Science.gov

Sample records for adults undergoing stem

  1. The Perceived Threat in Adults with Leukemia Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Farsi, Zahra; Dehghan Nayeri, Nahid; Negarandeh, Reza

    2013-01-01

    Background: Leukemia and hematopoietic stem cell transplantation (HSCT) create physical, psychological, social, and spiritual distresses in patients. Understanding this threatening situation in adults with leukemia undergoing HSCT will assist health care professionals in providing holistic care to the patients. Objectives: The aim of the present study was exploring the perceived threat in adults with leukemia undergoing HSCT. Patients and Methods: This article is part of a longitudinal qualitative study which used the grounded theory approach and was conducted in 2009-2011. Ten adults with acute leukemia scheduled for HSCT were recruited from the Hematology–Oncology Research Center and Stem Cell Transplantation, Shariati Hospital in Tehran, Iran. A series of pre-transplant and post-transplant in-depth interviews were held in the hospital’s HSCT wards. Totally, 18 interviews were conducted. Three written narratives were also obtained from the participants. The Corbin and Strauss approach was used to analyze the data. Results: Perceived threat was one of the main categories that emerged from the data. This category included four subcategories, "inattention to the signs and symptoms", "doubt and anxiety", "perception of danger and time limitation" and "change of life conditions", which occurred in linear progression over time. Conclusion: Suffering from leukemia and experiencing HSCT are events that are uniquely perceived by patients. This threatening situation can significantly effect perception of patients and cause temporary or permanent alterations in patients' lives. Health care professionals can help these patients by deeper understanding of their experiences and effective interventions. PMID:25414863

  2. Coping strategies of adults with leukemia undergoing hematopoietic stem cell transplantation in Iran: a qualitative study.

    PubMed

    Farsi, Zahra; Dehghan Nayeri, Nahid; Negarandeh, Reza

    2010-12-01

    Hematopoietic stem cell transplantation (HSCT) causes significant physical, social, psychological, and emotional stress in patients with leukemia. This qualitative study using semi-structured interviews explored the coping strategies of 10 adults with acute leukemia who were undergoing this form of treatment in transplantation units in a major hospital in Tehran, Iran, from 2009 to 2010. A content analysis identified eight themes and 13 subthemes that described the participants' coping strategies. The major themes were: attribution, denial and avoidance, connection with divine purpose, organizing treatment, seeking social support, modifying, reflection, and patience and resignation. A deeper understanding of the coping strategies that are used by patients with leukemia undergoing HSCT can help healthcare providers to encourage patients to use strategies that are likely to be more effective. Such coping strategies also can help patients to achieve a greater sense of empowerment. PMID:21210928

  3. Participation in clinical research: perspectives of adult patients and parents of pediatric patients undergoing hematopoietic stem cell transplantation.

    PubMed

    Keusch, Florian; Rao, Rohini; Chang, Lawrence; Lepkowski, James; Reddy, Pavan; Choi, Sung Won

    2014-10-01

    Despite major improvements over the past several decades, many patients undergoing hematopoietic stem cell transplantations (HSCT) continue to suffer from significant treatment-related morbidity and mortality. Clinical research studies (trials) have been integral to advancing the standard of care in HSCT. However, 1 of the biggest challenges with clinical trials is the low participation rate. Although barriers to participation in cancer clinical trials have been previously explored, studies specific to HSCT are lacking. The current study was undertaken to examine the knowledge, attitudes, and perceptions of HSCT patients regarding clinical trials. As members of focus groups, participants responded to open-ended questions that assessed factors influencing decision-making about HSCT clinical trials. Suggestions for improvements in the recruitment process were also solicited among participants. Seventeen adult HSCT patients and 6 parents of pediatric HSCT patients participated in the study. The median age was 56 years (range, 18 to 70) and 44 years (range, 28 to 54) for adult patients and parents, respectively. Participants universally indicated that too much information was provided within the informed consents and they were intimidated by the medical and legal language. Despite the large amount of information provided to them at the time of study enrollment, the participants had limited knowledge retention and recall of study details. Nevertheless, participants reported overall positive experiences with clinical trial participation and many would readily choose to participate again. A common concern among participants was the uncertainty of study outcome and general lack of feedback about results at the end of the study. Participants suggested that investigators provide more condensed and easier to understand informed consents and follow-up of study findings. These findings could be used to help guide the development of improved consent documents and enhanced

  4. Prospective validation of a novel dosing scheme for intravenous busulfan in adult patients undergoing hematopoietic stem cell transplantation

    PubMed Central

    Cho, Sang-Heon; Lee, Jung-Hee; Lim, Hyeong-Seok; Lee, Kyoo-Hyung; Kim, Dae-Young; Choe, Sangmin; Lee, Je-Hwan

    2016-01-01

    The objective of this study was to externally validate a new dosing scheme for busulfan. Thirty-seven adult patients who received busulfan as conditioning therapy for hematopoietic stem cell transplantation (HCT) participated in this prospective study. Patients were randomized to receive intravenous busulfan, either as the conventional dosage (3.2 mg/kg daily) or according to the new dosing scheme based on their actual body weight (ABW) (23×ABW0.5 mg daily) targeting an area under the concentration-time curve (AUC) of 5924 µM·min. Pharmacokinetic profiles were collected using a limited sampling strategy by randomly selecting 2 time points at 3.5, 5, 6, 7 or 22 hours after starting busulfan administration. Using an established population pharmacokinetic model with NONMEM software, busulfan concentrations at the available blood sampling times were predicted from dosage history and demographic data. The predicted and measured concentrations were compared by a visual predictive check (VPC). Maximum a posteriori Bayesian estimators were estimated to calculate the predicted AUC (AUCPRED). The accuracy and precision of the AUCPRED values were assessed by calculating the mean prediction error (MPE) and root mean squared prediction error (RMSE), and compared with the target AUC of 5924 µM·min. VPC showed that most data fell within the 95% prediction interval. MPE and RMSE of AUCPRED were -5.8% and 20.6%, respectively, in the conventional dosing group and −2.1% and 14.0%, respectively, in the new dosing scheme group. These fi ndings demonstrated the validity of a new dosing scheme for daily intravenous busulfan used as conditioning therapy for HCT. PMID:27162478

  5. [Prophylaxis against respiratory viral disease in pediatric and adult patients undergoing solid organ and hematopoietic stem cells transplantation].

    PubMed

    Álvarez, Ana M; Catalán, Paula; Alba, Andrea; Zubleta, Marcela

    2012-09-01

    Respiratory viruses have been identified as a cause of morbidity and mortality in patients undergoing SOT and HSCT, specially in children. The most frequent are respiratory syncytial virus (RSV), influenza (FLU), parainfluenza (PI) and adenovirus (ADV). These infections are associated with progression to severe lower respiratory tract infections in up to 60% of the cases. It is advised to apply universal protection recommendations for respiratory viruses (A2) and some specific measures for FLU and AD. FLU: Annual anti-influenza vaccination (from 4-6 months post-transplantation in SOT, 6 months in HSCT (A2)); post- exposure prophylaxis in FLU (oseltamivir for 10 days (B2)). In lung transplantion, the prophylaxis should last as long as the risk period (B2). ADV: There is no vaccine nor valid chemoprophylaxis strategy to prevent ADV disease. In some specific HSCT recipients, weekly PCR monitoring is recommended until day+100 (A3). PMID:23282554

  6. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  7. Randomized Clinical Trial of Therapeutic Music Video Intervention for Resilience Outcomes in Adolescents/Young Adults Undergoing Hematopoietic Stem Cell Transplant: A Report from the Children’s Oncology Group

    PubMed Central

    Robb, Sheri L.; Burns, Debra S.; Stegenga, Kristin A.; Haut, Paul R.; Monahan, Patrick O.; Meza, Jane; Stump, Timothy E.; Cherven, Brooke O.; Docherty, Sharron L.; Hendricks-Ferguson, Verna L.; Kintner, Eileen K.; Haight, Ann E.; Wall, Donna A.; Haase, Joan E.

    2013-01-01

    Background To reduce the risk of adjustment problems associated with Hematopoietic Stem Cell Transplant (HSCT) for adolescents/young adults (AYA), we examined efficacy of a therapeutic music video (TMV) intervention delivered during the acute phase of HSCT to: (a) increase protective factors of spiritual perspective, social integration, family environment, courageous coping, and hope-derived meaning; (b) decrease risk factors of illness-related distress and defensive coping; and (c) increase outcomes of self-transcendence and resilience. Methods A multi-site, randomized controlled trial (COG-ANUR0631) conducted at 8 Children’s Oncology Group sites involving 113 AYA aged 11–24 years undergoing myeloablative HSCT. Participants, randomized to the TMV or low-dose control (audiobooks) group, completed 6 sessions over 3 weeks with a board-certified music therapist. Variables were based on Haase’s Resilience in Illness Model. Participants completed measures related to latent variables of illness-related distress, social integration, spiritual perspective, family environment, coping, hope-derived meaning and resilience at baseline (T1), post-intervention (T2), and 100-days post-transplant (T3). Results At T2, the TMV group reported significantly better courageous coping (ES=0.505; P=0.030). At T3, the TMV group reported significantly better social integration (ES=0.543; P=.028) and family environment (ES=0.663; P=0.008), as well as moderate non-significant effect sizes for spiritual perspective (E=0.450; P=0.071) and self-transcendence (ES=0.424; P=0.088). Conclusion The TMV intervention improves positive health outcomes of courageous coping, social integration, and family environment during a high risk cancer treatment. We recommend the TMV be examined in a broader population of AYA with high risk cancers. PMID:24469862

  8. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  9. Adult stem cells and tissue repair.

    PubMed

    Körbling, M; Estrov, Z; Champlin, R

    2003-08-01

    Recently, adult stem cells originating from bone marrow or peripheral blood have been suggested to contribute to repair and genesis of cells specific for liver, cardiac and skeletal muscle, gut, and brain tissue. The mechanism involved has been termed transdifferentiation, although other explanations including cell fusion have been postulated. Using adult stem cells to generate or repair solid organ tissue obviates the immunologic, ethical, and teratogenic issues that accompany embryonic stem cells. PMID:12931235

  10. Anesthetic considerations for adults undergoing fontan conversion surgery.

    PubMed

    Mossad, Emad B; Motta, Pablo; Vener, David F

    2013-06-01

    There are currently in North America more adults with congenital heart disease than children. This article discusses the anesthetic considerations in adults with single-ventricle physiology and prior repairs who present for Fontan conversion surgery as a demonstration of the challenges of caring for adults undergoing interventions for the repair of congenital heart defects. The care of these patients requires an understanding of the impact of passive pulmonary blood flow and single systemic ventricular physiology. The perioperative morbidity in this patient population remains high. PMID:23711650

  11. 28. Embryonic and adult stem cell therapy.

    PubMed

    Henningson, Carl T; Stanislaus, Marisha A; Gewirtz, Alan M

    2003-02-01

    Stem cells are characterized by the ability to remain undifferentiated and to self-renew. Embryonic stem cells derived from blastocysts are pluripotent (able to differentiate into many cell types). Adult stem cells, which were traditionally thought to be monopotent multipotent, or tissue restricted, have recently also been shown to have pluripotent properties. Adult bone marrow stem cells have been shown to be capable of differentiating into skeletal muscle, brain microglia and astroglia, and hepatocytes. Stem cell lines derived from both embryonic stem and embryonic germ cells (from the embryonic gonadal ridge) are pluripotent and capable of self-renewal for long periods. Therefore embryonic stem and germ cells have been widely investigated for their potential to cure diseases by repairing or replacing damaged cells and tissues. Studies in animal models have shown that transplantation of fetal, embryonic stem, or embryonic germ cells may be able to treat some chronic diseases. In this review, we highlight recent developments in the use of stem cells as therapeutic agents for three such diseases: Diabetes, Parkinson disease, and congestive heart failure. We also discuss the potential use of stem cells as gene therapy delivery cells and the scientific and ethical issues that arise with the use of human stem cells. PMID:12592319

  12. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  13. Adult Stem Cells and Diseases of Aging.

    PubMed

    Boyette, Lisa B; Tuan, Rocky S

    2014-01-21

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  14. Adult Stem Cell Responses to Nanostimuli

    PubMed Central

    Tsimbouri, Penelope M.

    2015-01-01

    Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called “stem cell niches”. They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review. PMID:26193326

  15. Adult stem-like cells in kidney.

    PubMed

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-03-26

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  16. Clinical grade adult stem cell banking

    PubMed Central

    Thirumala, Sreedhar; Goebel, W Scott

    2009-01-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678

  17. Epigenetic regulation in adult stem cells and cancers

    PubMed Central

    2013-01-01

    Adult stem cells maintain tissue homeostasis by their ability to both self-renew and differentiate to distinct cell types. Multiple signaling pathways have been shown to play essential roles as extrinsic cues in maintaining adult stem cell identity and activity. Recent studies also show dynamic regulation by epigenetic mechanisms as intrinsic factors in multiple adult stem cell lineages. Emerging evidence demonstrates intimate crosstalk between these two mechanisms. Misregulation of adult stem cell activity could lead to tumorigenesis, and it has been proposed that cancer stem cells may be responsible for tumor growth and metastasis. However, it is unclear whether cancer stem cells share commonalities with normal adult stem cells. In this review, we will focus on recent discoveries of epigenetic regulation in multiple adult stem cell lineages. We will also discuss how epigenetic mechanisms regulate cancer stem cell activity and probe the common and different features between cancer stem cells and normal adult stem cells. PMID:24172544

  18. Isolation and culture of adult epithelial stem cells from human skin.

    PubMed

    Guo, Zhiru; Draheim, Kyle; Lyle, Stephen

    2011-01-01

    The homeostasis of all self-renewing tissues is dependent on adult stem cells. As undifferentiated stem cells undergo asymmetric divisions, they generate daughter cells that retain the stem cell phenotype and transit-amplifying cells (TA cells) that migrate from the stem cell niche, undergo rapid proliferation and terminally differentiate to repopulate the tissue. Epithelial stem cells have been identified in the epidermis, hair follicle, and intestine as cells with a high in vitro proliferative potential and as slow-cycling label-retaining cells in vivo (1-3). Adult, tissue-specific stem cells are responsible for the regeneration of the tissues in which they reside during normal physiologic turnover as well as during times of stress (4-5). Moreover, stem cells are generally considered to be multi-potent, possessing the capacity to give rise to multiple cell types within the tissue (6). For example, rodent hair follicle stem cells can generate epidermis, sebaceous glands, and hair follicles (7-9). We have shown that stem cells from the human hair follicle bulge region exhibit multi-potentiality (10). Stem cells have become a valuable tool in biomedical research, due to their utility as an in vitro system for studying developmental biology, differentiation, tumorigenesis and for their possible therapeutic utility. It is likely that adult epithelial stem cells will be useful in the treatment of diseases such as ectodermal dysplasias, monilethrix, Netherton syndrome, Menkes disease, hereditary epidermolysis bullosa and alopecias (11-13). Additionally, other skin problems such as burn wounds, chronic wounds and ulcers will benefit from stem cell related therapies (14,15). Given the potential for reprogramming of adult cells into a pluripotent state (iPS cells)(16,17), the readily accessible and expandable adult stem cells in human skin may provide a valuable source of cells for induction and downstream therapy for a wide range of disease including diabetes and

  19. Tissue engineering using adult stem cells.

    PubMed

    Eberli, Daniel; Atala, Anthony

    2006-01-01

    Patients with a variety of diseases may be treated with transplanted tissues and organs. However, there is a shortage of donor tissues and organs, which is worsening yearly because of the aging population. Scientists in the field of tissue engineering are applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is also advancing rapidly, opening new options for cellular therapy and tissue engineering. The use of adult stem cells for tissue engineering applications is promising. This chapter discusses applications of these new technologies for the engineering of tissues and organs. The first part provides an overview of regenerative medicine and tissue engineering techniques; the second highlights different adult stem cell populations used for tissue regeneration. PMID:17161702

  20. Transfusion strategies in patients undergoing stem-cell transplantation.

    PubMed

    Radia, Rohini; Pamphilon, Derwood

    2011-04-01

    Hemopoietic stem-cell transplant patients may require intensive blood component support. Complications of transfusions include transmission of viral and bacterial infections, transfusion-associated graft-versus-host disease and transfusion-related acute lung injury. Alloimmunization to red cell antigens may cause difficulties in selecting compatible blood, while alloimmunization to HLA expressed on platelets may cause subsequent platelet transfusion refractoriness. It is essential to define robust transfusion policies and procedures and these should be regularly audited. This article reviews blood component transfusion in the setting of hemopoietic stem-cell transplant and specifically discusses the management of ABO-mismatched transplants, the prevention of cytomegalovirus transmission, the prevention of transfusion-associated graft-versus-host disease and the use of granulocyte transfusions. PMID:21495930

  1. Adult neural stem cells stake their ground

    PubMed Central

    Lim, Daniel A.; Alvarez-Buylla, Arturo

    2014-01-01

    The birth of new neurons in the walls of the adult brain lateral ventricles has captured the attention of many neuroscientists for over two decades, yielding key insights into the identity and regulation of neural stem cells (NSCs). In the adult ventricular-subventricular zone (V-SVZ), NSCs are a specialized form of astrocyte that generates several types of neurons for the olfactory bulb. Here we discuss recent findings regarding the unique organization of the V-SVZ NSCs niche, the multiple regulatory controls of neuronal production, the distinct regional identities of adult NSCs, and the epigenetic mechanisms that maintain adult neurogenesis. Understanding how V-SVZ NSCs establish and maintain lifelong neurogenesis continues to provide surprising insights into the cellular and molecular regulation of neural development. PMID:25223700

  2. All the adult stem cells, where do they all come from? An external source for organ-specific stem cell pools.

    PubMed

    Nardi, N B

    2005-01-01

    Stem cells can self-renew and maintain the ability to differentiate into mature lineages. Whereas the "stemness" of embryonic stem cells is not discussed, the primitiveness of a stem cell type within adult organisms is not well determined. Data presently available are either inconclusive or controversial regarding two main topics: maintenance or senescente of the adult stem cell pool; and pluripotentiality of the cells. While programmed senescence or apoptosis following uncorrected mutations represent no problem for mature cells, the maintenance of the stem cell pool itself must be assured. Two different mechanisms can be envisaged for that. In the first mechanism, which is generally accepted, stem cells originate during ontogeny along with the organ which they are responsible for, and remain there during all the lifespan of the organism. Several observations derived from recent reports allow the suggestion of a second mechanism. These observations include: organ-specific stem cells are senescent; adult stem cells circulate in the organism; stem cell niches are essential for the existence and function of stem cells; adult stem cells can present lineage markers; embryo-like, pluripotent stem cells are present in adult organisms, as shown by the development of teratomas, tumors composed of derivatives of the three germ layers; and the fact that the gonads may be a reservoir of embryo-like, pluripotent stem cells in adult organisms. The second mechanism for the maintenance of adult stem cells compartments implies a source external to the organ they belong, consisting of pluripotent, embryo-like cells of unrestricted life span, presenting efficient mechanisms for avoiding or correcting mutations and capable to circulate in the organism. According to this model, primitive stem cells exist in a specific organ in adult organisms. They undergo asymmetrical divisions, which originate one "true" stem cell and another one which enters the pool of adult stem cells, circulating

  3. Pros and cons of splenectomy in patients with myelofibrosis undergoing stem cell transplantation.

    PubMed

    Li, Z; Deeg, H J

    2001-03-01

    During fetal development, the spleen is a major hemopoietic organ. In the adult human, this task is relinquished to the bone marrow. However, under the stress of certain pathologic conditions, extramedullary hemopoiesis may again occur in the spleen. This is especially true for diseases of the marrow, in particular, myeloproliferative disorders such as agnogenic myeloid metaplasia, which is associated with severe fibrosis of the marrow space. At the same time, the spleen sequesters blood cells and contributes to peripheral blood cytopenias, which may improve following splenectomy. However, success is unpredictable, and the operative mortality of splenectomy is on the order of 10%. As a growing number of patients undergo hemopoietic stem cell transplantation as definitive therapy for myelofibrosis, the decision on splenectomy has additional ramifications since the spleen plays an important role in the kinetics of engraftment of donor cells and in immune reconstitution. We conclude from our analysis of available information that the benefit of splenectomy is difficult to predict, although after transplantation splenectomized patients have faster hemopoietic recovery. It appears that the most important indication for splenectomy in these patients is the relief of symptoms from massive spleen enlargement. PMID:11237072

  4. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine.

    PubMed

    Chen, Ching-Huan; Luhur, Arthur; Sokol, Nicholas

    2015-10-15

    Stem cells switch between asymmetric and symmetric division to expand in number as tissues grow during development and in response to environmental changes. The stem cell intrinsic proteins controlling this switch are largely unknown, but one candidate is the Lin-28 pluripotency factor. A conserved RNA-binding protein that is downregulated in most animals as they develop from embryos to adults, Lin-28 persists in populations of adult stem cells. Its function in these cells has not been previously characterized. Here, we report that Lin-28 is highly enriched in adult intestinal stem cells in the Drosophila intestine. lin-28 null mutants are homozygous viable but display defects in this population of cells, which fail to undergo a characteristic food-triggered expansion in number and have reduced rates of symmetric division as well as reduced insulin signaling. Immunoprecipitation of Lin-28-bound mRNAs identified Insulin-like Receptor (InR), forced expression of which completely rescues lin-28-associated defects in intestinal stem cell number and division pattern. Furthermore, this stem cell activity of lin-28 is independent of one well-known lin-28 target, the microRNA let-7, which has limited expression in the intestinal epithelium. These results identify Lin-28 as a stem cell intrinsic factor that boosts insulin signaling in intestinal progenitor cells and promotes their symmetric division in response to nutrients, defining a mechanism through which Lin-28 controls the adult stem cell division patterns that underlie tissue homeostasis and regeneration. PMID:26487778

  5. Adult stem cell-based apexogenesis

    PubMed Central

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-01-01

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  6. Adult stem cell-based apexogenesis.

    PubMed

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-06-26

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  7. Adult Mesenchymal Stem Cells and Radiation Injury.

    PubMed

    Kiang, Juliann G

    2016-08-01

    Recent understanding of the cellular and molecular signaling activations in adult mesenchymal stem cells (MSCs) has provided new insights into their potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal for tissue repair and recovery after radiation injury. Thus far, MSCs have been characterized extensively and shown to be useful in mitigation and therapy for acute radiation syndrome and cognitive dysfunction. Use of MSCs for treating radiation injury alone or in combination with additional trauma is foreseeable. PMID:27356065

  8. Progesterone induces adult mammary stem cell expansion.

    PubMed

    Joshi, Purna A; Jackson, Hartland W; Beristain, Alexander G; Di Grappa, Marco A; Mote, Patricia A; Clarke, Christine L; Stingl, John; Waterhouse, Paul D; Khokha, Rama

    2010-06-10

    Reproductive history is the strongest risk factor for breast cancer after age, genetics and breast density. Increased breast cancer risk is entwined with a greater number of ovarian hormone-dependent reproductive cycles, yet the basis for this predisposition is unknown. Mammary stem cells (MaSCs) are located within a specialized niche in the basal epithelial compartment that is under local and systemic regulation. The emerging role of MaSCs in cancer initiation warrants the study of ovarian hormones in MaSC homeostasis. Here we show that the MaSC pool increases 14-fold during maximal progesterone levels at the luteal dioestrus phase of the mouse. Stem-cell-enriched CD49fhi cells amplify at dioestrus, or with exogenous progesterone, demonstrating a key role for progesterone in propelling this expansion. In aged mice, CD49fhi cells display stasis upon cessation of the reproductive cycle. Progesterone drives a series of events where luminal cells probably provide Wnt4 and RANKL signals to basal cells which in turn respond by upregulating their cognate receptors, transcriptional targets and cell cycle markers. Our findings uncover a dynamic role for progesterone in activating adult MaSCs within the mammary stem cell niche during the reproductive cycle, where MaSCs are putative targets for cell transformation events leading to breast cancer. PMID:20445538

  9. Adult stem cells in the knifefish cerebellum.

    PubMed

    Sîrbulescu, Ruxandra F; Ilieş, Iulian; Vitalo, Antonia G; Trull, Krystal; Zhu, Jenny; Traniello, Ian M; Zupanc, Günther K H

    2015-01-01

    Adult neurogenesis has been described in dozens of brain regions in teleost fish, with the largest number of new neurons being generated in the cerebellum. Here, we characterized the cerebellar neural stem/progenitor cells (NSPCs) in the brown ghost knifefish (Apteronotus leptorhynchus), an established model system of adult neurogenesis. The majority of the new cerebellar cells arise from neurogenic niches located medially, at the interface of the dorsal/ventral molecular layers and the granular layer. NSPCs within these niches give rise to transit-amplifying progenitors which populate the molecular layer, where they continue to proliferate during their migration toward target areas in the granular layer. At any given time, the majority of proliferating cells are located in the molecular layer. Immunohistochemical staining revealed that the stem cell markers Sox2, Meis1/2/3, Islet1, and, to a lesser extent, Pax6, are widely expressed in all regions of the adult cerebellum. A large subpopulation of these NSPCs coexpress S100, GFAP, and/or vimentin, indicating astrocytic identity. This is further supported by the specific effect of the gliotoxin l-methionine sulfoximine, which leads to a targeted decrease in the number of GFAP+ cells that coexpress Sox2 or the proliferation marker PCNA. Pulse-chase analysis of the label size associated with new cells after administration of 5-bromo-2'-deoxyuridine demonstrated that, on average, two additional cell divisions occur after completion of the initial mitotic cycle. Overall numbers of NSPCs in the cerebellum niches increase consistently over time, presumably in parallel with the continuous growth of the brain. PMID:25044932

  10. Live Imaging of Adult Neural Stem Cells in Rodents

    PubMed Central

    Ortega, Felipe; Costa, Marcos R.

    2016-01-01

    The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions. PMID:27013941

  11. [Progress in treating diabetes mellitus with adult stem cells].

    PubMed

    Zhang, Lixin; Teng, Chunbo; An, Tiezhu

    2008-02-01

    Diabetes mellitus is a metabolic diseases, mainly including type 1 and type 2 diabetes. Treatment for type 1 and part of type 2 often involves regular insulin injection. However, this treatment neither precisely controls the blood sugar levels, nor prevents the diabetes complications. Transplantation of islets of Langerhans offers an attractive strategy for diabetes therapies, but its wide application has been limited by donor shortage and immunological rejection after transplantation. Stem cells with strong proliferation capacity and multipotential may be potential cell sources in diabetes therapies. For this, adult stem cells are interesting because of absence of teratoma formation and ethnical problems. Adult pancreatic stem cells (PSCs) really exist and could produce insulin-secreting cells both under the condition of pancreatic injury and in vitro culture, but lack of effective markers to enrich PSCs hampers the studies of exploring the expanding and differentiating conditions in vitro. Some other adult stem cells, such as hepatic stem cells, marrow stem cells or intestine stem cells, were also suggested to transdifferentiate into insulin-producing cells under special culture conditions in vitro or by genetic modifications. Moreover, transplanting these adult stem cells-derived insulin-secreting cells into the diabetic mouse could cure diabetes. Thus, adult stem cells would supply the abundant beta-cell sources for cell replacement therapy of diabetes. PMID:18464596

  12. Therapeutics from Adult Stem Cells and the Hype Curve.

    PubMed

    Maguire, Greg

    2016-05-12

    The Gartner curve for regenerative and stem cell therapeutics is currently climbing out of the "trough of disillusionment" and into the "slope of enlightenment". Understanding that the early years of stem cell therapy relied on the model of embryonic stem cells (ESCs), and then moved into a period of the overhype of induced pluripotent stem cells (iPSCs), instead of using the model of 40 years of success, i.e. adult stem cells used in bone marrow transplants, the field of stem cell therapy has languished for years, trying to move beyond the early and poorly understood success of bone marrow transplants. Recent studies in the lab and clinic show that adult stem cells of various types, and the molecules that they release, avoid the issues associated with ESCs and iPSCs and lead to better therapeutic outcomes and into the slope of enlightenment. PMID:27190588

  13. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain

    PubMed Central

    Deng, Wei; Saxe, Michael D.; Gallina, Iryna S.; Gage, Fred H.

    2009-01-01

    Adult-born dentate granule cells (DGCs) contribute to learning and memory, yet it remains unknown when adult-born DGCs become involved in the cognitive processes. During neurogenesis, immature dentate granule cells (DGCs) display distinctive physiological characteristics while undergoing morphological maturation before final integration into the neural circuits. The survival and activity of the adult-born DGCs can be influenced by the experience of the animal during a critical period when newborn DGCs are still immature. To assess the temporal importance of adult neurogenesis, we developed a transgenic mouse model that allowed us to transiently reduce the numbers of adult-born DGCs in a temporally regulatable manner. We found that mice with a reduced population of adult-born DGCs at the immature stage were deficient in forming robust, long-term spatial memory and displayed impaired performance in extinction tasks. These results suggest that immature DGCs that undergo maturation make important contributions to learning and memory. PMID:19864566

  14. Retinoic Acid-Treated Pluripotent Stem Cells Undergoing Neurogenesis Present Increased Aneuploidy and Micronuclei Formation

    PubMed Central

    Sartore, Rafaela C.; Campos, Priscila B.; Trujillo, Cleber A.; Ramalho, Bia L.; Negraes, Priscilla D.; Paulsen, Bruna S.; Meletti, Tamara; Costa, Elaine S.; Chicaybam, Leonardo; Bonamino, Martin H.; Ulrich, Henning; Rehen, Stevens K.

    2011-01-01

    The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies

  15. Engineering of the Embryonic and Adult Stem Cell Niches

    PubMed Central

    Hosseinkhani, Mohsen; Shirazi, Reza; Rajaei, Farzad; Mahmoudi, Masoud; Mohammadi, Navid; Abbasi, Mahnaz

    2013-01-01

    Context Stem cells have the potential to generate a renewable source of cells for regenerative medicine due to their ability to self-renew and differentiate to various functional cell types of the adult organism. The extracellular microenvironment plays a pivotal role in controlling stem cell fate responses. Therefore, identification of appropriate environmental stimuli that supports cellular proliferation and lineage-specific differentiation is critical for the clinical application of the stem cell therapies. Evidence Acquisition Traditional methods for stem cells culture offer limited manipulation and control of the extracellular microenvironment. Micro engineering approaches are emerging as powerful tools to control stem cell-microenvironment interactions and for performing high-throughput stem cell experiments. Results In this review, we provided an overview of the application of technologies such as surface micropatterning, microfluidics, and engineered biomaterials for directing stem cell behavior and determining the molecular cues that regulate cell fate decisions. Conclusions Stem cells have enormous potential for therapeutic and pharmaceutical applications, because they can give rise to various cell types. Despite their therapeutic potential, many challenges, including the lack of control of the stem cell microenvironment remain. Thus, a greater understanding of stem cell biology that can be used to expand and differentiate embryonic and adult stem cells in a directed manner offers great potential for tissue repair and regenerative medicine. PMID:23682319

  16. Risk analysis of falls in patients undergoing allogeneic hematopoietic stem cell transplantation.

    PubMed

    Ueki, Satoko; Ikegame, Kazuhiro; Kozawa, Mariko; Miyamoto, Junko; Mori, Reiko; Ogawa, Hiroyasu

    2014-08-01

    To identify fall risks in patients undergoing hematopoietic stem cell transplantation (HSCT), the authors reviewed retrospective data on inpatients from April 2010 to March 2011. Among 77 HSCT patient records reviewed, the authors found that 35 patients had experienced at least one fall, including near-miss episodes (fallers). The main location of the falls was a corridor, and the main activity at the time of the fall was going to the toilet. To investigate fall risks along the HSCT time trajectory, the authors divided the time into pre- and post-engraftment periods and investigated the unique characteristics of each. PMID:25095291

  17. Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly.

    PubMed

    Bhartiya, Deepa; Parte, Seema; Patel, Hiren; Sriraman, Kalpana; Zaveri, Kusum; Hinduja, Indira

    2016-01-01

    Adult mammalian ovary has been under the scanner for more than a decade now since it was proposed to harbor stem cells that undergo postnatal oogenesis during reproductive period like spermatogenesis in testis. Stem cells are located in the ovary surface epithelium and exist in adult and menopausal ovary as well as in ovary with premature failure. Stem cells comprise two distinct populations including spherical, very small embryonic-like stem cells (VSELs which express nuclear OCT-4 and other pluripotent and primordial germ cells specific markers) and slightly bigger ovarian germ stem cells (OGSCs with cytoplasmic OCT-4 which are equivalent to spermatogonial stem cells in the testes). These stem cells have the ability to spontaneously differentiate into oocyte-like structures in vitro and on exposure to a younger healthy niche. Bone marrow may be an alternative source of these stem cells. The stem cells express FSHR and respond to FSH by undergoing self-renewal, clonal expansion, and initiating neo-oogenesis and primordial follicle assembly. VSELs are relatively quiescent and were recently reported to survive chemotherapy and initiate oogenesis in mice when exposed to FSH. This emerging understanding and further research in the field will help evolving novel strategies to manage ovarian pathologies and also towards oncofertility. PMID:26635884

  18. Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly

    PubMed Central

    Bhartiya, Deepa; Parte, Seema; Patel, Hiren; Sriraman, Kalpana; Zaveri, Kusum; Hinduja, Indira

    2016-01-01

    Adult mammalian ovary has been under the scanner for more than a decade now since it was proposed to harbor stem cells that undergo postnatal oogenesis during reproductive period like spermatogenesis in testis. Stem cells are located in the ovary surface epithelium and exist in adult and menopausal ovary as well as in ovary with premature failure. Stem cells comprise two distinct populations including spherical, very small embryonic-like stem cells (VSELs which express nuclear OCT-4 and other pluripotent and primordial germ cells specific markers) and slightly bigger ovarian germ stem cells (OGSCs with cytoplasmic OCT-4 which are equivalent to spermatogonial stem cells in the testes). These stem cells have the ability to spontaneously differentiate into oocyte-like structures in vitro and on exposure to a younger healthy niche. Bone marrow may be an alternative source of these stem cells. The stem cells express FSHR and respond to FSH by undergoing self-renewal, clonal expansion, and initiating neo-oogenesis and primordial follicle assembly. VSELs are relatively quiescent and were recently reported to survive chemotherapy and initiate oogenesis in mice when exposed to FSH. This emerging understanding and further research in the field will help evolving novel strategies to manage ovarian pathologies and also towards oncofertility. PMID:26635884

  19. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    PubMed Central

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  20. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

    PubMed

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  1. High burden of BK virus-associated hemorrhagic cystitis in patients undergoing allogeneic hematopoietic stem cell transplantation.

    PubMed

    Gilis, L; Morisset, S; Billaud, G; Ducastelle-Leprêtre, S; Labussière-Wallet, H; Nicolini, F-E; Barraco, F; Detrait, M; Thomas, X; Tedone, N; Sobh, M; Chidiac, C; Ferry, T; Salles, G; Michallet, M; Ader, F

    2014-05-01

    BK virus (BKV) reactivation has been increasingly associated with the occurrence of late-onset hemorrhagic cystitis (HC) after allogeneic hematopoietic SCT (allo-HSCT) resulting in morbidity and sometimes mortality. We investigated the incidence, risk factors and outcome of BKV-HC in 323 consecutive adult patients undergoing allo-HSCT over a 5-year period. BK viremia values for HC staging were evaluated, as well as the medico-economic impact of the complication. Forty-three patients developed BKV-HC. In univariate analysis, young age (P=0.028), unrelated donor (P=0.0178), stem cell source (P=0.0001), HLA mismatching (P=0.0022) and BU in conditioning regimen (P=0.01) were associated with a higher risk of developing BKV-HC. In multivariate analysis, patients receiving cord blood units (CBUs) (P=0.0005) and peripheral blood stem cells (P=0.011) represented high-risk subgroups for developing BKV-HC. BK viremia was directly correlated to HC severity (P=0.011) with a 3 to 6-log peak being likely associated with grades 3 or 4 HC. No correlation was found between BKV-HC and acute graft versus host disease or mortality rate. Patients with BKV-HC required a significantly longer duration of hospitalization (P<0.0001), more RBC (P=0.0003) and platelet transfusions (P<0.0001). Over the 5-year study period, the financial cost of the complication was evaluated at \\[euro]2 376 076 ($3 088 899). Strategies to prevent the occurrence of late-onset BKV-HC after allo-HSCT are urgently needed, especially in CBU and peripheral blood stem cell recipients. BK viremia correlates with the severity of the disease. Prospective studies are required to test prophylactic approaches. PMID:24488049

  2. Prognostic understanding, quality of life and mood in patients undergoing hematopoietic stem cell transplantation.

    PubMed

    El-Jawahri, A; Traeger, L; Kuzmuk, K; Eusebio, J; Vandusen, H; Keenan, T; Shin, J; Gallagher, E R; Greer, J A; Pirl, W F; Jackson, V A; Ballen, K K; Spitzer, T R; Graubert, T A; McAfee, S; Dey, B; Chen, Y-B A; Temel, J S

    2015-08-01

    Little is known about how patients undergoing hematopoietic stem cell transplantation (HCT) and their family caregivers (FC) perceive their prognosis. We examined prognostic understanding in patients undergoing HCT and their FC and its relationship with quality of life (QOL) and mood. We conducted a longitudinal study of patients (and FC) hospitalized for HCT. We used a questionnaire to measure participants' prognostic understanding and asked the oncologists to estimate patients' prognosis prior to HCT. We assessed QOL and mood weekly and evaluated the relationship between prognostic understanding, and QOL and mood using multivariable linear mixed models. We enrolled 90 patients undergoing (autologous (n=30), myeloablative (n=30) or reduced intensity allogeneic (n=30)) HCT. About 88.9% of patients and 87.1% of FC reported it is 'extremely' or 'very' important to know about prognosis. However, 77.6% of patients and 71.7% of FC reported a discordance and more optimistic prognostic perception compared to the oncologist (P<0.0001). Patients with a concordant prognostic understanding with their oncologists reported worse QOL (β=-9.4, P=0.01) and greater depression at baseline (β=1.7, P=0.02) and over time ((β=1.2, P<0.0001). Therefore, Interventions are needed to improve prognostic understanding, while providing patients with adequate psychological support. PMID:25961772

  3. Feasibility of an exercise programme in elderly patients undergoing allogeneic stem cell transplantation - a pilot study.

    PubMed

    Schuler, M K; Hornemann, B; Pawandenat, C; Kramer, M; Hentschel, L; Beck, H; Kasten, P; Singer, S; Schaich, M; Ehninger, G; Platzbecker, U; Schetelig, J; Bornhäuser, M

    2016-09-01

    It has been demonstrated that physical exercise benefits younger patients undergoing allogeneic haematopoietic stem cell transplantation (allo-HSCT). We designed a prospective pilot study investigating whether elderly patients (>60 years) would also be able to participate in such a programme. It consisted of physiotherapist-supervised alternating endurance and resistance workouts on 6 of 7 days a week. Sixteen consecutive patients undergoing allo-HSCT were enrolled into the study. The median age was 64.5 years. Twelve patients participated in the programme until the time of discharge (75%) from the transplant unit. Therefore, the predefined criteria regarding feasibility were met. The reason for drop out was transplantation associated mortality in all patients (n = 4). Adherence was very good with a median of 85% attended training sessions. No adverse events were recorded. The endurance capacity dropped by 7% and lower extremity strength improved by 2% over time. Quality of life decreased during the study period, with global health being significantly worse at the time of discharge. In conclusion, a combined and intensified strength and endurance exercise programme is feasible and safe in a population of elderly patients undergoing allo-HSCT. Further research should focus on exploring effect sizes of such an intervention by conducting randomised controlled trials. PMID:26526286

  4. Prognostic Understanding, Quality of Life, and Mood in Patients Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    El-Jawahri, Areej; Traeger, Lara; Kuzmuk, Kailyn; Eusebio, Justin; Vandusen, Harry; Keenan, Tanya; Shin, Jennifer; Gallagher, Emily R.; Greer, Joseph A.; Pirl, William F.; Jackson, Vicki A.; Ballen, Karen K; Spitzer, Thomas R.; Graubert, Timothy A.; McAfee, Steven; Dey, Bimalangshu; Chen, Yi-Bin A.; Temel, Jennifer S.

    2015-01-01

    Little is known about how patients undergoing stem cell transplantation (HCT) and their family caregivers (FC) perceive their prognosis. We examined prognostic understanding in patients undergoing HCT and their FC and its relationship with quality of life (QOL) and mood. We conducted a longitudinal study of patients (and FC) hospitalized for HCT. We used a questionnaire to measure participants’ prognostic understanding and asked the oncologists to estimate patients’ prognosis prior to HCT. We assessed QOL and mood weekly and evaluated the relationship between prognostic understanding and QOL and mood using multivariable linear mixed models. We enrolled 90 patients undergoing (autologous n=30); myeloablative (n=30) or reduced intensity allogeneic (n=30)) HCT. 88.9% of patients and 87.1% of FC reported it is ‘extremely’ or ‘very’ important to know about prognosis. However, 77.6% of patients and 71.7% of FC reported a discordance and more optimistic prognostic perception compared to the oncologist (P’s < 0.0001). Patients with a concordant prognostic understanding with their oncologists reported worse QOL (β = −9.4, P = 0.01) and greater depression at baseline (β = 1.7, P = 0.02) and over time ((β = 1.2, P < 0.0001). Therefore, Interventions are needed to improve prognostic understanding, while providing patients with adequate psychological support. PMID:25961772

  5. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  6. Strategies to Enhance the Effectiveness of Adult Stem Cell Therapy for Ischemic Heart Diseases Affecting the Elderly Patients

    PubMed Central

    Khatiwala, Roshni

    2016-01-01

    Myocardial infarctions and chronic ischemic heart disease both commonly and disproportionately affect elderly patients more than any other patient population. Despite available treatments, heart tissue is often permanently damaged as a result of cardiac injury. This review aims to summarize recent literature proposing the use of modified autologous adult stem cells to promote healing of post-infarct cardiac tissue. This novel cellular treatment involves isolation of adult stem cells from the patient, in vitro manipulation of these stem cells, and subsequent transplantation back into the patient’s own heart to accelerate healing. One of the hindrances affecting this process is that cardiac issues are increasingly common in elderly patients, and stem cells recovered from their tissues tend to be pre-senescent or already in senescence. As a result, harsh in vitro manipulations can cause the aged stem cells to undergo massive in vivo apoptosis after transplantation. The consensus in literature is that inhibition or reversal of senescence onset in adult stem cells would be of utmost benefit. In fact, it is believed that this strategy may lower stem cell mortality and coerce aged stem cells into adopting more resilient phenotypes similar to that of their younger counterparts. This review will discuss a selection of the most efficient and most-recent strategies used experimentally to enhance the effectiveness of current stem cell therapies for ischemic heart diseases. PMID:26779896

  7. Effects of addictive drugs on adult neural stem/progenitor cells.

    PubMed

    Xu, Chi; Loh, Horace H; Law, Ping-Yee

    2016-01-01

    Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area. PMID:26468052

  8. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  9. Intestinal stem cells in the adult Drosophila midgut

    SciTech Connect

    Jiang, Huaqi; Edgar, Bruce A.

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  10. Embryonic and adult stem cell therapy.

    PubMed

    Brignier, Anne C; Gewirtz, Alan M

    2010-02-01

    There are many types of stem cells. All share the characteristics of being able to self-renew and to give rise to differentiated progeny. Over the last decades, great excitement has been generated by the prospect of being able to exploit these properties for the repair, improvement, and/or replacement of damaged organs. However, many hurdles, both scientific and ethical, remain in the path of using human embryonic stem cells for tissue-engineering purposes. In this report we review current strategies for isolating, enriching, and, most recently, inducing the development of human pluripotent stem cells. In so doing, we discuss the scientific and ethical issues associated with this endeavor. Finally, progress in the use of stem cells as therapies for type 1 diabetes mellitus, congestive heart failure, and various neurologic and immunohematologic disorders, and as vehicles for the delivery of gene therapy, is briefly discussed. PMID:20061008

  11. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking

    PubMed Central

    Ratajczak, M Z

    2015-01-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation. PMID:25486871

  12. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking.

    PubMed

    Ratajczak, M Z

    2015-04-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation. PMID:25486871

  13. Medical perspectives of adults and embryonic stem cells.

    PubMed

    Cavazzana-Calvo, Marina; André-Schmutz, Isabelle; Lagresle, Chantal; Fischer, Alain

    2002-10-01

    In the last 30 years, allogeneic bone marrow transplantation has become the treatment of choice for many hematologic malignancies or inherited disorders and a number of changes have been registered in terms of long-term survival rate of transplanted patients as well as of available sources of hematopoietic stem cell (HSC). In parallel to the publication of better results in HSC transplantation, several recent discoveries have opened a scientific and ethical debate on the therapeutical potential of stem cells isolated from adult or embryonic tissues. One of the major discoveries in this field is the capacity of bone marrow-derived stem cells to treat a genetic liver disease in a mouse model, thus justifying the concept of transdifferentiation of adult stem cell and raising hopes on its possible therapeutical applications. We have tried here to summarise the advances in this field and to discuss the limits of these biological data. PMID:12494504

  14. Complementary Therapies for Children Undergoing Stem Cell Transplant: Report of A Multisite Trial

    PubMed Central

    Phipps, Sean; Barrera, Maru; Vannatta, Kathryn; Xiong, Xiaoping; Doyle, John J; Alderfer, Melissa A.

    2010-01-01

    Background Children undergoing stem cell transplant (SCT) experience high levels of somatic distress and mood disturbance. This trial evaluated the efficacy of complementary therapies (massage, humor therapy, relaxation/imagery) for reducing distress associated with pediatric SCT. Methods Across 4 sites, 178 pediatric patients scheduled to undergo SCT were randomized to a child-targeted intervention involving massage and humor therapy (HPI-C), the identical child intervention plus a parent intervention involving massage and relaxation/imagery (HPI-CP) or standard care (SC). Randomization was stratified by site, age, and type of transplant. The interventions began at admission and continued through SCT week +3. Primary outcomes included patient and parent reports of somatic distress and mood disturbance obtained weekly from admission through week +6 using the BASES scales. Secondary outcomes included length of hospitalization, time to engraftment, and usage of narcotic analgesic and antiemetic medications. Results A mixed model approach was used to assess longitudinal trends of patient and parent-report outcomes and test differences between groups on these measures. Significant changes across time were observed on all patient and parent-report outcomes. However, no significant differences between treatment arms were found on the primary outcomes. Similarly, no signficant between group differences were noted on any of the medical variables as secondary outcomes. Conclusions Results of this multi-site trial failed to document significant benefits of complementary interventions in the pediatric SCT setting. PMID:20626016

  15. Adult stem cells: the therapeutic potential of skeletal muscle.

    PubMed

    Saini, Amarjit; Stewart, Claire E H

    2006-05-01

    Embryonic stem cells have revolutionised our understanding of normal and deregulated growth and development. The potential to produce cells and tissues as needed offers enormous therapeutic potential. The use of these cells, however, is accompanied by ongoing ethical, religious and biomedical issues. The expansion potential and plasticity of adult stem cells have therefore received much interest. Adult skeletal muscle is highly adaptable, responding to both the hypertrophic and degenerative stresses placed upon it. This extreme plasticity is in part regulated by resident stem cells. In addition to regenerating muscle, if exposed to osteogenic or adipogenic inducers, these cells spontaneously form osteoblasts or adipocytes. The potential for and heterogeneity of muscle stem cells is underscored by the observation that CD45+ muscle side population cells are capable of reconstituting bone marrow in lethally irradiated mice and of contributing to neo-vascularisation of regenerating muscle. Finally, first attempts to replace infarcted myocardium relied on injection of skeletal myoblasts into the heart. Cells successfully engrafted and cardiac function was improved. Harnessing their differentiation/trans-differentiation capacity provides enormous potential for adult stem cells. In this review, current understanding of the different stem cells within muscle will be discussed as will their potential utility for regenerative medicine. PMID:18220864

  16. The adult human brain harbors multipotent perivascular mesenchymal stem cells.

    PubMed

    Paul, Gesine; Özen, Ilknur; Christophersen, Nicolaj S; Reinbothe, Thomas; Bengzon, Johan; Visse, Edward; Jansson, Katarina; Dannaeus, Karin; Henriques-Oliveira, Catarina; Roybon, Laurent; Anisimov, Sergey V; Renström, Erik; Svensson, Mikael; Haegerstrand, Anders; Brundin, Patrik

    2012-01-01

    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain. PMID:22523602

  17. Adult stem cells underlying lung regeneration

    PubMed Central

    2012-01-01

    Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue and, in particular, the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease. PMID:22333577

  18. β-d-Glucan Screening for Detection of Invasive Fungal Disease in Children Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Koltze, Antonia; Rath, Peter; Schöning, Stefan; Steinmann, Jörg; Wichelhaus, Thomas A.; Bader, Peter; Bochennek, Konrad

    2015-01-01

    While the assessment of β-d-glucan (BDG) levels in adults improves the early diagnosis of invasive fungal disease (IFD), data on BDG levels in children are limited. We therefore assessed in a prospective cohort study the value of serial BDG screening for early detection of IFD in children undergoing allogeneic hematopoietic stem cell transplantation (HSCT). IFD was defined according to the revised European Organization for Research and Treatment of Cancer/Mycosis Study Group (EORTC/MSG) criteria, with the necessary modification that BDG was not included as a microbiological criterion. For the analysis, a total of 702 serum samples were obtained in 34 pediatric HSCT recipients. Proven IFD occurred in two patients (fusariosis and Candida sepsis, respectively), and probable invasive aspergillosis was diagnosed in four patients. Analyses including different cutoff values for BDG levels and different definitions of the onset of IFD demonstrated that the BDG assay has a relatively high sensitivity and good negative predictive value, whereas the positive predictive value has major limitations (<30%). Receiver operating characteristic analyses suggested an optimal cutoff between 60 and 70 pg/ml for different definitions of the onset of IFD. Our data show that BDG screening in pediatric HSCT recipients has a low positive predictive value and is therefore of limited usefulness. PMID:26041896

  19. Are neonatal stem cells as effective as adult stem cells in providing ischemic protection?

    PubMed Central

    Markel, Troy A.; Crisostomo, Paul R.; Manukyan, Maiuxi C.; Al-Azzawi, Dalia; Herring, Christine M.; Lahm, Tim; Novotny, Nathan M.; Meldrum, Daniel R.

    2009-01-01

    Background Bone marrow stem cells (BMSCs) may be a novel treatment modality for organ ischemia, possibly through beneficial paracrine mechanisms. However, stem cells from older hosts exhibit decreased function during stress. We therefore hypothesized that: 1) BMSCs derived from neonatal hosts would provide protection to ischemic myocardium; and 2) neonatal stem cells would enhance post-ischemic myocardial recovery above that seen with adult stem cell therapy. Materials and Methods Female adult Sprague-Dawley rat hearts were subjected to an ischemia/reperfusion protocol via Langendorff isolated heart preparation (15 minutes equilibration, 25 minutes ischemia, and 60 minutes reperfusion). BMSCs were harvested from adult and neonatal mice and cultured through several passages under normal conditions (37 C, 5% CO2/air). Immediately prior to ischemia, one million adult or neonatal BMSCs were infused into the coronary circulation. Cardiac functional parameters were continuously recorded. Results Pretreatment with adult BMSCs significantly increased post-ischemic myocardial recovery as noted by improved left ventricular developed pressure, end diastolic pressure, contractility, and rate of relaxation. Neonatal stem cells, however, did not cause any noticeable improvement in myocardial functional parameters following ischemia. Conclusion Neonatal and adult BMSCs are distinctly different in the degree of beneficial tissue protection that they can provide. The data herein suggests that a critical age exists as to when stem cells become fully activated to provide their beneficial protective properties. Defining the genes that initiate these protective properties may allow for genetic amplification of beneficial signals, and the generation of “super stem cells” that provide maximum protection to ischemic tissues. PMID:18805555

  20. Signaling mechanisms regulating adult neural stem cells and neurogenesis

    PubMed Central

    Faigle, Roland; Song, Hongjun

    2012-01-01

    Background Adult neurogenesis occurs throughout life in discrete regions of the mammalian brain and is tightly regulated via both extrinsic environmental influences and intrinsic genetic factors. In recent years, several crucial signaling pathways have been identified in regulating self-renewal, proliferation, and differentiation of neural stem cells, as well as migration and functional integration of developing neurons in the adult brain. Scope of review Here we review our current understanding of signaling mechanisms, including Wnt, notch, sonic hedgehog, growth and neurotrophic factors, bone morphogenetic proteins, neurotransmitters, transcription factors, and epigenetic modulators, and crosstalk between these signaling pathways in the regulation of adult neurogenesis. We also highlight emerging principles in the vastly growing field of adult neural stem cell biology and neural plasticity. Major conclusions Recent methodological advances have enabled the field to identify signaling mechanisms that fine-tune and coordinate neurogenesis in the adult brain, leading to a better characterization of both cell-intrinsic and environmental cues defining the neurogenic niche. Significant questions related to niche cell identity and underlying regulatory mechanisms remain to be fully addressed and will be the focus of future studies. General significance A full understanding of the role and function of individual signaling pathways in regulating neural stem cells and generation and integration of newborn neurons in the adult brain may lead to targeted new therapies for neurological diseases in humans. PMID:22982587

  1. Wnt signaling in adult intestinal stem cells and cancer.

    PubMed

    Krausova, Michaela; Korinek, Vladimir

    2014-03-01

    Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer. The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum. PMID:24308963

  2. Adult stem cells and their ability to differentiate.

    PubMed

    Tarnowski, Maciej; Sieron, Aleksander L

    2006-08-01

    This is a review of the current status of knowledge on adult stem cells as well as the criteria and evidence for their potential to transform into different cell types and cell lineages. Reports on stem cell sources, focusing on tissues from adult subjects, were also investigated. Numerous reports have been published on the search for early markers of both stem cells and the precursors of various cell lineages. The question is still open about the characteristics of the primary stem cell. The existing proofs and hypotheses have not yielded final solutions to this problem. From a practical point of view it is also crucial to find a minimal set of markers determining the phenotypes of the precursor cells of a particular cell lineage. Several lines of evidence seem to bring closer the day when we will be able to detect the right stem cell niche and successfully isolate precursor cells that are needed for the treatment of a particular disorder. Recent reports on cases of cancer in patients subjected to stem cell therapy are yet another controversial issue looked into in this review, although the pros and cons emerging from the results of published studies still do not provide satisfying evidence to fully understand this issue. PMID:16865077

  3. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    SciTech Connect

    Ren, Zhenhua; Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin; Chen, Zhiguo; Zhang, Y. Alex

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  4. Adult stem cells for chronic lung diseases.

