated with tooth mineralization and mesenchymal differentiation. Apoptosis was observed during all stages of M1 postnatal morphogenesis, playing a role in the removal of cells such as osteoblasts in the mandibular region and working together with osteoclasts to remodel the bone around the developing tooth. At more advanced developmental stages, apoptotic cells and bodies accumulated in the cell layers above the tooth cusps, in the path of eruption. Three-dimensional reconstruction of the developing postnatal tooth and bone indicates that the alveolar crypts form by resorption underneath the primordia, whereas the ridges form by active bone growth between the teeth and roots to form a functional complex. PMID:21418206

  14. Anger in the context of postnatal depression: An integrative review.

    PubMed

    Ou, Christine H; Hall, Wendy A

    2018-05-20

    Contrary to social constructions of new motherhood as a joyous time, mothers may experience postnatal depression and anger. Although postnatal depression has been thoroughly studied, the expression of maternal anger in the context of postnatal depression is conceptually unclear. This integrative review investigated the framing of anger in the context of postnatal depression. After undertaking a search of CINAHL, Ovid-Medline, PsycInfo, and Web of Science, we identified qualitative (n = 7) and quantitative (n = 17) papers that addressed maternal anger and postnatal depression. We analyzed the data by developing themes. Our review indicated that anger was a salient mood disturbance for some postnatally depressed women with themes integrated as: (i) anger accompanying depression, (ii) powerlessness as a component of depression and anger, and (iii) anger occurring as a result of expectations being violated. Our findings indicate that anger can coexist with women's postnatal depression. Anger can be expressed toward the self and toward children and family members with negative relationship effects. We recommend that health care providers and researchers consider anger in the context of postnatal mood disturbances. © 2018 Wiley Periodicals, Inc.

  15. Prenatal and early postnatal NOAEL-dose clothianidin exposure leads to a reduction of germ cells in juvenile male mice

    PubMed Central

    YANAI, Shogo; HIRANO, Tetsushi; OMOTEHARA, Takuya; TAKADA, Tadashi; YONEDA, Naoki; KUBOTA, Naoto; YAMAMOTO, Anzu; MANTANI, Youhei; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko

    2017-01-01

    Neonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates. Here, we investigated the male reproductive toxicity of prenatal and early postnatal exposure to CTD, because it is likely that developmental exposure more severely affects the testis compared to adults due to the absence of the blood-testis barrier. Pregnant C57BL/6 mice were given water gel blended with CTD (0, 10 or 50 mg/kg/day; no-observed-adverse-effect-level [NOAEL for mice]: 47.2 mg/kg/day) between gestational day 1 and 14 days post-partum. We then examined the testes of male offspring at postnatal day 14. The testis weights and the numbers of germ cells per seminiferous tubule were decreased in the CTD-50 group, and abnormal tubules containing no germ cells appeared. Nevertheless, the apoptotic cell number and proliferative activity were not significantly different between the control and CTD-exposed groups. There were no significant differences in the androgen-related parameters, such as the Leydig cell volume per testis, the Sertoli cell number and the tubule diameter. The present study is the first demonstration that in utero and lactational exposures to CTD at around the NOAEL for mice reduce the germ cell number, but our findings suggest that these exposures do not affect steroidogenesis in Leydig cells during prenatal or early postnatal life. PMID:28579575

  16. Early detection and treatment of postnatal depression in primary care.

    PubMed

    Davies, Bronwen R; Howells, Sarah; Jenkins, Meryl

    2003-11-01

    Postnatal depression has a relatively high incidence and gives rise to considerable morbidity. There is sound evidence supporting the use of the Edinburgh Postnatal Depression Scale as a screening tool for possible postnatal depression. This paper reports on a project developed by two health visitors and a community mental health nurse working in the United Kingdom. The aim of the project was to improve the early detection and treatment of postnatal depression in the population of the general practice to which they were attached. The health visitors screened for postnatal depression in the course of routine visits on four occasions during the first postpartum year. Women identified as likely to be suffering from postnatal depression were offered 'listening visits' as a first-line intervention, with referral on to the general practitioner and/or community mental health nurse if indicated. Data collected over 3 years showed that the project succeeded in its aim of enhancing early detection and treatment of postnatal depression. These findings replicate those of other studies. The data also showed that a substantial number of women were identified for the first time as likely to be suffering from postnatal depression at 12 months postpartum. Women screened for the first time at 12 months were at greater risk than those who had been screened earlier than this. Health visitors should screen for postnatal depression throughout the period of their contact with mothers, not solely in the immediate postnatal period. It is particularly important to screen women who, for whatever reason, were not screened when their child was younger. The knowledge and skills needed to use the Edinburgh Postnatal Depression Scale and provide first-line intervention and onward referral can be developed at practitioner level through close collaborative working.

  17. Determinants of postnatal care non-utilization among women in Nigeria.

    PubMed

    Somefun, Oluwaseyi Dolapo; Ibisomi, Latifat

    2016-01-11

    Although, there are several programs in place in Nigeria to ensure maternal and child health, maternal and neonatal mortality rates remain high with maternal mortality rates being 576/100,000 and neonatal mortality rates at 37/1000 live births (NDHS, 2013). While there are many studies on the utilization of maternal health services such as antenatal care and skilled delivery at birth, studies on postnatal care are limited. Therefore, the aim of this study is to examine the factors associated with the non-utilization of postnatal care among mothers in Nigeria using the Nigeria Demographic and Health Survey (NDHS) 2013. For analysis, the postnatal care uptake for 19,418 children born in the 5 years preceding the survey was considered. The dependent variable was a composite variable derived from a list of questions on postnatal care. A multinomial logistic regression model was applied to examine the adjusted and unadjusted determinants of non-utilization of postnatal care. Results from this study showed that 63% of the mothers of the 19,418 children did not utilize postnatal care services in the period examined. About 42% of the study population between 25 and 34 years did not utilize postnatal care and 61% of the women who did not utilize postnatal care had no education. Results from multinomial logistic regression show that antenatal care use, distance, education, place of delivery, region and wealth status are significantly associated with the non-utilization of postnatal care services. This study revealed the low uptake of postnatal care service in Nigeria. To increase mothers' utilization of postnatal care services and improve maternal and child health in Nigeria, interventions should be targeted at women in remote areas who don't have access to services and developing mobile clinics. In addition, it is crucial that steps should be taken on educating women. This would have a significant influence on their perceptions about the use of postnatal care services in

  18. Intestinal microbiota influence the early postnatal development of the enteric nervous system.

    PubMed

    Collins, J; Borojevic, R; Verdu, E F; Huizinga, J D; Ratcliffe, E M

    2014-01-01

    Normal gastrointestinal function depends on an intact and coordinated enteric nervous system (ENS). While the ENS is formed during fetal life, plasticity persists in the postnatal period during which the gastrointestinal tract is colonized by bacteria. We tested the hypothesis that colonization of the bowel by intestinal microbiota influences the postnatal development of the ENS. The development of the ENS was studied in whole mount preparations of duodenum, jejunum, and ileum of specific pathogen-free (SPF), germ-free (GF), and altered Schaedler flora (ASF) NIH Swiss mice at postnatal day 3 (P3). The frequency and amplitude of circular muscle contractions were measured in intestinal segments using spatiotemporal mapping of video recorded spontaneous contractile activity with and without exposure to lidocaine and N-nitro-L-arginine (NOLA). Immunolabeling with antibodies to PGP9.5 revealed significant abnormalities in the myenteric plexi of GF jejunum and ileum, but not duodenum, characterized by a decrease in nerve density, a decrease in the number of neurons per ganglion, and an increase in the proportion of myenteric nitrergic neurons. Frequency of amplitude of muscle contractions were significantly decreased in the jejunum and ileum of GF mice and were unaffected by exposure to lidocaine, while NOLA enhanced contractile frequency in the GF jejunum and ileum. These findings suggest that early exposure to intestinal bacteria is essential for the postnatal development of the ENS in the mid to distal small intestine. Future studies are needed to investigate the mechanisms by which enteric microbiota interact with the developing ENS. © 2013 John Wiley & Sons Ltd.

  19. Choline-acetyltransferase-like immunoreactivity in the organ of Corti of the rat during postnatal development.

    PubMed

    Merchán Pérez, A; Gil-Loyzaga, P; Eybalin, M; Fernández Mateos, P; Bartolomé, M V

    1994-10-14

    The mammalian cochlea receives efferent innervation from neurons located in the superior olivary complex. This efferent olivocochlear innervation is divided in two separate systems, lateral and medial, which mainly innervate afferent dendrites connected to inner hair cells and the cell body of outer hair cells, respectively. Besides other substances, lateral and medial efferent terminals of the adult cochlea use acetylcholine (ACh) as a neurotransmitter. In this study, we have used immunocytochemistry to detect the presence of choline acetyltransferase (ChAT), the synthesizing enzyme of ACh, in efferent olivocochlear terminals during the development of the rat. The appearance and distribution of immunoreactivity to ChAT has been studied in developing rat cochleas from birth (postnatal day 1, P1) to adulthood. Attention was paid to the temporal relationships between the expression of ChAT, the presence of other putative neuroactive substances, the onset of hearing and other developmental phenomena. Our results indicate that ChAT-like immunoreactivity is already present at birth (P1) in the region of inner hair cells, that it appears at P3 in the outer hair cell area and that it reaches an adult pattern of distribution by P15. ACh may thus be present early in the developing cochlea, before the onset of hearing, as it also occurs with other putative transmitters/modulators such as enkephalins, CGRP or GABA. It is suggested that ACh could be involved in the modulation of sound-evoked potentials as soon as they appear, and in the regulation of other developmental phenomena such as neurite outgrowth or synaptogenesis.

  20. Effects of prenatal binge-like ethanol exposure and maternal stress on postnatal morphological development of hippocampal neurons in rats.

    PubMed

    Jakubowska-Dogru, Ewa; Elibol, Birsen; Dursun, Ilknur; Yürüker, Sinan

    2017-10-01

    Alcohol is one of the most commonly used drugs of abuse negatively affecting human health and it is known as a potent teratogen responsible for fetal alcohol syndrome (FAS), which is characterized by cognitive deficits especially pronounced in juveniles but ameliorating in adults. Searching for the potential morphological correlates of these effects, in this study, we compared the course of developmental changes in the morphology of principal hippocampal neurons in fetal-alcohol (A group), intubated control (IC group), and intact control male rats (C group) over a protracted period of the first two postnatal months. Ethanol was administered to the pregnant Wistar dams intragastrically, throughout gestation days (GD) 7-20, at a total dose of 6g/kg/day resulting in the mean blood alcohol concentration (BAC) of 246.6±40.9mg/dl. Ten morphometric parameters of Golgi-stained hippocampal neurons (pyramidal and granule) from CA1, CA3, and DG areas were examined at critical postnatal days (PD): at birth (PD1), at the end of the brain growth spurt period (PD10), in juveniles (PD30), and in young adults (PD60). During postnatal development, the temporal pattern of morphometric changes was shown to be region-dependent with most significant alterations observed between PD1-30 in the CA region and between PD10-30 in the DG region. It was also parameter-dependent with the soma size (except for CA3 pyramids), number of primary dendrites, dendrite diameter, dendritic tortuosity and the branch angle demonstrating little changes, while the total dendritic field area, dendritic length, number of dendritic bifurcations, and spine density being highly increased in all hippocampal regions during the first postnatal month. Moderate ethanol intoxication and the maternal intubation stress during gestation, showed similar, transient effects on the neuron development manifested as a smaller soma size in granule cells, reduced dendritic parameters and lower spine density in pyramidal neurons

  1. Postnatal development of echolocation abilities in a bottlenose dolphin (Tursiops truncatus): temporal organization.

    PubMed

    Favaro, Livio; Gnone, Guido; Pessani, Daniela

    2013-03-01

    In spite of all the information available on adult bottlenose dolphin (Tursiops truncatus) biosonar, the ontogeny of its echolocation abilities has been investigated very little. Earlier studies have reported that neonatal dolphins can produce both whistles and burst-pulsed sounds just after birth and that early-pulsed sounds are probably a precursor of echolocation click trains. The aim of this research is to investigate the development of echolocation signals in a captive calf, born in the facilities of the Acquario di Genova. A set of 81 impulsive sounds were collected from birth to the seventh postnatal week and six additional echolocation click trains were recorded when the dolphin was 1 year old. Moreover, behavioral observations, concurring with sound production, were carried out by means of a video camera. For each sound we measured five acoustic parameters: click train duration (CTD), number of clicks per train, minimum, maximum, and mean click repetition rate (CRR). CTD and number of clicks per train were found to increase with age. Maximum and mean CRR followed a decreasing trend with dolphin growth starting from the second postnatal week. The calf's first head scanning movement was recorded 21 days after birth. Our data suggest that in the bottlenose dolphin the early postnatal weeks are essential for the development of echolocation abilities and that the temporal features of the echolocation click trains remain relatively stable from the seventh postnatal week up to the first year of life. © 2013 Wiley Periodicals, Inc.

  2. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu; Cooney, Craig A.; Melnyk, Stepan B.

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers ofmore » oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced

  3. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice. © 2013 Elsevier B.V. All rights reserved.

  4. Tracking of energy and nutrient intakes from adolescence to young adulthood: the experiences of the Young Hearts Project, Northern Ireland.

    PubMed

    Gallagher, A M; Robson, P J; Livingstone, M B E; Cran, G W; Strain, J J; Murray, L J; Savage, J M; Boreham, C A G

    2006-12-01

    To assess tracking of energy and nutrient intakes between adolescence and young adulthood. Longitudinal study of a random sample of adolescents (aged 15 years at baseline). The extent of tracking of dietary intakes (assessed by diet history) was investigated using weighted kappa statistics (kappa). Northern Ireland population survey. Adolescents who participated in the Young Hearts Project, Northern Ireland at age 15 years, and subsequently at young adulthood aged between 20 and 25 years (n=245 males, n=231 females). Despite overall increases in height and weight (both P<0.001), increases in body mass index in males (P<0.001) and body fatness in females (P<0.001), median reported intakes of energy (kJ kg(-1) day(-1)), carbohydrate (g day(-1)) and fat (g day(-1)) decreased (all P<0.001) over time. Expressed as nutrient densities (per MJ), diets at young adulthood were overall richer in thiamin, vitamin B6, total folate (all P<0.001), vitamin C (P<0.01) and vitamin D (P<0.05). Whereas the nutrient density of the males' diets decreased over time for calcium (P<0.05) and vitamin A (P<0.001), iron and riboflavin densities increased in the females' diet (P<0.001). Tracking of energy (MJ day(-1)) and nutrient intakes (expressed per MJ day(-1)) at the individual level was only poor to fair (all kappa<0.25), indicating substantial drift of subjects between the low, medium and high classes of intake with increasing age. These data suggest that individual dietary patterns exhibited at 15 years of age are unlikely to be predictive of dietary intakes at young adulthood.

  5. Sucrose-induced analgesia during early life modulates adulthood learning and memory formation.

    PubMed

    Nuseir, Khawla Q; Alzoubi, Karem H; Alabwaini, Jehad; Khabour, Omar F; Kassab, Manal I

    2015-06-01

    This study is aimed at examining the long-term effects of chronic pain during early life (postnatal day 0 to 8weeks), and intervention using sucrose, on cognitive functions during adulthood in rats. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution or paracetamol was administered for analgesia before the paw prick. Control groups include tactile stimulation to account for handling and touching the paws, and sucrose alone was used. All treatments were started on day one of birth and continued for 8weeks. At the end of the treatments, behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM), as well as pain threshold via foot-withdrawal response to a hot plate apparatus. Additionally, the hippocampus was dissected, and blood was collected. Levels of neurotrophins (BDNF, IGF-1 and NT-3) and endorphins were assessed using ELISA. The results show that chronic noxious stimulation resulted in comparable foot-withdrawal latency between noxious and tactile groups. On the other hand, pretreatment with sucrose or paracetamol increased pain threshold significantly both in naive rats and noxiously stimulated rats (P<0.05). Chronic pain during early life impaired short-term memory, and sucrose treatment prevented such impairment (P<0.05). Sucrose significantly increased serum levels of endorphin and enkephalin. Chronic pain decreased levels of BDNF in the hippocampus and this decrease was prevented by sucrose and paracetamol treatments. Hippocampal levels of NT-3 and IGF-1 were not affected by any treatment. In conclusion, chronic pain induction during early life induced short memory impairment, and pretreatment with sucrose prevented this impairment via mechanisms that seem to involve BDNF. As evident in the results, sucrose, whether alone or in the presence of pre-noxious stimulation, increases pain threshold in such circumstances; most likely via a mechanism that involves an increase in endogenous

  6. Prenatal and postnatal mothering by diesel exhaust PM2.5-exposed dams differentially program mouse energy metabolism.

    PubMed

    Chen, Minjie; Liang, Shuai; Zhou, Huifen; Xu, Yanyi; Qin, Xiaobo; Hu, Ziying; Wang, Xiaoke; Qiu, Lianglin; Wang, Wanjun; Zhang, Yuhao; Ying, Zhekang

    2017-01-18

    Obesity is one of the leading threats to global public health. It is consequent to abnormal energy metabolism. Currently, it has been well established that maternal exposure to environmental stressors that cause inappropriate fetal development may have long-term adverse effects on offspring energy metabolism in an exposure timing-dependent manner, known as developmental programming of health and diseases paradigm. Rapidly increasing evidence has indicated that maternal exposure to ambient fine particles (PM 2.5 ) correlates to abnormal fetal development. In the present study, we therefore assessed whether maternal exposure to diesel exhaust PM 2.5 (DEP), the major component of ambient PM 2.5 in urban areas, programs offspring energy metabolism, and further examined how the timing of exposure impacts this programming. The growth trajectory of offspring shows that although prenatal maternal exposure to DEP did not impact the birth weight of offspring, it significantly decreased offspring body weight from postnatal week 2 until the end of observation. This weight loss effect of prenatal maternal exposure to DEP coincided with decreased food intake but not alteration in brown adipose tissue (BAT) morphology. The hypophagic effect of prenatal maternal exposure to DEP was in concord with decreased hypothalamic expression of an orexigenic peptide NPY, suggesting that the prenatal maternal exposure to DEP impacts offspring energy balance primarily through programming of food intake. Paradoxically, the reduced body weight resulted from prenatal maternal exposure to DEP was accompanied by increased mass of epididymal adipose tissue, which was due to hyperplasia as morphological analysis did not observe any hypertrophy. In direct contrast, the postnatal mothering by DEP-exposed dams increased offspring body weight during lactation and adulthood, paralleled by markedly increased fat accumulation and decreased UCP1 expression in BAT but not alteration in food intake. The weight

  7. Long-Term Effects of Neonatal Methamphetamine Exposure on Cognitive Function in Adolescent Mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2011-01-01

    Exposure to methamphetamine during brain development impairs cognition in children and adult rodents. In mice, these impairments are greater in females than males. Adult female, but not male, mice show impairments in novel location recognition following methamphetamine exposure during brain development. In contrast to adulthood, little is known about the potential effects of methamphetamine exposure on cognition in adolescent mice. As adolescence is an important time of development and is relatively understudied, the aim of the current study was to examine potential long-term effects of neonatal methamphetamine exposure on behavior and cognition during adolescence. Male and female mice were exposed to methamphetamine (5 mg/kg) or saline once a day from postnatal day 11-20, the period of rodent hippocampal development. Behavioral and cognitive function was assessed during adolescence beginning on postnatal day 30. During the injection period, methamphetamine-exposed mice gained less weight on average compared to saline-exposed mice. In both male and female mice, methamphetamine exposure significantly impaired novel object recognition and there was a trend towards impaired novel location recognition. Anxiety-like behavior, sensorimotor gating, and contextual and cued fear conditioning were not affected by methamphetamine exposure. Thus, neonatal methamphetamine exposure affects cognition in adolescence and unlike in adulthood equally affects male and female mice. PMID:21238498

  8. Postnatal experiences and support needs of first-time mothers in Singapore: a descriptive qualitative study.

    PubMed

    Ong, Shu Fen; Chan, Wai-Chi Sally; Shorey, Shefaly; Chong, Yap Seng; Klainin-Yobas, Piyanee; He, Hong-Gu

    2014-06-01

    to explore first-time mothers' postnatal experiences and support needs after hospital discharge in Singapore. a descriptive qualitative study was adopted in this study. Participants were recruited from a public tertiary hospital in Singapore. Semi-structured interviews were used for data collection and the interview transcripts were analysed using thematic analysis. a purposive sample of 13 English-speaking first-time mothers of age 21 years and above were interviewed within 7-11 days after their hospital discharge. five themes emerged from the thematic analysis: (1) mixed emotions: participants experienced anxiety, labile emotions and stress over infant care; (2) breast feeding concerns: low breast milk supply and physical discomfort; (3) social support: many participants had sufficient social support from family members except their husbands; (4) cultural postnatal practice: majority of participants followed traditional postnatal practices of their culture; and (5) professional support needs: participants needed more information, access to health care services and continuity of care. this study highlighted the importance of providing professional postnatal care to first-time mothers after their discharge from the hospital. Future studies are needed to explore new practices that will enhance the quality of maternity health care and promote positive maternal experiences and well-being in Singapore. there is a need for more innovative advertisement to promote antenatal classes and improve attendance rate. Health care providers should assist women in establishing proper breast feeding techniques. Alternative models of care in the postnatal period, such as midwifery-led care, could facilitate a more woman-centred approach. Postnatal home visits may be considered within the first week of the mothers' hospital discharge, which may be legislated by public health care policies. © 2013 Elsevier Ltd. All rights reserved.

  9. Disturbances in morning cortisol secretion in association with maternal postnatal depression predict subsequent depressive symptomatology in adolescents.

    PubMed

    Halligan, Sarah L; Herbert, Joe; Goodyer, Ian; Murray, Lynne

    2007-07-01

    We have previously reported higher and more variable salivary morning cortisol in 13-year-old adolescents whose mothers were depressed in the postnatal period, compared with control group adolescents whose mothers did not develop postnatal depression (PND). This observation suggested a biological mechanism by which intrafamilial risk for depressive disorder may be transmitted. In the current article, we examined whether the cortisol disturbances observed at 13 years could predict depressive symptomatology in adolescents at 16 years of age. We measured self-reported depressive symptoms in 16-year-old adolescents who had (n = 48) or had not (n = 39) been exposed to postnatal maternal depression and examined their prediction by morning and evening cortisol indices obtained via 10 days of salivary collections at 13 years. Elevated morning cortisol secretion at 13 years, and particularly the maximum level recorded over 10 days of collection, predicted elevated depressive symptoms at 16 years over and above 13-year depressive symptom levels and other possible confounding factors. Morning cortisol secretion mediated an association between maternal PND and symptomatology in 16-year-old offspring. Alterations in steroid secretion observed in association with maternal PND may provide a mechanism by which risk for depression is transmitted from mother to offspring.

  10. Preservation of chromosomal integrity in murine spermatozoa derived from gonocytes and spermatogonial stem cells surviving prenatal and postnatal exposure to γ-rays in mice.

    PubMed

    Watanabe, Hiroyuki; Kohda, Atsushi; Komura, Jun-Ichiro; Tateno, Hiroyuki

    2017-07-01

    Pre- and postnatal male mice were acutely (659-690 mGy/min) and continuously (0.303 mGy/min) exposed to 2 Gy γ-rays to evaluate spermatogenic potential and chromosome damage in their germ cells as adults. Acute irradiation on Days 15.5, 16.5, and 17.5 post-coitus affected testicular development, as a result of massive quiescent gonocyte loss; the majority of the seminiferous tubules in these testes were devoid of germ cells. Acute irradiation on Days 18.5 and 19.5 post-coitus had less effect on testicular development and spermatogenesis, even though germ cells were quiescent gonocytes on these days. Adverse effects on testicular development and spermatogenesis were observed following continuous irradiation between Days 14.5 and 19.5 post-coitus. Exposure to acute and continuous postnatal irradiation after the differentiation of spermatogonial stem cells and spermatogonia resulted in nearly all of the seminiferous tubules exhibiting spermatogenesis. Neither acute nor continuous irradiation was responsible for the increased number of multivalent chromosomes in primary-spermatocyte descendents of the exposed gonocytes. In contrast, a significant increase in cells with multivalent chromosomes was observed following acute irradiation on Days 4 and 11 post-partum. No significant increases in unstable structural chromosomal aberrations or aneuploidy in spermatozoa were observed, regardless of cell stage at irradiation or the radiation dose-rate. Thus, murine germ cells that survive prenatal and postnatal irradiation can restore spermatogenesis and produce viable spermatozoa without chromosome damage. These findings may provide a better understanding of reproductive potential following accidental, environmental, or therapeutic irradiation during the prenatal and postnatal periods in humans. © 2017 Wiley Periodicals, Inc.

  11. Fruit and vegetable consumption in adolescence and early adulthood and risk of breast cancer: population based cohort study.

    PubMed

    Farvid, Maryam S; Chen, Wendy Y; Michels, Karin B; Cho, Eunyoung; Willett, Walter C; Eliassen, A Heather

    2016-05-11

    To evaluate the association between fruit and vegetable intake during adolescence and early adulthood and risk of breast cancer. Prospective cohort study. Health professionals in the United States. 90 476 premenopausal women aged 27-44 from the Nurses' Health Study II who completed a questionnaire on diet in 1991 as well as 44 223 of those women who completed a questionnaire about their diet during adolescence in 1998. Incident cases of invasive breast cancer, identified through self report and confirmed by pathology report. There were 3235 cases of invasive breast cancer during follow-up to 2013. Of these, 1347 cases were among women who completed a questionnaire about their diet during adolescence (ages 13-18). Total fruit consumption during adolescence was associated with a lower risk of breast cancer. The hazard ratio was 0.75 (95% confidence interval 0.62 to 0.90; P=0.01 for trend) for the highest (median intake 2.9 servings/day) versus the lowest (median intake 0.5 serving/day) fifth of intake. The association for fruit intake during adolescence was independent of adult fruit intake. There was no association between risk and total fruit intake in early adulthood and total vegetable intake in either adolescence or early adulthood. Higher early adulthood intake of fruits and vegetables rich in α carotene was associated with lower risk of premenopausal breast cancer. The hazard ratio was 0.82 (0.70 to 0.96) for the highest fifth (median intake 0.5 serving/day) versus the lowest fifth (median intake 0.03 serving/day) intake. The association with adolescent fruit intake was stronger for both estrogen and progesterone receptor negative cancers than estrogen and progesterone receptor positive cancers (P=0.02 for heterogeneity). For individual fruits and vegetables, greater consumption of apple, banana, and grapes during adolescence and oranges and kale during early adulthood was significantly associated with a reduced risk of breast cancer. Fruit juice intake

  12. Long-term effects of methamphetamine exposure in adolescent mice on the future ovarian reserve in adulthood.

    PubMed

    Wang, Lan; Qu, Guoqiang; Dong, Xiyuan; Huang, Kai; Kumar, Molly; Ji, Licheng; Wang, Ya; Yao, Junning; Yang, Shulin; Wu, Ruxing; Zhang, Hanwang

    2016-02-03

    Currently, there is an increasing prevalence of adolescent exposure to methamphetamine (MA). However, there is a paucity of information concerning the long-term impact of early exposure to MA upon female fertility and ovarian reserve. The aim of this study was to investigate the effect of long-term MA exposure in adolescents on their ovarian reserve in adulthood. Adolescent mice received intraperitoneal injections of MA (5mg/kg, three times per week) or saline from the 21st postnatal day for an 8 week period. Morphological, histological, biochemical, hormonal and ethological parameters were evaluated. An impaired ovarian reserve and vitality was found in the group treated with MA, manifesting in morphological-apparent mitochondrial damage, an activated apoptosis pathway in the ovarian tissue, a downward expression of ovarian anti-Mullerian hormone (AMH), a decreased number of primordial and growing follicles, an increased number of atretic follicles, and a depressed secretion of AMH, estradiol and progesterone from granulosa cells. However, no significant difference was noticed regarding the estrous cycle, the mating ability and the fertility outcome in the reproductive age of the mice after a period of non-medication. The present results confirmed that a long term exposure to methamphetamine in adolescent mice does have an adverse impact on their ovarian reserve, which indicates that such an early abuse of MA might influence the fertility lifespan of the female mouse. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Risk factors for antenatal depression, postnatal depression and parenting stress

    PubMed Central

    Leigh, Bronwyn; Milgrom, Jeannette

    2008-01-01

    Background Given that the prevalence of antenatal and postnatal depression is high, with estimates around 13%, and the consequences serious, efforts have been made to identify risk factors to assist in prevention, identification and treatment. Most risk factors associated with postnatal depression have been well researched, whereas predictors of antenatal depression have been less researched. Risk factors associated with early parenting stress have not been widely researched, despite the strong link with depression. The aim of this study was to further elucidate which of some previously identified risk factors are most predictive of three outcome measures: antenatal depression, postnatal depression and parenting stress and to examine the relationship between them. Methods Primipara and multiparae women were recruited antenatally from two major hoitals as part of the beyondblue National Postnatal Depression Program [1]. In this subsidiary study, 367 women completed an additional large battery of validated questionnaires to identify risk factors in the antenatal period at 26–32 weeks gestation. A subsample of these women (N = 161) also completed questionnaires at 10–12 weeks postnatally. Depression level was measured by the Beck Depression Inventory (BDI). Results Regression analyses identified significant risk factors for the three outcome measures. (1). Significant predictors for antenatal depression: low self-esteem, antenatal anxiety, low social support, negative cognitive style, major life events, low income and history of abuse. (2). Significant predictors for postnatal depression: antenatal depression and a history of depression while also controlling for concurrent parenting stress, which was a significant variable. Antenatal depression was identified as a mediator between seven of the risk factors and postnatal depression. (3). Postnatal depression was the only significant predictor for parenting stress and also acted as a mediator for other risk factors

  14. Risk factors for antenatal depression, postnatal depression and parenting stress.

    PubMed

    Leigh, Bronwyn; Milgrom, Jeannette

    2008-04-16

    Given that the prevalence of antenatal and postnatal depression is high, with estimates around 13%, and the consequences serious, efforts have been made to identify risk factors to assist in prevention, identification and treatment. Most risk factors associated with postnatal depression have been well researched, whereas predictors of antenatal depression have been less researched. Risk factors associated with early parenting stress have not been widely researched, despite the strong link with depression. The aim of this study was to further elucidate which of some previously identified risk factors are most predictive of three outcome measures: antenatal depression, postnatal depression and parenting stress and to examine the relationship between them. Primipara and multiparae women were recruited antenatally from two major hoitals as part of the beyondblue National Postnatal Depression Program 1. In this subsidiary study, 367 women completed an additional large battery of validated questionnaires to identify risk factors in the antenatal period at 26-32 weeks gestation. A subsample of these women (N = 161) also completed questionnaires at 10-12 weeks postnatally. Depression level was measured by the Beck Depression Inventory (BDI). Regression analyses identified significant risk factors for the three outcome measures. (1). Significant predictors for antenatal depression: low self-esteem, antenatal anxiety, low social support, negative cognitive style, major life events, low income and history of abuse. (2). Significant predictors for postnatal depression: antenatal depression and a history of depression while also controlling for concurrent parenting stress, which was a significant variable. Antenatal depression was identified as a mediator between seven of the risk factors and postnatal depression. (3). Postnatal depression was the only significant predictor for parenting stress and also acted as a mediator for other risk factors. Risk factor profiles for

  15. Postnatal growth hormone deficiency in growing rats causes marked decline in the activity of spinal cord acetylcholinesterase but not butyrylcholinesterase.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. Antenatal risk factors for postnatal depression: a large prospective study.

    PubMed

    Milgrom, Jeannette; Gemmill, Alan W; Bilszta, Justin L; Hayes, Barbara; Barnett, Bryanne; Brooks, Janette; Ericksen, Jennifer; Ellwood, David; Buist, Anne

    2008-05-01

    This study measured antenatal risk factors for postnatal depression in the Australian population, both singly and in combination. Risk factor data were gathered antenatally and depressive symptoms measured via the beyondblue National Postnatal Depression Program, a large prospective cohort study into perinatal mental health, conducted in all six states of Australia, and in the Australian Capital Territory, between 2002 and 2005. Pregnant women were screened for symptoms of postnatal depression at antenatal clinics in maternity services around Australia using the Edinburgh Postnatal Depression Scale (EPDS) and a psychosocial risk factor questionnaire that covered key demographic and psychosocial information. From a total of 40,333 participants, we collected antenatal EPDS data from 35,374 women and 3144 of these had a score >12 (8.9%). Subsequently, efforts were made to follow-up 22,968 women with a postnatal EPDS. Of 12,361 women who completed postnatal EPDS forms, 925 (7.5%) had an EPDS score >12. Antenatal depression together with a prior history of depression and a low level of partner support were the strongest independent antenatal predictors of a postnatal EPDS score >12. The two main limitations of the study were the use of the EPDS (a self-report screening tool) as the measure of depressive symptoms rather than a clinical diagnosis, and the rate of attrition between antenatal screening and the collection of postnatal follow-up data. Antenatal depressive symptoms appear to be as common as postnatal depressive symptoms. Previous depression, current depression/anxiety, and low partner support are found to be key antenatal risk factors for postnatal depression in this large prospective cohort, consistent with existing meta-analytic surveys. Current depression/anxiety (and to some extent social support) may be amenable to change and can therefore be targeted for intervention.

  17. Expression of transcripts for fibroblast growth factor 18 and its possible receptors during postnatal dentin formation in rat molars.

    PubMed

    Baba, Otto; Ota, Masato S; Terashima, Tatsuo; Tabata, Makoto J; Takano, Yoshiro

    2015-05-01

    Fibroblast growth factors (FGFs) regulate the proliferation and differentiation of various cells via their respective receptors (FGFRs). During the early stages of tooth development in fetal mice, FGFs and FGFRs have been shown to be expressed in dental epithelia and mesenchymal cells at the initial stages of odontogenesis and to regulate cell proliferation and differentiation. However, little is known about the expression patterns of FGFs in the advanced stages of tooth development. In the present study, we focused on FGF18 expression in the rat mandibular first molar (M1) during the postnatal crown and root formation stages. FGF18 signals by RT-PCR using cDNAs from M1 were very weak at postnatal day 5 and were significantly up-regulated at days 7, 9 and 15. Transcripts were undetectable by in situ hybridization (ISH) but could be detected by in situ RT-PCR in the differentiated odontoblasts and cells of the sub-odontoblastic layer in both crown and root portions of M1 at day 15. The transcripts of FGFR2c and FGFR3, possible candidate receptors of FGF18, were detected by RT-PCR and ISH in differentiated odontoblasts throughout postnatal development. These results suggest the continual involvement of FGF18 signaling in the regulation of odontoblasts during root formation where it may contribute to dentin matrix formation and/or mineralization.

  18. Postnatal MK-801 treatment of female rats impairs acquisition of working memory, but not reference memory in an eight-arm radial maze; no beneficial effects of enriched environment.

    PubMed

    Nozari, Masoumeh; Mansouri, Farshad Alizadeh; Shabani, Mohammad; Nozari, Hojat; Atapour, Nafiseh

    2015-07-01

    Memory impairment has been documented in MK-801 (NMDA receptor antagonist) model of schizophrenia, but less is known on the rescue and/or differential effects of MK-801 on short- and long-term memories. We determined the effects of MK-801 treatment and/or enriched environment (EE) on acquisition of reference and working memory in developing rats. Female Wistar rats were injected with MK-801 (1 mg/kg) from postnatal days (P) 6-10. Task acquisition, working memory error (WME), and reference memory error (RME) were assessed in an eight-arm radial maze task. Behavioral performance of rats was also tested in an open field test before (P35-P40) and after (P65-P70) radial maze training to assess anxiety and locomotion. EE was applied from birth up to the end of experiments. MK-801 treatment did not influence task acquisition in the radial maze; however, by the end of training, MK-801-treated rats made significantly more WME, but not RME, compared to control rats. Ratio of WME to total error was also significantly higher in MK-801 group. EE prevented MK-801-associated behaviors in the open field but did not exert beneficial effects on working memory deficit in the radial maze task. EE per se affected behavioral performance of rats only in the open field test. Our results suggest that postnatal MK-801 treatment differentially affects working and reference memory in a young brain. Anxiety and hyperactivity associated with MK-801 are observed more severely in adulthood. Dissociation of the positive effects of EE may suggest selective modification of distinct pathways.

  19. Immunization of neonatal mice with LAMP/p55 HIV gag DNA elicits robust immune responses that last to adulthood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonhez Rigato, Paula; Maciel, Milton; Goldoni, Adriana Leticia

    2010-10-10

    Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses,more » as measured by the breadth of the Gag peptide-specific IFN-{gamma}, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric LAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory.« less

  20. Exposure Cessation During Adulthood Did Not Prevent Immunotoxicity Caused by Developmental Exposure to Low-Level Trichloroethylene in Drinking Water.

    PubMed

    Gilbert, Kathleen M; Bai, Shasha; Barnette, Dustyn; Blossom, Sarah J

    2017-06-01

    Exposure to the water pollutant trichloroethylene (TCE) can promote autoimmunity in both humans and rodents. Using a mouse model we have shown that chronic adult exposure to TCE at 500 μg/ml in drinking water generates autoimmune hepatitis in female MRL+/+ mice. There is increasing evidence that developmental exposure to certain chemicals can be more toxic than adult exposure. This study was designed to test whether exposure to a much lower level of TCE (0.05 μg/ml) during gestation, lactation, and early life generated autoimmunity similar to that found following adult exposure to higher concentrations of TCE. When female MRL+/+ mice were examined at postnatal day (PND) 259 we found that developmental/early life exposure [gestational day 0 to PND 154] to TCE at a concentration 10 000 fold lower than that shown to be effective for adult exposure triggered autoimmune hepatitis. This effect was observed despite exposure cessation at PND 154. In concordance with the liver pathology, female MRL+/+ exposed during development and early life to TCE (0.05 or 500 μg/ml) generated a range of antiliver antibodies detected by Western blotting. Expression of proinflammatory cytokines by CD4+ T cells was also similarly observed at PND 259 in the TCE-exposed mice regardless of concentration. Thus, exposure to TCE at approximately environmental levels from gestational day 0 to PND 154 generated tissue pathology and CD4+ T cell alterations that required higher concentrations if exposure was limited to adulthood. TCE exposure cessation at PND 154 did not prevent the immunotoxicity. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. The influence of early postnatal nutrition on retinopathy of prematurity in extremely low birth weight infants.