    PubMed

    Mora, Ana L; Rojas, Mauricio

    2013-10-01

    Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are chronic, progressive and lethal lung diseases. The incidence of IPF and COPD increases with age, independent of exposure to common environmental risk factors. At present, there is limited understanding of the relationship between ageing and the development of chronic lung diseases. One hypothesis is that chronic injury drives to exhaustion the local and systemic repair responses in the lung. These changes are accentuated during ageing where there is a progressive accumulation of senescent cells. Recently, stem cells have emerged as a critical reparative mechanism for lung injury. In this review, we discuss the repair response of bone marrow-derived mesenchymal stem cells (B-MSC) after lung injury and how their function is affected by ageing. Our own work has demonstrated a protective role of B-MSC in several animal models of acute and chronic lung injury. We recently demonstrated the association, using animal models, between age and an increase in the susceptibility to develop severe injury and fibrosis. At the same time, we have identified functional differences between B-MSC isolated from young and old animals. Further studies are required to understand the functional impairment of ageing B-MSC, ultimately leading to a rapid stem cell depletion or fatigue, interfering with their ability to play a protective role in lung injury. The elucidation of these events will help in the development of rational and new therapeutic strategies for COPD and IPF. PMID:23648014

  5. Hepatic cancer stem cells may arise from adult ductal progenitors

    PubMed Central

    Nikolaou, Kostas C; Talianidis, Iannis

    2016-01-01

    Cancer stem cells (CSCs) are defined as cells within tumors that can self-renew and differentiate into heterogeneous lineages of cancerous cells. The origin of CSCs is not well understood. Recent evidence suggests that CSCs in hepatocellular carcinoma could be generated via oncogenic transformation and partial differentiation of adult hepatic ductal progenitor cells.

  6. High-Dose Weekly AmBisome Antifungal Prophylaxis in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation: A Pharmacokinetic Study

    PubMed Central

    Mehta, Parinda; Vinks, Alexander; Filipovich, Alexandra; Vaughn, Gretchen; Fearing, Deborah; Sper, Christine; Davies, Stella

    2016-01-01

    Disseminated fungal infection causes significant morbidity and mortality in children undergoing hematopoietic stem cell transplantation (HSCT). The widespread use of prophylactic oral triazoles has limitations of poor absorption, interindividual variability in metabolism, and hepatic toxicity. AmBisome (amphotericin B liposomal complex) has a better safety profile than the parent drug amphotericin B and produces higher plasma and tissue concentrations. We hypothesized that once-weekly high-dose AmBisome therapy could provide adequate fungal prophylaxis for immunocompromised children undergoing HSCT. We performed a pharmacokinetic pilot study to determine whether once-weekly high-dose AmBisome administration would result in effective concentrations throughout the dosing interval. A total of 14 children (median age, 3 years, 1 month; range, 4.5 months–9 years, 9 months) undergoing HSCT received once-weekly intravenous AmBisome prophylaxis (10 mg/kg as a 2-hour infusion). Blood samples for pharmacokinetic measurements were drawn around the first and the fourth weekly doses. The concentration of non–lipid-complexed amphotericin in plasma was determined by a validated bioassay. Pharmacokinetic parameters after single doses and during steady state were calculated using standard noncompartmental methods. AmBisome was well tolerated at this dose. Complete pharmacokinetic profiles for weeks 1 and 4 were obtained in 12 patients. The half-life calculated in this pediatric population was shorter on average than reported in adults (45 hours vs 152 hours). The volume of distribution correlated best with body weight (R2 = .55), and clearance was best predicted by initial serum creatinine level (R2 = .19). Mean (± standard deviation) individual plasma trough concentrations were 0.23 (0.13) mg/L after single doses and 0.47 (0.41) mg/L after multiple doses. Mean steady-state area under the curve was higher at week 4 than after a single dose (P < .05). Single-dose and steady

  7. Diversity of epithelial stem cell types in adult lung.

    PubMed

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  8. Diversity of Epithelial Stem Cell Types in Adult Lung

    PubMed Central

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C.; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  9. A Reduced-Intensity Conditioning Regimen for Patients with Dyskeratosis Congenita Undergoing Hematopoietic Stem Cell Transplantation.

    PubMed

    Nelson, Adam S; Marsh, Rebecca A; Myers, Kasiani C; Davies, Stella M; Jodele, Sonata; O'Brien, Tracey A; Mehta, Parinda A

    2016-05-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative option for progressive marrow failure, myelodysplastic syndrome, or leukemia associated with dyskeratosis congenita (DC). HSCT for DC is limited by a high incidence of treatment-related mortality, thought to be related to underlying chromosomal instability and sensitivity to chemotherapy and radiation. We report our experience in 7 patients with DC who underwent allogeneic transplantation using a reduced-intensity conditioning (RIC) preparative regimen that contained chemotherapy only (no radiation). This RIC regimen, designed specifically for patients with DC, contained alemtuzumab, fludarabine, and melphalan (with melphalan at 50% reduced dosing), with the goal of decreasing toxicity and improving outcome. All 7 patients engrafted, with none developing mixed chimerism or rejection. Two patients experienced acute graft-versus-host disease (GVHD) and 1 went on to develop limited chronic GVHD of the skin. Five patients remain alive and well at a median follow-up of 44 months (range, 14 to 57 months). We conclude that a radiation-free RIC regimen results in durable engraftment, acceptable toxicity, and improved overall survival in patients with DC undergoing allogeneic HSCT. PMID:26845033

  10. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM. PMID:26758672

  11. EMPOWERING ADULT STEM CELLS FOR MYOCARDIAL REGENERATION

    PubMed Central

    Mohsin, Sadia; Siddiqi, Sailay; Collins, Brett; Sussman, Mark A.

    2012-01-01

    Treatment strategies for heart failure remain a high priority for ongoing research due to the profound unmet need in clinical disease coupled with lack of significant translational progress. The underlying issue is the same whether the cause is acute damage, chronic stress from disease, or aging: progressive loss of functional cardiomyocytes and diminished hemodynamic output. To stave off cardiomyocyte losses, a number of strategic approaches have been embraced in recent years involving both molecular and cellular approaches to augment myocardial structure and performance. Resultant excitement surrounding regenerative medicine in the heart has been tempered by realizations that reparative processes in the heart are insufficient to restore damaged myocardium to normal functional capacity and that cellular cardiomyoplasty is hampered by poor survival, proliferation, engraftment and differentiation of the donated population. To overcome these limitations, a combination of molecular and cellular approaches needs to be adopted involving use of genetic engineering to enhance resistance to cell death and increase regenerative capacity. This review will highlight biological properties of approached to potentiate stem cell-mediated regeneration to promote enhanced myocardial regeneration, persistence of donated cells, and long lasting tissue repair. Optimizing cell delivery and harnessing the power of survival signaling cascades for ex vivo genetic modification of stem cells prior to reintroduction into the patient will be critical to enhance the efficacy of cellular cardiomyoplasty. Once this goal is achieved, then cell-based therapy has great promise for treatment of heart failure to combat the loss of cardiac structure and function associated with acute damage, chronic disease or aging. PMID:22158649

  12. Haploidentical Stem Cell Transplantation in Adult Haematological Malignancies.

    PubMed

    Parmesar, Kevon; Raj, Kavita

    2016-01-01

    Haematopoietic stem cell transplantation is a well-established treatment option for both hematological malignancies and nonmalignant conditions such as aplastic anemia and haemoglobinopathies. For those patients lacking a suitable matched sibling or matched unrelated donor, haploidentical donors are an alternative expedient donor pool. Historically, haploidentical transplantation led to high rates of graft rejection and GVHD. Strategies to circumvent these issues include T cell depletion and management of complications thereof or T replete transplants with GVHD prophylaxis. This review is an overview of these strategies and contemporaneous outcomes for hematological malignancies in adult haploidentical stem cell transplant recipients. PMID:27313619

  13. Haploidentical Stem Cell Transplantation in Adult Haematological Malignancies

    PubMed Central

    Parmesar, Kevon; Raj, Kavita

    2016-01-01

    Haematopoietic stem cell transplantation is a well-established treatment option for both hematological malignancies and nonmalignant conditions such as aplastic anemia and haemoglobinopathies. For those patients lacking a suitable matched sibling or matched unrelated donor, haploidentical donors are an alternative expedient donor pool. Historically, haploidentical transplantation led to high rates of graft rejection and GVHD. Strategies to circumvent these issues include T cell depletion and management of complications thereof or T replete transplants with GVHD prophylaxis. This review is an overview of these strategies and contemporaneous outcomes for hematological malignancies in adult haploidentical stem cell transplant recipients. PMID:27313619

  14. Higher plasma bilirubin predicts veno-occlusive disease in early childhood undergoing hematopoietic stem cell transplantation with cyclosporine

    PubMed Central

    Kim, Kwi Suk; Moon, Aree; Kang, Hyoung Jin; Shin, Hee Young; Choi, Young Hee; Kim, Hyang Sook; Kim, Sang Geon

    2016-01-01

    AIM: To analyze the association between plasma bilirubin levels and veno-occlusive disease (VOD) in non-adult patients undergoing hematopoietic stem cell transplantation (HSCT) during cyclosporine therapy. METHODS: A total of 123 patients taking cyclosporine were evaluated using an electronic medical system at the Seoul National University Children’s Hospital from the years 2004 through 2011. Patients were grouped by age and analyzed for incidence and type of adverse drug reactions (ADRs) including VOD. RESULTS: The HSCT patients were divided into three age groups: G#1 ≥ 18; 9 ≤ G#2 ≤ 17; and G#3 ≤ 8 years of age). The majority of transplant donor types were cord blood transplantations. Most prevalent ADRs represented acute graft-vs-host disease (aGVHD) and VOD. Although the incidences of aGVHD did not vary among the groups, the higher frequency ratios of VOD in G#3 suggested that an age of 8 or younger is a risk factor for developing VOD in HSCT patients. After cyclosporine therapy, the trough plasma concentrations of cyclosporine were lower in G#3 than in G#1, indicative of its increased clearance. Moreover, in G#3 only, a maximal total bilirubin level (BILmax) of ≥ 1.4 mg/dL correlated with VOD incidence after cyclosporine therapy. CONCLUSION: HSCT patients 8 years of age or younger are more at risk for developing VOD, diagnosed as hyperbilirubinemia, tender hepatomegaly, and ascites/weight gain after cyclosporine therapy, which may be represented by a criterion of plasma BILmax being ≥ 1.4 mg/dL, suggestive of more sensitive VOD indication in this age group. PMID:27358786

  15. Cytogenetics Does Not Impact Outcomes in Adult Patients with Acute Lymphoblastic Leukemia Undergoing Allogeneic Hematopoietic Cell Transplantation.

    PubMed

    Aldoss, Ibrahim; Tsai, Ni-Chun; Slovak, Marilyn L; Palmer, Joycelynne; Alvarnas, Joseph; Marcucci, Guido; Forman, Stephen J; Pullarkat, Vinod

    2016-07-01

    The prognostic relevance of cytogenetics at diagnosis on the outcome of allogeneic hematopoietic stem cell transplantation (alloHCT) for adult acute lymphoblastic leukemia (ALL) remains unclear. We retrospectively analyzed outcomes of 333 adult ALL patients who underwent alloHCT at our institution over a 10-year period. Patients were classified according to disease status at transplantation (complete response [CR] 1 [n = 202] or > CR1) and according to cytogenetic risk, defined as good (2%), intermediate (42%), poor (46%), or unknown (10%) based on available outcome data for each of the cytogenetic abnormalities. Three-year overall survival (OS), leukemia-free survival (LFS), and relapse incidence (RI) were 55.7%, 47.9% and 27.5%, respectively; 1-year nonrelapse mortality (NRM) was 17.3%. For patients undergoing alloHCT in CR1, 3-year OS, LFS, and RI were 69.8%, 62.3%, and 17.1%, respectively. In multivariable analysis, cytogenetic risk did not impact OS or LFS for the whole cohort or for patients who underwent transplantation in CR1. Disease status at alloHCT was an independent predictor for LFS (CR1 versus others: hazard ratio [HR], 3.17; P < .01) and OS (CR1 versus others: HR, 2.90; P < .01). Graft-versus-host disease prophylaxis with tacrolimus/sirolimus was associated with a low NRM of 11.5% in the alloHCT recipients in CR1. Our data indicate that cytogenetic risk is not an independent predictor of outcomes in alloHCT performed to treat adult ALL. PMID:27044907

  16. Properties of Adult Lung Stem and Progenitor Cells.

    PubMed

    Bertoncello, Ivan

    2016-12-01

    The last decade has seen significant progress in understanding the organisation of regenerative cells in the adult lung. Cell-lineage tracing and in vitro clonogenic assays have enabled the identification and characterisation of endogenous lung epithelial stem and progenitor cells. Selective lung injury models, and genetically engineered mice have revealed highly conserved gene networks, factors, signalling pathways, and cellular interactions important in maintaining lung homeostasis and regulating lung regeneration and repair following injury. This review describes the current models of lung epithelial stem and progenitor cell organisation in adult mice, and the impediments encountered in translational studies aiming to identify and characterise their human homologs. J. Cell. Physiol. 231: 2582-2589, 2016. © 2016 Wiley Periodicals, Inc. PMID:27062064

  17. Should deciduous teeth be preserved in adult patients? How about stem cells? Is it reasonable to preserve them?

    PubMed Central

    Consolaro, Alberto

    2016-01-01

    Abstract When seeking orthodontic treatment, many adolescents and adult patients present with deciduous teeth. Naturally, deciduous teeth will inevitably undergo exfoliation at the expected time or at a later time. Apoptosis is the biological trigger of root resorption. In adult patients, deciduous teeth should not be preserved, as they promote: infraocclusion, traumatic occlusion, occlusal trauma, diastemata and size as well as morphology discrepancy malocclusion. Orthodontic movement speeds root resorption up, and so do restoring or recontouring deciduous teeth in order to establish esthetics and function. Deciduous teeth cells are dying as a result of apoptosis, and their regeneration potential, which allows them to act as stem cells, is limited. On the contrary, adult teeth cells have a greater proliferative potential. All kinds of stem cell therapies are laboratory investigative non authorized trials. PMID:27275612

  18. Vancomycin Pharmacokinetic Parameters in Patients Undergoing Hematopoietic Stem Cell Transplantation (HSCT)

    PubMed Central

    Ghehi, Maryam Taghizadeh; Rezaee, Saeed; Hayatshahi, Alireza; Hadjibabaie, Molouk; Gholami, Kheirollah; Javadi, Mohammadreza; Khoee, Seyed Hamid; Radfar, Mania; Esfandbod, Mohsen; Ghavamzadeh, Ardeshir

    2013-01-01

    Background Vancomycin is used abundantly in patients undergoing HSCT, especially during neutropenic fever. Despite its widespread use little is known about vancomycin pharmacokinetics in HSCT patients. We conducted this study to investigate vancomycin pharmacokinetic parameters in our HSCT patients and to evaluate current dosing regimen based on trough vancomycin concentrations measurement. Methods Vancomycin serum concentration at steady-state was determined prospectively in 46 adult HSCT patients who received vancomycin as empirical treatment of neutropenic fever. Individual steady-steady pharmacokinetic parameters were also determined in 20 patients who had two vancomycin levels from an administered dose, assuming one-compartment model. Acute kidney injury was also evaluated in our patients during vancomycin therapy. Results Mean (±SD) apparent volume of distribution (L/kg) and clearance (mL/min) were 0.6 (± 0.33) and 109.7 (± 57.5) respectively. With mean (±SD) total daily dose of vancomycin 31.9 (±10.5) mg/kg/day that was administered, more than 90% of measured vancomycin trough concentrations were outside the range of 15-20 mg/L and 54.3% of patients had trough concentrations below 10 mg/L. Of 46 patients, 21 patients (45.7%) developed acute kidney injury (AKI) during vancomycin therapy; among them 19 patients were receiving nephrotoxic drug(s) concomitantly. Conclusion Current vancomycin dosage regimen could not lead to recommended therapeutic serum concentrations in our patients. Large variation in vancomycin pharmacokinetic parameters observed among patients of this study along with difference of vancomycin pharmacokinetics in our study and other similar studies further explain the need for therapeutic drug monitoring and individualization of vancomycin dosing. PMID:24505536

  19. Perioperative Intravenous Acetaminophen Attenuates Lipid Peroxidation in Adults Undergoing Cardiopulmonary Bypass: A Randomized Clinical Trial

    PubMed Central

    Billings IV, Frederic T.; Petracek, Michael R.; Roberts II, L. Jackson; Pretorius, Mias

    2015-01-01

    Background Cardiopulmonary bypass (CPB) lyses erythrocytes and induces lipid peroxidation, indicated by increasing plasma concentrations of free hemoglobin, F2-isoprostanes, and isofurans. Acetaminophen attenuates hemeprotein-mediated lipid peroxidation, reduces plasma and urine concentrations of F2-isoprostanes, and preserves kidney function in an animal model of rhabdomyolysis. Acetaminophen also attenuates plasma concentrations of isofurans in children undergoing CPB. The effect of acetaminophen on lipid peroxidation in adults has not been studied. This was a pilot study designed to test the hypothesis that acetaminophen attenuates lipid peroxidation in adults undergoing CPB and to generate data for a clinical trial aimed to reduce acute kidney injury following cardiac surgery. Methods and Results In a prospective double-blind placebo-controlled clinical trial, sixty adult patients were randomized to receive intravenous acetaminophen or placebo starting prior to initiation of CPB and for every 6 hours for 4 doses. Acetaminophen concentrations measured 30 min into CPB and post-CPB were 11.9±0.6 μg/mL (78.9±3.9 μM) and 8.7±0.3 μg/mL (57.6±2.0 μM), respectively. Plasma free hemoglobin increased more than 15-fold during CPB, and haptoglobin decreased 73%, indicating hemolysis. Plasma and urinary markers of lipid peroxidation also increased during CPB but returned to baseline by the first postoperative day. Acetaminophen reduced plasma isofuran concentrations over the duration of the study (P = 0.05), and the intraoperative plasma isofuran concentrations that corresponded to peak hemolysis were attenuated in those subjects randomized to acetaminophen (P = 0.03). Perioperative acetaminophen did not affect plasma concentrations of F2-isoprostanes or urinary markers of lipid peroxidation. Conclusions Intravenous acetaminophen attenuates the increase in intraoperative plasma isofuran concentrations that occurs during CPB, while urinary markers were unaffected

  20. Muscle stem cells contribute to myofibers in sedentary adult mice

    PubMed Central

    Keefe, Alexandra C.; Lawson, Jennifer A.; Flygare, Steven D.; Fox, Zachary D.; Colasanto, Mary P.; Mathew, Sam J.; Yandell, Mark; Kardon, Gabrielle

    2015-01-01

    Skeletal muscle is essential for mobility, stability, and whole body metabolism, and muscle loss, for instance during sarcopenia, has profound consequences. Satellite cells (muscle stem cells) have been hypothesized, but not yet demonstrated, to contribute to muscle homeostasis and a decline in their contribution to myofiber homeostasis to play a part in sarcopenia. To test their role in muscle maintenance, we genetically labeled and ablated satellite cells in adult sedentary mice. We demonstrate via genetic lineage experiments that even in the absence of injury, satellite cells contribute to myofibers in all adult muscles, although the extent and timing differs. However, genetic ablation experiments showed that satellite cells are not globally required to maintain myofiber cross-sectional area of uninjured adult muscle. PMID:25971691

  1. Adult stem cells in bone and cartilage tissue engineering.

    PubMed

    Salgado, António J; Oliveira, João T; Pedro, Adriano J; Reis, Rui L

    2006-09-01

    The progressive increase in life expectancy within the last century has led to the appearance of novel health related problems, some of those within the musculoskeletal field. Among the latter, one can find diseases such as osteoporosis, rheumatoid arthritis and bone cancer, just to mention some of the most relevant. Other related problems are those that arise from serious injuries, often leading to non-recoverable critical size defects. The therapies currently used to treat this type of diseases/injuries are based on the use of pharmaceutical agents, auto/allotransplant and synthetic materials. However, such solutions present a number of inconveniences and therefore, there is a constant search for novel therapeutic solutions. The appearance of a novel field of science called Tissue engineering brought some hope for the solution of the above mentioned problems. In this field, it is believed that by combining a 3D porous template--scaffold--with an adequate cell population, with osteo or chondrogenic potential, it will be possible to develop bone and cartilage tissue equivalents that when implanted in vivo, could lead to the total regeneration of the affected area. This ideal cell population should have a series of properties, namely a high osteo and chondrogenic potential and at the same time, should be easily expandable and maintained in cultures for long periods of time. Due to its natural and intrinsic properties, stem cells are one of the best available cell types. However, after this sentence, the readers may ask, "Which Stem Cells?". During the last 10/15 years, the scientific community witnessed and reported the appearance of several sources of stem cells with both osteo and chondrogenic potential. Therefore, the present review intends to make an overview of data reported on different sources of adult stem cells (bone marrow, periosteum, adipose tissue, skeletal muscle and umbilical cord) for bone and cartilage regenerative medicine, namely those focusing on

  2. Molecular Diversity Subdivides the Adult Forebrain Neural Stem Cell Population

    PubMed Central

    Giachino, Claudio; Basak, Onur; Lugert, Sebastian; Knuckles, Philip; Obernier, Kirsten; Fiorelli, Roberto; Frank, Stephan; Raineteau, Olivier; Alvarez–Buylla, Arturo; Taylor, Verdon

    2014-01-01

    Neural stem cells (NSCs) in the ventricular domain of the subventricular zone (V-SVZ) of rodents produce neurons throughout life while those in humans become largely inactive or may be lost during infancy. Most adult NSCs are quiescent, express glial markers, and depend on Notch signaling for their self-renewal and the generation of neurons. Using genetic markers and lineage tracing, we identified subpopulations of adult V-SVZ NSCs (type 1, 2, and 3) indicating a striking heterogeneity including activated, brain lipid binding protein (BLBP, FABP7) expressing stem cells. BLBP+ NSCs are mitotically active components of pinwheel structures in the lateral ventricle walls and persistently generate neurons in adulthood. BLBP+ NSCs express epidermal growth factor (EGF) receptor, proliferate in response to EGF, and are a major clonogenic population in the SVZ. We also find BLBP expressed by proliferative ventricular and sub-ventricular progenitors in the fetal and postnatal human brain. Loss of BLBP+ stem/progenitor cells correlates with reduced neurogenesis in aging rodents and postnatal humans. These findings of molecular heterogeneity and proliferative differences subdivide the NSC population and have implications for neurogenesis in the forebrain of mammals during aging. PMID:23964022

  3. Recent advances in bone regeneration using adult stem cells.

    PubMed

    Zigdon-Giladi, Hadar; Rudich, Utai; Michaeli Geller, Gal; Evron, Ayelet

    2015-04-26

    Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34(+) blood progenitors) for bone regeneration. PMID:25914769

  4. Clinical Trials of Adult Stem Cell Therapy in Patients with Ischemic Stroke

    PubMed Central

    2016-01-01

    Stem cell therapy is considered a potential regenerative strategy for patients with neurologic deficits. Studies involving animal models of ischemic stroke have shown that stem cells transplanted into the brain can lead to functional improvement. With current advances in the understanding regarding the effects of introducing stem cells and their mechanisms of action, several clinical trials of stem cell therapy have been conducted in patients with stroke since 2005, including studies using mesenchymal stem cells, bone marrow mononuclear cells, and neural stem/progenitor cells. In addition, several clinical trials of the use of adult stem cells to treat ischemic stroke are ongoing. This review presents the status of our understanding of adult stem cells and results from clinical trials, and introduces ongoing clinical studies of adult stem cell therapy in the field of stroke. PMID:26610894

  5. Mechanical Stimulation in Preventing Bone Density Loss in Patients Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2012-07-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Plasma Cell Neoplasm; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved

  6. Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-05-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Nodular Lymphocyte Predominant Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Isolated Plasmacytoma of Bone; Monoclonal Gammopathy of Undetermined Significance; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously

  7. Ondansetron in Preventing Nausea and Vomiting in Patients Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2010-08-26

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With T(15;17)(q22;q12); Adult Acute Myeloid Leukemia With T(16;16)(p13;q22); Adult Acute Myeloid Leukemia With T(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; De Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell

  8. Switching roles: the functional plasticity of adult tissue stem cells.

    PubMed

    Wabik, Agnieszka; Jones, Philip H

    2015-05-01

    Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles. PMID:25812989

  9. Adult mesenchymal stem cells: differentiation potential and therapeutic applications.

    PubMed

    Jackson, L; Jones, D R; Scotting, P; Sottile, V

    2007-01-01

    Adult mesenchymal stem cells (MSCs) are a population of multipotent cells found primarily in the bone marrow. They have long been known to be capable of osteogenic, adipogenic and chondrogenic differentiation and are currently the subject of a number of trials to assess their potential use in the clinic. Recently, the plasticity of these cells has come under close scrutiny as it has been suggested that they may have a differentiation potential beyond the mesenchymal lineage. Myogenic and in particular cardiomyogenic potential has been shown in vitro. MSCs have also been shown to have the ability to form neural cells both in vitro and in vivo, although the molecular mechanisms underlying these apparent transdifferentiation events are yet to be elucidated. We describe here the cellular characteristics and differentiation potential of MSCs, which represent a promising stem cell population for future applications in regenerative medicine. PMID:17495381

  10. Switching roles: the functional plasticity of adult tissue stem cells

    PubMed Central

    Wabik, Agnieszka; Jones, Philip H

    2015-01-01

    Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles. PMID:25812989

  11. A Longitudinal Investigation of Posttraumatic Growth in Adult Patients Undergoing Treatment for Acute Leukemia

    PubMed Central

    Danhauer, Suzanne C.; Russell, Gregory B.; Tedeschi, Richard G.; Jesse, Michelle T.; Vishnevsky, Tanya; Daley, Kristin; Carroll, Suzanne; Triplett, Kelli N.; Calhoun, Lawrence G.; Cann, Arnie; Powell, Bayard L.

    2013-01-01

    An acute leukemia diagnosis can be an extremely stressful experience for most patients. Posttraumatic growth (PTG) is positive psychological change experienced following a struggle with highly challenging life circumstances. The current study is the first longitudinal investigation of predictors of PTG and distress in adult acute leukemia patients undergoing induction chemotherapy. Findings suggest that these patients report PTG, and levels of PTG appear to increase over the weeks following leukemia diagnosis and induction chemotherapy. Variables associated with higher total PTG scores over time included greater number of days from baseline, younger age, and greater challenge to core beliefs. Variables associated with higher distress included greater number of days from baseline, greater perceived cancer threat, higher symptom severity, and lower spiritual well-being. Results underscore the critical role that examination of one’s core beliefs may play in the development of PTG over time. PMID:22739660

  12. Adult stem cell plasticity: will engineered tissues be rejected?

    PubMed Central

    Fang, Te-Chao; Alison, Malcolm R; Wright, Nicholas A; Poulsom, Richard

    2004-01-01

    The dogma that adult tissue-specific stem cells remain committed to supporting only their own tissue has been challenged; a new hypothesis, that adult stem cells demonstrate plasticity in their repertoires, is being tested. This is important because it seems possible that haematopoietic stem cells, for example, could be exploited to generate and perhaps deliver cell-based therapies deep within existing nonhaematopoietic organs. Much of the evidence for plasticity derives from histological studies of tissues from patients or animals that have received grafts of cells or whole organs, from a donor bearing (or lacking) a definitive marker. Detection in the recipient of appropriately differentiated cells bearing the donor marker is indicative of a switch in phenotype of a stem cell or a member of a transit amplifying population or of a differentiated cell. In this review, we discuss evidence for these changes occurring but do not consider the molecular basis of cell commitment. In general, the extent of engraftment is low but may be increased if tissues are damaged. In model systems of liver regeneration, the repeated application of a selection pressure increases levels of engraftment considerably; how this occurs is unclear. Cell fusion plays a part in regeneration and remodelling of the liver, skeletal muscle and even regions of the brain. Genetic disease may be amenable to some forms of cell therapy, yet immune rejection will present challenges. Graft-vs.-host disease will continue to present problems, although this may be avoided if the cells were derived from the recipient or they were tolerized. Despite great expectations for cellular therapies, there are indications that attempts to replace missing proteins could be confounded simply by the development of specific immunity that rejects the new phenotype. PMID:15255965

  13. Robust G2 pausing of adult stem cells in Hydra.

    PubMed

    Buzgariu, Wanda; Crescenzi, Marco; Galliot, Brigitte

    2014-01-01

    Hydra is a freshwater hydrozoan polyp that constantly renews its two tissue layers thanks to three distinct stem cell populations that cannot replace each other, epithelial ectodermal, epithelial endodermal, and multipotent interstitial. These adult stem cells, located in the central body column, exhibit different cycling paces, slow for the epithelial, fast for the interstitial. To monitor the changes in cell cycling in Hydra, we established a fast and efficient flow cytometry procedure, which we validated by confirming previous findings, as the Nocodazole-induced reversible arrest of cell cycling in G2/M, and the mitogenic signal provided by feeding. Then to dissect the cycling and differentiation behaviors of the interstitial stem cells, we used the AEP_cnnos1 and AEP_Icy1 transgenic lines that constitutively express GFP in this lineage. For the epithelial lineages we used the sf-1 strain that rapidly eliminates the fast cycling cells upon heat-shock and progressively becomes epithelial. This study evidences similar cycling patterns for the interstitial and epithelial stem cells, which all alternate between the G2 and S-phases traversing a minimal G1-phase. We also found interstitial progenitors with a shorter G2 that pause in G1/G0. At the animal extremities, most cells no longer cycle, the epithelial cells terminally differentiate in G2 and the interstitial progenitors in G1/G0. At the apical pole ~80% cells are post-mitotic differentiated cells, reflecting the higher density of neurons and nematocytes in this region. We discuss how the robust G2 pausing of stem cells, maintained over weeks of starvation, may contribute to regeneration. PMID:24703763

  14. Isolation, culture and analysis of adult subependymal neural stem cells.

    PubMed

    Belenguer, Germán; Domingo-Muelas, Ana; Ferrón, Sacri R; Morante-Redolat, José Manuel; Fariñas, Isabel

    2016-01-01

    Individual cells dissected from the subependymal neurogenic niche of the adult mouse brain proliferate in medium containing basic fibroblast growth factor (bFGF) and/or epidermal growth factor (EGF) as mitogens, to produce multipotent clonal aggregates called neurospheres. These cultures constitute a powerful tool for the study of neural stem cells (NSCs) provided that they allow the analysis of their features and potential capacity in a controlled environment that can be modulated and monitored more accurately than in vivo. Clonogenic and population analyses under mitogen addition or withdrawal allow the quantification of the self-renewing and multilineage potency of these cells and the identification of the mechanisms involved in these properties. Here, we describe a set of procedures developed and/or modified by our group including several experimental options that can be used either independently or in combination for the ex vivo assessment of cell properties of NSCs obtained from the adult subependymal niche. PMID:27016251

  15. Adult stem cell lineage tracing and deep tissue imaging

    PubMed Central

    Fink, Juergen; Andersson-Rolf, Amanda; Koo, Bon-Kyoung

    2015-01-01

    Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging. [BMB Reports 2015; 48(12): 655-667] PMID:26634741

  16. Comparison of Mesenchymal Stem Cell Markers in Multiple Human Adult Stem Cells

    PubMed Central

    Maleki, Masoud; Ghanbarvand, Farideh; Reza Behvarz, Mohammad; Ejtemaei, Mehri; Ghadirkhomi, Elham

    2014-01-01

    Objectives: Mesenchymal stem cells (MSCs) are adult stem cells which identified by adherence to plastic, expression of cell surface markers including CD44, CD90, CD105, CD106, CD166, and Stro-1, lack of the expression of hematopoietic markers, no immunogenic effect and replacement of damaged tissues. These properties led to development of progressive methods to isolation and characterization of MSCs from various sources for therapeutic applications in regenerative medicine. Methods: We isolated MSC-like cells from testis biopsies, ovary, hair follicle and umbilical cord Wharton’s jelly and investigated the expression of specific cell surface antigens using flow cytometry in order to verify stemness properties of these cells. Results: All four cell types adhered to plastic culture flask a few days after primary culture. All our cells positively expressed common MSC- specific cell surface markers. Moreover, our results revealed the expression of CD19and CD45 antigens in these cells. Conclusion: According to our results, high expression of CD44 in spermatogonial stem cells (SSCs), hair follicle stem cells (HFSCs),granulosa cells (GCs)and Wharton’s jelly- MSCs (WJ-MSCs)may help them to maintain stemness properties. Furthermore, we suggest that CD105+SSCs, HFSCs and WJ-MSCs revealed the osteogenic potential of these cells. Moreover, high expression of CD90 in SSCs and HFSCs may associate to higher growth and differentiation potential of these cells. Further, the presence of CD19 on SSCs and GCs may help them to efficiency in response to trans-membrane signals. Thus, these four types of MSCs may be useful in clinical applications and cell therapy. PMID:25473449

  17. Stem cell niches in the adult mouse heart

    PubMed Central

    Urbanek, Konrad; Cesselli, Daniela; Rota, Marcello; Nascimbene, Angelo; De Angelis, Antonella; Hosoda, Toru; Bearzi, Claudia; Boni, Alessandro; Bolli, Roberto; Kajstura, Jan; Anversa, Piero; Leri, Annarosa

    2006-01-01

    Cardiac stem cells (CSCs) have been identified in the adult heart, but the microenvironment that protects the slow-cycling, undifferentiated, and self-renewing CSCs remains to be determined. We report that the myocardium possesses interstitial structures with the architectural organization of stem cell niches that harbor long-term BrdU-retaining cells. The recognition of long-term label-retaining cells provides functional evidence of resident CSCs in the myocardium, indicating that the heart is an organ regulated by a stem cell compartment. Cardiac niches contain CSCs and lineage-committed cells, which are connected to supporting cells represented by myocytes and fibroblasts. Connexins and cadherins form gap and adherens junctions at the interface of CSCs–lineage-committed cells and supporting cells. The undifferentiated state of CSCs is coupled with the expression of α4-integrin, which colocalizes with the α2-chain of laminin and fibronectin. CSCs divide symmetrically and asymmetrically, but asymmetric division predominates, and the replicating CSC gives rise to one daughter CSC and one daughter committed cell. By this mechanism of growth kinetics, the pool of primitive CSCs is preserved, and a myocyte progeny is generated together with endothelial and smooth muscle cells. Thus, CSCs regulate myocyte turnover that is heterogeneous across the heart, faster at the apex and atria, and slower at the base–midregion of the ventricle. PMID:16754876

  18. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type. PMID:16380640

  19. Intensive care outcomes in adult hematopoietic stem cell transplantation patients

    PubMed Central

    Bayraktar, Ulas D; Nates, Joseph L

    2016-01-01

    Although outcomes of intensive care for patients undergoing hematopoietic stem cell transplantation (HSCT) have improved in the last two decades, the short-term mortality still remains above 50% among allogeneic HSCT patients. Better selection of HSCT patients for intensive care, and consequently reduction of non-beneficial care, may reduce financial costs and alleviate patient suffering. We reviewed the studies on intensive care outcomes of patients undergoing HSCT published since 2000. The risk factors for intensive care unit (ICU) admission identified in this report were primarily patient and transplant related: HSCT type (autologous vs allogeneic), conditioning intensity, HLA mismatch, and graft-versus-host disease (GVHD). At the same time, most of the factors associated with ICU outcomes reported were related to the patients’ functional status upon development of critical illness and interventions in ICU. Among the many possible interventions, the initiation of mechanical ventilation was the most consistently reported factor affecting ICU survival. As a consequence, our current ability to assess the benefit or futility of intensive care is limited. Until better ICU or hospital mortality prediction models are available, based on the available evidence, we recommend practitioners to base their ICU admission decisions on: Patient pre-transplant comorbidities, underlying disease status, GVHD diagnosis/grade, and patients’ functional status at the time of critical illness. PMID:26862493

  20. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors.

    PubMed

    Swetha, G; Chandra, Vikash; Phadnis, Smruti; Bhonde, Ramesh

    2011-02-01

    Glomerular parietal epithelial cells (GPECs) are known to revert to embryonic phenotype in response to renal injury. However, the mechanism of de-differentiation in GPECs and the underlying cellular processes are not fully understood. In the present study, we show that cultured GPECs of adult murine kidney undergo epithelial-mesenchymal transition (EMT) to generate cells, which express CD24, CD44 and CD29 surface antigens. Characterization by qRT-PCR and immunostaining of these clonogenic cells demonstrate that they exhibit metastable phenotype with co-expression of both epithelial (cytokeratin-18) and mesenchymal (vimentin) markers. Transcript analysis by qRT-PCR revealed high expression of metanephric mesenchymal (Pax-2, WT-1, Six-1, Eya-1, GDNF) and uteric bud (Hoxb-7, C-Ret) genes in these cells, indicating their bipotent progenitor status. Incubation of GPECs with EMT blocker Prostaglandin E2, resulted in low expression of renal progenitor markers reflecting the correlation between EMT and acquired stemness in these cells. Additional in vitro renal commitment assays confirmed their functional staminality. When injected into E13.5 kidney rudiments, the cells incorporated into the developing kidney primordia and co-culture with E13.5 spinal cord resulted in branching and tubulogenesis in these cells. When implanted under renal capsule of unilaterally nephrectomized mice, these cells differentiated into immature glomeruli and vascular ducts. Our study demonstrates that EMT plays a major role in imparting plasticity to terminally differentiated GPECs by producing metastable cells with traits of kidney progenitors. The present study would improve our understanding on epithelial cell plasticity, furthering our knowledge of its role in renal repair and regeneration. PMID:19840197

  1. The Importance of Symptom Validity Testing in Adolescents and Young Adults Undergoing Assessments for Learning or Attention Difficulties

    ERIC Educational Resources Information Center

    Harrison, Allyson G.; Green, Paul; Flaro, Lloyd

    2012-01-01

    It is almost self-evident that test results will be unreliable and misleading if those undergoing assessments do not make a full effort on testing. Nevertheless, objective tests of effort have not typically been used with young adults to determine whether test results are valid or not. Because of the potential economic and/or recreational benefits…

  2. Catalog of gene expression in adult neural stem cells and their in vivo microenvironment

    SciTech Connect

    Williams, Cecilia; Wirta, Valtteri; Meletis, Konstantinos; Wikstroem, Lilian; Carlsson, Leif; Frisen, Jonas; Lundeberg, Joakim . E-mail: joakim.lundeberg@biotech.kth.se

    2006-06-10

    Stem cells generally reside in a stem cell microenvironment, where cues for self-renewal and differentiation are present. However, the genetic program underlying stem cell proliferation and multipotency is poorly understood. Transcriptome analysis of stem cells and their in vivo microenvironment is one way of uncovering the unique stemness properties and provides a framework for the elucidation of stem cell function. Here, we characterize the gene expression profile of the in vivo neural stem cell microenvironment in the lateral ventricle wall of adult mouse brain and of in vitro proliferating neural stem cells. We have also analyzed an Lhx2-expressing hematopoietic-stem-cell-like cell line in order to define the transcriptome of a well-characterized and pure cell population with stem cell characteristics. We report the generation, assembly and annotation of 50,792 high-quality 5'-end expressed sequence tag sequences. We further describe a shared expression of 1065 transcripts by all three stem cell libraries and a large overlap with previously published gene expression signatures for neural stem/progenitor cells and other multipotent stem cells. The sequences and cDNA clones obtained within this framework provide a comprehensive resource for the analysis of genes in adult stem cells that can accelerate future stem cell research.

  3. Axonal Control of the Adult Neural Stem Cell Niche

    PubMed Central

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  4. Axonal control of the adult neural stem cell niche.

    PubMed

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D; Tecott, Laurence H; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-04-01

    The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSCs) in the walls of the lateral ventricles of the adult brain. How the adult brain's neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  5. Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation

    PubMed Central

    Schneider, Leonid; d’Adda di Fagagna, Fabrizio

    2012-01-01

    Bromodeoxyuridine (5-bromo-2′-deoxyuridine, BrdU) is a halogenated nucleotide of low toxicity commonly used to monitor DNA replication. It is considered a valuable tool for in vitro and in vivo studies, including the detection of the small population of neural stem cells (NSC) in the mammalian brain. Here, we show that NSC grown in self-renewing conditions in vitro, when exposed to BrdU, lose the expression of stem cell markers like Nestin, Sox2 and Pax6 and undergo glial differentiation, strongly up-regulating the astrocytic marker GFAP. The onset of GFAP expression in BrdU exposed NSC was paralleled by a reduced expression of key DNA methyltransferases (DNMT) and a rapid loss of global DNA CpG methylation, as we determined by our specially developed analytic assay. Remarkably, a known DNA demethylating compound, 5-aza-2′-deoxycytidine (Decitabine), had similar effect on demethylation and differentiation of NSC. Since our key findings apply also to NSC derived from murine forebrain, our observations strongly suggest more caution in BrdU uses in stem cells research. We also propose that BrdU and its related substances may also open new opportunities for differentiation therapy in oncology. PMID:22379135

  6. Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation.

    PubMed

    Schneider, Leonid; d'Adda di Fagagna, Fabrizio

    2012-07-01

    Bromodeoxyuridine (5-bromo-2'-deoxyuridine, BrdU) is a halogenated nucleotide of low toxicity commonly used to monitor DNA replication. It is considered a valuable tool for in vitro and in vivo studies, including the detection of the small population of neural stem cells (NSC) in the mammalian brain. Here, we show that NSC grown in self-renewing conditions in vitro, when exposed to BrdU, lose the expression of stem cell markers like Nestin, Sox2 and Pax6 and undergo glial differentiation, strongly up-regulating the astrocytic marker GFAP. The onset of GFAP expression in BrdU exposed NSC was paralleled by a reduced expression of key DNA methyltransferases (DNMT) and a rapid loss of global DNA CpG methylation, as we determined by our specially developed analytic assay. Remarkably, a known DNA demethylating compound, 5-aza-2'-deoxycytidine (Decitabine), had similar effect on demethylation and differentiation of NSC. Since our key findings apply also to NSC derived from murine forebrain, our observations strongly suggest more caution in BrdU uses in stem cells research. We also propose that BrdU and its related substances may also open new opportunities for differentiation therapy in oncology. PMID:22379135

  7. Physical Therapy Management for Adult Patients Undergoing Cardiac Surgery: A Canadian Practice Survey

    PubMed Central

    Anderson, Cathy M.; Jackson, Jennifer; Lucy, S. Deborah; Prendergast, Monique; Sinclair, Susanne

    2010-01-01

    ABSTRACT Purpose: To determine current Canadian physical therapy practice for adult patients requiring routine care following cardiac surgery. Methods: A telephone survey was conducted of a selected sample (n=18) of Canadian hospitals performing cardiac surgery to determine cardiorespiratory care, mobility, exercises, and education provided to patients undergoing cardiac surgery. Results: An average of 21 cardiac surgeries per week (range: 6–42) were performed, with an average length of stay of 6.4 days (range: 4.0–10.6). Patients were seen preoperatively at 7 of 18 sites and on postoperative day 1 (POD-1) at 16 of 18 sites. On POD-1, 16 sites performed deep breathing and coughing, 7 used incentive spirometers, 13 did upper-extremity exercises, and 12 did lower-extremity exercises. Nine sites provided cardiorespiratory treatment on POD-3. On POD-1, patients were dangled at 17 sites and mobilized out of bed at 13. By POD-3, patients ambulated 50–120 m per session 2–5 times per day. Sternal precautions were variable, but the lifting limit was reported as ranging between 5 lb and 10 lb. Conclusions: Canadian physical therapists reported the provision of cardiorespiratory treatment after POD-1. According to current available evidence, this level of care may be unnecessary for uncomplicated patients following cardiac surgery. In addition, some sites provide cardiorespiratory treatment techniques that are not supported by evidence in the literature. Further research is required. PMID:21629599

  8. The relapse risk of AML patients undergoing autologous transplantation correlates with the stem cell mobilizing potential.

    PubMed

    von Grünigen, Isabelle; Raschle, Joëlle; Rüsges-Wolter, Ilka; Taleghani, Behrouz Mansouri; Mueller, Beatrice U; Pabst, Thomas

    2012-11-01

    Autologous stem cell transplantation (ASCT) is widely used to consolidate first remission in AML. We determined the significance of circulating CD34+ cells at the day of blood stem cell collection in 78 AML patients. Patients mobilizing more than 60,000 CD34+ cells/ml had shorter overall survival (OS; P=0.0274), shorter time to progression (TTP; P=0.0014), and a higher relapse rate (P=0.0177). High levels of CD34+ cells were an independent marker for shorter OS and TTP in a multivariate analysis. These data suggest that ASCT is associated with unfavorable outcome in AML patients with high levels of mobilized peripheral CD34+ cells. PMID:22727508

  9. Adult Mesenchymal Stem Cells: When, Where, and How

    PubMed Central

    Caplan, Arnold I.

    2015-01-01

    Adult mesenchymal stem cells (MSCs) have profound medicinal effects at body sites of tissue injury, disease, or inflammation as either endogenously or exogenously supplied. The medicinal effects are either immunomodulatory or trophic or both. When to deliver these mediators of regeneration, where, and by what delivery apparatus or mechanism will directly determine their medical efficacy. The MSCs help manage the innate regenerative capacity of almost every body tissue and the MSCs have only recently been fully appreciated. Perhaps the most skilled physician-manager of the body's innate regenerative capacity is in orthopedics where the vigorous regeneration and repair capacity of bone through local MSCs-titers is expertly managed by the orthopaedic physician. The challenge is to extend MSCs expertise to address other tissue dysfunctions and diseases. The medicine of tomorrow will encompass optimizing the tissues' intrinsic regenerative potential through management of local MSCs. PMID:26273305

  10. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.

    PubMed

    Li, Xiaoheng; Wang, Zhao; Jiang, Zhenming; Guo, Jingjing; Zhang, Yuxi; Li, Chenhao; Chung, Jinyong; Folmer, Janet; Liu, June; Lian, Qingquan; Ge, Renshan; Zirkin, Barry R; Chen, Haolin

    2016-03-01

    Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry. PMID:26929346

  11. Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain.

    PubMed

    Barbosa, Joana S; Sanchez-Gonzalez, Rosario; Di Giaimo, Rossella; Baumgart, Emily Violette; Theis, Fabian J; Götz, Magdalena; Ninkovic, Jovica

    2015-05-15

    Adult neural stem cells are the source for restoring injured brain tissue. We used repetitive imaging to follow single stem cells in the intact and injured adult zebrafish telencephalon in vivo and found that neurons are generated by both direct conversions of stem cells into postmitotic neurons and via intermediate progenitors amplifying the neuronal output. We observed an imbalance of direct conversion consuming the stem cells and asymmetric and symmetric self-renewing divisions, leading to depletion of stem cells over time. After brain injury, neuronal progenitors are recruited to the injury site. These progenitors are generated by symmetric divisions that deplete the pool of stem cells, a mode of neurogenesis absent in the intact telencephalon. Our analysis revealed changes in the behavior of stem cells underlying generation of additional neurons during regeneration. PMID:25977550

  12. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons?

    PubMed

    Liao, Song-Yan; Tse, Hung-Fat

    2013-01-01

    Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed. PMID:24476362

  13. In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation

    PubMed Central

    Barazzuol, Lara; Jeggo, Penny A.

    2016-01-01

    The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5–14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4Y288C), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4Y288C embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4Y288C mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis. PMID:27125639

  14. In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation.

    PubMed

    Barazzuol, Lara; Jeggo, Penny A

    2016-08-01

    The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5-14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C) ), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4(Y288C) embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4(Y288C) mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis. PMID:27125639

  15. Microbiota Manipulation With Prebiotics and Probiotics in Patients Undergoing Stem Cell Transplantation

    PubMed Central

    Andermann, Tessa M.; Rezvani, Andrew; Bhatt, Ami S.

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) is a potentially life-saving therapy that often comes at the cost of complications such as graft-versus-host disease and post-transplant infections. With improved technology to under-stand the ecosystem of microorganisms (viruses, bacteria, fungi, and microeukaryotes) that make up the gut microbiota, there is increasing evidence of the microbiota’s contribution to the development of post-transplant complications. Antibiotics have traditionally been the mainstay of microbiota-altering therapies available to physicians. Recently, interest is increasing in the use of prebiotics and probiotics to support the development and sustainability of a healthier microbiota. In this review, we will describe the evidence for the use of prebiotics and probiotics in combating microbiota dysbiosis and explore the ways in which they may be used in future research to potentially improve clinical outcomes and decrease rates of graft-versus-host disease (GVHD) and post-transplant infection. PMID:26780719

  16. Microbiota Manipulation With Prebiotics and Probiotics in Patients Undergoing Stem Cell Transplantation.

    PubMed

    Andermann, Tessa M; Rezvani, Andrew; Bhatt, Ami S

    2016-02-01

    Hematopoietic stem cell transplantation (HSCT) is a potentially life-saving therapy that often comes at the cost of complications such as graft-versus-host disease and post-transplant infections. With improved technology to understand the ecosystem of microorganisms (viruses, bacteria, fungi, and microeukaryotes) that make up the gut microbiota, there is increasing evidence of the microbiota's contribution to the development of post-transplant complications. Antibiotics have traditionally been the mainstay of microbiota-altering therapies available to physicians. Recently, interest is increasing in the use of prebiotics and probiotics to support the development and sustainability of a healthier microbiota. In this review, we will describe the evidence for the use of prebiotics and probiotics in combating microbiota dysbiosis and explore the ways in which they may be used in future research to potentially improve clinical outcomes and decrease rates of graft-versus-host disease (GVHD) and post-transplant infection. PMID:26780719

  17. Comparison of Three Distinct Prophylactic Agents Against Invasive Fungal Infections in Patients Undergoing Haplo-identical Hematopoietic Stem Cell Transplantation and Post-transplant Cyclophosphamide

    PubMed Central

    El-Cheikh, Jean; Crocchiolo, Roberto; Vai, Andrea; Furst, Sabine; Bramanti, Stefania; Sarina, Barbara; Granata, Angela; Faucher, Catherine; Mohty, Bilal; Harbi, Samia; Bouabdallah, Reda; Vey, Norbert; Santoro, Armando; Chabannon, Christian; Castagna, Luca; Blaise, Didier

    2015-01-01

    Over the past decade, invasive fungal infections (IFIs) have remained an important problem in patients undergoing allogeneic haematopoietic stem cell transplantation (Allo-HSCT). The optimal approach for prophylactic antifungal therapy has yet to bedetermined. We conducted a retrospective analysis, comparing the safety and efficacy of micafungin 50mg/day vs. fluconazole 400mg/day vs. itraconazole 200mg/day as prophylaxis for adult patients with various haematological diseases receiving haploidentical hematopoietic stem cell transplantation (haplo-HSCT) followed by high-dose cyclophosphamide (PT-Cy). Overall, 99 patients were identified: 30 patients received micafungin, 50 and 19 patients received itraconazole and fluconazole, respectively. After a median follow-up of 12 months (range: 1–51), proven or probable IFIs were reported in 3 patients (10%) in the micafungin, 5 patients in the itraconazole (10%) and 2 patients (11%) in the fluconazole group (p=0.998). Fewer patients in the micafungin group had invasive aspergillosis (1 [3%] vs. 3 [6%] in the itraconazole vs. 2 [11%] in the fluconazole group, p=0.589). Four patients (13%) in the micafungin group vs 13 (26%) patients in the itraconazole group and 10 (53%) patients in the fluconazole received empirical antifungal therapy (P = 0.19). No serious adverse events related to treatment were reported by patients, and there was no treatment discontinuation because of drug-related adverse events in both groups. The present analysis shows that micafungin did better than fluconazole in preventing invasive aspergillosis after transplant in these high-risk hematological diseases, as expected. In addition, micafungin was more effective than itraconazole in preventing all IFI episodes when also considering possible fungal infections. Future prospective studies would shed light on this issue, concerning this increasingly used transplant platform. PMID:26401237

  18. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  19. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  20. Feasibility of an inpatient exercise intervention for children undergoing hematopoietic stem cell transplant.

    PubMed

    Bogg, Tina Fung Ting; Broderick, Carolyn; Shaw, Peter; Cohn, Richard; Naumann, Fiona Leigh

    2015-12-01

    With improving survival rates following HSCT in children, QOL and management of short- and long-term effects need to be considered. Exercise may help mitigate fatigue and declines in fitness and strength. The aims of this study were to assess the feasibility of an inpatient exercise intervention for children undergoing HSCT and observe the changes in physical and psychological health. Fourteen patients were recruited, mean age 10 yr. A 6MWT, isometric upper and lower body strength, balance, fatigue, and QOL were assessed prior to Tx and six wk post-Tx. A supervised exercise program was offered five days per week during the inpatient period and feasibility assessed through uptake rate. The study had 100% program completion and 60% uptake rate of exercise sessions. The mean (± s.d.) weekly activity was 117.5 (± 79.3) minutes. Younger children performed significantly more minutes of exercise than adolescents. At reassessment, strength and fatigue were stabilized while aerobic fitness and balance decreased. QOL revealed a non-statistical trend towards improvement. No exercise-related adverse events were reported. A supervised inpatient exercise program is safe and feasible, with potential physiological and psychosocial benefits. PMID:26518227

  1. Risk Factors for Delirium in Patients Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Weckmann, Michelle T.; Gingrich, Roger; Mills, James A.; Hook, Larry; Beglinger, Leigh J.

    2013-01-01

    Background Delirium is common following hematopoietic stem-cell transplantation (HSCT) and is associated with increased morbidity and mortality. Early recognition and treatment have been shown to improve long term outcomes. We sought to investigate the relationship between potential risk-factors and the development of delirium following HSCT. Methods Fifty-four inpatients admitted for HSCT were assessed prospectively for delirium every 2-3 days through their inpatient stay using standardized delirium and neuropsychological measures. Patient’s self-reports of medical history, medical records, and neurocognitive and psychiatric assessments were used to identify risk factors. Both pre- and post-HSCT risk factors were examined. Results Delirium incidence was 35% and occurred with highest frequency in the 2 weeks following transplant. The only pre-transplantation risk factors was lower oxygen saturation (p=0.003). Post-transplantation risk factors for delirium included higher creatinine (p<0.0001), higher blood urea nitrogen levels (p=0.005), lower creatinine clearance (p=0.0006), lower oxygen saturation (p=0.001), lower hemoglobin (p=0.04) and lower albumin (p=0.03). There was no observed association with level of cognitive performance, transplant type, disease severity, medical co-morbidity index, age or conditioning regimen. Conclusion Routine laboratory values can assist in the identification of high risk patients before delirium onset to improve early detection and treatment of delirium following HSCT. PMID:22860240

  2. Views of Patients Undergo Hematopoietic Stem Cell Transplantation on Their Basic Needs

    PubMed Central

    Sayadi, Leila; Jafaraghaee, Fateme; Jeddian, Alireza; Atrian, Mahboobe Kafaei; Akbari, Azam; Tootoonchian, Farhood

    2013-01-01

    Background Today, hematopoietic stem cells transplantation (HSCT) has been accepted as a therapeutic approach and is widely applied in many patients with disorders of hematopoietic systems or patients with malignancies. Concomitant use of this therapeutic approach with long term chemotherapeutic procedures and hospitalization requires special care. This study was conducted to examine basic needs of patients after HSCT. Methods In this study, 171 hospitalized patients were selected after transplantation, using convenience sampling method. They completed a questionnaire formulated on the basis of Yura and Walsh Theory of Basic Needs. Results Most of the needs reported in the areas of vital functions, functional health status, and reaction to functional health status were chills (76.8%), insomnia (68.5%), and dissatisfaction with changes of lifestyle/habits (53.6%), respectively. Furthermore, 94.1% of the patients were aware of their disease. Conclusion This study identified a broad spectrum of the needs in HSCT patients. Given the importance of determining needs to reach thorough nursing care, paying attention to the provided list can facilitate the achievement of the goals of the care program for these patients. PMID:24505524

  3. Rifaximin preserves intestinal microbiota balance in patients undergoing allogeneic stem cell transplantation.

    PubMed

    Weber, D; Oefner, P J; Dettmer, K; Hiergeist, A; Koestler, J; Gessner, A; Weber, M; Stämmler, F; Hahn, J; Wolff, D; Herr, W; Holler, E

    2016-08-01

    Intestinal dysbiosis has been associated with acute gastrointestinal GvHD and poor outcome following allogeneic stem cell transplantation (ASCT). To assess the effect of a switch in 2012 from ciprofloxacin/metronidazole to rifaximin for gut decontamination on intestinal microbiota composition and ASCT outcome, we retrospectively analyzed 394 patients receiving ASCT from September 2008 through June 2015. In 131 and 90 patients, respectively, urinary 3-indoxyl sulfate levels and intestinal enterococcal load were measured before conditioning and weekly within the first 28 days after ASCT. The use of rifaximin correlated with lower enterococcal positivity (6.9 vs 21.9%, P=0.05) and higher urinary 3-indoxyl sulfate concentrations (10.5 vs 4.6 μmoL/mmoL crea, P<0.001) after ASCT. Patients on rifaximin showed lower 1-year transplant-related mortality (P=0.04) and higher overall survival (P=0.008). Treatment of infectious complications with systemic antibiotics did not abrogate the beneficial effects of rifaximin on intestinal microbiota composition in the early course of ASCT and outcome. The data underscore the importance of maintaining a diverse population of symbiotic and mutualistic bacteria in the gut on ASCT outcome. PMID:26999466

  4. Clofarabine-associated acute kidney injury in patients undergoing hematopoietic stem cell transplant.

    PubMed

    Petri, Camille R; O'Donnell, Peter H; Cao, Hongyuan; Artz, Andrew S; Stock, Wendy; Wickrema, Amittha; Hard, Marjie; van Besien, Koen

    2014-12-01

    Abstract We examined clofarabine pharmacokinetics and association with renal toxicity in 62 patients participating in a phase I-II study of clofarabine-melphalan-alemtuzumab conditioning for hematopoietic stem cell transplant (HSCT). Pharmacokinetic parameters, including clofarabine area under the concentration-time curve (AUC), maximum concentration and clearance, were measured, and patients were monitored for renal injury. All patients had normal pretreatment creatinine values, but over half (55%) experienced acute kidney injury (AKI) after clofarabine administration. Age was the strongest predictor of AKI, with older patients at greater risk (p = 0.002). Clofarabine AUC was higher in patients who developed AKI, and patients with the highest dose-normalized AUCs experienced the most severe grades of AKI (p = 0.01). Lower baseline renal function, even when normal, was associated with lower clofarabine clearance (p = 0.008). These data suggest that renal-adjustment of clofarabine dosing should be considered for older and at-risk patients even when renal function is ostensibly normal. PMID:24564572

  5. Prevalence of Resistant Gram-Negative Bacilli in Bloodstream Infection in Febrile Neutropenia Patients Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Wang, Ling; Wang, Ying; Fan, Xing; Tang, Wei; Hu, Jiong

    2015-01-01

    Abstract Bloodstream infection (BSI) is an important cause of morbidity and mortality in patients undergoing hematopoietic stem cell transplantation (HSCT). To evaluate the causative bacteria and identify risk factors for BSI associated mortality in febrile neutropenia patients undergoing HSCT, we collected the clinical and microbiological data from patients underwent HSCT between 2008 and 2014 and performed a retrospective analysis. Throughout the study period, among 348 episodes of neutropenic fever in patients underwent HSCT, 89 episodes in 85 patients had microbiological defined BSI with a total of 108 isolates. Gram-negative bacteria (GNB) were the most common isolates (76, 70.3%) followed by gram-positive bacteria (GPB, 29, 26.9%) and fungus (3, 2.8%). As to the drug resistance, 26 multiple drug resistance (MDR) isolates were identified. Resistant isolates (n = 23) were more common documented in GNB, mostly Escherichia coli (9/36, 25%) and Klebsiella pneumonia (6/24, 25%). A total of 12 isolated were resistant to carbapenem including 4 K pneumoniae (4/24, 16.7%), 3 Stenotrophomonas maltophilia, and 1 Pseudomonas aeruginosa and other 4 GNB isolates (Citrobacter freumdii, Pseudomonas stutzeri, Acinetobacter baumanii, and Chryseobacterium indologenes). As to the GPB, only 3 resistant isolates were documented including 2 methicillin-resistant isolates (Staphylococcus hominis and Arcanobacterium hemolysis) and 1 vancomycin-resistant Enterococcus faecium. Among these 85 patients with documented BSI, 11 patients died of BSI as primary or associated cause with a BSI-related mortality of 13.1 ± 3.7% and 90-day overall survival after transplantation at 80.0 ± 4.3%. Patients with high-risk disease undergoing allo-HSCT, prolonged neutropenia (≥15 days) and infection with carbapenem-resistant GNB were associated with BSI associated mortality in univariate and multivariate analyses. Our report revealed a prevalence of GNB in BSI of neutropenic patients

  6. Acute Kidney Injury and the Risk of Mortality in Children Undergoing Hematopoietic Stem Cell Transplantation.

    PubMed

    Kizilbash, Sarah J; Kashtan, Clifford E; Chavers, Blanche M; Cao, Qing; Smith, Angela R

    2016-07-01

    Acute kidney injury (AKI) is a well-documented complication of pediatric hematopoietic stem cell transplantation (HSCT). Dialysis after HSCT is associated with a lower overall survival (OS); however, the association between less severe AKI and OS is unclear. We retrospectively studied 205 consecutive pediatric HSCT patients to determine the incidence and impact of all stages of AKI on OS in pediatric HSCT recipients. We used the peak pRIFLE grade during the first 100 days to classify AKI (ie, R = risk, I = injury, F = failure, L = loss of function, E = end-stage renal disease) and used the modified Schwartz formula to estimate glomerular filtration rate. AKI was observed in 173 of 205 patients (84%). The 1-year OS rate decreased significantly with an increasing severity of pRIFLE grades (P < .01). There was no difference in the OS between patients without AKI and the R/I group. Regardless of the dialysis status, stages F/L/E had significantly lower rates of OS compared with patients without AKI or R/I (P < .01). There was no difference in OS among patients with dialysis and F/L/E without dialysis (P = .65). Stages F/L/E predicted mortality independent of acute graft-versus-host disease, gender, and malignancy. The OS of children after HSCT decreases significantly with an increasing severity of AKI within the first 100 days post-transplant. Although our data did not show an increased risk of mortality with stages R/I, stages F/L/E predicted mortality regardless of dialysis. Prevention and minimization of AKI may improve survival after pediatric HSCT. PMID:27034153

  7. Differentiation of embryonic and adult stem cells into insulin producing cells.

    PubMed

    Zulewski, H

    2008-03-01

    Replacement of insulin producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans is successful in experienced centers. The wider application of this therapy, however, is limited by the lack of donor organs. Insulin producing cells generated from stem cells represent an attractive alternative. Stem cells with the potential to differentiate into insulin producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns but research with human ESC may help us to decipher important steps in the differentiation process in vitro since almost all information available on pancreas development are based on animal studies. The present review summarizes the current knowledge on the development of insulin producing cells from embryonic and adult stem cells with special emphasis on pancreatic, hepatic and human mesenchymal stem cells. PMID:18427390

  8. Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders?

    PubMed

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  9. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    PubMed Central

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  10. Roles of neural stem cells and adult neurogenesis in adolescent alcohol use disorders

    PubMed Central

    Nixon, K.; Morris, S.A.; Liput, D.J.; Kelso, M.L.

    2009-01-01

    This review discusses the contributions of a newly considered form of plasticity, the ongoing production of new neurons from neural stem cells, or adult neurogenesis, within the context of neuropathologies that occur with excessive alcohol intake in the adolescent. Neural stem cells and adult neurogenesis are now thought to contribute to the structural integrity of the hippocampus, a limbic system region involved in learning, memory, behavioral control, and mood. In adolescents with alcohol use disorders, the hippocampus appears to be particularly vulnerable to the neurodegenerative effects of alcohol, but the role of neural stem cells and adult neurogenesis in alcoholic neuropathology has only recently been considered. This review encompasses a brief overview of neural stem cells and the processes involved in adult neurogenesis, how neural stem cells are affected by alcohol, and possible differences in the neurogenic niche between adults and adolescents. Specifically, what is known about developmental differences in adult neurogenesis between the adult and adolescent is gleaned from the literature, as well as how alcohol affects this process differently between the age groups. And finally, this review suggests differences that may exist in the neurogenic niche between adults and adolescents and how these differences may contribute to the susceptibility of the adolescent hippocampus to damage. However, many more studies are needed to discern whether these developmental differences contribute to the vulnerability of the adolescent to developing an alcohol use disorder. PMID:20113873

  11. Differentiation of stem cells from human infrapatellar fat pad: characterization of cells undergoing chondrogenesis.

    PubMed

    Felimban, Raed; Ye, Ken; Traianedes, Kathy; Di Bella, Claudia; Crook, Jeremy; Wallace, Gordon G; Quigley, Anita; Choong, Peter F M; Myers, Damian E

    2014-08-01

    Hyaline cartilage repair is a significant challenge in orthopedics and current techniques result in formation of fibrocartilage. Human infrapatellar fat pad (hIPFP)-derived mesenchymal stem cells (MSCs) are capable of differentiation into multiple tissue lineages, including cartilage and bone. Chondrogenesis is a crucial part of normal skeletal development but the molecular mechanisms are yet to be completely defined. In this study we sourced hIPFP-derived MSCs utilizing chondrogenic growth factors, transforming growth factor beta-3, and bone morphogenetic protein-6, to form hyaline-like cartilage in micromass cultures and we studied chondrogenic development of 7, 14, and 28 days. The purpose of this study was (1) to characterize chondrogenesis from MSCs derived from hIPFP tissue by conventional techniques and (2) to characterize temporal changes of key molecular components during chondrogenesis using microarray gene expression. Endpoints included histology, immunohistochemistry (IHC), gene expression profiles using a microarray technique, and changes in expression of specific genes using quantitative real-time polymerase chain reaction. Over 14-28 days, clusters of encapsulated chondrocytes formed surrounded by collagen type II and aggrecan in the extracellular matrix (ECM). Collagen type II and aggrecan production was confirmed using IHC and chondrogenic lineage markers were studied; SRY-related transcription factor (SOX9), collagen type II alpha 1 (COL2A1), and aggrecan gene expression increased significantly over the time course. Normalized microarray highlighted 608 differentially expressed genes; 10 chondrogenic genes were upregulated (2- to 87-fold), including COL2A1, COL10A1, COL9A1, COL11A1, COL9A2, COL11A2, COL1A1, COMP, SOX9, and COL3A1. We found that the upregulated genes (twofold or greater) represent significant level of expression (enrichment score) for the ECM structural constituent of the molecular functional at days 7, 14, and 28 during

  12. In vitro generation of pancreatic endocrine cells from human adult fibroblast-like limbal stem cells.

    PubMed

    Criscimanna, Angela; Zito, Giovanni; Taddeo, Annalisa; Richiusa, Pierina; Pitrone, Maria; Morreale, Daniele; Lodato, Gaetano; Pizzolanti, Giuseppe; Citarrella, Roberto; Galluzzo, Aldo; Giordano, Carla

    2012-01-01

    Stem cells might provide unlimited supply of transplantable cells for β-cell replacement therapy in diabetes. The human limbus is a highly specialized region hosting a well-recognized population of epithelial stem cells, which sustain the continuous renewal of the cornea, and the recently identified stromal fibroblast-like stem cells (f-LSCs), with apparent broader plasticity. However, the lack of specific molecular markers for the identification of the multipotent limbal subpopulation has so far limited the investigation of their differentiation potential. In this study we show that the human limbus contains uncommitted cells that could be potentially harnessed for the treatment of diabetes. Fourteen limbal biopsies were obtained from patients undergoing surgery for ocular diseases not involving the conjunctiva or corneal surface. We identified a subpopulation of f-LSCs characterized by robust proliferative capacity, expressing several pluripotent stem cell markers and exhibiting self-renewal ability. We then demonstrated the potential of f-LSCs to differentiate in vitro into functional insulin-secreting cells by developing a four-step differentiation protocol that efficiently directed f-LSCs towards the pancreatic endocrine cell fate. The expression of specific endodermal, pancreatic, islet, and β-cell markers, as well as functional properties of f-LSC-derived insulin-producing cells, were evaluated during differentiation. With our stage-specific approach, up to 77% of f-LSCs eventually differentiated into cells expressing insulin (also assessed as C-peptide) and exhibited phenotypic features of mature β-cells, such as expression of critical transcription factors and presence of secretory granules. Although insulin content was about 160-fold lower than what observed in adult islets, differentiated cells processed ∼98% of their proinsulin content, similar to mature β-cells. Moreover, they responded in vitro in a regulated manner to multiple secretory stimuli

  13. A Randomized Clinical Trial Comparing G-CSF Administration Sites for Mobilization of Peripheral Blood Stem Cells for Patients with Hematological Malignancies Undergoing Autologous Stem Cell Transplantation

    PubMed Central

    Renfroe, Heather; Arnold, Mike; Vaughn, Louette; Harvey, R. Donald; Hamilton, Ellie; Lonial, Sagar; Khoury, H. Jean; Kaufman, Jonathan L.; Lechowicz, Mary Jo; Flowers, Christopher R.; Waller, Edmund K.

    2016-01-01

    Background To investigate whether granulocyte colony stimulating factor (G-CSF) injection in lower adipose-tissue-containing sites (arms and legs) would result in a lower exposure and reduced stem cell collection efficiency compared with injection into abdominal skin. Study Design and Methods We completed a prospective randomized study to determine the efficacy and tolerability of different injection sites for patients with multiple myeloma or lymphoma undergoing stem cell mobilization and apheresis. Primary end-points were the number of CD34+ cells collected and the number of days of apheresis. Forty patients were randomized to receive cytokine injections in their abdomen (group A) or extremities (group B). Randomization was stratified based upon diagnosis (myeloma; N=29 vs. lymphoma; N=11), age, and mobilization strategy, and balanced across demographic factors and body mass index. Results 35 subjects were evaluable for the primary end-point: 18 in group A and 17 in group B. One evaluable subject in each group failed to collect a minimum dose of at least 2.0 × 106 CD34+ cells/kg. The mean numbers of CD34+ cells (±SD) collected were not different between groups A and B (9.15 ± 4.7 × 106/kg versus 9.85 ± 5 × 106/kg, respectively; p=NS) following a median of 2 days apheresis. Adverse events were not different between the two groups. Conclusion The site of G-CSF administration does not affect the number of CD34+ cells collected by apheresis or the duration of apheresis needed to reach the target cell dose. PMID:21332729

  14. Adiponectin and resistin in acute and chronic graft-vs-host disease patients undergoing allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Robak, Oliver; Kuzmina, Zoya; Winkler, Andreas; Kalhs, Peter; Rabitsch, Werner; Greinix, Hildegard

    2016-01-01

    Aim To investigate the association of adiponectin and resistin levels in patients undergoing hematopoietic stem cell transplantation (HSCT) with the clinical outcome, including the occurrence of acute and chronic graft-vs-host disease (GVHD), non-relapse mortality, and overall survival. Methods We prospectively collected serum samples from 40 patients undergoing either autologous (n = 12; 10 male) or allogeneic (n = 28; 11 male) HSCT for up to 12 months post HSCT and determined adiponectin and resistin serum concentrations using enzyme-linked immunosorbent assay. Results There were no significant differences in adiponectin levels (18.5 vs 9.3 µg/mL, P = 0.071) and adiponectin/BMI ratio (0.82 vs 0.39, P = 0.068) between patients with acute GVHD grades 2-4 and autologous controls. However, resistin values were significantly lower in patients with acute GVHD grades 2-4 than in autologous controls (4.6 vs 7.3 ng/mL, P = 0.030). Adiponectin levels were higher in patients with chronic GVHD (n = 17) than in autologous controls (13.5 vs 7.6 µg/mL, P = 0.051), but the difference was not significant. Adiponectin/BMI ratio was significantly higher in patients with chronic GVHD than in autologous controls (0.59 vs 0.25, P = 0.006). Patients dying from relapse also had significantly lower adiponectin levels (8.2 µg/mL) and adiponectin/BMI ratio (0.3) on admission than surviving allogeneic (15.8 µg/mL, P = 0.030 and 0.7, P = 0.004) and surviving autologous patients (19.2 µg/mL, P = 0.031 and 0.7, P = 0.021). Conclusion Adiponectin and resistin levels were altered in patients with acute and chronic GVHD compared to autologous controls and were associated with overall survival and relapse mortality in patients undergoing allogeneic HSCT. PMID:27374827

  15. Exploring the Cancer Experiences of Young Adults in the Context of Stem Cell Transplantation

    PubMed Central

    Brassil, Kelly J; Engebretson, Joan C; Armstrong, Terri S; Segovia, Julie; Worth, Laura L; Summers, Barbara L

    2014-01-01

    Background Cancer is the leading cause of non-accidental morbidity and mortality among young adults (YAs) in the United States. Stem cell transplantation (SCT), a treatment modality for a variety of YA malignancies, often requires prolonged hospitalization and immune-compromising treatment regimens. SCT may isolate YAs physically and emotionally, contributing to uncertainty about treatment processes, outcomes, and long-term sequelae. Studies in this population suggest that uncertainty can contribute to difficulty accomplishing basic developmental tasks. Few studies have examined the experiences of YAs in active cancer treatment, particularly those undergoing SCT. Objectives This study explored the cancer experiences of YAs age 18-25 leading up to SCT and explored how YAs construct issues of uncertainty related to the transplantation experience. Methods Interviews with 14 YAs conducted within 24 hours of admission to undergo SCT were analyzed using thematic analysis from a medical ethnographic perspective. Results Themes emerged within two domains: relational and psycho-emotional. The relational theme of “altered relationships” included subthemes of “moving from” and “moving toward.” The psycho-emotional theme of the “power of perspective” included subthemes of “optimism,” “acknowledgment of death,” “informational empowerment,” and “developing a new outlook.” Conclusions Our findings offer new insights into the YA experience in the context of active cancer treatment, specifically how the cancer experience impacts relationships, and how this experience is influenced by YAs' perspectives. Implications for Practice This study provides a foundation for addressing the psycho-social needs of YAs hospitalized for SCT, paying particular attention to the development of specific interventions. PMID:25232959

  16. Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures

    PubMed Central

    Gelain, Fabrizio; Bottai, Daniele; Vescovi, Angleo; Zhang, Shuguang

    2006-01-01

    Biomedical researchers have become increasingly aware of the limitations of conventional 2-dimensional tissue cell culture systems, including coated Petri dishes, multi-well plates and slides, to fully address many critical issues in cell biology, cancer biology and neurobiology, such as the 3-D microenvironment, 3-D gradient diffusion, 3-D cell migration and 3-D cell-cell contact interactions. In order to fully understand how cells behave in the 3-D body, it is important to develop a well-controlled 3-D cell culture system where every single ingredient is known. Here we report the development of a 3-D cell culture system using a designer peptide nanofiber scaffold with mouse adult neural stem cells. We attached several functional motifs, including cell adhesion, differentiation and bone marrow homing motifs, to a self-assembling peptide RADA16 (Ac-RADARADARADARADA-COHN2). These functionalized peptides undergo self-assembly into a nanofiber structure similar to Matrigel. During cell culture, the cells were fully embedded in the 3-D environment of the scaffold. Two of the peptide scaffolds containing bone marrow homing motifs significantly enhanced the neural cell survival without extra soluble growth and neurotrophic factors to the routine cell culture media. In these designer scaffolds, the cell populations with β-Tubulin+, GFAP+ and Nestin+ markers are similar to those found in cell populations cultured on Matrigel. The gene expression profiling array experiments showed selective gene expression, possibly involved in neural stem cell adhesion and differentiation. Because the synthetic peptides are intrinsically pure and a number of desired function cellular motifs are easy to incorporate, these designer peptide nanofiber scaffolds provide a promising controlled 3-D culture system for diverse tissue cells, and are useful as well for general molecular and cell biology. PMID:17205123

  17. GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches

    PubMed Central

    Young, Stephanie Z.; Bordey, Angélique

    2010-01-01

    Aside from traditional neurotransmission and regulation of secretion, γ-amino butyric acid (GABA) through GABAA receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery that controls the proliferation of tumor cells and perhaps tumor stem cells. Here, we will discuss GABA's presence as a near-universal signal that may be altered in tumor cells resulting in modified mitotic activity. PMID:19509127

  18. Prospective randomised trial of amifostine cytoprotection in myeloma patients undergoing high-dose melphalan conditioned autologous stem cell transplantation.

    PubMed

    Spencer, A; Horvath, N; Gibson, J; Prince, H M; Herrmann, R; Bashford, J; Joske, D; Grigg, A; McKendrick, J; Prosser, I; Lowenthal, R; Deveridge, S; Taylor, K

    2005-05-01

    In this prospective multicentre trial, 90 patients undergoing autologous stem cell transplantation (ASCT) were randomised to receive (n=43) or not receive (n=47) amifostine 910 mg/m(2) prior to melphalan 200 mg/m(2). Patients were monitored for regimen-related toxicity, engraftment, supportive care, response and survival. Both groups underwent ASCT at a median of 8 months from diagnosis and were matched for disease characteristics, prior therapy and pre-ASCT disease responsiveness. Amifostine infusional side-effects were frequent, occurring in 65% of patients, but of mild severity. Amifostine use was associated with a reduction in the median grade of oral mucositis (1 vs 2, P=0.01) and the frequency of severe (WHO grades 3 or 4) mucositis (12 vs 33%, P=0.02), but no reduction in the requirement for parenteral nutrition or analgesic use. Conversion to complete remission post-ASCT occurred in 30 and 14% of the amifostine and control groups, respectively (P=0.09). With a median follow-up of 35 months, there was no statistically significant difference between the median progression-free or overall survival times for the two groups. We conclude that amifostine can be safely administered prior to high-dose melphalan and significantly reduces the frequency and severity of therapy-induced oral mucositis. PMID:15778725

  19. Adult somatic stem cells in the human parasite, Schistosoma mansoni

    PubMed Central

    Collins, James J.; Wang, Bo; Lambrus, Bramwell G.; Tharp, Marla; Iyer, Harini; Newmark, Phillip A.

    2013-01-01

    Summary Schistosomiasis is among the most prevalent human parasitic diseases, affecting more than 200 million people worldwide1. The etiological agents of this disease are trematode flatworms (Schistosoma) that live and lay eggs within the vasculature of the host. These eggs lodge in host tissues, causing inflammatory responses that are the primary cause of morbidity. Because these parasites can live and reproduce within human hosts for decades2, elucidating the mechanisms that promote their longevity is of fundamental importance. Although adult pluripotent stem cells, called neoblasts, drive long-term homeostatic tissue maintenance in long-lived free-living flatworms3,4 (e.g., planarians), and neoblast-like cells have been described in some parasitic tapeworms5, little is known about whether similar cell types exist in any trematode species. Here, we describe a population of neoblast-like cells in the trematode Schistosoma mansoni. These cells resemble planarian neoblasts morphologically and share their ability to proliferate and differentiate into derivatives of multiple germ layers. Capitalizing on available genomic resources6,7 and RNAseq-based gene expression profiling, we find that these schistosome neoblast-like cells express a fibroblast growth factor receptor ortholog. Using RNA interference we demonstrate that this gene is required for the maintenance of these neoblast-like cells. Our observations suggest that adaptation of developmental strategies shared by free-living ancestors to modern-day schistosomes likely contributed to the success of these animals as long-lived obligate parasites. We expect that future studies deciphering the function of these neoblast-like cells will have important implications for understanding the biology of these devastating parasites. PMID:23426263

  20. Electrochemically Preadsorbed Collagen Promotes Adult Human Mesenchymal Stem Cell Adhesion.

    PubMed

    Benavidez, Tomás E; Wechsler, Marissa E; Farrer, Madeleine M; Bizios, Rena; Garcia, Carlos D

    2016-01-01

    The present article reports on the effect of electric potential on the adsorption of collagen type I (the most abundant component of the organic phase of bone) onto optically transparent carbon electrodes (OTCE) and its mediation on subsequent adhesion of adult, human, mesenchymal stem cells (hMSCs). For this purpose, adsorption of collagen type I was investigated as a function of the protein concentration (0.01, 0.1, and 0.25 mg/mL) and applied potential (open circuit potential [OCP; control], +400, +800, and +1500 mV). The resulting substrate surfaces were characterized using spectroscopic ellipsometry, atomic force microscopy, and cyclic voltammetry. Adsorption of collagen type I onto OTCE was affected by the potential applied to the sorbent surface and the concentration of protein. The higher the applied potential and protein concentration, the higher the adsorbed amount (Γcollagen). It was also observed that the application of potential values higher than +800 mV resulted in the oxidation of the adsorbed protein. Subsequent adhesion of hMSCs on the OTCEs (precoated with the collagen type I films) under standard cell culture conditions for 2 h was affected by the extent of collagen preadsorbed onto the OTCE substrates. Specifically, enhanced hMSCs adhesion was observed when the Γcollagen was the highest. When the collagen type I was oxidized (under applied potential equal to +1500 mV), however, hMSCs adhesion was decreased. These results provide the first correlation between the effects of electric potential on protein adsorption and subsequent modulation of anchorage-dependent cell adhesion. PMID:26549607

  1. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness.

    PubMed

    Alié, Alexandre; Leclère, Lucas; Jager, Muriel; Dayraud, Cyrielle; Chang, Patrick; Le Guyader, Hervé; Quéinnec, Eric; Manuel, Michaël

    2011-02-01

    Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny. PMID:21036163

  2. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell.

    PubMed

    Zhao, Xin; Han, Yingmin; Liang, Yu; Nie, Chao; Wang, Jian

    2016-01-01

    In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application. PMID:26901069

  3. CRIPTO/GRP78 signaling maintains fetal and adult mammary stem cells ex vivo.

    PubMed

    Spike, Benjamin T; Kelber, Jonathan A; Booker, Evan; Kalathur, Madhuri; Rodewald, Rose; Lipianskaya, Julia; La, Justin; He, Marielle; Wright, Tracy; Klemke, Richard; Wahl, Geoffrey M; Gray, Peter C

    2014-04-01

    Little is known about the extracellular signaling factors that govern mammary stem cell behavior. Here, we identify CRIPTO and its cell-surface receptor GRP78 as regulators of stem cell behavior in isolated fetal and adult mammary epithelial cells. We develop a CRIPTO antagonist that promotes differentiation and reduces self-renewal of mammary stem cell-enriched populations cultured ex vivo. By contrast, CRIPTO treatment maintains the stem cell phenotype in these cultures and yields colonies with enhanced mammary gland reconstitution capacity. Surface expression of GRP78 marks CRIPTO-responsive, stem cell-enriched fetal and adult mammary epithelial cells, and deletion of GRP78 from adult mammary epithelial cells blocks their mammary gland reconstitution potential. Together, these findings identify the CRIPTO/GRP78 pathway as a developmentally conserved regulator of fetal and adult mammary stem cell behavior ex vivo, with implications for the stem-like cells found in many cancers. PMID:24749068

  4. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell

    PubMed Central

    Zhao, Xin; Han, Yingmin; Liang, Yu; Nie, Chao; Wang, Jian

    2016-01-01

    In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application. PMID:26901069

  5. Adult-derived stem cells and their potential for use in tissue repair and molecular medicine.

    PubMed

    Young, Henry E; Duplaa, Cecile; Katz, Ryan; Thompson, Tina; Hawkins, Kristina C; Boev, Angel N; Henson, Nicholas L; Heaton, Matthew; Sood, Rajiv; Ashley, Dennis; Stout, Christopher; Morgan, Joe H; Uchakin, Peter N; Rimando, Marylen; Long, Gypsy F; Thomas, Crystal; Yoon, Jee-In; Park, Ji Eun; Hunt, Darren J; Walsh, Nancy M; Davis, Josh C; Lightner, Joel E; Hutchings, Anna M; Murphy, Meredith L; Boswell, Elizabeth; McAbee, Jessica A; Gray, Brandon M; Piskurich, Janet; Blake, Lisa; Collins, Julie A; Moreau, Catherine; Hixson, Douglas; Bowyer, Frank P; Black, Asa C

    2005-01-01

    This report reviews three categories of precursor cells present within adults. The first category of precursor cell, the epiblast-like stem cell, has the potential of forming cells from all three embryonic germ layer lineages, e.g., ectoderm, mesoderm, and endoderm. The second category of precursor cell, the germ layer lineage stem cell, consists of three separate cells. Each of the three cells is committed to form cells limited to a specific embryonic germ layer lineage. Thus the second category consists of germ layer lineage ectodermal stem cells, germ layer lineage mesodermal stem cells, and germ layer lineage endodermal stem cells. The third category of precursor cells, progenitor cells, contains a multitude of cells. These cells are committed to form specific cell and tissue types and are the immediate precursors to the differentiated cells and tissues of the adult. The three categories of precursor cells can be readily isolated from adult tissues. They can be distinguished from each other based on their size, growth in cell culture, expressed genes, cell surface markers, and potential for differentiation. This report also discusses new findings. These findings include the karyotypic analysis of germ layer lineage stem cells; the appearance of dopaminergic neurons after implantation of naive adult pluripotent stem cells into a 6-hydroxydopamine-lesioned Parkinson's model; and the use of adult stem cells as transport mechanisms for exogenous genetic material. We conclude by discussing the potential roles of adult-derived precursor cells as building blocks for tissue repair and as delivery vehicles for molecular medicine. PMID:16202227

  6. Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation

    PubMed Central

    Lei, Jinzhi; Levin, Simon A.; Nie, Qing

    2014-01-01

    Adult stem cells, which exist throughout the body, multiply by cell division to replenish dying cells or to promote regeneration to repair damaged tissues. To perform these functions during the lifetime of organs or tissues, stem cells need to maintain their populations in a faithful distribution of their epigenetic states, which are susceptible to stochastic fluctuations during each cell division, unexpected injury, and potential genetic mutations that occur during many cell divisions. However, it remains unclear how the three processes of differentiation, proliferation, and apoptosis in regulating stem cells collectively manage these challenging tasks. Here, without considering molecular details, we propose a genetic optimal control model for adult stem cell regeneration that includes the three fundamental processes, along with cell division and adaptation based on differential fitnesses of phenotypes. In the model, stem cells with a distribution of epigenetic states are required to maximize expected performance after each cell division. We show that heterogeneous proliferation that depends on the epigenetic states of stem cells can improve the maintenance of stem cell distributions to create balanced populations. A control strategy during each cell division leads to a feedback mechanism involving heterogeneous proliferation that can accelerate regeneration with less fluctuation in the stem cell population. When mutation is allowed, apoptosis evolves to maximize the performance during homeostasis after multiple cell divisions. The overall results highlight the importance of cross-talk between genetic and epigenetic regulation and the performance objectives during homeostasis in shaping a desirable heterogeneous distribution of stem cells in epigenetic states. PMID:24501127

  7. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  8. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  9. PRIMITIVE ADULT HEMATOPOIETIC STEM CELLS CAN FUNCTION AS OSTEOBLAST PRECURSORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osteoblasts are continually recruited from stem cell pools to maintain bone. Although their immediate precursor is a plastic-adherent mesenchymal stem cell able to generate tissues other than bone, increasing evidence suggests the existence of a more primitive cell that can differentiate to both hem...

  10. Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences.

    PubMed

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Alix, Philippe; Leprince, Pierre; Glejzer, Aneta; Poulet, Christophe; Hennuy, Benoit; Sommer, Lukas; Shakhova, Olga; Rogister, Bernard

    2012-08-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crest stem cells (NCSC) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSC), including their similarities and differences. In this paper, using transcriptomic as well as proteomic technologies, we compared NCSC to MSC and stromal nestin-positive cells, all of them isolated from adult bone marrow. We demonstrated that the nestin-positive cell population, which was the first to be described as able to differentiate into functional neurons, was a mixed population of NCSC and MSC. More interestingly, we demonstrated that MSC shared with NCSC the same ability to truly differentiate into Tuj1-positive cells when co-cultivated with paraformaldehyde-fixed cerebellar granule neurons. Altogether, those results suggest that both NCSC and MSC can be considered as important tools for cellular therapies in order to replace neurons in various neurological diseases. PMID:22349262

  11. Total Body Irradiation (TBI) using Helical Tomotherapy in children and young adults undergoing stem cell transplantation

    PubMed Central

    2013-01-01

    Background Establishing Total Body Irradiation (TBI) using Helical Tomotherapy (HT) to gain better control over dose distribution and homogeneity and to individually spare organs at risk. Because of their limited body length the technique seems especially eligible in juvenile patients. Patients and methods The cohort consisted of 10 patients, 6 female and 4 male, aged 4 - 22 y with acute lymphoblastic- (ALL) or acute myeloic leukemia (AML). All patients presented with high risk disease features. Body length in treatment position ranged from 110–180 cm. Two Gy single dose was applied BID to a total dose of 12 Gy. Dose volume constraint for the PTV was 95% dose coverage for 95% of the volume. The lungs were spared to a mean dose of [less than or equal to] 10 Gy. Patients were positioned in a vac-loc bag in supine position with a 3-point head mask. Results Average D95 to the PTV was 11.7 Gy corresponding to a mean coverage of the PTV of 97.5%. Dmean for the lungs was 9.14 Gy. Grade 3–4 side effects were not observed. Conclusions TBI using HT is feasible and well tolerated. A benefit could be demonstrated with regard to dose distribution and homogeneity and the selective dose-reduction to organs at risk. PMID:23587349

  12. Recent Progress on Tissue-Resident Adult Stem Cell Biology and Their Therapeutic Implications

    PubMed Central

    2013-01-01

    Recent progress in the field of the stem cell research has given new hopes to treat and even cure diverse degenerative disorders and incurable diseases in human. Particularly, the identification of a rare population of adult stem cells in the most tissues/organs in human has emerged as an attractive source of multipotent stem/progenitor cells for cell replacement-based therapies and tissue engineering in regenerative medicine. The tissue-resident adult stem/progenitor cells offer the possibility to stimulate their in vivo differentiation or to use their ex vivo expanded progenies for cell replacement-based therapies with multiple applications in human. Among the human diseases that could be treated by the stem cell-based therapies, there are hematopoietic and immune disorders, multiple degenerative disorders, such as Parkinson’s and Alzeimeher’s diseases, type 1 or 2 diabetes mellitus as well as eye, liver, lung, skin and cardiovascular disorders and aggressive and metastatic cancers. In addition, the genetically-modified adult stem/progenitor cells could also be used as delivery system for expressing the therapeutic molecules in specific damaged areas of different tissues. Recent advances in cancer stem/progenitor cell research also offer the possibility to targeting these undifferentiated and malignant cells that provide critical functions in cancer initiation and progression and disease relapse for treating the patients diagnosed with the advanced and metastatic cancers which remain incurable in the clinics with the current therapies. PMID:18288619

  13. The Prevalence of Antifungal Agents Administration in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation: A Retrospective Study

    PubMed Central

    Kargar, Mona; Ahmadvand, Alireza; Ahmadvand, Milad; Hadjibabaie, Molouk; Gholami, Kheirollah; Khoee, Seyed Hamid; Javadi, Mohammad Reza; Ghavamzadeh, Ardeshir

    2013-01-01

    Background Invasive fungal infections (IFIs) are chief infectious complications in patients undergoing hematopoietic stem cell transplantation (HSCT). However, the diagnosis of fungal infections is difficult, and often empiric treatment initiates. Since there is no data available on the prevalence of antifungal drugs administration in allogeneic HSCT recipients in Iran, we decided to conduct this study. Methods This study was a retrospective review of records of patients who received allogeneic HSCT in the Hematology-Oncology, Bone Marrow Transplantation center at Shariati Hospital in Tehran, between August 2009 and August 2010. Results Sixty (73.1%) patients consist of 41 men (68.3%) with mean age of 26.3 (± 1.2) years received allogeneic HSCT. Patients received prophylaxis with fulconazole however; in 28 patients (46.7%) it was switched to low dose amphotericin B. Fifteen patients (25%) received treatment with antifungal agents. Amphotericin B was the empiric agent administered. In 3 patients treatment was switched to voriconazole. Neither positive culture nor direct microscopic evidence was available from the obtained specimen. Only in one patient the result of serum galactomannan assay was positive. There were no significant differences in neutropenia duration (P value: 0.54), length of hospital stay (P value: 0.27) and number of patients developed graft versus host disease (P value: 0.07) between patients received antifungal agents with those who did not receive treatment. Conclusion In this study HSCT recipients received antifungal agents for prophylaxis. Twenty five percent of patients received treatment with antifungal agents empirically. Improvement in diagnosis of these infections can be helpful and lead to targeted therapy. We suggest larger prospective trials for better assessment of antifungal agent administration. PMID:24505528

  14. Favorable outcomes in elderly patients undergoing high-dose therapy and autologous stem cell transplantation for non-Hodgkin lymphoma.

    PubMed

    Dahi, Parastoo B; Tamari, Roni; Devlin, Sean M; Maloy, Molly; Bhatt, Valkal; Scordo, Michael; Goldberg, Jenna; Zelenetz, Andrew D; Hamlin, Paul A; Matasar, Matthew J; Maragulia, Jocelyn; Giralt, Sergio A; Perales, Miguel-Angel; Moskowitz, Craig H; Sauter, Craig S

    2014-12-01

    High-dose therapy and autologous stem cell transplantation (HDT-ASCT) can offer potential long-term remission or cure in patients with non-Hodgkin lymphoma (NHL). Limited experience is available on the safety and efficacy of HDT-ASCT in elderly patients. This is a single-center, retrospective study examining outcomes of HDT-ASCT for 202 NHL patients, ages 60 years and older, between January 2001 and December 2012. Overall survival (OS) and progression-free survival (PFS) were analyzed according to age at HDT-ASCT, hematopoietic cell transplantation comorbidity index (HCT-CI), NHL histology, and remission status at the time of HDT-ASCT. The median age was 65 years (range, 60 to 74) and the majority had either diffuse large B cell lymphoma (n = 73, 37%) or mantle cell lymphoma (n = 69, 34%). One hundred and fifteen patients (57%) had high HCT-CI scores at the time of HDT-ASCT. With a median follow-up of 3.6 years (range, 4 to 11.9 years) for survivors, PFS and OS at 3 years were 60% (95% confidence interval [CI], 53% to 68%) and 73% (95% CI, 67% to 80%), respectively. Transplantation-related mortality (TRM) was 4% both at 100 days and at 1 year after HDT-ASCT. Age and HCT-CI score were not associated with OS or PFS, and high HCT-CI did not correlate with TRM. Seven patients (4%) developed secondary myelodysplastic syndrome or acute myeloid leukemia at a median of 35 months (range, 6 to 48) after HDT-ASCT. In this single-center cohort of elderly patients with NHL undergoing HDT-ASCT, this intervention was proven tolerable and effective, with results similar to those of historic controls in younger patients. Our data suggest that age alone should not preclude HDT-ASCT in elderly patients. PMID:25175794

  15. Wildtype adult stem cells, unlike tumor cells, are resistant to cellular damages in Drosophila.

    PubMed

    Ma, Meifang; Zhao, Hang; Zhao, Hanfei; Binari, Richard; Perrimon, Norbert; Li, Zhouhua

    2016-03-15

    Adult stem cells or residential progenitor cells are critical to maintain the structure and function of adult tissues (homeostasis) throughout the lifetime of an individual. Mis-regulation of stem cell proliferation and differentiation often leads to diseases including cancer, however, how wildtype adult stem cells and cancer cells respond to cellular damages remains unclear. We find that in the adult Drosophila midgut, intestinal stem cells (ISCs), unlike tumor intestinal cells, are resistant to various cellular damages. Tumor intestinal cells, unlike wildtype ISCs, are easily eliminated by apoptosis. Further, their proliferation is inhibited upon autophagy induction, and autophagy-mediated tumor inhibition is independent of caspase-dependent apoptosis. Interestingly, inhibition of tumorigenesis by autophagy is likely through the sequestration and degradation of mitochondria, as compromising mitochondria activity in these tumor models mimics the induction of autophagy and increasing the production of mitochondria alleviates the tumor-suppression capacity of autophagy. Together, these data demonstrate that wildtype adult stem cells and tumor cells show dramatic differences in sensitivity to cellular damages, thus providing potential therapeutic implications targeting tumorigenesis. PMID:26845534

  16. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.

    PubMed

    Pearson, Bret J; Sánchez Alvarado, Alejandro

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal. PMID:20040488

  17. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages

    PubMed Central

    Pearson, Bret J.; Alvarado, Alejandro Sánchez

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal. PMID:20040488

  18. Fetal and adult liver stem cells for liver regeneration and tissue engineering.

    PubMed

    Fiegel, H C; Lange, Claudia; Kneser, U; Lambrecht, W; Zander, A R; Rogiers, X; Kluth, D

    2006-01-01

    For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches. PMID:16989722

  19. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins.

    PubMed

    Schuijers, Jurian; Clevers, Hans

    2012-06-13

    After its discovery as oncogen and morphogen, studies on Wnt focused initially on its role in animal development. With the finding that the colorectal tumour suppressor gene APC is a negative regulator of the Wnt pathway in (colorectal) cancer, attention gradually shifted to the study of the role of Wnt signalling in the adult. The first indication that adult Wnt signalling controls stem cells came from a Tcf4 knockout experiment: mutant mice failed to build crypt stem cell compartments. This observation was followed by similar findings in multiple other tissues. Recent studies have indicated that Wnt agonists of the R-spondin family provide potent growth stimuli for crypts in vivo and in vitro. Independently, Lgr5 was found as an exquisite marker for these crypt stem cells. The story has come full circle with the finding that the stem cell marker Lgr5 constitutes the receptor for R-spondins and occurs in complex with Frizzled/Lrp. PMID:22617424

  20. Intrinsic Ability of Adult Stem Cell in Skeletal Muscle: An Effective and Replenishable Resource to the Establishment of Pluripotent Stem Cells

    PubMed Central

    Fujimaki, Shin; Machida, Masanao; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2013-01-01

    Adult stem cells play an essential role in mammalian organ maintenance and repair throughout adulthood since they ensure that organs retain their ability to regenerate. The choice of cell fate by adult stem cells for cellular proliferation, self-renewal, and differentiation into multiple lineages is critically important for the homeostasis and biological function of individual organs. Responses of stem cells to stress, injury, or environmental change are precisely regulated by intercellular and intracellular signaling networks, and these molecular events cooperatively define the ability of stem cell throughout life. Skeletal muscle tissue represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle contains myogenic satellite cells and muscle-derived stem cells that retain multipotent differentiation abilities. These stem cell populations have the capacity for long-term proliferation and high self-renewal. The molecular mechanisms associated with deficits in skeletal muscle and stem cell function have been extensively studied. Muscle-derived stem cells are an obvious, readily available cell resource that offers promise for cell-based therapy and various applications in the field of tissue engineering. This review describes the strategies commonly used to identify and functionally characterize adult stem cells, focusing especially on satellite cells, and discusses their potential applications. PMID:23818907

  1. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  2. Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells.

    PubMed

    Jacobs, Sandra A; Roobrouck, Valerie D; Verfaillie, Catherine M; Van Gool, Stefaan W

    2013-01-01

    Somatic, also termed adult, stem cells are highly attractive biomedical cell candidates because of their extensive replication potential and functional multilineage differentiation capacity. They can be used for drug and toxicity screenings in preclinical studies, as in vitro model to study differentiation or for regenerative medicine to aid in the repair of tissues or replace tissues that are lost upon disease, injury or ageing. Multipotent adult progenitor cells (MAPCs) and mesenchymal stem cells (MSCs) are two types of adult stem cells derived from bone marrow that are currently being used clinically for tissue regeneration and for their immunomodulatory and trophic effects. This review will give an overview of the phenotypic and functional differences between human MAPCs and MSCs, with a strong emphasis on their immunological characteristics. Finally, we will discuss the clinical studies in which MSCs and MAPCs are already used. PMID:23295415

  3. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    SciTech Connect

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel; Fisher, Ryan; Tien, Chris; Simon, Steven L.; Bouville, Andre; Bolch, Wesley E.

    2011-03-15

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult male and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different

  4. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    PubMed Central

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel; Fisher, Ryan; Tien, Chris; Simon, Steven L.; Bouville, Andre; Bolch, Wesley E.

    2011-01-01

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantoms Methods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult male and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen∕pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen∕pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for

  5. Videotaped modeling and film distraction for fear reduction in adults undergoing hyperbaric oxygen therapy.

    PubMed

    Allen, K D; Danforth, J S; Drabman, R S

    1989-08-01

    We used a combined videotaped coping model and film distraction technique to reduce the distress of patients undergoing hyperbaric oxygen (HBO) therapy. Five experimental patients ranging in age from 34 to 68 were shown a videotape that depicted a coping model and then viewed a feature film as a distraction during their first exposure to HBO. In comparison with 6 control patients ranging in age from 17 to 53, the experimental patients experienced less arousal and rated themselves as significantly more relaxed before treatment, completed significantly more prescribed treatments without complication, and required fewer days in the hospital. These results support the use of modeling and distraction techniques as a cost-effective means of reducing distress and improving patients' compliance with HBO therapy. PMID:2768617

  6. Physicochemical Control of Adult Stem Cell Differentiation: Shedding Light on Potential Molecular Mechanisms

    PubMed Central

    Titushkin, Igor; Sun, Shan; Shin, Jennifer; Cho, Michael

    2010-01-01

    Realization of the exciting potential for stem-cell-based biomedical and therapeutic applications, including tissue engineering, requires an understanding of the cell-cell and cell-environment interactions. To this end, recent efforts have been focused on the manipulation of adult stem cell differentiation using inductive soluble factors, designing suitable mechanical environments, and applying noninvasive physical forces. Although each of these different approaches has been successfully applied to regulate stem cell differentiation, it would be of great interest and importance to integrate and optimally combine a few or all of the physicochemical differentiation cues to induce synergistic stem cell differentiation. Furthermore, elucidation of molecular mechanisms that mediate the effects of multiple differentiation cues will enable the researcher to better manipulate stem cell behavior and response. PMID:20379388

  7. The 4th dimension and adult stem cells: Can timing be everything?

    PubMed

    Gimble, Jeffrey M; Floyd, Z Elizabeth; Bunnell, Bruce A

    2009-07-01

    The rotation of the earth on its axis influences the physiology of all organisms. A highly conserved set of genes encoding the core circadian regulatory proteins (CCRP) has evolved across species. The CCRP acts through transcriptional and post-transcriptional mechanisms to direct the oscillatory expression of genes essential for key metabolic events. In addition to the light:dark cycle, the CCRP expression can be entrained by changes in feeding and physical activity patterns. While mammalian CCRP were originally associated with the central clock located within the suprachiasmatic nucleus of the brain, there is a growing body of evidence documenting the presence of the CCRP in peripheral tissues. It is now evident that the CCRP play a role in regulating the proliferation, differentiation, and function of adult stem cells in multiple organs. This concise review highlights findings concerning the role of the CCRP in modulating the adult stem cell activities. Although the manuscript focuses on hematopoietic stem cells (HSCs), bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived stem cells (ASCs) and cancer stem cells, it is likely that the contribution of the CCRP merits consideration and evaluation in all stem cell pathways. PMID:19384905

  8. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    PubMed

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics. PMID:26068799

  9. Pluripotency of adult stem cells derived from human and rat pancreas

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Birth, M.; Rohwedel, J.; Assmuth, K.; Goepel, A.; Wedel, T.

    Adult stem cells are undifferentiated cells found within fully developed tissues or organs of an adult individuum. Until recently, these cells have been considered to bear less self-renewal ability and differentiation potency compared to embryonic stem cells. In recent studies an undifferentiated cell type was found in primary cultures of isolated acini from exocrine pancreas termed pancreatic stellate cells. Here we show that pancreatic stellate-like cells have the capacity of extended self-renewal and are able to differentiate spontaneously into cell types of all three germ layers expressing markers for smooth muscle cells, neurons, glial cells, epithelial cells, chondrocytes and secretory cells (insulin, amylase). Differentiation and subsequent formation of three-dimensional cellular aggregates (organoid bodies) were induced by merely culturing pancreatic stellate-like cells in hanging drops. These cells were developed into stable, long-term, in vitro cultures of both primary undifferentiated cell lines as well as organoid cultures. Thus, evidence is given that cell lineages of endodermal, mesodermal, and ectodermal origin arise spontaneously from a single adult undifferentiated cell type. Based on the present findings it is assumed that pancreatic stellate-like cells are a new class of lineage uncommitted pluripotent adult stem cells with a remarkable self-renewal ability and differentiation potency. The data emphasize the versatility of adult stem cells and may lead to a reappraisal of their use for the treatment of inherited disorders or acquired degenerative diseases.

  10. Pre- and Post-Transplantation Risk Factors for Delirium Onset and Severity in Patients Undergoing Hematopoietic Stem-Cell Transplantation

    PubMed Central

    Fann, Jesse R.; Hubbard, Rebecca A.; Alfano, Catherine M.; Roth-Roemer, Sari; Katon, Wayne J.; Syrjala, Karen L.

    2011-01-01

    Purpose To determine pre- and post-transplantation risk factors for delirium onset and severity during the acute phase of myeloablative hematopoietic stem-cell transplantation (HSCT). Patients and Methods Ninety adult patients with malignancies admitted to the Fred Hutchinson Cancer Research Center for their first HSCT were assessed prospectively from 1 week before transplantation to 30 days after transplantation. Delirium was assessed three times per week using the Delirium Rating Scale and the Memorial Delirium Assessment Scale. Potential risk factors were assessed by patient self-report, charts, and computerized records. Multivariable analysis of time to onset of a delirium episode was undertaken using Cox proportional hazards regression with time-varying covariates. Analysis for delirium severity was carried out using a linear mixed effects model. Validation and sensitivity analyses were performed on the final models. Results Forty-five patients (50%) experienced a delirium episode. Pretransplantation risk factors for onset and higher severity of delirium were higher mean alkaline phosphatase and blood urea nitrogen (BUN) levels. Poorer pretransplantation executive functioning was also associated with higher delirium severity. Higher doses of opioid medications were the only post-transplantation risk factor for delirium onset (hazard ratio, 1.05; 95% CI, 1.02 to 1.08). Higher opioid doses, current and prior pain, and higher BUN levels were post-transplantation risk factors for greater delirium severity (all P < .01). Conclusion Pre- and post-transplantation factors can assist in identifying patients who are at risk for delirium during myeloablative HSCT and may enable clinical interventions to prevent delirium onset or decrease delirium symptoms. PMID:21263081

  11. Prospective assessment of white matter integrity in adult stem cell transplant recipients.

    PubMed

    Correa, D D; Wang, Y; West, J D; Peck, K K; Root, J C; Baser, R E; Thaler, H T; Shore, T B; Jakubowski, A; Saykin, A J; Relkin, N

    2016-06-01

    Hematopoietic stem cell transplantation (HSCT) is often used in the treatment of hematologic disorders. Although it can be curative, the pre-transplant conditioning regimen can be associated with neurotoxicity. In this prospective study, we examined white matter (WM) integrity with diffusion tensor imaging (DTI) and neuropsychological functioning before and one year after HSCT in twenty-two patients with hematologic disorders and ten healthy controls evaluated at similar intervals. Eighteen patients received conditioning treatment with high-dose (HD) chemotherapy, and four had full dose total body irradiation (fTBI) and HD chemotherapy prior to undergoing an allogeneic or autologous HSCT. The results showed a significant decrease in mean diffusivity (MD) and axial diffusivity (AD) in diffuse WM regions one year after HSCT (p-corrected <0.05) in the patient group compared to healthy controls. At baseline, patients treated with allogeneic HSCT had higher MD and AD in the left hemisphere WM than autologous HSCT patients (p-corrected <0.05). One year post-transplant, patients treated with allogeneic HSCT had lower fractional anisotropy (FA) and higher radial diffusivity (RD) in the right hemisphere and left frontal WM compared to patients treated with autologous HSCT (p-corrected <0.05).There were modest but significant correlations between MD values and cognitive test scores, and these were greatest for timed tests and in projection tracts. Patients showed a trend toward a decline in working memory, and had lower cognitive test scores than healthy controls at the one-year assessment. The findings suggest a relatively diffuse pattern of alterations in WM integrity in adult survivors of HSCT. PMID:26153467

  12. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution

    PubMed Central

    Spiewak, Jessica E.

    2014-01-01

    Summary Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage and mate choice and have played important roles in speciation. Here, we review recent studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. PMID:25421288

  13. Adult stem cells and biocompatible scaffolds as smart drug delivery tools for cardiac tissue repair.

    PubMed

    Pagliari, Stefania; Romanazzo, Sara; Mosqueira, Diogo; Pinto-do-Ó, Perpetua; Aoyagi, Takao; Forte, Giancarlo

    2013-01-01

    The contribution of adult stem cells to cardiac repair is mostly ascribed to an indirect paracrine effect, rather than to their actual engraftment and differentiation into new contractile and vascular cells. This effect consists in a direct reduction of host cell death, promotion of neovascularization, and in a "bystander effect" on local inflammation. A number of cytokines secreted by adult stem/progenitor cells has been proposed to be responsible for the consistent beneficial effect reported in the early attempts to deliver different stem cell subsets to the injured myocardium. Aiming to maximize their beneficial activity on the diseased myocardium, the genetic modification of adult stem cells to enhance and/or control the secretion of specific cytokines would turn them into active drug delivery vectors. On the other hand, engineering biocompatible scaffolds as to release paracrine factors could result in multiple advantages: (1) achieve a local controlled release of the drug of interest, thus minimizing off-target effects, (2) enhance stem cell retention in the injured area and (3) boost the beneficial paracrine effects exerted by adult stem cells on the host tissue. In the present review, a critical overview of the state-of-the-art in the modification of stem cells and the functionalization of biocompatible scaffolds to deliver beneficial soluble factors to the injured myocardium is offered. Besides the number of concerns to be addressed before a clinical application can be foreseen for such concepts, this path could translate into the generation of active scaffolds as smart cell and drug delivery systems for cardiac repair. PMID:23745554

  14. Aerodynamic assessment of the speech of adults undergoing multichannel cochlear implantation.

    PubMed

    Leeper, H A; Gagné, J P; Parnes, L S; Vidas, S

    1993-04-01

    This investigation was designed to evaluate the aerodynamic characteristics of the speech of adult multichannel cochlear implant (Nucleus, 21-channel) recipients. Five adults with an acquired profound sensorineural hearing loss were tested before implantation, immediately following implantation, and 3, 6, 9, and 12 months after implantation. A commercially available computerized pressure-flow instrumentation system was employed to assess the respiratory, laryngeal, velopharyngeal, and oral articulatory subsystems of speech of the implantees. The results of the investigation indicated 1) a slight increase in airflow rate values for sustained vowel /a/phonation after implantation, 2) a slight increase in duration of sustained vowel phonation from the preimplant period to the last postimplant period, 3) an increase in laryngeal airway resistance after implantation that resulted from a larger increase in estimated transglottal pressure than in transglottal airflow, 4) maintenance of normal velopharyngeal closure in oral-nasal contrastive contexts, and 5) slight increases in oral orifice area for fricative syllable utterances following implantation. Individual strategies for coordinated control of the speech mechanism appear to be potent variables to consider when assessing speech production. PMID:8476171

  15. Rituximab in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2014-05-28

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III

  16. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    PubMed Central

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression.Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells. PMID:22952666

  17. Vaccine Therapy in Reducing the Frequency of Cytomegalovirus Events in Patients With Hematologic Malignancies Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-06-06

    Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Hodgkin Lymphoma; Adult Non-Hodgkin Lymphoma; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Cytomegaloviral Infection; Hematopoietic and Lymphoid Cell Neoplasm; HLA-A*0201 Positive Cells Present; Myelodysplastic Syndrome; Adult Lymphoblastic Lymphoma; Chronic Lymphocytic Leukemia; Myelofibrosis; Myeloproliferative Neoplasm

  18. Use and Utility of Hemostatic Screening in Adults Undergoing Elective, Non-Cardiac Surgery

    PubMed Central

    Weil, Isabel A.; Seicean, Sinziana; Neuhauser, Duncan; Schiltz, Nicholas K.; Seicean, Andreea

    2015-01-01

    Introduction One view of value in medicine is outcome relative to cost of care provided. With respect to operative care, increased attention has been placed on evaluation and optimization of patients prior to undergoing an elective surgery. We examined more than 2 million patients having elective, non-cardiac surgery to assess the incidence and utility of pre-operative hemostatic screening, compared with a composite of history variables that may indicate a propensity for bleeding, to assess several important outcomes of surgery. Materials & Methods We queried the NSQIP database to identify 2,020,533 patients and compared hemostatic tests (PT, aPTT, platelet count) and history covariables indicative of potential for abnormal hemostasis. We compared outcomes across predictor values; used Person’s chi-square tests to compare differences, and logistic regression to model outcomes. Results Approximately 36% of patients had all three tests pre-operatively while 16% had none of them; 11.2% had a history predictive of potential abnormal bleeding. Outcomes of interest across the cohort included death in 0.7%, unplanned return to the operating room or re-admission within 30 days in 3.8% and 6.2% of patients; 5.3% received a transfusion during or after surgery. Sub-analyses in each of the nine surgical specialties’ most common procedures yielded similar results. Conclusion The limited predictive value of each hemostatic screening test, as well as excess costs associated with them, across a broad spectrum of elective surgeries, suggests that limiting pre-operative testing to a more select group of patients may be reasonable, equally efficacious, efficient, and cost-effective. PMID:26623648

  19. Bortezomib and Filgrastim in Promoting Stem Cell Mobilization in Patients With Non-Hodgkin Lymphoma or Multiple Myeloma Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2016-04-19

    Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular

  20. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.