    PubMed

    Porcelli, Peter J; Weaver, R Grey

    2010-06-01

    Retinopathy of prematurity(ROP) is the most common serious ophthalmic disease in preterm infants. Human milk may provide a protective effect for ROP; however, beneficial effects of human milk preclude randomized trials. Therefore, we conducted a retrospective analysis comparing early postnatal nutrition with ROP development. Evaluate relationship between early postnatal nutriture and ROP surgery. Nutrition data was collected for inborn AGA infants, BW 700-1000 g. ROP surgery was the primary outcome variable. A single pediatric ophthalmologist supervised examinations. All infants received triweekly IM vitamin A as chronic lung disease prophylaxis (Tyson: NEJM, 1999). BW and gestational age were 867+/-85 g and 26.3+/-1.2 weeks (n=77, mean+/-1SD). ROP surgery infants(n=11) received more parenteral nutrition, 1648 mL, and less human milk, 13.8 mL/kg-day, and vitamin E, 1.4 mg/kg-day, during the second postnatal week. Human milk was a negative predictor for ROP surgery, odds ratio=0.94. Both groups met vitamin A recommendations; however, 74% was administered via IM injections. Neither group met vitamin E recommendations. Human milk feeding, parenteral nutrition volume and vitamin E intake were predictors for ROP surgery. IM vitamin A injections provided the majority of vitamin A; vitamin E administration was insufficient. Improving human milk feeding rates and vitamin dosing options may affect ROP surgery rates. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Postnatal development and behavior effects of in-utero exposure of rats to radiofrequency waves emitted from conventional WiFi devices.

    PubMed

    Othman, Haifa; Ammari, Mohamed; Rtibi, Kaïs; Bensaid, Noura; Sakly, Mohsen; Abdelmelek, Hafedh

    2017-06-01

    The present work investigated the effects of prenatal exposure to radiofrequency waves of conventional WiFi devices on postnatal development and behavior of rat offspring. Ten Wistar albino pregnant rats were randomly assigned to two groups (n=5). The experimental group was exposed to a 2.45GHz WiFi signal for 2h a day throughout gestation period. Control females were subjected to the same conditions as treated group without applying WiFi radiations. After delivery, the offspring was tested for physical and neurodevelopment during its 17 postnatal days (PND), then for anxiety (PND 28) and motricity (PND 40-43), as well as for cerebral oxidative stress response and cholinesterase activity in brain and serum (PND 28 and 43). Our main results showed that the in-utero WiFi exposure impaired offspring neurodevelopment during the first seventeen postnatal days without altering emotional and motor behavior at adult age. Besides, prenatal WiFi exposure induced cerebral oxidative stress imbalance (increase in malondialdehyde level (MDA) and hydrogen peroxide (H 2 O 2 ) levels and decrease in catalase (CAT) and superoxide dismutase (SOD) activities) at 28 but not 43days old, also the exposure affected acethylcolinesterase activity at both cerebral and seric levels. Thus, the current study revealed that maternal exposure to WiFi radiofrequencies led to various adverse neurological effects in the offspring by affecting neurodevelopment, cerebral stress equilibrium and cholinesterase activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Social Enrichment during Postnatal Development Induces Transgenerational Effects on Emotional and Reproductive Behavior in Mice

    PubMed Central

    Curley, James P.; Davidson, Stephanie; Bateson, Patrick; Champagne, Frances A.

    2009-01-01

    Across species there is evidence that the quality of the early social environment can have a profound impact on neurobiology and behavior. In the present study we explore the effect of communal rearing conditions (three dams with three litters per cage) during the postnatal period on offspring (F1) and grand-offspring (F2) anxiety-like and maternal behavior in Balb/c mice. Females rearing pups in communal nests exhibited increased levels of postpartum maternal care and communal rearing was found to abolish sex-differences in weaning weights. In adulthood, communally reared offspring were observed to display reduced anxiety-like behavior when placed in a novel environment. When rearing their own offspring under standard conditions, communally reared females demonstrated higher levels of motivation to retrieve pups, built higher quality nests, and exhibited higher levels of postpartum care compared to standard reared females. When exposed to an intruder male, communally reared females were more subordinate and less aggressive. F2 offspring of communally reared females were observed to engage in reduced anxiety-like behavior, have larger litter sizes and an increased frequency of nursing on PND 1. Analysis of neuropeptide receptor levels suggest that a communal rearing environment may exert sustained effects on behavior through modification of oxytocin and vasopressin (V1a) receptor densities. Though Balb-C mice are often considered “socially-incompetent” and high in anxiety-like behavior, our findings suggest that through enrichment of the postnatal environment, these behavioral and neuroendocrine deficits may be attenuated both within and across generations. PMID:19826497

  4. Germ stem cells are active in postnatal mouse ovary under physiological conditions

    PubMed Central

    Guo, Kun; Li, Chao-hui; Wang, Xin-yi; He, Da-jian; Zheng, Ping

    2016-01-01

    STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5–6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT–PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously

  5. Dietary supplements for preventing postnatal depression.

    PubMed

    Miller, Brendan J; Murray, Linda; Beckmann, Michael M; Kent, Terrence; Macfarlane, Bonnie

    2013-10-24

    Postnatal depression is a medical condition that affects many women and the development of their infants. There is a lack of evidence for treatment and prevention strategies that are safe for mothers and infants. Certain dietary deficiencies in a pregnant or postnatal woman's diet may cause postnatal depression. By correcting these deficiencies postnatal depression could be prevented in some women. Specific examples of dietary supplements aimed at preventing postnatal depression include: omega-3 fatty acids, iron, folate, s-adenosyl-L-methionine, cobalamin, pyridoxine, riboflavin, vitamin D and calcium. To assess the benefits of dietary supplements for preventing postnatal depression either in the antenatal period, postnatal period, or both. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 April 2013). Randomised controlled trials, involving women who were pregnant or who had given birth in the previous six weeks, who were not depressed or taking antidepressants at the commencement of the trials. The trials could use as intervention any dietary supplementation alone or in combination with another treatment compared with any other preventive treatment, or placebo, or standard clinical care. Two review authors independently assessed trials for inclusion and assessed the risk of bias for the two included studies. Two review authors extracted data and the data were checked for accuracy. We included two randomised controlled trials.One trial compared oral 100 microgram (µg) selenium yeast tablets with placebo, taken from the first trimester until birth. The trial randomised 179 women but outcome data were only provided for 85 women. Eighty-three women were randomised to each arm of the trial. Sixty-one women completed the selenium arm, 44 of whom completed an Edinburgh Postnatal Depression Scale (EPDS). In the placebo arm, 64 women completed the trial, 41 of whom completed an EPDS. This included study (n = 85) found selenium had an effect

  6. Postnatal Depression and Infant Health Practices among High-Risk Women

    ERIC Educational Resources Information Center

    Zajicek-Farber, Michaela L.

    2009-01-01

    Women's postnatal depressive symptoms have been associated with many adverse outcomes for children. The current study examined the frequency association with relative risk between postnatal depressive symptoms and mothers' use of preventative infant health practices. The study used the Edinburgh Postnatal Depression Scale (EPDS) and Parental…

  7. Crying babies, tired mothers - challenges of the postnatal hospital stay: an interpretive phenomenological study

    PubMed Central

    2010-01-01

    Background According to an old Swiss proverb, "a new mother lazing in childbed is a blessing to her family". Today mothers rarely enjoy restful days after birth, but enter directly into the challenge of combining baby- and self-care. They often face a combination of infant crying and personal tiredness. Yet, routine postnatal care often lacks effective strategies to alleviate these challenges which can adversely affect family health. We explored how new mothers experience and handle postnatal infant crying and their own tiredness in the context of changing hospital care practices in Switzerland. Methods Purposeful sampling was used to enroll 15 mothers of diverse parity and educational backgrounds, all of who had given birth to a full term healthy neonate. Using interpretive phenomenology, we analyzed interview and participant observation data collected during the postnatal hospital stay and at 6 and 12 weeks post birth. This paper reports on the postnatal hospital experience. Results Women's personal beliefs about beneficial childcare practices shaped how they cared for their newborn's and their own needs during the early postnatal period in the hospital. These beliefs ranged from an infant-centered approach focused on the infant's development of a basic sense of trust to an approach that balanced the infants' demands with the mother's personal needs. Getting adequate rest was particularly difficult for mothers striving to provide infant-centered care for an unsettled neonate. These mothers suffered from sleep deprivation and severe tiredness unless they were able to leave the baby with health professionals for several hours during the night. Conclusion New mothers often need permission to attend to their own needs, as well as practical support with childcare to recover from birth especially when neonates are fussy. To strengthen family health from the earliest stage, postnatal care should establish conditions which enable new mothers to balance the care of their

  8. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs.

    PubMed

    Muñoz-González, Sara; Perez-Simó, Marta; Muñoz, Marta; Bohorquez, José Alejandro; Rosell, Rosa; Summerfield, Artur; Domingo, Mariano; Ruggli, Nicolas; Ganges, Llilianne

    2015-07-09

    Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.

  9. Dietary zinc supplementation throughout pregnancy protects against fetal dysmorphology and improves postnatal survival after prenatal ethanol exposure in mice.

    PubMed

    Summers, Brooke L; Rofe, Allan M; Coyle, Peter

    2009-04-01

    We have previously demonstrated that ethanol teratogenicity is associated with metallothionein-induced fetal zinc (Zn) deficiency, and that maternal subcutaneous Zn treatment given with ethanol in early pregnancy prevents fetal abnormalities and spatial memory impairments in mice. Here we investigated whether dietary Zn supplementation throughout pregnancy can also prevent ethanol-related dysmorphology. Pregnant mice were injected with saline or 25% ethanol (0.015 ml/g intraperitoneally at 0 and 4 hours) on gestational day (GD) 8 and fed either a control (35 mg Zn/kg) or a Zn-supplemented diet (200 mg Zn/kg) from GD 0 to 18. Fetuses from the saline, saline + Zn, ethanol and ethanol + Zn groups were assessed for external birth abnormalities on GD 18. In a separate cohort of mice, postnatal growth and survival of offspring from these treatment groups were examined from birth until postnatal day 60. Fetuses from dams treated with ethanol alone in early pregnancy had a significantly greater incidence of physical abnormalities (26%) compared to those from the saline (10%), saline + Zn (9%), or ethanol + Zn (12%) groups. The incidence of abnormalities in ethanol + Zn-supplemented fetuses was not different from saline-treated fetuses. While ethanol exposure did not affect the number of fetal resorptions or pre- or postnatal weight, there were more stillbirths with ethanol alone, and cumulative postnatal mortality was significantly higher in offspring exposed to ethanol alone (35% deaths) compared to all other treatment groups (13.5 to 20.5% deaths). Mice supplemented with Zn throughout pregnancy had higher plasma Zn concentrations than those in un-supplemented groups. These findings demonstrate that dietary Zn supplementation throughout pregnancy ameliorates dysmorphology and postnatal mortality caused by ethanol exposure in early pregnancy.

  10. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, R. Clark; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ 85721; BIO5 Institute, University of Arizona, Tucson, AZ 85721

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airwaymore » reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.« less

  11. Effects of amphetamine exposure in adolescence or young adulthood on inhibitory control in adult male and female rats

    PubMed Central

    Hammerslag, Lindsey R.; Waldman, Alex J.; Gulley, Joshua M.

    2014-01-01

    Heightened impulsivity is a feature of some psychiatric disorders, including addiction, that also have sex-specific patterns of expression. The relationship between addiction and impulsivity may be driven by drug-induced changes in behavior caused by long term adaptations in signaling within the medial prefrontal cortex (mPFC). Here, we used a response inhibition task that is sensitive to changes in mPFC function to examine the effects of sex and exposure to amphetamine (AMPH) on impulsive action and vigilance. We also examined drug-induced alterations in glutamatergic and dopaminergic signaling through challenge injections with the NMDA receptor antagonist MK-801 (dizocilpine) and AMPH. Male and female Sprague Dawley rats were injected (i.p.) with saline or 3 mg/kg AMPH every other day during adolescence (postnatal day (P) 27–45) or adulthood (P85–103). Starting on P125–135, rats were tested for their ability to lever press for a food reward during periods of signaled availability and withhold responding during a “premature response” phase. In experiment 1, rats received challenge injections (i.p.) of MK-801 and AMPH followed by tests of task performance and locomotor activity. In experiment 2, rats received intra-mPFC infusion of MK-801. We found that females had better inhibitory control and poorer vigilance than males and that AMPH exposure had both sex- and age-of-exposure dependent effects on impulsivity. Systemic drug challenges disrupted task performance, particularly in females, and increased impulsivity while intra-mPFC infusions had modest effects. AMPH exposure did not affect responses to drug challenges. Together, these results suggest that sex mediates both trait and drug-induced impulsivity. PMID:24462963

  12. Effect of nebivolol treatment during pregnancy on the genital circulation, fetal growth and postnatal development in the Wistar rat.

    PubMed

    Altoama, Kassem; Yassine Mallem, Mohamed; Thorin, Chantal; Betti, Eric; Desfontis, Jean-Claude

    2015-07-05

    The aim of study was to evaluate the effects of nebivolol, a cardioselective beta-1 adrenergic receptor blocker of the third generation with vasodilatory properties, vs. bisoprolol on the genital circulation, uterine vasculature, fetal growth and postnatal development in pregnant Wistar rats. Non invasive measurements of systolic and diastolic blood pressure (SBP and DBP) and heart rate (HR), and invasive measurement of genital blood flow (GBF) were taken in pregnant rats, by tail cuff and transonic probe methods respectively, after an oral treatment by gastric gavage with nebivolol (8mg/kg/day) or bisoprolol (10mg/kg/day) from day 11 to day 18 of pregnancy. Other morphometrical and histological measurements were performed on the ovarian and uterine arteries to evaluate the effect of nebivolol on the uterine vasculature. Furthermore, postnatal mortality and pup growth were recorded. The data demonstrated that nebivolol (compared with bisoprolol) induced a significant decrease in SBP, HR and GBF while DBP remained unchanged. Moreover, nebivolol increased the diameter and the length of ovarian and uterine arteries and the number of uterine artery segmental branches. The results also showed that the body weight gain of newborns in the nebivolol group was significantly lower vs. bisoprolol and vs. control with a higher mortality rate. The nebivolol action is not only limited to its favorable hemodynamic effects represented by a decrease in blood pressure, but it also produces adverse effects on fetal growth and postnatal development that may limit its therapeutic use in females during pregnancy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Early postnatal treatment with clomipramine induces female sexual behavior and estrous cycle impairment.

    PubMed

    Molina-Jiménez, Tania; Limón-Morales, Ofelia; Bonilla-Jaime, Herlinda

    2018-03-01

    Administration of clomipramine (CMI), a tricyclic antidepressant, in early stages of development in rats, is considered an animal model for the study of depression. This pharmacological manipulation has induced behavioral and physiological alterations, i.e., less pleasure-seeking behaviors, despair, hyperactivity, cognitive dysfunction, alterations in neurotransmitter systems and in HPA axis. These abnormalities in adult male rats are similar to the symptoms observed in major depressive disorders. One of the main pleasure-seeking behaviors affected in male rats treated with CMI is sexual behavior. However, to date, no effects of early postnatal CMI treatment have been reported on female reproductive cyclicity and sexual behavior. Therefore, we explored CMI administration in early life (8-21 PN) on the estrous cycle and sexual behavior of adult female rats. Compared to the rats in the early postnatal saline treatment (CTRL group), the CMI rats had fewer estrous cycles, fewer days in the estrous stage, and longer cycles during a 20-day period of vaginal cytology analysis. On the behavioral test, the CMI rats displayed fewer proceptive behaviors (hopping, darting) and had lower lordosis quotients. Also, they usually failed to display lordosis and only rarely manifested marginal or normal lordosis. In contrast, the CTRL rats tended to display normal lordosis. These results suggest that early postnatal CMI treatment caused long-term disruptions of the estrous cycle and female sexual behavior, perhaps by alteration in the hypothalamic-pituitary-gonadal (HPG) axes and in neuronal circuits involved in the regulation of the performance and motivational of sexual behavior as the noradrenergic and serotonergic systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds.

    PubMed

    Ohtubo, Yoshitaka; Iwamoto, Masafumi; Yoshii, Kiyonori

    2012-06-01

    Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Systemic inflammation combined with neonatal cerebellar haemorrhage aggravates long-term structural and functional outcomes in a mouse model.

    PubMed

    Tremblay, Sophie; Pai, Alex; Richter, Lindsay; Vafaei, Rod; Potluri, Praneetha; Ellegood, Jacob; Lerch, Jason P; Goldowitz, Daniel

    2017-11-01

    Despite the increased recognition of cerebellar injury in survivors of preterm birth, the neurodevelopmental consequences of isolated cerebellar injury have been largely unexplored and our current understanding of the functional deficits requires further attention in order to translate knowledge to best practices. Preterm infants are exposed to multiple stressors during their postnatal development including perinatal cerebellar haemorrhage (CBH) and postnatal infection, two major risk factors for neurodevelopmental impairments. We developed a translational mouse model of CBH and/or inflammation to measure the short- and long-term outcomes in cerebellar structure and function. Mice exposed to early combined insults of CBH and early inflammatory state (EIS) have a delay in grasping acquisition, neonatal motor deficits and deficient long-term memory. CBH combined with late inflammatory state (LIS) does not induce neonatal motor problems but leads to poor fine motor function and long-term memory deficits at adulthood. Early combined insults result in poor cerebellar growth from postnatal day 15 until adulthood shown by MRI, which are reflected in diminished volumes of cerebellar structures. There are also decreases in volumes of gray matter and hippocampus. Cerebellar microgliosis appears 24h after the combined insults and persists until postnatal day 15 in the cerebellar molecular layer and cerebellar nuclei in association with a disrupted patterning of myelin deposition, a delay of oligodendrocyte maturation and reduced white matter cerebellar volume. Together, these findings reveal poor outcomes in developing brains exposed to combined cerebellar perinatal insults in association with cerebellar hypoplasia, persistence of microgliosis and alterations of cerebellar white matter maturation and growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life

    PubMed Central

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P.; Klein, Jonathan D.; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.

    2015-01-01

    Nicotine exposure has been associated with an increased likelihood of developing attention deficit hyperactivity disorder (ADHD) in offspring of mothers who smoked during pregnancy. The goal of this study was to determine if exposure to E-cigarette nicotine vapors during late prenatal and early postnatal life altered behavior in adult mice. Methods Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Results Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Conclusion Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth. PMID:26372012

  17. Maternal postnatal depression and child growth: a European cohort study

    PubMed Central

    2010-01-01

    Background Previous studies have reported postpartum depression to be associated with both positive and negative effects on early infant growth. This study examined the hypothesis that maternal postnatal depression may be a risk factor for later child growth faltering or overweight. Methods A total of 929 women and their children participating in a European multicenter study were included at a median age of 14 days. Mothers completed the Edinburgh postnatal depression scale (EPDS) at 2, 3 and 6 months after delivery. EPDS scores of 13 and above at any time were defined as maternal depression. Weight, length, triceps and subscapular skinfold thicknesses were measured, and body mass index (BMI) were calculated when the children were two years old and converted to standard deviation scores based on the WHO Multicentre Growth Reference Study (MGRS). Results Z-scores for weight-for-length at inclusion of infants of mothers with high EPDS scores (-0.55, SD 0.74) were lower than of those with normal scores (-0.36, SD 0.74; p = 0.013). BMI at age 24 months did not differ in the high (16.3 kg/m2, SD 1.3) and in the normal EPDS groups (16.2 kg/m2, SD 1.3; p = 0.48). All other anthropometric indices also did not differ between groups, with no change by multivariate adjustment. Conclusions We conclude that a high maternal postnatal depression score does not have any major effects on offspring growth in high income countries. PMID:20226021

  18. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats.

    PubMed

    O'Mahony, S M; Felice, V D; Nally, K; Savignac, H M; Claesson, M J; Scully, P; Woznicki, J; Hyland, N P; Shanahan, F; Quigley, E M; Marchesi, J R; O'Toole, P W; Dinan, T G; Cryan, J F

    2014-09-26

    Disruption of bacterial colonization during the early postnatal period is increasingly being linked to adverse health outcomes. Indeed, there is a growing appreciation that the gut microbiota plays a role in neurodevelopment. However, there is a paucity of information on the consequences of early-life manipulations of the gut microbiota on behavior. To this end we administered an antibiotic (vancomycin) from postnatal days 4-13 to male rat pups and assessed behavioral and physiological measures across all aspects of the brain-gut axis. In addition, we sought to confirm and expand the effects of early-life antibiotic treatment using a different antibiotic strategy (a cocktail of pimaricin, bacitracin, neomycin; orally) during the same time period in both female and male rat pups. Vancomycin significantly altered the microbiota, which was restored to control levels by 8 weeks of age. Notably, vancomycin-treated animals displayed visceral hypersensitivity in adulthood without any significant effect on anxiety responses as assessed in the elevated plus maze or open field tests. Moreover, cognitive performance in the Morris water maze was not affected by early-life dysbiosis. Immune and stress-related physiological responses were equally unaffected. The early-life antibiotic-induced visceral hypersensitivity was also observed in male rats given the antibiotic cocktail. Both treatments did not alter visceral pain perception in female rats. Changes in visceral pain perception in males were paralleled by distinct decreases in the transient receptor potential cation channel subfamily V member 1, the α-2A adrenergic receptor and cholecystokinin B receptor. In conclusion, a temporary disruption of the gut microbiota in early-life results in very specific and long-lasting changes in visceral sensitivity in male rats, a hallmark of stress-related functional disorders of the brain-gut axis such as irritable bowel disorder. Copyright © 2014 IBRO. Published by Elsevier Ltd. All

  19. Long-term Fate Mapping to Assess the Impact of Postnatal Isoflurane Exposure on Hippocampal Progenitor Cell Productivity.

    PubMed

    Jiang, Yifei; Tong, Dongyi; Hofacer, Rylon D; Loepke, Andreas W; Lian, Qingquan; Danzer, Steve C

    2016-12-01

    Exposure to isoflurane increases apoptosis among postnatally generated hippocampal dentate granule cells. These neurons play important roles in cognition and behavior, so their permanent loss could explain deficits after surgical procedures. To determine whether developmental anesthesia exposure leads to persistent deficits in granule cell numbers, a genetic fate-mapping approach to label a cohort of postnatally generated granule cells in Gli1-CreER::GFP bitransgenic mice was utilized. Green fluorescent protein (GFP) expression was induced on postnatal day 7 (P7) to fate map progenitor cells, and mice were exposed to 6 h of 1.5% isoflurane or room air 2 weeks later (P21). Brain structure was assessed immediately after anesthesia exposure (n = 7 controls and 8 anesthesia-treated mice) or after a 60-day recovery (n = 8 controls and 8 anesthesia-treated mice). A final group of C57BL/6 mice was exposed to isoflurane at P21 and examined using neurogenesis and cell death markers after a 14-day recovery (n = 10 controls and 16 anesthesia-treated mice). Isoflurane significantly increased apoptosis immediately after exposure, leading to cell death among 11% of GFP-labeled cells. Sixty days after isoflurane exposure, the number of GFP-expressing granule cells in treated animals was indistinguishable from control animals. Rates of neurogenesis were equivalent among groups at both 2 weeks and 2 months after treatment. These findings suggest that the dentate gyrus can restore normal neuron numbers after a single, developmental exposure to isoflurane. The authors' results do not preclude the possibility that the affected population may exhibit more subtle structural or functional deficits. Nonetheless, the dentate appears to exhibit greater resiliency relative to nonneurogenic brain regions, which exhibit permanent neuron loss after isoflurane exposure.

  20. Alcohol Exposure During Late Adolescence Increases Drinking in Adult Wistar Rats, an Effect that is not Reduced by Finasteride

    PubMed Central

    Milivojevic, Verica; Covault, Jonathan

    2013-01-01

    Aims: We tested whether an exposure to alcohol in late adolescence, an age of rapid increase in neuroactive steroid precursors, would increase voluntary alcohol consumption in adult rats and whether this effect would be modulated by finasteride, an inhibitor of neuroactive steroid synthesis. Methods: In Experiment 1, we exposed male Wistar rats to 8% alcohol during the dark cycle for 1 week during late adolescence [postnatal days (PNDs) 51–58], and then measured voluntary alcohol consumption 1 month later in adulthood (PNDs 91–104). In Experiment 2, finasteride was administered during the forced alcohol exposure in late adolescence and, in Experiment 3, during voluntary alcohol consumption in adulthood. Plasma was collected at the end of each finasteride treatment to confirm the reduction of plasma neuroactive steroid levels. Results: We found that a daily 12-h exposure to alcohol for 7 days in late adolescence significantly increased voluntary alcohol consumption (4-fold) a month later during adulthood. Finasteride administration in late adolescence increased group alcohol intake in late adolescence but did not block the effect of adolescent alcohol exposure on increasing alcohol preference in adulthood. There was no effect of finasteride treatment in adulthood on alcohol preference. Conclusions: A daily 12-h exposure to alcohol for 7 days in late adolescence was sufficient to induce chronically increased alcohol preference in adulthood, indicating that this age may be sensitive to the effects of alcohol. PMID:22997410

  1. Prenatal and early postnatal depression and child maltreatment among Japanese fathers.

    PubMed

    Takehara, Kenji; Suto, Maiko; Kakee, Naoko; Tachibana, Yoshiyuki; Mori, Rintaro

    2017-08-01

    We investigated the association of paternal depression in the prenatal and early postnatal period with child maltreatment tendency at two months postpartum among Japanese fathers. This population-based longitudinal study recruited Japanese perinatal women and their partners living in Nishio City, Aichi, Japan. Of the 270 fathers who participated, 196 were included in the analysis. All data were collected via self-administrated questionnaires at four time points: 20 weeks' gestation and in the first few days, one month, and two months postpartum. Paternal depression was assessed using the Edinburgh Postnatal Depression Scale. Three definitions of paternal depression were coded based on participants' scores on this measure: prenatal, prior, and current. Child maltreatment tendency was evaluated using the Child Maltreatment Scale at two months postpartum. The associations of the three definitions of paternal depression and child maltreatment tendency were separately analyzed using logistic regression analysis. The prevalence of prenatal, prior, and current paternal depression was 9.7%, 10.2%, and 8.8%, respectively. According to the multivariate analysis, current paternal depression was significantly associated with child maltreatment tendency at two months postpartum (adjusted odds ratio: 7.77, 95% CI: 1.83-33.02). The other two types of depression, however, were not related to child maltreatment tendency. Thus, current paternal depression increased the risk of child maltreatment tendency in the postnatal period, suggesting that early detection and treatment of paternal depression might be useful for the prevention of child maltreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. SCG postnatal remodelling--hypertrophy and neuron number stability--in Spix's yellow-toothed cavies (Galea spixii).

    PubMed

    Ladd, Aliny A B Lobo; Ladd, Fernando V Lobo; da Silva, Andrea A P; Oliveira, Moacir F; de Souza, Romeu R; Coppi, Antonio A

    2012-04-01

    Whilst a fall in neuron numbers seems a common pattern during postnatal development, several authors have nonetheless reported an increase in neuron number, which may be associated with any one of a number of possible processes encapsulating either neurogenesis or late maturation and incomplete differentiation. Recent publications have thus added further fuel to the notion that a postnatal neurogenesis may indeed exist in sympathetic ganglia. In the light of these uncertainties surrounding the effects exerted by postnatal development on the number of superior cervical ganglion (SCG) neurons, we have used state-of-the-art design-based stereology to investigate the quantitative structure of SCG at four distinct timepoints after birth, viz., 1-3 days, 1 month, 12 months and 36 months. The main effects exerted by ageing on the SCG structure were: (i) a 77% increase in ganglion volume; (ii) stability in the total number of the whole population of SCG nerve cells (no change--either increase or decrease) during post-natal development; (iii) a higher proportion of uninucleate neurons to binucleate neurons only in newborn animals; (iv) a 130% increase in the volume of uninucleate cell bodies; and (v) the presence of BrdU positive neurons in animals at all ages. At the time of writing our results support the idea that neurogenesis takes place in the SCG of preás, albeit it warrants confirmation by further markers. We also hypothesise that a portfolio of other mechanisms: cell repair, maturation, differentiation and death may be equally intertwined and implicated in the numerical stability of SCG neurons during postnatal development. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  3. Does Parenteral Nutrition Influence Electrolyte and Fluid Balance in Preterm Infants in the First Days after Birth?

    PubMed Central

    Elstgeest, Liset E.; Martens, Shirley E.; Lopriore, Enrico; Walther, Frans J.; te Pas, Arjan B.

    2010-01-01

    Background New national guidelines recommend more restricted fluid intake and early initiation of total parenteral nutrition (TPN) in very preterm infants. The aim was study the effect of these guidelines on serum sodium and potassium levels and fluid balance in the first three days after birth. Methods Two cohorts of infants <28 weeks gestational age, born at the Leiden University Medical Center in the Netherlands, were compared retrospectively before (2002–2004, late-TPN) and after (2006–2007, early-TPN) introduction of the new Dutch guideline. Outcome measures were serum sodium and potassium levels, diuresis, and changes in body weight in the first three postnatal days. Results In the first three postnatal days no differences between late-TPN (N = 70) and early-TPN cohort (N = 73) in mean (SD) serum sodium (141.1 (3.8) vs 141.0 (3.7) mmol/l) or potassium (4.3 (0.5) vs 4.3 (0.5) mmol/l) were found, but in the early-TPN cohort diuresis (4.5 (1.6) vs 3.2 (1.4) ml/kg/h) and loss of body weight were decreased (−6.0% (7.7) vs −0.8% (8.0)). Conclusions Initiation of TPN immediately after birth and restricted fluid intake in very preterm infants do not seem to influence serum sodium and potassium levels in first three postnatal days. Further research is needed to see if a decreased diuresis and loss of body weight in the first days is the result of a delayed postnatal adaptation or better energy balance. PMID:20140260

  4. Pre- and Postnatal Nutritional Histories Influence Reproductive Maturation and Ovarian Function in the Rat

    PubMed Central

    Sloboda, Deborah M.; Howie, Graham J.; Pleasants, Anthony; Gluckman, Peter D.; Vickers, Mark H.

    2009-01-01

    Background While prepubertal nutritional influences appear to play a role in sexual maturation, there is a need to clarify the potential contributions of maternal and childhood influences in setting the tempo of reproductive maturation. In the present study we employed an established model of nutritional programming to evaluate the relative influences of prenatal and postnatal nutrition on growth and ovarian function in female offspring. Methods Pregnant Wistar rats were fed either a calorie-restricted diet, a high fat diet, or a control diet during pregnancy and/or lactation. Offspring then were fed either a control or a high fat diet from the time of weaning to adulthood. Pubertal age was monitored and blood samples collected in adulthood for endocrine analyses. Results We report that in the female rat, pubertal timing and subsequent ovarian function is influenced by the animal's nutritional status in utero, with both maternal caloric restriction and maternal high fat nutrition resulting in early pubertal onset. Depending on the offspring's nutritional history during the prenatal and lactational periods, subsequent nutrition and body weight gain did not further influence offspring reproductive tempo, which was dominated by the effect of prenatal nutrition. Whereas maternal calorie restriction leads to early pubertal onset, it also leads to a reduction in adult progesterone levels later in life. In contrast, we found that maternal high fat feeding which also induces early maturation in offspring was associated with elevated progesterone concentrations. Conclusions These observations are suggestive of two distinct developmental pathways leading to the acceleration of pubertal timing but with different consequences for ovarian function. We suggest different adaptive explanations for these pathways and for their relationship to altered metabolic homeostasis. PMID:19707592

  5. Deletion of neurturin impairs development of cholinergic nerves and heart rate control in postnatal mouse hearts.

    PubMed

    Downs, Anthony M; Jalloh, Hawa B; Prater, Kayla J; Fregoso, Santiago P; Bond, Cherie E; Hampton, Thomas G; Hoover, Donald B

    2016-05-01

    The neurotrophic factor neurturin is required for normal cholinergic innervation of adult mouse heart and bradycardic responses to vagal stimulation. Our goals were to determine effects of neurturin deletion on development of cardiac chronotropic and dromotropic functions, vagal baroreflex response, and cholinergic nerve density in nodal regions of postnatal mice. Experiments were performed on postnatal C57BL/6 wild-type (WT) and neurturin knockout (KO) mice. Serial electrocardiograms were recorded noninvasively from conscious pups using an ECGenie apparatus. Mice were treated with atenolol to evaluate and block sympathetic effects on heart rate (HR) and phenylephrine (PE) to stimulate the baroreflex. Immunohistochemistry was used to label cholinergic nerves in paraffin sections. WT and KO mice showed similar age-dependent increases in HR and decreases in PR interval between postnatal days (P) 2.5 and 21. Treatment with atenolol reduced HR significantly in WT and KO pups at P7.5. PE caused a reflex bradycardia that was significantly smaller in KO pups. Cholinergic nerve density was significantly less in nodal regions of P7.5 KO mice. We conclude that cholinergic nerves have minimal influence on developmental changes in HR and PR, QRS, and QTc intervals in mouse pups. However, cholinergic nerves mediate reflex bradycardia by 1 week postnatally. Deletion of neurturin impairs cholinergic innervation of the heart and the vagal efferent component of the baroreflex early during postnatal development. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Vulnerable Youth and Transitions to Adulthood

    ERIC Educational Resources Information Center

    Xie, Rongbing; Sen, Bisakha; Foster, E. Michael

    2014-01-01

    This chapter focuses on vulnerable youth, the challenges they face during their transitions to adulthood, and the adverse effects of limited support systems on those transitions. The authors offer recommendations on how adult educators can help facilitate smooth transitions into adulthood for vulnerable youth.

  7. Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype.

    PubMed

    Sexton, Timothy J; Bleckert, Adam; Turner, Maxwell H; Van Gelder, Russell N

    2015-06-21

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate circadian light entrainment and the pupillary light response in adult mice. In early development these cells mediate different processes, including negative phototaxis and the timing of retinal vascular development. To determine if ipRGC physiologic properties also change with development, we measured ipRGC cell density and light responses in wild-type mouse retinas at post-natal days 8, 15 and 30. Melanopsin-positive cell density decreases by 17% between post-natal days 8 and 15 and by 25% between days 8 and 30. This decrease is due specifically to a decrease in cells co-labeled with a SMI-32, a marker for alpha-on ganglion cells (corresponding to adult morphologic type M4 ipRGCs). On multi-electrode array recordings, post-natal day 8 (P8) ipRGC light responses show more robust firing, reduced adaptation and more rapid recovery from short and extended light pulses than do the light responses of P15 and P30 ipRGCs. Three ipRGC subtypes - Types I-III - have been defined in early development based on sensitivity and latency on multielectrode array recordings. We find that Type I cells largely account for the unique physiologic properties of P8 ipRGCs. Type I cells have previously been shown to have relatively short latencies and high sensitivity. We now show that Type I cells show have rapid and robust recovery from long and short bright light exposures compared with Type II and III cells, suggesting differential light adaptation mechanisms between cell types. By P15, Type I ipRGCs are no longer detectable. Loose patch recordings of P8 M4 ipRGCs demonstrate Type I physiology. Type I ipRGCs are found only in early development. In addition to their previously described high sensitivity and rapid kinetics, these cells are uniquely resistant to adaptation and recover quickly and fully to short and prolonged light exposure. Type I ipRGCs correspond to the SMI-32 positive, M4 subtype and largely lose

  8. A statewide review of postnatal care in private hospitals in Victoria, Australia.

    PubMed

    Rayner, Jo-Anne; McLachlan, Helen L; Forster, Della A; Peters, Louise; Yelland, Jane

    2010-05-28

    Concerns have been raised in Australia and internationally regarding the quality and effectiveness of hospital postnatal care, although Australian women receiving postnatal care in the private maternity sector rate their satisfaction with care more highly than women receiving public maternity care. In Victoria, Australia, two-thirds of women receive their maternity care in the public sector and the remainder in private health care sector. A statewide review of public hospital postnatal care in Victoria from the perspective of care providers found many barriers to care provision including the busyness of postnatal wards, inadequate staffing and priority being given to other episodes of care; however the study did not include private hospitals. The aim of this study was replicate the review in the private sector, to explore the structure and organisation of postnatal care in private hospitals and identify those aspects of care potentially impacting on women's experiences and maternal and infant care. This provides a more complete overview of the organisational structures and processes in postnatal care in all Victorian hospitals from the perspective of care providers. A mixed method design was used. A structured postal survey was sent to all Victorian private hospitals (n = 19) and key informant interviews were undertaken with selected clinical midwives, maternity unit managers and obstetricians (n = 11). Survey data were analysed using descriptive statistics and interview data analysed thematically. Private hospital care providers report that postnatal care is provided in very busy environments, and that meeting the aims of postnatal care (breastfeeding support, education of parents and facilitating rest and recovery for women following birth) was difficult in the context of increased acuity of postnatal care; prioritising of other areas over postnatal care; high midwife-to-woman ratios; and the number and frequency of visitors. These findings were similar to the

  9. Histological study on hippocampus, amygdala and cerebellum following low lead exposure during prenatal and postnatal brain development in rats.

    PubMed

    Barkur, Rajashekar Rao; Bairy, Laxminarayana K

    2016-06-01

    Neuropsychological studies in children who are exposed to lead during their early brain development have shown to develop behavioural and cognitive deficit. The aim of the present study was to assess the cellular damage in hippocampus, amygdala and cerebellum of rat pups exposed to lead during different periods of early brain development. Five groups of rat pups were investigated. (a) Control group (n = 8) (mothers of these rats were given normal drinking water throughout gestation and lactation), (b) pregestation lead-exposed group (n = 8) (mothers of these rats were exposed to 0.2% lead acetate in the drinking water for one month before conception), (c) gestation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout gestation [gestation day 01 to day 21]), (d) lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout lactation [postnatal day 01 to day 21]) and (e) gestation and lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate throughout gestation and lactation). On postnatal day 30, rat pups of all the groups were killed. Numbers of surviving neurons in the hippocampus, amygdala and cerebellum regions were counted using cresyl violet staining technique. Histological data indicate that lead exposure caused significant damage to neurons of hippocampus, amygdala and cerebellum regions in all lead-exposed groups except lactation lead-exposed group. The extent of damage to neurons of hippocampus, amygdala and cerebellum regions in lactation lead-exposed group was comparable to gestation and lactation groups even though the duration of lead exposure was much less in lactation lead-exposed group. To conclude, the postnatal period of brain development seems to be more vulnerable to lead neurotoxicity compared to prenatal period of brain development. © The Author(s) 2014.

  10. Postnatal dietary omega-3 fatty acid supplementation rescues glucocorticoid-programmed adiposity, hypertension, and hyperlipidemia in male rat offspring raised on a high-fat diet.

    PubMed

    Zulkafli, Intan S; Waddell, Brendan J; Mark, Peter J

    2013-09-01

    Fetal glucocorticoid excess programs several adverse outcomes in adult offspring, many of which can be prevented by postnatal, dietary omega-3 (n-3) fatty acids. Here we tested 2 separate hypotheses: 1) a postnatal high-fat diet exacerbates the glucocorticoid-programmed phenotype; and 2) postnatal, dietary n-3 fatty acids rescue programmed outcomes, even in the presence of a high-fat diet challenge. Pregnant Wistar rat dams were either untreated or administered dexamethasone acetate (Dex; 0.5 μg/mL drinking water) from day 13 of pregnancy. Offspring were cross-fostered to untreated mothers and males were weaned onto a standard (Std), high-fat, low n-3 (HF), or high-fat, high n-3 (HFHn-3) diet. Prenatal Dex reduced birth weight (26%) and delayed puberty onset by 1.2 days, irrespective of postnatal diet. Prenatal Dex programmed increased blood pressure in adult offspring, an effect worsened by the postnatal HF diet. Supplementation with high n-3 fatty acids, however, prevented both the Dex and HF-induced increases in blood pressure. Prenatal Dex also programmed increased adiposity, plasma cholesterol, and plasma triglyceride levels at 6 months of age, particularly in those offspring raised on the HF diet. But again, each of these adverse outcomes was rescued by supplementation of the HF diet with n-3 fatty acids. In conclusion, the capacity of n-3 fatty acids to overcome adverse programming outcomes remains evident, even in the presence of a HF diet challenge.

  11. Childhood Adiposity and Nonalcoholic Fatty Liver Disease in Adulthood

    PubMed Central

    Yan, Yinkun; Hou, Dongqing; Zhao, Xiaoyuan; Liu, Junting; Cheng, Hong; Wang, Youfa

    2017-01-01

    OBJECTIVE: To investigate the association of childhood adiposity and change in adiposity status from childhood to adulthood with nonalcoholic fatty liver disease (NAFLD) and abnormal liver enzyme levels in adulthood. METHODS: Data were obtained from a population-based cohort of children aged 6 to 18 years started in 1987. From 2010 to 2014, 1350 subjects (aged 28–45 years) from the original cohort were followed. Childhood overweight and obesity were defined using BMI and subscapular skinfold thickness, respectively. In adulthood, ultrasound-based NAFLD, abnormal liver enzymes, and related risk factors were assessed. Results Overweight or obese children were more likely to have adult NAFLD (males: odds ratio [OR] = 2.49 for BMI and 2.78 for subscapular skinfold thickness; females: OR = 3.34 and 3.61; all Ps < .001) and alanine aminotransferase (ALT) elevation (males: OR = 1.64 and 1.66; females: OR = 2.12 and 3.01; all Ps < .05) than children with normal weight for both sexes. Compared with subjects who had normal weight in childhood and were nonobese in adulthood, subjects who were obese in adulthood, irrespective of their childhood adiposity status, were more likely to have NAFLD and ALT elevation in adulthood for both sexes. However, subjects who were overweight or obese in childhood but became nonobese in adulthood had similar likelihood of having NAFLD and ALT elevation in adulthood for both sexes. CONCLUSIONS: Overweight or obese children are more likely to have NAFLD and ALT elevation in adulthood. However, the risk associated with increased weight during childhood can be mitigated by becoming nonobese in adulthood. PMID:28356335

  12. Predictors of intelligence at the age of 5: family, pregnancy and birth characteristics, postnatal influences, and postnatal growth.

    PubMed

    Eriksen, Hanne-Lise Falgreen; Kesmodel, Ulrik Schiøler; Underbjerg, Mette; Kilburn, Tina Røndrup; Bertrand, Jacquelyn; Mortensen, Erik Lykke

    2013-01-01

    Parental education and maternal intelligence are well-known predictors of child IQ. However, the literature regarding other factors that may contribute to individual differences in IQ is inconclusive. The aim of this study was to examine the contribution of a number of variables whose predictive status remain unclarified, in a sample of basically healthy children with a low rate of pre- and postnatal complications. 1,782 5-year-old children sampled from the Danish National Birth Cohort (2003-2007) were assessed with a short form of the Wechsler Preschool and Primary Scale of Intelligence - Revised. Information on parental characteristics, pregnancy and birth factors, postnatal influences, and postnatal growth was collected during pregnancy and at follow-up. A model including study design variables and child's sex explained 7% of the variance in IQ, while parental education and maternal IQ increased the explained variance to 24%. Other predictors were parity, maternal BMI, birth weight, breastfeeding, and the child's head circumference and height at follow-up. These variables, however, only increased the explained variance to 29%. The results suggest that parental education and maternal IQ are major predictors of IQ and should be included routinely in studies of cognitive development. Obstetrical and postnatal factors also predict IQ, but their contribution may be of comparatively limited magnitude.

  13. Paternal postnatal depression in Ireland: Prevalence and associated factors.

    PubMed

    Philpott, Lloyd Frank; Corcoran, Paul

    2018-01-01

    it is well established that fatherhood has a long term positive and protective effect on men's health. However, there is also evidence that the transition to fatherhood can be complex and demanding and can lead to distress, anxiety and increased risk of depression. this study aimed to investigate the prevalence of paternal postnatal depression, and to examine associations with a range of demographic and clinical factors. a cross-sectional study design was used to collect primary data from 100 fathers, whose partner gave birth to an infant in the previous 12 months. Data were collected using the Edinburgh Postnatal Depression Scale. the prevalence of paternal postnatal depression was 12% using the Edinburgh Postnatal Depression Scale cut off score of 12 or above, when the cut off score was reduced to 9 or above the prevalence was 28%. The factors found to increase the risk of paternal postnatal depression included having an infant with sleep problems, a previous history of depression, a lack of social support, poor economic circumstances, not having paternity leave and not being married. the results add to the growing body of evidence that paternal postnatal mental health is a significant public health issue, and indicates a need for assessment and support for fathers during this life stage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Postnatal Development of CB1 Receptor Expression in Rodent Somatosensory Cortex

    PubMed Central

    Deshmukh, Suvarna; Onozuka, Kaori; Bender, Kevin J.; Bender, Vanessa A.; Lutz, Beat; Mackie, Ken; Feldman, Daniel E.

    2007-01-01

    Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the grey matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (−/−) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps. PMID:17210229

  15. Anabolic/androgenic steroid administration during adolescence and adulthood differentially modulates aggression and anxiety.

    PubMed

    Morrison, Thomas R; Ricci, Lesley A; Melloni, Richard H

    2015-03-01

    Anabolic/androgenic steroid (AAS) use remains high in both teens and adults in the U.S. and worldwide despite studies showing that AAS use is associated with a higher incidence of aggression and anxiety. Recently we showed that chronic exposure to AAS through adolescence increases aggression and decreases anxious behaviors, while during AAS-withdrawal aggression is lowered to species-normative levels and anxiety increases. AAS exposure is known to differentially alter behaviors and their underlying neural substrates between adults and adolescents and thus the current study investigated whether exposure to AAS during adulthood affects the relationship between aggression and anxiety in a manner similar to that previously observed in adolescents. Male hamsters were administered a moderate dose of AAS (5.0mg/kg/day×30days) during adolescence (P27-56) or young adulthood (P65-P94) and then tested for aggression and anxiety during AAS exposure (i.e., on P57 or P95) and during AAS withdrawal (i.e., 30days later on P77 or P115). Adolescent exposure to AAS increased aggressive responding during the AAS exposure period and anxiety-like responding during AAS withdrawal. Neither behavior was similarly influenced by adult exposure to AAS. Adult AAS exposure produced no difference in aggressive responding during AAS exposure (P95) or AAS withdrawal (P115); however, while AAS exposure during adulthood produced no difference in anxiety-like responding during AAS exposure, adult hamsters administered AAS were less anxious than vehicle control animals following AAS withdrawal. Together these data suggest that the aggression and anxiety provoking influence of AAS are likely a developmental phenomenon and that adult exposure to AAS may be anxiolytic over the long term. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Post-weaning Environmental Enrichment, But Not Chronic Maternal Isolation, Enhanced Ethanol Intake during Periadolescence and Early Adulthood

    PubMed Central

    Berardo, Luciana R.; Fabio, María C.; Pautassi, Ricardo M.

    2016-01-01

    This study analyzed ethanol intake in male and female Wistar rats exposed to maternal separation (MS) during infancy (postnatal days 1–21, PD1–21) and environmental enrichment (EE) during adolescence (PD 21–42). Previous work revealed that MS enhances ethanol consumption during adulthood. It is still unknown if a similar effect is found during adolescence. Several studies, in turn, have revealed that EE reverses stress experiences, and reduces ethanol consumption and reinforcement; although others reported greater ethanol intake after EE. The interactive effects between these treatments upon ethanol’s effects and intake have yet to be explored. We assessed chronic ethanol intake and preference (12 two-bottle daily sessions, spread across 30 days, 1st session on PD46) in rats exposed to MS and EE. The main finding was that male – but not female – rats that had been exposed to EE consumed more ethanol than controls given standard housing, an effect that was not affected by MS. Subsequent experiments assessed several factors associated with heightened ethanol consumption in males exposed to MS and EE; namely taste aversive conditioning and hypnotic-sedative consequences of ethanol. We also measured anxiety response in the light-dark box and in the elevated plus maze tests; and exploratory patterns of novel stimuli and behaviors indicative of risk assessment and risk-taking, via a modified version of the concentric square field (CSF) test. Aversive conditioning, hypnosis and sleep time were similar in males exposed or not to EE. EE males, however, exhibited heightened exploration of novel stimuli and greater risk taking behaviors in the CSF test. It is likely that the promoting effect of EE upon ethanol intake was due to these effects upon exploratory and risk-taking behaviors. PMID:27790100

  17. The Effect of Telephone-Based Cognitive-Behavioral Therapy on Postnatal Depression: A Randomized Controlled Trial.

    PubMed

    Ngai, Fei-Wan; Wong, Paul Wai-Ching; Leung, Kwok-Yin; Chau, Pui-Hing; Chung, Ka-Fai

    2015-01-01

    Cognitive-behavioral therapy (CBT) is one of the most effective interventions for postnatal depression. However, few studies have evaluated the effect of CBT delivered via telephone for newborn mothers. The purpose of this study was to evaluate the efficacy of telephone-based CBT for postnatal depression at 6 weeks and 6 months postpartum. A multisite randomized controlled trial was conducted in the postnatal units at 3 regional hospitals in Hong Kong. A total of 397 women with an Edinburgh Postnatal Depression Scale (EPDS) score ≥10 on the second or third day postpartum were randomized to receive telephone-based CBT (n = 197) or standard care (n = 200). Primary outcome was the total EPDS score. A cutoff score of 9/10 on the EPDS was used to define women at risk of postnatal depression. Telephone-based CBT was associated with significantly lower depressive symptoms compared with standard care, when assessed at 6 weeks postpartum in the subgroups of mothers with minor depression (EPDS 10-12; difference = 1.90, 95% CI: 0.72-3.08; p = 0.002) and major depression (EPDS ≥13; difference = 5.00, 95% CI: 3.12-6.88; p < 0.001). The effect was sustained at 6 months postpartum in the subgroup with minor depression (difference = 1.20, 95% CI: 0.09-2.32; p = 0.034) but not significant in the subgroup with major depression (difference = 1.69, 95% CI: -0.10-3.47; p = 0.064). The proportion of women who satisfied our definition of postnatal depression was significantly lower in the intervention group at 6 weeks (difference = 23.3%, 95% CI: 13.7-33.0%; p < 0.001) and 6 months postpartum (difference = 11.4%, 95% CI: 1.9-20.8%; p = 0.019). Telephone-based CBT produced a significantly greater reduction in depressive symptoms than standard care during the postpartum period. © 2015 S. Karger AG, Basel.

  18. Childhood and Adolescent Television Viewing and Antisocial Behavior in Early Adulthood

    PubMed Central

    Robertson, Lindsay A.; McAnally, Helena M.

    2013-01-01

    OBJECTIVE: To investigate whether excessive television viewing throughout childhood and adolescence is associated with increased antisocial behavior in early adulthood. METHODS: We assessed a birth cohort of 1037 individuals born in Dunedin, New Zealand, in 1972–1973, at regular intervals from birth to age 26 years. We used regression analysis to investigate the associations between television viewing hours from ages 5 to 15 years and criminal convictions, violent convictions, diagnosis of antisocial personality disorder, and aggressive personality traits in early adulthood. RESULTS: Young adults who had spent more time watching television during childhood and adolescence were significantly more likely to have a criminal conviction, a diagnosis of antisocial personality disorder, and more aggressive personality traits compared with those who viewed less television. The associations were statistically significant after controlling for sex IQ, socioeconomic status, previous antisocial behavior, and parental control. The associations were similar for both sexes, indicating that the relationship between television viewing and antisocial behavior is similar for male and female viewers. CONCLUSIONS: Excessive television viewing in childhood and adolescence is associated with increased antisocial behavior in early adulthood. The findings are consistent with a causal association and support the American Academy of Pediatrics recommendation that children should watch no more than 1 to 2 hours of television each day. PMID:23420910

  19. [Effects of postnatal lambda-cyhalothrin exposure on synaptic proteins in ICR mouse brain].

    PubMed

    Bao, Xun-Di; Wang, Qu-Nan; Li, Fang-Fang; Chai, Xiao-Yu; Gao, Ye

    2011-04-01

    To evaluate the influence on the synaptic protein expression in different brain regions of ICR mice after lambda-cyhalothrin (LCT) exposure during postnatal period. Two male and 4 female healthy ICR mice were put in one cage. It was set as pregnancy if vaginal plug was founded. Offspring were divided into 5 groups randomly, and exposed to LCT (0.01% DMSO solution) at the doses of 0.1, 1.0 and 10.0 mg/kg by intragastric rout every other day from postnatal days (PND) 5 to PND13, control animals were treated with normal saline or DMSO by the same route. The brains were removed from pups on PND 14, the synaptic protein expression levels in cortex, hippocampus and striatum were measured by western blot. GFAP levels of cortex and hippocampus in the LCT exposure group increased with doses, as compared with control group (P < 0.05), while Tuj protein expression did not change significantly in the various brain regions of ICR mice. GAP-43 protein expression levels in the LCT exposed mouse hippocampus and in female ICR mouse cortex increased with doses, as compared with control group (P < 0.05). Presynaptic protein (Synapsin I) expression levels did not change obviously in various brain regions. However, postsynaptic density protein 95 (PSD95) expression levels of the hippocampus and striatum in male offspring of 10.0 mg/kg LCT group, of cortex of female LCT groups, and of female offspring in all exposure groups, of striatum, in 1.0 or 10.0 mg/kg LCT exposure groups significantly decreased (P < 0.05). Early postnatal exposure to LCT affects synaptic protein expression. These effects may ultimately affect the construction of synaptic connections.

  20. Dmrt1 Expression Is Regulated by Follicle-Stimulating Hormone and Phorbol Esters in Postnatal Sertoli Cells*

    PubMed Central

    CHEN, JIANG KAI; HECKERT, LESLIE L.

    2006-01-01

    Dmrt1 is a recently described gene that is expressed exclusively in the testis and is required for postnatal testis differentiation. Here we describe the expression of Dmrt1 in postnatal rat testis and Sertoli cells. RNase protection analysis was used to examine Dmrt1 messenger RNA (mRNA) levels in intact testis during postnatal development and in primary cultures of Sertoli cells under various culture conditions. We show that Dmrt1 mRNA levels rise significantly beginning approximately 10 days after birth and remain elevated until after the third postnatal week. Thereafter, mRNA levels drop coincident with the proliferation of germ cells in the testis. In freshly isolated Sertoli cells, Dmrt1 mRNA levels were robust but decreased significantly when the cells were placed in culture for 24 h. Treatment of Sertoli cells with either FSH or 8-bromo-cAMP resulted in a significant rise in Dmrt1 mRNA levels. This cAMP response was sensitive to treatment with the transcriptional inhibitor actinomycin D but not to the translational inhibitor cycloheximide. The cAMP-dependent rise in Dmrt1 mRNA also required activation of protein kinase A, as mRNA induction was sensitive to the inhibitor H89. Studies also show that Dmrt1 expression was inhibited by phorbol esters (PMA) but only modestly effected by serum. PMID:11181532

  1. Childhood Adiposity and Nonalcoholic Fatty Liver Disease in Adulthood.

    PubMed

    Yan, Yinkun; Hou, Dongqing; Zhao, Xiaoyuan; Liu, Junting; Cheng, Hong; Wang, Youfa; Mi, Jie

    2017-04-01

    To investigate the association of childhood adiposity and change in adiposity status from childhood to adulthood with nonalcoholic fatty liver disease (NAFLD) and abnormal liver enzyme levels in adulthood. Data were obtained from a population-based cohort of children aged 6 to 18 years started in 1987. From 2010 to 2014, 1350 subjects (aged 28-45 years) from the original cohort were followed. Childhood overweight and obesity were defined using BMI and subscapular skinfold thickness, respectively. In adulthood, ultrasound-based NAFLD, abnormal liver enzymes, and related risk factors were assessed. Overweight or obese children were more likely to have adult NAFLD (males: odds ratio [OR] = 2.49 for BMI and 2.78 for subscapular skinfold thickness; females: OR = 3.34 and 3.61; all P s < .001) and alanine aminotransferase (ALT) elevation (males: OR = 1.64 and 1.66; females: OR = 2.12 and 3.01; all P s < .05) than children with normal weight for both sexes. Compared with subjects who had normal weight in childhood and were nonobese in adulthood, subjects who were obese in adulthood, irrespective of their childhood adiposity status, were more likely to have NAFLD and ALT elevation in adulthood for both sexes. However, subjects who were overweight or obese in childhood but became nonobese in adulthood had similar likelihood of having NAFLD and ALT elevation in adulthood for both sexes. Overweight or obese children are more likely to have NAFLD and ALT elevation in adulthood. However, the risk associated with increased weight during childhood can be mitigated by becoming nonobese in adulthood. Copyright © 2017 by the American Academy of Pediatrics.

  2. Asperger's syndrome in adulthood.

    PubMed

    Roy, Mandy; Dillo, Wolfgang; Emrich, Hinderk M; Ohlmeier, Martin D

    2009-01-01

    Asperger's syndrome is one of the autism spectrum disorders. Affected individuals display considerably impaired capacity for social interaction, unusual special interests, and a tendency towards ritualized behavior. The etiology, symptoms, diagnosis, and treatment of Asperger's syndrome in adulthood are outlined on the basis of a selective literature review via Medline and information in relevant reference books. Furthermore, the authors report their personal experience at a special clinic for adults. Asperger's syndrome in adulthood can be diagnosed by thorough anamnesis, heteroanamnesis-with emphasis on childhood-and painstaking clinical examination. The considerable psychosocial impairments affect the patients' professional, social, and private lives. The precise etiology is still unknown, but a multifactorial origin with genetic, neurobiological, and psychosocial components appears probable. Although no specific, empirically tested treatment concepts have yet been established, psychotherapeutic elements (structuring and directive interventions) seem to be helpful, together with pharmacotherapy-if indicated-in the presence of comorbidity. Asperger's syndrome should be included in the differential diagnosis of adults who display the corresponding symptoms. The etiopathogenesis and treatment of Asperger's syndrome in adulthood should be further investigated.

  3. Neonatal NMDA receptor blockade alters anxiety- and depression-related behaviors in a sex-dependent manner in mice.

    PubMed

    Amani, Mohammad; Samadi, Hanieh; Doosti, Mohammad-Hossein; Azarfarin, Maryam; Bakhtiari, Amir; Majidi-Zolbanin, Naime; Mirza-Rahimi, Mehrdad; Salari, Ali-Akbar

    2013-10-01

    There is increasing evidence that N-methyl-D-aspartate (NMDA) receptor blockade in the neonatal period has a long-lasting influence on brain and behavior development and has been linked to an increased risk for neuropsychiatric disorders in later life. We sought to determine whether postnatal NMDA receptor blockade can affect normal development of body weight, corticosterone levels, anxiety- and depression-related behaviors in male and female mice in adulthood. For this purpose, male and female NMRI mice were treated with either saline or phencyclidine (PCP; 5 and 10 mg/kg, s.c.) on postnatal days (PND) 7, 9, and 11, and then subjected to different behavioral tests, including open field, elevated plus-maze, elevated zero-maze, light-dark box, tail suspension test and forced swimming test in adulthood. The results indicated that neonatal PCP treatment reduced body weight during neonatal and adulthood periods, and did not alter baseline corticosterone levels in both male and female mice. Moreover, this study obtained some experimental evidence showing the PCP at dose of 10 mg/kg increases stress-induced corticosterone levels, anxiety- and depression-related behaviors in males, while decreasing levels of anxiety without any significant effect on depression in female mice in adulthood. These data support the argument that neonatal NMDA receptor blockade can lead to behavioral abnormalities and psychiatric diseases in adulthood. Collectively, our findings suggest that neonatal exposure to PCP may have profound effects on the development of anxiety- and depression-related behaviors in a sex- and dose-dependent manner in mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Maternal reproductive experience enhances early postnatal outcome following gestation and birth of rats in hypergravity

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Baer, L. A.; Daunton, N. G.; Wade, C. E.

    2001-01-01

    A major goal of space life sciences research is to broaden scientific knowledge of the influence of gravity on living systems. Recent spaceflight and centrifugation studies demonstrate that reproduction and ontogenesis in mammals are amenable to study under gravitational conditions that deviate considerably from those typically experienced on Earth (1 x g). In the present study, we tested the hypothesis that maternal reproductive experience determines neonatal outcome following gestation and birth under increased (hyper) gravity. Primigravid and bigravid female rats and their offspring were exposed to 1.5 x g centrifugation from Gestational Day 11 either through birth or through the first postnatal week. On the day of birth, litter sizes were identical across gravity and parity conditions, although significantly fewer live neonates were observed among hypergravity-reared litters born to primigravid dams than among those born to bigravid dams (82% and 94%, respectively; 1.0 x g controls, 99%). Within the hypergravity groups, neonatal mortality was comparable across parity conditions from Postnatal Day 1 through Day 7, at which time litter sizes stabilized. Maternal reproductive experience ameliorated neonatal losses during the first 24 h after birth but not on subsequent days, and neonatal mortality was associated with changes in maternal care patterns. These results indicate that repeated maternal reproductive experience affords protection against neonatal losses during exposure to increased gravity. Differential mortality of neonates born to primigravid versus bigravid dams denotes gravitational load as one environmental mechanism enabling the expression of parity-related variations in birth outcome.

  5. Developmental programming: postnatal estradiol amplifies ovarian follicular defects induced by fetal exposure to excess testosterone and dihydrotestosterone in sheep.

    PubMed

    Veiga-Lopez, A; Wurst, A K; Steckler, T L; Ye, W; Padmanabhan, V

    2014-04-01

    Excess of prenatal testosterone (T) induces reproductive defects including follicular persistence. Comparative studies with T and dihydrotestosterone (DHT) have suggested that follicular persistence is programmed via estrogenic actions of T. This study addresses the androgenic and estrogenic contributions in programming follicular persistence. Because humans are exposed to estrogenic environmental steroids from various sources throughout their life span and postnatal insults may also induce organizational and/or activational changes, we tested whether continuous postnatal exposure to estradiol (E) will amplify effects of prenatal steroids on ovarian function. Pregnant sheep were treated with T, DHT, E, or ED (E and DHT) from days 30 to 90 of gestation. Postnatally, a subset of the vehicle (C), T, and DHT females received an E implant. Transrectal ultrasonography was performed in the first breeding season during a synchronized cycle to monitor ovarian follicular dynamics. As expected, number of ≥8 mm follicles was higher in the T versus C group. Postnatal E reduced the number of 4 to 8 mm follicles in the DHT group. Percentage of females bearing luteinized follicles and the number of luteinized follicles differed among prenatal groups. Postnatal E increased the incidence of subluteal cycles in the prenatal T-treated females. Findings from this study confirm previous findings of divergences in programming effects of prenatal androgens and estrogens. They also indicate that some aspects of follicular dynamics are subject to postnatal modulation as well as support the existence of an extended organizational period or the need for a second insult to uncover the previously programmed event.

  6. Chronic atomoxetine treatment during adolescence does not influence decision-making on a rodent gambling task, but does modulate amphetamine's effect on impulsive action in adulthood.

    PubMed

    Silveira, Mason M; Murch, W Spencer; Clark, Luke; Winstanley, Catharine A

    2016-06-01

    In addition to the symptoms of inattention, hyperactivity, and impulsivity, individuals with attention deficit hyperactivity disorder exhibit impaired performance on tests of real-world cost/benefit decision-making. Atomoxetine, a nonstimulant drug approved for the treatment of attention deficit hyperactivity disorder, is a selective norepinephrine reuptake inhibitor administered chronically during adolescence, a time during which the frontal brain regions necessary for executive function undergo extensive maturation. This treatment protocol can affect behavior well into adulthood, but whether it produces long-term changes in complex decision-making has not been investigated. Twenty-four Long-Evans rats were administered saline or 1.0 mg/kg atomoxetine daily from postnatal day 40 to 54. Two weeks after treatment, the adult rats were trained and assessed on the rodent gambling task, in which the animals chose from four options varying in reward, punishment, and uncertainty. Impulsive action was also measured by recording the number of premature responses made. Regardless of the treatment administered during adolescence, rats learned to favor the advantageous options characterized by small, low-penalty rewards in lieu of the larger, higher-penalty reward options. Rodent gambling task performance was then assessed following acute treatment with atomoxetine (0.1-1.0 mg/kg) and amphetamine (0.3-1.5 mg/kg). Across groups, the highest dose of atomoxetine impaired decision-making and decreased premature responding at all doses tested. Amphetamine also impaired choice performance, but selectively increased impulsive action in rats that had previously received atomoxetine treatment during adolescence. These findings contribute to our understanding of the long-term effects associated with chronic adolescent atomoxetine exposure and suggest that this treatment does not alter decision-making under conditions of risk and uncertainty in adulthood.

  7. Determinants of postnatal care use at health facilities in rural Tanzania: multilevel analysis of a household survey.

    PubMed

    Mohan, Diwakar; Gupta, Shivam; LeFevre, Amnesty; Bazant, Eva; Killewo, Japhet; Baqui, Abdullah H

    2015-10-30

    Postnatal care (PNC) for the mother and infant is a neglected area, even for women who give birth in a health facility. Currently, there is very little evidence on the determinants of use of postnatal care from health facilities in Tanzania. This study examined the role of individual and community-level variables on the use of postnatal health services, defined as a check up from a heath facility within 42 days of delivery, using multilevel logistic regression analysis. We analyzed data of 1931 women, who had delivered in the preceding 2-14 months, from a two-stage household survey in 4 rural districts of Morogoro region, Tanzania. Individual level explanatory variables included i) Socio-demographic factors: age, birth order, education, and wealth, ii) Factors related to pregnancy: frequency of antenatal visits, history of complications, mode of delivery, place of delivery care, and counseling received. Community level variables included community levels of family planning, health service utilization, trust, poverty and education, and distance to health facility. Less than one in four women in Morogoro reported having visited a health facility for postnatal care. Individual-level attributes positively associated with postnatal care use were women's education of primary level or higher [Odds Ratio (OR) 1.37, 95 % Confidence Interval (CI) 1.04-1.81], having had a caesarean section or forceps delivery (2.95, 1.8-4.81), and being counseled by a community health worker to go for postnatal care at a health facility (2.3, 1.36-3.89). Other positive associations included those recommended HIV testing for baby (1.94, 1.19-3.15), and whose partners tested for HIV (1.41, 1.07-1.86). High community levels of postpartum family planning usage (2.48, 1.15-5.37) and high level of trust in health system (1.77, 1.12-2.79) were two significant community-level predictors. Lower postnatal care use was associated with having delivered at a hospital (0.5, 0.33-0.76), health center (0

  8. Susceptibility of the adolescent brain to cannabinoids: long-term hippocampal effects and relevance to schizophrenia.

    PubMed

    Gleason, K A; Birnbaum, S G; Shukla, A; Ghose, S

    2012-11-27

    Clinical studies report associations between cannabis use during adolescence and later onset of schizophrenia. We examined the causal relationship between developmental cannabinoid administration and long-term behavioral and molecular alterations in mice. Mice were administered either WIN 55,212-2 (WIN), a cannabinoid receptor 1 (CB1) agonist or vehicle (Veh) during adolescence (postnatal day 30-35) or early adulthood (postnatal day 63-70). Behavioral testing was conducted after postnatal day 120 followed by biochemical assays. Adolescent cannabinoid treatment (ACU) leads to deficits in prepulse inhibition and fear conditioning in adulthood. Metabotropic glutamate receptors type 5 (mGluR5), a receptor critically involved in fear conditioning and endocannabinoid (eCB) signaling, is significantly reduced in the ACU mouse hippocampus. Next, we examined expression profiles of genes involved in eCB synthesis (diacylglycerol lipase (DGL)) and uptake (monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH)) in the experimental mice. We find evidence of increased MGL and FAAH in ACU mice, reflecting increases in eCB uptake and degradation. These data suggest that administration of cannabinoids during adolescence leads to a behavioral phenotype associated with a rodent model of schizophrenia, as indexed by alterations in sensorimotor gating and hippocampal-dependent learning and memory deficits. Further, these deficits are associated with a reduction in hippocampal mGluR5 and a sustained change in eCB turnover, suggesting reduced eCB signaling in the ACU hippocampus. These data suggest that significant cannabis use during adolescence may be a contributory causal factor in the development of certain features of schizophrenia and may offer mGluR5 as a potential therapeutic target.

  9. Intervention among new parents followed up by an interview study exploring their experiences of telemedicine after early postnatal discharge.

    PubMed

    Danbjørg, D B; Wagner, L; Kristensen, B R; Clemensen, J

    2015-06-01

    a move towards earlier postnatal discharge raises the challenge of finding new ways to support families when they are discharged early after childbirth. to explore how postnatal parents experienced the use of telemedicine following early discharge from hospital (i.e. 24 hours after childbirth) by investigating if they consider that their postnatal needs are met, and whether or not they experience a sense of security and parental self-efficacy. intervention followed by a qualitative interview study. The intervention took place on a postnatal ward with approximately 1000 births a year. An app including chat, a knowledgebase and automated messages was trialled between postnatal parents at home and the hospital. Parents had access to the app for seven days after discharge. 42 new mothers were recruited from the postnatal ward in accordance with the inclusion criteria (i.e. discharged within 24 hours of childbirth). Both parents were invited for interview. 42 sets of parents participated in the trial, and 28 sets agreed to be interviewed. Interviews (n=28) were conducted with 27 mothers and 11 fathers. Parents were interviewed together in 10 cases, 17 mothers were interviewed alone, and one father was interviewed alone. The data analysis was inspired by systematic text condensation based on Giorgi׳s descriptive phenomenological method. parents were confident in use of the app, and did not experience any barriers in contacting the nurses via asynchronous communication. Parents received timely information and guidance by communicating online, and felt that their follow-up support needs were met. parents viewed the app as a lifeline, and saw it as a means of informing and guiding them following early discharge from hospital after childbirth. As such, this app shows potential for enhancing self-efficacy and postnatal sense of security. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dysfunctional Autism Risk Genes Cause Circuit-Specific Connectivity Deficits With Distinct Developmental Trajectories.

    PubMed

    Zerbi, Valerio; Ielacqua, Giovanna D; Markicevic, Marija; Haberl, Matthias Georg; Ellisman, Mark H; A-Bhaskaran, Arjun; Frick, Andreas; Rudin, Markus; Wenderoth, Nicole

    2018-07-01

    Autism spectrum disorders (ASD) are a set of complex neurodevelopmental disorders for which there is currently no targeted therapeutic approach. It is thought that alterations of genes regulating migration and synapse formation during development affect neural circuit formation and result in aberrant connectivity within distinct circuits that underlie abnormal behaviors. However, it is unknown whether deviant developmental trajectories are circuit-specific for a given autism risk-gene. We used MRI to probe changes in functional and structural connectivity from childhood to adulthood in Fragile-X (Fmr1-/y) and contactin-associated (CNTNAP2-/-) knockout mice. Young Fmr1-/y mice (30 days postnatal) presented with a robust hypoconnectivity phenotype in corticocortico and corticostriatal circuits in areas associated with sensory information processing, which was maintained until adulthood. Conversely, only small differences in hippocampal and striatal areas were present during early postnatal development in CNTNAP2-/- mice, while major connectivity deficits in prefrontal and limbic pathways developed between adolescence and adulthood. These findings are supported by viral tracing and electron micrograph approaches and define 2 clearly distinct connectivity endophenotypes within the autism spectrum. We conclude that the genetic background of ASD strongly influences which circuits are most affected, the nature of the phenotype, and the developmental time course of the associated changes.

  11. Predictors of Intelligence at the Age of 5: Family, Pregnancy and Birth Characteristics, Postnatal Influences, and Postnatal Growth

    PubMed Central

    Eriksen, Hanne-Lise Falgreen; Kesmodel, Ulrik Schiøler; Underbjerg, Mette; Kilburn, Tina Røndrup; Bertrand, Jacquelyn; Mortensen, Erik Lykke

    2013-01-01

    Parental education and maternal intelligence are well-known predictors of child IQ. However, the literature regarding other factors that may contribute to individual differences in IQ is inconclusive. The aim of this study was to examine the contribution of a number of variables whose predictive status remain unclarified, in a sample of basically healthy children with a low rate of pre- and postnatal complications. 1,782 5-year-old children sampled from the Danish National Birth Cohort (2003–2007) were assessed with a short form of the Wechsler Preschool and Primary Scale of Intelligence – Revised. Information on parental characteristics, pregnancy and birth factors, postnatal influences, and postnatal growth was collected during pregnancy and at follow-up. A model including study design variables and child’s sex explained 7% of the variance in IQ, while parental education and maternal IQ increased the explained variance to 24%. Other predictors were parity, maternal BMI, birth weight, breastfeeding, and the child’s head circumference and height at follow-up. These variables, however, only increased the explained variance to 29%. The results suggest that parental education and maternal IQ are major predictors of IQ and should be included routinely in studies of cognitive development. Obstetrical and postnatal factors also predict IQ, but their contribution may be of comparatively limited magnitude. PMID:24236109

  12. Early postnatal response of the spinal nucleus of the bulbocavernosus and target muscles to testosterone in male gerbils.

    PubMed

    Hadi Mansouri, S; Siegford, Janice M; Ulibarri, Catherine

    2003-05-14

    This study examined the response of the spinal nucleus of the bulbocavernosus (SNB) and the bulbocavernosus (BC) muscle, to testosterone in male Mongolian gerbils (Meriones unguiculatus) during the early postnatal period. Male gerbil pups were given testosterone propionate (TP) or vehicle for 2 days, then perfused on postnatal day (PND) 3, 5, 10 or 15. The BC and levator ani (LA) muscles were removed, weighed, and sectioned. Cross-sections of BC muscle fibers were measured and muscle fiber morphology examined. Spinal cords were removed and coronally sectioned in order to count and measure the SNB motoneurons. Following TP treatment, male pups of all ages had significantly heavier BC-LA muscles and larger fibers in the BC muscle compared to age-matched controls. The increase in muscle weight following TP treatment was greatest at PND10, while fiber size increased to a similar degree at all ages suggesting that hyperplasia as well as hypertrophy was responsible for the increase in muscle mass at this time. SNB motoneurons increased significantly in number and size with age and TP treatment. We hypothesize that the increase in SNB motoneuron number during normal ontogeny that can be augmented by TP treatment and represents an unusual means of establishing sexual dimorphism in the nervous system of a mammal through cell recruitment to the motor pool of a postnatal animal.

  13. Postnatal chlorpyrifos exposure and apolipoprotein E (APOE) genotype differentially affect cholinergic expression and developmental parameters in transgenic mice.