    PubMed

    Lei, Lei; Spradling, Allan C

    2013-05-21

    Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo. PMID:23630252

  1. Adult human neural stem cell therapeutics: Current developmental status and prospect

    PubMed Central

    Nam, Hyun; Lee, Kee-Hang; Nam, Do-Hyun; Joo, Kyeung Min

    2015-01-01

    Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics. PMID:25621112

  2. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling

    SciTech Connect

    Das, Ani V.; Zhao Xing; James, Jackson; Kim, Min; Cowan, Kenneth H.; Ahmad, Iqbal . E-mail: iahmad@unmc.edu

    2006-01-13

    The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS.

  3. Genomic selection for quantitative adult plant stem rust resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative adult plant resistance (APR) to stem rust (Puccinia graminis f. sp. tritici) is an important breeding target in wheat (Triticum aestivum L.) and a potential target for genomic selection (GS). To evaluate the relative importance of known APR loci in applying genomic selection, we charact...

  4. zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish

    PubMed Central

    Chen, Chen-Hui; Durand, Ellen; Wang, Jinhu; Zon, Leonard I.; Poss, Kenneth D.

    2013-01-01

    The zebrafish has become a standard model system for stem cell and tissue regeneration research, based on powerful genetics, high tissue regenerative capacity and low maintenance costs. Yet, these studies can be challenged by current limitations of tissue visualization techniques in adult animals. Here we describe new imaging methodology and present several ubiquitous and tissue-specific luciferase-based transgenic lines, which we have termed zebraflash, that facilitate the assessment of regeneration and engraftment in freely moving adult zebrafish. We show that luciferase-based live imaging reliably estimates muscle quantity in an internal organ, the heart, and can longitudinally follow cardiac regeneration in individual animals after major injury. Furthermore, luciferase-based detection enables visualization and quantification of engraftment in live recipients of transplanted hematopoietic stem cell progeny, with advantages in sensitivity and gross spatial resolution over fluorescence detection. Our findings present a versatile resource for monitoring and dissecting vertebrate stem cell and regeneration biology. PMID:24198277

  5. Anemia rather than hypertension contributes to cerebral hyperperfusion in young adults undergoing hemodialysis: A phase contrast MRI study

    PubMed Central

    Zheng, Gang; Wen, Jiqiu; Yu, Wenkui; Li, Xue; Zhang, Zhe; Chen, Huijuan; Kong, Xiang; Luo, Song; Jiang, Xiaolu; Liu, Ya; Zhang, Zongjun; Zhang, Long Jiang; Lu, Guang Ming

    2016-01-01

    Cerebral hyperperfusion, anemia and hypertension are common in patients with end-stage renal disease (ESRD). Young ESRD adults might afford a better hemodynamic tolerance; however, their cerebral vascular disorders are often overlooked. This phase-contrast MRI study investigated relationships between cerebral blood flow (CBF), anemia and hypertension in young adults undergoing hemodialysis (HD). Blood flows, velocities, and cross-sectional areas of bilateral internal carotid arteries and vertebral arteries were quantified on phase maps in 33 patients and 27 healthy controls. Cerebral oxygen delivery (COD) and vascular resistance were (CVR) were computed based on CBF, hemoglobin and mean arterial pressure (MAP). We found strong correlations among hemoglobin, MAP and CBF. Hemoglobin rather than MAP was directly related to CBF. COD was negatively related to MAP, while CVR was positively related to hemoglobin. The cross-sectional areas of arteries were increased which were directly associated with hemoglobin rather than MAP. HD patients were of elevated CBF, decreased COD and unchanged CVR. Although elevated CBF compensated anemia-induced hypoxia, COD of these patients was still lower. Anemia directly contributed to elevated CBF and hypertension affected CBF through anemia. Unaffected CVR of young patients probably indicated that they could maintain basic functions of cerebral circulation under multiple risk factors. PMID:26923866

  6. Anemia rather than hypertension contributes to cerebral hyperperfusion in young adults undergoing hemodialysis: A phase contrast MRI study.

    PubMed

    Zheng, Gang; Wen, Jiqiu; Yu, Wenkui; Li, Xue; Zhang, Zhe; Chen, Huijuan; Kong, Xiang; Luo, Song; Jiang, Xiaolu; Liu, Ya; Zhang, Zongjun; Zhang, Long Jiang; Lu, Guang Ming

    2016-01-01

    Cerebral hyperperfusion, anemia and hypertension are common in patients with end-stage renal disease (ESRD). Young ESRD adults might afford a better hemodynamic tolerance; however, their cerebral vascular disorders are often overlooked. This phase-contrast MRI study investigated relationships between cerebral blood flow (CBF), anemia and hypertension in young adults undergoing hemodialysis (HD). Blood flows, velocities, and cross-sectional areas of bilateral internal carotid arteries and vertebral arteries were quantified on phase maps in 33 patients and 27 healthy controls. Cerebral oxygen delivery (COD) and vascular resistance were (CVR) were computed based on CBF, hemoglobin and mean arterial pressure (MAP). We found strong correlations among hemoglobin, MAP and CBF. Hemoglobin rather than MAP was directly related to CBF. COD was negatively related to MAP, while CVR was positively related to hemoglobin. The cross-sectional areas of arteries were increased which were directly associated with hemoglobin rather than MAP. HD patients were of elevated CBF, decreased COD and unchanged CVR. Although elevated CBF compensated anemia-induced hypoxia, COD of these patients was still lower. Anemia directly contributed to elevated CBF and hypertension affected CBF through anemia. Unaffected CVR of young patients probably indicated that they could maintain basic functions of cerebral circulation under multiple risk factors. PMID:26923866

  7. Exploring the feasibility of a therapeutic music video intervention in adolescents and young adults during stem-cell transplantation.

    PubMed

    Burns, Debra S; Robb, Sheri L; Haase, Joan E

    2009-01-01

    The purpose of this study was to explore the feasibility and preliminary efficacy of a therapeutic music video (TMV) intervention for adolescents and young adults (AYAs) undergoing stem-cell transplantation (SCT). Twelve AYAs (aged 11-24 years) were randomized to the TMV or an audio-book protocol. The TMV was designed to diminish symptom distress and improve coping, derived meaning, resilience, and quality of life by supporting AYAs in exploring thoughts and feelings. Six sessions with a board-certified music therapist were held twice a week for 3 weeks. The Adolescent Resilience Model guided the selection of a large, comprehensive battery of outcome measures. Major data collections occurred before admission, after intervention, and at 100 days after transplantation. Participants completed a brief set of measures at presession/postsessions 2, 4, and 6. Rates of consent, session completion, and questionnaire completion supported feasibility. Immediate follow-up measures suggest positive trends in the TMV group for hope, spirituality, confidence/mastery, and self-transcendence. Positive trends at 100 days include MOS, symptoms distress, defensive coping, spirituality, and self-transcendence. Therapeutic music video participants also demonstrated gains in quality of life. The TMV intervention may buffer the immediate after-effects of the stem-cell transplantation experience, and a larger study is warranted. PMID:19661790

  8. Glucoregulatory Function in Adult Rhesus Macaques (Macaca mulatta) Undergoing Treatment with Medroxyprogesterone Acetate for Endometriosis

    PubMed Central

    Cruzen, Christina L; Baum, Scott T; Colman, Ricki J

    2011-01-01

    Endometriosis affects a large percentage of the rhesus macaques (Macaca mulatta) at our institution. When the disease is diagnosed in macaques on long-term research protocols, the treatment of choice in our facility is monthly administration of medroxyprogesterone acetate (MPA) to decrease estrogen release and subsequently diminish clinical signs associated with the disease. Because hormonal fluctuations associated with the normal menstrual cycle are known to affect parameters of glucoregulatory function in rhesus macaques, we evaluated the effect of MPA treatment on glucoregulatory function cross-sectionally in 6 animals and longitudinally in 4 animals with endometriosis. Our hypothesis was that monthly administration of MPA for the treatment of endometriosis would negatively affect glucoregulatory function in rhesus macaques. We found that adult female rhesus macaques on MPA therapy for 1.4 to 36.1 mo had lower insulin sensitivity than did age- and weight-matched healthy control animals. In addition, glucoregulatory function was reduced after MPA treatment as compared with pretreatment levels in a group of 4 macaques. These data suggest that glucoregulatory function should be considered when endometriosis treatment is planned for rhesus macaques. PMID:22330788

  9. Location and phenotype of human adult keratinocyte stem cells of the skin.

    PubMed

    Webb, Angela; Li, Amy; Kaur, Pritinder

    2004-10-01

    The location and identity of interfollicular epidermal stem cells of adult human skin remain undefined. Based on our previous work in both adult murine and neonatal human foreskin, we demonstrate that cell surface levels of the alpha6 integrin and the transferrin receptor (CD71) are valid markers for resolving a putative stem cell, transit amplifying and differentiating compartment in adult human skin by flow cytometry. Specifically, epidermal cells expressing high levels of alpha6 integrin and low levels of the transferrin receptor CD71 (phenotype alpha6 (bri)CD71(dim)) exhibit several stem cell characteristics, comprising a minor population (2%-5%) of the K14(bri) fraction, enriched for quiescent and small blast-like cells with high clonogenic capacity, lacking the differentiation marker K10. Conversely, the majority of K14(bri) K10(neg) epidermal cells express high levels of CD71 (phenotype alpha6 (bri)CD71(bri)), and represent the actively cycling fraction of keratinocytes displaying greater cell size due to an increase in cytoplasmic area, consistent with their being transient amplifying cells. The alpha6 (bri)CD71(bri) population exhibited intermediate clonogenic capacity. A third population of K14(dim) but K10 positive epidermal cells could be identified by their low levels of alpha6 integrin expression (i.e. alpha6 (dim) cells), representing the differentiation compartment; predictably, this subpopulation exhibited poor clonogenic efficiency. Flow cytometric analysis for the hair follicle bulge region (stem cell) marker K15 revealed preferential expression of this keratin in alpha6 (bri) cells (i.e., both stem and transient amplifying fractions), but not the alpha6 (dim) population. Given that K15 positive cells could only be detected in the deep rete ridges of adult skin in situ, we conclude that stem and transient amplifying cells reside in this location, while differentiating (K15 negative) cells are found in the shallow rete ridges. PMID:15606498

  10. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse

    PubMed Central

    Zhang, Rui Lan; Chopp, Michael; Roberts, Cynthia; Liu, Xianshuang; Wei, Min; Nejad-Davarani, Siamak P.; Wang, Xinli; Zhang, Zheng Gang

    2014-01-01

    The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ) neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP) positive neural stem cells that are in contact with the cerebrospinal fluid (CSF) via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction. PMID:25437857

  11. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells

    PubMed Central

    Kilcoyne, Karen R.; Smith, Lee B.; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S.; Chambers, Thomas J. G.; De Gendt, Karel; Verhoeven, Guido; O’Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L. M.; Anderson, Richard A.; Sharpe, Richard M.

    2014-01-01

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk. PMID:24753613

  12. Dose Monitoring of Busulfan and Combination Chemotherapy in Hodgkin or Non-Hodgkin Lymphoma Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2015-08-12

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult

  13. Large-scale live imaging of adult neural stem cells in their endogenous niche

    PubMed Central

    Dray, Nicolas; Bedu, Sébastien; Vuillemin, Nelly; Alunni, Alessandro; Coolen, Marion; Krecsmarik, Monika; Supatto, Willy; Beaurepaire, Emmanuel; Bally-Cuif, Laure

    2015-01-01

    Live imaging of adult neural stem cells (aNSCs) in vivo is a technical challenge in the vertebrate brain. Here, we achieve long-term imaging of the adult zebrafish telencephalic neurogenic niche and track a population of >1000 aNSCs over weeks, by taking advantage of fish transparency at near-infrared wavelengths and of intrinsic multiphoton landmarks. This methodology enables us to describe the frequency, distribution and modes of aNSCs divisions across the entire germinal zone of the adult pallium, and to highlight regional differences in these parameters. PMID:26395477

  14. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    SciTech Connect

    Khalifa, Shaden A.M.; Medina, Philippe de; Erlandsson, Anna; El-Seedi, Hesham R.; Silvente-Poirot, Sandrine; Poirot, Marc

    2014-04-11

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.

  15. Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation☆

    PubMed Central

    Jaber-Hijazi, Farah; Lo, Priscilla J.K.P.; Mihaylova, Yuliana; Foster, Jeremy M.; Benner, Jack S.; Tejada Romero, Belen; Chen, Chen; Malla, Sunir; Solana, Jordi; Ruzov, Alexey; Aziz Aboobaker, A.

    2013-01-01

    Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5mC) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation. PMID:24063805

  16. Triggering the decision to undergo medical male circumcision: a qualitative study of adult men in Botswana.

    PubMed

    Wirth, Kathleen E; Semo, Bazghina-Werq; Ntsuape, Conrad; Ramabu, Nankie M; Otlhomile, Boyce; Plank, Rebeca M; Barnhart, Scott; Ledikwe, Jenny H

    2016-08-01

    In 2007, the World Health Organization endorsed voluntary medical male circumcision (VMMC) as part of comprehensive HIV-prevention strategies. A major challenge facing VMMC programs in sub-Saharan Africa remains demand creation; there is urgent need for data on key elements needed to trigger the decision among eligible men to seek VMMC. Using qualitative methods, we sought to better understand the circumcision decision-making process in Botswana related to VMMC. From July to November 2013, we conducted 27 focus group discussions in four purposively selected communities in Botswana with men (stratified by circumcision status and age), women (stratified by age) and community leaders. All discussions were facilitated by a trained same-sex interviewer, audio recorded, transcribed and translated to English, and analyzed for key themes using an inductive content analytic approach. Improved hygiene was frequently cited as a major benefit of circumcision and many participants believed that cleanliness was directly responsible for the protective effect of VMMC on HIV infection. While protection against HIV was frequently noted as a benefit of VMMC, the data indicate that increased sexual pleasure and perceived attractiveness, not fear of HIV infection, was an underlying reason why men sought VMMC. Data from this qualitative study suggest that more immediate benefits of VMMC, such as improved hygiene and sexual pleasure, play a larger role in the circumcision decision compared with protection from potential HIV infection. These findings have immediate implications for targeted demand creation and mobilization activities for increasing uptake of VMMC among adult men in Botswana. PMID:26754167

  17. GATAe regulates intestinal stem cell maintenance and differentiation in Drosophila adult midgut.

    PubMed

    Okumura, Takashi; Takeda, Koji; Kuchiki, Megumi; Akaishi, Marie; Taniguchi, Kiichiro; Adachi-Yamada, Takashi

    2016-02-01

    Adult intestinal tissues, exposed to the external environment, play important roles including barrier and nutrient-absorption functions. These functions are ensured by adequately controlled rapid-cell metabolism. GATA transcription factors play essential roles in the development and maintenance of adult intestinal tissues both in vertebrates and invertebrates. We investigated the roles of GATAe, the Drosophila intestinal GATA factor, in adult midgut homeostasis with its first-generated knock-out mutant as well as cell type-specific RNAi and overexpression experiments. Our results indicate that GATAe is essential for proliferation and maintenance of intestinal stem cells (ISCs). Also, GATAe is involved in the differentiation of enterocyte (EC) and enteroendocrine (ee) cells in both Notch (N)-dependent and -independent manner. The results also indicate that GATAe has pivotal roles in maintaining normal epithelial homeostasis of the Drosophila adult midgut through interaction of N signaling. Since recent reports showed that mammalian GATA-6 regulates normal and cancer stem cells in the adult intestinal tract, our data also provide information on the evolutionally conserved roles of GATA factors in stem-cell regulation. PMID:26719127

  18. Isolating Intestinal Stem Cells from Adult Drosophila Midguts by FACS to Study Stem Cell Behavior During Aging

    PubMed Central

    Pandur, Petra

    2014-01-01

    Aging tissue is characterized by a continuous decline in functional ability. Adult stem cells are crucial in maintaining tissue homeostasis particularly in tissues that have a high turnover rate such as the intestinal epithelium. However, adult stem cells are also subject to aging processes and the concomitant decline in function. The Drosophila midgut has emerged as an ideal model system to study molecular mechanisms that interfere with the intestinal stem cells’ (ISCs) ability to function in tissue homeostasis. Although adult ISCs can be easily identified and isolated from midguts of young flies, it has been a major challenge to study endogenous molecular changes of ISCs during aging. This is due to the lack of a combination of molecular markers suitable to isolate ISCs from aged intestines. Here we propose a method that allows for successful dissociation of midgut tissue into living cells that can subsequently be separated into distinct populations by FACS. By using dissociated cells from the esg-Gal4, UAS-GFP fly line, in which both ISCs and the enteroblast (EB) progenitor cells express GFP, two populations of cells are distinguished based on different GFP intensities. These differences in GFP expression correlate with differences in cell size and granularity and represent enriched populations of ISCs and EBs. Intriguingly, the two GFP-positive cell populations remain distinctly separated during aging, presenting a novel technique for identifying and isolating cell populations enriched for either ISCs or EBs at any time point during aging. The further analysis, for example transcriptome analysis, of these particular cell populations at various time points during aging is now possible and this will facilitate the examination of endogenous molecular changes that occur in these cells during aging. PMID:25548862

  19. A mystery unraveled: nontumorigenic pluripotent stem cells in human adult tissues

    PubMed Central

    Simerman, Ariel A; Perone, Marcelo J; Gimeno, María L; Dumesic, Daniel A; Chazenbalk, Gregorio D

    2014-01-01

    Introduction: Embryonic stem cells and induced pluripotent stem cells have emerged as the gold standard of pluripotent stem cells and the class of stem cell with the highest potential for contribution to regenerative and therapeutic application; however, their translational use is often impeded by teratoma formation, commonly associated with pluripotency. We discuss a population of nontumorigenic pluripotent stem cells, termed Multilineage Differentiating Stress Enduring (Muse) cells, which offer an innovative and exciting avenue of exploration for the potential treatment of various human diseases. Areas covered: This review discusses the origin of Muse cells, describes in detail their various unique characteristics, and considers future avenues of their application and investigation with respect to what is currently known of adult pluripotent stem cells in scientific literature. We begin by defining cell potency, then discuss both mesenchymal and various reported populations of pluripotent stem cells, and finally delve into Muse cells and the characteristics that set them apart from their contemporaries. Expert opinion: Muse cells derived from adipose tissue (Muse-AT) are efficiently, routinely and painlessly isolated from human lipoaspirate material, exhibit tripoblastic differentiation both spontaneously and under media-specific induction, and do not form teratomas. We describe qualities specific to Muse-AT cells and their potential impact on the field of regenerative medicine and cell therapy. PMID:24745973

  20. How electromagnetic fields can influence adult stem cells: positive and negative impacts.

    PubMed

    Maziarz, Aleksandra; Kocan, Beata; Bester, Mariusz; Budzik, Sylwia; Cholewa, Marian; Ochiya, Takahiro; Banas, Agnieszka

    2016-01-01

    The electromagnetic field (EMF) has a great impact on our body. It has been successfully used in physiotherapy for the treatment of bone disorders and osteoarthritis, as well as for cartilage regeneration or pain reduction. Recently, EMFs have also been applied in in vitro experiments on cell/stem cell cultures. Stem cells reside in almost all tissues within the human body, where they exhibit various potential. These cells are of great importance because they control homeostasis, regeneration, and healing. Nevertheless, stem cells when become cancer stem cells, may influence the pathological condition. In this article we review the current knowledge on the effects of EMFs on human adult stem cell biology, such as proliferation, the cell cycle, or differentiation. We present the characteristics of the EMFs used in miscellaneous assays. Most research has so far been performed during osteogenic and chondrogenic differentiation of mesenchymal stem cells. It has been demonstrated that the effects of EMF stimulation depend on the intensity and frequency of the EMF and the time of exposure to it. However, other factors may affect these processes, such as growth factors, reactive oxygen species, and so forth. Exploration of this research area may enhance the development of EMF-based technologies used in medical applications and thereby improve stem cell-based therapy and tissue engineering. PMID:27086866

  1. The Regenerative Role of the Fetal and Adult Stem Cell Secretome

    PubMed Central

    Bollini, Sveva; Gentili, Chiara; Tasso, Roberta; Cancedda, Ranieri

    2013-01-01

    For a long time, the stem cell regenerative paradigm has been based on the assumption that progenitor cells play a critical role in tissue repair by means of their plasticity and differentiation potential. However, recent works suggest that the mechanism underlying the benefits of stem cell transplantation might relate to a paracrine modulatory effect rather than the replacement of affected cells at the site of injury. Therefore, mounting evidence that stem cells may act as a reservoir of trophic signals released to modulate the surrounding tissue has led to a paradigm shift in regenerative medicine. Attention has been shifted from analysis of the stem cell genome to understanding the stem cell “secretome”, which is represented by the growth factors, cytokines and chemokines produced through paracrine secretion. Insights into paracrine-mediated repair support a new approach in regenerative medicine and the isolation and administration of specific stem cell-derived paracrine factors may represent an extremely promising strategy, introducing paracrine-based therapy as a novel and feasible clinical application. In this review, we will discuss the regenerative potential of fetal and adult stem cells, with particular attention to their secretome. PMID:26237150

  2. A single cell bioengineering approach to elucidate mechanisms of adult stem cell self-renewal.

    PubMed

    Gilbert, Penney M; Corbel, Stephane; Doyonnas, Regis; Havenstrite, Karen; Magnusson, Klas E G; Blau, Helen M

    2012-04-01

    The goal of regenerative medicine is to restore form and function to damaged and aging tissues. Adult stem cells, present in tissues such as skeletal muscle, comprise a reservoir of cells with a remarkable capacity to proliferate and repair tissue damage. Muscle stem cells, known as satellite cells, reside in a quiescent state in an anatomically distinct compartment, or niche, ensheathed between the membrane of the myofiber and the basal lamina. Recently, procedures for isolating satellite cells were developed and experiments testing their function upon transplantation into muscles revealed an extraordinary potential to contribute to muscle fibers and access and replenish the satellite cell compartment. However, these properties are rapidly lost once satellite cells are plated in culture. Accordingly, elucidating the role of extrinsic factors in controlling muscle stem cell fate, in particular self-renewal, is critical. Through careful design of bioengineered culture platforms, analysis of specific proteins presented to stem cells is possible. Critical to the success of the approach is single cell analysis, as more rapidly proliferating progenitors may mask the behavior of stem cells that proliferate slowly. Bioengineering approaches provide a potent means of gaining insight into the role of extrinsic factors in the stem cell microenvironment on stem cell function and the mechanisms that control their diverse fates. Ultimately, the multidisciplinary approach presented here will lead to novel therapeutic strategies for degenerative diseases. PMID:22327505

  3. Safety, Pharmacokinetics, and Efficacy of Palifermin in Children and Adolescents with Acute Leukemias Undergoing Myeloablative Therapy and Allogeneic Hematopoietic Stem Cell Transplantation: A Pediatric Blood and Marrow Transplant Consortium Trial.

    PubMed

    Morris, Joan; Rudebeck, Mattias; Neudorf, Steven; Moore, Theodore; Duerst, Reggie; Shah, Ami J; Graham, Michael; Aquino, Victor; Morris, Christopher; Olsson, Birgitta

    2016-07-01

    Currently, effective pharmacologic treatment to reduce severe oral mucositis (OM) resulting from high-dose myeloablative cytotoxic therapy in the pediatric population is not available. Palifermin has been proven to decrease the incidence and duration of severe OM in adults with hematologic malignancies undergoing hematopoietic stem cell transplantation (HSCT). In the pediatric population, however, data on palifermin treatment are limited. A phase I dose-escalation study of palifermin in pediatric patients with acute leukemias undergoing myeloablative HSCT with total body irradiation, etoposide, and cyclophosphamide was performed to determine a safe and tolerable dose and to characterize the pharmacokinetic (PK) profile and efficacy of palifermin. Twenty-seven patients in 3 age groups (1 to 2, 3 to 11, and 12 to 16 years) and 3 dose levels (40, 60, and 80 μg/kg/day) were studied. There were no deaths, dose-limiting toxicities, or treatment-related serious adverse events. Long-term safety outcomes did not differ from what would be expected in this population. PK data showed no differences between the 3 age groups. Exposure did not increase with increase in dose. The maximum severity of OM (WHO grade 4) occurred in 6 patients (22%), none of whom was in the 80-μg/kg/day dosing group. This study showed that all doses were well tolerated and a good safety profile in all 3 pediatric age groups was seen. PMID:26968792

  4. Rituximab in Treating Patients Undergoing Donor Peripheral Blood Stem Cell Transplant for Relapsed or Refractory B-cell Lymphoma

    ClinicalTrials.gov

    2015-11-23

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  5. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation.

    PubMed

    Foronda, Miguel; Morgado-Palacin, Lucia; Gómez-López, Gonzalo; Domínguez, Orlando; Pisano, David G; Blasco, Maria A

    2015-12-01

    Adult stem cells (ASCs) reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014). Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013). Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4 (cKO) mice), we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC) activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4 (cKO) mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014). Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155. PMID:26697322

  6. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation

    PubMed Central

    Foronda, Miguel; Morgado-Palacin, Lucia; Gómez-López, Gonzalo; Domínguez, Orlando; Pisano, David G.; Blasco, Maria A.

    2015-01-01

    Adult stem cells (ASCs) reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014). Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013). Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4cKO mice), we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC) activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4cKO mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014). Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155. PMID:26697322

  7. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    SciTech Connect

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  8. Micropatterning control of tubular commitment in human adult renal stem cells.

    PubMed

    Sciancalepore, Anna G; Portone, Alberto; Moffa, Maria; Persano, Luana; De Luca, Maria; Paiano, Aurora; Sallustio, Fabio; Schena, Francesco P; Bucci, Cecilia; Pisignano, Dario

    2016-07-01

    The treatment of renal injury by autologous, patient-specific adult stem cells is still an unmet need. Unsolved issues remain the spatial integration of stem cells into damaged areas of the organ, the commitment in the required cell type and the development of improved bioengineered devices. In this respect, biomaterials and architectures have to be specialized to control stem cell differentiation. Here, we perform an extensive study on micropatterned extracellular matrix proteins, which constitute a simple and non-invasive approach to drive the differentiation of adult renal progenitor/stem cells (ARPCs) from human donors. ARPCs are interfaced with fibronectin (FN) micropatterns, in the absence of exogenous chemicals or cellular reprogramming. We obtain the differentiation towards tubular cells of ARPCs cultured in basal medium conditions, the tubular commitment thus being specifically induced by micropatterned substrates. We characterize the stability of the tubular differentiation as well as the induction of a polarized phenotype in micropatterned ARPCs. Thus, the developed cues, driving the functional commitment of ARPCs, offer a route to recreate the microenvironment of the stem cell niche in vitro, that may serve, in perspective, for the development of ARPC-based bioengineered devices. PMID:27105437

  9. Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion.

    PubMed

    Bas, Esperanza; Van De Water, Thomas R; Lumbreras, Vicente; Rajguru, Suhrud; Goss, Garrett; Hare, Joshua M; Goldstein, Bradley J

    2014-03-01

    A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic. PMID:24172073

  10. Adult stem cells for acute lung injury: remaining questions and concerns.

    PubMed

    Zhu, Ying-Gang; Hao, Qi; Monsel, Antoine; Feng, Xiao-Mei; Lee, Jae-Woo

    2013-07-01

    Acute lung injury (ALI) or acute respiratory distress syndrome remains a major cause of morbidity and mortality in hospitalized patients. The pathophysiology of ALI involves complex interactions between the inciting event, such as pneumonia, sepsis or aspiration, and the host immune response resulting in lung protein permeability, impaired resolution of pulmonary oedema, an intense inflammatory response in the injured alveolus and hypoxemia. In multiple preclinical studies, adult stem cells have been shown to be therapeutic due to both the ability to mitigate injury and inflammation through paracrine mechanisms and perhaps to regenerate tissue by virtue of their multi-potency. These characteristics have stimulated intensive research efforts to explore the possibility of using stem or progenitor cells for the treatment of lung injury. A variety of stem or progenitor cells have been isolated, characterized and tested experimentally in preclinical animal models of ALI. However, questions remain concerning the optimal dose, route and the adult stem or progenitor cell to use. Here, the current mechanisms underlying the therapeutic effect of stem cells in ALI as well as the questions that will arise as clinical trials for ALI are planned are reviewed. PMID:23578018

  11. Adult Palatum as a Novel Source of Neural Crest-Related Stem Cells

    PubMed Central

    Widera, Darius; Zander, Christin; Heidbreder, Meike; Kasperek, Yvonne; Noll, Thomas; Seitz, Oliver; Saldamli, Belma; Sudhoff, Holger; Sader, Robert; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2009-01-01

    Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies. Stem Cells 2009;27:1899–1910 PMID:19544446

  12. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation

    PubMed Central

    Kolf, Catherine M; Cho, Elizabeth; Tuan, Rocky S

    2007-01-01

    Recent advances in understanding the cellular and molecular signaling pathways and global transcriptional regulators of adult mesenchymal stem cells have provided new insights into their biology and potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal and regulation of lineage-specific differentiation of mesenchymal stem cells. In addition we review recent research on the concept of stem cell niche, and its relevance to adult mesenchymal stem cells. PMID:17316462

  13. Evolutionary dynamics of adult stem cells: Comparison of random and immortal-strand segregation mechanisms

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) “immortal DNA strand” co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  14. The sexual identity of adult intestinal stem cells controls organ size and plasticity

    PubMed Central

    Hudry, Bruno; Khadayate, Sanjay; Miguel-Aliaga, Irene

    2016-01-01

    SUMMARY Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realisation that cell-intrinsic mechanisms play important and persistent roles1,2. Here we use the Drosophila melanogaster intestine to investigate the nature and significance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncover its key roles in controlling organ size, its reproductive plasticity and its response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms, which control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognised. PMID:26887495

  15. The sexual identity of adult intestinal stem cells controls organ size and plasticity.

    PubMed

    Hudry, Bruno; Khadayate, Sanjay; Miguel-Aliaga, Irene

    2016-02-18

    Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realization that cell-intrinsic mechanisms play important and persistent roles. Here we use the Drosophila melanogaster intestine to investigate the nature and importance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncovers the key role this identity has in controlling organ size, reproductive plasticity and response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms that control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognized. PMID:26887495

  16. Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation

    PubMed Central

    Encinas, Juan M.; Vazquez, Marcelo E.; Switzer, Robert C.; Chamberland, Dennis W.; Nick, Harry; Levine, Howard G.; Scarpa, Philip J.; Enikolopov, Grigori; Steindler, Dennis A.

    2012-01-01

    Generation of new neurons in the adult brain, a process that is likely to be essential for learning, memory, and mood regulation, is impaired by radiation. Therefore, radiation exposure might have not only such previously expected consequences as increased probability of developing cancer, but might also impair cognitive function and emotional stability. Radiation exposure is encountered in settings ranging from cancer therapy to space travel; evaluating the neurogenic risks of radiation requires identifying the at-risk populations of stem and progenitor cells in the adult brain. Here we have used a novel reporter mouse line to find that early neural progenitors are selectively affected by conditions simulating the space radiation environment. This is reflected both in a decrease in the number of these progenitors in the neurogenic regions and in an increase in the number of dying cells in these regions. Unexpectedly, we found that quiescent neural stem cells, rather than their rapidly dividing progeny, are most sensitive to radiation. Since these stem cells are responsible for adult neurogenesis, their death would have a profound impact on the production of new neurons in the irradiated adult brain. Our finding raises an important concern about cognitive and emotional risks associated with radiation exposure. PMID:18076878

  17. Empowering Adult Stem Cells for Myocardial Regeneration V2.0: Success in Small Steps.

    PubMed

    Broughton, Kathleen M; Sussman, Mark A

    2016-03-01

    Much has changed since our survey of the landscape for myocardial regeneration powered by adult stem cells 4 years ago.(1) The intervening years since that first review has witnessed an explosive expansion of studies that advance both understanding and implementation of adult stem cells in promoting myocardial repair. Painstaking research from innumerable laboratories throughout the world is prying open doors that may lead to restoration of myocardial structure and function in the wake of pathological injury. This global effort has produced deeper mechanistic comprehension coupled with an evolving appreciation for the complexity of myocardial regeneration in the adult context. Undaunted by both known and (as yet) unknown challenges, pursuit of myocardial regenerative medicine mediated by adult stem cell therapy has gathered momentum fueled by tantalizing clues and visionary goals. This concise review takes a somewhat different perspective than our initial treatise, taking stock of the business sector that has become an integral part of the field while concurrently updating state of affairs in cutting edge research. Looking retrospectively at advancement over the years as all reviews eventually must, the fundamental lesson to be learned is best explained by Jonatan Mårtensson: "Success will never be a big step in the future. Success is a small step taken just now." PMID:26941423

  18. Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes.

    PubMed

    Meyer, S; Nolte, J; Opitz, L; Salinas-Riester, G; Engel, W

    2010-11-01

    DNA microarray analysis was performed with mouse multipotent adult germline stem cells (maGSCs) and embryonic stem cells (ESCs) from different genetic backgrounds cultured under standard ESC-culture conditions and under differentiation-promoting conditions by the withdrawal of the leukemia inhibitory factor (LIF) and treatment with retinoic acid (RA). The analyzed undifferentiated cell lines are very similar based on their global gene expression pattern and show 97-99% identity dependent on the analyzed background. Only 621 genes are differentially expressed in cells derived from mouse 129SV-background and 72 genes show differences in expression in cells generated from transgenic Stra8-EGFP/Rosa26-LacZ-background. Both maGSCs and ESCs express the same genes involved in the regulation of pluripotency and even show no differences in the expression level of these genes. When comparing maGSCs with previously published signature genes of other pluripotent cell lines, we found that maGSCs shared a very similar gene expression pattern with embryonic germ cells (EGCs). Also after differentiation of maGSCs and ESCs the transcriptomes of the cell lines are nearly identical which suggests that both cell types differentiate spontaneously in a very similar way. This is the first study, at transcriptome level, to compare ESCs and a pluripotent cell line derived from an adult organism (maGSCs). PMID:20624824

  19. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis

    PubMed Central

    Knobloch, Marlen; Braun, Simon M. G.; Zurkirchen, Luis; von Schoultz, Carolin; Zamboni, Nicola; Arauzo-Bravo, Marcos J.; Kovacs, Werner J.; Karalay, Özlem; Suter, Ueli; Machado, Raquel A. C.; Roccio, Marta; Lutolf, Matthias P.; Semenkovich, Clay F.; Jessberger, Sebastian

    2013-01-01

    Mechanisms controlling the proliferative activity of neural stem and progenitor cells (NSPCs) have a pivotal role to ensure life-long neurogenesis in the mammalian brain1. How metabolic programs are coupled with NSPC activity remains unknown. Here we show that fatty acid synthase (Fasn), the key enzyme of de novo lipogenesis2, is highly active in adult NSPCs and that conditional deletion of Fasn in mouse NSPCs impairs adult neurogenesis. The rate of de novo lipid synthesis and subsequent proliferation of NSPCs is regulated by Spot14, a gene previously implicated in lipid metabolism3–5, that we found to be selectively expressed in low proliferating adult NSPCs. Spot14 reduces the availability of malonyl-CoA6, which is an essential substrate for Fasn to fuel lipogenesis. Thus, we identify here a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation. PMID:23201681

  20. Neural stem cells, adult neurogenesis, and galectin-1: from bench to bedside.

    PubMed

    Sakaguchi, Masanori; Okano, Hideyuki

    2012-07-01

    Neural stem cells (NSCs) in the adult brain have been a consistent focus of biomedical research largely because of their potential clinical application. To fully exploit this potential, the molecular mechanisms that regulate NSCs must be clarified. Several lines of evidence show that a multifunctional protein, Galectin-1, is expressed and has a functional role in a subset of adult NSCs. Researchers, including our group, have explored the physiological role of Galectin-1 in NSCs and its application in the treatment of animal models of neurological disorders such as brain ischemia and spinal cord injury. Here, we summarize what is currently known regarding the role of Galectin-1 in adult NSCs. Furthermore, we discuss current issues in researching the role of Galectin-1 in adult NSCs under both physiological and pathological conditions. PMID:22488739

  1. Molecular characterization of retinal stem cells and their niches in adult zebrafish

    PubMed Central

    Raymond, Pamela A; Barthel, Linda K; Bernardos, Rebecca L; Perkowski, John J

    2006-01-01

    Background The persistence in adult teleost fish of retinal stem cells that exhibit all of the features of true 'adult stem cells' – self-renewal, multipotency, and the capacity to respond to injury by mitotic activation with the ability to regenerate differentiated tissues – has been known for several decades. However, the specialized cellular and molecular characteristics of these adult retinal stem cells and the microenvironmental niches that support their maintenance in the differentiated retina and regulate their activity during growth and regeneration have not yet been elucidated. Results Our data show that the zebrafish retina has two kinds of specialized niches that sustain retinal stem cells: 1) a neuroepithelial germinal zone at the interface between neural retina and ciliary epithelium, called the ciliary marginal zone (CMZ), a continuous annulus around the retinal circumference, and 2) the microenvironment around some Müller glia in the differentiated retina. In the uninjured retina, scattered Müller glia (more frequently those in peripheral retina) are associated with clusters of proliferating retinal progenitors that are restricted to the rod photoreceptor lineage, but following injury, the Müller-associated retinal progenitors can function as multipotent retinal stem cells to regenerate other types of retinal neurons. The CMZ has several features in common with the neurogenic niches in the adult mammalian brain, including access to the apical epithelial surface and a close association with blood vessels. Müller glia in the teleost retina have a complex response to local injury that includes some features of reactive gliosis (up-regulation of glial fibrillary acidic protein, GFAP, and re-entry into the cell cycle) together with dedifferentiation and re-acquisition of phenotypic and molecular characteristics of multipotent retinal progenitors in the CMZ (diffuse distribution of N-cadherin, activation of Notch-Delta signaling, and expression of

  2. Concise Review: Different Mesenchymal Stromal/Stem Cell Populations Reside in the Adult Kidney

    PubMed Central

    Bruno, Stefania; Chiabotto, Giulia

    2014-01-01

    During fetal life, mesenchymal stromal/stem cells (MSCs) surround glomeruli and tubules and contribute to the development of the renal interstitium by secretion of growth factors that drive nephron differentiation. In the adult, an MSC-like population has been demonstrated in different compartments of human and murine nephrons. After injury, these cells might provide support for kidney regeneration by recapitulating the role they have in embryonic life. In this short review, we discuss the evidence of an MSC presence within the adult kidney and their potential contribution to the turnover of renal cells and injury repair. PMID:25355731

  3. Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone.

    PubMed

    Calzolari, Filippo; Michel, Julia; Baumgart, Emily Violette; Theis, Fabian; Götz, Magdalena; Ninkovic, Jovica

    2015-04-01

    We analyzed the progeny of individual neural stem cells (NSCs) of the mouse adult subependymal zone (SEZ) in vivo and found a markedly fast lineage amplification, as well as limited NSC self-renewal and exhaustion in a few weeks. We further unraveled the mechanisms of neuronal subtype generation, finding that a higher proportion of NSCs were dedicated to generate deep granule cells in the olfactory bulb and that larger clones were produced by these NSCs. PMID:25730673

  4. Autologous Transplantation of Bone Marrow Adult Stem Cells for the Treatment of Idiopathic Dilated Cardiomyopathy

    PubMed Central

    Westphal, Ricardo João; Bueno, Ronaldo Rocha Loures; Galvão, Paulo Bezerra de Araújo; Zanis Neto, José; Souza, Juliano Mendes; Guérios, Ênio Eduardo; Senegaglia, Alexandra Cristina; Brofman, Paulo Roberto; Pasquini, Ricardo; da Cunha, Claudio Leinig Pereira

    2014-01-01

    Background Morbimortality in patients with dilated idiopathic cardiomyopathy is high, even under optimal medical treatment. Autologous infusion of bone marrow adult stem cells has shown promising preliminary results in these patients. Objective Determine the effectiveness of autologous transplantation of bone marrow adult stem cells on systolic and diastolic left ventricular function, and on the degree of mitral regurgitation in patients with dilated idiopathic cardiomyopathy in functional classes NYHA II and III. Methods We administered 4,54 x 108 ± 0,89 x 108 bone marrow adult stem cells into the coronary arteries of 24 patients with dilated idiopathic cardiomyopathy in functional classes NYHA II and III. Changes in functional class, systolic and diastolic left ventricular function and degree of mitral regurgitation were assessed after 3 months, 6 months and 1 year. Results During follow-up, six patients (25%) improved functional class and eight (33.3%) kept stable. Left ventricular ejection fraction improved 8.9%, 9.7% e 13.6%, after 3, 6 and 12 months (p = 0.024; 0.017 and 0.018), respectively. There were no significant changes neither in diastolic left ventricular function nor in mitral regurgitation degree. A combined cardiac resynchronization and implantable cardioversion defibrillation was implanted in two patients (8.3%). Four patients (16.6%) had sudden death and four patients died due to terminal cardiac failure. Average survival of these eight patients was 2.6 years. Conclusion Intracoronary infusion of bone marrow adult stem cells was associated with an improvement or stabilization of functional class and an improvement in left ventricular ejection fraction, suggesting the efficacy of this intervention. There were no significant changes neither in left ventricular diastolic function nor in the degree of mitral regurgitation. PMID:25590932

  5. Regeneration of plantlets from the callus of stem segments of adult plants of Ficus religiosa L.

    PubMed

    Jaiswal, V S; Narayan, P

    1985-10-01

    Stem segments of adult plants of Ficus religiosa L. cultured on MS medium containing 1.0 mg/l 2,4-D produced callus. Shoots were regenerated when the induced calli were transferred to medium supplemented with 0.05 to 2.0 mg/l BAP. Callus derived shoots produced roots and developed into plantlets when transferred to medium supplemented with 1.0 mg/l NAA. PMID:24253982

  6. TRIM32 regulates skeletal muscle stem cell differentiation and is necessary for normal adult muscle regeneration.

    PubMed

    Nicklas, Sarah; Otto, Anthony; Wu, Xiaoli; Miller, Pamela; Stelzer, Sandra; Wen, Yefei; Kuang, Shihuan; Wrogemann, Klaus; Patel, Ketan; Ding, Hao; Schwamborn, Jens C

    2012-01-01

    Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H. PMID:22299041

  7. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium

    PubMed Central

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J.; Abreu Paiva, Marta S.; Habib, Josef; Macaulay, Iain; de Smith, Adam J.; al-Beidh, Farah; Sampson, Robert; Lumbers, R. Thomas; Rao, Pulivarthi; Harding, Sian E.; Blakemore, Alexandra I. F.; Eirik Jacobsen, Sten; Barahona, Mauricio; Schneider, Michael D.

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT–PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα+ cells. Clonal progeny of single Sca1+ SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα− cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα+/CD31− cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα−/CD31+ cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1+ stem/progenitor cell. PMID:25980517

  8. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium.

    PubMed

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J; Abreu Paiva, Marta S; Habib, Josef; Macaulay, Iain; de Smith, Adam J; al-Beidh, Farah; Sampson, Robert; Lumbers, R Thomas; Rao, Pulivarthi; Harding, Sian E; Blakemore, Alexandra I F; Jacobsen, Sten Eirik; Barahona, Mauricio; Schneider, Michael D

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT-PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα(+) cells. Clonal progeny of single Sca1(+) SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα(-) cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα(+)/CD31(-) cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα(-)/CD31(+) cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1(+) stem/progenitor cell. PMID:25980517

  9. Tumorigenic Potential of Olfactory Bulb-Derived Human Adult Neural Stem Cells Associates with Activation of TERT and NOTCH1

    PubMed Central

    Ricci-Vitiani, Lucia; Cenciarelli, Carlo; Petrucci, Giovanna; Milazzo, Luisa; Montano, Nicola; Tabolacci, Elisabetta; Maira, Giulio; Larocca, Luigi M.; Pallini, Roberto

    2009-01-01

    Background Multipotent neural stem cells (NSCs) have been isolated from neurogenic regions of the adult brain. Reportedly, these cells can be expanded in vitro under prolonged mitogen stimulation without propensity to transform. However, the constitutive activation of the cellular machinery required to bypass apoptosis and senescence places these cells at risk for malignant transformation. Methodology/Principal Findings Using serum-free medium supplemented with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), we established clonally derived NS/progenitor cell (NS/PC) cultures from the olfactory bulb (OB) of five adult patients. The NS/PC cultures obtained from one OB specimen lost growth factor dependence and neuronal differentiation at early passage. These cells developed glioblastoma tumors upon xenografting in immunosuppressed mice. The remaining NS/PC cultures were propagated either as floating neurospheres or as adherent monolayers with mainteinance of growth factor dependence and multipotentiality at late passage. These cells were engrafted onto the CNS of immunosuppressed rodents. Overall, the grafted NS/PCs homed in the host parenchyma showing ramified morphology and neuronal marker expression. However, a group of animals transplanted with NS/PCs obtained from an adherent culture developed fast growing tumors histologically resembling neuroesthesioblastoma. Cytogenetic and molecular analyses showed that the NS/PC undergo chromosomal changes with repeated in vitro passages under mitogen stimulation, and that up-regulation of hTERT and NOTCH1 associates with in vivo tumorigenicity. Conclusions/Significance Using culturing techniques described in current literature, NS/PCs arise from the OB of adult patients which in vivo either integrate in the CNS parenchyma showing neuron-like features or initiate tumor formation. Extensive xenografting studies on each human derived NS cell line appear mandatory before any use of these cells in the

  10. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  11. The molecular nature of very small embryonic-like stem cells in adult tissues.

    PubMed

    Kim, YongHwan; Jeong, Jaeho; Kang, Hyunsook; Lim, Jisun; Heo, Jinbeom; Ratajczak, Janina; Ratajczak, Mariusz Z; Shin, Dong-Myung

    2014-11-01

    Pluripotent stem cells (PSCs) have been considered as the most important cells in regenerative medicine as they are able to differentiate into all types of cells in the human body. PSCs have been established from several sources of embryo tissue or by reprogramming of terminally differentiated adult tissue by transduction of so-called Yamanaka factors (Oct4, Sox2, Klf4, and cMyc). Interestingly, accumulating evidence has demonstrated the residence of PSCs in adult tissue and with the ability to differentiate into multiple types of tissue-committed stem cells (TCSCs). We also recently demonstrated that a population of pluripotent Oct4(+) SSEA-1(+)Sca-1(+)Lin(-)CD45(-) very small embryonic-like stem cells (VSELs) resides in the adult murine bone marrow (BM) and in other murine tissue. These very small (∼3-6 μm) cells express pluripotent markers such as Oct4, Nanog, and SSEA-1. VSELs could be specified into several tissue-residing TCSCs in response to tissue/organ injury, and thus suggesting that these cells have a physiological role in the rejuvenation of a pool of TCSCs under steady-state conditions. In this review article, we discuss the molecular nature of the rare population of VSELs which have a crucial role in regulating the pluripotency, proliferation, differentiation, and aging of these cells. PMID:25473442

  12. The Molecular Nature of Very Small Embryonic-Like Stem Cells in Adult Tissues

    PubMed Central

    Kim, YongHwan; Jeong, Jaeho; Kang, Hyunsook; Lim, Jisun; Heo, Jinbeom; Ratajczak, Janina; Ratajczak, Mariusz Z.; Shin, Dong-Myung

    2014-01-01

    Pluripotent stem cells (PSCs) have been considered as the most important cells in regenerative medicine as they are able to differentiate into all types of cells in the human body. PSCs have been established from several sources of embryo tissue or by reprogramming of terminally differentiated adult tissue by transduction of so-called Yamanaka factors (Oct4, Sox2, Klf4, and cMyc). Interestingly, accumulating evidence has demonstrated the residence of PSCs in adult tissue and with the ability to differentiate into multiple types of tissue-committed stem cells (TCSCs). We also recently demonstrated that a population of pluripotent Oct4+ SSEA-1+Sca-1+Lin−CD45− very small embryonic-like stem cells (VSELs) resides in the adult murine bone marrow (BM) and in other murine tissue. These very small (∼3–6 μm) cells express pluripotent markers such as Oct4, Nanog, and SSEA-1. VSELs could be specified into several tissue-residing TCSCs in response to tissue/organ injury, and thus suggesting that these cells have a physiological role in the rejuvenation of a pool of TCSCs under steady-state conditions. In this review article, we discuss the molecular nature of the rare population of VSELs which have a crucial role in regulating the pluripotency, proliferation, differentiation, and aging of these cells. PMID:25473442

  13. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary.

    PubMed

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)⁺-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2⁺-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  14. Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome.

    PubMed

    Sandberg, Cecilie Jonsgar; Altschuler, Gabriel; Jeong, Jieun; Strømme, Kirsten Kierulf; Stangeland, Biljana; Murrell, Wayne; Grasmo-Wendler, Unn-Hilde; Myklebost, Ola; Helseth, Eirik; Vik-Mo, Einar Osland; Hide, Winston; Langmoen, Iver A

    2013-08-15

    Glioblastoma is the most common brain tumor. Median survival in unselected patients is <10 months. The tumor harbors stem-like cells that self-renew and propagate upon serial transplantation in mice, although the clinical relevance of these cells has not been well documented. We have performed the first genome-wide analysis that directly relates the gene expression profile of nine enriched populations of glioblastoma stem cells (GSCs) to five identically isolated and cultivated populations of stem cells from the normal adult human brain. Although the two cell types share common stem- and lineage-related markers, GSCs show a more heterogeneous gene expression. We identified a number of pathways that are dysregulated in GSCs. A subset of these pathways has previously been identified in leukemic stem cells, suggesting that cancer stem cells of different origin may have common features. Genes upregulated in GSCs were also highly expressed in embryonic and induced pluripotent stem cells. We found that canonical Wnt-signaling plays an important role in GSCs, but not in adult human neural stem cells. As well we identified a 30-gene signature highly overexpressed in GSCs. The expression of these signature genes correlates with clinical outcome and demonstrates the clinical relevance of GSCs. PMID:23791939

  15. Efficacy of Oral Cryotherapy on Oral Mucositis Prevention in Patients with Hematological Malignancies Undergoing Hematopoietic Stem Cell Transplantation: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Zhai, Ruiren; Zhao, Shasha; Luo, Lan; Li, Dandan; Zhao, Xiaoli; Wei, Huaping; Pang, Zhaoxia; Wang, Lili; Liu, Daihong; Wang, Quanshun; Gao, Chunji

    2015-01-01

    Objectives Controversy exists regarding whether oral cryotherapy can prevent oral mucositis (OM) in patients with hematological malignancies undergoing hematopoietic stem cell transplantation (HSCT). The aim of the present meta-analysis was to evaluate the efficacy of oral cryotherapy for OM prevention in patients with hematological malignancies undergoing HSCT. Methods PubMed and the Cochrane Library were searched through October 2014. Randomized controlled trials (RCTs) comparing the effect of oral cryotherapy with no treatment or with other interventions for OM in patients undergoing HSCT were included. The primary outcomes were the incidence, severity, and duration of OM. The secondary outcomes included length of analgesic use, total parenteral nutrition (TPN) use, and length of hospital stay. Results Seven RCTs involving eight articles analyzing 458 patients were included. Oral cryotherapy significantly decreased the incidence of severe OM (RR = 0.52, 95% CI = 0.27 to 0.99) and OM severity (SMD = -2.07, 95% CI = -3.90 to -0.25). In addition, the duration of TPN use and the length of hospitalization were markedly reduced (SMD = -0.56, 95% CI = -0.92 to -0.19; SMD = -0.44, 95% CI = -0.76 to -0.13; respectively). However, the pooled results were uncertain for the duration of OM and analgesic use (SMD = -0.13, 95% CI = -0.41 to 0.15; SMD = -1.15, 95% CI = -2.57 to 0.27; respectively). Conclusions Oral cryotherapy is a readily applicable and cost-effective prophylaxis for OM in patients undergoing HSCT. PMID:26024220

  16. Potential for a pluripotent adult stem cell treatment for acute radiation sickness

    PubMed Central

    Rodgerson, Denis O; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L

    2012-01-01

    Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ionizing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung. PMID:24520532

  17. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    PubMed

    Hollenbach, Jessica P; Resch, Alissa M; Palakodeti, Dasaradhi; Graveley, Brenton R; Heinen, Christopher D

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis. PMID:21747960

  18. Isolation and Culture of Dental Epithelial Stem Cells from the Adult Mouse Incisor

    PubMed Central

    Chavez, Miquella G.; Hu, Jimmy; Seidel, Kerstin; Li, Chunying; Jheon, Andrew; Naveau, Adrien; Horst, Orapin; Klein, Ophir D.

    2014-01-01

    Understanding the cellular and molecular mechanisms that underlie tooth regeneration and renewal has become a topic of great interest1-4, and the mouse incisor provides a model for these processes. This remarkable organ grows continuously throughout the animal's life and generates all the necessary cell types from active pools of adult stem cells housed in the labial (toward the lip) and lingual (toward the tongue) cervical loop (CL) regions. Only the dental stem cells from the labial CL give rise to ameloblasts that generate enamel, the outer covering of teeth, on the labial surface. This asymmetric enamel formation allows abrasion at the incisor tip, and progenitors and stem cells in the proximal incisor ensure that the dental tissues are constantly replenished. The ability to isolate and grow these progenitor or stem cells in vitro allows their expansion and opens doors to numerous experiments not achievable in vivo, such as high throughput testing of potential stem cell regulatory factors. Here, we describe and demonstrate a reliable and consistent method to culture cells from the labial CL of the mouse incisor. PMID:24834972

  19. Maintenance of wakefulness with lisdexamfetamine dimesylate, compared with placebo and armodafinil in healthy adult males undergoing acute sleep loss.