    PubMed

    Basaure, Pia; Guardia-Escote, Laia; Cabré, Maria; Peris-Sampedro, Fiona; Sánchez-Santed, Fernando; Domingo, José L; Colomina, Maria Teresa

    2018-05-03

    Chlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides in the world. Our previous results described that apolipoprotein E (APOE) polymorphisms are a source of individual differences in susceptibility to CPF. The aim of this study was to assess the physical and biochemical effects of postnatal exposure to CPF in the apoE targeted replacement mouse model. Mice were exposed to CPF at 0 or 1 mg/kg/day from postnatal day 10-15. Physical development, plasma and forebrain cholinesterase (ChE) activity and gene expression in liver and forebrain were evaluated. CPF exposure delays physical maturation and decreases the expression of choline acetyltransferase, α4-subunit and the α7 receptor. CPF decreases the expression of vesicular acetylcholine transporter (VAChT) mRNA in the forebrain only in apoE3 mice. The expression of paraoxonase-2 in the forebrain was also influenced by APOE genotype and CPF. Differences between genotypes were observed in litter size, ChE activity, expression of butyrylcholinesterase and paraoxonase-1 in liver and variants of acetylcholinesterase, VAChT and the α7 receptor in the forebrain. These results support that there are different vulnerabilities to postnatal CPF exposure according to the APOE polymorphism, which in turn affects the cholinergic system and defenses to oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The effects of delivery route and anesthesia type on early postnatal weight loss in newborns: the role of vasoactive hormones.

    PubMed

    Okumus, Nurullah; Atalay, Yildiz; Onal, Eray E; Turkyilmaz, Canan; Senel, Saliha; Gunaydin, Berrin; Pasaoglu, Hatice; Koc, Esin; Ergenekon, Ebru; Unal, Suna

    2011-01-01

    To investigate the effects of delivery route and maternal anesthesia type and the roles of vasoactive hormones on early postnatal weight loss in term newborns. Ninety-four term infants delivered vaginally (group 1, n=31), cesarean section (C/S) with general anesthesia (GA) (group 2, n=29), and C/S with epidural anesthesia (EA) (group 3, n=34) were included in this study. All infants were weighed at birth and on the second day of life and intravenous (IV) fluid infused to the mothers for the last 6 h prior to delivery was recorded. Serum electrolytes, osmolality, N-terminal proANP (NT-proANP), brain natriuretic peptide (BNP), aldosterone and plasma antidiuretic hormone (ADH) concentrations were measured at cord blood and on the second day of life. Our research showed that postnatal weight loss of infants was higher in C/S than vaginal deliveries (5.7% vs. 1.3%) (p < 0.0001) and in EA group than GA group (6.8% vs. 4.3%) (p < 0.0001). Postnatal weight losses were correlated with IV fluid volume infused to the mothers for the last 6 h prior to delivery (R = 0.814, p = 0.000) and with serum NT-proANP (R = 0.418, p = 0.000), BNP (R = 0.454, p = 0.000), and ADH (R = 0.509, p = 0.000) but not with aldosterone concentrations (p > 0.05). Large amounts of IV fluid given to the mothers who were applied EA prior to the delivery affect their offsprings' postnatal weight loss via certain vasoactive hormones.

  15. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    PubMed

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2015-01-01

    Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  16. Education for Adulthood.

    ERIC Educational Resources Information Center

    Ogilvie, Doug

    1984-01-01

    Indicates that human beings do not develop to the maturity of genuine adulthood. Adult educators must address the implications and consequences of assuming consensual collaboration to be the appropriate relationship for human beings. (JOW)

  17. Infant frontal EEG asymmetry in relation with postnatal maternal depression and parenting behavior.

    PubMed

    Wen, D J; Soe, N N; Sim, L W; Sanmugam, S; Kwek, K; Chong, Y-S; Gluckman, P D; Meaney, M J; Rifkin-Graboi, A; Qiu, A

    2017-03-14

    Right frontal electroencephalogram (EEG) asymmetry associates with negative affect and depressed mood, which, among children, are predicted by maternal depression and poor parenting. This study examined associations of maternal depression and maternal sensitivity with infant frontal EEG asymmetry based on 111 mother-6-month-infant dyads. There were no significant effects of postnatal maternal depression or maternal sensitivity, or their interaction, on infant EEG frontal asymmetry. However, in a subsample for which the infant spent at least 50% of his/her day time hours with his/her mother, both lower maternal sensitivity and higher maternal depression predicted greater relative right frontal EEG asymmetry. Our study further showed that greater relative right frontal EEG asymmetry of 6-month-old infants predicted their greater negative emotionality at 12 months of age. Our study suggested that among infants with sufficient postnatal maternal exposure, both maternal sensitivity and mental health are important influences on early brain development.

  18. Innervation of single fungiform taste buds during development in rat.

    PubMed

    Krimm, R F; Hill, D L

    1998-08-17

    To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.

  19. Postnatal Environmental Tobacco Smoke Exposure Related to Behavioral Problems in Children.

    PubMed

    Chastang, Julie; Baïz, Nour; Cadwallader, Jean Sébastien; Cadwalladder, Jean Sébastien; Robert, Sarah; Dywer, John L; Dywer, John; Charpin, Denis André; Caillaud, Denis; de Blay, Frédéric; Raherison, Chantal; Lavaud, François; Annesi-Maesano, Isabella

    2015-01-01

    The purpose of this study was to examine the association between pre and post environmental tobacco smoke (ETS) exposure and behavioral problems in schoolchildren. In the cross-sectional 6 cities Study conducted in France, 5221 primary school children were investigated. Pre- and postnatal exposure to secondhand tobacco smoke at home was assessed using a parent questionnaire. Child's behavioral outcomes (emotional symptoms and conduct problems) were evaluated by the Strengths and Difficulties Questionnaire (SDQ) completed by the parents. ETS exposure during the postnatal period and during both pre- and postnatal periods was associated with behavioral problems in children. Abnormal emotional symptoms (internalizing problems) were related to ETS exposure in children who were exposed during the pre- and postnatal periods with an OR of 1.72 (95% Confidence Interval (CI)= 1.36-2.17), whereas the OR was estimated to be 1.38 (95% CI= 1.12-1.69) in the case of postnatal exposure only. Abnormal conduct problems (externalizing problems) were related to ETS exposure in children who were exposed during the pre- and postnatal periods with an OR of 1.94 (95% CI= 1.51-2.50), whereas the OR was estimated to be 1.47 (95% CI=1.17-1.84) in the case of postnatal exposure only. Effect estimates were adjusted for gender, study center, ethnic origin, child age, low parental education, current physician diagnosed asthma, siblings, preterm birth and single parenthood. Postnatal ETS exposure, alone or in association with prenatal exposure, increases the risk of behavioral problems in school-age children.

  20. Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice.

    PubMed

    Allen, Joshua L; Liu, Xiufang; Pelkowski, Sean; Palmer, Brian; Conrad, Katherine; Oberdörster, Günter; Weston, Douglas; Mayer-Pröschel, Margot; Cory-Slechta, Deborah A

    2014-09-01

    Air pollution has been associated with adverse neurological and behavioral health effects in children and adults. Recent studies link air pollutant exposure to adverse neurodevelopmental outcomes, including increased risk for autism, cognitive decline, ischemic stroke, schizophrenia, and depression. We sought to investigate the mechanism(s) by which exposure to ultrafine concentrated ambient particles (CAPs) adversely influences central nervous system (CNS) development. We exposed C57BL6/J mice to ultrafine (< 100 nm) CAPs using the Harvard University Concentrated Ambient Particle System or to filtered air on postnatal days (PNDs) 4-7 and 10-13, and the animals were euthanized either 24 hr or 40 days after cessation of exposure. Another group of males was exposed at PND270, and lateral ventricle area, glial activation, CNS cytokines, and monoamine and amino acid neurotransmitters were quantified. We observed ventriculomegaly (i.e., lateral ventricle dilation) preferentially in male mice exposed to CAPs, and it persisted through young adulthood. In addition, CAPs-exposed males generally showed decreases in developmentally important CNS cytokines, whereas in CAPs-exposed females, we observed a neuroinflammatory response as indicated by increases in CNS cytokines. We also saw changes in CNS neurotransmitters and glial activation across multiple brain regions in a sex-dependent manner and increased hippocampal glutamate in CAPs-exposed males. We observed brain region- and sex-dependent alterations in cytokines and neurotransmitters in both male and female CAPs-exposed mice. Lateral ventricle dilation (i.e., ventriculomegaly) was observed only in CAPs-exposed male mice. Ventriculomegaly is a neuropathology that has been associated with poor neurodevelopmental outcome, autism, and schizophrenia. Our findings suggest alteration of developmentally important neurochemicals and lateral ventricle dilation may be mechanistically related to observations linking ambient air

  1. Influence of different seasons during late gestation on Holstein cows' colostrum and postnatal adaptive capability of their calves

    NASA Astrophysics Data System (ADS)

    Trifković, Julijana; Jovanović, Ljubomir; Đurić, Miloje; Stevanović-Đorđević, Snežana; Milanović, Svetlana; Lazarević, Miodrag; Sladojević, Željko; Kirovski, Danijela

    2018-06-01

    Season may affect calves' thermal comfort and behavior, but the data related to the overall influence of seasonal variations on dams' colostrum and postnatal adaptive capability of calves are limited. The aim of this study was to measure the effects of a 49-day-long low air temperature (LAT) season (5.20 ± 0.46 °C mean air temperature) and a 53-day-long high air temperature (HAT) season (27.40 ± 0.39 °C mean air temperature) on dams' colostrum quality and physiological, biochemical, hormonal, and oxidative stress parameters of their calves during the first 7 days of life. The dams' colostrum was sampled at 2, 14, and 26 h after calving, before feeding of their calves. Calves' blood samples were taken before the first colostrum intake and on days 1, 2, 3, and 7 of life. Calves' physiological parameters were measured on days 0 and 7. HAT season significantly reduced the quality of dams' colostrum. The ingestion of the low-quality colostrum, combined with the thermal discomfort during HAT season, probably provoked impaired physiological, biochemical, hormonal, and oxidative stress parameters in samples taken from the post-colostral calves. Additionally, intravenous glucose tolerance test was performed on day 7, which suggested an enhanced insulin response in HAT season calves. This study highlights the importance of adequate supporting strategies for the care of the late gestation cows and postnatal calves during the HAT season.

  2. Influence of different seasons during late gestation on Holstein cows' colostrum and postnatal adaptive capability of their calves.

    PubMed

    Trifković, Julijana; Jovanović, Ljubomir; Đurić, Miloje; Stevanović-Đorđević, Snežana; Milanović, Svetlana; Lazarević, Miodrag; Sladojević, Željko; Kirovski, Danijela

    2018-06-01

    Season may affect calves' thermal comfort and behavior, but the data related to the overall influence of seasonal variations on dams' colostrum and postnatal adaptive capability of calves are limited. The aim of this study was to measure the effects of a 49-day-long low air temperature (LAT) season (5.20 ± 0.46 °C mean air temperature) and a 53-day-long high air temperature (HAT) season (27.40 ± 0.39 °C mean air temperature) on dams' colostrum quality and physiological, biochemical, hormonal, and oxidative stress parameters of their calves during the first 7 days of life. The dams' colostrum was sampled at 2, 14, and 26 h after calving, before feeding of their calves. Calves' blood samples were taken before the first colostrum intake and on days 1, 2, 3, and 7 of life. Calves' physiological parameters were measured on days 0 and 7. HAT season significantly reduced the quality of dams' colostrum. The ingestion of the low-quality colostrum, combined with the thermal discomfort during HAT season, probably provoked impaired physiological, biochemical, hormonal, and oxidative stress parameters in samples taken from the post-colostral calves. Additionally, intravenous glucose tolerance test was performed on day 7, which suggested an enhanced insulin response in HAT season calves. This study highlights the importance of adequate supporting strategies for the care of the late gestation cows and postnatal calves during the HAT season.

  3. Influence of different seasons during late gestation on Holstein cows' colostrum and postnatal adaptive capability of their calves

    NASA Astrophysics Data System (ADS)

    Trifković, Julijana; Jovanović, Ljubomir; Đurić, Miloje; Stevanović-Đorđević, Snežana; Milanović, Svetlana; Lazarević, Miodrag; Sladojević, Željko; Kirovski, Danijela

    2018-02-01

    Season may affect calves' thermal comfort and behavior, but the data related to the overall influence of seasonal variations on dams' colostrum and postnatal adaptive capability of calves are limited. The aim of this study was to measure the effects of a 49-day-long low air temperature (LAT) season (5.20 ± 0.46 °C mean air temperature) and a 53-day-long high air temperature (HAT) season (27.40 ± 0.39 °C mean air temperature) on dams' colostrum quality and physiological, biochemical, hormonal, and oxidative stress parameters of their calves during the first 7 days of life. The dams' colostrum was sampled at 2, 14, and 26 h after calving, before feeding of their calves. Calves' blood samples were taken before the first colostrum intake and on days 1, 2, 3, and 7 of life. Calves' physiological parameters were measured on days 0 and 7. HAT season significantly reduced the quality of dams' colostrum. The ingestion of the low-quality colostrum, combined with the thermal discomfort during HAT season, probably provoked impaired physiological, biochemical, hormonal, and oxidative stress parameters in samples taken from the post-colostral calves. Additionally, intravenous glucose tolerance test was performed on day 7, which suggested an enhanced insulin response in HAT season calves. This study highlights the importance of adequate supporting strategies for the care of the late gestation cows and postnatal calves during the HAT season.

  4. Postnatal care utilization among urban women in northern Ethiopia: cross-sectional survey.

    PubMed

    Gebrehiwot, Genet; Medhanyie, Araya Abrha; Gidey, Gebreamlak; Abrha, Kidan

    2018-05-30

    Postnatal care service enables health professionals to identify post-delivery problems including potential complications for the mother with her baby and to provide treatments promptly. In Ethiopia, postnatal care service is made accessible to all women for free however the utilization of the service is very low. This study assessed the utilization of postnatal care services of urban women and the factors associated in public health facilities in Mekelle city, Tigrai Region, Northern Ethiopia. A facility based cross sectional study design was used to assess post natal service utilization. Using simple random sampling 367 women who visited maternal and child health clinics in Mekelle city for postnatal care services during January 27 to April 2014 were selected. Data was entered and analyzed using SPSS Version 20.0 software. A binary and multivariable logistic regression was used to identify risk factors associated with the outcome variables. P-value less than 0.05 is used to declare statistical significance. The prevalence of women who utilized postnatal care service was low (32.2%). Women who were private employees and business women were more likely to utilize postnatal care services (AOR = 6.46, 95% CI: 1.91-21.86) and (3.35, 95% CI: 1.10-10.19) respectively compared to house wives., Women who had history of one pregnancy were more likely to utilize the service (AOR = 3.19, 95% CI: 1.06-9.57) compared to women who had history of four and above pregnancies. Women who had knowledge of postnatal care service were also more likely to utilize postnatal care service (AOR = 14.46, 95% CI: 7.55-27.75) than women who lacked knowledge about the services. Postnatal care utilization in the study area is low. Knowledge on postnatal care services and occupation of women had positive impact on postnatal care service utilization. The Mekelle city administration health office and other stakeholders should support and encourage urban health extension workers and

  5. Measuring postnatal care contacts for mothers and newborns: An analysis of data from the MICS and DHS surveys

    PubMed Central

    Amouzou, Agbessi; Mehra, Vrinda; Carvajal–Aguirre, Liliana; Khan, Shane M.; Sitrin, Deborah; Vaz, Lara ME

    2017-01-01

    Background The postnatal period represents a vulnerable phase for mothers and newborns where both face increased risk of morbidity and death. WHO recommends postnatal care (PNC) for mothers and newborns to include a first contact within 24 hours following the birth of the child. However, measuring coverage of PNC in household surveys has been variable over time. The two largest household survey programs in low and middle–income countries, the UNICEF–supported Multiple Indicator Cluster Surveys (MICS) and USAID–funded Demographic and Health Surveys (DHS), now include modules that capture these measures. However, the measurement approach is slightly different between the two programs. We attempt to assess the possible measurement differences that might affect comparability of coverage measures. Methods We first review the standard questionnaires of the two survey programs to compare approaches to collecting data on postnatal contacts for mothers and newborns. We then illustrate how the approaches used can affect PNC coverage estimates by analysing data from four countries; Bangladesh, Ghana, Kygyz Republic, and Nepal, with both MICS and DHS between 2010–2015. Results We found that tools implemented todate by MICS and DHS (up to MICS round 5 and up to DHS phase 6) have collected PNC information in different ways. While MICS dedicated a full module to PNC and distinguishes immediate vs later PNC, DHS implemented a more blended module of pregnancy and postnatal and did not systematically distinguish those phases. The two survey programs differred in the way questions on postnatal care for mothers and newbors were framed. Subsequently, MICS and DHS surveys followed different methodological approach to compute the global indicator of postnatal contacts for mothers and newborns within two days following delivery. Regardless of the place of delivery, MICS estimates for postnatal contacts for mothers and newbors appeared consistently higher than those reported in DHS

  6. Changes in maternal self-efficacy, postnatal depression symptoms and social support among Chinese primiparous women during the initial postpartum period: A longitudinal study.

    PubMed

    Zheng, Xujuan; Morrell, Jane; Watts, Kim

    2018-07-01

    There are many parenting problems during infancy for Chinese primiparous women. As an important determinant of good parenting, maternal self-efficacy (MSE) should be paid more attention by researchers. At present, the limitations of previous research examining MSE during infancy are that most studies were conducted with a homogeneous sample and there were few studies with Chinese women. Secondly, the trajectory of change in MSE, postnatal depression symptoms and social support for Chinese primiparous women was not clear during the initial postpartum period in earlier studies. This study aimed to describe changes in MSE, postnatal depression symptoms and social support among Chinese primiparous women in the first three months postnatally. A quantitative longitudinal study using questionnaires was conducted. Obstetric wards at three hospitals in Xiamen City, South-East China. In total, 420 Chinese primiparous women were recruited. Initial baseline questionnaires to measure socio-demographic and clinical characteristics at three days postnatally were distributed to participants face-to-face by the researcher on the postnatal ward. Follow-up questionnaires at six and 12 weeks postnatally were sent via e-mail by the researcher to participants, including the Self-efficacy in Infant Care Scale (SICS), the Edinburgh Postnatal Depression Scale (EPDS) and the Postpartum Social Support Scale (PSSS) to measure MSE, postnatal depression symptoms and social support, respectively. These were returned by participants via e-mail. Quantitative data were analysed using SPSS. The mean MSE score at six weeks postnatally was 74.92 (SD = 11.05), and increased to 77.78 (SD = 11.13) at 12 weeks postnatally. The mean social support scores at six and 12 weeks postnatally were 40.99 (SD = 9.31) and 43.00 (SD = 9.55). The mean EPDS scores decreased from 9.09 (SD = 4.33) at six weeks postnatally to 8.63 (SD = 4.40) at 12 weeks postnatally; the proportion of women with an

  7. Changes in calcium uptake rate by rat cardiac mitochondria during postnatal development.

    PubMed

    Bassani, R A; Fagian, M M; Bassani, J W; Vercesi, A E

    1998-10-01

    Ca2+ uptake, transmembrane electrical potential (Deltapsim) and oxygen consumption were measured in isolated ventricular mitochondria of rats from 3 days to 5 months of age. Estimated values of ruthenium red-sensitive, succinate-supported maximal rate of Ca2+ uptake (Vmax, expressed as nmol Ca2+/min/mg protein) were higher in neonates and gradually fell during postnatal development (from 435+/-24 at 3-6 days, to 156+/-10 in adults,P<0.001), whereas K0.5 values (approximately 10 microM were not significantly affected by age. Under similar conditions, mitochondria from adults (5 months old) and neonates (4-6 days old) showed comparable state 4 (succinate and alpha-ketoglutarate as substrates) and state 3ADP (alpha-ketoglutarate-supported) respiration rates, as well as Deltapsim values (approximately-150 mV). Respiration-independent Deltapsim and Ca2+ uptake, supported by valinomycin-induced K+ efflux were also investigated at these ages. A transient Deltapsim (approximately -30 mV) was evoked by valinomycin in both neonatal and adult mitochondria. Respiration-independent Ca2+ uptake was also transient, but its initial rate was significantly higher in neonates than in adults (49. 4+/-10.0v 28.0+/-5.7 mmol Ca2+/min/mg protein,P<0.01). These results indicate that Ca2+ uptake capacity of rat cardiac mitochondria is remarkably high just after birth and declines over the first weeks of postnatal life, without change in apparent affinity of the transporter. Increased mitochondrial Ca2+ uptake rate in neonates appears to be related to the uniporter itself, rather than to modification of the driving force of the transport. Copyright 1998 Academic Press

  8. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    PubMed

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Effects of postnatal dietary choline manipulation against MK-801 neurotoxicity in pre- and postadolescent rats.

    PubMed

    Biasi, Elisabetta

    2010-11-29

    Prenatal supplementation of rat dams with dietary choline has been shown to provide their offspring with neuroprotection against N-methyl-d-aspartate (NMDA) antagonist-mediated neurotoxicity. This study investigated whether postnatal dietary choline supplementation exposure for 30 and 60 days of rats starting in a pre-puberty age would also induce neuroprotection (without prenatal exposure). Male and female Sprague-Dawley rats (postnatal day 30 of age) were reared for 30 or 60 concurrent days on one of the four dietary levels of choline: 1) fully deficient choline, 2) 1/3 the normal level, 3) the normal level, or 4) seven times the normal level. After diet treatment, the rats received one injection of MK-801 (dizocilpine 3mg/kg) or saline control. Seventy-two hours later, the rats were anesthetized and transcardially perfused. Their brains were then postfixed for histology with Fluorojade-C (FJ-C) staining. Serial coronal sections were prepared from a rostrocaudal direction from 1.80 to 4.2mm posterior to the bregma to examine cell degeneration in the retrosplenial and piriform regions. MK-801, but not control saline, produced significant numbers of FJ-C positive neurons, indicating considerable neuronal degeneration. Dietary choline supplementation or deprivation in young animals reared for 30-60days did not alter NMDA antagonist-induced neurodegeneration in the retrosplenial region. An interesting finding is the absence of the piriform cortex involvement in young male rats and the complete absence of neurotoxicity in both hippocampus regions and DG. However, neurotoxicity in the piriform cortex of immature females treated for 60days appeared to be suppressed by low levels of dietary choline. Published by Elsevier B.V.

  10. In Utero Exposure to a Cardiac Teratogen Causes Reversible Deficits in Postnatal Cardiovascular Function, But Altered Adaptation to the Burden of Pregnancy.

    PubMed

    Aasa, Kristiina L; Maciver, Rebecca D; Ramchandani, Shyamlal; Adams, Michael A; Ozolinš, Terence R S

    2015-11-01

    Congenital heart defects (CHD) are the most common birth anomaly and while many resolve spontaneously by 1 year of age, the lifelong burden on survivors is poorly understood. Using a rat model of chemically induced CHD that resolve postnatally, we sought to characterize the postnatal changes in cardiac function, and to investigate whether resolved CHD affects the ability to adapt to the increased the cardiovascular (CV) burden of pregnancy. To generate rats with resolved CHD, pregnant rats were administered distilled water or dimethadione (DMO) [300 mg/kg b.i.d. on gestation day (gd) 9 and 10] and pups delivered naturally. To characterize structural and functional changes in the heart, treated and control offspring were scanned by echocardiography on postnatal day 4, 21, and 10-12 weeks. Radiotelemeters were implanted for continuous monitoring of hemodynamics. Females were mated and scanned by echocardiography on gd12 and gd18 during pregnancy. On gd18, maternal hearts were collected for structural and molecular assessment. Postnatal echocardiography revealed numerous structural and functional differences in treated offspring compared with control; however, these resolved by 10-12 weeks of age. The CV demand of pregnancy revealed differences between treated and control offspring with respect to mean arterial pressure, CV function, cardiac strain, and left ventricular gene expression. In utero exposure to DMO also affected the subsequent generation. Gd18 fetal and placental weights were increased in treated F2 offspring. This study demonstrates that in utero chemical exposure may permanently alter the capacity of the postnatal heart to adapt to pregnancy and this may have transgenerational effects. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The Effects of Oral Ibuprofen on Medicinal Closure of Patent Ductus Arteriosus in Full-Term Neonates in the Second Postnatal Week

    PubMed Central

    Alipour, Mohammad Reza; Mozaffari Shamsi, Mansooreh; Namayandeh, Seyedeh Mahdieh; Pezeshkpour, Zohreh; Rezaeipour, Fatemeh; Sarebanhassanabadi, Mohammadtaghi

    2016-01-01

    Background The arterial ductus is a major communicative pathway which is naturally patent in the fetus, connecting the body of the major pulmonary artery to the descending aorta. Although usually closing on its own, the patent ductus arteriosus (PDA) may remain open in the second postnatal week due to a lack of prompt diagnosis in the initial days of life or an absence of prompt treatment. Objectives To prevent the untoward sequelae of patency of the ductus arteriosus, and to avoid invasive surgery at higher ages, the researchers in the present study embarked on determining the effects of oral ibuprofen during the second postnatal week on newborns with patent ductus arteriosus. Patients and Methods In this study, 70 neonates aged eight to 14 days, presenting at Khatam-al-Anbia clinic and the NICU ward of Shahid Sadoughi hospital in Yazd, Iran, who were diagnosed with PDA through auscultation of heart murmurs and echocardiography, were randomly assigned to two groups. The experimental group received oral ibuprofen of 10 mg/kg in day 1, 5 mg/kg in day 2, and 5 mg/kg in day 3 administered by their parents. The control group did not receive any drug. Parents were informed of the potential drug complications and side effects and asked to report them to the researchers if any occurred. Results After intervention, the patent ductus arteriosus was closed in 62.9% of the neonates in the experimental group (35 newborns) who received oral ibuprofen, while it was closed in 54.3% of the control neonates (35 newborns) who did not receive any drug (P = 0.628). No complications were observed in either of the neonatal groups. Conclusions Our findings showed that administration of oral ibuprofen had no significant effect on the medicinal closure of PDA in full-term neonates during the second postnatal week. PMID:27729962

  12. The Effects of Oral Ibuprofen on Medicinal Closure of Patent Ductus Arteriosus in Full-Term Neonates in the Second Postnatal Week.

    PubMed

    Alipour, Mohammad Reza; Mozaffari Shamsi, Mansooreh; Namayandeh, Seyedeh Mahdieh; Pezeshkpour, Zohreh; Rezaeipour, Fatemeh; Sarebanhassanabadi, Mohammadtaghi

    2016-08-01

    The arterial ductus is a major communicative pathway which is naturally patent in the fetus, connecting the body of the major pulmonary artery to the descending aorta. Although usually closing on its own, the patent ductus arteriosus (PDA) may remain open in the second postnatal week due to a lack of prompt diagnosis in the initial days of life or an absence of prompt treatment. To prevent the untoward sequelae of patency of the ductus arteriosus, and to avoid invasive surgery at higher ages, the researchers in the present study embarked on determining the effects of oral ibuprofen during the second postnatal week on newborns with patent ductus arteriosus. In this study, 70 neonates aged eight to 14 days, presenting at Khatam-al-Anbia clinic and the NICU ward of Shahid Sadoughi hospital in Yazd, Iran, who were diagnosed with PDA through auscultation of heart murmurs and echocardiography, were randomly assigned to two groups. The experimental group received oral ibuprofen of 10 mg/kg in day 1, 5 mg/kg in day 2, and 5 mg/kg in day 3 administered by their parents. The control group did not receive any drug. Parents were informed of the potential drug complications and side effects and asked to report them to the researchers if any occurred. After intervention, the patent ductus arteriosus was closed in 62.9% of the neonates in the experimental group (35 newborns) who received oral ibuprofen, while it was closed in 54.3% of the control neonates (35 newborns) who did not receive any drug (P = 0.628). No complications were observed in either of the neonatal groups. Our findings showed that administration of oral ibuprofen had no significant effect on the medicinal closure of PDA in full-term neonates during the second postnatal week.

  13. Sevoflurane-induced memory impairment in the postnatal developing mouse brain.

    PubMed

    Lu, Zhijun; Sun, Jihui; Xin, Yichun; Chen, Ken; Ding, Wen; Wang, Yujia

    2018-05-01

    The aim of the present study was to confirm that sevoflurane induces memory impairment in the postnatal developing mouse brain and determine its mechanism of action. C57BL/6 mice 7 days old were randomly assigned into a 2.6% sevoflurane (n=68), a 1.3% sevoflurane (n=68) and a control (n=38) group. Blood gas analysis was performed to evaluate hypoxia and respiratory depression during anesthesia in 78 mice. Measurements for expression of caspase-3 by immunohistochemistry, cleavage of poly adenosine diphosphate-ribose polymerase (PARP) by western blotting, as well as levels of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor type 2 (Ntrk2), pro-BDNF, p75 neurotrophin receptor (p75NTR) and protein kinase B (PKB/Akt) by enzyme-linked immunosorbent assay were performed in the hippocampus of 12 mice from each group. A total of 60 mice underwent the Morris water maze (MWM) test. Results from the MWM test indicated that the time spent in the northwest quadrant and platform site crossovers by mice in the 2.6 and 1.3% sevoflurane groups was significantly lower than that of the control group. Meanwhile, levels of caspase-3 and cleaved PARP in the 2.6 and 1.3% sevoflurane groups were significantly higher than that in the control group. Levels of pro-BDNF and p75NTR were significantly increased and the level of PKB/Akt was significantly decreased following exposure to 2.6% sevoflurane. Finally, the memory of postnatal mice was impaired by sevoflurane, this was determined using a MWM test. Therefore, the results of the current study suggest that caspase-3 induced cleavage of PARP, as well as pro-BDNF, p75NTR and PKB/Akt may be important in sevoflurane-induced memory impairment in the postnatal developing mouse brain.

  14. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  15. Brain metabolic alterations in mice subjected to postnatal traumatic stress and in their offspring.

    PubMed

    Gapp, Katharina; Corcoba, Alberto; van Steenwyk, Gretchen; Mansuy, Isabelle M; Duarte, João Mn

    2017-07-01

    Adverse environmental and social conditions early in life have a strong impact on health. They are major risk factors for mental diseases in adulthood and, in some cases, their effects can be transmitted across generations. The consequences of detrimental stress conditions on brain metabolism across generations are not well known. Using high-field (14.1 T) magnetic resonance spectroscopy, we investigated the neurochemical profile of adult male mice exposed to traumatic stress in early postnatal life and of their offspring, and of undisturbed control mice. We found that, relative to controls, early life stress-exposed mice have metabolic alterations consistent with neuronal dysfunction, including reduced concentration of N-acetylaspartate, glutamate and γ-aminobutyrate, in the prefrontal cortex in basal conditions. Their offspring have normal neurochemical profiles in basal conditions. Remarkably, when challenged by an acute cold swim stress, the offspring has attenuated metabolic responses in the prefrontal cortex, hippocampus and striatum. In particular, the expected stress-induced reduction in the concentration of N-acetylaspartate, a putative marker of neuronal health, was prevented in the cortex and hippocampus. These findings suggest that paternal trauma can confer beneficial brain metabolism adaptations to acute stress in the offspring.

  16. Angiotensin II-AT1-receptor signaling is necessary for cyclooxygenase-2-dependent postnatal nephron generation.

    PubMed

    Frölich, Stefanie; Slattery, Patrick; Thomas, Dominique; Goren, Itamar; Ferreiros, Nerea; Jensen, Boye L; Nüsing, Rolf M

    2017-04-01

    Deletion of cyclooxygenase-2 (COX-2) causes impairment of postnatal kidney development. Here we tested whether the renin angiotensin system contributes to COX-2-dependent nephrogenesis in mice after birth and whether a rescue of impaired renal development and function in COX-2 -/- mice was achievable. Plasma renin concentration in mouse pups showed a birth peak and a second peak around day P8 during the first 10 days post birth. Administration of the angiotensin II receptor AT1 antagonist telmisartan from day P1 to P3 did not result in cortical damage. However, telmisartan treatment from day P3 to P8, the critical time frame of renal COX-2 expression, led to hypoplastic glomeruli, a thinned subcapsular cortex and maturational arrest of superficial glomeruli quite similar to that observed in COX-2 -/- mice. In contrast, AT2 receptor antagonist PD123319 was without any effect on renal development. Inhibition of the renin angiotensin system by aliskiren and enalapril caused similar glomerular defects as telmisartan. Administration of the AT1 receptor agonist L162313 to COX-2 -/- pups improved kidney growth, ameliorated renal defects, but had no beneficial effect on reduced cortical mass. L162313 rescued impaired renal function by reducing serum urea and creatinine and mitigated pathologic albumin excretion. Moreover, glomerulosclerosis in the kidneys of COX-2 -/- mice was reduced. Thus, angiotensin II-AT1-receptor signaling is necessary for COX-2-dependent normal postnatal nephrogenesis and maturation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Organization of the Indian hedgehog--parathyroid hormone-related protein system in the postnatal growth plate.

    PubMed

    Chau, Michael; Forcinito, Patricia; Andrade, Anenisia C; Hegde, Anita; Ahn, Sohyun; Lui, Julian C; Baron, Jeffrey; Nilsson, Ola

    2011-08-01

    In embryonic growth cartilage, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) participate in a negative feedback loop that regulates chondrocyte differentiation. Postnatally, this region undergoes major structural and functional changes. To explore the organization of the Ihh–PTHrP system in postnatal growth plate, we microdissected growth plates of 7-day-old rats into their constituent zones and assessed expression of genes participating in the h–PTHrP feedback loop. Ihh, Patched 1, Smoothened, Gli1, Gli2, Gli3, and Pthr1 were expressed in regions analogous to the expression domains in embryonic growth cartilage. However, PTHrP was expressed in resting zone cartilage, a site that differs from the embryonic source, the periarticular cells. We then used mice in which lacZ has replaced coding sequences of Gli1 and thus serves as a marker for active hedgehog signaling. At 1, 4, 8, and 12 weeks of age, lacZ expression was detected in a pattern analogous to that of embryonic cartilage. The findings support the hypothesis that the embryonic Ihh–PTHrP feedback loop is maintained in the postnatal growth plate except that the source of PTHrP has shifted to a more proximal location in the resting zone.

  18. Sternohyoid and diaphragm muscle form and function during postnatal development in the rat.

    PubMed

    O'Connell, R A; Carberry, J; O'Halloran, K D

    2013-09-01

    What is the central question of this study? Co-ordinated activity of the thoracic pump and pharyngeal dilator muscles is critical for maintaining airway calibre and respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in the airway dilator muscles. What is the main finding and its importance? Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a maturational shift in muscle myosin heavy chain phenotype. This maturation is accelerated in the sternohyoid muscle relative to the diaphragm and may have implications for the control of airway calibre in vivo. The striated muscles of breathing, including the thoracic pump and pharyngeal dilator muscles, play a critical role in maintaining respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in airway dilator muscles given that co-ordinated activity of both sets of muscles is needed for the maintenance of airway calibre and effective pulmonary ventilation. The form and function of sternohyoid and diaphragm muscles from Wistar rat pups [postnatal day (PD) 10, 20 and 30] was determined. Isometric contractile and endurance properties were examined in tissue baths containing Krebs solution at 35°C. Myosin heavy chain (MHC) isoform composition was determined using immunofluorescence. Muscle oxidative and glycolytic capacity was assessed by measuring the activities of succinate dehydrogenase and glycerol-3-phosphate dehydrogenase using semi-quantitative histochemistry. Sternohyoid and diaphragm peak isometric force and fatigue increased significantly with postnatal maturation. Developmental myosin disappeared by PD20, whereas MHC2B areal density increased significantly from PD10 to PD30, emerging earlier and to a much greater extent in the

  19. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats

    PubMed Central

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-01-01

    Aim To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. Methods At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. Results MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Conclusion Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life. PMID:25891868

  20. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats.

    PubMed

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-04-01

    To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life.

  1. Postnatal airway growth in cystic fibrosis piglets.

    PubMed

    Adam, Ryan J; Abou Alaiwa, Mahmoud H; Bouzek, Drake C; Cook, Daniel P; Gansemer, Nicholas D; Taft, Peter J; Powers, Linda S; Stroik, Mallory R; Hoegger, Mark J; McMenimen, James D; Hoffman, Eric A; Zabner, Joseph; Welsh, Michael J; Meyerholz, David K; Stoltz, David A

    2017-09-01

    Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis. NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis. Copyright © 2017 the American Physiological Society.

  2. Reduction in postnatal cumulative nutritional deficit and improvement of growth in extremely preterm infants.

    PubMed

    Senterre, Thibault; Rigo, Jacques

    2012-02-01

    To evaluate the influence of gestational age (GA) on cumulative nutritional deficit and postnatal growth in extremely preterm (EPT) infants after optimizing nutritional protocol as recently recommended. A prospective, nonrandomized, observational study in extremely preterm (EPT, <28 weeks) and very preterm (VPT, 28-30 weeks) infants. Eighty-four infants were included (BW: 978 ± 156 g, GA: 27.8 ± 1.3 weeks). Cumulative nutritional deficit increased during first week of life to -290 ± 84 and -285 ± 117 kcal/kg and -4.2 ± 3.1 and -4.8 ± 3.9 g/kg of protein in EPT and VPT groups, respectively. After 6 weeks, only cumulative energy deficit in EPT group remained significant (p < 0.05) even when 96% of theoretical energy intakes were provided. Weight z score decreased during first 3 days in average with initial weight loss, and then, the z score increased during the first 6 weeks of life in the majority (75%) of infants. Cumulative protein deficit during the first week of life was the major determinant of the postnatal growth during the first 6 weeks of life. Cumulative nutritional deficit may be drastically reduced in both EPT and VPT infants after optimizing nutritional policy during the first weeks of life, and the postnatal growth restriction could even be prevented. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  3. Postnatal aniracetam treatment improves prenatal ethanol induced attenuation of AMPA receptor-mediated synaptic transmission.