    PubMed

    Gasior, Maria; Freeman, Jon; Zammit, Gary; Donnelly, Patricia; Gao, Joseph; Ferreira-Cornwell, Maria Celeste; Roth, Thomas

    2014-12-01

    This study evaluated daytime alertness and performance with lisdexamfetamine dimesylate during acute sleep loss. In a randomized, double-blind study in healthy adult men (n = 135) undergoing 24-hour sleep loss, the alerting effects of single oral lisdexamfetamine dimesylate doses (20, 50, or 70 mg) were compared with a placebo and an active control (armodafinil 250 mg). Primary end point was mean unequivocal sleep latency on the 30-minute maintenance of wakefulness test taken every 2 hours from midnight to 8:00 A.M. Secondary end points included the Karolinska sleepiness scale and psychomotor vigilance task. Safety assessments included treatment-emergent adverse events (TEAEs) and vital signs. Least squares mean (SE) maintenance of wakefulness test unequivocal sleep latency (in minutes) was longer with lisdexamfetamine dimesylate 20, 50, and 70 mg, or armodafinil 250 mg (23.3 [1.10], 27.9 [0.64], 29.3 [0.44], or 27.6 [0.63], respectively) versus placebo (15.3 [1.00]; P < 0.0001). Longer mean unequivocal sleep latency was seen with lisdexamfetamine dimesylate 70 mg versus armodafinil (P = 0.0351) and armodafinil versus lisdexamfetamine dimesylate 20 mg (P = 0.0014). On Karolinska sleepiness scale, lisdexamfetamine dimesylate 50 and 70 mg improved estimated sleepiness versus placebo (P ≤ 0.0002) and armodafinil (P ≤ 0.03). Active treatments improved psychomotor vigilance task performance versus placebo (P < 0.0001). The TEAEs were mild/moderate. No serious adverse events occurred. The most common TEAE was headache with lisdexamfetamine dimesylate and armodafinil (7.4% each) versus placebo (3.7%). Small mean increases in vital signs were observed with lisdexamfetamine dimesylate and armodafinil. In sleep-deprived healthy men, alertness was greater with lisdexamfetamine dimesylate and armodafinil versus placebo on the primary end point. Studies are needed in clinical populations and using longer durations of administration. PMID:25159886

  20. Comparison of GlideScope video laryngoscope with Macintosh laryngoscope in adult patients undergoing elective surgical procedures

    PubMed Central

    Parasa, Mrunalini; Yallapragada, Srivishnu Vardhan; Vemuri, Nagendra Nath; Shaik, Mastan Saheb

    2016-01-01

    Background: GlideScope (GS) is a video laryngoscope that allows a real-time view of the glottis and endotracheal intubation. It provides a better view of the larynx without the need for alignment of the airway axes. Aim: This prospective randomized comparative study is designed to compare the intubation time, hemodynamic response, and complications associated with intubation using a GS or Macintosh laryngoscope (ML) in adult subjects undergoing elective surgical procedures. Materials and Methods: Sixty American Society of Anesthesiologists physical status 1–2 patients were included in this prospective randomized comparative study. Patients were randomized to be intubated using either a GS or an ML. The primary outcome measure was the intubation time. The secondary outcome measures were the hemodynamic response to intubation and the incidence of mucosal injury. Statistical Analysis: Mean and standard deviation were calculated for different parameters under the study. The observed results were analyzed using Student's t-test for quantitative data and Z-test of proportions. P<0.05 was considered statistically significant. Results: Intubation time was longer in GS group (45.7033 ± 11.649 s) as compared to ML (27.773 ± 5.122 s) P< 0.0001 with 95% confidence interval (95% CI) −13.2794 to −22.5806. GS provided better Cormack and Lehane laryngoscopic view (P = 0.0016 for grade 1 view) with 95% CI −0.1389 to −0.5951. GS group exhibited more laryngoscopic response than ML group with more increase in blood pressure and heart rate, but the difference was not statistically significant. More cases of mucosal trauma were documented in GS group. Conclusion: Use of GS to facilitate intubation led to better glottic view but took a longer time to achieve endotracheal intubation. GS was associated with more hemodynamic response to intubation and mucosal injury in comparison with an ML. PMID:27212755

  1. Naïve adult stem cells isolation from primary human fibroblast cultures.

    PubMed

    Wenzel, Vera; Roedl, Daniela; Ring, Johannes; Djabali, Karima

    2013-01-01

    Over the last decade, several adult stem cell populations have been identified in human skin (1-4). The isolation of multipotent adult dermal precursors was first reported by Miller F. D laboratory (5, 6). These early studies described a multipotent precursor cell population from adult mammalian dermis (5). These cells--termed SKPs, for skin-derived precursors-- were isolated and expanded from rodent and human skin and differentiated into both neural and mesodermal progeny, including cell types never found in skin, such as neurons (5). Immunocytochemical studies on cultured SKPs revealed that cells expressed vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors, in addition to fibronectin and multipotent stem cell markers (6). Until now, the adult stem cells population SKPs have been isolated from freshly collected mammalian skin biopsies. Recently, we have established and reported that a population of skin derived precursor cells could remain present in primary fibroblast cultures established from skin biopsies (7). The assumption that a few somatic stem cells might reside in primary fibroblast cultures at early population doublings was based upon the following observations: (1) SKPs and primary fibroblast cultures are derived from the dermis, and therefore a small number of SKP cells could remain present in primary dermal fibroblast cultures and (2) primary fibroblast cultures grown from frozen aliquots that have been subjected to unfavorable temperature during storage or transfer contained a small number of cells that remained viable (7). These rare cells were able to expand and could be passaged several times. This observation suggested that a small number of cells with high proliferation potency and resistance to stress were present in human fibroblast cultures (7). We took advantage of these findings to establish a protocol for rapid isolation of adult stem cells from primary fibroblast cultures that are

  2. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression.

    PubMed

    Winderlich, Joshua N; Kremer, Karlea L; Koblar, Simon A

    2016-06-01

    Stem cell therapy is a promising new treatment option for stroke. Intravascular administration of stem cells is a valid approach as stem cells have been shown to transmigrate the blood-brain barrier. The mechanism that causes this effect has not yet been elucidated. We hypothesized that stem cells would mediate localized discontinuities in the blood-brain barrier, which would allow passage into the brain parenchyma. Here, we demonstrate that adult human dental pulp stem cells express a soluble factor that increases permeability across an in vitro model of the blood-brain barrier. This effect was shown to be the result of vascular endothelial growth factor-a. The effect could be amplified by exposing dental pulp stem cell to stromal-derived factor 1, which stimulates vascular endothelial growth factor-a expression. These findings support the use of dental pulp stem cell in therapy for stroke. PMID:26661186

  3. Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis.

    PubMed

    Zhang, Juan; Jiao, Jianwei

    2015-01-01

    The procedure of neurogenesis has made numerous achievements in the past decades, during which various molecular biomarkers have been emerging and have been broadly utilized for the investigation of embryonic and adult neural stem cell (NSC). Nevertheless, there is not a consistent and systematic illustration to depict the functional characteristics of the specific markers expressed in distinct cell types during the different stages of neurogenesis. Here we gathered and generalized a series of NSC biomarkers emerging during the procedures of embryonic and adult neural stem cell, which may be used to identify the subpopulation cells with distinguishing characters in different timeframes of neurogenesis. The identifications of cell patterns will provide applications to the detailed investigations of diverse developmental cell stages and the extents of cell differentiation, which will facilitate the tracing of cell time-course and fate determination of specific cell types and promote the further and literal discoveries of embryonic and adult neurogenesis. Meanwhile, via the utilization of comprehensive applications under the aiding of the systematic knowledge framework, researchers may broaden their insights into the derivation and establishment of novel technologies to analyze the more detailed process of embryogenesis and adult neurogenesis. PMID:26421301

  4. Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis

    PubMed Central

    Zhang, Juan; Jiao, Jianwei

    2015-01-01

    The procedure of neurogenesis has made numerous achievements in the past decades, during which various molecular biomarkers have been emerging and have been broadly utilized for the investigation of embryonic and adult neural stem cell (NSC). Nevertheless, there is not a consistent and systematic illustration to depict the functional characteristics of the specific markers expressed in distinct cell types during the different stages of neurogenesis. Here we gathered and generalized a series of NSC biomarkers emerging during the procedures of embryonic and adult neural stem cell, which may be used to identify the subpopulation cells with distinguishing characters in different timeframes of neurogenesis. The identifications of cell patterns will provide applications to the detailed investigations of diverse developmental cell stages and the extents of cell differentiation, which will facilitate the tracing of cell time-course and fate determination of specific cell types and promote the further and literal discoveries of embryonic and adult neurogenesis. Meanwhile, via the utilization of comprehensive applications under the aiding of the systematic knowledge framework, researchers may broaden their insights into the derivation and establishment of novel technologies to analyze the more detailed process of embryogenesis and adult neurogenesis. PMID:26421301

  5. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    PubMed Central

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  6. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland.

    PubMed

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  7. Lenograstim reduces the incidence of febrile episodes, when compared with filgrastim, in multiple myeloma patients undergoing stem cell mobilization.

    PubMed

    Orciuolo, Enrico; Buda, Gabriele; Marturano, Emerenziana; Mauro, Elisa; Milone, Giuseppe; Cangialosi, Clotilde; Di Renzo, Nicola; Pastore, Domenico; Specchia, Giorgina; De Paolis, Maria Rosaria; Mazza, Patrizio; Pietrantuono, Giuseppe; Petrini, Mario

    2011-07-01

    The aim of this study was to show a lower incidence of febrile episodes in multiple myeloma patients receiving lenograstim vs. filgrastim after high-dose cyclophosphamide for stem cell mobilization. Patients treated with cyclophosphamide were randomly assigned to receive filgrastim or lenograstim. Primary endpoint was the incidence of febrile episodes. 5.1% patients developed a febrile episode, 9.1% with filgrastim and 1.1% with lenograstim. Lenograstim group presented a significantly higher absolute CD34+ cell number compared with the filgrastim group but no differences were detected for collection efficacy. The study demonstrated a lower incidence of febrile episodes with lenograstim compared to filgrastim. PMID:21134693

  8. The Role of Social and Cognitive Processes in the Relationship between Fear Network and Psychological Distress among Parents of Children Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Virtue, Shannon Myers; Manne, Sharon; Mee, Laura; Bartell, Abraham; Sands, Stephen; Ohman-Strickland, Pamela; Gajda, Tina Marie

    2014-01-01

    The current study examined whether cognitive and social processing variables mediated the relationship between fear network and depression among parents of children undergoing hematopoietic stem cell transplant (HSCT). Parents whose children were initiating HSCT (N = 179) completed survey measures including fear network, Beck Depression Inventory (BDI), cognitive processing variables (positive reappraisal and self-blame) and social processing variables (emotional support and holding back from sharing concerns). Fear network was positively correlated with depression (p < .001). Self-blame and holding back emerged as individual partial mediators in the relationship between fear network and depression. Together they accounted for 34.3% of the variance in the relationship between fear network and depression. Positive reappraisal and emotional support did not have significant mediating effects. Social and cognitive processes, specifically self-blame and holding back from sharing concerns, play a negative role in parents’ psychological adaptation to fears surrounding a child’s HSCT. PMID:25081956

  9. C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence.

    PubMed

    Ye, Min; Zhang, Hong; Amabile, Giovanni; Yang, Henry; Staber, Philipp B; Zhang, Pu; Levantini, Elena; Alberich-Jordà, Meritxell; Zhang, Junyan; Kawasaki, Akira; Tenen, Daniel G

    2013-04-01

    In blood, the transcription factor C/EBPa is essential for myeloid differentiation and has been implicated in regulating self-renewal of fetal liver haematopoietic stem cells (HSCs). However, its function in adult HSCs has remained unknown. Here, using an inducible knockout model we found that C/EBPa-deficient adult HSCs underwent a pronounced increase in number with enhanced proliferation, characteristics resembling fetal liver HSCs. Consistently, transcription profiling of C/EBPa-deficient HSCs revealed a gene expression program similar to fetal liver HSCs. Moreover, we observed that age-specific Cebpa expression correlated with its inhibitory effect on the HSC cell cycle. Mechanistically we identified N-Myc as a downstream target of C/EBPa, and loss of C/EBPa resulted in de-repression of N-Myc. Our data establish C/EBPa as a central determinant in the switch from fetal to adult HSCs. PMID:23502316

  10. Adult neural stem cells in distinct microdomains generate previously unknown interneuron types

    PubMed Central

    Merkle, Florian T.; Fuentealba, Luis C.; Sanders, Timothy A.; Magno, Lorenza; Kessaris, Nicoletta; Alvarez-Buylla, Arturo

    2014-01-01

    Throughout life, neural stem cells (NSCs) in different domains of the ventricular-subventricular zone (V-SVZ) of the adult rodent brain generate several subtypes of interneurons that regulate the function of the olfactory bulb (OB). The full extent of diversity among adult NSCs and their progeny is not known. Here, we report the generation of at least four previously unknown OB interneuron subtypes that are produced in finely patterned progenitor domains in the anterior ventral V-SVZ of both the neonatal and adult brain. Progenitors of these novel interneurons are responsive to sonic hedgehog (SHH) and are organized into microdomains that correlate with the expression domains of the Nkx6.2 and Zic family of transcription factors. This work reveals an unexpected degree of complexity in the specification and patterning of NSCs in the postnatal mouse brain. PMID:24362763

  11. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  12. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes.

    PubMed Central

    Overturf, K.; al-Dhalimy, M.; Ou, C. N.; Finegold, M.; Grompe, M.

    1997-01-01

    Previous work has shown that adult mouse hepatocytes can divide at least 18 times in vivo. To test whether this represents the upper limit of their regenerative capacity, we performed serial transplantation of hepatocytes in the fumarylacetoacetate hydrolase deficiency murine model of liver repopulation. Hepatocytes from adult donors were serially transplanted in limiting numbers six times and resulted in complete repopulation during each cycle. This corresponds to a minimal number of 69 cell doublings or a 7.3 x 10(20)-fold expansion. No evidence for abnormal liver function or altered hepatic architecture was found in repopulated animals. We conclude that a fraction of adult mouse hepatocytes have growth potential similar to that of hematopoietic stem cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9358753

  13. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest

    PubMed Central

    Carén, Helena; Stricker, Stefan H.; Bulstrode, Harry; Gagrica, Sladjana; Johnstone, Ewan; Bartlett, Thomas E.; Feber, Andrew; Wilson, Gareth; Teschendorff, Andrew E.; Bertone, Paul; Beck, Stephan; Pollard, Steven M.

    2015-01-01

    Summary Glioblastoma (GBM) is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs) and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM. PMID:26607953

  14. Child-rearing and adult leukemia: Epidemiologic evidence in support of competing hematopoietic stem cell differentiation

    SciTech Connect

    Steven, R.G. ); Severson, R.K. . Japan-Hawaii Cancer Study); Heuser, L. )

    1988-05-01

    The hypothesis that lack of child-rearing increases the risk of acute non-lymphocytic leukemia (ANLL) in adults was examined in a case-control study in western Washington State. Among 159 study subjects over age 50 in 1985, there were 76 cases of ANLL and 83 controls. The crude odds ratio associated with lack of child-rearing was 1.8, with a 95% confidence range of 0.7 to 5.0. The average total number of children ever living with cases was 2.6 and with controls was 3.1 (p = 0.06). The mean total number of years living with a child, or children, under age 18 was 17.6 in cases and 20.2 in controls (p = 0.05). These results were not materially altered after adjustment for age, smoking, race, income, and sex. The data provide evidence that cases of ANLL were less likely to ever have had children and that fewer years were spent rearing children than were spent by controls. The hypothesis was based on the competing stem cell'' theory of hematopoietic ontogeny. If valid, then exposure to children would increase exposure to infection, leading to increased lymphocytic stem cell turnover, and decreased non-lymphocytic stem cell turnover. This, in turn, may reduce risk of ANLL in adults. 18 refs., 3 tabs.

  15. Progerin expression disrupts critical adult stem cell functions involved in tissue repair.

    PubMed

    Pacheco, Laurin Marie; Gomez, Lourdes Adriana; Dias, Janice; Ziebarth, Noel M; Howard, Guy A; Schiller, Paul C

    2014-12-01

    Vascular disease is one of the leading causes of death worldwide. Vascular repair, essential for tissue maintenance, is critically reduced during vascular disease and aging. Efficient vascular repair requires functional adult stem cells unimpaired by aging or mutation. One protein candidate for reducing stem cell?mediated vascular repair is progerin, an alternative splice variant of lamin A. Progerin results from erroneous activation of cryptic splice sites within the LMNA gene, and significantly increases during aging. Mutations triggering progerin overexpression cause the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), in which patients die at approximately 13-years of age due to atherosclerosis-induced disease. Progerin expression affects tissues rich in cells that can be derived from marrow stromal cells (MSCs. Studies using various MSC subpopulations and models have led to discrepant results. Using a well-defined, immature subpopulation of MSCs, Marrow Isolated Adult Multilineage Inducible (MIAMI) cells, we find progerin significantly disrupts expression and localization of self-renewal markers, proliferation, migration, and membrane elasticity. One potential treatment, farnesyltransferase inhibitor, ameliorates some of these effects. Our results confirm proposed progerin-induced mechanisms and suggest novel ways in which progerin disturbs critical stem cell functions collectively required for proper tissue repair, offering promising treatment targets for future therapies. PMID:25567453

  16. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    PubMed Central

    Baugé, Catherine; Boumédiene, Karim

    2015-01-01

    Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells. PMID:26246809

  17. Progerin expression disrupts critical adult stem cell functions involved in tissue repair

    PubMed Central

    Pacheco, Laurin Marie; Gomez, Lourdes Adriana; Dias, Janice; Ziebarth, Noel M; Howard, Guy A; Schiller, Paul C

    2014-01-01

    Vascular disease is one of the leading causes of death worldwide. Vascular repair, essential for tissue maintenance, is critically reduced during vascular disease and aging. Efficient vascular repair requires functional adult stem cells unimpaired by aging or mutation. One protein candidate for reducing stem cell–mediated vascular repair is progerin, an alternative splice variant of lamin A. Progerin results from erroneous activation of cryptic splice sites within the LMNA gene, and significantly increases during aging. Mutations triggering progerin overexpression cause the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), in which patients die at approximately 13-years of age due to atherosclerosis-induced disease. Progerin expression affects tissues rich in cells that can be derived from marrow stromal cells (MSCs). Studies using various MSC subpopulations and models have led to discrepant results. Using a well-defined, immature subpopulation of MSCs, Marrow Isolated Adult Multilineage Inducible (MIAMI) cells, we find progerin significantly disrupts expression and localization of self-renewal markers, proliferation, migration, and membrane elasticity. One potential treatment, farnesyltransferase inhibitor, ameliorates some of these effects. Our results confirm proposed progerin-induced mechanisms and suggest novel ways in which progerin disturbs critical stem cell functions collectively required for proper tissue repair, offering promising treatment targets for future therapies. PMID:25567453

  18. End-of-life experience of children undergoing stem cell transplantation for malignancy: parent and provider perspectives and patterns of care.

    PubMed

    Ullrich, Christina K; Dussel, Veronica; Hilden, Joanne M; Sheaffer, Jan W; Lehmann, Leslie; Wolfe, Joanne

    2010-05-13

    The end-of-life (EOL) experience of children who undergo stem cell transplantation (SCT) may differ from that of other children with cancer. To evaluate perspectives and patterns of EOL care after SCT, we surveyed 141 parents of children who died of cancer (response rate, 64%) and their physicians. Chart review provided additional information. Children for whom SCT was the last cancer therapy (n = 31) were compared with those for whom it was not (n = 110). SCT parents and physicians recognized no realistic chance for cure later than non-SCT peers (both P < .001) and were more likely to have a primary goal of cure at death (parents, P < .001; physicians, P = .02). SCT children were more likely to suffer highly from their last cancer therapy and die in the intensive care unit (both P < .001), with less opportunity for EOL preparation. SCT parents who recognized no realistic chance for cure more than 7 days before death along with the physician were more likely to prepare for EOL, and if their primary goal was to reduce suffering, to achieve this (P < .001). SCT is associated with significant suffering and less opportunity to prepare for EOL. Children and families undergoing SCT may benefit from ongoing discussions regarding prognosis, goals, and opportunities to maximize quality of life. PMID:20228275

  19. Antimycotic therapy with liposomal amphotericin-B for patients undergoing bone marrow or peripheral blood stem cell transplantation.

    PubMed

    Krüger, W; Stockschläder, M; Sobottka, I; Betker, R; De Wit, M; Kröger, N; Grimm, J; Arland, M; Fiedler, W; Erttmann, R; Zander, A R

    1997-02-01

    Suspected deep or systemic mycosis in patients undergoing high-dose therapy and autologous or allogeneic bone marrow transplantation (BMT) requires an immediate systemic antimycotic therapy. Intravenous therapy with the standard drug conventional amphotericin-B is associated with severe adverse effects like nephrotoxicity and chills. Furthermore, BMT patients often receive other potential nephrotoxic drugs such as CsA or virustatics. In this study, we report 74 BMT-patients treated with liposomal amphotericin-B for culture-documented aspergillosis (n = 5) or candidiasis (n = 6), or for serologically (n = 35) or clinically suspected mycosis or as prophylaxis (n = 2). Therapy was initiated with a median dose of 2.8 (0.64-5.09) mg/kg body-weight and continued for 13 (1-55) days. The drug was excellently tolerated and only in one was therapy stopped due to severe chills and fever. Severe organ impairment was not observed under therapy with liposomal amphotericin-B. Creatinine decreased in five patients after an increase under preceding therapy with the conventional formulation. Influence of liposomal amphotericin-B on bilirubin and transaminases was difficult to evaluate due to therapy-related toxicity, veno-occlusive disease (VOD), and graft-versus-host disease (GvHD). 10/11 culture-positive patients died from aspergillosis (5/5) or candidiasis (5/6), but in 9/11 of these subjects the immunity was additionally compromised by GvHD, steroid therapy, and VOD. Liposomal amphotericin-B was effective in preventing relapse of systemic mycosis in 10/12 patients with a history of aspergillosis (n = 11) or candidiasis (n = 1). We conclude, that favourable toxicity of liposomal amphotericin-B should encourage dose escalation studies of liposomal amphotericin-B randomised against the conventional formulation and that the comparison of patients undergoing BMT with patients under standard chemotherapy might be difficult because of additional risk factors of the BMT-patients. PMID

  20. Which Patients Should Undergo Allogeneic Stem Cell Transplantation for Myelodysplastic Syndromes, and When Should We Do It?

    PubMed

    Oran, Betul

    2015-06-01

    Allogeneic hematopoietic stem cell transplantation (SCT) can cure a proportion of patients with myelodysplastic syndromes (MDS). However, treatment related toxicities, graft versus host disease, infectious complications and relapse remain major problems post transplant. Further, recent new developments with innovative drugs including hypomethylating agents (HMA) have extended the therapeutic alternatives for our patients. Nevertheless, with the introduction of reduced-intensity conditioning and thereby reducing early mortality, transplant numbers in MDS patients have significantly increased recently. In the absence of prospective randomized trials emphasis should be put on patient selection and optimization of the pre- and post-transplant treatment in order to achieve long-term disease control and at the same time maintain an adequate quality of life. With better understanding of disease biology and prognosis and with different types of conditioning regimens as well as different graft sources, a transplant strategy should be tailored to the individual host to maximize the benefits of this procedure. PMID:26297277

  1. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    PubMed Central

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.

    2012-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470

  2. Prognostic impact of pre-transplantation transfusion history and secondary iron overload in patients with myelodysplastic syndrome undergoing allogeneic stem cell transplantation: a GITMO study

    PubMed Central

    Alessandrino, Emilio Paolo; Porta, Matteo Giovanni Della; Bacigalupo, Andrea; Malcovati, Luca; Angelucci, Emanuele; Van Lint, Maria Teresa; Falda, Michele; Onida, Francesco; Bernardi, Massimo; Guidi, Stefano; Lucarelli, Barbarella; Rambaldi, Alessandro; Cerretti, Raffaella; Marenco, Paola; Pioltelli, Pietro; Pascutto, Cristiana; Oneto, Rosi; Pirolini, Laura; Fanin, Renato; Bosi, Alberto

    2010-01-01

    Background Transfusion-dependency affects the natural history of myelodysplastic syndromes. Secondary iron overload may concur to this effect. The relative impact of these factors on the outcome of patients with myelodysplastic syndrome receiving allogeneic stem-cell transplantation remains to be clarified. Design and Methods We retrospectively evaluated the prognostic effect of transfusion history and iron overload on the post-transplantation outcome of 357 patients with myelodysplastic syndrome reported to the Gruppo Italiano Trapianto di Midollo Osseo (GITMO) registry between 1997 and 2007. Results Transfusion-dependency was independently associated with reduced overall survival (hazard ratio=1.48, P=0.017) and increased non-relapse mortality (hazard ratio=1.68, P=0.024). The impact of transfusion-dependency was noted only in patients receiving myeloablative conditioning (overall survival: hazard ratio=1.76, P=0.003; non-relapse mortality: hazard ratio=1.70, P=0.02). There was an inverse relationship between transfusion burden and overall survival after transplantation (P=0.022); the outcome was significantly worse in subjects receiving more than 20 red cell units. In multivariate analysis, transfusion-dependency was found to be a risk factor for acute graft-versus-host disease (P=0.04). Among transfusion-dependent patients undergoing myeloablative allogeneic stem cell transplantation, pre-transplantation serum ferritin level had a significant effect on overall survival (P=0.01) and non-relapse mortality (P=0.03). This effect was maintained after adjusting for transfusion burden and duration, suggesting that the negative effect of transfusion history on outcome might be determined at least in part by iron overload. Conclusions Pre-transplantation transfusion history and serum ferritin have significant prognostic value in patients with myelodysplastic syndrome undergoing myeloablative allogeneic stem cell transplantation, inducing a significant increase of non

  3. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    PubMed Central

    Hu, Chenxia; Li, Lanjuan

    2015-01-01

    The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases. PMID:26347063

  4. Hematopoietic Stem Cell Transplantation in Adult Sickle Cell Disease: Problems and Solutions

    PubMed Central

    Özdoğu, Hakan; Boğa, Can

    2015-01-01

    Sickle cell disease-related organ injuries cannot be prevented despite hydroxyurea use, infection prophylaxis, and supportive therapies. As a consequence, disease-related mortality reaches 14% in adolescents and young adults. Hematopoietic stem cell transplantation is a unique curative therapeutic approach for sickle cell disease. Myeloablative allogeneic hematopoietic stem cell transplantation is curative for children with sickle cell disease. Current data indicate that long-term disease-free survival is about 90% and overall survival about 95% after transplantation. However, it is toxic in adults due to organ injuries. In addition, this curative treatment approach has several limitations, such as difficulties to find donors, transplant-related mortality, graft loss, graft-versus-host disease (GVHD), and infertility. Engraftment effectivity and toxicity for transplantations performed with nonmyeloablative reduced-intensity regimens in adults are being investigated in phase 1/2 trials at many centers. Preliminary data indicate that GVHD could be prevented with transplantations performed using reduced-intensity regimens. It is necessary to develop novel regimens to prevent graft loss and reduce the risk of GVHD. PMID:25912490

  5. Sex hormones establish a reserve pool of adult muscle stem cells.

    PubMed

    Kim, Ji-Hoon; Han, Gi-Chan; Seo, Ji-Yun; Park, Inkuk; Park, Wookjin; Jeong, Hyun-Woo; Lee, Su Hyeon; Bae, Sung-Hwan; Seong, Jinwoo; Yum, Min-Kyu; Hann, Sang-Hyeon; Kwon, Young-Guen; Seo, Daekwan; Choi, Man Ho; Kong, Young-Yun

    2016-09-01

    Quiescent satellite cells, known as adult muscle stem cells, possess a remarkable ability to regenerate skeletal muscle following injury throughout life. Although they mainly originate from multipotent stem/progenitor cells of the somite, the mechanism underlying the establishment of quiescent satellite cell populations is unknown. Here, we show that sex hormones induce Mind bomb 1 (Mib1) expression in myofibres at puberty, which activates Notch signalling in cycling juvenile satellite cells and causes them to be converted into adult quiescent satellite cells. Myofibres lacking Mib1 fail to send Notch signals to juvenile satellite cells, leading to impaired cell cycle exit and depletion. Our findings reveal that the hypothalamic-pituitary-gonadal axis drives Mib1 expression in the myofibre niche. Moreover, the same axis regulates the re-establishment of quiescent satellite cell populations following injury. Our data show that sex hormones establish adult quiescent satellite cell populations by regulating the myofibre niche at puberty and re-establish them during regeneration. PMID:27548913

  6. Promotion of Cortical Neurogenesis from the Neural Stem Cells in the Adult Mouse Subcallosal Zone.

    PubMed

    Kim, Joo Yeon; Choi, Kyuhyun; Shaker, Mohammed R; Lee, Ju-Hyun; Lee, Boram; Lee, Eunsoo; Park, Jae-Yong; Lim, Mi-Sun; Park, Chang-Hwan; Shin, Ki Soon; Kim, Hyun; Geum, Dongho; Sun, Woong

    2016-04-01

    Neurogenesis occurs spontaneously in the subventricular zone (SVZ) of the lateral ventricle in adult rodent brain, but it has long been debated whether there is sufficient adult neurogenesis in human SVZ. Subcallosal zone (SCZ), a posterior continuum of SVZ closely associated with posterior regions of cortical white matter, has also been reported to contain adult neural stem cells (aNSCs) in both rodents and humans. However, little is known whether SCZ-derived aNSC (SCZ-aNSCs) can produce cortical neurons following brain injury. We found that SCZ-aNSCs exhibited limited neuronal differentiation potential in culture and after transplantation in mice. Neuroblasts derived from SCZ initially migrated toward injured cortex regions following brain injury, but later exhibited apoptosis. Overexpression of anti-apoptotic bcl-xL in the SCZ by retroviral infection rescued neuroblasts from cell death in the injured cortex, but neuronal maturation was still limited, resulting in atrophy. In combination with Bcl-xL, infusion of brain-derived neurotropic factor rescued atrophy, and importantly, a subset of such SCZ-aNSCs differentiated and attained morphological and physiological characteristics of mature, excitatory neurons. These results suggest that the combination of anti-apoptotic and neurotrophic factors might enable the use of aNSCs derived from the SCZ in cortical neurogenesis for neural replacement therapy. Stem Cells 2016;34:888-901. PMID:26701067

  7. Immune regulation by mesenchymal stem cells derived from adult spleen and thymus.

    PubMed

    Krampera, Mauro; Sartoris, Silvia; Liotta, Francesco; Pasini, Annalisa; Angeli, Roberta; Cosmi, Lorenzo; Andreini, Angelo; Mosna, Federico; Bonetti, Bruno; Rebellato, Elisabetta; Testi, Maria Grazia; Frosali, Francesca; Pizzolo, Giovanni; Tridente, Giuseppe; Maggi, Enrico; Romagnani, Sergio; Annunziato, Francesco

    2007-10-01

    We show here that human and mouse mesenchymal stem cells (MSCs) can be obtained not only from bone marrow (BM), but also from adult spleen and thymus. In vitro, both human and mouse spleen- and thymus-derived MSCs exhibit immunophenotypic characteristics and differentiation potential completely comparable to BM-MSCs. In addition, they can inhibit immune responses mediated by activated T lymphocytes with efficiency comparable to BM-MSCs. In vivo, mouse MSCs from BM, spleen, and thymus, if injected together with a genetically modified tumor cell vaccine, can equally prevent the onset of an anti-tumor memory immune response, thus leading to tumor growth in normally resistant mice. Our data suggest that not only do spleen and thymus have a stem cell reservoir to build up their stromal architecture, but also contain microenviromental immunoregulatory cells with the same properties of BM-MSCs. PMID:17999601

  8. Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells.

    PubMed

    Souilhol, Céline; Gonneau, Christèle; Lendinez, Javier G; Batsivari, Antoniana; Rybtsov, Stanislav; Wilson, Heather; Morgado-Palacin, Lucia; Hills, David; Taoudi, Samir; Antonchuk, Jennifer; Zhao, Suling; Medvinsky, Alexander

    2016-01-01

    During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta-gonad-mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso-ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs. PMID:26952187

  9. Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells

    PubMed Central

    Souilhol, Céline; Gonneau, Christèle; Lendinez, Javier G.; Batsivari, Antoniana; Rybtsov, Stanislav; Wilson, Heather; Morgado-Palacin, Lucia; Hills, David; Taoudi, Samir; Antonchuk, Jennifer; Zhao, Suling; Medvinsky, Alexander

    2016-01-01

    During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta–gonad–mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso–ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs. PMID:26952187

  10. Adult Stem Cells as a Renewable Source of Insulin-Producing Cells

    PubMed Central

    Jun, Hee-Sook; Park, Eun-Young

    2009-01-01

    Diabetes mellitus is a metabolic disorder resulting from an inadequate mass of insulin-producing pancreatic beta cells. The replacement or restoration of damaged beta cells would be considered the optimal therapeutic options. Islet transplantation seems to be a promising approach for replacement therapy; however, the main obstacle is the shortage of organ donors. As mature beta cells have been shown to be difficult to expand in vitro, regeneration of beta cells from embryonic or adult stem cells or pancreatic progenitor cells is an attractive method to restore the islet cell mass. So far, multiple studies using various strategies have shown direct differentiation of stem and progenitor cells toward insulin-producing cells. The important issue to be solved is how to differentiate these cells into mature functional insulin-producing cells. Further research is required to understand how endogenous beta cells differentiate and to develop methods to regenerate enough functional beta cells for clinically applicable therapies for diabetes. PMID:24855530

  11. Environmental enrichment influences neuronal stem cells in the adult crayfish brain

    PubMed Central

    Ayub, Neishay; Benton, Jeanne L.; Zhang, Yi; Beltz, Barbara S.

    2011-01-01

    New neurons are incorporated throughout life into the brains of many vertebrate and non-vertebrate species. This process of adult neurogenesis is regulated by a variety of external and endogenous factors, including environmental enrichment, which increases the production of neurons in juvenile mice and crayfish. The primary goal of the present study was to exploit the spatial separation of the neuronal precursor cell lineage in crayfish to determine which generation(s) of precursors is altered by environmental conditions. Further, in crayfish, an intimate relationship between the 1st generation neuronal precursors (stem cells) and cells circulating in the hemolymph has been proposed (Zhang et al., 2009). Therefore, a second goal was to assess whether environmental enrichment alters the numbers or types of cells circulating in the hemolymph. We find that neurogenesis in the brains of sexually differentiated procambarid crayfish is enhanced by environmental enrichment as previously demonstrated by Sandeman and Sandeman (2000) in young, sexually undifferentiated Cherax destructor. We also show that environmental enrichment increases the cell cycle rate of neuronal stem cells. While there was no effect of environment on the overall numbers of cells circulating in the hemolymph, enrichment resulted in increased expression of glutamine synthetase, a marker of the neuronal stem cells, in a small percentage of circulating cells; there was little or no expression of this enzyme in hemolymph cells extracted from deprived animals. Thus, environmental enrichment influences the rate of neuronal stem cell division in adult crayfish, as well as the composition of cells circulating in the hemolymph. PMID:21485010

  12. Fragile X Mental Retardation Protein Regulates Proliferation and Differentiation of Adult Neural Stem/Progenitor Cells

    PubMed Central

    Smrt, Richard D.; Johnson, Eric B.; Li, Xuekun; Pfeiffer, Rebecca L.; Szulwach, Keith E.; Duan, Ranhui; Barkho, Basam Z.; Li, Wendi; Liu, Changmei; Jin, Peng; Zhao, Xinyu

    2010-01-01

    Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA–binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3β. Dysregulation of GSK3β led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis. PMID:20386739

  13. An opposite effect of the CDK inhibitor, p18(INK4c) on embryonic stem cells compared with tumor and adult stem cells.

    PubMed

    Li, Yanxin; Pal, Rekha; Sung, Li-Ying; Feng, Haizhong; Miao, Weimin; Cheng, Shi-Yuan; Tian, Cindy; Cheng, Tao

    2012-01-01

    Self-renewal is a feature common to both adult and embryonic stem (ES) cells, as well as tumor stem cells (TSCs). The cyclin-dependent kinase inhibitor, p18(INK4c), is a known tumor suppressor that can inhibit self-renewal of tumor cells or adult stem cells. Here, we demonstrate an opposite effect of p18 on ES cells in comparison with teratoma cells. Our results unexpectedly showed that overexpression of p18 accelerated the growth of mouse ES cells and embryonic bodies (EB); on the contrary, inhibited the growth of late stage teratoma. Up-regulation of ES cell markers (i.e., Oct4, Nanog, Sox2, and Rex1) were detected in both ES and EB cells, while concomitant down-regulation of various differentiation markers was observed in EB cells. These results demonstrate that p18 has an opposite effect on ES cells as compared with tumor cells and adult stem cells. Mechanistically, expression of CDK4 was significantly increased with overexpression of p18 in ES cells, likely leading to a release of CDK2 from the inhibition by p21 and p27. As a result, self-renewal of ES cells was enhanced. Our current study suggests that targeting p18 in different cell types may yield different outcomes, thereby having implications for therapeutic manipulations of cell cycle machinery in stem cells. PMID:23049777

  14. Extracorporeal Photopheresis for the Prevention of Acute GVHD in Patients Undergoing Standard Myeloablative Conditioning and Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Shaughnessy, Paul J; Bolwell, Brian J; van Besien, Koen; Mistrik, Martin; Grigg, Andrew; Dodds, Anthony; Prince, H Miles; Durrant, Simon; Ilhan, Osman; Parenti, Dennis; Rogers, Jon; Gallo, Jose; Foss, Francine; Apperley, Jane; Zhang, Mei-Jie; Horowitz, Mary M; Abhyankar, Sunil

    2012-01-01

    Summary Graft-versus-host disease (GVHD) is partly mediated by host antigen presenting cells (APCs) that activate donor T-cells. Extracorporeal photopheresis (ECP) can modulate APC function and benefit some patients with GVHD. We report the results of a study using ECP administered prior to a standard myeloablative preparative regimen intended to prevent GVHD. Grade II-IV aGVHD developed in 9 (30%) of 30 recipients of HLA-matched related transplants and 13 (42%) of 31 recipients of HLA-matched unrelated or HLA-mismatched related donor transplants. Actuarial estimates of overall survival (OS) at day 100 and 1 year post transplant were 89% (95% CI, 78%-94%) and 77% (95% CI, 64%-86%), respectively. There were no unexpected adverse effects of ECP. Historical controls receiving similar conditioning and GVHD prophylaxis regimens but no ECP were identified from the database of the Center for International Blood and Marrow Transplant Research and multivariate analysis indicated a lower risk of grade II-IV aGVHD in patients receiving ECP (p=0.04). Adjusted OS at one year was 83% in the ECP study group and 67% in the historical control group (relative risk 0.44, 95% CI, 0.24-0.80) (p= 0.007). These preliminary data may indicate a potential survival advantage with ECP for transplant recipients undergoing standard myeloablative hematopoietic cell transplantation. PMID:19915634

  15. Extensive Neuronal Differentiation of Human Neural Stem Cell Grafts in Adult Rat Spinal Cord

    PubMed Central

    Yan, Jun; Xu, Leyan; Welsh, Annie M; Hatfield, Glen; Hazel, Thomas; Johe, Karl; Koliatsos, Vassilis E

    2007-01-01

    Background Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC) transplants have shown either poor differentiation or a preferential choice of glial lineages. Methods and Findings In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter. Conclusions NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major challenges remain

  16. Pretransplantation Minimal Residual Disease Predicts Survival in Patients with Mantle Cell Lymphoma Undergoing Autologous Stem Cell Transplantation in Complete Remission.

    PubMed

    Cowan, Andrew J; Stevenson, Philip A; Cassaday, Ryan D; Graf, Solomon A; Fromm, Jonathan R; Wu, David; Holmberg, Leona A; Till, Brian G; Chauncey, Thomas R; Smith, Stephen D; Philip, Mary; Orozco, Johnnie J; Shustov, Andrei R; Green, Damian J; Libby, Edward N; Bensinger, William I; Shadman, Mazyar; Maloney, David G; Press, Oliver W; Gopal, Ajay K

    2016-02-01

    Autologous stem cell transplantation (ASCT) is standard therapy for mantle cell lymphoma (MCL) in remission after induction chemotherapy, with the best results for patients in complete remission (CR). We hypothesized that evaluation of minimal residual disease (MRD) before ASCT could further stratify outcomes for these patients. Patients with MCL who underwent ASCT in clinical CR between 1996 and 2011 with pretransplantation MRD testing were eligible. Presence of a clonal IgH rearrangement, t(11; 14) by PCR or positive flow cytometry from blood or bone marrow, was considered positive. An adjusted proportional hazards model for associations with progression-free (PFS) and overall survival (OS) was performed. Of 75 MCL patients in CR, 8 (11%) were MRD positive. MRD positivity was associated with shorter OS and PFS. The median OS for MRD-negative patients was not reached, with 82% survival at 5 years, whereas for the MRD-positive patients, median OS was 3.01 years (hazard ratio [HR], 4.04; P = .009), with a median follow-up of 5.1 years. The median PFS for MRD-negative patients was not reached with 75% PFS at 5 years, whereas for MRD-positive patients, it was 2.38 years (HR, 3.69; P = .002). MRD positivity is independently associated with poor outcomes after ASCT for MCL patients in CR. PMID:26348890

  17. Adipose-derived stem cells undergo spontaneous osteogenic differentiation in vitro when passaged serially or seeded at low density.

    PubMed

    Liu, Y; Zhang, Z; Zhang, C; Deng, W; Lv, Q; Chen, X; Huang, T; Pan, L

    2016-07-01

    Adipose-derived stem cells (ADSCs) are a convenient source of cells for regenerating tissue. Widespread application of ADSCs requires that they propagate efficiently and differentiate in vitro. We investigated the differentiation potential of ADSCs during long-term expansion in vitro and when the cells were seeded at low density. ADSCs were isolated from the inguinal fat pads of 3-week-old male rats, then cultured serially for 12 passages; some ADSCs at passage 3 were seeded at low density. The differentiation potential of ADSCs from passage 3 to passage 12 was assessed by their capacity for adipogenesis and osteogenesis while cultured in specific induction media. Spontaneous osteogenesis of ADSCs at passage 12 and of ADSCs that were seeded at low density was detected by western blotting, alizarin red S staining and measurement of alkaline phosphatase (ALP) activity. We found that with increasing passage number, the adipogenic potential of ADSCs decreased and osteogenic differentiation increased. Alizarin red S staining, bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (Runx2) expressions, and ALP activity demonstrated that both ADSCs at passage 12 and those that were seeded at low density differentiated into osteoblasts without additional induction factors. PMID:27149413

  18. A self-limiting switch based on translational control regulates the transition from proliferation to differentiation in an adult stem cell lineage

    PubMed Central

    Insco, Megan L.; Bailey, Alexis S.; Kim, Jongmin; Olivares, Gonzalo H.; Wapinski, Orly L.; Tam, Cheuk Ho; Fuller, Margaret T.

    2012-01-01

    Summary In adult stem cell lineages, progenitor cells commonly undergo mitotic transit amplifying (TA) divisions before terminal differentiation, allowing production of many differentiated progeny per stem cell division. Mechanisms that limit TA divisions and trigger the switch to differentiation may protect against cancer by preventing accumulation of oncogenic mutations in the proliferating population. Here we show that the switch from TA proliferation to differentiation in the Drosophila male germline stem cell lineage is mediated by translational control. The TRIM-NHL tumor suppressor homolog Mei-P26 facilitates accumulation of the differentiation regulator Bam in TA cells. In turn, Bam and its partner Bgcn bind the mei-P26 3′UTR and repress translation of mei-P26 in late TA cells. Thus, germ cells progress through distinct, sequential regulatory states, from Mei-P26 on/Bam off to Bam on/Mei-P26 off. TRIM-NHL homologs across species facilitate the switch from proliferation to differentiation, suggesting a novel and conserved developmentally-programmed tumor suppressor mechanism. PMID:23122292

  19. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    PubMed Central

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. Results To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. Conclusions Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish

  20. Characterization of Iron-Oxide Loaded Adult Stem Cells for Magnetic Particle Imaging in Targeted Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Lüdtke-Buzug, Kerstin; Rapoport, Daniel Hans; Schneider, Dagmar

    2010-12-01

    Recently, magnetic particle imaging (MPI) has been presented as a new method for the measurement of the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIONs). MPI is based on the nonlinear magnetization response of nanoparticles that are subjected to a sinusoidal magnetic field. Spatial resolution and signal to noise ratio of MPI depend on the particle quality. This is particularly important when stem cells shall be tracked with MPI. Stem cell-based treatment is an upcoming technology in targeted cancer-therapy. In this study, we analyzed the particle quality of newly developed dextran-coated SPIONs—with respect to their response in the imaging experiment—using magnetic particle spectrometry. The uptake of dextran-coated SPIONs into rat and human adult stem cells was monitored via transmission electron microscopy. Furthermore, adult stem cells were incubated with FITC-dextran-coated SPIONs and stained for confocal laser scanning microscopy. The dextran- and FITC-dextran coated SPIONs were localized in the cytoplasm of rat and human adult stem cells. MPI promises real-time imaging with high spatial resolution at high sensitivity. Our data support iron oxide loaded adult stem cells as a powerful tool for targeted cancer therapy.

  1. Prevalence of Resistant Gram-Negative Bacilli in Bloodstream Infection in Febrile Neutropenia Patients Undergoing Hematopoietic Stem Cell Transplantation: A Single Center Retrospective Cohort Study.

    PubMed

    Wang, Ling; Wang, Ying; Fan, Xing; Tang, Wei; Hu, Jiong

    2015-11-01

    Bloodstream infection (BSI) is an important cause of morbidity and mortality in patients undergoing hematopoietic stem cell transplantation (HSCT). To evaluate the causative bacteria and identify risk factors for BSI associated mortality in febrile neutropenia patients undergoing HSCT, we collected the clinical and microbiological data from patients underwent HSCT between 2008 and 2014 and performed a retrospective analysis. Throughout the study period, among 348 episodes of neutropenic fever in patients underwent HSCT, 89 episodes in 85 patients had microbiological defined BSI with a total of 108 isolates. Gram-negative bacteria (GNB) were the most common isolates (76, 70.3%) followed by gram-positive bacteria (GPB, 29, 26.9%) and fungus (3, 2.8%). As to the drug resistance, 26 multiple drug resistance (MDR) isolates were identified. Resistant isolates (n = 23) were more common documented in GNB, mostly Escherichia coli (9/36, 25%) and Klebsiella pneumonia (6/24, 25%). A total of 12 isolated were resistant to carbapenem including 4 K pneumoniae (4/24, 16.7%), 3 Stenotrophomonas maltophilia, and 1 Pseudomonas aeruginosa and other 4 GNB isolates (Citrobacter freumdii, Pseudomonas stutzeri, Acinetobacter baumanii, and Chryseobacterium indologenes). As to the GPB, only 3 resistant isolates were documented including 2 methicillin-resistant isolates (Staphylococcus hominis and Arcanobacterium hemolysis) and 1 vancomycin-resistant Enterococcus faecium. Among these 85 patients with documented BSI, 11 patients died of BSI as primary or associated cause with a BSI-related mortality of 13.1 ± 3.7% and 90-day overall survival after transplantation at 80.0 ± 4.3%. Patients with high-risk disease undergoing allo-HSCT, prolonged neutropenia (≥15 days) and infection with carbapenem-resistant GNB were associated with BSI associated mortality in univariate and multivariate analyses. Our report revealed a prevalence of GNB in BSI of neutropenic patients undergoing

  2. Stem Cell Basics

    MedlinePlus

    ... stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before ... two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells . ...

  3. Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications.

    PubMed

    Sousa, Bruna R; Parreira, Ricardo C; Fonseca, Emerson A; Amaya, Maria J; Tonelli, Fernanda M P; Lacerda, Samyra M S N; Lalwani, Pritesh; Santos, Anderson K; Gomes, Katia N; Ulrich, Henning; Kihara, Alexandre H; Resende, Rodrigo R

    2014-01-01

    Stem cells are known for their capacity to self-renew and differentiate into at least one specialized cell type. Mesenchymal stem cells (MSCs) were isolated initially from bone marrow but are now known to exist in all vascularized organ or tissue in adults. MSCs are particularly relevant for therapy due to their simplicity of isolation and cultivation. The International Society for Cellular Therapy (ISCT) has proposed a set of standards to define hMSCs for laboratory investigations and preclinical studies: adherence to plastic in standard culture conditions; in vitro differentiation into osteoblasts, adipocytes, and chondroblasts; specific surface antigen expression in which ≥95% of the cells express the antigens recognized by CD105, CD73, and CD90, with the same cells lacking (≤2% positive) the antigens CD45, CD34, CD14 or CD11b, CD79a or CD19, and HLA-DR. In this review we will take an historical overview of how umbilical cord blood, bone marrow, adipose-derived, placental and amniotic fluid, and menstrual blood stem cells, the major sources of human MSC, can be obtained, identified and how they are being used in clinical trials to cure and treat a very broad range of conditions, including heart, hepatic, and neurodegenerative diseases. An overview of protocols for differentiation into hepatocytes, cardiomyocytes, neuronal, adipose, chondrocytes, and osteoblast cells are highlighted. We also discuss a new source of stem cells, induced pluripotent stem cells (iPS cells) and some pathways, which are common to MSCs in maintaining their pluripotent state. PMID:24700575

  4. Hepatitis B virus reactivation and efficacy of prophylaxis with lamivudine in patients undergoing allogeneic stem cell transplantation.

    PubMed

    Giaccone, Luisa; Festuccia, Moreno; Marengo, Andrea; Resta, Isabel; Sorasio, Roberto; Pittaluga, Fabrizia; Fiore, Francesca; Boccadoro, Mario; Rizzetto, Mario; Bruno, Benedetto; Marzano, Alfredo

    2010-06-01

    Patients previously infected with hepatitis B virus (HBV) undergoing an allograft and recipients from HBV carrier donors are at risk of posttransplant viral reactivation. The role of prophylaxis with lamivudine remains unclear. One hundred seventeen patients, with a median age of 52 years (20-67 years), with various hematologic malignancies transplanted between 1999 and 2007 entered the study. Eighty-seven recipients negative for HBV surface antigen (HBsAg), antihepatitis B core antigen antibodies (anti-HBc), and HBV-DNA with HBsAg and HBV-DNA negative donors were defined as at low risk of HBV reactivation, whereas all the remaining 30 patients were defined as at high risk. Patients at high risk transplanted in 2005 or after received lamivudine to prevent HBV reactivation as per the Italian guidelines by the Associazione Italiana per lo Studio del Fegato (AISF). Patients at low risk did not experience HBV reactivation/hepatitis. Among the recipients at high risk, 11 of 25 anti-HBc positive, those HBsAg positive (2 of 2) or negative but transplanted from HBsAg positive donors (3 of 3) were treated with lamivudine. None of these developed HBV reactivation/hepatitis after a median follow-up of 40 months (17-55 months). Hepatitis developed in 3 anti-HBc positive untreated patients conditioned with a reduced-intensity regimen. Hepatitis B was not observed in recipients at low risk, transplanted from HBsAg negative/anti-HBc positive or negative donors. Lamivudine was effective in controlling reactivation in: HBsAg positive recipients, in patients transplanted from HBsAg positive donors and in HBsAg negative/antiHBc positive recipients, who showed a significant risk of reactivation if not given prophylaxis (NCT 00876148). PMID:20060484

  5. Beneficial effect of the CXCL12-3'A variant for patients undergoing hematopoietic stem cell transplantation from unrelated donors.

    PubMed

    Bogunia-Kubik, Katarzyna; Mizia, Sylwia; Polak, Małgorzata; Gronkowska, Anna; Nowak, Jacek; Kyrcz-Krzemień, Sławomira; Markiewicz, Mirosław; Dzierżak-Mietła, Monika; Koclęga, Anna; Sędzimirska, Mariola; Suchnicki, Krzysztof; Duda, Dorota; Lange, Janusz; Mordak-Domagała, Monika; Kościńska, Katarzyna; Jędrzejczak, Wiesław Wiktor; Kaczmarek, Beata; Hellmann, Andrzej; Kucharska, Agnieszka; Kowalczyk, Jerzy; Drabko, Katarzyna; Warzocha, Krzysztof; Hałaburda, Kazimierz; Tomaszewska, Agnieszka; Mika-Witkowska, Renata; Witkowska, Agnieszka; Goździk, Jolanta; Mordel, Anna; Wysoczańska, Barbara; Jaskula, Emilia; Lange, Andrzej

    2015-12-01

    The present study aimed to assess the impact of the CXCL12 gene polymorphism (rs1801157) on clinical outcome of hematopoietic stem cell transplantation from unrelated donors. Toxic complications were less frequent among patients transplanted from donors carrying the CXCL12-3'-A allele (42/79 vs. 105/151, p=0.014 and 24/79 vs. 73/151, p=0.009, for grade II-IV and III-IV, respectively). Logistic regression analyses confirmed a role of donor A allele (OR=0.509, p=0.022 and OR=0.473, p=0.013 for grade II-IV and III-IV toxicity). In addition, age of recipients (OR=0.980, p=0.036 and OR=0.981, p=0.040, respectively) was independently protective while female to male transplantation and HLA compatibility were not significant. The incidence of aGvHD (grades I-IV) was lower in patients having A allele (52/119 vs. 113/204, p=0.043) and AA homozygous genotype (6/25 vs. 159/298, p=0.005). Independent associations of both genetic markers with a decreased risk of aGvHD were also seen in multivariate analyses (A allele: OR=0.591, p=0.030; AA homozygosity: OR=0.257, p=0.006) in which HLA compatibility seemed to play less protective role (p<0.1) while recipient age and donor-recipient gender relation were not significant. Moreover, CXCL12-3'-A-positive patients were less prone to early HHV-6 reactivation (2/34 vs. 19/69, p=0.026). The presence of the CXCL12-3'-A variant was found to facilitate outcome of unrelated HSCT. PMID:25982843

  6. A genetic platform to model sarcomagenesis from primary adult mesenchymal stem cells

    PubMed Central

    Guarnerio, Jlenia; Riccardi, Luisa; Taulli, Riccardo; Maeda, Takahiro; Wang, Guocan; Hobbs, Robin M.; Song, Min Sup; Sportoletti, Paolo; Bernardi, Rosa; Bronson, Roderick T.; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Lunardi, Andrea; Pandolfi, Pier Paolo

    2015-01-01

    The regulatory factors governing adult mesenchymal stem cells (MSCs) physiology and their tumorigenic potential are still largely unknown, which substantially delays the identification of effective therapeutic approaches for the treatment of aggressive and lethal form of MSC-derived mesenchymal tumors, such as undifferentiated sarcomas. Here we have developed a novel platform to screen and quickly identify genes and pathways responsible for adult MSCs transformation, modeled undifferentiated sarcoma in vivo, and, ultimately, tested the efficacy of targeting the identified oncopathways. Importantly, by taking advantage of this new platform, we demonstrate the key role of an aberrant LRF-DLK1-SOX9 pathway in the pathogenesis of undifferentiated sarcoma with important therapeutic implications. PMID:25614485

  7. Controlling neural stem cell division within the adult subventricular zone: an APPealing job.

    PubMed

    Conti, Luciano; Cattaneo, Elena

    2005-02-01

    For years, scientists investigating amyloid precursor protein (APP) have focused on its pathogenetic role in the brains of Alzheimer's disease patients. Now, a study by Caille et al. adds new sites of action and new physiological functions for APP. They show that there are binding sites for secreted N-terminal nonamyloidogenic APP (sAPP) on epidermal growth factor (EGF)-responsive neural stem cells in the subventricular zone of the adult brain, where sAPP acts as an EGF cofactor to stimulate proliferation of these cells. This result opens the hypothesis that changes in the levels of sAPP could influence activity of the neurogenic regions of the adult brain in normal and pathological conditions. PMID:15667924

  8. The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus

    PubMed Central

    Li, Guangnan; Fang, Li; Fernández, Gloria; Pleasure, Samuel J.