    PubMed

    Wijayawardhane, Nayana; Shonesy, Brian C; Vaglenova, Julia; Vaithianathan, Thirumalini; Carpenter, Mark; Breese, Charles R; Dityatev, Alexander; Suppiramaniam, Vishnu

    2007-06-01

    Aniracetam is a nootropic compound and an allosteric modulator of AMPA receptors (AMPARs) which mediate synaptic mechanisms of learning and memory. Here we analyzed impairments in AMPAR-mediated synaptic transmission caused by moderate prenatal ethanol exposure and investigated the effects of postnatal aniracetam treatment on these abnormalities. Pregnant Sprague-Dawley rats were gavaged with ethanol or isocaloric sucrose throughout pregnancy, and subsequently the offspring were treated with aniracetam on postnatal days (PND) 18 to 27. Hippocampal slices prepared from these pups on PND 28 to 34 were used for the whole-cell patch-clamp recordings of AMPAR-mediated spontaneous and miniature excitatory postsynaptic currents in CA1 pyramidal cells. Our results indicate that moderate ethanol exposure during pregnancy results in impaired hippocampal AMPAR-mediated neurotransmission, and critically timed aniracetam treatment can abrogate this deficiency. These results highlight the possibility that aniracetam treatment can restore synaptic transmission and ameliorate cognitive deficits associated with the fetal alcohol syndrome.

  4. Early postnatal ozone exposure alters rat nodose and jugular sensory neuron development

    PubMed Central

    Zellner, Leor C.; Brundage, Kathleen M.; Hunter, Dawn D.; Dey, Richard D.

    2011-01-01

    Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O3). Airway neurons can mediate airway inflammation through the release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O3 exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O3 exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O3 (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O3-exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O3 exposure significantly alters sensory neuron development. PMID:22140294

  5. Factors that affect the postnatal increase in superior mesenteric artery blood flow velocity in very low birth weight preterm infants.

    PubMed

    Havranek, Thomas; Miladinovic, Branko; Wadhawan, Rajan; Carver, Jane D

    2012-04-15

    To identify factors related to the postnatal increase in superior mesenteric artery blood flow velocity (SMA BFV). SMA BFV was measured in 35 infants (birth weight 1047±246 g) on day of life (DOL) 1, 3, 5, 7 10 and 14. Latent curve modeling (LCM) was used to measure the longitudinal change in BFV for each subject, and the correlation between changes in BFV and baseline values. Non-parametric correlations were calculated between BFV and variables previously reported to be related to SMA BFV. There was significant variability in SMA BFV on DOL 1, a significant increase from DOL 1-14, and significant variability in the postnatal increase. Infants with higher enteral feeding volumes had greater increases, while infants receiving positive pressure ventilation or hyperalimentation had lower increases. Several clinical factors affect the postnatal increase in SMA BFV. The use of LCM is useful in longitudinal studies of very low birth weight (VLBW) infants, who are clinically and demographically heterogeneous.

  6. Sampling of prenatal and postnatal offspring from individual rat dams enhances animal use without compromising development

    NASA Technical Reports Server (NTRS)

    Alberts, J. R.; Burden, H. W.; Hawes, N.; Ronca, A. E.

    1996-01-01

    To assess prenatal and postnatal developmental status in the offspring of a group of animals, it is typical to examine fetuses from some of the dams as well as infants born to the remaining dams. Statistical limitations often arise, particularly when the animals are rare or especially precious, because all offspring of the dam represent only a single statistical observation; littermates are not independent observations (biologically or statistically). We describe a study in which pregnant laboratory rats were laparotomized on day 7 of gestation (GD7) to ascertain the number and distribution of uterine implantation sites and were subjected to a simulated experience on a 10-day space shuttle flight. After the simulated landing on GD18, rats were unilaterally hysterectomized, thus providing a sample of fetuses from 10 independent uteruses, followed by successful vaginal delivery on GD22, yielding postnatal samples from 10 uteruses. A broad profile of maternal and offspring morphologic and physiologic measures indicated that these novel sampling procedures did not compromise maternal well-being and maintained normal offspring development and function. Measures included maternal organ weights and hormone concentrations, offspring body size, growth, organ weights, sexual differentiation, and catecholamine concentrations.

  7. Lung parenchyma at maturity is influenced by postnatal growth but not by moderate preterm birth in sheep.

    PubMed

    Maritz, Gert; Probyn, Megan; De Matteo, Robert; Snibson, Ken; Harding, Richard

    2008-01-01

    We have recently shown that moderate preterm birth, in the absence of respiratory support, altered the structure of lung parenchyma in young lambs, but the long-term effects are unknown. To determine whether structural changes persist to maturity, and whether postnatal growth affects lung structure at maturity in sheep. At approximately 1.2 years after birth, lung parenchyma of sheep born 14 days before term (n = 7) was stereologically compared with that of controls born at term (n = 8, term approx. 146 days). Preterm birth per se had no significant effect on lung volume, alveolar number and size, and thicknesses of the alveolar walls and blood-gas barrier. After combining the preterm and term groups, we examined the effects of postnatal growth rates on lung parenchyma. Slower-growing sheep (SG; n = 7: 4 preterm, 3 term) were compared with faster-growing sheep (FG; n = 8: 3 preterm, 5 term). At approximately 1.2 years, the right lung volume, relative to body weight, was significantly lower in SG than FG sheep (p < 0.05) and alveolar number was significantly lower by approximately 44%. The total alveolar internal surface area of the right lung of SG sheep was 38% smaller than in FG sheep; it was also significantly lower when related to both lung and body weight. Our data suggest that moderate preterm birth does not cause persistent alterations in lung parenchyma. However, slow postnatal growth in low-birth-weight sheep results in smaller lungs with fewer alveoli and a lower alveolar surface area relative to body weight. Copyright (c) 2007 S. Karger AG, Basel.

  8. Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI.

    PubMed

    Zhang, Lei; Allen, John; Hu, Lingzhi; Caruthers, Shelton D; Wickline, Samuel A; Chen, Junjie

    2013-01-15

    Cardiomyocyte organization is a critical determinant of coordinated cardiac contractile function. Because of the acute opening of the pulmonary circulation, the relative workload of the left ventricle (LV) and right ventricle (RV) changes substantially immediately after birth. We hypothesized that three-dimensional cardiomyocyte architecture might be required to adapt rapidly to accommodate programmed perinatal changes of cardiac function. Isolated fixed hearts from pig fetuses or pigs at midgestation, preborn, postnatal day 1 (P1), postnatal day 5, postnatal day 14 (P14), and adulthood (n = 5 for each group) were acquired for diffusion-weighted magnetic resonance imaging. Cardiomyocyte architecture was visualized by three-dimensional fiber tracking and was quantitatively evaluated by the measured helix angle (α(h)). Upon the completion of MRI, hearts were sectioned and stained with hematoxylin/eosin (H&E) to evaluate cardiomyocyte alignment, with picrosirius red to evaluate collagen content, and with anti-Ki67 to evaluate postnatal cell proliferation. The helical architecture of cardiomyocyte was observed as early as the midgestational period. Postnatal changes of cardiomyocyte architecture were observed from P1 to P14, which primary occurred in the septum and RV free wall (RVFW). In the septum, the volume ratio of LV- vs. RV-associated cardiomyocytes rapidly changed from RV-LV balanced pattern at birth to LV dominant pattern by P14. In the RVFW, subendocardial α(h) decreased by ~30° from P1 to P14. These findings indicate that the helical architecture of cardiomyocyte is developed as early as the midgestation period. Substantial and rapid adaptive changes in cardiac microarchitecture suggested considerable developmental plasticity of cardiomyocyte form and function in the postnatal period in response to altered cardiac mechanical function.

  9. Postnatal penile growth concurrent with mini-puberty predicts later sex-typed play behavior: Evidence for neurobehavioral effects of the postnatal androgen surge in typically developing boys.

    PubMed

    Pasterski, Vickie; Acerini, Carlo L; Dunger, David B; Ong, Ken K; Hughes, Ieuan A; Thankamony, Ajay; Hines, Melissa

    2015-03-01

    The masculinizing effects of prenatal androgens on human neurobehavioral development are well established. Also, the early postnatal surge of androgens in male infants, or mini-puberty, has been well documented and is known to influence physiological development, including penile growth. However, neurobehavioral effects of androgen exposure during mini-puberty are largely unknown. The main aim of the current study was to evaluate possible neurobehavioral consequences of mini-puberty by relating penile growth in the early postnatal period to subsequent behavior. Using multiple linear regression, we demonstrated that penile growth between birth and three months postnatal, concurrent with mini-puberty, significantly predicted increased masculine/decreased feminine behavior assessed using the Pre-school Activities Inventory (PSAI) in 81 healthy boys at 3 to 4years of age. When we controlled for other potential influences on masculine/feminine behavior and/or penile growth, including variance in androgen exposure prenatally and body growth postnally, the predictive value of penile growth in the early postnatal period persisted. More specifically, prenatal androgen exposure, reflected in the measurement of anogenital distance (AGD), and early postnatal androgen exposure, reflected in penile growth from birth to 3months, were significant predictors of increased masculine/decreased feminine behavior, with each accounting for unique variance. Our findings suggest that independent associations of PSAI with AGD at birth and with penile growth during mini-puberty reflect prenatal and early postnatal androgen exposures respectively. Thus, we provide a novel and readily available approach for assessing effects of early androgen exposures, as well as novel evidence that early postnatal aes human neurobehavioral development. Copyright © 2015. Published by Elsevier Inc.

  10. Barriers to utilization of postnatal care at village level in Klaten district, central Java Province, Indonesia.

    PubMed

    Probandari, Ari; Arcita, Akhda; Kothijah, Kothijah; Pamungkasari, Eti Poncorini

    2017-08-07

    Maternal health remains a persisting public health challenge in Indonesia. Postnatal complications, in particular, are considered as maternal health problems priority that should be addressed. Conducting adequate care for postnatal complications will improve the quality of life of mothers and babies. With the universal health coverage implementation, the Indonesian government provides free maternal and child health services close to clients at the village level, which include postnatal care. Our study aimed to explore barriers to utilization of postnatal care at the village level in Klaten district, Central Java Province, Indonesia. A qualitative study was conducted in March 2015 - June 2016 in Klaten district, Central Java, Indonesia. We selected a total of 19 study participants, including eight mothers with postnatal complications, six family members, and five village midwives for in-depth interviews. We conducted a content analysis technique on verbatim transcripts of the interviews using open code software. This study found three categories of barriers to postnatal care utilization in villages: mother and family members' health literacy on postnatal care, sociocultural beliefs and practices, and health service responses. Most mothers did not have adequate knowledge and skills regarding postnatal care that reflected how they lacked awareness and practice of postnatal care. Inter-generational norms and myths hindered mothers from utilizing postnatal care and from having adequate nutritional intake during the postnatal period. Mothers and family members conducted unsafe self-treatment to address perceived minor postnatal complication. Furthermore, social power from extended family influenced the postnatal care health literacy for mother and family members. Postnatal care in the village lacked patient-centered care practices. Additionally, midwives' workloads and capacities to conduct postnatal information, education and counseling were also issues. Despite the

  11. Effects of Gestational and Postnatal Exposure to Chronic Intermittent Hypoxia on Diaphragm Muscle Contractile Function in the Rat

    PubMed Central

    McDonald, Fiona B.; Dempsey, Eugene M.; O'Halloran, Ken D.

    2016-01-01

    Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm—the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis. PMID:27462274

  12. A longitudinal cohort study examining determinants of overweight and obesity in adulthood.

    PubMed

    Barakat-Haddad, Caroline; Saeed, Usman; Elliott, Susan

    2017-04-20

    Adulthood overweight and obesity are multifaceted conditions influenced by a combination of biological, environmental and socio-cultural factors across the lifespan. Using a longitudinal study design, we aimed to identify determinants of adulthood overweight and obesity, in relation to: 1) childhood and life course factors, 2) geographical differences in air quality, and 3) gender-specific factors, in a cohort followed from childhood into adulthood. Childhood data were acquired (1978-1986) from children residing in four distinct Hamilton neighbourhoods (Ontario, Canada), including air-quality assessments. Adulthood data were obtained (2006-2007) from successfully retraced participants (n = 315) using comprehensive self-administered questionnaires. Multivariate logistic regressions were used to evaluate determinants of adulthood overweight (BMI: 25-29.9 kg/m2) and obesity (BMI: ≥30). The prevalence of normal weight decreased drastically at follow-up in adulthood, while that of overweight and obesity increased. Both overweight and obesity in adulthood were associated with male gender and occupational exposures to contaminants. Childhood residence in Hamilton neighbourhoods with better air quality was associated with lesser odds of adulthood overweight, whereas adulthood obesity was strongly linked to childhood weight gain (overweight or obesity). Among females, childhood weight status predicted overweight and obesity in adulthood, with always living in Hamilton, lack of additional health insurance, negative self-appraisal and high blood pressure during adulthood identified as other significant predictors. Among males, prolonged occupational exposures to contaminants emerged as a unique determinant of adulthood weight gain. Adulthood overweight and obesity are associated with childhood and life course determinants, including childhood weight status, residential air quality and occupational contaminant exposures, in a gender-specific manner.

  13. Stress in childhood, adolescence and early adulthood, and cortisol levels in older age.

    PubMed

    Harris, Mathew A; Cox, Simon R; Brett, Caroline E; Deary, Ian J; MacLullich, Alasdair M J

    2017-03-01

    The glucocorticoid hypothesis suggests that overexposure to stress may cause permanent upregulation of cortisol. Stress in youth may therefore influence cortisol levels even in older age. Using data from the 6-Day Sample, we investigated the effects of high stress in childhood, adolescence and early adulthood - as well as individual variables contributing to these measures; parental loss, social deprivation, school and home moves, illness, divorce and job instability - upon cortisol levels at age 77 years. Waking, waking +45 min (peak) and evening salivary cortisol samples were collected from 159 participants, and the 150 who were not using steroid medications were included in this study. After correcting for multiple comparisons, the only significant association was between early-adulthood job instability and later-life peak cortisol levels. After excluding participants with dementia or possible mild cognitive impairment, early-adulthood high stress showed significant associations with lower evening and mean cortisol levels, suggesting downregulation by stress, but these results did not survive correction for multiple comparisons. Overall, our results do not provide strong evidence of a relationship between stress in youth and later-life cortisol levels, but do suggest that some more long-term stressors, such as job instability, may indeed produce lasting upregulation of cortisol, persisting into the mid-to-late seventies.

  14. Stress in childhood, adolescence and early adulthood, and cortisol levels in older age

    PubMed Central

    Harris, Mathew A.; Cox, Simon R.; Brett, Caroline E.; Deary, Ian J.; MacLullich, Alasdair M. J.

    2017-01-01

    Abstract The glucocorticoid hypothesis suggests that overexposure to stress may cause permanent upregulation of cortisol. Stress in youth may therefore influence cortisol levels even in older age. Using data from the 6-Day Sample, we investigated the effects of high stress in childhood, adolescence and early adulthood – as well as individual variables contributing to these measures; parental loss, social deprivation, school and home moves, illness, divorce and job instability – upon cortisol levels at age 77 years. Waking, waking +45 min (peak) and evening salivary cortisol samples were collected from 159 participants, and the 150 who were not using steroid medications were included in this study. After correcting for multiple comparisons, the only significant association was between early-adulthood job instability and later-life peak cortisol levels. After excluding participants with dementia or possible mild cognitive impairment, early-adulthood high stress showed significant associations with lower evening and mean cortisol levels, suggesting downregulation by stress, but these results did not survive correction for multiple comparisons. Overall, our results do not provide strong evidence of a relationship between stress in youth and later-life cortisol levels, but do suggest that some more long-term stressors, such as job instability, may indeed produce lasting upregulation of cortisol, persisting into the mid-to-late seventies. PMID:28140738

  15. Emerging Adulthood: A Time of Changes in Psychosocial Well-Being.

    PubMed

    Baggio, Stéphanie; Studer, Joseph; Iglesias, Katia; Daeppen, Jean-Bernard; Gmel, Gerhard

    2017-12-01

    The principal aim of this study was to investigate the psychosocial well-being of emerging adults using psychological states associated with this transitional phase and classic measures of emerging adulthood. We expected psychological states to be more closely associated with psychological well-being than classic markers of achieved adulthood. Data were collected in the Cohort Study on Substance Use Risk Factors from 4,991 Swiss men aged 18-25 years. The assessment included the Short Form of the Inventory of Dimensions of Emerging Adulthood (IDEA-8), classic markers of achieved adulthood (e.g., financial independence, stable relationship), and psychosocial well-being. Structural equation models (SEMs) were conducted to test the association between measures of emerging adulthood and psychosocial well-being. Overall, the results highlighted contrasting associations of measures of emerging adulthood and psychosocial well-being. Youths facing negative psychological states (dimension "negativity") and exploring life without knowing how to define themselves (dimension "identity exploration") had a decreased psychosocial well-being. On the contrary, youths exploring many opportunities with an optimistic perspective (dimension "experimentation") had an increased psychosocial well-being. By contrast, classic markers of adulthood were less related to psychosocial well-being. The IDEA-8 Scale appeared to be a useful screening tool for identifying vulnerable youths, and emerging adulthood should be measured with a focus on the psychological states associated with this period. This information may be valuable for mental health systems that have not yet adapted to emerging adults' needs.

  16. [The impact of day nursery in early childhood on psyche in younger adulthood].

    PubMed

    Berth, Hendrik; Förster, Peter; Balck, Friedrich; Brähler, Elmar; Stöbel-Richter, Yve

    2010-02-01

    The influence of day nursery in early childhood on later mental and social development has been controversially discussed for a long time. Opponents of day nurseries express the considerable concern that serious negative mental consequences in later life result from early separation from the mother. A sample of n=383 respondents (54.2% women, aged 34.2 years on average) from the twenty-first wave of the Saxony Longitudinal Study (2007) was analyzed regarding the impact of day nursery in early childhood on different psychological indicators measured later. By applying standardized instruments several aspects were examined such as anxiety, depression, the occurrence of common somatic symptoms, attachment, confidence towards the future, experiences of menace, and common values towards political aspects. The findings show various gender differences, e. g. women report a worse mental health. Yet, only one of the examined indicators can be explained by day nursery in early childhood: respondents who had not been in day nursery felt more threatened by potential stressful life-events, e. g. unemployment. Furthermore the analysis of variance indicates some interaction effects between gender and day nursery in early childhood. Data doesn't support the critic that day nursery in early childhood negatively influences mental health at a later age. A particular positive impact of day nursery in early childhood on the examined aspects cannot be assumed, either. Facing the ongoing political debate on the expansion of day nursery facilities, further research is needed focusing more in detail on qualitative aspects of day nursery.

  17. Diversification of intrinsic motoneuron electrical properties during normal development and botulinum toxin-induced muscle paralysis in early postnatal mice.

    PubMed

    Nakanishi, S T; Whelan, P J

    2010-05-01

    During early postnatal development, between birth and postnatal days 8-11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal -motoneurons. However, these developmental changes in the properties of -motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron-muscle interactions. In this study, we show that botulinum toxin-induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.

  18. An interaction of a NR3C1 polymorphism and antenatal solar activity impacts both hippocampus volume and neuroticism in adulthood

    PubMed Central

    Montag, Christian; Eichner, Markus; Markett, Sebastian; Quesada, Carlos M.; Schoene-Bake, Jan-Christoph; Melchers, Martin; Plieger, Thomas; Weber, Bernd; Reuter, Martin

    2013-01-01

    The investigation of the interaction of genes and environment in the context of mental health and personality yields important new insights for a better understanding of human nature. Both antenatal and postnatal environmental factors have been considered as potential modulators of genetic activity. Antenatally, especially smoking or alcohol drinking habits of the mother dramatically influence the health of the child during pregnancy and even later on in life. In the present study we would like to introduce a more “distant” factor that is not under the control of the becoming mother but that nevertheless plays a potential role for the health of the unborn child later on in adulthood. Here, we retrospectively investigate the influence of solar activity (while the child is still in the uterus of the becoming mother) on brain structure (with a focus on hippocampus and amygdala volume) and personality in adulthood. We observe an interaction of a genetic variant (rs41423247) of the glucocorticoid receptor gene (NR3C1) and solar activity in the first trimester after conception on both hippocampal volume and the personality trait neuroticism in adulthood in N = 254 participants. The NR3C1 gene is the focus of interest, because of its influence on the hypothalamic-pituitary-adrenal (HPA) axis and negative emotionality. Carriers of the CC variant of rs41423247 grown in the womb under the influence of high sun radiation (high solar activity) show both the highest hippocampal volume in the left hemisphere and lowest neuroticism scores. The present findings should encourage researchers in psychology and psychiatry to include also environmental influences such as solar activity besides genetics to better understand the etiogenesis of psychiatric disorders. PMID:23761749

  19. Dysfunctional Autism Risk Genes Cause Circuit-Specific Connectivity Deficits With Distinct Developmental Trajectories

    PubMed Central

    Ielacqua, Giovanna D; Markicevic, Marija; Haberl, Matthias Georg; Ellisman, Mark H; A-Bhaskaran, Arjun; Frick, Andreas; Rudin, Markus; Wenderoth, Nicole

    2018-01-01

    Abstract Autism spectrum disorders (ASD) are a set of complex neurodevelopmental disorders for which there is currently no targeted therapeutic approach. It is thought that alterations of genes regulating migration and synapse formation during development affect neural circuit formation and result in aberrant connectivity within distinct circuits that underlie abnormal behaviors. However, it is unknown whether deviant developmental trajectories are circuit-specific for a given autism risk-gene. We used MRI to probe changes in functional and structural connectivity from childhood to adulthood in Fragile-X (Fmr1−/y) and contactin-associated (CNTNAP2−/−) knockout mice. Young Fmr1−/y mice (30 days postnatal) presented with a robust hypoconnectivity phenotype in corticocortico and corticostriatal circuits in areas associated with sensory information processing, which was maintained until adulthood. Conversely, only small differences in hippocampal and striatal areas were present during early postnatal development in CNTNAP2−/− mice, while major connectivity deficits in prefrontal and limbic pathways developed between adolescence and adulthood. These findings are supported by viral tracing and electron micrograph approaches and define 2 clearly distinct connectivity endophenotypes within the autism spectrum. We conclude that the genetic background of ASD strongly influences which circuits are most affected, the nature of the phenotype, and the developmental time course of the associated changes. PMID:29901787

  20. SVCT2 vitamin C transporter expression in progenitor cells of the postnatal neurogenic niche

    PubMed Central

    Pastor, Patricia; Cisternas, Pedro; Salazar, Katterine; Silva-Alvarez, Carmen; Oyarce, Karina; Jara, Nery; Espinoza, Francisca; Martínez, Agustín D.; Nualart, Francisco

    2013-01-01

    Known as a critical antioxidant, recent studies suggest that vitamin C plays an important role in stem cell generation, proliferation and differentiation. Vitamin C also enhances neural differentiation during cerebral development, a function that has not been studied in brain precursor cells. We observed that the rat neurogenic niche is structurally organized at day 15 of postnatal development, and proliferation and neural differentiation increase at day 21. In the human brain, a similar subventricular niche was observed at 1-month of postnatal development. Using immunohistochemistry, sodium-vitamin C cotransporter 2 (SVCT2) expression was detected in the subventricular zone (SVZ) and rostral migratory stream (RMS). Low co-distribution of SVCT2 and βIII-tubulin in neuroblasts or type-A cells was detected, and minimal co-localization of SVCT2 and GFAP in type-B or precursor cells was observed. Similar results were obtained in the human neurogenic niche. However, BrdU-positive cells also expressed SVCT2, suggesting a role of vitamin C in neural progenitor proliferation. Primary neurospheres prepared from rat brain and the P19 teratocarcinoma cell line, which forms neurospheres in vitro, were used to analyze the effect of vitamin C in neural stem cells. Both cell types expressed functional SVCT2 in vitro, and ascorbic acid (AA) induced their neural differentiation, increased βIII-tubulin and SVCT2 expression, and amplified vitamin C uptake. PMID:23964197

  1. Sibling Relationships during the Transition to Adulthood

    PubMed Central

    Conger, Katherine Jewsbury; Little, Wendy M.

    2009-01-01

    Recent research has shed new light on individual development during the early adulthood years, yet few investigators have examined sibling relationships during this stage of life. These relationships undergo transformations as individuals enter adult roles and orient their lives towards friends and romantic partners and establish independence from parents and siblings. This review examines major life events and role transitions such as leaving home, completing school, obtaining employment, getting married, and having children that influence individuals and their sibling relationships. In addition, the review considers how sibling relationships may affect individuals during the transition to adulthood, and considers the context of family and culture. The article concludes with suggestions for future research on sibling relationships during early adulthood and beyond. PMID:20700389

  2. Lack of toxic effect of technical azadirachtin during postnatal development of rats.

    PubMed

    Srivastava, M K; Raizada, R B

    2007-03-01

    Azadirachtin, a biopesticide has been evaluated for its possible toxic effects during postnatal development of rats over two generations. Rats were fed 100, 500 and 1000ppm technical azadirachtin through diet which is equivalent to 5, 25 and 50mg/kg body weight of rats. Technical azadirachtin has not produced any adverse effects on reproductive function and data were comparable to control animals over two generations. There were no toxicological effect in parent rats as evidenced by clinical signs of toxicity, enzymatic parameters like AST, ALT, ALP, S. bilirubin, S. cholesterol, total protein and histopathology of liver, brain, kidney and testes/ovary. The litters of F(1B) and F(2B) generations were devoid of any morphological, visceral and teratological changes. The percent cumulative loss and growth index of pups were also comparable to respective controls in successive growth period of 0, 4, 7, 14 and 21 days in two generations. There were no major malformations in fetuses while some insignificant minor skeletal variations like missing 5th sternebrae and bipartite thoracic centre found were not compound or dose related. No significant pathomorphological changes were observed in liver, kidney, brain and gonads of F(2B) pups. In conclusion rats fed technical azadirachtin showed no evidence of cumulative effects on postnatal development and reproductive performance over two generations. Absence of any major adverse reproductive effects in adults as well as in 21 days old pups of F(2B) generation suggest the safe use of technical azadirachtin as a biopesticide.

  3. The first 1000 days of life: prenatal and postnatal risk factors for morbidity and growth in a birth cohort in southern India.

    PubMed

    Kattula, Deepthi; Sarkar, Rajiv; Sivarathinaswamy, Prabhu; Velusamy, Vasanthakumar; Venugopal, Srinivasan; Naumova, Elena N; Muliyil, Jayaprakash; Ward, Honorine; Kang, Gagandeep

    2014-07-23

    To estimate the burden and assess prenatal and postnatal determinants of illnesses experienced by children residing in a semiurban slum, during the first 1000 days of life. Community-based birth cohort Southern India Four hundred and ninety-seven children of 561 pregnant women recruited and followed for 2 years with surveillance and anthropometry. Incidence rates of illness; rates of clinic visits and hospitalisations; factors associated with low birth weight, various illnesses and growth. Data on 10 377.7 child-months of follow-up estimated an average rate of 14.8 illnesses/child-year. Gastrointestinal and respiratory illnesses were 20.6% and 47.8% of the total disease burden, respectively. The hospitalisation rate reduced from 46/100 child-years during infancy to 19/100 child-years in the second year. Anaemia during pregnancy (OR=2.3, 95% CI=1.08 to 5.18), less than four antenatal visits (OR=6.8, 95% CI=2.1 to 22.5) and preterm birth (OR=3.3, 95% CI=1.1 to 9.7) were independent prenatal risk factors for low birth weight. Female gender (HR=0.88, 95% CI=0.79 to 0.99) and 6 months of exclusive breast feeding (HR=0.76, 95% CI=0.66 to 0.88) offered protection against all morbidity. Average monthly height and weight gain were lower in female child and children exclusively breast fed for 6 months. The high morbidity in Indian slum children in the first 1000 days of life was mainly due to prenatal factors and gastrointestinal and respiratory illness. Policymakers need disease prevalence and pathways to target high-risk groups with appropriate interventions in the community. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Effects of short-duration electromagnetic radiation on early postnatal neurogenesis in rats: Fos and NADPH-d histochemical studies.

    PubMed

    Orendáčová, Judita; Orendáč, Martin; Mojžiš, Miroslav; Labun, Ján; Martončíková, Marcela; Saganová, Kamila; Lievajová, Kamila; Blaško, Juraj; Abdiová, Henrieta; Gálik, Ján; Račeková, Eniko

    2011-11-01

    The immediate effects of whole body electromagnetic radiation (EMR) were used to study postnatal neurogenesis in the subventricular zone (SVZ) and rostral migratory stream (RMS) of Wistar rats of both sexes. Newborn postnatal day 7 (P7) and young adult rats (P28) were exposed to pulsed electromagnetic fields (EMF) at a frequency of 2.45 GHz and mean power density of 2.8 mW/cm(2) for 2 h. Post-irradiation changes were studied using immunohistochemical localization of Fos and NADPH-d. We found that short-duration exposure induces increased Fos immunoreactivity selectively in cells of the SVZ of P7 and P28 rats. There were no Fos positive cells visible within the RMS of irradiated rats. These findings indicate that some differences exist in prerequisites of proliferating cells between the SVZ and RMS regardless of the age of the rats. Short-duration exposure also caused praecox maturation of NADPH-d positive cells within the RMS of P7 rats. The NADPH-d positive cells appeared several days earlier than in age-matched controls, and their number and morphology showed characteristics of adult rats. On the other hand, in the young adult P28 rats, EMR induced morphological signs typical of early postnatal age. These findings indicate that EMR causes age-related changes in the production of nitric oxide (NO), which may lead to different courses of the proliferation cascade in newborn and young adult neurogenesis. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. Chronic alcohol intake during adolescence, but not adulthood, promotes persistent deficits in risk-based decision making

    PubMed Central

    Schindler, Abigail G; Tsutsui, Kimberly T; Clark, Jeremy J

    2014-01-01

    Background Adolescent alcohol use is a major public health concern and is strongly correlated with the development of alcohol abuse problems in adulthood. Adolescence is characterized by maturation and remodeling of brain regions implicated in decision making and therefore may be uniquely vulnerable to environmental insults such as alcohol exposure. We have previously demonstrated that voluntary alcohol consumption in adolescence results in maladaptive risk-based decision making in adulthood. However, it is unclear whether this effect on risk-based decision making can be attributed to chronic alcohol use in general or to a selective effect of alcohol use during the adolescent period. Methods Ethanol was presented to adolescent (PND 30–49) and adult rats (PND 80–99) for 20 days, either 24h or 1h/day, in a gel matrix consisting of distilled water, gelatin, Polycose (10%), and ethanol (10%). The 24h time course of ethanol intake was measured and compared between adolescent and adult animals. Following 20 days of withdrawal from ethanol, we assessed risk-based decision making with a concurrent instrumental probability-discounting task. Blood ethanol concentrations (BECs) were taken from trunk blood and assessed using the Analox micro-stat GM7 in separate groups of animals at different time points. Results Unlike animals exposed to ethanol during adolescence, animals exposed to alcohol during adulthood did not display differences in risk preference compared to controls. Adolescent and adult rats displayed similar ethanol intake levels and patterns when given either 24h or 1h access/day. In addition, while both groups reached significant BEC levels we failed to find a difference between adult and adolescent animals. Conclusions Here we show that adolescent, but not adult, ethanol intake leads to a persistent increase in risk preference which cannot be attributed to differences in intake levels or BECs attained. Our findings support previous work implicating

  6. PROLACTIN REGULATES LIVER GROWTH DURING POSTNATAL DEVELOPMENT IN MICE.

    PubMed

    Moreno-Carranza, Bibiana; Bravo-Manríquez, Marco; Baez, Arelí; Ledesma-Colunga, María G; Ruiz-Herrera, Xarubet; Reyes-Ortega, Pamela; De Los Ríos, Ericka A; Macotela, Yazmín; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2018-02-21

    The liver grows during the early postnatal period first at slower and then at faster rates than the body to achieve the adult liver-to-body weight ratio (LBW), a constant reflecting liver health. The hormone prolactin (PRL) stimulates adult liver growth and regeneration and its levels are high in the circulation of newborn infants, but whether PRL plays a role on neonatal liver growth is unknown. Here, we show that the liver produces PRL and upregulates the PRL receptor in mice during the first 2 weeks after birth, when liver growth lags behind body growth. At postnatal week 4, the production of PRL by the liver ceases coinciding with the elevation of circulating PRL and the faster liver growth that catches up with body growth. PRL receptor null mice (Prlr-/-) show a significant decrease in the LBW at 1, 4, 6, and 10 postnatal weeks and reduced liver expression of proliferation (cyclin D1, Ccnd1) and angiogenesis (platelet/endothelial cell adhesion molecule 1, Pecam1) markers relative to Prlr+/+ mice. However, the LBW increases in Prlr-/- mice at postnatal week 2 concurring with the enhanced liver expression of Igf-1 and the liver upregulation and downregulation of suppressor of cytokine signaling 2 (Socs2) and Socs3, respectively. These findings indicate that PRL acts locally and systemically to restrict and stimulate postnatal liver growth. PRL inhibits liver and body growth by attenuating growth hormone-induced Igf-1 liver expression via Socs2 and Socs3-related mechanisms.

  7. Parent-Child Relations and Offending during Young Adulthood

    ERIC Educational Resources Information Center

    Johnson, Wendi L.; Giordano, Peggy C.; Manning, Wendy D.; Longmore, Monica A.

    2011-01-01

    There is a long tradition of studying parent-child relationships and adolescent delinquency. However, the association between parent-child relationships and criminal offending during young adulthood is less well understood. Although the developmental tasks of young adulthood tend to focus on intimate relationships, employment, and family…

  8. [Usefulness of a real-time quantitative polymerase-chain reaction (PCR) assay for the diagnosis of congenital and postnatal cytomegalovirus infection].

    PubMed

    Reina, J; Weber, I; Riera, E; Busquets, M; Morales, C

    2014-05-01

    Cytomegalovirus (CMV) is the main virus causing congenital and postnatal infections in the pediatric population. The aim of this study is to evaluate the usefulness of a quantitative real-time PCR in the diagnosis of these infections using urine as a single sample. We studied all the urine samples of newborns (< 7 days) with suspected congenital infection, and urine of patients with suspected postnatal infection (urine negative at birth). Urines were simultaneously studied by cell culture, qualitative PCR (PCRc), and quantitative real-time PCR (PCRq). We analyzed 332 urine samples (270 to rule out congenital infection and 62 postnatal infections). Of the first, 22 were positive in the PCRq, 19 in the PCRc, and 17 in the culture. PCRq had a sensitivity of 100%, on comparing the culture with the rest of the techniques. Using the PCRq as a reference method, culture had a sensitivity of 77.2%, and PCRc 86.3%. In cases of postnatal infection, PCRq detected 16 positive urines, the PCRq 12, and the cell culture 10. The urines showed viral loads ranging from 2,178 to 116,641 copies/ml. The genomic amplification technique PCRq in real time was more sensitive than the other techniques evaluated. This technique should be considered as a reference (gold standard), leaving the cell culture as a second diagnostic level. The low cost and the automation of PCRq would enable the screening for CMV infection in large neonatal and postnatal populations. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  9. [The organization of medical stomatological care of women in post-natal period].

    PubMed

    Kulikova, N G; Omeltchuk, N N; Zalenskiy, V A; Tkachenko, A S

    2014-01-01

    The article presents the following new data. The medical social aspects of women with stomatological pathology during post-natal period are characterized by age gender, professional, educational and organizational aspects. The issues of impact of characteristics of medical stomatological care of women in post-natal period are considered. The results of survey of women in post-natal period using questionnaire targeted to detection of stomatological diseases are presented.

  10. Does cross-fostering modify the prenatal effect of methamphetamine on learning of adult male rats?

    PubMed

    Hrubá, L; Schutová, B; Pometlová, M; Slamberová, R

    2009-01-01

    Our previous studies demonstrated that methamphetamine administered during gestation and lactation periods impairs maternal behavior, alters the functional development of rat pups and affects behavior in adulthood. The aim of our study was to investigate the effect of prenatal methamphetamine exposure and cross-fostering on learning tested in Morris water maze (MWM) in adult male rats. Mothers were daily exposed to injection of methamphetamine (MA) (5 mg/kg) or saline (S): prior to impregnation and throughout gestation and lactation periods. On postnatal day 1, pups were cross-fostered so that each mother received some of her own and some of the pups of mother with the opposite treatment. Based on the prenatal and postnatal treatments 4 experimental groups (S/S, S/MA, MA/S, MA/MA) were tested in MWM. Two types of tests were used: (1) "Place navigation test" (Learning) and (2) "Probe test" (Probe). In the test of learning, all animals fostered by methamphetamine-treated dams had longer latencies and trajectories, and bigger search error than the animals fostered by saline-treated control mother, regardless of prenatal exposure. Further, the animals prenatally exposed to methamphetamine swam slower than the animals prenatally exposed to saline, regardless of postnatal exposure in the test of learning and in the Probe test. Our results showed that neither prenatal nor postnatal methamphetamine exposure affected the Probe test. Our results showed that prenatal exposure to methamphetamine at dose of 5 mg/kg does not impair learning in the MWM, while postnatal exposure to methamphetamine from mothers' breastmilk and maternal care of mother exposed to methamphetamine impairs learning of adult male rats. On the other hand, the maternal care of control mothers does not impair learning of rat pups prenatally exposed to methamphetamine. The present study demonstrates that cross-fostering may affect learning in adulthood.

  11. Postnatal development of orexin-A and orexin-B like immunoreactivities in the Eastern grey kangaroo (Macropus giganteus) hypothalamus.

    PubMed

    Yamamoto, Yukiyo; McKinley, Michael J; Nakazato, Masamitsu; Yamashita, Hiroshi; Shirahata, Akira; Ueta, Yoichi

    2006-01-09

    The Eastern grey kangaroo (Macropus giganteus) is a marsupial, which is born in an extremely undeveloped state and has a long suckling period in the mother's pouch. In the present study, we examined the immunoreactivities of orexin-A (OXA) and orexin-B (OXB) in the hypothalamus of the Eastern grey kangaroo during the preweaning period, postweaning period and adulthood. In the preweaning period, only a few OXA- and OXB-like immunoreactive (LI) neurons and fibers were present and the intensity of staining was very weak. In the postweaning period, there was a pronounced increase in the numbers of OXA- and OXB-LI neurons and fibers and the intensity of the immunoreactivity was considerably stronger in comparison to the preweaning period. In the adult, the numbers of OXA- and OXB-LI neurons and fibers appeared to be slightly increased and the intensity was slightly stronger in comparison to the postweaning period. At all time periods, the distributions of OXA- and OXB-LI neurons was similar. The postnatal development of hypothalamic orexin neurons may be associated with developmental changes, including feeding behavior.