    2013-01-01

    SUMMARY Adult neurogenesis represents a unique form of plasticity in the dentate gyrus requiring the presence of long-lived neural stem cells (LL-NSCs). However, the embryonic origin of these LL-NSCs remains unclear. The prevailing model assumes that the dentate neuroepithelium throughout the longitudinal axis of the hippocampus generates both the LL-NSCs and embryonically produced granule neurons. Here we show that the NSCs initially originate from the ventral hippocampus during late gestation and then relocate into the dorsal hippocampus. The descendants of these cells are the source for the LL-NSCs in the subgranular zone (SGZ). Furthermore, we show that the origin of these cells and their maintenance in the dentate are controlled by distinct sources of Sonic Hedgehog (Shh). The revelation of the complexity of both the embryonic origin of hippocampal LL-NSCs and the sources of Shh has important implications for the functions of LL-NSCs in the adult hippocampus. PMID:23643936

  9. DNA Damage Response in Neonatal and Adult Stromal Cells Compared With Induced Pluripotent Stem Cells

    PubMed Central

    Liedtke, Stefanie; Biebernick, Sophie; Radke, Teja Falk; Stapelkamp, Daniela; Coenen, Carolin; Zaehres, Holm; Fritz, Gerhard; Kogler, Gesine

    2015-01-01

    Comprehensive analyses comparing individual DNA damage response (DDR) of induced pluripotent stem cells (iPSCs) with neonatal stromal cells with respect to their developmental age are limited. The imperative necessity of providing developmental age-matched cell sources for meaningful toxicological drug safety assessments in replacement of animal-based testing strategies is evident. Here, DDR after radiation or treatment with N-methyl-N-nitrosurea (MNU) was determined in iPSCs compared with neonatal and bone marrow stromal cells. Neonatal and adult stromal cells showed no significant morphologically detectable cytotoxicity following treatment with 1 Gy or 1 mM MNU, whereas iPSCs revealed a much higher sensitivity. Foci analyses revealed an effective DNA repair in stromal cell types and iPSCs, as reflected by a rapid formation and disappearance of phosphorylated ATM and γH2AX foci. Furthermore, quantitative polymerase chain reaction analyses revealed the highest basic expression level of DDR and repair-associated genes in iPSCs, followed by neonatal stromal cells and adult stromal cells with the lowest expression levels. In addition, the influence of genotoxic stress prior to and during osteogenic differentiation of neonatal and adult stromal cells was analyzed applying common differentiation procedures. Experiments presented here suggest a developmental age-dependent basic expression level of genes involved in the processing of DNA damage. In addition a differentiation-dependent downregulation of repair genes was observed during osteogenesis. These results strongly support the requirement to provide adequate cell sources for toxicological in vitro drug testing strategies that match to the developmental age and differentiation status of the presumptive target cell of interest. Significance The results obtained in this study advance the understanding of DNA damage processing in human neonatal stromal cells as compared with adult stromal cells and induced pluripotent

  10. SIRT1 suppresses self-renewal of adult hippocampal neural stem cells.

    PubMed

    Ma, Chen-Yan; Yao, Mao-jin; Zhai, Qi-wei; Jiao, Jian-wei; Yuan, Xiao-bing; Poo, Mu-ming

    2014-12-01

    The balance between self-renewal and differentiation of adult neural stem cells (aNSCs) is essential for the maintenance of the aNSC reservoir and the continuous supply of new neurons, but how this balance is fine-tuned in the adult brain is not fully understood. Here, we investigate the role of SIRT1, an important metabolic sensor and epigenetic repressor, in regulating adult hippocampal neurogenesis in mice. We found that there was an increase in SIRT1 expression during aNSC differentiation. In Sirt1 knockout (KO) mice, as well as in brain-specific and inducible stem cell-specific conditional KO mice, the proliferation and self-renewal rates of aNSCs in vivo were elevated. Proliferation and self-renewal rates of aNSCs and adult neural progenitor cells (aNPCs) were also elevated in neurospheres derived from Sirt1 KO mice and were suppressed by the SIRT1 agonist resveratrol in neurospheres from wild-type mice. In cultured neurospheres, 2-deoxy-D-glucose-induced metabolic stress suppressed aNSC/aNPC proliferation, and this effect was mediated in part by elevating SIRT1 activity. Microarray and biochemical analysis of neurospheres suggested an inhibitory effect of SIRT1 on Notch signaling in aNSCs/aNPCs. Inhibition of Notch signaling by a γ-secretase inhibitor also largely abolished the increased aNSC/aNPC proliferation caused by Sirt1 deletion. Together, these findings indicate that SIRT1 is an important regulator of aNSC/aNPC self-renewal and a potential mediator of the effect of metabolic changes. PMID:25468938

  11. Second Cancer Risk and Late Mortality in Adult Australians Receiving Allogeneic Hematopoietic Stem Cell Transplantation: A Population-Based Cohort Study.

    PubMed

    Vajdic, Claire M; Mayson, Eleni; Dodds, Anthony J; O'Brien, Tracey; Wilcox, Leonie; Nivison-Smith, Ian; Le Marsney, Renate; Daniels, Benjamin; Ashton, Lesley J

    2016-05-01

    We quantified the risk of second cancer and late mortality in a population-based Australian cohort of 3273 adult (≥15 years) allogeneic hematopoietic stem cell transplant recipients (1992 to 2007). Most recipients received nonradiation-based conditioning and a peripheral blood graft from a matched related donor. Using record linkage with death and cancer registries, 79 second cancers were identified a median of 3.5 years after transplantation. The competing-risk adjusted cumulative incidence of second cancers was 3.35% (95% CI, 2.59 to 4.24) at 10 years, and the cancer risk relative to the matched general population was 2.10 (95% CI, 1.65 to 2.56). We observed an excess risk of melanoma and lip, tongue, esophagus, and soft tissue cancers. Cancer risk relative to the general population was elevated for those transplanted for lymphoma, some leukemia subtypes, and severe aplastic anemia, recipients who developed chronic graft-versus-host disease (cGVHD) and irrespective of radiation-based conditioning or stem cell source. In those alive 2 years after transplantation (n = 1463), the cumulative incidence of late mortality was 22.2% (95% CI, 19.7 to 24.9) at 10 years, and the risk of death relative to the matched general population was 13.8 (95% CI, 12.2 to 15.6). In multivariable modeling, risk of late death was reduced for females compared with males and those transplanted for chronic myeloid leukemia compared with acute myeloid leukemia; risk was increased for recipients with discordant sex donors, cGVHD, those undergoing second transplants, and disease relapse. Adults undergoing allogeneic transplantation have unique cancer and mortality risk profiles that continue to warrant prevention and surveillance activities targeted at high-risk subgroups. PMID:26860637

  12. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches

    PubMed Central

    Pekovic, Vanja; Hutchison, Christopher J

    2008-01-01

    Adult stem cells have been identified in most mammalian tissues of the adult body and are known to support the continuous repair and regeneration of tissues. A generalized decline in tissue regenerative responses associated with age is believed to result from a depletion and/or a loss of function of adult stem cells, which itself may be a driving cause of many age-related disease pathologies. Here we review the striking similarities between tissue phenotypes seen in many degenerative conditions associated with old age and those reported in age-related nuclear envelope disorders caused by mutations in the LMNA gene. The concept is beginning to emerge that nuclear filament proteins, A-type lamins, may act as signalling receptors in the nucleus required for receiving and/or transducing upstream cytosolic signals in a number of pathways central to adult stem cell maintenance as well as adaptive responses to stress. We propose that during ageing and in diseases caused by lamin A mutations, dysfunction of the A-type lamin stress-resistant signalling network in adult stem cells, their progenitors and/or stem cell niches leads to a loss of protection against growth-related stress. This in turn triggers an inappropriate activation or a complete failure of self-renewal pathways with the consequent initiation of stress-induced senescence. As such, A-type lamins should be regarded as intrinsic modulators of ageing within adult stem cells and their niches that are essential for survival to old age. PMID:18638067

  13. β1-integrin restricts astrocytic differentiation of adult hippocampal neural stem cells.

    PubMed

    Brooker, Sarah M; Bond, Allison M; Peng, Chian-Yu; Kessler, John A

    2016-07-01

    Integrins are transmembrane receptors that mediate cell-extracellular matrix and cell-cell interactions. The β1-integrin subunit is highly expressed by embryonic neural stem cells (NSCs) and is critical for NSC maintenance in the developing nervous system, but its role in the adult hippocampal niche remains unexplored. We show that β1-integrin expression in the adult mouse dentate gyrus (DG) is localized to radial NSCs and early progenitors, but is lost in more mature progeny. Although NSCs in the hippocampal subgranular zone (SGZ) normally only infrequently differentiate into astrocytes, deletion of β1-integrin significantly enhanced astrocyte differentiation. Ablation of β1-integrin also led to reduced neurogenesis as well as depletion of the radial NSC population. Activation of integrin-linked kinase (ILK) in cultured adult NSCs from β1-integrin knockout mice reduced astrocyte differentiation, suggesting that at least some of the inhibitory effects of β1-integrin on astrocytic differentiation are mediated through ILK. In addition, β1-integrin conditional knockout also resulted in extensive cellular disorganization of the SGZ as well as non-neurogenic regions of the DG. The effects of β1-integrin ablation on DG structure and astrogliogenesis show sex-specific differences, with the effects following a substantially slower time-course in males. β1-integrin thus plays a dual role in maintaining the adult hippocampal NSC population by supporting the structural integrity of the NSC niche and by inhibiting astrocytic lineage commitment. GLIA 2016;64:1235-1251. PMID:27145730

  14. The Effects of Oral Cryotherapy on Chemotherapy-Induced Oral Mucositis in Patients Undergoing Autologous Transplantation of Blood Stem Cells: A Clinical Trial

    PubMed Central

    Askarifar, Marzieh; Lakdizaji, Sima; Ramzi, Mani; Rahmani, Azad; Jabbarzadeh, Faranak

    2016-01-01

    Background Oral mucositis is one of the irritating side effects of chemotherapy in patients undergoing bone marrow transplantation. However, up until now, the common methods of oral mucositis therapy have failed to show significant effects. Objectives The aim of this study was to investigate the effects of local cryotherapy on the intensity of chemotherapy-induced oral mucositis in autologous bone marrow transplantation patients. Patients and Methods In this single, blinded, randomized clinical trial, 29 patients undergoing stem cell transplantation in Iran were selected by convenience sampling, and randomly allocated to control (n = 13) and intervention groups (n = 16). In the intervention group, cryotherapy was applied, while the control group received a normal saline mouthwash. The severity of the mucositis and neutrophil rate were investigated in five periods, based on the world health organization (WHO) scales. The data were analyzed using descriptive statistics, the Mann-Whitney test, repeated measures analysis of variance (ANOVA), and linear regression. Results In both groups, the mucositis reached its peak intensity on the 7th day, and the least intensity was obtained on the 21st day. The neutrophil rate reached the minimum value on the 7th day, then increased up to the 21st day. The two groups showed no significant differences between the mucositis severity on the 14th and 21st days (P = 0.164), while the severity of the mucositis in the cryotherapy group was significantly less than that in the saline mouthwash group (1.81 < 2.54 and 0.13 < 0.92, respectively) on the 7th and 14th days (P < 0.05). There was no significant difference in the neutrophil rate between the groups. Conclusions The results showed that cryotherapy is more effective than the saline mouthwash in reducing the severity of mucositis. This method is recommended for the prevention of mucositis in bone marrow transplantation. PMID:27257512

  15. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration

    PubMed Central

    Shaw, Rachael L.; Kohlmaier, Alexander; Polesello, Cédric; Veelken, Cornelia; Edgar, Bruce A.; Tapon, Nicolas

    2010-01-01

    Intestinal stem cells (ISCs) in the adult Drosophila midgut proliferate to self-renew and to produce differentiating daughter cells that replace those lost as part of normal gut function. Intestinal stress induces the activation of Upd/Jak/Stat signalling, which promotes intestinal regeneration by inducing rapid stem cell proliferation. We have investigated the role of the Hippo (Hpo) pathway in the Drosophila intestine (midgut). Hpo pathway inactivation in either the ISCs or the differentiated enterocytes induces a phenotype similar to that observed under stress situations, including increased stem cell proliferation and expression of Jak/Stat pathway ligands. Hpo pathway targets are induced by stresses such as bacterial infection, suggesting that the Hpo pathway functions as a sensor of cellular stress in the differentiated cells of the midgut. In addition, Yki, the pro-growth transcription factor target of the Hpo pathway, is required in ISCs to drive the proliferative response to stress. Our results suggest that the Hpo pathway is a mediator of the regenerative response in the Drosophila midgut. PMID:21068063

  16. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells.

    PubMed

    Zeng, An; Li, Yong-Qin; Wang, Chen; Han, Xiao-Shuai; Li, Ge; Wang, Jian-Yong; Li, Dang-Sheng; Qin, Yong-Wen; Shi, Yufang; Brewer, Gary; Jing, Qing

    2013-04-29

    Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED-HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration. PMID:23629965

  17. Isolation and Characterization of Human Adult Epithelial Stem Cells from the Periodontal Ligament.

    PubMed

    Athanassiou-Papaefthymiou, M; Papagerakis, P; Papagerakis, S

    2015-11-01

    We report a novel method for the isolation of adult human epithelial stem cells (hEpiSCs) from the epithelial component of the periodontal ligament-the human epithelial cell rests of Malassez (hERM). hEpiSC-rich integrin-α6(+ve) hERM cells derived by fluorometry can be clonally expanded, can grow organoids, and express the markers of pluripotency (OCT4, NANOG, SOX2), polycomb protein RING1B, and the hEpiSC supermarker LGR5. They maintain the growth profile of their originating hERM in vitro. Subcutaneous cotransplantation with mesenchymal stem cells from the dental pulp on poly-l-lactic acid scaffolds in nude mice gave rise to perfect heterotopic ossicles in vivo with ultrastructure of dentin, enamel, cementum, and bone. These remarkable fully mineralized ossicles underscore the importance of epithelial-mesenchymal crosstalk in tissue regeneration using human progenitor stem cells, which may have already committed to lineage despite maintaining hallmarks of pluripotency. In addition, we report the clonal expansion and isolation of human LGR5(+ve) cells from the hERM in xeno-free culture conditions. The genetic profile of LGR5(+ve) cells includes both markers of pluripotency and genes important for secretory epithelial and dental epithelial cell differentiation, giving us a first insight into periodontal ligament-derived hEpiSCs. PMID:26392003

  18. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function

    PubMed Central

    Pagliari, Stefania; Jelinek, Jakub; Grassi, Gabriele; Forte, Giancarlo

    2014-01-01

    The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction—which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs—would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli. The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors. PMID:25071583

  19. Xenobiotic Effects on Intestinal Stem Cell Proliferation in Adult Honey Bee (Apis mellifera L) Workers

    PubMed Central

    Forkpah, Cordelia; Dixon, Luke R.; Fahrbach, Susan E.; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species. PMID:24608542

  20. Adverse Late and Long-Term Treatment Effects in Adult Allogeneic Hematopoietic Stem Cell Transplant Survivors.

    PubMed

    Mosesso, Kara

    2015-11-01

    Hematopoietic stem cell transplantation (HSCT) has become the standard of care for many malignant and nonmalignant hematologic diseases that don't respond to traditional therapy. There are two types: autologous transplantation (auto-HSCT), in which an individual's stem cells are collected, stored, and infused back into that person; and allogeneic transplantation (allo-HSCT), in which healthy donor stem cells are infused into a recipient whose bone marrow has been damaged or destroyed. There have been numerous advancements in this field, leading to marked increases in the number of transplants performed annually. This article--the first of several on cancer survivorship--focuses on the care of adult allo-HSCT survivors because of the greater complexity of their posttransplant course. The author summarizes potential adverse late and long-term treatment-related effects, with special focus on the evaluation and management of several cardiovascular disease risk factors that can occur either independently or concurrently as part of the metabolic syndrome. These risk factors are potentially modifiable with appropriate nursing interventions and lifestyle modifications. PMID:26473441

  1. High-efficiency immunomagnetic isolation of solid tissue-originated integrin-expressing adult stem cells.

    PubMed

    Palmon, Aaron; David, Ran; Neumann, Yoav; Stiubea-Cohen, Raluca; Krief, Guy; Aframian, Doron J

    2012-02-01

    Isolation of highly pure specific cell types is crucial for successful adult stem cell-based therapy. As the number of such cells in adult tissue is low, an extremely efficient method is needed for their isolation. Here, we describe cell-separation methodologies based on magnetic-affinity cell sorting (MACS) MicroBeads with monoclonal antibodies against specific membrane proteins conjugated to superparamagnetic particles. Cells labeled with MACS MicroBeads are retained in a magnetic field within a MACS column placed in a MACS separator, allowing fast and efficient separation. Both positively labeled and non-labeled fractions can be used directly for downstream applications as the separated cell fractions remain viable with no functional impairment. As immunomagnetic separation depends on the interaction between a cell's membrane and the magnetically labeled antibody, separation of specific cells originating from solid tissues is more complex and demands a cell-dissociating pretreatment. In this paper, we detail the use of immunomagnetic separation for the purpose of regenerating damaged salivary gland (SG) function in animal and human models of irradiated head and neck cancer. Each year 500,000 new cases of head and neck cancer occur worldwide. Most of these patients lose SG function following irradiation therapy. SGs contain integrin α6β1-expressing epithelial stem cells. We hypothesized that these cells can be isolated, multiplied in culture and auto-implanted into the irradiated SGs to regenerate damaged SG function. PMID:22019721

  2. TAp63 prevents premature aging by promoting adult stem cell maintenance

    PubMed Central

    Su, Xiaohua; Paris, Maryline; Gi, Young Jin; Tsai, Kenneth Y.; Cho, Min Soon; Lin, Yu-Li; Biernaskie, Jeffrey A.; Sinha, Satrajit; Prives, Carol; Pevny, Larysa H.; Miller, Freda D.; Flores, Elsa R.

    2012-01-01

    SUMMARY The cellular mechanisms that regulate the maintenance of adult tissue stem cells are still largely unknown. We show here that the p53 family member, TAp63, is essential for maintenance of epidermal and dermal precursors and that, in its absence, these precursors senesce and skin ages prematurely. Specifically, we have developed a TAp63 conditional knockout mouse and used it to ablate TAp63 in the germline (TAp63−/−) or in K14-expressing cells in the basal layer of the epidermis (TAp63fl/fl;K14cre+). TAp63−/− mice age prematurely and develop blisters, skin ulcerations, senescence of hair follicle-associated dermal and epidermal cells, and decreased hair morphogenesis. These phenotypes are likely due to loss of TAp63 in dermal and epidermal precursors since both cell types show defective proliferation, early senescence, and genomic instability. These data indicate that TAp63 serves to maintain adult skin stem cells by regulating cellular senescence and genomic stability, thereby preventing premature tissue aging. PMID:19570515

  3. Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish.

    PubMed

    Barbosa, Joana S; Ninkovic, Jovica

    2016-01-01

    Adult Neural Stem Cells (aNSCs) generate new neurons that integrate into the pre-existing networks in specific locations of the Vertebrate brain. Moreover, aNSCs contribute with new neurons to brain regeneration in some non-mammalian Vertebrates. The similarities and the differences in the cellular and molecular processes governing neurogenesis in the intact and regenerating brain are still to be assessed. Toward this end, we recently established a protocol for non-invasive imaging of aNSC behavior in their niche in vivo in the adult intact and regenerating zebrafish telencephalon. We observed different modes of aNSC division in the intact brain and a novel mode of neurogenesis by direct conversion, which contributes to stem cell depletion with age. After injury, the generation of neurons is increased both by the activation of additional aNSCs and a shift in the division mode of aNSCs, thereby contributing to the successful neuronal regeneration. The cellular behavior we observed opens new questions regarding long-term aNSC maintenance in homeostasis and in regeneration. In this commentary we discuss our data and new questions arising in the context of aNSC behavior, not only in zebrafish but also in other species, including mammals. PMID:27606336

  4. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    PubMed Central

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  5. The effect of music on pain and acute confusion in older adults undergoing hip and knee surgery.

    PubMed

    McCaffrey, Ruth; Locsin, Rozzano

    2006-01-01

    The purpose of this study was to examine the effects of music listening in older adults following hip or knee surgery. Acute confusion and pain after surgery can increase length of stay and reduce function. Study results demonstrate a reduction in acute confusion and pain and improved ambulation and higher satisfaction scores in older adults who listened to music. PMID:16974175

  6. The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling.

    PubMed

    Takashima, Shigeo; Mkrtchyan, Marianna; Younossi-Hartenstein, Amelia; Merriam, John R; Hartenstein, Volker

    2008-07-31

    The intestinal tract maintains proper function by replacing aged cells with freshly produced cells that arise from a population of self-renewing intestinal stem cells (ISCs). In the mammalian intestine, ISC self renewal, amplification and differentiation take place along the crypt-villus axis, and are controlled by the Wnt and hedgehog (Hh) signalling pathways. However, little is known about the mechanisms that specify ISCs within the developing intestinal epithelium, or about the signalling centres that help maintain them in their self-renewing stem cell state. Here we show that in adult Drosophila melanogaster, ISCs of the posterior intestine (hindgut) are confined to an anterior narrow segment, which we name the hindgut proliferation zone (HPZ). Within the HPZ, self renewal of ISCs, as well as subsequent proliferation and differentiation of ISC descendants, are controlled by locally emanating Wingless (Wg, a Drosophila Wnt homologue) and Hh signals. The anteriorly restricted expression of Wg in the HPZ acts as a niche signal that maintains cells in a slow-cycling, self-renewing mode. As cells divide and move posteriorly away from the Wg source, they enter a phase of rapid proliferation. During this phase, Hh signal is required for exiting the cell cycle and the onset of differentiation. The HPZ, with its characteristic proliferation dynamics and signalling properties, is set up during the embryonic phase and becomes active in the larva, where it generates all adult hindgut cells including ISCs. The mechanism and genetic control of cell renewal in the Drosophila HPZ exhibits a large degree of similarity with what is seen in the mammalian intestine. Our analysis of the Drosophila HPZ provides an insight into the specification and control of stem cells, highlighting the way in which the spatial pattern of signals that promote self renewal, growth and differentiation is set up within a genetically tractable model system. PMID:18633350

  7. Isolation of Novel Multipotent Neural Crest-Derived Stem Cells from Adult Human Inferior Turbinate

    PubMed Central

    Hauser, Stefan; Widera, Darius; Qunneis, Firas; Müller, Janine; Zander, Christin; Greiner, Johannes; Strauss, Christina; Lüningschrör, Patrick; Heimann, Peter; Schwarze, Hartmut; Ebmeyer, Jörg; Sudhoff, Holger; Araúzo-Bravo, Marcos J.; Greber, Boris; Zaehres, Holm; Schöler, Hans; Kaltschmidt, Christian

    2012-01-01

    Adult human neural crest-derived stem cells (NCSCs) are of extraordinary high plasticity and promising candidates for the use in regenerative medicine. Here we describe for the first time a novel neural crest-derived stem cell population within the respiratory epithelium of human adult inferior turbinate. In contrast to superior and middle turbinates, high amounts of source material could be isolated from human inferior turbinates. Using minimally-invasive surgery methods isolation is efficient even in older patients. Within their endogenous niche, inferior turbinate stem cells (ITSCs) expressed high levels of nestin, p75NTR, and S100. Immunoelectron microscopy using anti-p75 antibodies displayed that ITSCs are of glial origin and closely related to nonmyelinating Schwann cells. Cultivated ITSCs were positive for nestin and S100 and the neural crest markers Slug and SOX10. Whole genome microarray analysis showed pronounced differences to human ES cells in respect to pluripotency markers OCT4, SOX2, LIN28, and NANOG, whereas expression of WDR5, KLF4, and c-MYC was nearly similar. ITSCs were able to differentiate into cells with neuro-ectodermal and mesodermal phenotype. Additionally ITSCs are able to survive and perform neural crest typical chain migration in vivo when transplanted into chicken embryos. However ITSCs do not form teratomas in severe combined immunodeficient mice. Finally, we developed a separation strategy based on magnetic cell sorting of p75NTR positive ITSCs that formed larger neurospheres and proliferated faster than p75NTR negative ITSCs. Taken together our study describes a novel, readily accessible source of multipotent human NCSCs for potential cell-replacement therapy. PMID:22128806

  8. PW1 gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations

    PubMed Central

    Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna

    2011-01-01

    A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251

  9. Mouse embryonic stem cells undergo charontosis, a novel programmed cell death pathway dependent upon cathepsins, p53, and EndoG, in response to etoposide treatment.

    PubMed

    Tichy, Elisia D; Stephan, Zachary A; Osterburg, Andrew; Noel, Greg; Stambrook, Peter J

    2013-05-01

    Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs. PMID:23500643

  10. Elevation of plasma prolactin in patients undergoing autologous blood stem-cell transplantation for breast cancer: is its modulation a step toward posttransplant immunotherapy?

    PubMed

    Hinterberger-Fischer, M; Ogris, E; Kier, P; Bauer, K; Kittl, E; Habertheuer, K H; Ruckser, R; Schmid, A; Selleny, S; Fangl, M; Sebesta, C; Hinterberger, W

    2000-08-01

    Prolactin is a suspected promotor of breast cancer cell growth, and it shares pleiotropic immunoregulatory properties. We studied plasma prolactin and its drug-induced modulation in 20 women with breast cancer undergoing high-dose chemotherapy and autologous blood stem-cell transplantation. Plasma prolactin levels were serially assayed before and during conditioning and within and beyond 30 days after transplant. Before transplant, prolactin plasma levels were in the age-adjusted range of normal women. During conditioning and within 30 days after transplant, prolactin levels increased in all patients (p < 0.0001), but remained in the normal range. Antiemetic drugs such as metoclopramide and phenothiazines, known to enhance pituitary prolactin secretion, further elevated prolactin plasma levels (p < 0.00001). Patients remaining in continuous complete remission after transplant (median follow-up, 3 years) disclosed higher prolactin levels compared with those obtaining only partial remission or ensuing early relapse. Prolactin levels are regularly elevated during conditioning and within 30 days after autologous transplantation for breast cancer. Further elevations of prolactin plasma levels are induced by metoclopramide and other antiemetic drugs. Elevated plasma prolactin had no adverse effect on disease-free survival after transplant. We propose to investigate further the upregulation of prolactin after transplant aiming to induce a posttransplant consolidative immune reaction. PMID:10955855

  11. A Simplified Method for the Aspiration of Bone Marrow from Patients Undergoing Hip and Knee Joint Replacement for Isolating Mesenchymal Stem Cells and In Vitro Chondrogenesis

    PubMed Central

    Juneja, Subhash C.; Viswanathan, Sowmya; Ganguly, Milan; Veillette, Christian

    2016-01-01

    The procedure for aspiration of bone marrow from the femur of patients undergoing total knee arthroplasty (TKA) or total hip arthroplasty (THA) may vary from an OR (operating room) to OR based on the surgeon's skill and may lead to varied extent of clotting of the marrow and this, in turn, presents difficulty in the isolation of mesenchymal stem cells (MSCs) from such clotted bone marrow. We present a simple detailed protocol for aspirating bone marrow from such patients, isolation, and characterization of MSCs from the aspirated bone marrow specimens and show that the bone marrow presented no clotting or exhibited minimal clotting. This represents an economical source and convenient source of MSCs from bone marrow for use in regenerative medicine. Also, we presented the detailed protocol and showed that the MSCs derived from such bone marrow specimens exhibited MSCs characteristics and generated micromass cartilages, the recipe for regenerative medicine for osteoarthritis. The protocols we presented can be used as standard operating procedures (SOPs) by researchers and clinicians. PMID:27057356

  12. A Simplified Method for the Aspiration of Bone Marrow from Patients Undergoing Hip and Knee Joint Replacement for Isolating Mesenchymal Stem Cells and In Vitro Chondrogenesis.

    PubMed

    Juneja, Subhash C; Viswanathan, Sowmya; Ganguly, Milan; Veillette, Christian

    2016-01-01

    The procedure for aspiration of bone marrow from the femur of patients undergoing total knee arthroplasty (TKA) or total hip arthroplasty (THA) may vary from an OR (operating room) to OR based on the surgeon's skill and may lead to varied extent of clotting of the marrow and this, in turn, presents difficulty in the isolation of mesenchymal stem cells (MSCs) from such clotted bone marrow. We present a simple detailed protocol for aspirating bone marrow from such patients, isolation, and characterization of MSCs from the aspirated bone marrow specimens and show that the bone marrow presented no clotting or exhibited minimal clotting. This represents an economical source and convenient source of MSCs from bone marrow for use in regenerative medicine. Also, we presented the detailed protocol and showed that the MSCs derived from such bone marrow specimens exhibited MSCs characteristics and generated micromass cartilages, the recipe for regenerative medicine for osteoarthritis. The protocols we presented can be used as standard operating procedures (SOPs) by researchers and clinicians. PMID:27057356

  13. Psychological Distress and Psychiatric Diagnoses among Primary Caregivers of Children undergoing Hematopoietic Stem Cell Transplant: An Examination of Prevalence, Correlates, and Racial/Ethnic Differences

    PubMed Central

    Virtue, Shannon Myers; Manne, Sharon L.; Mee, Laura; Bartell, Abraham; Sands, Stephen; Gajda, Tina Marie; Darabos, Kathleen

    2015-01-01

    Objective The aims of the study were to examine the prevalence of self-reported psychological distress, examine the prevalence of interview-rated psychiatric diagnoses, identify correlates of psychological distress and psychiatric diagnosis, and examine racial/ethnic group differences on measures of psychological distress among primary caregivers of children preparing to undergo hematopoietic stem cell transplant (HSCT). Methods Caregivers (N = 215) completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI), Impact of Events Scale (IES), and a psychiatric interview assessing major depressive disorder (MDD), generalized anxiety disorder (GAD), and panic disorder (PD). Regression analyses examined correlates of distress and psychiatric diagnosis. Comparisons were made between racial/ethnic groups. Results Posttraumatic stress symptoms were reported by 54% of caregivers during the time preparing for the child’s HSCT. Twenty-seven percent of caregivers met diagnostic criteria for at least one of the psychiatric diagnoses during this time. Few factors were associated with distress or psychiatric diagnosis, except the child scheduled for allogeneic transplant, being married, and prior psychological/psychiatric care. Socio-demographic factors accounted for racial/ethnic group differences, except Hispanic/Latino caregivers reported higher BDI scores than non-Hispanic White caregivers. Conclusion Caregivers may be at greater risk of posttraumatic stress symptoms than anxiety or depression. Prior psychological/psychiatric treatment is a risk factor for greater psychological distress and psychiatric diagnosis during this time. Racial differences are mostly due to socio-demographic factors. PMID:25246347

  14. Infusing CD19-Directed T Cells to Augment Disease Control in Patients Undergoing Autologous Hematopoietic Stem-Cell Transplantation for Advanced B-Lymphoid Malignancies

    PubMed Central

    Kebriaei, Partow; Huls, Helen; Jena, Bipulendu; Munsell, Mark; Jackson, Rineka; Lee, Dean A.; Hackett, Perry B.; Rondon, Gabriela; Shpall, Elizabeth; Champlin, Richard E.

    2012-01-01

    Abstract Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR+ T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR+ T-cell infusions derived from allogeneic sources. PMID:22107246

  15. Mouse embryonic stem cells undergo Charontosis, a novel programmed cell death pathway dependent upon cathepsins, p53, and EndoG, in response to etoposide treatment

    PubMed Central

    Tichy, Elisia D.; Stephan, Zachary A.; Osterburg, Andrew; Noel, Greg; Stambrook, Peter J.

    2013-01-01

    Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term Charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs. PMID:23500643

  16. Dramatic Improvement in the Multifocal Positron Emission Tomography Findings of a Young Adult with Chronic Granulomatous Disease Following Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Shigemura, Tomonari; Nakazawa, Yozo; Hirabayashi, Koichi; Kobayashi, Norimoto; Sakashita, Kazuo; Agematsu, Kazunaga; Koike, Kenichi

    2015-01-01

    Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by defects of nicotinamide adenine dinucleotide phosphate oxidase. Catalase-positive bacteria and fungi are phagocytosed, but persist within phagocytes, resulting in granulomatous inflammation. Although allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for CGD, HSCT sometimes leads to fatal outcomes related to the exacerbation of persistent infectious or post-infectious inflammatory diseases, particularly in adolescent and young adult patients with a history of recurrent infections and/or multiple granulomas in organs. Here, we present the case of a young adult with X-linked CGD in whom multiple lesions were found in lungs and lymph nodes on both computed tomography and positron emission tomography (PET) scans before allogeneic HSCT, but all the lesions disappeared only on PET scan 5 months after HSCT. Monitoring the activity of multiple pre-existing lesions with PET scan may be beneficial to adolescent and young adult CGD-patients undergoing allogeneic HSCT. PMID:25367170

  17. The Jak-STAT target Chinmo prevents sex transformation of adult stem cells in the Drosophila testis niche

    PubMed Central

    Ma, Qing; Wawersik, Matthew; Matunis, Erika L.

    2014-01-01

    Local signals maintain adult stem cells in many tissues. Whether the sexual identity of adult stem cells must also be maintained was not known. In the adult Drosophila testis niche, local Jak-STAT signaling promotes somatic cyst stem cell (CySC) renewal through several effectors, including the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo). Here, we find that Chinmo also prevents feminization of CySCs. Chinmo promotes expression of the canonical male sex determination factor DoublesexM (DsxM) within CySCs and their progeny, and ectopic expression of DsxM in the CySC lineage partially rescues the chinmo sex transformation phenotype, placing Chinmo upstream of DsxM. The Dsx homologue DMRT1 prevents the male-to female conversion of differentiated somatic cells in the adult mammalian testis, but its regulation is not well understood. Our work indicates that sex maintenance occurs in adult somatic stem cells, and that this highly conserved process is governed by effectors of niche signals. PMID:25453558

  18. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    PubMed Central

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  19. Expression of a Thatcher wheat adult plant stem rust resistance QTL on chromosome arm 2BL is enhanced by Lr34

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An F6 recombinant inbred line (RIL) spring wheat population derived from RL6071, a stem rust susceptible line and RL6058, a backcross line of Thatcher wheat with Lr34 that is highly resistant to stem rust, was evaluated for adult plant stem rust resistance in North Dakota in 1999, and in Kenya in 20...

  20. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells

    PubMed Central

    Kabiri, Zahra; Numata, Akihiko; Kawasaki, Akira; Tenen, Daniel G.

    2015-01-01

    Wnt signaling controls early embryonic hematopoiesis and dysregulated β-catenin is implicated in leukemia. However, the role of Wnts and their source in adult hematopoiesis is still unclear, and is clinically important as upstream Wnt inhibitors enter clinical trials. We blocked Wnt secretion in hematopoietic lineages by targeting Porcn, a membrane-bound O-acyltransferase that is indispensable for the activity and secretion of all vertebrate Wnts. Surprisingly, deletion of Porcn in Rosa-CreERT2/PorcnDel, MX1-Cre/PorcnDel, and Vav-Cre/PorcnDel mice had no effects on proliferation, differentiation, or self-renewal of adult hematopoietic stem cells. Targeting Wnt secretion in the bone marrow niche by treatment with a PORCN inhibitor, C59, similarly had no effect on hematopoiesis. These results exclude a role for hematopoietic PORCN-dependent Wnts in adult hematopoiesis. Clinical use of upstream Wnt inhibitors is not likely to be limited by effects on hematopoiesis. PMID:26089398

  1. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia.

    PubMed

    Dhédin, Nathalie; Huynh, Anne; Maury, Sébastien; Tabrizi, Reza; Beldjord, Kheira; Asnafi, Vahid; Thomas, Xavier; Chevallier, Patrice; Nguyen, Stéphanie; Coiteux, Valérie; Bourhis, Jean-Henri; Hichri, Yosr; Escoffre-Barbe, Martine; Reman, Oumedaly; Graux, Carlos; Chalandon, Yves; Blaise, Didier; Schanz, Urs; Lhéritier, Véronique; Cahn, Jean-Yves; Dombret, Hervé; Ifrah, Norbert

    2015-04-16

    Because a pediatric-inspired Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) protocol yielded a markedly improved outcome in adults with Philadelphia chromosome-negative ALL, we aimed to reassess the role of allogeneic stem cell transplantation (SCT) in patients treated in the GRAALL-2003 and GRAALL-2005 trials. In all, 522 patients age 15 to 55 years old and presenting with at least 1 conventional high-risk factor were candidates for SCT in first complete remission. Among these, 282 (54%) received a transplant in first complete remission. At 3 years, posttransplant cumulative incidences of relapse, nonrelapse mortality, and relapse-free survival (RFS) were estimated at 19.5%, 15.5%, and 64.7%, respectively. Time-dependent analysis did not reveal a significant difference in RFS between SCT and no-SCT cohorts. However, SCT was associated with longer RFS in patients with postinduction minimal residual disease (MRD) ≥10(-3) (hazard ratio, 0.40) but not in good MRD responders. In B-cell precursor ALL, SCT also benefitted patients with focal IKZF1 gene deletion (hazard ratio, 0.42). This article shows that poor early MRD response, in contrast to conventional ALL risk factors, is an excellent tool to identify patients who may benefit from allogeneic SCT in the context of intensified adult ALL therapy. Trial GRAALL-2003 was registered at www.clinicaltrials.gov as #NCT00222027; GRAALL-2005 was registered as #NCT00327678. PMID:25587040

  2. Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse.

    PubMed

    Furube, Eriko; Morita, Mitsuhiro; Miyata, Seiji

    2015-11-01

    Although evidence has accumulated that neurogenesis and gliogenesis occur in the subventricular zone (SVZ) and subgranular zone (SGZ) of adult mammalian brains, recent studies indicate the presence of neural stem cells (NSCs) in adult brains, particularly the circumventricular regions. In the present study, we aimed to determine characterization of NSCs and their progenitor cells in the sensory circumventricular organs (CVOs), including organum vasculosum of the lamina terminalis, subfornical organ, and area postrema of adult mouse. There were two types of NSCs: tanycyte-like ependymal cells and astrocyte-like cells. Astrocyte-like NSCs proliferated slowly and oligodendrocyte progenitor cells (OPCs) and neural progenitor cells (NPCs) actively divided. Molecular marker protein expression of NSCs and their progenitor cells were similar to those reported in the SVZ and SGZ, except that astrocyte-like NSCs expressed S100β. These circumventricular NSCs possessed the capacity to give rise to oligodendrocytes and sparse numbers of neurons and astrocytes in the sensory CVOs and adjacent brain regions. The inhibition of vascular endothelial growth factor (VEGF) signaling by using a VEGF receptor-associated tyrosine kinase inhibitor AZD2171 largely suppressed basal proliferation of OPCs. A single systemic administration of lipopolysaccharide attenuated proliferation of OPCs and induced remarkable proliferation of microglia. The present study indicates that sensory circumventricular NSCs provide new neurons and glial cells in the sensory CVOs and adjacent brain regions. PMID:25994374

  3. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration

    SciTech Connect

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful

  4. oct4-EGFP reporter gene expression marks the stem cells in embryonic development and in adult gonads of transgenic medaka.

    PubMed

    Froschauer, Alexander; Khatun, Mst Muslima; Sprott, David; Franz, Alexander; Rieger, Christiane; Pfennig, Frank; Gutzeit, Herwig O

    2013-01-01

    Maintenance of pluripotency in stem cells is tightly regulated among vertebrates. One of the key genes in this process is oct4, also referred to as pou5f1 in mammals and pou2 in teleosts. Pou5f1 evolved by duplication of pou2 early in the tetrapod lineage, but only monotremes and marsupials retained both genes. Either pou2 or pou5f1 was lost from the genomes of the other tetrapods that have been analyzed to date. Consequently, these two homologous genes are often designated oct4 in functional studies. In most vertebrates oct4 is expressed in pluripotent cells of the early embryo until the blastula stage, and later persist in germline stem cells until adulthood. The isolation and analysis of stem cells from embryo or adult individuals is hampered by the need for reliable markers that can identify and define the cell populations. Here, we report the faithful expression of EGFP under the control of endogenous pou2/oct4 promoters in transgenic medaka (Oryzias latipes). In vivo imaging in oct4-EGFP transgenic medaka reveals the temporal and spatial expression of pou2 in embryos and adults alike. We describe the temporal and spatial patterns of endogenous pou2 and oct4-EGFP expression in medaka with respect to germline and adult stem cells, and discuss applications of oct4-EGFP transgenic medaka in reproductive and stem cell biology. PMID:23139203

  5. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells.

    PubMed

    Pfenninger, Cosima V; Roschupkina, Teona; Hertwig, Falk; Kottwitz, Denise; Englund, Elisabet; Bengzon, Johan; Jacobsen, Sten Eirik; Nuber, Ulrike A

    2007-06-15

    Human brain tumor stem cells have been enriched using antibodies against the surface protein CD133. An antibody recognizing CD133 also served to isolate normal neural stem cells from fetal human brain, suggesting a possible lineage relationship between normal neural and brain tumor stem cells. Whether CD133-positive brain tumor stem cells can be derived from CD133-positive neural stem or progenitor cells still requires direct experimental evidence, and an important step toward such investigations is the identification and characterization of normal CD133-presenting cells in neurogenic regions of the embryonic and adult brain. Here, we present evidence that CD133 is a marker for embryonic neural stem cells, an intermediate radial glial/ependymal cell type in the early postnatal stage, and for ependymal cells in the adult brain, but not for neurogenic astrocytes in the adult subventricular zone. Our findings suggest two principal possibilities for the origin of brain tumor stem cells: a derivation from CD133-expressing cells, which are normally not present in the adult brain (embryonic neural stem cells and an early postnatal intermediate radial glial/ependymal cell type), or from CD133-positive ependymal cells in the adult brain, which are, however, generally regarded as postmitotic. Alternatively, brain tumor stem cells could be derived from proliferative but CD133-negative neurogenic astrocytes in the adult brain. In the latter case, brain tumor development would involve the production of CD133. PMID:17575139

  6. Is There Any Reason to Prefer Cord Blood Instead of Adult Donors for Hematopoietic Stem Cell Transplants?

    PubMed Central

    Beksac, Meral

    2016-01-01

    As cord blood (CB) enables rapid access and tolerance to HLA mismatches, a number of unrelated CB transplants have reached 30,000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified cord blood units (CBUs) reaching more than 600,000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, prostaglandin E2 derivative, complement CD26 inhibitors, or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore, introduction of reduced intensity conditioning protocols, better HLA matching, and recognition of the importance of HLA-C have improved CB transplants success by decreasing transplant-related mortality. CB progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to bone marrow–mesenchymal stromal cells and lesser oncogenic potential than progenitor-induced stem cells. This chapter summarizes the advantages and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation. PMID:26793711

  7. Impact of electromagnetic fields on stem cells: common mechanisms at the crossroad between adult neurogenesis and osteogenesis

    PubMed Central

    Leone, Lucia; Podda, Maria Vittoria; Grassi, Claudio

    2015-01-01

    In the recent years adult neural and mesenchymal stem cells have been intensively investigated as effective resources for repair therapies. In vivo and in vitro studies have provided insights on the molecular mechanisms underlying the neurogenic and osteogenic processes in adulthood. This knowledge appears fundamental for the development of targeted strategies to manipulate stem cells. Here we review recent literature dealing with the effects of electromagnetic fields on stem cell biology that lends support to their use as a promising tool to positively influence the different steps of neurogenic and osteogenic processes. We will focus on recent studies revealing that extremely-low frequency electromagnetic fields enhance adult hippocampal neurogenesis by inducing epigenetic modifications on the regulatory sequences of genes responsible for neural stem cell proliferation and neuronal differentiation. In light of the emerging critical role played by chromatin modifications in maintaining the stemness as well as in regulating stem cell differentiation, we will also attempt to exploit epigenetic changes that can represent common targets for electromagnetic field effects on neurogenic and osteogenic processes. PMID:26124705

  8. Dpp signaling determines regional stem cell identity in the regenerating adult Drosophila gastrointestinal tract

    PubMed Central

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2013-01-01

    Summary The gastrointestinal tract is lined by a series of epithelia that share functional requirements, but also have distinct, highly specialized roles. Distinct populations of somatic stem cells (SCs) regenerate these epithelia, yet the mechanisms that maintain regional identities of these SCs are not well understood. Here, we identify a role for the BMP-like Dpp signaling pathway in diversifying regenerative processes in the adult gastrointestinal tract of Drosophila. Dpp secreted from enterocytes at the boundary between the posterior midgut (PM) and the middle midgut (MM) sets up a morphogen gradient that selectively directs copper cell (CC) regeneration from gastric SCs in the MM and thus determines the size of the CC region. In vertebrates, deregulation of BMP signaling has been associated with Barrett’s metaplasia, where the squamous esophageal epithelium is replaced by a columnar epithelium, suggesting that the maintenance of regional SC identities by BMP is conserved. PMID:23810561

  9. Adult Vascular Wall Resident Multipotent Vascular Stem Cells, Matrix Metalloproteinases, and Arterial Aneurysms

    PubMed Central

    Amato, Bruno; Compagna, Rita; Amato, Maurizio; Grande, Raffaele; Butrico, Lucia; Rossi, Alessio; Naso, Agostino; Ruggiero, Michele; de Franciscis, Stefano

    2015-01-01

    Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms. PMID:25866513

  10. [The three-dimensional culture of adult mesenchymal stem cells for intervertebral disc tissue engineering].

    PubMed

    Feng, Ganjun; Liu, Hao; Deng, Li; Chen, Xiaohe; Zhao, Xianfeng; Liang, Tao; Li, Xiuqiong

    2009-12-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain. As current clinical treatments are aimed at restoring biomechanical function and providing symptomatic relief, the methods focused on biological repair have aroused interest and several tissue engineering approaches using different cell types have been proposed. Owing to the unsuitable nature of degenerate cells for tissue engineering, attention has been given to the use of mesenchymal stem cells (MSCs). In this connection, we have made a study on the characteristics of MSCs derived from adult bone marrow and on the feasibility of constructing IVD tissue-engineering cell under a Three-Dimensional Pellet Culture System. The human bone marrow MSCs were isolated and purified with density gradient solution and attachment-independent culture system. MSCs isolated using this method are a homogeneous population as indicated by morphology and other criteria. They have the capacity for self-renewal and proliferation, and the multilineage potential to differentiate. PMID:20095491

  11. Insights from a chimpanzee adipose stromal cell population: opportunities for adult stem cells to expand primate functional genomics.

    PubMed

    Pfefferle, Lisa W; Wray, Gregory A

    2013-01-01

    Comparisons between humans and chimpanzees are essential for understanding traits unique to each species. However, linking important phenotypic differences to underlying molecular changes is often challenging. The ability to generate, differentiate, and profile adult stem cells provides a powerful but underutilized opportunity to investigate the molecular basis for trait differences between species within specific cell types and in a controlled environment. Here, we characterize adipose stromal cells (ASCs) from Clint, the chimpanzee whose genome was first sequenced. Using imaging and RNA-Seq, we compare the chimpanzee ASCs with three comparable human cell lines. Consistent with previous studies on ASCs in humans, the chimpanzee cells have fibroblast-like morphology and express genes encoding components of the extracellular matrix at high levels. Differentially expressed genes are enriched for distinct functional classes between species: immunity and protein processing are higher in chimpanzees, whereas cell cycle and DNA processing are higher in humans. Although hesitant to draw definitive conclusions from these data given the limited sample size, we wish to stress the opportunities that adult stem cells offer for studying primate evolution. In particular, adult stem cells provide a powerful means to investigate the profound disease susceptibilities unique to humans and a promising tool for conservation efforts with nonhuman primates. By allowing for experimental perturbations in relevant cell types, adult stem cells promise to complement classic comparative primate genomics based on in vivo sampling. PMID:24092797

  12. Cell Competition Modifies Adult Stem Cell and Tissue Population Dynamics in a JAK-STAT-Dependent Manner

    PubMed Central

    Kolahgar, Golnar; Suijkerbuijk, Saskia J.E.; Kucinski, Iwo; Poirier, Enzo Z.; Mansour, Sarah; Simons, Benjamin D.; Piddini, Eugenia

    2015-01-01

    Summary Throughout their lifetime, cells may suffer insults that reduce their fitness and disrupt their function, and it is unclear how these potentially harmful cells are managed in adult tissues. We address this question using the adult Drosophila posterior midgut as a model of homeostatic tissue and ribosomal Minute mutations to reduce fitness in groups of cells. We take a quantitative approach combining lineage tracing and biophysical modeling and address how cell competition affects stem cell and tissue population dynamics. We show that healthy cells induce clonal extinction in weak tissues, targeting both stem and differentiated cells for elimination. We also find that competition induces stem cell proliferation and self-renewal in healthy tissue, promoting selective advantage and tissue colonization. Finally, we show that winner cell proliferation is fueled by the JAK-STAT ligand Unpaired-3, produced by Minute−/+ cells in response to chronic JNK stress signaling. PMID:26212135

  13. Cell Competition Modifies Adult Stem Cell and Tissue Population Dynamics in a JAK-STAT-Dependent Manner.

    PubMed

    Kolahgar, Golnar; Suijkerbuijk, Saskia J E; Kucinski, Iwo; Poirier, Enzo Z; Mansour, Sarah; Simons, Benjamin D; Piddini, Eugenia

    2015-08-10

    Throughout their lifetime, cells may suffer insults that reduce their fitness and disrupt their function, and it is unclear how these potentially harmful cells are managed in adult tissues. We address this question using the adult Drosophila posterior midgut as a model of homeostatic tissue and ribosomal Minute mutations to reduce fitness in groups of cells. We take a quantitative approach combining lineage tracing and biophysical modeling and address how cell competition affects stem cell and tissue population dynamics. We show that healthy cells induce clonal extinction in weak tissues, targeting both stem and differentiated cells for elimination. We also find that competition induces stem cell proliferation and self-renewal in healthy tissue, promoting selective advantage and tissue colonization. Finally, we show that winner cell proliferation is fueled by the JAK-STAT ligand Unpaired-3, produced by Minute(-/+) cells in response to chronic JNK stress signaling. PMID:26212135

  14. Cartilage Regeneration by Chondrogenic Induced Adult Stem Cells in Osteoarthritic Sheep Model

    PubMed Central

    Ude, Chinedu C.; Sulaiman, Shamsul B.; Min-Hwei, Ng; Hui-Cheng, Chen; Ahmad, Johan; Yahaya, Norhamdan M.; Saim, Aminuddin B.; Idrus, Ruszymah B. H.

    2014-01-01

    Objectives In this study, Adipose stem cells (ADSC) and bone marrow stem cells (BMSC), multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. Methods Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2×107 autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. Results The proliferation rate of ADSCs 34.4±1.6 hr was significantly higher than that of the BMSCs 48.8±5.3 hr (P = 0.008). Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan) compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013). Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001). Fluorescence of the tracking dye (PKH26) in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. Conclusion Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis. PMID:24911365

  15. Pan-neuronal maturation but not neuronal subtype differentiation of adult neural stem cells is mechanosensitive

    PubMed Central

    Keung, Albert J.; Dong, Meimei; Schaffer, David V.; Kumar, Sanjay

    2013-01-01

    Most past studies of the biophysical regulation of stem cell differentiation have focused on initial lineage commitment or proximal differentiation events. It would be valuable to understand whether biophysical inputs also influence distal endpoints more closely associated with physiological function, such as subtype specification in neuronal differentiation. To explore this question, we cultured adult neural stem cells (NSCs) on variable stiffness ECMs under conditions that promote neuronal fate commitment for extended time periods to allow neuronal subtype differentiation. We find that ECM stiffness does not modulate the expression of NeuroD1 and TrkA/B/C or the percentages of pan-neuronal, GABAergic, or glutamatergic neuronal subtypes. Interestingly, however, an ECM stiffness of 700 Pa maximizes expression of pan-neuronal markers. These results suggest that a wide range of stiffnesses fully permit pan-neuronal NSC differentiation, that an intermediate stiffness optimizes expression of pan-neuronal genes, and that stiffness does not impact commitment to particular neuronal subtypes. PMID:23660869

  16. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing.

    PubMed

    Scaffidi, Paola; Misteli, Tom

    2008-04-01

    The premature-ageing disease Hutchinson-Gilford Progeria Syndrome (HGPS) is caused by constitutive production of progerin, a mutant form of the nuclear architectural protein lamin A. Progerin is also expressed sporadically in wild-type cells and has been linked to physiological ageing. Cells from HGPS patients exhibit extensive nuclear defects, including abnormal chromatin structure and increased DNA damage. At the organismal level, HGPS affects several tissues, particularly those of mesenchymal origin. How the cellular defects of HGPS cells lead to the organismal defects has been unclear. Here, we provide evidence that progerin interferes with the function of human mesenchymal stem cells (hMSCs). We find that expression of progerin activates major downstream effectors of the Notch signalling pathway. Induction of progerin in hMSCs changes their molecular identity and differentiation potential. Our results support a model in which accelerated ageing in HGPS patients, and possibly also physiological ageing, is the result of adult stem cell dysfunction and progressive deterioration of tissue functions. PMID:18311132

  17. Clinical trial perspective for adult and juvenile Huntington's disease using genetically-engineered mesenchymal stem cells

    PubMed Central

    Deng, Peter; Torrest, Audrey; Pollock, Kari; Dahlenburg, Heather; Annett, Geralyn; Nolta, Jan A.; Fink, Kyle D.

    2016-01-01

    Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells (MSC) to secrete brain-derived neurotrophic factor (BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease (HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system. PMID:27335539

  18. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation

    PubMed Central

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M.; Tripathi, Rati M.; Layer, Justin H.; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P.

    2015-01-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis. PMID:25968920

  19. Clinical trial perspective for adult and juvenile Huntington's disease using genetically-engineered mesenchymal stem cells.

    PubMed

    Deng, Peter; Torrest, Audrey; Pollock, Kari; Dahlenburg, Heather; Annett, Geralyn; Nolta, Jan A; Fink, Kyle D

    2016-05-01

    Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells (MSC) to secrete brain-derived neurotrophic factor (BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease (HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system. PMID:27335539

  20. Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells.

    PubMed

    Oliver, Lisa; Hue, Erika; Priault, Muriel; Vallette, François M

    2012-10-10

    Autophagy plays an important role in homeostasis, development, and disease, functioning both as a survival and cell death pathway. However, despite its importance in cell physiology, there is little information about the role of autophagy in stem cells and, in particular, on its implication in their survival and/or cell death. We describe here that in vitro, human mesenchymal stem cells (hMSCs) exhibited a high level of constitutive autophagy. Inhibitors of autophagy such as Bafilomycin A1 (Baf-A1) inhibited the proteolytic degradation associated with autophagy in these cells. In addition, we show that a knockdown in the expression of Bcl-xL is accompanied by a loss of autophagic proteolytic ability. Indeed, Bcl-xL seems to exert a tight control on autophagy regulation, since its reintroduction by a protein construct PTD-Bcl-xL resulted in the reacquisition of autophagy. We show that the suppression of autophagy through the knockdown of Bcl-xL influenced hMSC survival and differentiation. This study expands our knowledge on the control exerted by Bcl-xL on autophagy and illustrates the important role of autophagy in the maintenance and differentiation of adult hMSCs. PMID:22519885

  1. Targeted mRNA Decay by RNA Binding Protein AUF1 Regulates Adult Muscle Stem Cell Fate, Promoting Skeletal Muscle Integrity.

    PubMed

    Chenette, Devon M; Cadwallader, Adam B; Antwine, Tiffany L; Larkin, Lauren C; Wang, Jinhua; Olwin, Bradley B; Schneider, Robert J

    2016-08-01

    Following skeletal muscle injury, muscle stem cells (satellite cells) are activated, proliferate, and differentiate to form myofibers. We show that mRNA-decay protein AUF1 regulates satellite cell function through targeted degradation of specific mRNAs containing 3' AU-rich elements (AREs). auf1(-/-) mice undergo accelerated skeletal muscle wasting with age and impaired skeletal muscle repair following injury. Satellite cell mRNA analysis and regeneration studies demonstrate that auf1(-/-) satellite cell self-renewal is impaired due to increased stability and overexpression of ARE-mRNAs, including cell-autonomous overexpression of matrix metalloprotease MMP9. Secreted MMP9 degrades the skeletal muscle matrix, preventing satellite-cell-mediated regeneration and return to quiescence. Blocking MMP9 activity in auf1(-/-) mice restores skeletal muscle repair and maintenance of the satellite cell population. Control of ARE-mRNA decay by AUF1 represents a mechanism for adult stem cell regulation and is implicated in human skeletal muscle wasting diseases. PMID:27452471

  2. SKELETAL MUSCLE SODIUM GLUCOSE CO-TRANSPORTERS IN OLDER ADULTS WITH TYPE 2 DIABETES UNDERGOING RESISTANCE TRAINING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the expression of the sodium-dependent glucose co-transporter system (SGLT3) in skeletal muscle of Hispanic older adults with type 2 diabetes. Subjects (65+/-8 yr) were randomized to resistance training (3x/wk, n=13) or standard of care (controls, n=5) for 16 weeks. Skeletal muscle SGL...

  3. Wilms Tumor 1 Expression and Pre-emptive Immunotherapy in Patients with Acute Myeloid Leukemia Undergoing an Allogeneic Hemopoietic Stem Cell Transplantation.

    PubMed

    Di Grazia, Carmen; Pozzi, Sarah; Geroldi, Simona; Grasso, Raffaella; Miglino, Maurizio; Colombo, Nicoletta; Tedone, Elisabetta; Luchetti, Silvia; Lamparelli, Teresa; Gualandi, Francesca; Ibatici, Adalberto; Bregante, Stefania; Van Lint, Maria Teresa; Raiola, Anna Maria; Dominietto, Alida; Varaldo, Riccardo; Galaverna, Federica; Ghiso, Anna; Sica, Simona; Bacigalupo, Andrea

    2016-07-01

    Minimal residual disease (MRD) was monitored by Wilms tumor 1 (WT1) expression in 207 patients with acute myeloid leukemia (AML) after an allogeneic hemopoietic stem cell transplantation (HSCT) as a trigger to initiate pre-emptive immunotherapy (IT) with cyclosporin discontinuation and/or donor lymphocyte infusion. The trigger for IT was WT1 ≥ 180 copies/10(4) Abelson cells in marrow cells in the first group of 122 patients (WT1-180) and ≥ 100 copies in a subsequent group of 85 patients (WT1-100). Forty patients received IT. The cumulative incidence (CI) of relapse was 76% in WT1-180 (n = 17) versus 29% in WT1-100 patients (n = 23) receiving IT (P = .006); the leukemia-free survival from MRD positivity was 23% versus 74%, respectively (P = .003). We then looked at the entire AML patient population (n = 207). WT1-180 and WT1-100 patients were comparable for disease phase and age. The overall 4-year CI of transplantation-related mortality was 13% in both groups; the CI of leukemia relapse was 38% in the WT1-180 and 28% in the WT1-100 patients (P = .05) and leukemia-free survival was 56% versus 48%, respectively (P = .07). In conclusion, we suggests that WT1-based pre-emptive immunotherapy is feasible in patients with undergoing an allogeneic HSCT. The protective effect on relapse is greater when IT is triggered at lower levels of WT1. PMID:26970379

  4. Autologous Mesenchymal Stem Cells Produce Concordant Improvements in Regional Function, Tissue Perfusion and Fibrotic Burden when Administered to Patients Undergoing Coronary Artery Bypass Grafting – The PROMETHEUS Trial

    PubMed Central

    Karantalis, Vasileios; DiFede, Darcy L.; Gerstenblith, Gary; Pham, Si; Symes, James; Zambrano, Juan Pablo; Fishman, Joel; Pattany, Pradip; McNiece, Ian; Conte, John; Schulman, Steven; Wu, Katherine; Shah, Ashish; Breton, Elayne; Davis-Sproul, Janice; Schwarz, Richard; Feigenbaum, Gary; Mushtaq, Muzammil; Suncion, Viky Y.; Lardo, Albert C.; Borrello, Ivan; Mendizabal, Adam; Karas, Tomer Z.; Byrnes, John; Lowery, Maureen; Heldman, Alan W.; Hare, Joshua M.

    2014-01-01

    Rationale While accumulating data support the efficacy of intramyocardial cell-based therapy to improve LV function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial.Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including: reducing fibrosis, neoangiogenesis and neomyogenesis. Objective To test the hypothesis that the impact on cardiac structure and function following intramyocardial injections of autologous MSCs results from a concordance of pro-recovery phenotypic effects. Methods and Results Six patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness and contractility at baseline, 3, 6 and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LVEF (+9.4±1.7%, p=0.0002) and decreased scar mass (-47.5±8.1%; p<0.0001) compared to baseline. MSC-injected segments had concordant reduction in scar size, perfusion and contractile improvement (concordant score: 2.93±0.07), whereas revascularized (0.5±0.21) and non-treated segments (-0.07±0.34) demonstrated non-concordant changes (p<0.0001 vs. injected segments). Conclusions Intramyocardial injection of autologous MSCs into akinetic yet non-revascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive due to lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications. PMID:24565698

  5. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms.

    PubMed

    Bernardo, Maria Ester; Zaffaroni, Nadia; Novara, Francesca; Cometa, Angela Maria; Avanzini, Maria Antonietta; Moretta, Antonia; Montagna, Daniela; Maccario, Rita; Villa, Raffaella; Daidone, Maria Grazia; Zuffardi, Orsetta; Locatelli, Franco

    2007-10-01

    Significant improvement in the understanding of mesenchymal stem cell (MSC) biology has opened the way to their clinical use. However, concerns regarding the possibility that MSCs undergo malignant transformation have been raised. We investigated the susceptibility to transformation of human bone marrow (BM)-derived MSCs at different in vitro culture time points. MSCs were isolated from BM of 10 healthy donors and propagated in vitro until reaching either senescence or passage (P) 25. MSCs in the senescence phase were closely monitored for 8 to 12 weeks before interrupting the cultures. The genetic characterization of MSCs was investigated through array-comparative genomic hybridization (array-CGH), conventional karyotyping, and subtelomeric fluorescent in situ hybridization analysis both before and after prolonged culture. MSCs were tested for the expression of telomerase activity, human telomerase reverse transcriptase (hTERT) transcripts, and alternative lengthening of telomere (ALT) mechanism at different passages. A huge variability in terms of proliferative capacity and MSCs life span was noted between donors. In eight of 10 donors, MSCs displayed a progressive decrease in proliferative capacity until reaching senescence. In the remaining two MSC samples, the cultures were interrupted at P25 to pursue data analysis. Array-CGH and cytogenetic analyses showed that MSCs expanded in vitro did not show chromosomal abnormalities. Telomerase activity and hTERT transcripts were not expressed in any of the examined cultures and telomeres shortened during the culture period. ALT was not evidenced in the MSCs tested. BM-derived MSCs can be safely expanded in vitro and are not susceptible to malignant transformation, thus rendering these cells suitable for cell therapy approaches. PMID:17909019

  6. Ex vivo Expansion of Human Adult Pancreatic Cells with Properties of Distributed Stem Cells by Suppression of Asymmetric Cell Kinetics

    PubMed Central

    Paré, JF; Sherley, JL

    2013-01-01

    Transplantation therapy for type I diabetes (T1D) might be improved if pancreatic stem cells were readily available for investigation. Unlike macroscopic islets, pancreatic tissue stem cells could more easily access the retroperitoneal pancreatic environment and thereby might achieve more effective pancreatic regeneration. Unfortunately, whether the adult pancreas actually contains renewing stem cells continues as a controversial issue in diabetes research. We evaluated a new method developed in our lab for expanding renewing distributed stem cells (DSCs) from adult tissues as a means to provide more evidence for adult pancreatic stem cells, and potentially advance their availability for future clinical investigation. The new method was designed to switch DSCs from asymmetric self-renewal to symmetric self-renewal, which promotes their exponential expansion in culture with reduced production of differentiated cells. Called suppression of asymmetric cell kinetics (SACK), the method uses natural purine metabolites to accomplish the self-renewal pattern shift. The SACK purine metabolites xanthine, xanthosine, and hypoxanthine were evaluated for promoting expansion of DSCs from the pancreas of adult human postmortem donors. Xanthine and xanthosine were effective for deriving both pooled and clonal populations of cells with properties indicative of human pancreatic DSCs. The expanded human cell strains had signature SACK agent-suppressible asymmetric cell kinetics, produced Ngn3+ bipotent precursors for α-cells and β-cells, and were non-tumorigenic in immunodeficient mice. Our findings support the existence of pancreatic DSCs in the adult human pancreas and indicate a potential path to increasing their availability for future clinical evaluation. PMID:25197614

  7. Developing Mentors: Adult participation, practices, and learning in an out-of-school time STEM program

    NASA Astrophysics Data System (ADS)

    Scipio, Deana Aeolani

    This dissertation examines learning within an out-of-school time (OST) Science, Technology, Engineering, and Mathematics (STEM) broadening participation program. The dissertation includes an introduction, three empirical chapters (written as individual articles), and a conclusion. The dissertation context is a chemical oceanography OST program for middle school students called Project COOL---Chemical Oceanography Outside the Lab. The program was a collaboration between middle school OST programming, a learning sciences research laboratory, and a chemical oceanography laboratory. Both labs were located at a research-based university in the Pacific Northwest of the United States. Participants include 34 youth, 12 undergraduates, and five professional scientists. The dissertation data corpus includes six years of ethnographic field notes across three field sites, 400 hours of video and audio recordings, 40 hours of semi-structured interviews, and more than 100 participant generated artifacts. Analysis methods include comparative case analysis, cognitive mapping, semiotic cluster analysis, video interaction analysis, and discourse analysis. The first empirical article focuses on synthesizing productive programmatic features from four years of design-based research.. The second article is a comparative case study of three STEM mentors from non-dominant communities in the 2011 COOL OST Program. The third article is a comparative case study of undergraduates learning to be mentors in the 2014 COOL OST Program. Findings introduce Deep Hanging as a theory of learning in practice. Deep Hanging entails authentic tasks in rich contexts, providing access, capitalizing on opportunity, and building interpersonal relationships. Taken together, these three chapters illuminate the process of designing a rich OST learning environment and the kinds of learning in practice that occurred for adult learners learning to be mentors through their participation in the COOL OST program. In

  8. Adipogenic potential in human mesenchymal stem cells strictly depends on adult or foetal tissue harvest.

    PubMed

    Ragni, Enrico; Viganò, Mariele; Parazzi, Valentina; Montemurro, Tiziana; Montelatici, Elisa; Lavazza, Cristiana; Budelli, Silvia; Vecchini, Alba; Rebulla, Paolo; Giordano, Rosaria; Lazzari, Lorenza

    2013-11-01

    Cell-based therapies promise important developments for regenerative medicine purposes. Adipose tissue and the adipogenic process has become central to an increasing number of translational efforts in addition to plastic and reconstructive surgical applications. In recent experimental clinical trials, human mesenchymal stem cells (MSC) have been proven to be well tolerated because of their low immunoreactivity. MSC are multipotent cells found among mature cells in different tissues and organs with the potentiality to differentiate in many cell types, including osteocytes, chondrocytes and adipocytes, thus being a suitable cell source for tissue engineering strategies. We compared the adipogenic potential of MSC originated from two adult sources as fat pads and bone marrow, and from four foetal sources as umbilical cord blood, Wharton's jelly, amniotic fluid and preterm umbilical cord perivascular cells. Surprisingly, adult MSC displayed higher differentiation capacities confirmed by gene expression analysis on a selected panel of adipogenesis-related genes. Further, an in-depth molecular analysis highlighted the early and vigorous activation of the PPARγ transcription factor-cascade in adipose-derived MSC that resulted to be both delayed and reduced in foetal MSC accounting for their lack of adipogenic potential. Thus, MSC show a different degree of phenotypic plasticity depending on the source tissue, that should be taken into consideration for the selection of the most appropriate MSC type for specific tissue regeneration purposes. PMID:23942228

  9. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas

    PubMed Central

    Aboody, Karen S.; Brown, Alice; Rainov, Nikolai G.; Bower, Kate A.; Liu, Shaoxiong; Yang, Wendy; Small, Juan E.; Herrlinger, Ulrich; Ourednik, Vaclav; Black, Peter McL.; Breakefield, Xandra O.; Snyder, Evan Y.

    2000-01-01

    One of the impediments to the treatment of brain tumors (e.g., gliomas) has been the degree to which they expand, infiltrate surrounding tissue, and migrate widely into normal brain, usually rendering them “elusive” to effective resection, irradiation, chemotherapy, or gene therapy. We demonstrate that neural stem cells (NSCs), when implanted into experimental intracranial gliomas in vivo in adult rodents, distribute themselves quickly and extensively throughout the tumor bed and migrate uniquely in juxtaposition to widely expanding and aggressively advancing tumor cells, while continuing to stably express a foreign gene. The NSCs “surround” the invading tumor border while “chasing down” infiltrating tumor cells. When implanted intracranially at distant sites from the tumor (e.g., into normal tissue, into the contralateral hemisphere, or into the cerebral ventricles), the donor cells migrate through normal tissue targeting the tumor cells (including human glioblastomas). When implanted outside the CNS intravascularly, NSCs will target an intracranial tumor. NSCs can deliver a therapeutically relevant molecule—cytosine deaminase—such that quantifiable reduction in tumor burden results. These data suggest the adjunctive use of inherently migratory NSCs as a delivery vehicle for targeting therapeutic genes and vectors to refractory, migratory, invasive brain tumors. More broadly, they suggest that NSC migration can be extensive, even in the adult brain and along nonstereotypical routes, if pathology (as modeled here by tumor) is present. PMID:11070094

  10. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging

    PubMed Central

    Stein, Liana R; Imai, Shin-ichiro

    2014-01-01

    Neural stem/progenitor cell (NSPC) proliferation and self-renewal, as well as insult-induced differentiation, decrease markedly with age. The molecular mechanisms responsible for these declines remain unclear. Here, we show that levels of NAD+ and nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in mammalian NAD+ biosynthesis, decrease with age in the hippocampus. Ablation of Nampt in adult NSPCs reduced their pool and proliferation in vivo. The decrease in the NSPC pool during aging can be rescued by enhancing hippocampal NAD+ levels. Nampt is the main source of NSPC NAD+ levels and required for G1/S progression of the NSPC cell cycle. Nampt is also critical in oligodendrocytic lineage fate decisions through a mechanism mediated redundantly by Sirt1 and Sirt2. Ablation of Nampt in the adult NSPCs in vivo reduced NSPC-mediated oligodendrogenesis upon insult. These phenotypes recapitulate defects in NSPCs during aging, giving rise to the possibility that Nampt-mediated NAD+ biosynthesis is a mediator of age-associated functional declines in NSPCs. PMID:24811750

  11. A randomized trial of hypnosis for relief of pain and anxiety in adult cancer patients undergoing bone marrow procedures.

    PubMed

    Snow, Alison; Dorfman, David; Warbet, Rachel; Cammarata, Meredith; Eisenman, Stephanie; Zilberfein, Felice; Isola, Luis; Navada, Shyamala

    2012-01-01

    Pain and anxiety are closely associated with bone marrow aspirates and biopsies. To determine whether hypnosis administered concurrently with the procedure can ameliorate these morbidities, the authors randomly assigned 80 cancer patients undergoing bone marrow aspirates and biopsies to either hypnosis or standard of care. The hypnosis intervention reduced the anxiety associated with procedure, but the difference in pain scores between the two groups was not statistically significant. The authors conclude that brief hypnosis concurrently administered reduces patient anxiety during bone marrow aspirates and biopsies but may not adequately control pain. The authors explain this latter finding as indicating that the sensory component of a patient's pain experience may be of lesser importance than the affective component. The authors describe future studies to clarify their results and address the limitations of this study. PMID:22571244

  12. When stem cells grow old: phenotypes and mechanisms of stem cell aging.

    PubMed

    Schultz, Michael B; Sinclair, David A

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  13. Reserve stem cells: Reprogramming of differentiated cells fuels repair, metaplasia, and neoplasia in the adult gastrointestinal tract

    PubMed Central

    Mills, Jason C.; Sansom, Owen J.

    2016-01-01

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, post-mitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the longterm maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like stomach and intestine, reprogramming may allow mature cells to serve as reserve (“quiescent”) stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, post-mitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferations in stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. PMID:26175494

  14. Why Adult Stem Cell Functionality Declines with Age? Studies from the Fruit Fly Drosophila Melanogaster Model Organism

    PubMed Central

    Gonen, Oren; Toledano, Hila

    2014-01-01

    Highly regenerative adult tissues are supported by rare populations of stem cells that continuously divide to self-renew and generate differentiated progeny. This process is tightly regulated by signals emanating from surrounding cells to fulfill the dynamic demands of the tissue. One of the hallmarks of aging is slow and aberrant tissue regeneration due to deteriorated function of stem and supporting cells. Several Drosophila regenerative tissues are unique in that they provide exact identification of stem and neighboring cells in whole-tissue anatomy. This allows for precise tracking of age-related changes as well as their targeted manipulation within the tissue. In this review we present the stem cell niche of Drosophila testis, ovary and intestine and describe the major changes and phenotypes that occur in the course of aging. Specifically we discuss changes in both intrinsic properties of stem cells and their microenvironment that contribute to the decline in tissue functionality. Understanding these mechanisms in adult Drosophila tissues will likely provide new paradigms in the field of aging. PMID:24955030

  15. Folic acid in combination with adult neural stem cells for the treatment of spinal cord injury in rats

    PubMed Central

    Zhang, Chen; Shen, Lin

    2015-01-01

    Purpose: To observe the therapeutic effect of folic acid in combination with adult neural stem cells on spinal cord injury and to investigate the possible mechanism. Methods: A total of 120 Wistar rats were randomly assigned to six groups: normal, model, sham-surgery, folic acid injection, adult neural stem cell transplantation, and combination (folic acid injection + adult neural stem cells transplantation) groups. Morphology of neural stem cells was observed by inverted microscopy. Expression of CD105, CD45, CD44, and CD29 were detected by flow cytometry; expression of neuron-specific enolase and glial fibrillary acidic protein were determined by immunofluorescence. Motor coordination and integration capabilities were assessed using BBB scores; Morphology of spinal cord tissues was observed by hematoxylin-eosin staining and 5-bromodeoxyuridine immunohistochemistry. GDNF, BDNF and NT-3 expression in spinal cord tissues were determined by ELISA; while expression of the apoptosis-related proteins BCL-2, Bax and caspase-3 was detected using western blotting. Results: Flow cytometry showed that the isolated cells were positive for CD44 and CD29 and negative for CD105 and CD45. Combination treatment significantly improved the behavior of model rats with spinal cord injury, attenuated inflammatory reaction of spinal cord tissues, restored injured nerve cells, and increased expression of GDNF, BDNF and NT-3 in spinal cord tissues, up regulated BCL-2 expression, and down regulated Bax and caspase-3 expression. Conclusions: Folic acid in combination with adult neural stem cells significantly improved nerve function and plays a key role in maintaining microenvironment homeostasis in the neurons of rats with spinal cord injury. PMID:26379837

  16. Isolation and Assessment of Single Long-Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow.

    PubMed

    Kent, David G; Dykstra, Brad J; Eaves, Connie J

    2016-01-01

    Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision. © 2016 by John Wiley & Sons, Inc. PMID:27532815

  17. The Stimulation Effect of Auricular Magnetic Press Pellets on Older Female Adults with Sleep Disturbance Undergoing Polysomnographic Evaluation

    PubMed Central

    Lo, Chyi; Liao, Wen-Chun; Liaw, Jen-Jiuan; Hang, Liang-Wen; Lin, Jaung-Geng

    2013-01-01

    Study Objectives. To examine the stimulation effect of auricular magnetic press pellet therapy on older female adults with sleep disturbance as determined by polysomnography (PSG). Design. Randomized, single-blind, experimental-controlled, parallel-group. Setting. Community. Participants. Twenty-seven older female adults with sleep disturbance according to the Pittsburgh Sleep Quality Index (PSQI) >5 for at least 3 months were recruited. Participants were screened by both the Hospital Anxiety and Depression Scale (HADS) and the Mini-Mental State Examination (MMSE), as well as polysomnography prior to randomization. Interventions. All eligible participants were randomly allocated into the experimental or control group. Both groups were taped with magnetic press pellet on auricular points for 3 weeks. The experimental group was treated by applying pressure on the magnetic press pellets 3 times per day while no stimulation was applied on the control group. Measurements and Results. Both groups were measured by PSG and PSQI at the beginning of the study and 3 weeks after the study. Both groups showed improvements on PSQI scores compared to the baseline. One-way analysis of covariance adjusted for baseline scores showed that significant improvements of PSG-derived sleep parameters, such as sleep efficiency, were found in the experimental group. However, no significant differences between groups were observed in the proportion of sleep stages with the exception of Stage 2. Conclusions. Auricular therapy using magnetic pellets and stimulation by pressing was more effective in improving the sleep quality compared to auricular therapy without any stimulation. PMID:23573133

  18. A Stem Cell-Like Chromatin Pattern May Predispose Tumor Suppressor Genes to DNA Hypermethylation and Silencing in Adult Cancers

    PubMed Central

    Ohm, Joyce E.; McGarvey, Kelly M.; Yu, Xiaobing; Cheng, Linzhao; Schuebel, Kornel E.; Cope, Leslie; Mohammad, Helai P.; Chen, Wei; Daniel, Vincent C.; Yu, Wayne; Berman, David M.; Jenuwein, Thomas; Pruitt, Kevin; Sharkis, Saul J.; Watkins, D. Neil; Herman, James G.; Baylin, Stephen B.

    2009-01-01

    Adult cancers may derive from stem or early progenitor cells1,2. Epigenetic modulation of gene expression is essential for normal function of these early cells, but is highly abnormal in cancers, which often exhibit aberrant promoter CpG island hypermethylation and transcriptional silencing of tumor suppressor genes and pro-differentiation factors3-5. We find that, for such genes, both normal and malignant embryonic cells generally lack the gene DNA hypermethylation found in adult cancers. In embryonic stem (ES) cells, these genes are held in a “transcription ready” state mediated by a “bivalent” promoter chromatin pattern consisting of the repressive polycomb group (PcG) H3K27me mark plus the active mark, H3K4me. However, embryonic carcinoma (EC) cells add two key repressive marks, H3K9me2 and H3K9me3, both associated with DNA hypermethylated genes in adult cancers6-8. We hypothesize that cell chromatin patterns and transient silencing of these important growth regulatory genes in stem or progenitor cells of origin for cancer may leave these genes vulnerable to aberrant DNA hypermethylation and heritable gene silencing in adult tumors. PMID:17211412

  19. Prox1 Is Required for Oligodendrocyte Cell Identity in Adult Neural Stem Cells of the Subventricular Zone.

    PubMed

    Bunk, Eva C; Ertaylan, Gökhan; Ortega, Felipe; Pavlou, Maria A; Gonzalez Cano, Laura; Stergiopoulos, Athanasios; Safaiyan, Shima; Völs, Sandra; van Cann, Marianne; Politis, Panagiotis K; Simons, Mikael; Berninger, Benedikt; Del Sol, Antonio; Schwamborn, Jens C

    2016-08-01

    Adult neural stem cells with the ability to generate neurons and glia cells are active throughout life in both the dentate gyrus (DG) and the subventricular zone (SVZ). Differentiation of adult neural stem cells is induced by cell fate determinants like the transcription factor Prox1. Evidence has been provided for a function of Prox1 as an inducer of neuronal differentiation within the DG. We now show that within the SVZ Prox1 induces differentiation into oligodendrocytes. Moreover, we find that loss of Prox1 expression in vivo reduces cell migration into the corpus callosum, where the few Prox1 deficient SVZ-derived remaining cells fail to differentiate into oligodendrocytes. Thus, our work uncovers a novel function of Prox1 as a fate determinant for oligodendrocytes in the adult mammalian brain. These data indicate that the neurogenic and oligodendrogliogenic lineages in the two adult neurogenic niches exhibit a distinct requirement for Prox1, being important for neurogenesis in the DG but being indispensable for oligodendrogliogenesis in the SVZ. Stem Cells 2016;34:2115-2129. PMID:27068685

  20. Validity of the size-specific dose estimate in adults undergoing coronary CT angiography: comparison with the volume CT dose index.

    PubMed

    Kidoh, Masafumi; Utsunomiya, Daisuke; Oda, Seitaro; Funama, Yoshinori; Yuki, Hideaki; Nakaura, Takeshi; Kai, Noriyuki; Nozaki, Takeshi; Yamashita, Yasuyuki

    2015-12-01

    Size-specific dose estimate (SSDE) takes into account the patient size but remains to be fully validated for adult coronary computed tomography angiography (CCTA). We investigated the appropriateness of SSDE for accurate estimation of patient dose by comparing the SSDE and the volume CT dose index (CTDIvol) in adult CCTA. This prospective study received institutional review board approval, and informed consent was obtained from each patient. We enrolled 37 adults who underwent CCTA with a 320-row CT. High-sensitivity metal oxide semiconductor field effect transistor dosimeters were placed on the anterior chest. CTDIvol reported by the scanner based on a 32-cm phantom was recorded. We measured chest diameter to convert CTDIvol to SSDE. Using linear regression, we then correlated SSDE with the mean measured skin dose. We also performed linear regression analyses between the skin dose/CTDIvol and the body mass index (BMI), and the skin dose/SSDE and BMI. There was a strong linear correlation (r = 0.93, P < 0.001) between SSDE (mean 37 ± 22 mGy) and mean skin dose (mean 17.7 ± 10 mGy). There was a moderate negative correlation between the skin dose/CTDIvol and BMI (r = 0.45, P < 0.01). The skin dose/SSDE was not affected by BMI (r = 0.06, P > 0.76). SSDE yields a more accurate estimation of the radiation dose without estimation errors attributable to the body size of adult patients undergoing CCTA. PMID:26440660

  1. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept.

    PubMed

    Boecker, Werner; Buerger, Horst

    2003-10-01

    Although experimental data clearly confirm the existence of self-renewing mammary stem cells, the characteristics of such progenitor cells have never been satisfactorily defined. Using a double immunofluorescence technique for simultaneous detection of the basal cytokeratin 5, the glandular cytokeratins 8/18 and the myoepithelial differentiation marker smooth muscle actin (SMA), we were able to demonstrate the presence of CK5+ cells in human adult breast epithelium. These cells have the potential to differentiate to either glandular (CK8/18+) or myoepithelial cells (SMA+) through intermediary cells (CK5+ and CK8/18+ or SMA+). We therefore proceeded on the assumption that the CK5+ cells are phenotypically and behaviourally progenitor (committed adult stem) cells of human breast epithelium. Furthermore, we furnish evidence that most of these progenitor cells are located in the luminal epithelium of the ductal lobular tree. Based on data obtained in extensive analyses of proliferative breast disease lesions, we have come to regard usual ductal hyperplasia as a progenitor cell-derived lesion, whereas most breast cancers seem to evolve from differentiated glandular cells. Double immunofluorescence experiments provide a new tool to characterize phenotypically progenitor (adult stem) cells and their progenies. This model has been shown to be of great value for a better understanding not only of normal tissue regeneration but also of proliferative breast disease. Furthermore, this model provides a new tool for unravelling further the regulatory mechanisms that govern normal and pathological cell growth. PMID:14521517

  2. In vivo imaging of endogenous neural stem cells in the adult brain

    PubMed Central

    Rueger, Maria Adele; Schroeter, Michael

    2015-01-01

    The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3’-deoxy-3’-[18F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting. PMID:25621107

  3. In vivo imaging of endogenous neural stem cells in the adult brain.

    PubMed

    Rueger, Maria Adele; Schroeter, Michael

    2015-01-26

    The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3'-deoxy-3'-[(18)F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting. PMID:25621107

  4. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments.

    PubMed

    Batorsky, Anna; Liao, Jiehong; Lund, Amanda W; Plopper, George E; Stegemann, Jan P

    2005-11-20

    Reliable control over the process of cell differentiation is a major challenge in moving stem cell-based therapies forward. The composition of the extracellular matrix (ECM) is known to play an important role in modulating differentiation. We have developed a system to encapsulate adult human mesenchymal stem cells (hMSC) within spherical three-dimensional (3D) microenvironments consisting of a defined mixture of collagen Type I and agarose polymers. These protein-based beads were produced by emulsification of liquid hMSC-matrix suspensions in a silicone fluid phase and subsequent gelation to form hydrogel beads, which were collected by centrifugation and placed in culture. Bead size and size distribution could be varied by changing the encapsulation parameters (impeller speed and blade separation), and beads in the range of 30-150 microns in diameter were reliably produced. Collagen concentrations up to 40% (wt/wt) could be incorporated into the bead matrix. Visible light and fluorescence microscopy confirmed that the collagen matrix was uniformly distributed throughout the beads. Cell viability post-encapsulation was in the range of 75-90% for all bead formulations (similar to control slab gels) and remained at this level for 8 days in culture. Fluorescent staining of the actin cytoskeleton revealed that hMSC spreading increased with increasing collagen concentration. This system of producing 3D microenvironments of defined matrix composition therefore offers a way to control cell-matrix interactions and thereby guide hMSC differentiation. The bead format allows the use of small amounts of matrix proteins, and such beads can potentially be used as a cell delivery vehicle in tissue repair applications. PMID:16080186

  5. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.

    PubMed

    Grün, Dominic; Muraro, Mauro J; Boisset, Jean-Charles; Wiebrands, Kay; Lyubimova, Anna; Dharmadhikari, Gitanjali; van den Born, Maaike; van Es, Johan; Jansen, Erik; Clevers, Hans; de Koning, Eelco J P; van Oudenaarden, Alexander

    2016-08-01

    Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation. PMID:27345837

  6. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation.

    PubMed

    Ahrenhoerster, Lori S; Tate, Everett R; Lakatos, Peter A; Wang, Xuexia; Laiosa, Michael D

    2014-06-01

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life. PMID:24709672

  7. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation

    SciTech Connect

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A.; Wang, Xuexia; Laiosa, Michael D.

    2014-06-01

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.

  8. Developmental Exposure to 2,3,7,8 Tetrachlorodibenzo-p-dioxin Attenuates Capacity of Hematopoietic Stem Cells to Undergo Lymphocyte Differentiation

    PubMed Central

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A.; Wang, Xuexia; Laiosa, Michael D.

    2014-01-01

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life. PMID:24709672

  9. Unrelated donors are associated with improved relapse-free survival compared to related donors in patients with myelodysplastic syndrome undergoing reduced intensity allogeneic stem cell transplantation.

    PubMed

    Yam, Clinton; Crisalli, Lisa; Luger, Selina M; Loren, Alison W; Hexner, Elizabeth O; Frey, Noelle V; Mangan, James K; Gao, Amy; Stadtmauer, Edward A; Porter, David L; Reshef, Ran

    2016-09-01

    Reduced intensity allogeneic stem cell transplantation (RI alloSCT) is a potentially curative treatment approach for patients with myelodysplastic syndrome (MDS). It is currently unclear if older related donors are better than younger unrelated donors for patients with MDS undergoing RI alloSCT. We retrospectively studied 53 consecutive MDS patients who underwent RI alloSCT between April 2007 and June 2014 and evaluated associations between donor type and outcomes with adjustment for significant covariates. 34 patients (median age: 64 years) and 19 patients (median age: 60 years) received allografts from unrelated and related donors, respectively. Unrelated donors were younger than related donors (median age: 32 vs. 60 years, P < 0.0001). There were no significant differences in baseline disease characteristics of patients receiving allografts from related or unrelated donors. Patients who received allografts from unrelated donors had a lower relapse risk (adjusted hazard ratio [aHR] = 0.35, P = 0.012) and improved relapse-free survival (aHR = 0.47, P = 0.018). HLA mismatched unrelated donors were associated with a higher risk of grade 2-4 acute graft versus host disease (GVHD) (HR = 4.64, P = 0.002) without an accompanying increase in the risk of non-relapse mortality (P = 0.56). Unrelated donors provided a higher mean CD8 cell dose (P = 0.014) and were associated with higher median donor T cell chimerism at day 60 (P = 0.003) and day 100 (P = 0.03). In conclusion, patients with MDS who received allografts from unrelated donors had a lower risk of relapse and improved relapse-free survival when compared to patients who received allografts from related donors. These findings should be confirmed in a prospective study. Am. J. Hematol. 91:883-887, 2016. © 2016 Wiley Periodicals, Inc. PMID:27197602

  10. Daily Weight-Based Busulfan with Cyclophosphamide and Etoposide Produces Comparable Outcomes to Four-Times-Daily Busulfan Dosing for Lymphoma Patients Undergoing Autologous Stem Cell Transplantation.

    PubMed

    Hill, Brian T; Rybicki, Lisa; Carlstrom, Kelley D; Jagadeesh, Deepa; Gerds, Aaron; Hamilton, Betty; Liu, Hien; Dean, Robert; Sobecks, Ronald; Pohlman, Brad; Andresen, Steven; Kalaycio, Matt; Bolwell, Brian J; Majhail, Navneet S

    2016-09-01

    High-dose busulfan (Bu) is an integral component of commonly used preparative regimens for both allogeneic and autologous transplantation. There is significant interest in comparing the efficacy and toxicity of administering Bu every 6 (Bu6) or every 24 hours (daily Bu). To facilitate a therapeutic dose-monitoring protocol, we transitioned from Bu6 to daily Bu dosing for patients with Hodgkin and non-Hodgkin lymphoma undergoing autologous stem cell transplantation (ASCT). Here, we retrospectively review outcomes of 400 consecutive eligible lymphoma patients who underwent ASCT from 2007 to 2013 with high-dose busulfan (Bu), cyclophosphamide (Cy), and etoposide (E). Bu was given at a fixed dose of either .8 mg/kg every 6 hours for 14 doses for 307 patients or a fixed dose of 2.8 mg/kg every 24 hours for 4 doses (days -9 through -6) for 93 patients who underwent transplantation after the transition from Bu6 to daily Bu was made. Toxicity was assessed using pulmonary and liver function tests (LFT) at specified time points before and after ASCT. Baseline patient and disease characteristics of patients dosed with Bu6 and daily Bu were similar. There was no significant difference in forced expiratory volume in 1 second or diffusing capacity of the lungs for carbon monoxide before and after transplantation in the Bu6 versus daily Bu cohorts. Changes in LFTs with daily Bu were not significantly different than those with Bu6. There were no differences in relapse, nonrelapse mortality, progression-free survival, or overall survival between Bu6 and Bu 24 administration schedules in univariable or multivariable analysis (P ≥ .34). For a subset of 23 patients who had first-dose Bu levels measured, we observed significant variation in an median estimated cumulative area under the curve (AUC) of 17,568 µM-minute (range, 12,104 µM-23,084 µM-minute). In conclusion, daily Bu with Cy/E is more convenient than Bu6, has equivalent outcomes, and results in no increase

  11. Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells

    PubMed Central

    Yang, Xueyi; Moldovan, Nicanor I.; Zhao, Qingmei; Mi, Shengli; Zhou, Zhenhui; Chen, Dan; Gao, Zhimin; Tong, Dewen

    2008-01-01

    Purpose It is crucial for the treatment of severe ocular surface diseases such as Stevens-Johnson syndrome (SJS) and ocular cicatricial pemphigoid (OCP) to find strategies that avoid the risks of allograft rejection and immunosuppression. Here, we report a new strategy for reconstructing the damaged corneal surface in a goat model of total limbal stem cell deficiency (LSCD) by autologous transplantation of epidermal adult stem cells (EpiASC). Methods EpiASC derived from adult goat ear skin by explant culture were purified by selecting single cell-derived clones. These EpiASC were cultivated on denuded human amniotic membrane (HAM) and transplanted onto goat eyes with total LSCD. The characteristics of both EpiASC and reconstructed corneal epithelium were identified by histology and immunohistochemistry. The clinical characteristic of reconstructed corneal surface was observed by digital camera. Results Ten LSCD goats (10 eyes) were treated with EpiASC transplantation, leading to the restoration of corneal transparency and improvement of postoperative visual acuity to varying degrees in 80.00% (8/10) of the experimental eyes. The corneal epithelium of control groups either with HAM transplantation only or without any transplantation showed irregular surfaces, diffuse vascularization, and pannus on the entire cornea. The reconstructed corneal epithelium (RCE) expressed CK3, CK12, and PAX-6 and had the function of secreting glycocalyx-like material (AB-PAS positive). During the follow-up period, all corneal surfaces remained transparent and there were no serious complications. We also observed that the REC expressed CK1/10 weakly at six months after operation but not at 12 months after operation, suggesting that the REC was derived from grafted EpiASC. Conclusions Our results showed that EpiASC repaired the damaged cornea of goats with total LSCD and demonstrated that EpiASC can be induced to differentiate into corneal epithelial cell types in vivo, which at least in

  12. STEM?!?!

    ERIC Educational Resources Information Center

    Merrill, Jen

    2012-01-01

    The author's son has been an engineer since birth. He never asked "why" as a toddler, it was always "how's it work?" So that he wanted a STEM-based home education was no big surprise. In this article, the author considers what kind of curricula would work best for her complex kid.

  13. Exploring motivations to seek and undergo prosthodontic care: a cross-sectional study in a Brazilian adult sample

    PubMed Central

    Vieira, Antonio Hélio; e Silva, Donizete Castro; Nogueira, Túlio Eduardo; Leles, Cláudio Rodrigues

    2015-01-01

    This study explored the influence of individual and social factors regarding intentions and behaviors related to prosthodontic treatment, using the theory of planned behavior (TPB). A cross-sectional study was designed with a sample of 225 individuals with some degree of tooth loss. A questionnaire was used containing factors that would have potential influence on the intentions and behaviors of individuals, as well as clinical and sociodemographic data. Descriptive statistics, internal consistency analysis, chi-square test for trend, and logistic regression were used for data analysis. The TPB components – attitude toward the behavior (ATB), subjective norm (SN), and perceived behavioral control (PBC) – showed good internal consistency (alpha = 0.60–0.78). Intention and behavior were associated with TPB components and the overall scale. Similarly, positive intentions and behaviors were associated with age, upper tooth loss, anterior tooth loss, and higher social status. Multiple logistic regression showed that intention was associated with PBC (OR =1.57; P<0.016), while behavior was associated with tooth loss in both arches (OR =9.3; P<0.001), anterior tooth loss (OR =5.13; P<0.001), higher social status (OR =3.06; P<0.03), and PBC (OR =1.38; P=0.03). The presence of anterior tooth loss was the most relevant factor for prosthodontic treatment demand and utilization, while socioeconomic status and an individual’s perceived ease or difficulty in undergoing treatment played a significant, but secondary, role in behavior toward prosthodontic care. PMID:26124647

  14. The frequency of multipotent CD133(+)CD45RA(-)CD34(+) hematopoietic stem cells is not increased in fetal liver compared with adult stem cell sources.

    PubMed

    Radtke, Stefan; Haworth, Kevin G; Kiem, Hans-Peter

    2016-06-01

    The cell surface marker CD133 has been used to describe a revised model of adult human hematopoiesis, with hematopoietic stem cells and multipotent progenitors (HSCs/MPPs: CD133(+)CD45RA(-)CD34(+)) giving rise to lymphomyeloid-primed progenitors (LMPPs: CD133(+)CD45RA(+)CD34(+)) and erythromyeloid progenitors (EMPs: CD133(low)CD45RA(-)CD34(+)). Because adult and fetal hematopoietic stem and progenitor cells (HSPCs) differ in their gene expression profile, differentiation capabilities, and cell surface marker expression, we were interested in whether the reported segregation of lineage potentials in adult human hematopoiesis would also apply to human fetal liver. CD133 expression was easily detected in human fetal liver cells, and the defined hematopoietic subpopulations were similar to those found for adult HSPCs. Fetal HSPCs were enriched for EMPs and HSCs/MPPs, which were primed toward erythromyeloid differentiation. However, the frequency of multipotent CD133(+)CD45RA(-)CD34(+) HSPCs was much lower than previously reported and comparable to that of umbilical cord blood. We noted that engraftment in NSG (NOD scid gamma [NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ]) mice was driven mostly by LMPPs, confirming recent findings that repopulation in mice is not a unique feature of multipotent HSCs/MPPs. Thus, our data challenge the general assumption that human fetal liver contains a greater percentage of multipotent HSCs/MPPs than any adult HSC source, and the mouse model may have to be re-evaluated with respect to the type of readout it provides. PMID:27016273

  15. Challenging complications of treatment – human herpes virus 6 encephalitis and pneumonitis in a patient undergoing autologous stem cell transplantation for relapsed Hodgkin's disease: a case report

    PubMed Central

    Bommer, Martin; Pauls, Sandra; Greiner, Jochen

    2009-01-01

    Background Reactivation of human herpesvirus 6 (HHV-6) occurs frequently in patients after allogeneic stem cell transplantation and is associated with bone-marrow suppression, enteritis, pneumonitis, pericarditis and also encephalitis. After autologous stem cell transplantation or intensive polychemotherapy HHV-6 reactivation is rarely reported. Case report This case demonstrates a severe symptomatic HHV-6 infection with encephalitis and pneumonitis after autologous stem cell transplantation of a patient with relapsed Hodgkin's disease. Conclusion Careful diagnostic work up in patients with severe complications after autologous stem cell transplantation is mandatory to identify uncommon infections. PMID:19619326

  16. Therapeutic Autologous Lymphocytes and Aldesleukin in Treating Patients With High-Risk or Recurrent Myeloid Leukemia After Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2011-07-12

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia

  17. Derivation of Neural Stem Cells from Human Adult Peripheral CD34+ Cells for an Autologous Model of Neuroinflammation

    PubMed Central

    Wang, Tongguang; Choi, Elliot; Monaco, Maria Chiara G.; Campanac, Emilie; Medynets, Marie; Do, Thao; Rao, Prashant; Johnson, Kory R.; Elkahloun, Abdel G.; Von Geldern, Gloria; Johnson, Tory; Subramaniam, Sriram; Hoffman, Dax; Major, Eugene; Nath, Avindra

    2013-01-01

    Proinflammatory factors from activated T cells inhibit neurogenesis in adult animal brain and cultured human fetal neural stem cells (NSC). However, the role of inhibition of neurogenesis in human neuroinflammatory diseases is still uncertain because of the difficulty in obtaining adult NSC from patients. Recent developments in cell reprogramming suggest that NSC may be derived directly from adult fibroblasts. We generated NSC from adult human peripheral CD34+ cells by transfecting the cells with Sendai virus constructs containing Sox2, Oct3/4, c-Myc and Klf4. The derived NSC could be differentiated to glial cells and action potential firing neurons. Co-culturing NSC with activated autologous T cells or treatment with recombinant granzyme B caused inhibition of neurogenesis as indicated by decreased NSC proliferation and neuronal differentiation. Thus, we have established a unique autologous in vitro model to study the pathophysiology of neuroinflammatory diseases that has potential for usage in personalized medicine. PMID:24303066

  18. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion.

    PubMed

    Miller, Michelle Erin; Rosten, Patty; Lemieux, Madeleine E; Lai, Courteney; Humphries, R Keith

    2016-01-01

    Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1's importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1's functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sor(tm1(Cre/ERT)Nat)/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1's role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation. PMID:26986211

  19. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion

    PubMed Central

    Miller, Michelle Erin; Rosten, Patty; Lemieux, Madeleine E.; Lai, Courteney; Humphries, R. Keith

    2016-01-01

    Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1’s importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1’s functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sortm1(Cre/ERT)Nat/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1’s role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation. PMID:26986211

  20. The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult.

    PubMed

    Nadal-Ginard, Bernardo; Ellison, Georgina M; Torella, Daniele

    2014-11-01

    Resident cardiac stem cells in embryonic, neonatal and adult mammalian heart have been identified by different membrane markers and transcription factors. However, despite a flurry of publications no consensus has been reached on the identity and actual regenerative effects of the adult cardiac stem cells. Intensive research on the adult mammalian heart's capacity for self-renewal of its muscle cell mass has led to a consensus that new cardiomyocytes (CMs) are indeed formed throughout adult mammalian life albeit at a disputed frequency. The physiological significance of this renewal, the origin of the new CMs, and the rate of adult CM turnover are still highly debated. Myocyte replacement, particularly after injury, was originally attributed to differentiation of a stem cell compartment. More recently, it has been reported that CMs are mainly replaced by the division of pre-existing post-mitotic CMs. These latter results, if confirmed, would shift the target of regenerative therapy toward boosting mature CM cell-cycle re-entry. Despite this controversy, it is documented that the adult endogenous c-kit(pos) cardiac stem cells (c-kit(pos) eCSCs) participate in adaptations to myocardial stress, and, when transplanted into the myocardium, regenerate most cardiomyocytes and microvasculature lost in an infarct. Nevertheless, the in situ myogenic potential of adult c-kit(pos) cardiac cells has been questioned. To revisit the regenerative potential of c-kit(pos) eCSCs, we have recently employed experimental protocols of severe diffuse myocardial damage in combination with several genetic murine models and cell transplantation approaches showing that eCSCs are necessary and sufficient for CM regeneration, leading to complete cellular, anatomical, and functional myocardial recovery. Here we will review the available data on adult eCSC biology and their regenerative potential placing it in the context of the different claimed mechanisms of CM replacement. These data are in

  1. Tacrolimus and Mycophenolate Mofetil With or Without Sirolimus in Preventing Acute Graft-Versus-Host Disease in Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2015-10-14

    Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Refractory Chronic Lymphocytic Leukemia; Refractory Plasma Cell Myeloma; Waldenstrom Macroglobulinemia; Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Lymphoma; Childhood Myelodysplastic Syndrome; Stage II Contiguous Adult Burkitt Lymphoma; Stage II Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Contiguous Immunoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Contiguous Follicular Lymphoma; Stage II Grade 2 Contiguous Follicular Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Contiguous Mantle Cell Lymphoma; Stage II Non-Contiguous Adult Burkitt Lymphoma; Stage II Non-Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Non-Contiguous Immunoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Non-Contiguous Follicular Lymphoma; Stage II Grade 2 Non-Contiguous Follicular Lymphoma; Stage

  2. Decision-making in adult thalassemia patients undergoing unrelated bone marrow transplantation: quality of life, communication and ethical issues.

    PubMed

    Caocci, G; Pisu, S; Argiolu, F; Giardini, C; Locatelli, F; Vacca, A; Orofino, M G; Piras, E; De Stefano, P; Addari, M C; Ledda, A; La Nasa, G

    2006-01-01

    Bone marrow transplantation (BMT) represents a potentially curative treatment of thalassemia. For patients without an HLA-identical sibling donor, recourse to an unrelated donor is a practicable option but the candidates and their families are faced with a difficult decision. They can either choose to continue the supportive therapy, with no chance of definitive cure, or they accept the mortality risk of BMT in the hope of obtaining a definitive resolution of the disease. We investigated the communication strategies and the post transplantation quality of life (QoL) in 19 adult thalassemia patients surviving after an unrelated donor BMT. The patients were given two questionnaires: a questionnaire to evaluate pre-transplantation communication factors and the EORTC QLQ-C30 questionnaire to assess global QoL. All patients were satisfied with the communication modalities employed by the physicians. The global post transplantation QoL in our patient cohort was found to be good. The approach used in this study may offer a contribution to understanding the decision-making process leading to the choice of a treatment with a high mortality risk for a chronic, non-malignant disease. Finally, some ethical issues of this therapeutic approach are briefly addressed. PMID:16299541

  3. Adherence to prescribed oral medication in adult patients undergoing chronic hemodialysis: A critical review of the literature

    PubMed Central

    2009-01-01

    Objective Poor adherence to complex multimodal therapies is a widely recognized problem in the daily care of dialysis patients, contributing to excess morbidity and mortality of this population. While a few studies have been devoted to understanding patient nonadherence, their results were somewhat controversial. The goals of this review are to quantify nonadherence to certain oral medications, to raise awareness of factors that may cause problems in a patient's adherence to this treatment, and to describe strategies that may be used to improve adherence to prescribed pharmacotherapy. Methods A systematic literature review in the MEDLINE and PubMed database (1971-2008) was performed. Quantitative studies, which accurately indicated the total percentages of nonadherence to oral medication in adult patients receiving chronic hemodialysis, were identified. Results A total of 19 studies fulfilled the search criteria. Rates of nonadherence to the oral medication ranged from 3 - 80%. More than half of the included studies reported nonadherence rates of ≥ 50% (mean 67%). The use of phosphate binding therapy was the prevalent surveyed oral medication. Self reports, structured interviews, and predialysis serum phosphate levels were the most frequent assessment tools used to record adherence rates. Limitations of the reviewed studies included small patient cohorts, inconsistent definitions of adherence, and a lack of standardized methods for measuring nonadherence. Conclusions Nonadherence to oral medication in hemodialysis patients is still an underestimated, but life-threatening behaviour. PMID:19541573

  4. Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells.

    PubMed

    Koludrovic, Dana; Laurette, Patrick; Strub, Thomas; Keime, Céline; Le Coz, Madeleine; Coassolo, Sebastien; Mengus, Gabrielle; Larue, Lionel; Davidson, Irwin

    2015-10-01

    MIcrophthalmia-associated Transcription Factor (MITF) regulates melanocyte and melanoma physiology. We show that MITF associates the NURF chromatin-remodelling factor in melanoma cells. ShRNA-mediated silencing of the NURF subunit BPTF revealed its essential role in several melanoma cell lines and in untransformed melanocytes in vitro. Comparative RNA-seq shows that MITF and BPTF co-regulate overlapping gene expression programs in cell lines in vitro. Somatic and specific inactivation of Bptf in developing murine melanoblasts in vivo shows that Bptf regulates their proliferation, migration and morphology. Once born, Bptf-mutant mice display premature greying where the second post-natal coat is white. This second coat is normally pigmented by differentiated melanocytes derived from the adult melanocyte stem cell (MSC) population that is stimulated to proliferate and differentiate at anagen. An MSC population is established and maintained throughout the life of the Bptf-mutant mice, but these MSCs are abnormal and at anagen, give rise to reduced numbers of transient amplifying cells (TACs) that do not express melanocyte markers and fail to differentiate into mature melanin producing melanocytes. MSCs display a transcriptionally repressed chromatin state and Bptf is essential for reactivation of the melanocyte gene expression program at anagen, the subsequent normal proliferation of TACs and their differentiation into mature melanocytes. PMID:26440048

  5. Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells

    PubMed Central

    Koludrovic, Dana; Laurette, Patrick; Strub, Thomas; Keime, Céline; Le Coz, Madeleine; Coassolo, Sebastien; Mengus, Gabrielle; Larue, Lionel; Davidson, Irwin

    2015-01-01

    MIcrophthalmia-associated Transcription Factor (MITF) regulates melanocyte and melanoma physiology. We show that MITF associates the NURF chromatin-remodelling factor in melanoma cells. ShRNA-mediated silencing of the NURF subunit BPTF revealed its essential role in several melanoma cell lines and in untransformed melanocytes in vitro. Comparative RNA-seq shows that MITF and BPTF co-regulate overlapping gene expression programs in cell lines in vitro. Somatic and specific inactivation of Bptf in developing murine melanoblasts in vivo shows that Bptf regulates their proliferation, migration and morphology. Once born, Bptf-mutant mice display premature greying where the second post-natal coat is white. This second coat is normally pigmented by differentiated melanocytes derived from the adult melanocyte stem cell (MSC) population that is stimulated to proliferate and differentiate at anagen. An MSC population is established and maintained throughout the life of the Bptf-mutant mice, but these MSCs are abnormal and at anagen, give rise to reduced numbers of transient amplifying cells (TACs) that do not express melanocyte markers and fail to differentiate into mature melanin producing melanocytes. MSCs display a transcriptionally repressed chromatin state and Bptf is essential for reactivation of the melanocyte gene expression program at anagen, the subsequent normal proliferation of TACs and their differentiation into mature melanocytes. PMID:26440048

  6. Ethical issues of unrelated hematopoietic stem cell transplantation in adult thalassemia patients

    PubMed Central

    2011-01-01

    Background Beta thalassemia major is a severe inherited form of hemolytic anemia that results from ineffective erythropoiesis. Allogenic hematopoietic stem cell transplantation (HSCT) remains the only potentially curative therapy. Unfortunately, the subgroup of adult thalassemia patients with hepatomegaly, portal fibrosis and a history of irregular iron chelation have an elevated risk for transplantation-related mortality that is currently estimated to be about 29 percent. Discussion Thalassemia patients may be faced with a difficult choice: they can either continue conventional transfusion and iron chelation therapy or accept the high mortality risk of HSCT in the hope of obtaining complete recovery. Throughout the decision making process, every effort should be made to sustain and enhance autonomous choice. The concept of conscious consent becomes particularly important. The patient must be made fully aware of the favourable and adverse outcomes of HSCT. Although it is the physician's duty to illustrate the possibility of completely restoring health, considerable emphasis should be put on the adverse effects of the procedure. The physician also needs to decide whether the patient is eligible for HSCT according to the "rule of descending order". The patient must be given full details on self-care and fundamental lifestyle changes and be fully aware that he/she will be partly responsible for the outcome. Summary Only if all the aforesaid conditions are satisfied can it be considered reasonable to propose unrelated HSCT as a potential cure for high risk thalassemia patients. PMID:21385429

  7. The Molecular Profiles of Neural Stem Cell Niche in the Adult Subventricular Zone

    PubMed Central

    Lee, Cheol; Hu, Jingqiong; Ralls, Sherry; Kitamura, Toshio; Loh, Y. Peng; Yang, Yanqin; Mukouyama, Yoh-suke; Ahn, Sohyun

    2012-01-01

    Neural stem cells (NSCs) reside in a unique microenvironment called the neurogenic niche and generate functional new neurons. The neurogenic niche contains several distinct types of cells and interacts with the NSCs in the subventricular zone (SVZ) of the lateral ventricle. While several molecules produced by the niche cells have been identified to regulate adult neurogenesis, a systematic profiling of autocrine/paracrine signaling molecules in the neurogenic regions involved in maintenance, self-renewal, proliferation, and differentiation of NSCs has not been done. We took advantage of the genetic inducible fate mapping system (GIFM) and transgenic mice to isolate the SVZ niche cells including NSCs, transit-amplifying progenitors (TAPs), astrocytes, ependymal cells, and vascular endothelial cells. From the isolated cells and microdissected choroid plexus, we obtained the secretory molecule expression profiling (SMEP) of each cell type using the Signal Sequence Trap method. We identified a total of 151 genes encoding secretory or membrane proteins. In addition, we obtained the potential SMEP of NSCs using cDNA microarray technology. Through the combination of multiple screening approaches, we identified a number of candidate genes with a potential relevance for regulating the NSC behaviors, which provide new insight into the nature of neurogenic niche signals. PMID:23209762

  8. Aberrant Neural Stem Cell Proliferation and Increased Adult Neurogenesis in Mice Lacking Chromatin Protein HMGB2

    PubMed Central

    Reddy, Avanish S.; Maletic-Savatic, Mirjana; Aguirre, Adan; Tsirka, Stella E.