  12. Effect of prenatal ethanol exposure on sexual motivation in adult rats.

    PubMed

    Ávila, Mara Aparecida P; Marthos, Gabriela Cristina P; Oliveira, Liliane Gibram M; Figueiredo, Eduardo Costa; Giusti-Paiva, Alexandre; Vilela, Fabiana Cardoso

    2016-08-01

    Maternal alcohol use during pregnancy adversely affects prenatal and postnatal growth and increases the risk of behavioral deficits. The aim of the present study was to evaluate the effect of prenatal exposure to a moderate dose of alcohol on sexual motivation during adulthood. Rats were prenatally exposed to ethanol by feeding pregnant dams a liquid diet containing 25% ethanol-derived calories on days 6 through 19 of gestation. The controls consisted of pair-fed dams (receiving an isocaloric liquid diet containing 0% ethanol-derived calories) and dams with ad libitum access to a liquid control diet. The sexual motivation of offspring was evaluated during adulthood. The results revealed that the male and female pups of dams treated with alcohol exhibited reduced weight gain, which persisted until adulthood. Both male and female adult animals from dams that were exposed to alcohol showed a reduction in the preference score in the sexual motivation test. Taken together, these results provide evidence of the damaging effects of prenatal alcohol exposure on sexual motivation responses in adulthood. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3

    PubMed Central

    Riquelme, Denise; Silva, Ian; Philp, Ashleigh M.; Huidobro-Toro, Juan P.; Cerda, Oscar; Trimmer, James S.; Leiva-Salcedo, Elias

    2018-01-01

    TRPM4 is a Ca2+-activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood. PMID:29440991

  14. Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3.

    PubMed

    Riquelme, Denise; Silva, Ian; Philp, Ashleigh M; Huidobro-Toro, Juan P; Cerda, Oscar; Trimmer, James S; Leiva-Salcedo, Elias

    2018-01-01

    TRPM4 is a Ca 2+ -activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood.

  15. Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats.

    PubMed

    Farrell, M R; Holland, F H; Shansky, R M; Brenhouse, H C

    2016-09-01

    Early life stress has been linked to depression, anxiety, and behavior disorders in adolescence and adulthood. The medial prefrontal cortex (mPFC) is implicated in stress-related psychopathology, is a target for stress hormones, and mediates social behavior. The present study investigated sex differences in early-life stress effects on juvenile social interaction and adolescent mPFC dendritic morphology in rats using a maternal separation (MS) paradigm. Half of the rat pups of each sex were separated from their mother for 4h a day between postnatal days 2 and 21, while the other half remained with their mother in the animal facilities and were exposed to minimal handling. At postnatal day 25 (P25; juvenility), rats underwent a social interaction test with an age and sex matched conspecific. Distance from conspecific, approach and avoidance behaviors, nose-to-nose contacts, and general locomotion were measured. Rats were euthanized at postnatal day 40 (P40; adolescence), and randomly selected infralimbic pyramidal neurons were filled with Lucifer yellow using iontophoretic microinjections, imaged in 3D, and then analyzed for dendritic arborization, spine density, and spine morphology. Early-life stress increased the latency to make nose-to-nose contact at P25 in females but not males. At P40, early-life stress increased infralimbic apical dendritic branch number and length and decreased thin spine density in stressed female rats. These results indicate that MS during the postnatal period influenced juvenile social behavior and mPFC dendritic arborization in a sex-specific manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Nicotine Dependence and Alcohol Problems from Adolescence to Young Adulthood.

    PubMed

    Dierker, Lisa; Selya, Arielle; Rose, Jennifer; Hedeker, Donald; Mermelstein, Robin

    Despite the highly replicated relationship between symptoms associated with both alcohol and nicotine, little is known about this association across time and exposure to both drinking and smoking. In the present study, we evaluate if problems associated with alcohol use are related to emerging nicotine dependence symptoms and whether this relationship varies from adolescence to young adulthood, after accounting for both alcohol and nicotine exposure. The sample was drawn from the Social and Emotional Contexts of Adolescent Smoking Patterns Study which measured smoking, nicotine dependence, alcohol use and alcohol related problems over 6 assessment waves spanning 6 years. Analyses were based on repeated assessment of 864 participants reporting some smoking and drinking 30 days prior to individual assessment waves. Mixed-effects regression models were estimated to examine potential time, smoking and/or alcohol varying effects in the association between alcohol problems and nicotine dependence. Inter-individual differences in mean levels of alcohol problems and within subject changes in alcohol problems from adolescence to young adulthood were each significantly associated with nicotine dependence symptoms over and above levels of smoking and drinking behaviour. This association was consistent across both time and increasing levels of smoking and drinking. Alcohol related problems are a consistent risk factor for nicotine dependence over and above measures of drinking and smoking and this association can be demonstrated from the earliest experiences with smoking in adolescents, through the establishment of more regular smoking patterns across the transition to young adulthood. These findings add to accumulating evidence suggesting that smoking and drinking may be related through a mechanism that cannot be wholly accounted for by exposure to either substance.

  17. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    PubMed

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Parental bonding and suicidality in adulthood.

    PubMed

    Heider, Dirk; Bernert, Sebastian; Matschinger, Herbert; Haro, Josep M; Alonso, Jordi; Angermeyer, Matthias C

    2007-01-01

    The short-term effect of an adverse parental child rearing style on suicidality in adolescence has been extensively discussed. Nevertheless, little is known about the long-term effect of adverse parental child rearing on lifetime suicidality in adulthood. So the present study aims to examine the relation between parental bonding on the one hand and suicidality in adulthood on the other. We used data from 7740 respondents of the European Study of Epidemiology of Mental Disorders project, a cross-sectional household survey carried out in six European countries. The data were assessed with the World Mental Health Composite International Diagnostic Interview, a comprehensive, fully structured psychiatric diagnostic interview. Suicidality was categorized as follows: 'no ideation', 'ideation', 'attempt'. Parental bonding was assessed by means of a three-factor ('care', 'overprotection', 'authoritarianism') short form of the Parental Bonding Instrument. Using a multinomial-logistic regression model to investigate the association between these two constructs, we also adjusted for mood disorders, anxiety disorders, alcohol abuse/dependence and possible country effects. We found associations between low maternal and paternal care on the one hand and suicidality on the other. Country-specific differences proved negligible. Prevention programs can help better equip parents in their child-rearing role to create a more caring parenting environment. This can be a protective factor for suicidality in adulthood. Nevertheless, more efforts are necessary to better describe the paths that lead from child-rearing behaviour to suicidality in adulthood.

  19. Daily goal progress is facilitated by spousal support and promotes psychological, physical, and relational well-being throughout adulthood

    PubMed Central

    Jakubiak, Brittany K.; Feeney, Brooke C.

    2016-01-01

    In two daily-diary studies, we tested the consequences and precursors of daily goal progress throughout the adult lifespan. Attachment theory posits that exploration—including the pursuit of autonomous goals—promotes well-being across the lifespan and is facilitated by support from close others. For both young-adult newlyweds (Study 1) and married couples in late adulthood (Study 2), daily independent goal progress predicted same-day and next-day improvements in psychological, physical, and relational well-being. Specifically, when participants made more progress on their goals than usual on one day, they reported increases in positive affect, sleep quality, and relationship quality, and decreased physical symptoms, the following day (as well as concurrently). Additionally, spousal support (i.e., availability, encouragement, and noninterference) enabled same-day and next-day goal progress. Mediational analyses showed indirect links between spousal support and well-being through goal progress. Some effects were moderated by attachment orientation in the newlywed sample; individuals with greater insecure attachment benefited most from goal progress, and spousal support enabled goal progress most strongly for individuals with less anxious attachment. Overall, these results support and extend attachment theoretical propositions regarding the importance of the exploration system across the adult lifespan. They contribute to existing literature by demonstrating wide-ranging consequences of successful exploration for well-being and by providing evidence for the importance of both exploration and support for exploration into late adulthood. PMID:27560610

  20. The non-human primate striatum undergoes marked prolonged remodeling during postnatal development

    PubMed Central

    Martin, Lee J.; Cork, Linda C.

    2014-01-01

    We examined the postnatal ontogeny of the striatum in rhesus monkeys (Macaca mulatta) to identify temporal and spatial patterns of histological and chemical maturation. Our goal was to determine whether this forebrain structure is developmentally static or dynamic in postnatal life. Brains from monkeys at 1 day, 1, 4, 6, 9, and 12 months of age (N = 12) and adult monkeys (N = 4) were analyzed. Nissl staining was used to assess striatal volume, cytoarchitecture, and apoptosis. Immunohistochemistry was used to localize and measure substance P (SP), leucine-enkephalin (LENK), tyrosine hydroxylase (TH), and calbindin D28 (CAL) immunoreactivities. Mature brain to body weight ratio was achieved at 4 months of age, and striatal volume increased from ∼1.2 to ∼1.4 cm3 during the first postnatal year. Nissl staining identified, prominently in the caudate nucleus, developmentally persistent discrete cell islands with neuronal densities greater than the surrounding striatal parenchyma (matrix). Losses in neuronal density were observed in island and matrix regions during maturation, and differential developmental programmed cell death was observed in islands and matrix regions. Immunohistochemistry revealed striking changes occurring postnatally in striatal chemical neuroanatomy. At birth, the immature dopaminergic nigrostriatal innervation was characterized by islands enriched in TH-immunoreactive puncta (putative terminals) in the neuropil; TH-enriched islands aligned completely with areas enriched in SP immunoreactivity but low in LENK immunoreactivity. These areas enriched in SP immunoreactivity but low in LENK immunoreactivity were identified as striosome and matrix areas, respectively, because CAL immunoreactivity clearly delineated these territories. SP, LENK, and CAL immunoreactivities appeared as positive neuronal cell bodies, processes, and puncta. The matrix compartment at birth contained relatively low TH-immunoreactive processes and few SP-positive neurons but

  1. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae.

    PubMed

    Luo, Wen-Wei; Wang, Xin-Wei; Ma, Rui; Chi, Fang-Lu; Chen, Ping; Cong, Ning; Gu, Yu-Yan; Ren, Dong-Dong; Yang, Juan-Mei

    2018-01-01

    Notch inhibition is known to generate supernumerary hair cells (HCs) at the expense of supporting cells (SCs) in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0) with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.

  2. Prenatal family support, postnatal family support and postpartum depression.

    PubMed

    Xie, Ri-Hua; Yang, Jianzhou; Liao, Shunping; Xie, Haiyan; Walker, Mark; Wen, Shi Wu

    2010-08-01

    Inadequate social support is an important determinant of postpartum depression (PPD). Social support for pregnant women consists of supports from various sources and can be measured at different gestation periods. Differentiating the effects of social support from different sources and measured at different gestation periods may have important implications in the prevention of PPD. In the family centred Chinese culture, family support is likely to be one of the most important components in social support. The aim of this study was to assess the association of prenatal family support and postnatal family support with PPD. A prospective cohort study was conducted between February and September 2007 in Hunan, China. Family support was measured with social support rating scale at 30-32 weeks of gestation (prenatal support) and again at 2 weeks of postpartum visit (postnatal support). PPD was defined as Edinburgh Postnatal Depression Scale (EPDS) score > or =13. A total of 534 pregnant women were included, and among them, 103 (19.3%) scored 13 or more on the EPDS. PPD was 19.4% in the lowest tertile versus 18.4% in the highest quartile (adjusted odds ratio: 1.04, 95% confidence interval 0.60, 1.80) for prenatal support from all family members, and PPD was 39.8% in the lowest tertile versus 9.6% in the highest tertile (adjusted odds ratio: 4.4, 95% confidence interval 2.3, 8.4) for postnatal support from all family members. Among family members, support from husband had the largest impact on the risk of developing PPD. Lack of postnatal family support, especially the support from husband, is an important risk factor of PPD.

  3. Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats.

    PubMed

    Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

    2014-08-01

    During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.

  4. Changes in fine structure of pericytes and novel desmin-immunopositive perivascular cells during postnatal development in rat anterior pituitary gland.

    PubMed

    Jindatip, Depicha; Fujiwara, Ken; Horiguchi, Kotaro; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi

    2013-09-01

    Pericytes are perivascular cells associated with capillaries. We previously demonstrated that pericytes, identified by desmin immunohistochemistry, produce type I and III collagens in the anterior pituitary gland of adult rats. In addition, we recently used desmin immunoelectron microscopy to characterize a novel type of perivascular cell, dubbed a desmin-immunopositive perivascular cell, in the anterior pituitary. These two types of perivascular cells differ in fine structure. The present study attempted to characterize the morphological features of pituitary pericytes and novel desmin-immunopositive perivascular cells during postnatal development, in particular their role in collagen synthesis. Desmin immunostaining revealed numerous perivascular cells at postnatal day 5 (P5) and P10. Transmission electron microscopy showed differences in the fine structure of the two cell types, starting at P5. Pericytes had well-developed rough endoplasmic reticulum and Golgi apparatus at P5 and P10. The novel desmin-immunopositive perivascular cells exhibited dilated cisternae of rough endoplasmic reticulum at P5-P30. In addition, during early postnatal development in the gland, a number of type I and III collagen-expressing cells were observed, as were high expression levels of these collagen mRNAs. We conclude that pituitary pericytes and novel desmin-immunopositive perivascular cells contain well-developed cell organelles and that they actively synthesize collagens during the early postnatal period.

  5. Classic cadherin expressions balance postnatal neuronal positioning and dendrite dynamics to elaborate the specific cytoarchitecture of the mouse cortical area.

    PubMed

    Egusa, Saki F; Inoue, Yukiko U; Asami, Junko; Terakawa, Youhei W; Hoshino, Mikio; Inoue, Takayoshi

    2016-04-01

    A unique feature of the mammalian cerebral cortex is in its tangential parcellation via anatomical and functional differences. However, the cellular and/or molecular machinery involved in cortical arealization remain largely unknown. Here we map expression profiles of classic cadherins in the postnatal mouse barrel field of the primary somatosensory area (S1BF) and generate a novel bacterial artificial chromosome transgenic (BAC-Tg) mouse line selectively illuminating nuclei of cadherin-6 (Cdh6)-expressing layer IV barrel neurons to confirm that tangential cellular assemblage of S1BF is established by postnatal day 5 (P5). When we electroporate the cadherins expressed in both barrel neurons and thalamo-cortical axon (TCA) terminals limited to the postnatal layer IV neurons, S1BF cytoarchitecture is disorganized with excess elongation of dendrites at P7. Upon delivery of dominant negative molecules for all classic cadherins, tangential cellular positioning and biased dendritic arborization of barrel neurons are significantly altered. These results underscore the value of classic cadherin-mediated sorting among neuronal cell bodies, dendrites and TCA terminals in postnatally elaborating the S1BF-specific tangential cytoarchitecture. Additionally, how the "protocortex" machinery affects classic cadherin expression profiles in the process of cortical arealization is examined and discussed. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  6. Inventing Adulthoods: A Biographical Approach to Youth Transitions

    ERIC Educational Resources Information Center

    Henderson, Sheila J.; Holland, Janet; McGrellis, Sheena; Sharpe, Sue; Thomson, Rachel

    2006-01-01

    "Inventing Adulthoods: A Biographical Approach to Youth Transitions" is a ground-breaking book that offers a new approach to understanding young people's lives and their transitions to adulthood. Contrary to policy and research approaches that often see young people's lives in a fragmented way, the book argues that a biographical approach to youth…

  7. Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI

    PubMed Central

    Zhang, Lei; Allen, John; Hu, Lingzhi; Caruthers, Shelton D.; Wickline, Samuel A.

    2013-01-01

    Cardiomyocyte organization is a critical determinant of coordinated cardiac contractile function. Because of the acute opening of the pulmonary circulation, the relative workload of the left ventricle (LV) and right ventricle (RV) changes substantially immediately after birth. We hypothesized that three-dimensional cardiomyocyte architecture might be required to adapt rapidly to accommodate programmed perinatal changes of cardiac function. Isolated fixed hearts from pig fetuses or pigs at midgestation, preborn, postnatal day 1 (P1), postnatal day 5, postnatal day 14 (P14), and adulthood (n = 5 for each group) were acquired for diffusion-weighted magnetic resonance imaging. Cardiomyocyte architecture was visualized by three-dimensional fiber tracking and was quantitatively evaluated by the measured helix angle (αh). Upon the completion of MRI, hearts were sectioned and stained with hematoxylin/eosin (H&E) to evaluate cardiomyocyte alignment, with picrosirius red to evaluate collagen content, and with anti-Ki67 to evaluate postnatal cell proliferation. The helical architecture of cardiomyocyte was observed as early as the midgestational period. Postnatal changes of cardiomyocyte architecture were observed from P1 to P14, which primary occurred in the septum and RV free wall (RVFW). In the septum, the volume ratio of LV- vs. RV-associated cardiomyocytes rapidly changed from RV-LV balanced pattern at birth to LV dominant pattern by P14. In the RVFW, subendocardial αh decreased by ∼30° from P1 to P14. These findings indicate that the helical architecture of cardiomyocyte is developed as early as the midgestation period. Substantial and rapid adaptive changes in cardiac microarchitecture suggested considerable developmental plasticity of cardiomyocyte form and function in the postnatal period in response to altered cardiac mechanical function. PMID:23161881

  8. Young Adults' Perceived Purposes of Emerging Adulthood: Implications for Cohabitation.

    PubMed

    Rogers, Adam A; Willoughby, Brian J; Nelson, Larry J

    2016-01-01

    The authors investigated associations between young adults' perceived purposes of emerging adulthood and their attitudes toward and participation in cohabitation. In a sample of 775 never married individuals, ages 18-29 (69% female, 69% white) from the United States, young people's perceptions of this period of life were associated with their acceptance of cohabitation, their reasoning for accepting cohabitation, and the likelihood of cohabiting. Results showed that the perception that emerging adulthood is a time to prepare for future family roles was negatively associated with acceptance of cohabitation whereas the perception that emerging adulthood is a time to take risks was positively associated with acceptance of cohabitation. The perception that emerging adulthood is a time to prepare for future family roles was associated with an increased likelihood of having cohabited while the perception that emerging adulthood is a time of possibilities was associated with a decreased likelihood of having cohabited. Implications for future research are discussed.

  9. [Prevalence of postnatal depression in women attending public hospitals in Durango, Mexico].

    PubMed

    Alvarado-Esquivel, Cosme; Sifuentes-Alvarez, Antonio; Estrada-Martínez, Sergio; Salas-Martínez, Carlos; Hernández-Alvarado, Ana Berthina; Ortiz-Rocha, Sara Guadalupe; García-López, Claudia Rosalba; Torres-Castorena, Alejandro; Sandoval-Herrera, Francisco

    2010-01-01

    To determine the prevalence of postnatal depression and associated epidemiological features in a population of women from Durango, Mexico. Applying a cross-sectional design in public hospitals from Durango, we studied 178 women during their 1 to 13 weeks postpartum. The Edinburg Postnatal Depression Scale was applied and depression was evaluated by using the DSM-IV criteria. In addition, socio-demographic, clinical, and psychosocial data from participants were obtained. Of the 178 women, 58 were depressed (32.6%). The prevalence of depression was significantly higher in women with low level of education, with more than 3 years of living with her partner, and in rural, non-insured women. Multivariate analysis showed that postnatal depression was significantly associated with previous depression, history of postnatal depression, depression, anxiety and stress during pregnancy, stress after pregnancy, trauma, bad relationship with partner, abandonment by partner, unwanted pregnancy, family problems, and living without partner. The prevalence of postnatal depression in women living in Durango, Mexico, is high. Several socio-demographic, clinical, and psychosocial factors appear to contribute to this condition.

  10. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation.

    PubMed

    Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei

    2014-07-01

    Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte

  11. Differential effects of tianeptine on the dorsal hippocampal volume of rats submitted to maternal separation followed by chronic unpredictable stress in adulthood.

    PubMed

    Pollano, Antonella; Zalosnik, María I; Durando, Patricia E; Suárez, Marta M

    2016-11-01

    Early maternal separation (MS) may produce lasting effects in the dorsal hippocampus (DH) that can change its response to chronic stress in adulthood. Chronic stress affects DH morphology and function, but tianeptine (an anti-depressant) can reverse the stress-induced morphological impairments. Morphologic alterations of hippocampus can affect contextual memory. Therefore, we evaluated the effect of tianeptine in MS and chronically stressed rats on: 1) volume of the DH and its areas using stereology and 2) hippocampal-dependent memory using a fear conditioning test. Male Wistar rats were subjected to daily MS for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50 and 74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle, providing eight groups: AFR-unstressed/vehicle (n = 5 for stereology, n = 18 for fear conditioning test); AFR unstressed/tianeptine (n = 6 and n = 10); AFR-chronic stress/vehicle (n = 6 and n = 14); AFR-chronic stress/tianeptine (n = 6 and n = 10), MS-unstressed/vehicle (n = 5 and n = 19), MS-unstressed/tianeptine (n = 6 and n = 10), MS-chronic stress/vehicle (n = 6 and n = 18), and MS-chronic stress/tianeptine (n = 6 and n = 10). MS-chronic stress/tianeptine rats showed a diminished CA1 area than the corresponding MS-unstressed/tianeptine rats. The combination of stressors produced a freezing response similar to those of the control group during postconditioning. During retrieval, MS led to a diminished freezing response compared to the AFR-unstressed groups. Tianeptine had no effect on freezing behavior. Our results show that tianeptine can affect the CA1 area volume differently depending on the nature and quantity of stressors but cannot alter freezing to context.

  12. Effects of adolescent nicotine exposure and withdrawal on intravenous cocaine self-administration during adulthood in male C57BL/6J mice.

    PubMed

    Dickson, Price E; Miller, Mellessa M; Rogers, Tiffany D; Blaha, Charles D; Mittleman, Guy

    2014-01-01

    Studies of adolescent drug use show (1) a pattern in which the use of tobacco precedes the use of other drugs and (2) a positive relationship between adolescent tobacco use and later drug use. These observations have led to the hypothesis that a causal relationship exists between early exposure to nicotine and the later use of hard drugs such as cocaine. Using male C57BL/6J mice, we tested the hypothesis that nicotine exposure in adolescence leads to increased intravenous self-administration (IVSA) of cocaine in adulthood. Using miniature osmotic pumps, we exposed mice and their littermate controls to nicotine (24 mg/kg/day) or vehicle, respectively, over the entire course of adolescence [postnatal days (P) 28-56]. Nicotine exposure was terminated on P56 and mice were not exposed to nicotine again during the experiment. On P73, mice were allowed to acquire cocaine IVSA (1.0 mg/kg/infusion) and a dose-response curve was generated (0.18, 0.32, 0.56, 1.0, 1.8 mg/kg/infusion). Lever pressing during extinction conditions was also evaluated. All mice rapidly learned to lever press for the combination of cocaine infusions and non-drug stimuli. Analysis of the dose-response curve revealed that adolescent nicotine-exposed mice self-administered significantly more (P < 0.05) cocaine than controls at all but the highest dose. No significant differences were observed between adolescent nicotine-exposed and control mice during the acquisition or extinction stages. These results indicate that adolescent nicotine exposure can increase cocaine IVSA in mice, which suggests the possibility of a causal link between adolescent tobacco use and later cocaine use in humans. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  13. Maternal exposure to fine particulate air pollution induces epithelial-to-mesenchymal transition resulting in postnatal pulmonary dysfunction mediated by transforming growth factor-β/Smad3 signaling.

    PubMed

    Tang, Wenting; Du, Lili; Sun, Wen; Yu, Zhiqiang; He, Fang; Chen, Jingsi; Li, Xiaomei; Li, Xiuying; Yu, Lin; Chen, Dunjin

    2017-02-05

    Fine particles from air pollution, also called particulate matter, less than 2.5 micrometers in diameter (PM2.5), are a threat to child health. Epidemiological investigations have related maternal exposure to PM2.5 to postnatal respiratory symptoms, such as frequent wheezing, chronic cough, and lung function decrements. However, only few experimental animal studies have been performed to study the effects of PM2.5.The aim of this study was to investigate the effects of maternal exposure to PM2.5 on postnatal pulmonary dysfunction in a rat model and to examine the mechanism of PM2.5-induced morphological pulmonary changes.Timed pregnant Sprague-Dawley rats were treated with PM2.5 (0.1, 0.5, 2.5, or 7.5mg/kg) once every three days from day 0 to 18 of pregnancy. After delivery, pups were sacrificed on postnatal day (PND)1 and 28. The effects of transforming growth factor-beta (TGF-β) on epithelial-mesenchymal transition (EMT) were determined by immunohistochemistry, Western blotting, and quantitative RT-PCR. The offspring underwent pulmonary function measurements on PND28, lung tissues were histopathologically examined, and markers of oxidative stress were measured. Maternally PM2.5-exposed offspring pups displayed significant decreases in lung volume parameters, compliance, and airflow during expiration on PND28. The PM2.5-exposed group showed interstitial proliferation in lung histology, significant oxidative stress in lungs, and up-regulation of TGF-β-induced EMT via increased vimentin and α-smooth muscle actin and decreased E-cadherin levels on PND1 and PND28.These results suggest that EMT up-regulation mediated by the TGF-β/Smad3 pathway plays a role in postnatal pulmonary dysfunction associated with maternal exposure to PM2.5. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Intrauterine Growth Restriction Alters the Postnatal Development of the Rat Cerebellum.

    PubMed

    McDougall, Annie R A; Wiradjaja, Vanny; Azhan, Aminath; Li, Anqi; Hale, Nadia; Wlodek, Mary E; Hooper, Stuart B; Wallace, Megan J; Tolcos, Mary

    2017-01-01

    Intrauterine growth restriction (IUGR) is a major cause of antenatal brain injury. We aimed to characterize cerebellar deficits following IUGR and to investigate the potential underlying cellular and molecular mechanisms. At embryonic day 18, pregnant rats underwent either sham surgery (controls; n = 23) or bilateral uterine vessel ligation to restrict blood flow to fetuses (IUGR; n = 20). Offspring were collected at postnatal day 2 (P2), P7, and P35. Body weights were reduced at P2, P7, and P35 in IUGR offspring (p < 0.05) compared with controls. At P7, the width of the external granule layer (EGL) was 30% greater in IUGR than control rats (p < 0.05); there was no difference in the width of the proliferative zone or in the density of Ki67-positive cells in the EGL. Bergmann glia were disorganized at P7 and P35 in IUGR pups, and by P35, there was a 10% decrease in Bergmann glial fiber density (p < 0.05) compared with controls. At P7, trophoblast antigen-2 (Trop2) mRNA and protein levels in the cerebellum were decreased by 88 and 40%, respectively, and astrotactin 1 mRNA levels were increased by 20% in the IUGR rats (p < 0.05) compared with controls; there was no difference in ASTN1 protein. The expressions of other factors known to regulate cerebellar development (astrotactin 2, brain-derived neurotrophic factor, erb-b2 receptor tyrosine kinase 4, neuregulin 1, sonic hedgehog and somatostatin) were not different between IUGR and control rats at P7 or P35. These data suggest that damage to the migratory scaffold (Bergmann glial fibers) and alterations in the genes that influence migration (Trop2 and Astn1) may underlie the deficits in postnatal cerebellar development following IUGR. © 2017 S. Karger AG, Basel.

  15. The Postnatal Development of Spinal Sensory Processing

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Maria; Jennings, Ernest

    1999-07-01

    The mechanisms by which infants and children process pain should be viewed within the context of a developing sensory nervous system. The study of the neurophysiological properties and connectivity of sensory neurons in the developing spinal cord dorsal horn of the intact postnatal rat has shed light on the way in which the newborn central nervous system analyzes cutaneous innocuous and noxious stimuli. The receptive field properties and evoked activity of newborn dorsal horn cells to single repetitive and persistent innocuous and noxious inputs are developmentally regulated and reflect the maturation of excitatory transmission within the spinal cord. These changes will have an important influence on pain processing in the postnatal period.

  16. Fetal adrenal gland enlargement - prenatal and postnatal management.

    PubMed

    Lackova, Eliska; Cunderlik, Anton; Ticha, Lubica; Gabor, Maria

    2017-11-01

    The enlargement of suprarenal gland is related to preterm birth and the birth weight. The ultrasound measurement of fetal adrenal gland volume may identify women at risk for impending preterm birth. The aim of our study was to investigate the newborns in the region of western Slovakia followed up due to suprarenal gland enlargement. To set the ratio of prenatally diagnosed suprarenal gland enlargment, postnatal managment and treatment and interventions. The newborns with congenital adrenal hyperplasia were excluded. We have analyzed 6 years of medical records of all cases from the western Slovakia region of suprarenal gland enlargement encountered to 1st Pediatric Department, Children's University Hospital Bratislava Republic in the time period of January 2010 to Janurary 2016. The diagnosis of suprarenal gland enlargement was set by ultrasound examination performed on the 4th postnatal day as an overall screening test. Newborns with positive laboratory screening on congenital adrenal hyperplasia (CAH) were excluded from our study. We analyzed the origin of surarenal gland enlargement, gestation week on the due date, the birth weight and other comorbidities and genetic pathologies in newborns with the enlarged suprarenal glands. There were 6 newborns followed up due to suprarenal gland enlargement. All of the patients had diagnosed the adrenal haemorrhage. Adrenal lesions like adrenal cysts or neuroblastomas were not confirmed. All of the adrenal enlargements were benign with no need of other medical or surgical intervention. None of the newborn patients had other genetic abnormalities, mineral or hormonal imbalances, problems with arterial pressure or haemodynamic instability. All of the patients underwent at least 5 prenatal ultrasound tests and at least 2 postnatal ultrasound measurements. The avarage birth weight was 3030 grams (2700 grams - to 3750 grams). The avarage birth lenght was 50 cm (47 centimeter to 53 cm).The average gestation week (gw) on due date

  17. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats

    PubMed Central

    da Silva, Fernando B. R.; Cunha, Polyane A.; Ribera, Paula C.; Barros, Mayara A.; Cartágenes, Sabrina C.; Fernandes, Luanna M. P.; Teixeira, Francisco B.; Fontes-Júnior, Enéas A.; Prediger, Rui D.; Lima, Rafael R.; Maia, Cristiane S. F.

    2018-01-01

    Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures’ morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  18. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats.

    PubMed

    da Silva, Fernando B R; Cunha, Polyane A; Ribera, Paula C; Barros, Mayara A; Cartágenes, Sabrina C; Fernandes, Luanna M P; Teixeira, Francisco B; Fontes-Júnior, Enéas A; Prediger, Rui D; Lima, Rafael R; Maia, Cristiane S F

    2018-01-01

    Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures' morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  19. Postnatal development of retinal projections in the brushtailed possum, Trichosurus vulpecula.

    PubMed

    Sanderson, K J; Dixon, P G; Pearson, L J

    1982-10-01

    The postnatal development of retinal projections was studied in the brushtailed possum, Trichosurus vulpecula. [3H]proline was injected into one eye of 13 young possums aged 24-84 days in order to trace retinal pathways. The dorsal lateral geniculate nucleus (LGNd) can be identified in Nissl material at 19 days but not at 9-10 days. By 40 days some cytoarchitectural lamination of the LGNd is apparent and by 71 days the adult pattern of cell layers is present. At 24 days retinal fibers occupy by lateral part of the LGNd on both sides of the brain. By 38-40 days the retinal fibers fill be contralateral LGNd and the binocular part of the ipsilateral LGNd and there is a beginning of the segregation of retinal fibers into left and right eye territories. By 49-50 days a partial segregation is achieved, and complete segregation by 71 days. At 9-10 days the superior colliculus is not differentiated into layers and there is a thick zone of cell proliferation around the ventricle. By 23 days the superior colliculus has well-defined cell layers and there is still some indication of cell proliferation around the ventricle. By 40 days, the superior colliculus shows little evidence of cell proliferation. At 24 days retinal fibers fill the superficial layers of the contralateral optic tectum and are lightly distributed through the superficial layers of the rostral half of the ipsilateral tectum. By 38 days the ipsilateral retinal input is restricted to the deeper layers of the tectum. These results show that the adult pattern of retinal projections to the LGNd and optic tectum develops a number of weeks before eye opening occurs (at 90-120 days).

  20. Monoamine Oxidases Regulate Telencephalic Neural Progenitors in Late Embryonic and Early Postnatal Development

    PubMed Central

    Cheng, Aiwu; Scott, Anna L.; Ladenheim, Bruce; Chen, Kevin; Ouyang, Xin; Lathia, Justin D.; Mughal, Mohamed; Cadet, Jean Lud; Mattson, Mark P.; Shih, Jean C.

    2010-01-01

    Monoamine neurotransmitters play major roles in regulating a range of brain functions in adults and increasing evidence suggests roles for monoamines in brain development. Here we show that mice lacking the monoamine metabolic enzymes MAO A and MAO B (MAO AB-deficient mice) exhibit diminished proliferation of neural stem cells (NSC) in the developing telencephalon beginning in late gestation [embryonic day (E) 17.5], a deficit that persists in neonatal and adult mice. These mice showed significantly increased monoamine levels and anxiety-like behaviors as adults. Assessments of markers of intermediate progenitor cells (IPC) and mitosis showed that NSC in the subventricular zone (SVZ), but not in the ventricular zone, are reduced in MAO AB-deficient mice. A developmental time course of monoamines in frontal cortical tissues revealed increased serotonin levels as early as E14.5, and a further large increase was found between E17.5 and postnatal day 2. Administration of an inhibitor of serotonin synthesis (parachlorophenylalanine) between E14.5 and E19.5 restored the IPC numbers and SVZ thickness, suggesting the role of serotonin in the suppression of IPC proliferation. Studies of neurosphere cultures prepared from the telencephalon at different embryonic and postnatal ages showed that serotonin stimulates proliferation in wild-type, but not in MAO AB-deficient, NSC. Together, these results suggest that a MAO-dependent long-lasting alteration in the proliferation capacity of NSC occurs late in embryonic development and is mediated by serotonin. Our findings reveal novel roles for MAOs and serotonin in the regulation of IPC proliferation in the developing brain. PMID:20702706

  1. Adverse childhood experiences and sexual victimization in adulthood.

    PubMed

    Ports, Katie A; Ford, Derek C; Merrick, Melissa T

    2016-01-01

    Understanding the link between adverse childhood experiences (ACEs) and sexual victimization (SV) in adulthood may provide important information about the level of risk for adult SV and sexual re-victimization among childhood sexual abuse (CSA) survivors. In the present paper, we explore the relationship between ACEs, including CSA, and SV in adulthood. Data from the CDC-Kaiser ACE Study were used to examine the effect of experiences of early adversity on adult SV. Adult HMO members (n=7,272) undergoing a routine health exam provided detailed information about ACEs that occurred at age 18 or younger and their experiences of SV in adulthood. Analyses revealed that as ACE score increased, so did risk of experiencing SV in adulthood. Each of the ACE variables was significantly associated with adult SV, with CSA being the strongest predictor of adult SV. In addition, for those who reported CSA, there was a cumulative increase in adult SV risk with each additional ACE experienced. As such, early adversity is a risk factor for adult SV. In particular, CSA is a significant risk factor for sexual re-victimization in adulthood, and additional early adversities experienced by CSA survivors may heighten adult SV risk above and beyond the risk associated with CSA alone. Given the interconnectedness among various experiences of early adversity, adult SV prevention actions must consider how other violence-related and non-violence-related traumatic experiences may exacerbate the risk conferred by CSA on subsequent victimization. Published by Elsevier Ltd.

  2. Conflicting cultural perspectives: meanings and experiences of postnatal depression among women in Indian communities.

    PubMed

    Jain, Anita; Levy, David

    2013-01-01

    A woman's cultural and social context affects her experience of postnatal depression. In this literature review, the authors explore questions regarding normal and abnormal postnatal experiences of Indian women with consideration to cross-cultural perspectives. Although postnatal distress or sadness is recognized among many cultures, it is constructed as a transient state in some cultures and as an illness in others. A major challenge for health care providers in Western countries like the United Kingdom and Australia is to develop culturally sensitive approaches to postnatal care for migrant mothers.

  3. Long-term (postnatal day 70) outcome and safety of intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells in neonatal hyperoxic lung injury.

    PubMed

    Ahn, So Yoon; Chang, Yun Sil; Kim, Soo Yoon; Sung, Dong Kyung; Kim, Eun Sun; Rime, So Yub; Yu, Wook Joon; Choi, Soo Jin; Oh, Won Il; Park, Won Soon

    2013-03-01

    This study was performed to evaluate the long-term effects and safety of intratracheal (IT) transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in neonatal hyperoxic lung injury at postnatal day (P)70 in a rat model. Newborn Sprague Dawley rat pups were subjected to 14 days of hyperoxia (90% oxygen) within 10 hours after birth and allowed to recover at room air until sacrificed at P70. In the transplantation groups, hUCB-MSCs (5×10⁵) were administered intratracheally at P5. At P70, various organs including the heart, lung, liver, and spleen were histologically examined, and the harvested lungs were assessed for morphometric analyses of alveolarization. ED-1, von Willebrand factor, and human-specific nuclear mitotic apparatus protein (NuMA) staining in the lungs and the hematologic profile of blood were evaluated. Impaired alveolar and vascular growth, which evidenced by an increased mean linear intercept and decreased amount of von Willebrand factor, respectively, and the hyperoxia-induced inflammatory responses, as evidenced by inflammatory foci and ED-1 positive alveolar macrophages, were attenuated in the P70 rat lungs by IT transplantation of hUCB-MSCs. Although rare, donor cells with human specific NuMA staining were persistently present in the P70 rat lungs. There were no gross or microscopic abnormal findings in the heart, liver, or spleen, related to the MSCs transplantation. The protective and beneficial effects of IT transplantation of hUCB-MSCs in neonatal hyperoxic lung injuries were sustained for a prolonged recovery period without any long-term adverse effects up to P70.

  4. Immunohistochemical localization of galectin-3 in the pig retina during postnatal development

    PubMed Central

    Kim, Jihoon; Moon, Changjong; Ahn, Meejung; Joo, Hong-Gu; Jin, Jae-Kwang

    2009-01-01

    Purpose The differential level and localization of galectin-3 protein were examined in the retinas of two-day-old pigs and six-month-old pigs. Methods The retinas sampled from two-day-old and six-month-old pigs were analyzed by western blot and immunohistochemistry. Results western blot analysis detected galectin-3 in both age groups, although the levels were significantly higher in six-month-old pigs. Immunohistochemical staining showed that galectin-3 was localized in the retinas of both two-day-old pigs and six-month-old pigs; the galectin-3 immunostaining was more intense in the six-month-old pig retina, as shown in the western blot analysis. Galectin-3 was expressed in glial cells, particularly in glutamine synthetase-positive Müller cells and their processes, across all retina layers in both age groups; however, it was not found in ganglion cells of the ganglion cell layer or neuronal cells of the inner and outer nuclear cell layers in either age group. Conclusions This is the first demonstration that galectin-3 is detected in the retinas of two-day-old pigs and that the expression in Müller cells increases with postnatal development. PMID:19816601

  5. Quality of life, postnatal depression and baby gender.

    PubMed

    de Tychey, Claude; Briançon, Serge; Lighezzolo, Joëlle; Spitz, Elisabeth; Kabuth, Bernard; de Luigi, Valerie; Messembourg, Catherine; Girvan, Françoise; Rosati, Aurore; Thockler, Audrey; Vincent, Stephanie

    2008-02-01

    To study the impact of postnatal depression on the quality of life of young French mothers and to evaluate if the gender of their child influences this. Postnatal depression (PND) constitutes a major public health problem considering its high prevalence and consequences upon quality of life and parental skills. This research is a cross-sectional study during the postnatal period. This study was carried out during a two-month period. Data were collected by interview and questionnaires. The authors compared the prevalence rate of PND and life quality in a cohort of 181 women and measured the short-term impact of the child's birth. Postnatal depression strongly negatively influences all dimensions of life quality explored through the SF36, e.g. physical functioning (PF), physical Role (RP), bodily pain (BP), mental health (MH), emotional role (RE), social functioning (SF), vitality (VT), general health (GH), standardized physical component (PCS) and standardized mental component (MCS). The baby's gender (having a boy) also significantly reduces quality of life, irrespective of depressive state. There is a relationship between baby gender and PND. This research is the first to show that the birth of a boy reduces several dimensions of the mothers' quality of life. The importance of the impairment of quality of life in case of PND, as well as its effects on mother-child interaction, could justify prevention programs and early psychotherapeutic care. Further research needs to explore the effectiveness of programmes targeting the construction of parenting skills as a preventative measure against PND, especially for parents of boys.

  6. Rumination decreases parental problem-solving effectiveness in dysphoric postnatal mothers.

    PubMed

    O'Mahen, Heather A; Boyd, Alex; Gashe, Caroline

    2015-06-01

    Postnatal depression is associated with poorer parenting quality, but there are few studies examining maternal-specific cognitive processes that may impact on parenting quality. In this study, we examined the impact of rumination on parental problem-solving effectiveness in dysphoric and non-dysphoric postnatal mothers. Fifty-nine mothers with a infant aged 12 months and under, 20 of whom had a Beck Depression Score II (BDI-II) score ≥ 14, and 39 who scored less than 14 on the BDI-II were randomly assigned to either a rumination or distraction condition. Problem-solving effectiveness was assessed post-induction with the "Postnatal Parental Problem-Solving Task" (PPST), which was adapted from the Means Ends Problem-solving task. Parental problem-solving confidence was also assessed. Dysphoric ruminating mothers exhibited poorer problem-solving effectiveness and poorer confidence regarding their problem-solving compared to dysphoric distracting, non-dysphoric distracting, and non-dysphoric ruminating mothers. A self-report measure of depressed mood was used. Rumination may be a key mechanism associated with both depressive mood and maternal parenting quality during the postnatal period. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. Pre- and postnatal stress and asthma in children: Temporal- and sex-specific associations

    PubMed Central

    Lee, Alison; Chiu, Yueh-Hsiu Mathilda; Rosa, Maria José; Jara, Calvin; Wright, Robert O.; Coull, Brent A.; Wright, Rosalind J.

    2016-01-01

    BACKGROUND Temporal- and sex-specific effects of perinatal stress have not been examined for childhood asthma. OBJECTIVES We examined associations between pre- and/or postnatal stress and children's asthma (n=765) and effect modification by sex in a prospective cohort study. METHODS Maternal negative life events (NLEs) were ascertained prenatally and postpartum. NLEs scores were categorized as 0, 1-2, 3-4, or ≥5 to assess exposure-response relationships. We examined effects of pre- and postnatal stress on children's asthma by age 6 years modeling each as independent predictors; mutually adjusting for prenatal and postnatal stress; and finally considering interactions between pre- and postnatal stress. Effect modification by sex was examined in stratified analyses and by fitting interaction terms. RESULTS When considering stress in each period independently, among boys a dose-response relationship was evident for each level increase on the ordinal scale prenatally (OR=1.38, 95% CI 1.06, 1.79; p-for-trend=0.03) and postnatally (OR=1.53, 95% CI 1.16, 2.01; p-for-trend=0.001); among girls only the postnatal trend was significant (OR=1.60, 95% CI 1.14, 2.22; p-for-trend=0.005). Higher stress in both the pre- and postnatal periods was associated with increased odds of being diagnosed with asthma in girls [OR=1.37, 95% CI 0.98, 1.91 (pinteraction=0.07)] but not boys [OR=1.08, 95% CI 0.82, 1.42 (pinteraction=0.61)]. CONCLUSIONS While boys were more vulnerable to stress during the prenatal period, girls were more impacted by postnatal stress and cumulative stress across both periods in relation to asthma. Understanding sex and temporal differences in response to early life stress may provide unique insight into asthma etiology and natural history. PMID:26953156

  8. SMOKING DURING PREGNANCY: POSTNATAL EFFECTS ON AROUSAL AND ATTENTIONAL BRAIN SYSTEMS

    PubMed Central

    Garcia-Rill, E.; Buchanan, R.; McKeon, K.; Skinner, R.D.; Wallace, T.

    2012-01-01

    Prenatal exposure to cigarette smoke is known to produce lasting arousal, attentional and cognitive deficits in humans. The pedunculopontine nucleus (PPN), as the cholinergic arm of the reticular activating system (RAS), is known to modulate arousal, waking and REM sleep. Rapid eye movement (REM) sleep decreases between 10 and 30 days postnatally in the rat, with the greatest decrease occurring at 12–21 days. Pregnant dams were exposed to 150 ml of cigarette smoke for 15 min, 3 times per day, from day E14 until parturition, and the pups allowed to mature. We analyzed a) intrinsic membrane properties of PPN neurons in slices from pups aged 12–21 days, and b) the sleep state-dependent P13 auditory evoked potential, which is generated by PPN outputs, in animals allowed to age to adolescence. We found significant changes in the intrinsic membrane properties of PPN cells in prenatally exposed animals compared to intact ones, rendering these cells more excitable. In addition, we found disturbances in the habituation to repetitive stimulation in adolescent, freely moving animals, suggestive of a deficit in the process of sensory gating. These findings could explain some of the differences seen in individuals whose parents smoked during pregnancy, especially in terms of their hypervigilance and increased propensity for attentional deficits and cognitive/behavioral disorders. PMID:17368773

  9. Mapping brain development during childhood, adolescence and young adulthood

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Li, Yao

    2009-02-01

    Using optimized voxel-based morphometry (VBM), this study systematically investigated the differences and similarities of brain structural changes during the early three developmental periods of human lives: childhood, adolescence and young adulthood. These brain changes were discussed in relationship to the corresponding cognitive function development during these three periods. Magnetic Resonance Imaging (MRI) data from 158 Chinese healthy children, adolescents and young adults, aged 7.26 to 22.80 years old, were included in this study. Using the customized brain template together with the gray matter/white matter/cerebrospinal fluid prior probability maps, we found that there were more age-related positive changes in the frontal lobe, less in hippocampus and amygdala during childhood, but more in bilateral hippocampus and amygdala and left fusiform gyrus during adolescence and young adulthood. There were more age-related negative changes near to central sulcus during childhood, but these changes extended to the frontal and parietal lobes, mainly in the parietal lobe, during adolescence and young adulthood, and more in the prefrontal lobe during young adulthood. So gray matter volume in the parietal lobe significantly decreased from childhood and continued to decrease till young adulthood. These findings may aid in understanding the age-related differences in cognitive function.

  10. Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Corrales, Andrea; Parisotto, Eduardo B; Vidal, Verónica; García-Cerro, Susana; Lantigua, Sara; Diego, Marian; Wilhem Filho, Danilo; Sanchez-Barceló, Emilio J; Martínez-Cué, Carmen; Rueda, Noemí

    2017-09-15

    Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Antecedents and Correlates of Agreeableness in Adulthood

    PubMed Central

    Laursen, Brett; Pulkkinen, Lea; Adams, Ryan

    2009-01-01

    Data from a 25-year prospective study of 194 individuals indicated that teacher and peer reports of aggression, compliance, and self-control at age 8 distinguished high-agreeable from low-agreeable adults at age 33. Profile analyses revealed two behavioral types in childhood and two personality types in adulthood, with considerable continuity in the composition of these high- and low-agreeable types over time. High-agreeable childhood types had fewer disobedience and concentration problems than low-agreeable childhood types, and among boys, high-agreeable childhood types had better school grades and fewer behavior problems than their low-agreeable counterparts. High-agreeable adulthood types reported less alcoholism and depression, fewer arrests, and more career stability than did low-agreeable adulthood types. PMID:12090488

  12. Congenital malformations, palliative care and postnatal redirection to more intensive treatment - a review at a Swiss tertiary center.

    PubMed

    Pfeifer, Ulrich; Gubler, Deborah; Bergstraesser, Eva; Bassler, Dirk

    2018-05-01

    The so-called lethal malformations pose ethical challenges. Most affected fetuses die before or at birth. Live-born neonates commonly receive palliative care. If the postnatal course is better than expected, redirection towards more treatment may occur. We aimed to analyze this in a Swiss patient cohort. Over 6 years, fetal malformation was suspected in 1113 cases. We identified patients prenatally assigned to palliative care, assessed pre- and postnatal diagnoses, and outcomes. Fourteen neonates received palliative care. Eleven patients received palliative care following late termination of pregnancy, for three, palliative care was planned and the fetus died during delivery, for two, the outcome was unknown (incomplete documentation). Genetic testing was performed in 50%. The predominant diagnostic group was central nervous system malformations (33%), followed by chromosomal aberrations (20%) and renal anomalies (17%). One child assigned to palliative care was resuscitated. Antenatal findings were anhydramnios and pulmonary hypoplasia. Postnatally, respiration was better than expected. The neonate was admitted to intensive care, died on day one. Nervous system malformations seem to be a major criterion for foregoing life-sustaining interventions. Redirection towards more treatment is rare. This may reflect precise prenatal prognostication; a degree of self-fulfilling prophecy cannot be excluded.

  13. Social Class, Family Formation, and Delinquency in Early Adulthood

    PubMed Central

    Kuhl, Danielle C.; Chavez, Jorge M.; Swisher, Raymond R.; Wilczak, Andrew

    2015-01-01

    Recent research suggests increasing heterogeneity in the transition from adolescence to early adulthood. This study considers how this heterogeneity may influence delinquency between these two developmental periods. We focus on the role of family transitions, educational attainment, and employment in predicting risk of nonviolent delinquency and substance use, as well as disparities in transitions across socioeconomic status subgroups. Data are from the National Longitudinal Study of Adolescent to Adult Health (Add Health). We find that family and neighborhood advantage are negatively associated with transitions into marriage, cohabitation, and parenthood, yet positively associated with educational attainment. In addition, adolescent family and neighborhood advantage are associated with a continuation of delinquent behavior and substance use during early adulthood. In multivariate analyses, accounting for family transitions in early adulthood largely attenuates the relationship between neighborhood advantage in adolescence and delinquency in early adulthood. We conclude by discussing the implications of our findings for developmental criminology. PMID:27418713

  14. Toll-Like Receptor 4 in Paraventricular Nucleus Mediates Visceral Hypersensitivity Induced by Maternal Separation

    PubMed Central

    Tang, Hui-Li; Zhang, Gongliang; Ji, Ning-Ning; Du, Lei; Chen, Bin-Bin; Hua, Rong; Zhang, Yong-Mei

    2017-01-01

    Neonatal maternal separation (MS) is a major early life stress that increases the risk of emotional disorders, visceral pain perception and other brain dysfunction. Elevation of toll-like receptor 4 (TLR4) signaling in the paraventricular nucleus (PVN) precipitates early life colorectal distension (CRD)-induced visceral hypersensitivity and pain in adulthood. The present study aimed to investigate the role of TLR4 signaling in the pathogenesis of postnatal MS-induced visceral hypersensitivity and pain during adulthood. The TLR4 gene was selectively knocked out in C57BL/10ScSn mice (Tlr4-/-). MS was developed by housing the offspring alone for 6 h daily from postnatal day 2 to day 15. Visceral hypersensitivity and pain were assessed in adulthood. Tlr4+/+, but not Tlr4-/-, mice that had experienced neonatal MS showed chronic visceral hypersensitivity and pain. TLR4 immunoreactivity was observed predominately in microglia in the PVN, and MS was associated with an increase in the expression of protein and/or mRNA levels of TLR4, corticotropin-releasing factor (CRF), CRF receptor 1 (CRFR1), tumor necrosis factor-α, and interleukin-1β in Tlr4+/+ mice. These alterations were not observed in Tlr4-/- mice. Local administration of lipopolysaccharide, a TLR4 agonist, into the lateral cerebral ventricle elicited visceral hypersensitivity and TLR4 mRNA expression in the PVN, which could be prevented by NBI-35965, an antagonist to CRFR1. The present results indicate that neonatal MS induces a sensitization and upregulation of microglial TLR4 signaling activity, which facilitates the neighboring CRF neuronal activity and, eventually, precipitates visceral hypersensitivity in adulthood. Highlights (1)Neonatal MS does not induce chronic visceral hypersensitivity and pain in Tlr4-/- mice.(2)Neonatal MS increases the expression of TLR4 mRNA, CRF protein and mRNA, CRFR1 protein, TNF-α protein, and IL-1β protein in Tlr4+/+ mice.(3)TLR4 agonist LPS (i.c.v.) elicits visceral

  15. Early life environmental and pharmacological stressors result in persistent dysregulations of the serotonergic system

    PubMed Central

    Wong, Peiyan; Sze, Ying; Gray, Laura Jane; Chang, Cecilia Chin Roei; Cai, Shiwei; Zhang, Xiaodong

    2015-01-01

    Dysregulations in the brain serotonergic system and exposure to environmental stressors have been implicated in the development of major depressive disorder. Here, we investigate the interactions between the stress and serotonergic systems by characterizing the behavioral and biochemical effects of chronic stress applied during early-life or adulthood in wild type (WT) mice and mice with deficient tryptophan hydroxylase 2 (TPH2) function. We showed that chronic mild stress applied in adulthood did not affect the behaviors and serotonin levels of WT and TPH2 knock-in (KI) mice. Whereas, maternal separation (MS) stress increased anxiety- and depressive-like behaviors of WT mice, with no detectable behavioral changes in TPH2 KI mice. Biochemically, we found that MS WT mice had reduced brain serotonin levels, which was attributed to increased expression of monoamine oxidase A (MAO A). The increased MAO A expression was detected in MS WT mice at 4 weeks old and adulthood. No change in TPH2 expression was detected. To determine whether a pharmacological stressor, dexamethasone (Dex), will result in similar biochemical results obtained from MS, we used an in vitro system, SH-SY5Y cells, and found that Dex treatment resulted in increased MAO A expression levels. We then treated WT mice with Dex for 5 days, either during postnatal days 7–11 or adulthood. Both groups of Dex treated WT mice had reduced basal corticosterone and glucocorticoid receptors expression levels. However, only Dex treatment during PND7–11 resulted in reduced serotonin levels and increased MAO A expression. Just as with MS WT mice, TPH2 expression in PND7–11 Dex-treated WT mice was unaffected. Taken together, our findings suggest that both environmental and pharmacological stressors affect the expression of MAO A, and not TPH2, when applied during the critical postnatal period. This leads to long-lasting perturbations in the serotonergic system, and results in anxiety- and depressive

  16. Increased anxiety-like behavior but no cognitive impairments in adult rats exposed to constant light conditions during perinatal development.

    PubMed

    Roman, Erika; Karlsson, Oskar

    2013-11-01

    Shift-work is suggested to affect fetal development negatively. In particular, maternal hormonal disturbance arising from sleep deprivation or circadian rhythm changes may disturb fetal growth or lead to complications during pregnancy. Exposure to constant light is an environmental stressor that can affect the circadian system and has been shown to induce neurochemical and behavioral changes when used during the prenatal and/or postnatal period in experimental animals. However, studies investigating long-term effects of constant light in the offspring are sparse. An accidental power outage resulted in pregnant females being housed under constant light (LL) conditions for seven days of the offspring perinatal development (embryonic day 20 to postnatal day 4). The long-term effects of constant light on the behavior in the adult offspring were assessed by means of open field, object recognition, and water maze tests. In adulthood, LL-animals displayed an intact recognition memory and no deficits in spatial learning or memory. In the open field test, LL-animals exhibited higher anxiety-like behavior, observed as significantly more thigmotaxis and less ambulation. These results were confirmed in the other behavioral tests as the LL-animals spent less time exploring the objects in the object recognition test, and showed thigmotactic behavior also in the water maze test. The results confirm that early life experience can cause changes in brain development that shape brain function and add to the sparse literature on long-term effects of constant light conditions during perinatal development on specific behaviors in adulthood.

  17. The contribution of prenatal and postnatal maternal anxiety and depression to child maladjustment.

    PubMed

    Barker, Edward D; Jaffee, Sara R; Uher, Rudolf; Maughan, Barbara

    2011-08-01

    The adverse effect of both pre- and post-natal maternal anxiety and depression on the development of offspring is shown by a large body of research. No published studies, however, have simultaneously: (i) controlled for co-occurring prenatal risks that may influence maternal prenatal anxiety and depression; (ii) compared the relative contributions of prenatal and postnatal maternal anxiety and depression on child functioning; and (iii) assessed a full range of child psychopathology and functioning to determine the relative effects of prenatal and postnatal anxiety and depression in the mother. Using 3,298 mother-offspring pairs, the authors examined these factors in a single-path analytic model. Measurements of maternal anxiety and depression were collected at two time points: 32 weeks prenatal and 1.5 years postnatal. Other prenatal risks were assessed between 8 and 32 weeks of gestation. Child outcomes included (a) ordered-categorical measures of DSM-IV externalizing and internalizing disorders, and (b) an assessment of verbal IQ. In both the prenatal and postnatal periods, maternal depression had a wider impact on different types of child maladjustment than maternal anxiety, which appeared more specific to internalizing difficulties in the child. Of note, prenatal risks were prospectively associated with child externalizing difficulties and verbal IQ, beyond the effects of prenatal and postnatal maternal anxiety and depression. The present results suggest that addressing both maternal anxiety and depression, in the prenatal and postnatal periods-as well as associated risk factors-may be the most effective approach to prevent adverse outcomes in the offspring. © 2011 Wiley-Liss, Inc.

  18. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood.

    PubMed

    Tata, Brooke; Mimouni, Nour El Houda; Barbotin, Anne-Laure; Malone, Samuel A; Loyens, Anne; Pigny, Pascal; Dewailly, Didier; Catteau-Jonard, Sophie; Sundström-Poromaa, Inger; Piltonen, Terhi T; Dal Bello, Federica; Medana, Claudio; Prevot, Vincent; Clasadonte, Jerome; Giacobini, Paolo

    2018-05-14

    Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and corresponds with a high degree of comorbidities and economic burden. How PCOS is passed on from one generation to the next is not clear, but it may be a developmental condition. Most women with PCOS exhibit higher levels of circulating luteinizing hormone, suggestive of heightened gonadotropin-releasing hormone (GnRH) release, and anti-Müllerian hormone (AMH) as compared to healthy women. Excess AMH in utero may affect the development of the female fetus. However, as AMH levels drop during pregnancy in women with normal fertility, it was unclear whether their levels were also elevated in pregnant women with PCOS. Here we measured AMH in a cohort of pregnant women with PCOS and control pregnant women and found that AMH is significantly more elevated in the former group versus the latter. To determine whether the elevation of AMH during pregnancy in women with PCOS is a bystander effect or a driver of the condition in the offspring, we modeled our clinical findings by treating pregnant mice with AMH and followed the neuroendocrine phenotype of their female progeny postnatally. This treatment resulted in maternal neuroendocrine-driven testosterone excess and diminished placental metabolism of testosterone to estradiol, resulting in a masculinization of the exposed female fetus and a PCOS-like reproductive and neuroendocrine phenotype in adulthood. We found that the affected females had persistently hyperactivated GnRH neurons and that GnRH antagonist treatment in the adult female offspring restored their neuroendocrine phenotype to a normal state. These findings highlight a critical role for excess prenatal AMH exposure and subsequent aberrant GnRH receptor signaling in the neuroendocrine dysfunctions of PCOS, while offering a new potential therapeutic avenue to treat the condition during adulthood.

  19. Strain dependent effects of conditioned fear in adult C57Bl/6 and Balb/C mice following postnatal exposure to chlorpyrifos: relation to expression of brain acetylcholinesterase mRNA

    PubMed Central

    Oriel, Sarit; Kofman, Ora

    2015-01-01

    Following reports of emotional psychopathology in children and adults exposed to organophosphates, the effects of postnatal chlorpyrifos (CPF) on fear-conditioning and depression-like behaviors were tested in adult mice. Concomitant changes in expression of mRNA for synaptic and soluble splice variants of acetylcholinesterase (AChE) were examined in mouse pups and adults of the Balb/C and C57Bl/6 (B6) strains, which differ in their behavioral and hormonal stress response. Mice were injected subcutaneously with 1 mg/kg CPF on postnatal days 4–10 and tested as adults for conditioned fear, sucrose preference, and forced swim. Acetylcholinesterase activity was assessed in the brains of pups on the first and last day of treatment. Expression of soluble and synaptic AChE mRNA was assessed in brains of treated pups and fear-conditioned adults using real-time PCR. Adult Balb/C mice exposed postnatally to CPF showed exacerbated fear-conditioning and impaired active avoidance. Adult B6 mice exposed postnatally to CPF showed a more specific fear response to tones and less freezing in the inter-tone intervals, in contrast to the vehicle-pretreated mice. Chlorpyrifos also attenuated sweet preference and enhanced climbing in the forced swim test. Chlorpyrifos-treated mice had increased expression of both synaptic and readthrough AChE transcripts in the hippocampus of Balb/C mice and decreased expression in the amygdala following fear-conditioning. In conclusion, postnatal CPF had long-term effects on fear and depression, as well as on expression of AChE mRNA. These changes may be related to alteration in the interaction between hippocampus and amygdala in regulating negative emotions. PMID:25972795

  20. Oral methylphenidate alleviates the fine motor dysfunction caused by chronic postnatal manganese exposure in adult rats.

    PubMed

    Beaudin, Stéphane A; Strupp, Barbara J; Lasley, Stephen M; Fornal, Casimir A; Mandal, Shyamali; Smith, Donald R

    2015-04-01

    Developmental manganese (Mn) exposure is associated with motor dysfunction in children and animal models, but little is known about the underlying neurochemical mechanisms or the potential for amelioration by pharmacotherapy. We investigated whether methylphenidate (MPH) alleviates fine motor dysfunction due to chronic postnatal Mn exposure, and whether Mn exposure impairs brain extracellular dopamine (DA) and norepinephrine (NE) in the prefrontal cortex (PFC) and striatum in adult animals. Rats were orally exposed to 0 or 50 mg Mn/kg/day from postnatal day 1 until the end of the study (PND 145). The staircase test was used to assess skilled forelimb function. Oral MPH (2.5 mg/kg/day) was administered daily 1 h before staircase testing for 16 days. DA and NE levels were measured by dual probe microdialysis. Results show that Mn exposure impaired reaching and grasping skills and the evoked release of DA and NE in the PFC and striatum of adult rats. Importantly, oral MPH treatment fully alleviated the fine motor deficits in the Mn-exposed animals, but did not affect forelimb skills of control rats not exposed to Mn. These results suggest that catecholaminergic hypofunctioning in the PFC and striatum may underlie the Mn-induced fine motor dysfunction, and that oral MPH pharmacotherapy is an effective treatment approach for alleviating this dysfunction in adult animals. The therapeutic potential of MPH for the treatment of motor dysfunction in Mn-exposed children and adults appears promising pending further characterization of MPH efficacy in other functional areas (eg, attention) believed to be affected by developmental Mn exposure. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Childhood cognitive ability and body composition in adulthood.

    PubMed

    Kumpulainen, S M; Heinonen, K; Salonen, M K; Andersson, S; Wolke, D; Kajantie, E; Eriksson, J G; Raikkonen, K

    2016-08-15

    Childhood cognitive ability has been identified as a novel risk factor for adulthood overweight and obesity as assessed by adult body mass index (BMI). BMI does not, however, distinguish fat-free and metabolically harmful fat tissue. Hence, we examined the associations between childhood cognitive abilities and body fat percentage (BF%) in young adulthood. Participants of the Arvo Ylppö Longitudinal Study (n=816) underwent tests of general reasoning, visuomotor integration, verbal competence and language comprehension (M=100; s.d.=15) at the age of 56 months. At the age of 25 years, they underwent a clinical examination, including measurements of BF% by the InBody 3.0 eight-polar tactile electrode system, weight and height from which BMI (kg m(-2)) was calculated and waist circumference (cm). After adjustments for sex, age and BMI-for-age s.d. score at 56 months, lower general reasoning and visuomotor integration in childhood predicted higher BMI (kg m(-2)) increase per s.d. unit decrease in cognitive ability (-0.32, 95% confidence interval -0.60,-0.05; -0.45, -0.75,-0.14, respectively) and waist circumference (cm) increase per s.d. unit decrease in cognitive ability (-0.84, -1.56,-0.11; -1.07,-1.88,-0.26, respectively) in adulthood. In addition, lower visuomotor integration predicted higher BF% per s.d. unit decrease in cognitive ability (-0.62,-1.14,-0.09). Associations between general reasoning and BMI/waist were attenuated when adjusted for smoking, alcohol consumption, intake of fruits and vegetables and physical activity in adulthood, and all associations, except for visuomotor integration and BMI, were attenuated when adjusted for parental and/or own attained education and/or birth weight. Of the measured childhood cognitive abilities, only lower visuomotor integration was associated with BF% in adulthood. This challenges the view that cognitive ability, at least when measured in early childhood, poses a risk for adiposity in adulthood, as characterized

  2. Use of Fetal Magnetic Resonance Image Analysis and Machine Learning to Predict the Need for Postnatal Cerebrospinal Fluid Diversion in Fetal Ventriculomegaly.

    PubMed

    Pisapia, Jared M; Akbari, Hamed; Rozycki, Martin; Goldstein, Hannah; Bakas, Spyridon; Rathore, Saima; Moldenhauer, Julie S; Storm, Phillip B; Zarnow, Deborah M; Anderson, Richard C E; Heuer, Gregory G; Davatzikos, Christos

    2018-02-01

    Which children with fetal ventriculomegaly, or enlargement of the cerebral ventricles in utero, will develop hydrocephalus requiring treatment after birth is unclear. To determine whether extraction of multiple imaging features from fetal magnetic resonance imaging (MRI) and integration using machine learning techniques can predict which patients require postnatal cerebrospinal fluid (CSF) diversion after birth. This retrospective case-control study used an institutional database of 253 patients with fetal ventriculomegaly from January 1, 2008, through December 31, 2014, to generate a predictive model. Data were analyzed from January 1, 2008, through December 31, 2015. All 25 patients who required postnatal CSF diversion were selected and matched by gestational age with 25 patients with fetal ventriculomegaly who did not require CSF diversion (discovery cohort). The model was applied to a sample of 24 consecutive patients with fetal ventriculomegaly who underwent evaluation at a separate institution (replication cohort) from January 1, 1998, through December 31, 2007. Data were analyzed from January 1, 1998, through December 31, 2009. To generate the model, linear measurements, area, volume, and morphologic features were extracted from the fetal MRI, and a machine learning algorithm analyzed multiple features simultaneously to find the combination that was most predictive of the need for postnatal CSF diversion. Accuracy, sensitivity, and specificity of the model in correctly classifying patients requiring postnatal CSF diversion. A total of 74 patients (41 girls [55%] and 33 boys [45%]; mean [SD] gestational age, 27.0 [5.6] months) were included from both cohorts. In the discovery cohort, median time to CSF diversion was 6 days (interquartile range [IQR], 2-51 days), and patients with fetal ventriculomegaly who did not develop symptoms were followed up for a median of 29 months (IQR, 9-46 months). The model correctly classified patients who required CSF diversion

  3. Effects of acute postnatal exposure to 3,3',4,4'-tetrachlorobiphenyl on sperm function and hormone levels in adult rats.

    PubMed

    Hsu, Ping-Chi; Guo, Yueliang Leon; Li, Mei-Hui

    2004-02-01

    Polychlorinated biphenyls (PCBs) are considered potential endocrine disruptors due to their ability to act as estrogens, antiestrogens and goitrogens. The aim of this study is to ascertain whether acute postnatal treatment with 3,3',4,4'-tetrachlorobiphenyl (CB 77) affects sperm function and hormone levels in adult rats. Male Sprague-Dawley rats received CB 77 by ip injection of 2 or 20 mg/kg at day 21 and sacrificed at day 112. At day 112, right and left testis weights were significantly increased, whereas sperm count, motility, total motile sperm count, curvilinear velocity, average path velocity, straight-line velocity, and beat-cross frequency for motile sperm were significantly decreased in rats treated with 20 mg/kg CB 77. Sperm-oocyte penetration rate was significantly reduced in rats treated with either 2 or 20 mg/kg CB 77. There was high sperm acrosome reaction rate (ARR) in the 20 mg/kg CB 77-treated rats. There was a significant increase in thyroid-stimulating hormone level in the 20 mg/kg CB 77 group. However, no changes were seen in serum testosterone, thyroid hormones, or prolactin concentrations at day 112. In summary, this study showed that postnatal exposure to CB 77 might affect spermatogenesis, motility, ARR, and ability of fertilizing oocytes in mature rats. These results suggest that the sperm functions may be more susceptible or adapt less readily than the thyroid functions to endocrine disruption caused by dioxin-like PCB congeners.

  4. Effects of ethanol consumption during pregnancy and lactation on the outcome and postnatal growth of the offspring.

    PubMed

    Flores-Huerta, S; Hernández-Montes, H; Argote, R M; Villalpando, S

    1992-01-01

    Although information about the pregnancy outcome of alcoholic mothers is relatively abundant, no information is available about the effects of ethanol consumption on the infant's postnatal growth. This investigation aims to describe the physical growth of 32 infants born to mothers accustomed to drinking pulque, a mild alcoholic beverage, on a daily basis during pregnancy and lactation and to quantitate the ethanol disposed through the milk, as well as to identify cases of newborns with fetal alcohol syndrome. No full-blown cases of the syndrome were found: birth weight was similar to their non-drinking counterpart, but the relative risk of newborns to drinking mothers to have a low birth weight was 3.39. Ethanol found in milk accounted for 40 mg/day available to the infant. The postnatal growth of infants of ethanol drinkers was similar to that of controls. Further studies on their mental development are required in order to understand the extent of the effects of such a habit.

  5. Neuronal Subtype Generation During Postnatal Olfactory Bulb Neurogenesis

    PubMed Central

    Angelova, Alexandra; Tiveron, Marie-Catherine; Cremer, Harold; Beclin, Christophe

    2018-01-01

    In the perinatal and adult forebrain, regionalized neural stem cells lining the ventricular walls produce different types of olfactory bulb interneurons. Although these postnatal stem cells are lineage related to their embryonic counterparts that produce, for example, cortical, septal, and striatal neurons, their output at the level of neuronal phenotype changes dramatically. Tiveron et al. investigated the molecular determinants underlying stem cell regionalization and the gene expression changes inducing the shift from embryonic to adult neuron production. High-resolution gene expression analyses of different lineages revealed that the zinc finger proteins, Zic1 and Zic2, are postnatally induced in the dorsal olfactory bulb neuron lineage. Functional studies demonstrated that these factors confer a GABAergic and calretinin-positive phenotype to neural stem cells while repressing dopaminergic fate. Based on these findings, we discuss the molecular mechanisms that allow acquisition of new traits during the transition from embryonic to adult neurogenesis. We focus on the involvement of epigenetic marks and emphasize why the identification of master transcription factors, that instruct the fate of postnatally generated neurons, can help in deciphering the mechanisms driving fate transition from embryonic to adult neuron production. PMID:29511358

  6. Neuronal Subtype Generation During Postnatal Olfactory Bulb Neurogenesis.

    PubMed

    Angelova, Alexandra; Tiveron, Marie-Catherine; Cremer, Harold; Beclin, Christophe

    2018-01-01

    In the perinatal and adult forebrain, regionalized neural stem cells lining the ventricular walls produce different types of olfactory bulb interneurons. Although these postnatal stem cells are lineage related to their embryonic counterparts that produce, for example, cortical, septal, and striatal neurons, their output at the level of neuronal phenotype changes dramatically. Tiveron et al. investigated the molecular determinants underlying stem cell regionalization and the gene expression changes inducing the shift from embryonic to adult neuron production. High-resolution gene expression analyses of different lineages revealed that the zinc finger proteins, Zic1 and Zic2, are postnatally induced in the dorsal olfactory bulb neuron lineage. Functional studies demonstrated that these factors confer a GABAergic and calretinin-positive phenotype to neural stem cells while repressing dopaminergic fate. Based on these findings, we discuss the molecular mechanisms that allow acquisition of new traits during the transition from embryonic to adult neurogenesis. We focus on the involvement of epigenetic marks and emphasize why the identification of master transcription factors, that instruct the fate of postnatally generated neurons, can help in deciphering the mechanisms driving fate transition from embryonic to adult neuron production.

  7. Permanent effects of postnatal administration of beta-adrenergic ligands on the volume of sexually dimorphic nucleus of the preoptic area (SDN-POA) in rats.

    PubMed

    Izdebska-Straszak, Grazyna; Gubala, Elzbieta; Jedrzejowska-Szypulka, Halina; Klencki, Mariusz; Wiczkowski, Andrzej; Jarzab, Barbara

    2006-01-01

    beta-adrenergic ligands have been shown to influence sexual differentiation of the brain. In the present study we document that short postnatal treatment with beta-adrenergic agonists or antagonists may permanently reverse the morphological sex of the brain, as judged by the volume of sexually dimorphic nucleus of the preoptic area (SDN-POA). Female rats treated by beta(2)-adrenergic stimulating ligands exhibit an increased, male type SDN-POA volume while male rats treated by beta1-adrenergic antagonists show a decreased, female type of SDN-POA volume. To analyze the volume of SDN-POA of adult rats after postnatal administration of betaadrenergic ligands. From the second day of life, over 5 consecutive days, all the neonates were injected subcutaneously with the following drugs: isoproterenol, salbutamol, metoprolol alprenolol or saline. SDN-POA volumes were estimated planimetrically on serial brain slides. In male rats the mean volume of SDN-POA was 9.97 +/- 1.66 x 10(-3) mm(3), in female rats the respective volume reached 4.02 +/- 1.26 x 10(-3) mm(3) only and was 2.5 times lower, the difference being highly statistically significant. Postnatal administration of isoproterenol remained without effect in male rats but diminished the SDN-POA volume in female rats, thus increasing the sexual dimorphism. The disappearance of sexual dimorphism was noted in rats treated postnatally with salbutamol. This effect was due to the increase in SDN-POA volumes in female rats, up to 9.81 +/- 2.64 x 10(-3) mm(3), the levels approaching the male type of POA differentiation. Postnatal alprenolol treatment influenced the sexual dimorphism of the brain by decreasing the SDN-POA volume reached by adult males. In fact, in rats treated postnatally with alprenolol, the volume of the nucleus reached only 4,44 +/- 1,61 x 10(-3) mm(3), being not statistically different from female nuclei. The effect of metoprolol pretreatment was similar to alprenolol. Male volumes of SDN-POA were restored

  8. Conceptions of Adulthood among Migrant Women Workers in China

    ERIC Educational Resources Information Center

    Zhong, Juan; Arnett, Jeffrey J.

    2014-01-01

    The experiences of emerging adulthood may vary in different historical and cultural contexts. Little research has been dedicated to how non college students view adulthood in developing countries. Currently, millions of young people are migrating from rural villages to industrial cities in China. The purpose of this study was to investigate…

  9. [Food allergy in adulthood].

    PubMed

    Werfel, Thomas

    2016-06-01

    Food allergies can newly arise in adulthood or persist following a food allergy occurring in childhood. The prevalence of primary food allergy is basically higher in children than in adults; however, in the routine practice food allergies in adulthood appear to be increasing and after all a prevalence in Germany of 3.7 % has been published. The clinical spectrum of manifestations of food allergies in adulthood is broad. Allergy symptoms of the immediate type can be observed as well as symptoms occurring after a delay, such as indigestion, triggering of hematogenous contact eczema or flares of atopic dermatitis. The same principles for diagnostics apply in this group as in childhood. In addition to the anamnesis, skin tests and in vitro tests, as a rule elimination diets and in particular provocation tests are employed. Molecular allergy diagnostics represent a major step forward, which allow a better assessment of the risk of systemic reactions to certain foodstuffs (e.g. peanuts) and detection of cross-reactions in cases of apparently multiple sensitivities. Current German and European guidelines from 2015 are available for the practical approach to clarification of food allergies. The most frequent food allergies in adults are nuts, fruit and vegetables, which can cross-react with pollen as well as wheat, shellfish and crustaceans. The therapy of allergies involves a consistent avoidance of the allogen. Detailed dietary plans are available with avoidance strategies and instructions for suitable food substitutes. A detailed counseling of affected patients by specially trained personnel is necessary especially in order to avoid nutritional deficiencies and to enable patients to enjoy a good quality of life.

  10. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth

    PubMed Central

    2013-01-01

    Milk has been recognized to represent a functionally active nutrient system promoting neonatal growth of mammals. Cell growth is regulated by the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1). There is still a lack of information on the mechanisms of mTORC1 up-regulation by milk consumption. This review presents milk as a materno-neonatal relay system functioning by transfer of preferential amino acids, which increase plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), insulin, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) for mTORC1 activation. Importantly, milk exosomes, which regularly contain microRNA-21, most likely represent a genetic transfection system enhancing mTORC1-driven metabolic processes. Whereas human breast milk is the ideal food for infants allowing appropriate postnatal growth and species-specific metabolic programming, persistent high milk signaling during adolescence and adulthood by continued cow´s milk consumption may promote mTORC1-driven diseases of civilization. PMID:23883112

  11. Postnatal mental distress in relation to the sociocultural practices of childbirth: an exploratory qualitative study from Ethiopia.

    PubMed

    Hanlon, Charlotte; Whitley, Rob; Wondimagegn, Dawit; Alem, Atalay; Prince, Martin

    2009-10-01

    Sociocultural patterning of the postnatal period in non-Western settings has been hypothesised to protect against postnatal depression. In 2004, in a predominantly rural area of Ethiopia, we conducted 25 in-depth interviews and five focus group discussions with purposively selected participants including perinatal women, fathers, grandmothers, traditional and religious leaders, birth attendants and community leaders. Our main objectives were (1) to examine societal recognition of problematic distress states in the postnatal period and relate this to Western conceptualisations of postnatal depression and (2) to relate the occurrence of distress states to sociocultural patterning of the postnatal period. Inductive analysis was employed to identify salient themes. Participants spontaneously described culturally problematic distress states occurring in the postnatal period, although did not consider them to be illness. Vulnerability and danger of the postnatal period was emphasised, with risk of supernatural attack and physical harm leading to distress states. Participants also spoke of how gender disadvantage and economic strain intersect with cultural patterning of the postnatal period, threatening mental health due to the resulting disappointed expectations and exclusion, as well as exacerbation of pre-existing problems. Cultural dissonance, where a person's beliefs or actions are out of kilter with strong prevailing cultural norms, may be an important risk factor for postnatal distress in rural Ethiopia, where the postnatal period is extensively culturally elaborated.

  12. Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation.

    PubMed

    Zeng, Chun; Mulas, Francesca; Sui, Yinghui; Guan, Tiffany; Miller, Nathanael; Tan, Yuliang; Liu, Fenfen; Jin, Wen; Carrano, Andrea C; Huising, Mark O; Shirihai, Orian S; Yeo, Gene W; Sander, Maike

    2017-05-02

    Pancreatic β cell mass for appropriate blood glucose control is established during early postnatal life. β cell proliferative capacity declines postnatally, but the extrinsic cues and intracellular signals that cause this decline remain unknown. To obtain a high-resolution map of β cell transcriptome dynamics after birth, we generated single-cell RNA-seq data of β cells from multiple postnatal time points and ordered cells based on transcriptional similarity using a new analytical tool. This analysis captured signatures of immature, proliferative β cells and established high expression of amino acid metabolic, mitochondrial, and Srf/Jun/Fos transcription factor genes as their hallmark feature. Experimental validation revealed high metabolic activity in immature β cells and a role for reactive oxygen species and Srf/Jun/Fos transcription factors in driving postnatal β cell proliferation and mass expansion. Our work provides the first high-resolution molecular characterization of state changes in postnatal β cells and paves the way for the identification of novel therapeutic targets to stimulate β cell regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of prenatal and postnatal maternal emotional stress on toddlers' cognitive and temperamental development.

    PubMed

    Lin, Yanfen; Xu, Jian; Huang, Jun; Jia, Yinan; Zhang, Jinsong; Yan, Chonghuai; Zhang, Jun

    2017-01-01

    Maternal stress is associated with impairments in the neurodevelopment of offspring; however, the effects of the timing of exposure to maternal stress on a child's neurodevelopment are unclear. In 2010, we studied 225 mother-child pairs in Shanghai, recruiting mothers in mid-to-late pregnancy and monitoring offspring from birth until 30 months of age. Maternal stress was assessed prenatally (at 28-36 weeks of gestation) and postnatally (at 24-30 months postpartum) using the Symptom-Checklist-90-Revised Scale (SCL-90-R) and Life-Event-Stress Scale to evaluate mothers' emotional stress and life event stress levels, respectively. Children's cognition and temperament were assessed at 24-30 months of age using the Gesell Development Scale and Toddler Temperament Scale, respectively. Multi-variable linear regression models were used to associate prenatal and postnatal stress with child cognitive and temperamental development. Maternal prenatal and postnatal Global Severity Index (GSI) of SCL-90-R were moderately correlated (ICC r=0.30, P<0.001). After adjusting for relevant covariates, the increase in prenatal GSI was associated with decreases in toddlers' gross motor, fine motor, adaptive and social behavior development independently of postnatal GSI, while the increase in postnatal GSI was associated with changes in multiple temperament dimensions independently of prenatal GSI. The effects of prenatal and postnatal depression scores of SCL-90-R were similar to those of GSI. Relatively small sample size. Compared with postnatal exposure, children's cognitive development may be more susceptible to prenatal exposure to maternal emotional stress, whereas temperamental development may be more affected by postnatal exposure to maternal emotional stress compared with prenatal exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Prenatal, perinatal and postnatal factors associated with autism spectrum disorder.

    PubMed

    Hadjkacem, Imen; Ayadi, Héla; Turki, Mariem; Yaich, Sourour; Khemekhem, Khaoula; Walha, Adel; Cherif, Leila; Moalla, Yousr; Ghribi, Farhat

    To identify prenatal, perinatal and postnatal risk factors in children with autism spectrum disorder (ASD) by comparing them to their siblings without autistic disorders. The present study is cross sectional and comparative. It was conducted over a period of three months (July-September 2014). It included 101 children: 50 ASD's children diagnosed according to DSM-5 criteria and 51 unaffected siblings. The severity of ASD was assessed by the CARS. Our study revealed a higher prevalence of prenatal, perinatal and postnatal factors in children with ASD in comparison with unaffected siblings. It showed also a significant association between perinatal and postnatal factors and ASD (respectively p=0.03 and p=0.042). In this group, perinatal factors were mainly as type of suffering acute fetal (26% of cases), long duration of delivery and prematurity (18% of cases for each factor), while postnatal factors were represented principally by respiratory infections (24%). As for parental factors, no correlation was found between advanced age of parents at the moment of the conception and ASD. Likewise, no correlation was observed between the severity of ASD and different factors. After logistic regression, the risk factors retained for autism in the final model were: male gender, prenatal urinary tract infection, acute fetal distress, difficult labor and respiratory infection. The present survey confirms the high prevalence of prenatal, perinatal and postnatal factors in children with ASD and suggests the intervention of some of these factors (acute fetal distress and difficult labor, among others), as determinant variables for the genesis of ASD. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  15. Activation of postnatal neural stem cells requires nuclear receptor TLX.

    PubMed

    Niu, Wenze; Zou, Yuhua; Shen, Chengcheng; Zhang, Chun-Li

    2011-09-28

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.

  16. Lower early postnatal oxygen saturation target and risk of ductus arteriosus closure failure.

    PubMed

    Inomata, Kei; Taniguchi, Shinji; Yonemoto, Hiroki; Inoue, Takeshi; Kawase, Akihiko; Kondo, Yuichi

    2016-11-01

    Early postnatal hyperoxia is a major risk factor for retinopathy of prematurity (ROP) in extremely premature infants. To reduce the occurrence of ROP, we adopted a lower early postnatal oxygen saturation (SpO 2 ) target range (85-92%) from April 2011. Lower SpO 2 target range, however, may lead to hypoxemia and an increase in the risk of ductus arteriosus (DA) closure failure. The aim of this study was therefore to determine whether a lower SpO 2 target range, during the early postnatal stage, increases the risk of DA closure failure. Infants born at <28 weeks' gestation were enrolled in this study. Oxygen saturation target range during the first postnatal 72 h was 84-100% in study period 1 and 85-92% in period 2. Eighty-two infants were included in period 1, and 61 were included in period 2. The lower oxygen saturation target range increased the occurrence of hypoxemia during the first postnatal 72 h. Prevalence of DA closure failure in period 2 (21%) was significantly higher than that in period 1 (1%). On multivariate logistic regression analysis, the lower oxygen saturation target range was an independent risk factor for DA closure failure. Lower early postnatal oxygen saturation target range increases the risk of DA closure failure. © 2016 Japan Pediatric Society.

  17. Temperament in Adulthood Attention Deficit-Hyperactivity Disorder without Bipolar Disorder

    PubMed Central

    Ozdemiroglu, Filiz; Karakus, Kadir; Memis, Cagdas Oyku; Sevincok, Levent; Mersin, Sanem

    2018-01-01

    Objective We examined whether some temperamental traits would be associated with persistence of attention deficit-hyperacitivty disorder (ADHD) in adulthood independent from bipolar disorder (BD). Methods Eighty-one ADHD patients without a comorbid diagnosis of BD were divided into two groups, those with childhood ADHD (n=46), and those with Adulthood ADHD (n=35). The severity of childhood and adulthood ADHD were assessed by using the Wender Utah Rating Scale (WURS-25) and Turgay’s Adult ADD/ADHD Diagnosis and Evaluation Scale (DES). Subjects’ temperamental characteristics were examined using the Temperament Evaluation of Memphis, Pisa, Paris and San Diego-auto questionnaire (TEMPS-A). Results The mean scores of WURS-25 were higher in adult ADHD group than in childhood ADHD group (p<0.001). Adult ADHD group had significantly higher scores on cyclothymic (p=0.002), irritable (p<0.0001), and anxious (p=0.042) subscales of TEMPS-A. The scores of WURS-25 in adulthood ADHD group were positively correlated with cyclothymia scores (r=0.366, p=0.033). Total scores of Turgay’s Adult ADD/ADHD DES were positively correlated with cyclothymic (r=0.354, p=0.040), hyperthymic (r=0.380, p=0.026), and irritable (r=0.380, p=0.026) subscale scores. Cychlothymic and irritable temperaments were significantly associated with the severity of adulthood symptoms of ADHD. Conclusion We might suggest that cyclothymic and irritable temperaments would predict the diagnosis of adulthood ADHD independent from BD. PMID:29475238

  18. Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene.

    PubMed

    Murgatroyd, C; Quinn, J P; Sharp, H M; Pickles, A; Hill, J

    2015-05-05

    In animal models, prenatal and postnatal stress is associated with elevated hypothalamic-pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life.

  19. Cognition and behavioural development in early childhood: the role of birth weight and postnatal growth

    PubMed Central

    Huang, Cheng; Martorell, Reynaldo; Ren, Aiguo; Li, Zhiwen

    2013-01-01

    Background We evaluate the relative importance of birth weight and postnatal growth for cognition and behavioural development in 8389 Chinese children, 4–7 years of age. Method Weight was the only size measure available at birth. Weight, height, head circumference and intelligence quotient (IQ) were measured between 4 and 7 years of age. Z-scores of birth weight and postnatal conditional weight gain to 4–7 years, as well as height and head circumference at 4–7 years of age, were the exposure variables. Z-scores of weight at 4–7 years were regressed on birth weight Z-scores, and the residual was used as the measure of postnatal conditional weight gain. The outcomes were child’s IQ, measured by the Chinese Wechsler Young Children Scale of Intelligence, as well as internalizing behavioural problems, externalizing behavioural problems and other behavioural problems, evaluated by the Child Behavior Checklist 4–18. Multivariate regressions were conducted to investigate the relationship of birth weight and postnatal growth variables with the outcomes, separately for preterm children and term children. Results Both birth weight and postnatal weight gain were associated with IQ among term children; 1 unit increment in Z-score of birth weight (∼450 g) was associated with an increase of 1.60 [Confidence interval (CI): 1.18–2.02; P < 0.001] points in IQ, and 1 unit increment in conditional postnatal weight was associated with an increase of 0.46 (CI: 0.06–0.86; P = 0.02) points in IQ, after adjustment for confounders; similar patterns were observed when Z-scores of postnatal height and head circumference at age 4–7 years were used as alternative measurements of postnatal growth. Effect sizes of relationships with IQ were smaller than 0.1 of a standard deviation in all cases. Neither birth weight nor postnatal growth indicators were associated with behavioural outcomes among term children. In preterm children, neither birth weight nor postnatal growth

  20. Cognition and behavioural development in early childhood: the role of birth weight and postnatal growth.

    PubMed

    Huang, Cheng; Martorell, Reynaldo; Ren, Aiguo; Li, Zhiwen

    2013-02-01

    We evaluate the relative importance of birth weight and postnatal growth for cognition and behavioural development in 8389 Chinese children, 4-7 years of age. Method Weight was the only size measure available at birth. Weight, height, head circumference and intelligence quotient (IQ) were measured between 4 and 7 years of age. Z-scores of birth weight and postnatal conditional weight gain to 4-7 years, as well as height and head circumference at 4-7 years of age, were the exposure variables. Z-scores of weight at 4-7 years were regressed on birth weight Z-scores, and the residual was used as the measure of postnatal conditional weight gain. The outcomes were child's IQ, measured by the Chinese Wechsler Young Children Scale of Intelligence, as well as internalizing behavioural problems, externalizing behavioural problems and other behavioural problems, evaluated by the Child Behavior Checklist 4-18. Multivariate regressions were conducted to investigate the relationship of birth weight and postnatal growth variables with the outcomes, separately for preterm children and term children. Both birth weight and postnatal weight gain were associated with IQ among term children; 1 unit increment in Z-score of birth weight (∼450 g) was associated with an increase of 1.60 [Confidence interval (CI): 1.18-2.02; P < 0.001] points in IQ, and 1 unit increment in conditional postnatal weight was associated with an increase of 0.46 (CI: 0.06-0.86; P = 0.02) points in IQ, after adjustment for confounders; similar patterns were observed when Z-scores of postnatal height and head circumference at age 4-7 years were used as alternative measurements of postnatal growth. Effect sizes of relationships with IQ were smaller than 0.1 of a standard deviation in all cases. Neither birth weight nor postnatal growth indicators were associated with behavioural outcomes among term children. In preterm children, neither birth weight nor postnatal growth measures were associated with IQ or

  1. Human chorionic gonadotropin but not the calcitonin gene-related peptide induces postnatal testicular descent in mice.

    PubMed

    Houle, A M; Gagné, D

    1995-01-01

    The androgen-regulated paracrine factor, calcitonin gene-related peptide (CGRP), has been proposed as a possible mediator of testicular descent. This peptide has been found to increase rhythmic contractions of gubernaculae and is known to be released by the genitofemoral nerve. We have investigated the ability of CGRP to induce premature testicular descent. CGRP was administered alone, or in combination with human chorionic gonadotropin (hCG) to C57BL/6 male mice postnatally. The extent of testicular descent at 18 days postpartum was then ascertained. The potential relationship between testicular weight and descent was also examined. Our results show that testes of mice treated with either hCG alone, or in combination with 500 ng CGRP, were at a significantly lower position than those of controls by 16% and 17%, respectively. In contrast, mice treated with 500 ng of CGRP alone had testes at a higher position when compared to those of controls, by 19%. In mice treated with 50 ng of CGRP alone or in combination with hCG, testes were at a position similar to those in controls. Furthermore, testicular descent was analyzed in relation to testicular weight, and we found that significantly smaller testes per gram of body weight than those of controls were at a significantly lower position compared to those of controls. Our data demonstrate that CGRP had no effect on postnatal testicular descent and that there is no relationship between postnatal descent and testicular weight.

  2. Breastfeeding and Postnatal Depression: A Prospective Cohort Study in Sabah, Malaysia.

    PubMed

    Yusuff, Aza Sherin Mohamad; Tang, Li; Binns, Colin W; Lee, Andy H

    2016-05-01

    Postnatal depression is a disorder that can lead to serious consequences for both the mother and infant. Despite the extensively documented health benefits of breastfeeding, its association with postnatal depression remains uncertain. To investigate the relationship between full breastfeeding at 3 months postpartum and postnatal depressive symptoms among mothers in Sabah, Malaysia. A prospective cohort study of 2072 women was conducted in Sabah during 2009-2010. Participants were recruited at 36 to 38 weeks of gestation and followed up at 1 and 3 months postpartum. Depressive symptoms were assessed using the validated Malay version of the Edinburgh Postnatal Depression Scale (EPDS). Repeated-measures analyses of variance was performed to compare the depression scores over time and between subgroups of breastfeeding mothers. Approximately 46% of women were fully breastfeeding their infants at 3 months postpartum. These mothers had significantly (P < .001) lower mean EPDS scores at both 1 and 3 months postpartum (mean ± SD, 4.14 ± 4.12 and 4.27 ± 4.12, respectively) than others who did not initiate or maintain full breastfeeding for 3 months (4.94 ± 4.34 and 5.25 ± 4.05, respectively). After controlling for the effects of covariates, the differences in EPDS scores remained statistically significant (P = .001) between the 2 breastfeeding groups. Full breastfeeding appeared to be negatively associated with postnatal depressive symptoms for mothers residing in Sabah. © The Author(s) 2015.

  3. Cultural differences in postnatal quality of life among German-speaking women - a prospective survey in two countries.

    PubMed

    Grylka-Baeschlin, Susanne; van Teijlingen, Edwin; Gross, Mechthild M

    2014-08-15

    Assessment of quality of life after childbirth is an important health-outcome measurement for new mothers and is of special interest in midwifery. The Mother-Generated Index (MGI) is a validated instrument to assess postnatal quality of life. The tool has not been applied for making a cross-cultural comparison before. This study investigated (a) responses to the MGI in German-speaking women in Germany and Switzerland; and (b) associations between MGI scores on the one hand and maternity and midwifery care on the other. A two-stage survey was conducted in two rural hospitals 10 km apart, on opposite sides of the German-Swiss border. The questionnaires included the MGI and questions on socio-demographics, physical and mental health and maternity care, and were distributed during the first days after birth and six weeks postpartum. Parametric and non-parametric tests were computed with the statistical programme SPSS. A total of 129 questionnaires were returned an average of three days after birth and 83 in the follow-up after seven weeks. There were no statistically significant differences in the MGI scores between the German and the Swiss women (p = 0.22). Significantly more favourable MGI scores were found associated with more adequate information during pregnancy (p = 0.02), a more satisfactory birth experience (p < .01), epidural anaesthesia (p < 0.01), more information (p = 0.01) and better support (p = 0.02) during the time in hospital and less disturbed sleep (p < 0.01). Significantly lower MGI scores were associated with the presence of a private doctor during birth (p = 0.01) and with exclusive breastfeeding during the first postnatal days (p = 0.04). The MGI scores of these German-speaking women were higher than those in other studies reported previously. Thus the tool may be able to detect differences in postnatal quality of life among women with substantially divergent cultural backgrounds. Shortcomings in maternity and midwifery care were detected, as for

  4. Learning-Ability Relations in Adulthood

    ERIC Educational Resources Information Center

    Hultsch, David F.; And Others

    1976-01-01

    Two successive recall tasks and eight ability measures were presented to women of five age groups to investigate the changing relation between performance and ability measures at various stages of the learning process during adulthood. (MS)

  5. Prenatal hydronephrosis: postnatal evaluation and management.

    PubMed

    Vemulakonda, Vijaya; Yiee, Jenny; Wilcox, Duncan T

    2014-08-01

    Congenital hydronephrosis is one of the most common anomalies identified on antenatal ultrasound. The underlying etiology of congenital hydronephrosis is multifold, ranging from transient hydronephrosis in utero to clinically significant congenital anomalies of the kidney and urinary tract. While traditional management of hydronephrosis was aimed at relieving symptoms, the advent of routine prenatal ultrasound has led to a shift in the goal of treatment to prevention of renal injury in the asymptomatic patient. However, despite this focus on renal preservation, the diagnostic criteria for identification of children "at risk" for renal damage that can be alleviated by surgical treatment remain a subject of debate. Both antenatal and postnatal imaging studies have been evaluated as indicators for potential reversible renal damage and have been used as potential indicators of the need for surgical intervention. The aim of this review is to discuss the current literature regarding the role of postnatal clinical and radiographic evaluation to identify children who may benefit from early surgical intervention.

  6. [Postnatal diagnosis of gastric volvulus revealing congenital diaphragmatic hernia].

    PubMed

    Aprahamian, A; Nouyrigat, V; Grévent, D; Hervieux, E; Chéron, G

    2017-05-01

    Postnatally diagnosed congenital diaphragmatic hernias (CDH) are rare and have a better prognosis than those diagnosed prenatally. Postnatal symptoms can be respiratory, digestive, or mixed. Gastric volvulus can reveal CDH. Symptoms are pain, abdominal distension, and/or vomiting. Upper gastrointestinal barium X-ray radiography provides the diagnosis. Prognosis is related to early surgical management in complicated forms with intestinal occlusion or sub-occlusion. We report on an infant who presented with vomiting, which revealed gastric volvulus associated with a CDH. Progression was favorable after surgical treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Prenatal and postnatal stress and asthma in children: Temporal- and sex-specific associations.

    PubMed

    Lee, Alison; Mathilda Chiu, Yueh-Hsiu; Rosa, Maria José; Jara, Calvin; Wright, Robert O; Coull, Brent A; Wright, Rosalind J

    2016-09-01

    Temporal- and sex-specific effects of perinatal stress have not been examined for childhood asthma. We examined associations between prenatal and/or postnatal stress and children's asthma (n = 765) and effect modification by sex in a prospective cohort study. Maternal negative life events were ascertained prenatally and postpartum. Negative life event scores were categorized as 0, 1 to 2, 3 to 4, or 5 or greater to assess exposure-response relationships. We examined effects of prenatal and postnatal stress on children's asthma by age 6 years, modeling each as independent predictors, mutually adjusting for prenatal and postnatal stress, and finally considering interactions between prenatal and postnatal stress. Effect modification by sex was examined in stratified analyses and by fitting interaction terms. When considering stress in each period independently, among boys, a dose-response relationship was evident for each level increase on the ordinal scale prenatally (odds ratio [OR], 1.38; 95% CI, 1.06-1.79; P value for trend = .03) and postnatally (OR, 1.53; 95% CI, 1.16-2.01; P value for trend = .001); among girls, only the postnatal trend was significant (OR, 1.60; 95% CI, 1.14-2.22; P value for trend = .005). Higher stress in both the prenatal and postnatal periods was associated with increased odds of receiving a diagnosis of asthma in girls (OR, 1.37; 95% CI, 0.98-1.91; Pinteraction = .07) but not boys (OR, 1.08; 95% CI, 0.82-1.42; Pinteraction = .61). Although boys were more vulnerable to stress during the prenatal period, girls were more affected by postnatal stress and cumulative stress across both periods in relation to asthma. Understanding sex and temporal differences in response to early-life stress might provide unique insight into the cause and natural history of asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. The Ratio between Positive and Negative Affect and Flourishing Mental Health across Adulthood

    PubMed Central

    Diehl, Manfred; Hay, Elizabeth L.; Berg, Kathleen M.

    2011-01-01

    Using data from a 30-day diary study with 239 adults (81 young, 81 middle-aged, and 77 older adults) this study examined whether a specific ratio between positive and negative affect distinguished individuals with different mental health status and especially flourishing from non-flourishing individuals. In addition, the study addressed whether there were age differences in the positivity ratio when daily affect data were used, and whether the proposed critical positivity ratio of 2.9 discriminated equally well between individuals with different mental health status across the adult lifespan. Findings showed that the ratio of positive to negative affect differed across adulthood such that age was associated with an increasing preponderance of positive to negative affect. The positivity ratio was also associated with mental health status in the hypothesized direction; higher positivity ratios were associated with better mental health. Finally, although the data supported the notion of a positivity ratio of 2.9 as a “critical value” in young adulthood, this value did not equally well discriminate the mental health status of middle-aged and older adults. PMID:21562989

  9. Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability.

    PubMed

    Kropp, Peter A; Dunn, Jennifer C; Carboneau, Bethany A; Stoffers, Doris A; Gannon, Maureen

    2018-04-01

    The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.

  10. Active zone density is conserved during synaptic growth but impaired in aged mice

    PubMed Central

    Chen, Jie; Mizushige, Takafumi; Nishimune, Hiroshi

    2013-01-01

    Presynaptic active zones are essential structures for synaptic vesicle release, but the developmental regulation of their number and maintenance during aging at mammalian neuromuscular junctions (NMJs) remains unknown. Here, we analyzed the distribution of active zones in developing, mature, and aged mouse NMJs by immunohistochemical detection of the active zone-specific protein Bassoon. Bassoon is a cytosolic scaffolding protein essential for the active zone assembly in ribbon synapses and some brain synapses. Bassoon staining showed a punctate pattern in nerve terminals and axons at the nascent NMJ on embryonic days 16.5–18.5. Three-dimensional reconstruction of NMJs revealed that the majority of Bassoon puncta within an NMJ were attached to the presynaptic membrane from postnatal day 0 to adulthood, and colocalized with another active zone protein Piccolo. During postnatal development, the number of Bassoon puncta increased as the size of the synapses increased. Importantly, the density of Bassoon puncta remained relatively constant from postnatal day 0 to 54 at 2.3 puncta/μm2, while the synapse size increased 3.3-fold. However, Bassoon puncta density and signal intensity were significantly attenuated at the NMJs of 27-month-old aged mice. These results suggest that synapses maintain the density of synaptic vesicle release sites while the synapse size changes, but this density becomes impaired during aging. PMID:21935939

  11. Active vs. sedentary lifestyle from weaning to adulthood and susceptibility to ozone in rats.

    PubMed

    Gordon, C J; Phillips, P M; Ledbetter, A; Snow, S J; Schladweiler, M C; Johnstone, A F M; Kodavanti, U P

    2017-01-01

    The prevalence of a sedentary (SED) life style combined with calorically rich diets has spurred the rise in childhood obesity, which, in turn, translates to adverse health effects in adulthood. Obesity and lack of active (ACT) lifestyle may increase susceptibility to air pollutants. We housed 22-day-old female Long-Evans rats in a cage without (SED) or with a running wheel (ACT). After 10 wk the rats ran 310 ± 16.3 km. Responses of SED and ACT rats to whole-body O 3 (0, 0.25, 0.5, or 1.0 ppm; 5 h/day for 2 days) was assessed. Glucose tolerance testing (GTT) was performed following the first day of O 3 ACT rats had less body fat and an improved glucose GTT. Ventilatory function (plethysmography) of SED and ACT groups was similarly impaired by O 3 Bronchoalveolar lavage fluid (BALF) was collected after the second O 3 exposure. SED and ACT rats were hyperglycemic following 1.0 ppm O 3 GTT was impaired by O 3 in both groups; however, ACT rats exhibited improved recovery to 0.25 and 1.0 ppm O 3 BALF cell neutrophils and total cells were similarly increased in ACT and SED groups exposed to 1.0 ppm O 3 O 3 -induced increase in eosinophils was exacerbated in SED rats. Chronic exercise from postweaning to adulthood improved some of the metabolic and pulmonary responses to O 3 (GTT and eosinophils) but several other parameters were unaffected. The reduction in O 3 -induced rise in BALF eosinophils in ACT rats suggests a possible link between a SED lifestyle and incidence of asthma-related symptoms from O 3 . Copyright © 2017 the American Physiological Society.

  12. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Sameera; Yuan, Yukun, E-mail: yuanyuku@msu.ed

    2009-11-01

    Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20-200 msmore » inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca{sup 2+}]{sub e} or application of the GABA{sub A} receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect.« less

  13. Understanding exercise self-efficacy and barriers to leisure-time physical activity among postnatal women.

    PubMed

    Cramp, Anita G; Bray, Steven R

    2011-07-01

    Studies have demonstrated that postnatal women are at high risk for physical inactivity and generally show lower levels of leisure-time physical activity (LTPA) compared to prepregnancy. The overall purpose of the current study was to investigate social cognitive correlates of LTPA among postnatal women during a 6-month period following childbirth. A total of 230 women (mean age = 30.9) provided descriptive data regarding barriers to LTPA and completed measures of LTPA and self-efficacy (exercise and barrier) for at least one of the study data collection periods. A total of 1,520 barriers were content analyzed. Both exercise and barrier self-efficacy were positively associated with subsequent LTPA. Exercise self-efficacy at postnatal week 12 predicted LTPA from postnatal weeks 12 to 18 (β = .40, R (2) = .18) and exercise self-efficacy at postnatal week 24 predicted LTPA during weeks 24-30 (β = .49, R (2) = .30). Barrier self-efficacy at week 18 predicted LTPA from weeks 18 to 24 (β = .33, R (2) = .13). The results of the study identify a number of barriers to LTPA at multiple time points closely following childbirth which may hinder initiation, resumption or maintenance of LTPA. The results also suggest that higher levels of exercise and barrier self-efficacy are prospectively associated with higher levels of LTPA in the early postnatal period. Future interventions should be designed to investigate causal effects of developing participants' exercise and barrier self-efficacy for promoting and maintaining LTPA during the postnatal period.

  14. Gestational naltrexone ameliorates fetal ethanol exposures enhancing effect on the postnatal behavioral and neural response to ethanol

    PubMed Central

    Youngentob, Steven L; Kent, Paul F; Youngentob, Lisa M

    2012-01-01

    The association between gestational exposure to ethanol and adolescent ethanol abuse is well established. Recent animal studies support the role of fetal ethanol experience-induced chemosensory plasticity as contributing to this observation. Previously, we established that fetal ethanol exposure, delivered through a dam’s diet throughout gestation, tuned the neural response of the peripheral olfactory system of early postnatal rats to the odor of ethanol. This occurred in conjunction with a loss of responsiveness to other odorants. The instinctive behavioral response to the odor of ethanol was also enhanced. Importantly, there was a significant contributory link between the altered response to the odor of ethanol and increased ethanol avidity when assessed in the same animals. Here, we tested whether the neural and behavioral olfactory plasticity, and their relationship to enhanced ethanol intake, is a result of the mere exposure to ethanol or whether it requires the animal to associate ethanol’s reinforcing properties with its odor attributes. In this later respect, the opioid system is important in the mediation (or modulation) of the reinforcing aspects of ethanol. To block endogenous opiates during prenatal life, pregnant rats received daily intraperitoneal administration of the opiate antagonist naltrexone from gestational day 6–21 jointly with ethanol delivered via diet. Relative to control progeny, we found that gestational exposure to naltrexone ameliorated the enhanced postnatal behavioral response to the odor of ethanol and postnatal drug avidity. Our findings support the proposition that in utero ethanol-induced olfactory plasticity (and its relationship to postnatal intake) requires, at least in part, the associative pairing between ethanol’s odor quality and its reinforcing aspects. We also found suggestive evidence that fetal naltrexone ameliorated the untoward effects of gestational ethanol exposure on the neural response to non

  15. Learning Disabilities in Adulthood: Persisting Problems and Evolving Issues.

    ERIC Educational Resources Information Center

    Gerber, Paul J., Ed.; Reiff, Henry B., Ed.

    This book provides a multifaceted view of learning disabilities in adulthood through the efforts of many contributors who offer a diversity of perceptions and expertise. The focus spans from young to late adulthood and reflects state-of-the-art knowledge and the best practices of the field. The topic areas are clustered into psychological,…

  16. Postnatal High-Fat Diet Increases Liver Steatosis and Apoptosis Threatened by Prenatal Dexamethasone through the Oxidative Effect

    PubMed Central

    Huang, Ying-Hsien; Chen, Chih-Jen; Tang, Kuo-Shu; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Tain, You-Lin; Chen, Chih-Cheng; Chu, En-Wei; Li, Shih-Wen; Yu, Hong-Ren; Huang, Li-Tung

    2016-01-01

    The objective of this study was to investigate cellular apoptosis in prenatal glucocorticoid overexposure and a postnatal high fat diet in rats. Pregnant Sprague-Dawley rats at gestational days 14 to 21 were administered saline (vehicle) or dexamethasone and weaned onto either a normal fat diet or a high fat diet for 180 days; in total four experimental groups were designated, i.e., vehicle treated group (VEH), dexamethasone treated group (DEX), vehicle treated plus high-fat diet (VHF), and dexamethasone treated plus high-fat diet (DHF). Chronic effects of prenatal liver programming were assessed at postnatal day 180. The apoptotic pathways involved proteins were analyzed by Western blotting for their expressions. Apoptosis and liver steatosis were also examined by histology. We found that liver steatosis and apoptosis were increased in the DHF, DEX, and VHF treated groups, and that the DHF treated group was increased at higher levels than the DEX and VHF treated groups. The expression of leptin was decreased more in the DHF treated group than in the DEX and VHF treated groups. Decreased peroxisome proliferator-activated receptor-gamma coactivator 1α, phosphoinositide-3-kinase, manganese superoxide dismutase and increased malondialdehyde expression levels were seen in DHF treated group relative to the DEX treated group. The DHF treated group exhibited higher levels of oxidative stress, apoptosis and liver steatosis than the DEX treated group. These results indicate that the environment of high-fat diet plays an important role in the development of liver injury after prenatal stress. PMID:26978357

  17. Involvement of postnatal apoptosis on sex difference in number of cells generated during late fetal period in the sexually dimorphic nucleus of the preoptic area in rats.

    PubMed

    Kato, Yukinori; Nakashima, Shizuka; Maekawa, Fumihiko; Tsukahara, Shinji

    2012-05-16

    Postnatal apoptosis is involved in formation of the sex difference in neuron number of the sexually dimorphic nucleus of the preoptic area (SDN-POA) in rats. In this study, we examined the origin of neurons that die with apoptosis on the postnatal period to exhibit the sex difference in neuron number of the SDN-POA. First, we measured the number of cells that were labeled with 5-bromo-2'-deoxyuridine (BrdU) on embryonic day (ED) 17, ED18, and ED19 in the SDN-POA of rats on postnatal day (PD) 4 and PD8. The SDN-POA had many more cells labeled with BrdU on ED17 and ED18 than those on ED19. Significantly fewer cells labeled with BrdU on ED18 in the female SDN-POA from PD4 to PD8 resulted in a significant sex difference in the number at PD8. Next, combination analyses of BrdU-labeling and immunohistochemistry for single-stranded DNA (ssDNA), an apoptotic marker, were succeeded to investigate whether SDN-POA neurons generated during ED17-18 were removed by apoptosis. Many more ssDNA-immunoreactive cells that had been labeled with BrdU during ED17-18 were found in the SDN-POA of PD8 females, but few in the SDN-POA of PD8 males and PD4 females and males. These results suggest that the sex difference in the number of SDN-POA neurons generated during the late fetal period was caused by postnatal apoptosis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Postnatal Migration of Cerebellar Interneurons

    PubMed Central

    Galas, Ludovic; Bénard, Magalie; Lebon, Alexis; Komuro, Yutaro; Schapman, Damien; Vaudry, Hubert; Vaudry, David; Komuro, Hitoshi

    2017-01-01

    Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders. PMID:28587295

  19. The Transition from State Care to Adulthood: International Examples of Best Practices

    ERIC Educational Resources Information Center

    Reid, Carrie

    2007-01-01

    The issue of outcomes for youth who transition from state care to adulthood is not unique to any one country. Youth exiting the child welfare system, or aging out, face a plethora of problems and issues associated with the transition to adulthood. For the majority of youth, the transition to adulthood represents a process that takes place over a…

  20. Asthma transition from childhood into adulthood.

    PubMed

    Fuchs, Oliver; Bahmer, Thomas; Rabe, Klaus F; von Mutius, Erika

    2017-03-01

    Asthma is the most prevalent chronic respiratory disease both in children and adults and resembles a complex syndrome rather than a single disease. Different methods have been developed to better characterise distinct asthma phenotypes in childhood and adulthood. In studies of adults, most phenotyping relies on biomaterials from the lower airways; however, this information is missing in paediatric studies because of restricted accessibility. Few patients show symptoms throughout childhood, adolescence, and adulthood. Risk factors for this might be genetics, family history of asthma and atopy, infections early in life, allergic diseases, and lung function deficits. In turn, a large proportion of children with asthma lose their symptoms during school age and adolescence. This improved prognosis, which might also reflect a better treatment response, is associated with being male and with milder and less allergic disease. Importantly, whether clinical remission of symptoms equals the disappearance of underlying pathology is unknown. In fact, airway hyper-responsiveness and airway inflammation might remain despite the absence of overt symptoms. Additionally, a new-onset of asthma symptoms is apparent in adulthood, especially in women and in the case of impaired lung function. However, many patients do not remember childhood symptoms, which might reflect relapse rather than true initiation. Both relapse and adult-onset of asthma symptoms have been associated with allergic disease and sensitisation in addition to airway hyper-responsiveness. Thus, asthma symptoms beginning in adults might have originated in childhood. Equivocally, persistence into, relapse, and new-onset of symptoms in adulthood have all been related to active smoking. However, underlying mechanisms for the associations remain unclear, and future asthma research should therefore integrate standardised molecular approaches in identical ways in both paediatric and adult populations and in longitudinal