    2013-01-01

    Neural stem and progenitor cells (NSCs/NPCs) are distinct groups of cells found in the mammalian central nervous system (CNS). Previously we determined that members of the High Mobility Group (HMG) B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2−/− mice exhibit SVZ hyperproliferation, increased numbers of SVZ NSCs, and a trend towards aberrant increases in newly born neurons in the olfactory bulb (OB) granule cell layer. Increases in the levels of the transcription factor p21 and the Neural cell adhesion molecule (NCAM), along with down-regulation of the transcription/pluripotency factor Oct4 in the Hmgb2−/− SVZ point to a possible pathway for this increased proliferation/differentiation. Our findings suggest that HMGB2 functions as a modulator of neurogenesis in young adult mice through regulation of NSC proliferation, and identify a potential target via which CNS repair could be amplified following trauma or disease-based neuronal degeneration. PMID:24391977

  9. Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence

    PubMed Central

    Rhodes, Lyndsay V.; Muir, Shannon E.; Elliott, Steven; Guillot, Lori M.; Antoon, James W.; Penfornis, Patrice; Tilghman, Syreeta L.; Salvo, Virgilio A.; Fonseca, Juan P.; Lacey, Michelle R.; Beckman, Barbara S.; McLachlan, John A.; Rowan, Brian G.; Pochampally, Radhika

    2016-01-01

    Adult human mesenchymal stem cells (hMSCs) have been shown to home to sites of breast cancer and integrate into the tumor stroma. We demonstrate here the effect of hMSCs on primary breast tumor growth and the progression of these tumors to hormone independence. Co-injection of bone marrow-derived hMSCs enhances primary tumor growth of the estrogen receptor-positive, hormone-dependent breast carcinoma cell line MCF-7 in the presence or absence of estrogen in SCID/beige mice. We also show hormone-independent growth of MCF-7 cells when co-injected with hMSCs. These effects were found in conjunction with increased immunohistochemical staining of the progesterone receptor in the MCF-7/hMSC tumors as compared to MCF-7 control tumors. This increase in PgR expression indicates a link between MCF-7 cells and MSCs through ER-mediated signaling. Taken together, our data reveal the relationship between tumor microenvironment and tumor growth and the progression to hormone independence. This tumor stroma-cell interaction may provide a novel target for the treatment of estrogen receptor-positive, hormone-independent, and endocrine-resistant breast carcinoma. PMID:19597705

  10. Heterogeneity of chromatoid bodies in adult pluripotent stem cells of planarian Dugesia japonica.

    PubMed

    Kashima, Makoto; Kumagai, Nobuyoshi; Agata, Kiyokazu; Shibata, Norito

    2016-02-01

    The robust regenerative ability of planarians is known to be dependent on adult pluripotent stem cells called neoblasts. One of the morphological features of neoblasts is cytoplasmic ribonucleoprotein granules (chromatoid bodies: CBs), which resemble germ granules present in germline cells in other animals. Previously, we showed by immuno-electron microscopic analysis that DjCBC-1, a planarian Me31B/Dhh1/DDX6 homologue, which is a component of ribonucleoprotein granules, was localized in CBs in the planarian Dugesia japonica. Also, recently it was reported using another planarian species that Y12 antibody recognizing symmetrical dimethylarginine (sDMA) specifically binds to CBs in which histone mRNA is co-localized. Here, we showed by double immunostaining and RNA interference (RNAi) that DjCBC-1-containing CBs and Y12-immunoreactive CBs are distinct structures, suggesting that CBs are composed of heterogeneous populations. We also found that the Y12-immunoreactive CBs specifically contained a cytoplasmic type of planarian PIWI protein (DjPiwiC). We revealed by RNAi experiments that Y12-immunoreactive CBs may have anti-transposable element activity involving the DjPiwiC protein in the neoblasts. PMID:26857694

  11. Potential Reparative Role of Resident Adult Renal Stem/Progenitor Cells in Acute Kidney Injury

    PubMed Central

    Sallustio, Fabio; Serino, Grazia; Schena, Francesco Paolo

    2015-01-01

    Abstract Human kidney is particularly susceptible to ischemia and toxins with consequential tubular necrosis and activation of inflammatory processes. This process can lead to the acute renal injury, and even if the kidney has a great capacity for regeneration after tubular damage, in several circumstances, the normal renal repair program may not be sufficient to achieve a successful regeneration. Resident adult renal stem/progenitor cells could participate in this repair process and have the potentiality to enhance the renal regenerative mechanism. This could be achieved both directly, by means of their capacity to differentiate and integrate into the renal tissues, and by means of paracrine factors able to induce or improve the renal repair or regeneration. Recent genetic fate-tracing studies indicated that tubular damage is instead repaired by proliferative duplication of epithelial cells, acquiring a transient progenitor phenotype and by fate-restricted clonal cell progeny emerging from different nephron segments. In this review, we discuss about the properties and the reparative characteristics of high regenerative CD133+/CD24+ cells, with a view to a future application of these cells for the treatment of acute renal injury. PMID:26309808

  12. The ADP-ribose polymerase Tankyrase regulates adult intestinal stem cell proliferation during homeostasis in Drosophila.

    PubMed

    Wang, Zhenghan; Tian, Ai; Benchabane, Hassina; Tacchelly-Benites, Ofelia; Yang, Eungi; Nojima, Hisashi; Ahmed, Yashi

    2016-05-15

    Wnt/β-catenin signaling controls intestinal stem cell (ISC) proliferation, and is aberrantly activated in colorectal cancer. Inhibitors of the ADP-ribose polymerase Tankyrase (Tnks) have become lead therapeutic candidates for Wnt-driven cancers, following the recent discovery that Tnks targets Axin, a negative regulator of Wnt signaling, for proteolysis. Initial reports indicated that Tnks is important for Wnt pathway activation in cultured human cell lines. However, the requirement for Tnks in physiological settings has been less clear, as subsequent studies in mice, fish and flies suggested that Tnks was either entirely dispensable for Wnt-dependent processes in vivo, or alternatively, had tissue-specific roles. Here, using null alleles, we demonstrate that the regulation of Axin by the highly conserved Drosophila Tnks homolog is essential for the control of ISC proliferation. Furthermore, in the adult intestine, where activity of the Wingless pathway is graded and peaks at each compartmental boundary, Tnks is dispensable for signaling in regions where pathway activity is high, but essential where pathway activity is relatively low. Finally, as observed previously for Wingless pathway components, Tnks activity in absorptive enterocytes controls the proliferation of neighboring ISCs non-autonomously by regulating JAK/STAT signaling. These findings reveal the requirement for Tnks in the control of ISC proliferation and suggest an essential role in the amplification of Wnt signaling, with relevance for development, homeostasis and cancer. PMID:27190037

  13. Palms do not undergo secondary stem lengthening: a response to Renninger and Phillips (American Journal of Botany 99: 607-613).

    PubMed

    Tomlinson, P Barry; Quinn, Christopher J

    2013-03-01

    Woody stems that have completed some maturation of metaxylem elements should not be capable of further axial extension ("secondary stem lengthening"). However, this mechanism has been claimed by Renninger and Phillips (American Journal of Botany 99: 607-613) to be a feature of the palm Iriartea deltoidea. In response, we describe structural features of palm stems based on extensive known features of their anatomy and development. In addition to the inability of metaxylem vessels to extend after they are mature, fully differentiated fibers of the vascular bundle sheath, which would exist at the time of proposed stem elongation would not be capable of belated extension. "Vessel spirals" claimed by these authors to be capable of stretching to accommodate secondary stem lengthening does not refer to well-established features of the course of vascular bundles. The approach adopted by Renninger and Phillips simply measures stems of different sizes as an implied developmental series. Consequently, results do not take into account changes in the development of the palm stem as it ages. The existence of secondary stem lengthening in the palm Iriartea deltoidea, something never before observed in any tree, cannot occur because it would indeed disrupt mature metaxylem vessels and would also require the secondary extension of mature lignified fibers. PMID:23455481

  14. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    SciTech Connect

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A.

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  15. Adult thymus contains FoxN1(-) epithelial stem cells that are bipotent for medullary and cortical thymic epithelial lineages.

    PubMed

    Ucar, Ahmet; Ucar, Olga; Klug, Paula; Matt, Sonja; Brunk, Fabian; Hofmann, Thomas G; Kyewski, Bruno

    2014-08-21

    Within the thymus, two major thymic epithelial cell (TEC) subsets-cortical and medullary TECs-provide unique structural and functional niches for T cell development and establishment of central tolerance. Both lineages are believed to originate from a common progenitor cell, yet the cellular and molecular identity of these bipotent TEC progenitors/stem cells remains ill defined. Here we identify rare stromal cells in the murine adult thymus, which under low-attachment conditions formed spheres (termed "thymospheres"). These thymosphere-forming cells (TSFCs) displayed the stemness features of being slow cycling, self-renewing, and bipotent. TSFCs could be significantly enriched based on their distinct surface antigen phenotype. The FoxN1 transcription factor was dispensable for TSFCs maintenance in situ and for commitment to the medullary and cortical TEC lineages. In summary, this study presents the characterization of the adult thymic epithelial stem cells and demonstrates the dispensability of FoxN1 function for their stemness. PMID:25148026

  16. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis

    PubMed Central

    Wagner, Daniel E.; Ho, Jaclyn J.

    2012-01-01

    Summary Pluripotency is a central, well-studied feature of embryonic development, but the role of pluripotent cell regulation in somatic tissue regeneration remains poorly understood. In planarians, regeneration of entire animals from tissue fragments is promoted by the activity of adult pluripotent stem cells (cNeoblasts). We utilized transcriptional profiling to identify planarian genes expressed in adult proliferating, regenerative cells (neoblasts). We also developed quantitative clonal analysis methods for expansion and differentiation of cNeoblast descendants that, together with RNAi, revealed gene roles in stem cell biology. Genes encoding two zinc finger proteins, Vasa, a LIM domain protein, Sox and Jun-like transcription factors, two candidate RNA-binding proteins, a Setd8-like protein, and PRC2 (Polycomb) were required for proliferative expansion and/or differentiation of cNeoblast-derived clones. These findings suggest that planarian stem cells utilize molecular mechanisms found in germ cells and other pluripotent cell types, and identify novel genetic regulators of the planarian stem cell system. PMID:22385657

  17. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2013-07-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  18. Beclomethasone Dipropionate in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2015-03-05

    Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Disease, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small

  19. Preoperative evaluation of the adult patient undergoing non-cardiac surgery: guidelines from the European Society of Anaesthesiology.

    PubMed

    De Hert, Stefan; Imberger, Georgina; Carlisle, John; Diemunsch, Pierre; Fritsch, Gerhard; Moppett, Iain; Solca, Maurizio; Staender, Sven; Wappler, Frank; Smith, Andrew

    2011-10-01

    The purpose of these guidelines on the preoperative evaluation of the adult non-cardiac surgery patient is to present recommendations based on available relevant clinical evidence. The ultimate aims of preoperative evaluation are two-fold. First, we aim to identify those patients for whom the perioperative period may constitute an increased risk of morbidity and mortality, aside from the risks associated with the underlying disease. Second, this should help us to design perioperative strategies that aim to reduce additional perioperative risks. Very few well performed randomised studies on the topic are available and many recommendations rely heavily on expert opinion and are adapted specifically to the healthcare systems in individual countries. This report aims to provide an overview of current knowledge on the subject with an assessment of the quality of the evidence in order to allow anaesthetists all over Europe to integrate - wherever possible - this knowledge into daily patient care. The Guidelines Committee of the European Society of Anaesthesiology (ESA) formed a task force with members of subcommittees of scientific subcommittees and individual members of the ESA. Electronic databases were searched from the year 2000 until July 2010 without language restrictions. These searches produced 15 425 abstracts. Relevant systematic reviews with meta-analyses, randomised controlled trials, cohort studies, case-control studies and cross-sectional surveys were selected. The Scottish Intercollegiate Guidelines Network grading system was used to assess the level of evidence and to grade recommendations. The final draft guideline was posted on the ESA website for 4 weeks and the link was sent to all ESA members, individual or national (thus including most European national anaesthesia societies). Comments were collated and the guidelines amended as appropriate. When the final draft was complete, the Guidelines Committee and ESA Board ratified the guidelines. PMID

  20. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats.

    PubMed

    Müller, Janine; Ossig, Christiana; Greiner, Johannes F W; Hauser, Stefan; Fauser, Mareike; Widera, Darius; Kaltschmidt, Christian; Storch, Alexander; Kaltschmidt, Barbara

    2015-01-01

    Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model. PMID:25479965

  1. Mycophenolate Mofetil and Cyclosporine in Reducing Graft-Versus-Host Disease in Patients With Hematologic Malignancies or Metastatic Kidney Cancer Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-03-01

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Renal Cell Carcinoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell

  2. Comparison of Anthropometric Data between End-stage Renal Disease Patients Undergoing Hemodialysis and Healthy Adults in Korea

    PubMed Central

    Lee, Seoung Woo; Park, Geun Ho; Lee, Sun Young; Song, Joon Ho

    2005-01-01

    Protein-calorie malnutrition is prevalent in hemodialysis (HD) patients. The prevalence of obesity in healthy Korean adults has increased rapidly during the last 10 years. However, there are few large scale data collections available about the current weight status of Korean HD patients. The weight statuses of 10,304 HD patients (data from the Insan Memorial Dialysis Registry 2002, Korean Society of Nephrology) were compared to those of 12,436 control subjects (age > 18) by using body mass index (BMI). Weight status was assessed by WHO classification for Asian-Pacific region [underweight (UW): < 18.5; normal weight (NW): 18.5-22.9; overweight (OW): 23-24.9; obese (OB): 25-29.9; and extremely obese (EOB): > 30 kg/m2] in both the control and HD patients. HD patients had significantly lower body weight and BMI than the controls in all age groups and in both sexes. For the male controls, the proportions of OW and OB showed a reversed U-shape, peaking at the 5th and 6th decades. of the numbers of those classified as NW and UW were relatively small. For the female controls, the proportions of OW and OB progressively increased with age. On the contrary, in HD patients, the proportions of NW and UW were large, up to more than 70%, and those of OW and OB were small in both sexes. In each age group, UW was seen significantly more in the HD group than in the control group. The 6th decade age group showed the highest prevalence ratio for UW in the HD group for both sexes, compared to the controls (Male: 17.33, Female: 17.68). The percentages of UW were related to HD duration and age in both sexes. In conclusion, Korean HD patients seem to have small proportions of OW and OB, compared to the general population, and protein-calorie malnutrition may still be an important nutritional condition. PMID:16259064

  3. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate

    PubMed Central

    Rafalski, Victoria A.; Mancini, Elena; Brunet, Anne

    2012-01-01

    Summary Metabolism is influenced by age, food intake, and conditions such as diabetes and obesity. How do physiological or pathological metabolic changes influence stem cells, which are crucial for tissue homeostasis? This Commentary reviews recent evidence that stem cells have different metabolic demands than differentiated cells, and that the molecular mechanisms that control stem cell self-renewal and differentiation are functionally connected to the metabolic state of the cell and the surrounding stem cell niche. Furthermore, we present how energy-sensing signaling molecules and metabolism regulators are implicated in the regulation of stem cell self-renewal and differentiation. Finally, we discuss the emerging literature on the metabolism of induced pluripotent stem cells and how manipulating metabolic pathways might aid cellular reprogramming. Determining how energy metabolism regulates stem cell fate should shed light on the decline in tissue regeneration that occurs during aging and facilitate the development of therapies for degenerative or metabolic diseases. PMID:23420198

  4. Lineage tracing in the adult mouse corneal epithelium supports the limbal epithelial stem cell hypothesis with intermittent periods of stem cell quiescence☆

    PubMed Central

    Dorà, Natalie J.; Hill, Robert E.; Collinson, J. Martin; West, John D.

    2015-01-01

    The limbal epithelial stem cell (LESC) hypothesis proposes that LESCs in the corneal limbus maintain the corneal epithelium both during normal homeostasis and wound repair. The alternative corneal epithelial stem cell (CESC) hypothesis proposes that LESCs are only involved in wound repair and CESCs in the corneal epithelium itself maintain the corneal epithelium during normal homeostasis. We used tamoxifen-inducible, CreER-loxP lineage tracing to distinguish between these hypotheses. Clones of labelled cells were induced in adult CAGG-CreER;R26R-LacZ reporter mice and their distributions analysed after different chase periods. Short-lived clones, derived from labelled transient amplifying cells, were shed during the chase period and long-lived clones, derived from stem cells, expanded. At 6 weeks, labelled clones appeared at the periphery, extended centripetally as radial stripes and a few reached the centre by 14 weeks. Stripe numbers depended on the age of tamoxifen treatment. Stripes varied in length, some were discontinuous, few reached the centre and almost half had one end at the limbus. Similar stripes extended across the cornea in CAGG-CreER;R26R-mT/mG reporter mice. The distributions of labelled clones are inconsistent with the CESC hypothesis and support the LESC hypothesis if LESCs cycle between phases of activity and quiescence, each lasting several weeks. PMID:26554513

  5. Sirolimus, Cyclosporine, and Mycophenolate Mofetil in Preventing Graft-versus-Host Disease in Treating Patients With Hematologic Malignancies Undergoing Donor Peripheral Blood Stem Cell Transplant

    ClinicalTrials.gov

    2016-09-06

    Adult Acute Lymphoblastic Leukemia; Adult Acute Myeloid Leukemia; Adult Diffuse Large B-Cell Lymphoma; Adult Myelodysplastic Syndrome; Adult Non-Hodgkin Lymphoma; Aggressive Non-Hodgkin Lymphoma; Childhood Acute Lymphoblastic Leukemia; Childhood Acute Myeloid Leukemia; Childhood Diffuse Large B -Cell Lymphoma; Childhood Myelodysplastic Syndrome; Childhood Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Chronic Lymphocytic Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Hematopoietic and Lymphoid Cell Neoplasm; Mantle Cell Lymphoma; Plasma Cell Myeloma; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; T-Cell Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia; Waldenstrom Macroglobulinemia

  6. TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons

    PubMed Central

    Kandasamy, Mahesh; Lehner, Bernadette; Kraus, Sabrina; Sander, Paul Ramm; Marschallinger, Julia; Rivera, Francisco J; Trümbach, Dietrich; Ueberham, Uwe; Reitsamer, Herbert A; Strauss, Olaf; Bogdahn, Ulrich; Couillard-Despres, Sebastien; Aigner, Ludwig

    2014-01-01

    Members of the transforming growth factor (TGF)-β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF-β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF-β1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF-β1 under a tetracycline regulatable Ca-Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF-β1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF-β1 signalling in adult NPCs. The results demonstrate that TGF-β1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF-β1 in ageing and neurodegenerative diseases, TGF-β1 signalling presents a molecular target for future interventions in such conditions. PMID:24779367

  7. TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons.

    PubMed

    Kandasamy, Mahesh; Lehner, Bernadette; Kraus, Sabrina; Sander, Paul Ramm; Marschallinger, Julia; Rivera, Francisco J; Trümbach, Dietrich; Ueberham, Uwe; Reitsamer, Herbert A; Strauss, Olaf; Bogdahn, Ulrich; Couillard-Despres, Sebastien; Aigner, Ludwig

    2014-07-01

    Members of the transforming growth factor (TGF)-β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF-β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF-β1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF-β1 under a tetracycline regulatable Ca-Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF-β1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF-β1 signalling in adult NPCs. The results demonstrate that TGF-β1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF-β1 in ageing and neurodegenerative diseases, TGF-β1 signalling presents a molecular target for future interventions in such conditions. PMID:24779367

  8. Reproducible expansion and characterization of mouse neural stem/progenitor cells in adherent cultures derived from the adult subventricular zone

    PubMed Central

    Theus, Michelle H.; Ricard, Jerome; Liebl, Daniel J.

    2012-01-01

    Endogenous neural stem/progenitor cells (NSPCs) residing in the subventricular zone (SVZ) of the adult mouse forebrain have been shown to enhance their neurogenic potential in response to CNS injury. Mechanisms involved in regulating adult neurogenesis under naïve or stressed conditions can be studied using a monolayer cell-culture system of the nestin-expressing NSPC lineage to analyze proliferation, survival and differentiation. Here, we describe a protocol for the expansion of NSPCs for studies aimed at understanding the functional role of NSPCs in maintaining adult neurogenic processes. In this unit, we outline in detail the procedures for: (1) isolation, maintenance and culture of the NSPC component of the SVZ niche from the lateral wall of the lateral ventricle; (2) characterization of NSPC functions by examining proliferation, survival and differentiation; and (3) efficient siRNA transfection methods in 96-well format. PMID:22415840

  9. Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2016-06-13

    Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T

  10. Prognostic Factors on the Graft-versus-Host Disease-Free and Relapse-Free Survival after Adult Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Liu, Yao-Chung; Chien, Sheng-Hsuan; Fan, Nai-Wen; Hu, Ming-Hung; Gau, Jyh-Pyng; Liu, Chia-Jen; Yu, Yuan-Bin; Hsiao, Liang-Tsai; Chiou, Tzeon-Jye; Tzeng, Cheng-Hwai; Chen, Po-Min; Liu, Jin-Hwang

    2016-01-01

    The cure of hematologic disorders by allogeneic hematopoietic stem cell transplantation (HSCT) is often associated with major complications resulting in poor outcome, including graft-versus-host disease (GVHD), relapse, and death. A novel composite endpoint of GVHD-free/relapse-free survival (GRFS) in which events include grades 3-4 acute GVHD, chronic GVHD requiring systemic therapy, relapse, or death is censored to completely characterize the survival without mortality or ongoing morbidity. In this regard, studies attempting to identify the prognostic factors of GRFS are quite scarce. Thus, we reviewed 377 adult patients undergoing allogeneic HSCT between 2003 and 2013. The 1- and 2-year GRFS were 40.8% and 36.5%, respectively, significantly worse than overall survival and disease-free survival (log-rank p < 0.001). European Group for Blood and Marrow Transplantation (EBMT) risk score > 2 (p < 0.001) and hematologic malignancy (p = 0.033) were poor prognostic factors for 1-year GRFS. For 2-year GRFS, EBMT risk score > 2 (p < 0.001), being male (p = 0.028), and hematologic malignancy (p = 0.010) were significant for poor outcome. The events between 1-year GRFS and 2-year GRFS predominantly increased in relapsed patients. With prognostic factors of GRFS, we could evaluate the probability of real recovery following HSCT without ongoing morbidity. PMID:27123006

  11. Differentiation of adult rat bone marrow stem cells into epithelial progenitor cells in culture.

    PubMed

    Shu, Chang; Li, Ting Yu; Tsang, Lai Ling; Fok, Kin Lam; Lo, Pui Shan; Zhu, Jin Xia; Ho, Lo Sze; Chung, Yiu Wa; Chan, Hsiao Chang

    2006-10-01

    We have previously obtained monoclonal bone marrow stem cells from adult rats (rMSCs) and induced them into phenotypic neurons. In the present study, we aimed to induce rMSCs into epithelial cells by culturing them onto compartmentalized permeable supports, which have been used for growing a variety of polarized epithelia in culture. Hematoxylin staining showed that after 4 days grown on permeable supports, rMSCs formed an epithelial-like monolayer. Immunofluorescence of the permeably-supported monolayers, but not the rMSCs grown in culture flasks, showed positive signals for epithelial markers, cytokeratin 5 & 8. RT-PCR results also showed the mRNA expression of epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) as well as tight junction protein ZO-1 in the rMSC-derived monolayers grown on permeable supports but absent from those grown in culture flasks. However, western blot only detected protein expression of ZO-1 but not ENaC nor CFTR. The short-circuit current measurements showed that the rMSC-derived monolayers grown on permeable supports exhibited a trans-monolayer resistance of 30-50 Omega cm(2); however, the monolayers did not respond to activators or blockers of CFTR or ENaC. The results suggest that compartmentalized or polarized culture conditions provide a suitable environment for rMSCs to differentiate into epithelial progenitor cells with tight junction formation; however, this condition is not sufficient for functional expression of epithelial ion channels associated with well-differentiated epithelia. PMID:16877014

  12. Cytomegalovirus Reactivation in Adult Recipients of Autologous Stem Cell Transplantation: a Single Center Experience

    PubMed Central

    Al-Rawi, Omar; Abdel-Rahman, Fawzi; Al-Najjar, Rula; Abu-Jazar, Husam; Salam, Mourad; Saad, Mustafa

    2015-01-01

    Introduction Cytomegalovirus (CMV) reactivation and infection are well-recognized complications after allogeneic stem cell transplantation (SCT). Only a few studies have addressed CMV reactivation after autologous SCT (ASCT). Methods We retrospectively reviewed medical records of 210 adult patients who underwent ASCT for lymphoma or multiple myeloma (MM) at a single center from January 1st, 2007 until December 31st, 2012. All patients were monitored weekly with CMV antigenemia test till day 42 after transplantation, and for 2 months after last positive test in those who had any positive CMV antigenemia test before day 42. Results Thirty-seven (17.6%) patients had CMV reactivation; 23 patients had lymphoma while 14 had MM as the underlying disease. There was no difference in the rate of CMV reactivation between lymphoma and MM patients (20% versus 14.7%, P = 0.32). The majority of the patients were treated with ganciclovir/valganciclovir, all patients had their reactivation resolved with therapy, and none developed symptomatic CMV infection. None of the patients who died within 100 days of transplantation had CMV reactivation. Log-rank test showed that CMV reactivation had no effect on the overall survival of patients (P values, 0.29). Conclusion In our cohort, CMV reactivation rate after ASCT was 17.6%. There was no difference in reactivation rates between lymphoma and MM patients. With the use of preemptive therapy, symptomatic CMV infection was not documented in any patient in our cohort. CMV reactivation had no impact on patients’ survival post ASCT. PMID:26401238

  13. Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon.

    PubMed

    Barbosa, Joana S; Di Giaimo, Rossella; Götz, Magdalena; Ninkovic, Jovica

    2016-08-01

    Adult neural stem cells (aNSCs) in zebrafish produce mature neurons throughout their entire life span in both the intact and regenerating brain. An understanding of the behavior of aNSCs in their intact niche and during regeneration in vivo should facilitate the identification of the molecular mechanisms controlling regeneration-specific cellular events. A greater understanding of the process in regeneration-competent species may enable regeneration to be achieved in regeneration-incompetent species, including humans. Here we describe a protocol for labeling and repetitive imaging of aNSCs in vivo. We label single aNSCs, allowing nonambiguous re-identification of single cells in repetitive imaging sessions using electroporation of a red-reporter plasmid in Tg(gfap:GFP)mi2001 transgenic fish expressing GFP in aNSCs. We image using two-photon microscopy through the thinned skull of anesthetized and immobilized fish. Our protocol allows imaging every 2 d for a period of up to 1 month. This methodology allowed the visualization of aNSC behavior in vivo in their natural niche, in contrast to previously available technologies, which rely on the imaging of either dissociated cells or tissue slices. We used this protocol to follow the mode of aNSC division, fate changes and cell death in both the intact and injured zebrafish telencephalon. This experimental setup can be widely used, with minimal prior experience, to assess key factors for processes that modulate aNSC behavior. A typical experiment with data analysis takes up to 1.5 months. PMID:27362338

  14. Pituitary Adenlylate Cyclase Activating Peptide Protects Adult Neural Stem Cells from a Hypoglycaemic milieu.

    PubMed

    Mansouri, Shiva; Lietzau, Grazyna; Lundberg, Mathias; Nathanson, David; Nyström, Thomas; Patrone, Cesare

    2016-01-01

    Hypoglycaemia is a common side-effect of glucose-lowering therapies for type-2 diabetic patients, which may cause cognitive/neurological impairment. Although the effects of hypoglycaemia in the brain have been extensively studied in neurons, how hypoglycaemia impacts the viability of adult neural stem cells (NSCs) has been poorly investigated. In addition, the cellular and molecular mechanisms of how hypoglycaemia regulates NSCs survival have not been characterized. Recent work others and us have shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) and the glucagon-like peptide-1 receptor (GLP-1R) agonist Exendin-4 stimulate NSCs survival against glucolipoapoptosis. The aim of this study was to establish an in vitro system where to study the effects of hypoglycaemia on NSC survival. Furthermore, we determine the potential role of PACAP and Exendin-4 in counteracting the effect of hypoglycaemia. A hypoglycaemic in vitro milieu was mimicked by exposing subventricular zone-derived NSC to low levels of glucose. Moreover, we studied the potential involvement of apoptosis and endoplasmic reticulum stress by quantifying protein levels of Bcl-2, cleaved caspase-3 and mRNA levels of CHOP. We show that PACAP via PAC-1 receptor and PKA activation counteracts impaired NSC viability induced by hypoglycaemia. The protective effect induced by PACAP correlated with endoplasmic reticulum stress, Exendin-4 was ineffective. The results show that hypoglycaemia decreases NSC viability and that this effect can be substantially counteracted by PACAP via PAC-1 receptor activation. The data supports a potential therapeutic role of PAC-1 receptor agonists for the treatment of neurological complications, based on neurogenesis impairment by hypoglycaemia. PMID:27305000

  15. Pituitary Adenlylate Cyclase Activating Peptide Protects Adult Neural Stem Cells from a Hypoglycaemic milieu

    PubMed Central

    Mansouri, Shiva; Lietzau, Grazyna; Lundberg, Mathias; Nathanson, David; Nyström, Thomas; Patrone, Cesare

    2016-01-01

    Hypoglycaemia is a common side-effect of glucose-lowering therapies for type-2 diabetic patients, which may cause cognitive/neurological impairment. Although the effects of hypoglycaemia in the brain have been extensively studied in neurons, how hypoglycaemia impacts the viability of adult neural stem cells (NSCs) has been poorly investigated. In addition, the cellular and molecular mechanisms of how hypoglycaemia regulates NSCs survival have not been characterized. Recent work others and us have shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) and the glucagon-like peptide-1 receptor (GLP-1R) agonist Exendin-4 stimulate NSCs survival against glucolipoapoptosis. The aim of this study was to establish an in vitro system where to study the effects of hypoglycaemia on NSC survival. Furthermore, we determine the potential role of PACAP and Exendin-4 in counteracting the effect of hypoglycaemia. A hypoglycaemic in vitro milieu was mimicked by exposing subventricular zone-derived NSC to low levels of glucose. Moreover, we studied the potential involvement of apoptosis and endoplasmic reticulum stress by quantifying protein levels of Bcl-2, cleaved caspase-3 and mRNA levels of CHOP. We show that PACAP via PAC-1 receptor and PKA activation counteracts impaired NSC viability induced by hypoglycaemia. The protective effect induced by PACAP correlated with endoplasmic reticulum stress, Exendin-4 was ineffective. The results show that hypoglycaemia decreases NSC viability and that this effect can be substantially counteracted by PACAP via PAC-1 receptor activation. The data supports a potential therapeutic role of PAC-1 receptor agonists for the treatment of neurological complications, based on neurogenesis impairment by hypoglycaemia. PMID:27305000

  16. Intertwining extracellular nucleotides and their receptors with Ca2+ in determining adult neural stem cell survival, proliferation and final fate.

    PubMed

    Lecca, Davide; Fumagalli, Marta; Ceruti, Stefania; Abbracchio, Maria P

    2016-08-01

    In the central nervous system (CNS), during both brain and spinal cord development, purinergic and pyrimidinergic signalling molecules (ATP, UTP and adenosine) act synergistically with peptidic growth factors in regulating the synchronized proliferation and final specification of multipotent neural stem cells (NSCs) to neurons, astrocytes or oligodendrocytes, the myelin-forming cells. Some NSCs still persist throughout adulthood in both specific 'neurogenic' areas and in brain and spinal cord parenchyma, retaining the potentiality to generate all the three main types of adult CNS cells. Once CNS anatomical structures are defined, purinergic molecules participate in calcium-dependent neuron-to-glia communication and also control the behaviour of adult NSCs. After development, some purinergic mechanisms are silenced, but can be resumed after injury, suggesting a role for purinergic signalling in regeneration and self-repair also via the reactivation of adult NSCs. In this respect, at least three different types of adult NSCs participate in the response of the adult brain and spinal cord to insults: stem-like cells residing in classical neurogenic niches, in particular, in the ventricular-subventricular zone (V-SVZ), parenchymal oligodendrocyte precursor cells (OPCs, also known as NG2-glia) and parenchymal injury-activated astrocytes (reactive astrocytes). Here, we shall review and discuss the purinergic regulation of these three main adult NSCs, with particular focus on how and to what extent modulation of intracellular calcium levels by purinoceptors is mandatory to determine their survival, proliferation and final fate.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377726

  17. The Oxygen Environment at Birth Specifies the Population of Alveolar Epithelial Stem Cells in the Adult Lung.

    PubMed

    Yee, Min; Gelein, Robert; Mariani, Thomas J; Lawrence, B Paige; O'Reilly, Michael A

    2016-05-01

    Alveolar epithelial type II cells (AEC2) maintain pulmonary homeostasis by producing surfactant, expressing innate immune molecules, and functioning as adult progenitor cells for themselves and alveolar epithelial type I cells (AEC1). How the proper number of alveolar epithelial cells is determined in the adult lung is not well understood. Here, BrdU labeling, genetic lineage tracing, and targeted expression of the anti-oxidant extracellular superoxide dismutase in AEC2s are used to show how the oxygen environment at birth influences postnatal expansion of AEC2s and AEC1s in mice. Birth into low (12%) or high (≥60%) oxygen stimulated expansion of AEC2s through self-renewal and differentiation of the airway Scgb1a1 + lineage. This non-linear or hormesis response to oxygen was specific for the alveolar epithelium because low oxygen stimulated and high oxygen inhibited angiogenesis as defined by changes in V-cadherin and PECAM (CD31). Although genetic lineage tracing studies confirmed adult AEC2s are stem cells for AEC1s, we found no evidence that postnatal growth of AEC1s were derived from self-renewing Sftpc + or the Scbg1a1 + lineage of AEC2s. Taken together, our results show how a non-linear response to oxygen at birth promotes expansion of AEC2s through two distinct lineages. Since neither lineage contributes to the postnatal expansion of AEC1s, the ability of AEC2s to function as stem cells for AEC1s appears to be restricted to the adult lung. Stem Cells 2016;34:1396-1406. PMID:26891117

  18. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila.

    PubMed

    Armstrong, Alissa R; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2014-12-01

    How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk. PMID:25359724

  19. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila

    PubMed Central

    Armstrong, Alissa R.; Laws, Kaitlin M.; Drummond-Barbosa, Daniela

    2014-01-01

    How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk. PMID:25359724

  20. In Vivo Tumorigenesis Was Observed after Injection of In Vitro Expanded Neural Crest Stem Cells Isolated from Adult Bone Marrow

    PubMed Central

    Neirinckx, Virginie; Hennuy, Benoit; Swingland, James T.; Laudet, Emerence; Sommer, Lukas; Shakova, Olga; Bours, Vincent; Rogister, Bernard

    2012-01-01

    Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the transformation of NCSC into tumorigenic cells, after in vitro long-term passaging. Indeed, the characterization of 6 neural crest-derived clones revealed the presence of one tumorigenic clone. Transcriptomic analyses of this clone highlighted, among others, numerous cell cycle checkpoint modifications and chromosome 11q down-regulation (suggesting a deletion of chromosome 11q) compared with the other clones. Moreover, unsupervised analysis such as a dendrogram generated after agglomerative hierarchical clustering comparing several transcriptomic data showed important similarities between the tumorigenic neural crest-derived clone and mammary tumor cell lines. Altogether, it appeared that NCSC isolated from adult bone marrow represents a potential danger for cellular therapy, and consequently, we recommend that phenotypic, functional and genetic assays should be performed on bone marrow mesenchymal and neural crest stem cells before in vivo use, to demonstrate whether their biological properties, after ex vivo expansion, remain suitable for clinical application. PMID:23071568

  1. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells

    SciTech Connect

    Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.; Wilson, Amber; Xia, Linghui; Yu, Hong; Webster, Keith A.

    2010-06-11

    Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.

  2. In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow.

    PubMed

    Wislet-Gendebien, Sabine; Poulet, Christophe; Neirinckx, Virginie; Hennuy, Benoit; Swingland, James T; Laudet, Emerence; Sommer, Lukas; Shakova, Olga; Bours, Vincent; Rogister, Bernard

    2012-01-01

    Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the transformation of NCSC into tumorigenic cells, after in vitro long-term passaging. Indeed, the characterization of 6 neural crest-derived clones revealed the presence of one tumorigenic clone. Transcriptomic analyses of this clone highlighted, among others, numerous cell cycle checkpoint modifications and chromosome 11q down-regulation (suggesting a deletion of chromosome 11q) compared with the other clones. Moreover, unsupervised analysis such as a dendrogram generated after agglomerative hierarchical clustering comparing several transcriptomic data showed important similarities between the tumorigenic neural crest-derived clone and mammary tumor cell lines. Altogether, it appeared that NCSC isolated from adult bone marrow represents a potential danger for cellular therapy, and consequently, we recommend that phenotypic, functional and genetic assays should be performed on bone marrow mesenchymal and neural crest stem cells before in vivo use, to demonstrate whether their biological properties, after ex vivo expansion, remain suitable for clinical application. PMID:23071568

  3. Functional and Molecular Characterization of Rod-like Cells from Retinal Stem Cells Derived from the Adult Ciliary Epithelium

    PubMed Central

    Demontis, Gian Carlo; Aruta, Claudia; Comitato, Antonella; De Marzo, Anna; Marigo, Valeria

    2012-01-01

    In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells. PMID:22432014

  4. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair.

    PubMed

    Goichberg, Polina

    2016-08-01

    With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential. PMID:27209167

  5. LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease.

    PubMed

    Griffiths, Dean S; Li, Juan; Dawson, Mark A; Trotter, Matthew W B; Cheng, Yi-Han; Smith, Aileen M; Mansfield, William; Liu, Pentao; Kouzarides, Tony; Nichols, Jennifer; Bannister, Andrew J; Green, Anthony R; Göttgens, Berthold

    2011-01-01

    Activating mutations in the tyrosine kinase Janus kinase 2 (JAK2) cause myeloproliferative neoplasms, clonal blood stem cell disorders with a propensity for leukaemic transformation. Leukaemia inhibitory factor (LIF) signalling through the JAK-signal transducer and activator of transcription (STAT) pathway enables self-renewal of embryonic stem (ES) cells. Here we show that mouse ES cells carrying the human JAK2V617F mutation were able to self-renew in chemically defined conditions without cytokines or small-molecule inhibitors, independently of JAK signalling through the STAT3 or phosphatidylinositol-3-OH kinase pathways. Phosphorylation of histone H3 tyrosine 41 (H3Y41) by JAK2 was recently shown to interfere with binding of heterochromatin protein 1α (HP1α). Levels of chromatin-bound HP1α were lower in JAK2V617F ES cells but increased following inhibition of JAK2, coincident with a global reduction in histone H3Y41 phosphorylation. JAK2 inhibition reduced levels of the pluripotency regulator Nanog, with a reduction in H3Y41 phosphorylation and concomitant increase in HP1α levels at the Nanog promoter. Furthermore, Nanog was required for factor independence of JAK2V617F ES cells. Taken together, these results uncover a previously unrecognized role for direct signalling to chromatin by JAK2 as an important mediator of ES cell self-renewal. PMID:21151131

  6. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells

    SciTech Connect

    Yamada, Yoji; Sakurada, Kazuhiro; Takeda, Yukiji; Gojo, Satoshi; Umezawa, Akihiro . E-mail: umezawa@1985.jukuin.keio.ac.jp

    2007-02-15

    Bone marrow-derived stromal cells can give rise to cardiomyocytes as well as adipocytes, osteocytes, and chondrocytes in vitro. The existence of mesenchymal stem cells has been proposed, but it remains unclear if a single-cell-derived stem cell stochastically commits toward a cardiac lineage. By single-cell marking, we performed a follow-up study of individual cells during the differentiation of 9-15c mesenchymal stromal cells derived from bone marrow cells. Three types of cells, i.e., cardiac myoblasts, cardiac progenitors and multipotent stem cells were differentiated from a single cell, implying that cardiomyocytes are generated stochastically from a single-cell-derived stem cell. We also demonstrated that overexpression of Csx/Nkx2.5 and GATA4, precardiac mesodermal transcription factors, enhanced cardiomyogenic differentiation of 9-15c cells, and the frequency of cardiomyogenic differentiation was increased by co-culturing with fetal cardiomyocytes. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 behaved like cardiac transient amplifying cells, and still retained their plasticity in vivo.

  7. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp.

    PubMed

    Isobe, Y; Koyama, N; Nakao, K; Osawa, K; Ikeno, M; Yamanaka, S; Okubo, Y; Fujimura, K; Bessho, K

    2016-01-01

    Populations of pluripotent stem cells were isolated from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous teeth and their multipotentiality properties compared. Osteogenic, chondrogenic, adipogenic, and neurogenic differentiation potentials were examined. Bone marrow mesenchymal stem cells (BMMSCs) and synovial fluid-derived cells (SFCs) showed the highest levels of osteogenesis as expressed by alkaline phosphatase (ALP) activity (0.54±0.094 U/mg protein and 0.57±0.039 U/mg protein, respectively; P=0.60) and by osteocalcin (BGLAP; determined by real-time RT-PCR). SFCs showed the highest levels of chondrogenesis as expressed by ALP activity (1.75±0.097 U/mg protein) and of COL2A1 and COL10A1 by real-time PCR. In terms of adipogenesis, lipid vesicles were observed in the BMMSCs and SFCs. Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) exhibited neurogenesis potential, as shown by increases in expression of class III β-tubulin (TUBB3) and microtubule-associated protein 2 (MAP2) on RT-PCR. Variability was found in the differentiation potential corresponding to the tendency of the original tissue to differentiate. It is suggested that the cell type should be selected depending on the regenerative treatment regimen. PMID:26235629

  8. Macrophages contribute to the cyclic activation of adult hair follicle stem cells.

    PubMed

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-12-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  9. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  10. SUMO regulates somatic cyst stem cell maintenance and directly targets the Hedgehog pathway in adult Drosophila testis.

    PubMed

    Lv, Xiangdong; Pan, Chenyu; Zhang, Zhao; Xia, Yuanxin; Chen, Hao; Zhang, Shuo; Guo, Tong; Han, Hui; Song, Haiyun; Zhang, Lei; Zhao, Yun

    2016-05-15

    SUMO (Small ubiquitin-related modifier) modification (SUMOylation) is a highly dynamic post-translational modification (PTM) that plays important roles in tissue development and disease progression. However, its function in adult stem cell maintenance is largely unknown. Here, we report the function of SUMOylation in somatic cyst stem cell (CySC) self-renewal in adult Drosophila testis. The SUMO pathway cell-autonomously regulates CySC maintenance. Reduction of SUMOylation promotes premature differentiation of CySCs and impedes the proliferation of CySCs, which leads to a reduction in the number of CySCs. Consistent with this, CySC clones carrying a mutation of the SUMO-conjugating enzyme are rapidly lost. Furthermore, inhibition of the SUMO pathway phenocopies disruption of the Hedgehog (Hh) pathway, and can block the proliferation of CySCs induced by Hh activation. Importantly, the SUMO pathway directly regulates the SUMOylation of Hh pathway transcription factor Cubitus interruptus (Ci), which is required for promoting CySC proliferation. Thus, we conclude that SUMO directly targets the Hh pathway and regulates CySC maintenance in adult Drosophila testis. PMID:27013244

  11. Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion

    PubMed Central

    Ganuza, Miguel; Sáiz-Ladera, Cristina; Cañamero, Marta; Gómez, Gonzalo; Schneider, Ralph; Blasco, María A; Pisano, David; Paramio, Jesús M; Santamaría, David; Barbacid, Mariano

    2012-01-01

    Cyclin-dependent kinase (Cdk)7, the catalytic subunit of the Cdk-activating kinase (CAK) complex has been implicated in the control of cell cycle progression and of RNA polymerase II (RNA pol II)-mediated transcription. Genetic inactivation of the Cdk7 locus revealed that whereas Cdk7 is completely dispensable for global transcription, is essential for the cell cycle via phosphorylation of Cdk1 and Cdk2. In vivo, Cdk7 is also indispensable for cell proliferation except during the initial stages of embryonic development. Interestingly, widespread elimination of Cdk7 in adult tissues with low proliferative indexes had no phenotypic consequences. However, ablation of conditional Cdk7 alleles in tissues with elevated cellular turnover led to the efficient repopulation of these tissues with Cdk7-expressing cells most likely derived from adult stem cells that may have escaped the inactivation of their targeted Cdk7 alleles. This process, a physiological attempt to maintain tissue homeostasis, led to the attrition of adult stem cell pools and to the appearance of age-related phenotypes, including telomere shortening and early death. PMID:22505032

  12. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria.

    PubMed

    Liu, Baohua; Ghosh, Shrestha; Yang, Xi; Zheng, Huiling; Liu, Xinguang; Wang, Zimei; Jin, Guoxiang; Zheng, Bojian; Kennedy, Brian K; Suh, Yousin; Kaeberlein, Matt; Tryggvason, Karl; Zhou, Zhongjun

    2012-12-01

    Abnormal splicing of LMNA gene or aberrant processing of prelamin A results in progeroid syndrome. Here we show that lamin A interacts with and activates SIRT1. SIRT1 exhibits reduced association with nuclear matrix (NM) and decreased deacetylase activity in the presence of progerin or prelamin A, leading to rapid depletion of adult stem cells (ASCs) in Zmpste24(-/-) mice. Resveratrol enhances the binding between SIRT1 and A-type lamins to increases its deacetylase activity. Resveratrol treatment rescues ASC decline, slows down body weight loss, improves trabecular bone structure and mineral density, and significantly extends the life span in Zmpste24(-/-) mice. Our data demonstrate lamin A as an activator of SIRT1 and provide a mechanistic explanation for the activation of SIRT1 by resveratrol. The link between conserved SIRT1 longevity pathway and progeria suggests a stem cell-based and SIRT1 pathway-dependent therapeutic strategy for progeria. PMID:23217256

  13. Life satisfaction in young adults 10 or more years after hematopoietic stem cell transplantation for childhood malignant and nonmalignant diseases does not show significant impairment compared with healthy controls: a case-matched study.

    PubMed

    Uderzo, Cornelio; Corti, Paola; Pappalettera, Marco; Baldini, Valentina; Lucchini, Giovanna; Meani, Dario; Rovelli, Attilio

    2012-11-01

    Patients undergoing hematopoietic stem cell transplantation (HSCT) may experience physical and psychological deterioration that impairs their life satisfaction (LS). This study focused on LS in long-term survivors at 10 or more years after HSCT. Fifty-five patients (39 males, median age 25 years) undergoing allogeneic HSCT for childhood malignant (n = 52) or nonmalignant diseases (n = 3) were enrolled. A control group of 98 young adults (59 males, median age 24 years) was considered. A questionnaire with a modified Satisfaction Life Domain Scale was administered. We assessed such domains as education, employment, leisure time, social relationships, and perception of physical status with a 30-item questionnaire. To investigate the association between the domains and the probability of diminished LS, we performed a logistical procedure using the maximum likelihood method. Predictive factors of LS were adjusted for sociodemographic variables. In the multivariate analysis, the participant's level of LS was not significantly correlated with sociodemographic factors or with HSCT status. The same analysis showed a slight trend in favor of the control group (P = .06) for body perception. Our data suggest that the patients who undergo HSCT in childhood have no significant difference in long-term LS compared with healthy controls. PMID:22766222

  14. Adult stem cell as new advanced therapy for experimental neuropathic pain treatment.

    PubMed

    Franchi, Silvia; Castelli, Mara; Amodeo, Giada; Niada, Stefania; Ferrari, Daniela; Vescovi, Angelo; Brini, Anna Teresa; Panerai, Alberto Emilio; Sacerdote, Paola

    2014-01-01

    Neuropathic pain (NP) is a highly invalidating disease resulting as consequence of a lesion or disease affecting the somatosensory system. All the pharmacological treatments today in use give a long lasting pain relief only in a limited percentage of patients before pain reappears making NP an incurable disease. New approaches are therefore needed and research is testing stem cell usage. Several papers have been written on experimental neuropathic pain treatment using stem cells of different origin and species to treat experimental NP. The original idea was based on the capacity of stem cell to offer a totipotent cellular source for replacing injured neural cells and for delivering trophic factors to lesion site; soon the researchers agreed that the capacity of stem cells to contrast NP was not dependent upon their regenerative effect but was mostly linked to a bidirectional interaction between the stem cell and damaged microenvironment resident cells. In this paper we review the preclinical studies produced in the last years assessing the effects induced by several stem cells in different models of neuropathic pain. The overall positive results obtained on pain remission by using stem cells that are safe, of easy isolation, and which may allow an autologous transplant in patients may be encouraging for moving from bench to bedside, although there are several issues that still need to be solved. PMID:25197647

  15. Engineering High-Potency R-spondin Adult Stem Cell Growth Factors

    PubMed Central

    Warner, Margaret L.; Bell, Tufica

    2015-01-01

    Secreted R-spondin proteins (RSPOs1–4) function as adult stem cell growth factors by potentiating Wnt signaling. Simultaneous binding of distinct regions of the RSPO Fu1–Fu2 domain module to the extracellular domains (ECDs) of the LGR4 G protein–coupled receptor and the ZNRF3 transmembrane E3 ubiquitin ligase regulates Wnt receptor availability. Here, we examine the molecular basis for the differing signaling strengths of RSPOs1–4 using purified RSPO Fu1–Fu2, LGR4 ECD, and ZNRF3 ECD proteins in Wnt signaling and receptor binding assays, and we engineer novel high-potency RSPOs. RSPO2/3/4 had similar signaling potencies that were stronger than that of RSPO1, whereas RSPO1/2/3 had similar efficacies that were greater than that of RSPO4. The RSPOs bound LGR4 with affinity rank order RSPO4 > RSPO2/3 > RSPO1 and ZNRF3 with affinity rank order RSPO2/3 > > RSPO1 > RSPO4. An RSPO2–4 chimera combining RSPO2 ZNRF3 binding with RSPO4 LGR4 binding was a “Superspondin” that exhibited enhanced ternary complex formation and 10-fold stronger signaling potency than RSPO2 and efficacy equivalent to RSPO2. An RSPO4–1 chimera combining RSPO4 ZNRF3 binding with RSPO1 LGR4 binding was a “Poorspondin” that exhibited signaling potency similar to RSPO1 and efficacy equivalent to RSPO4. Conferring increased ZNRF3 binding upon RSPO4 with amino acid substitutions L56F, I58L, and I63M enhanced its signaling potency and efficacy. Our results reveal the molecular basis for RSPOs1–4 activity differences and suggest that signaling potency is determined by ternary complex formation ability, whereas efficacy depends on ZNRF3 recruitment. High-potency RSPOs may be of value for regenerative medicine and/or therapeutic applications. PMID:25504990

  16. Peripheral Blood Monocytes as Adult Stem Cells: Molecular Characterization and Improvements in Culture Conditions to Enhance Stem Cell Features and Proliferative Potential

    PubMed Central

    Ungefroren, Hendrik; Hyder, Ayman; Schulze, Maren; Fawzy El-Sayed, Karim M.; Grage-Griebenow, Evelin; Nussler, Andreas K.; Fändrich, Fred

    2016-01-01

    Adult stem or programmable cells hold great promise in diseases in which damaged or nonfunctional cells need to be replaced. We have recently demonstrated that peripheral blood monocytes can be differentiated in vitro into cells resembling specialized cell types like hepatocytes and pancreatic beta cells. During phenotypic conversion, the monocytes downregulate monocyte/macrophage differentiation markers, being indicative of partial dedifferentiation, and are partially reprogrammed to acquire a state of plasticity along with expression of various markers of pluripotency and resumption of mitosis. Upregulation of stem cell markers and mitotic activity in the cultures was shown to be controlled by autocrine production/secretion of activin A and transforming growth factor-beta (TGF-β). These reprogrammed monocyte derivatives were termed “programmable cells of monocytic origin” (PCMO). Current efforts focus on establishing culture conditions that increase both the plasticity and proliferation potential of PCMO in order to be able to generate large amounts of blood-derived cells suitable for both autologous and allogeneic therapies. PMID:26798361

  17. Morphological characteristics and identification of islet-like cells derived from rat adipose-derived stem cells cocultured with pancreas adult stem cells.

    PubMed

    Hefei, Wang; Yu, Ren; Haiqing, Wu; Xiao, Wang; Jingyuan, Wang; Dongjun, Liu

    2015-03-01

    Diabetes is a significant public health problem that can be treated with insulin therapy; however, therapies designed to cure diabetes are limited. The goal of the current study was to assess the potential for curative treatment of diabetes using adipose-derived stem cells (ADSCs). To achieve this goal, the differentiation of rat ADSCs into pancreatic islet-like cells induced by coculture with pancreatic adult stem cells (PASCs) was characterized. Differentiation of ADSCs into islet-like cells induced by coculturing was determined morphologically, as well as by the assessment of islet cell markers using dithizone staining, immunohistochemistry, RT-PCR, qPCR, and western blotting. The results showed that ADSCs formed islet-like round cell masses after coculture with PASCs. These differentiated cells were shown to be positive for islet cell markers, including dithizone incorporation; PDX1, CK19 and Nestin by immunohistochemistry, and insulin, PDX1 and glucagon expression by RT-PCR. Differentiated ADSCs induced by coculturing also expressed insulin at the mRNA and protein level, with the level of insulin mRNA expression in cocultured ADSCs being 0.05 times greater than that of PASCs (P < 0.05). Taken together, our results demonstrate that ADSCs can be induced to differentiate into islet-like cells by coculture with PASCs; thus these cells can be used for transplantation, providing a theoretical foundation for the treatment of diabetes using this approach. PMID:25262665

  18. Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine

    PubMed Central

    Hasebe, Takashi; Buchholz, Daniel R.; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2012-01-01

    In the amphibian intestine during metamorphosis, stem cells appear and generate the adult absorptive epithelium, analogous to the mammalian one, under the control of thyroid hormone (TH). We have previously shown that the adult stem cells originate from differentiated larval epithelial cells in the Xenopus laevis intestine. To clarify whether TH signaling in the epithelium alone is sufficient for inducing the stem cells, we have now performed tissue recombinant culture experiments, using transgenic X. laevis tadpoles that express a dominant positive TH receptor (dpTR) under a control of heat shock promoter. Wild-type (Wt) or dpTR transgenic (Tg) larval epithelium (Ep) was isolated from the tadpole intestine, recombined with homologous or heterologous non-epithelial tissues (non-Ep), and then cultivated in the absence of TH with daily heat shocks to induce transgenic dpTR expression. Adult epithelial progenitor cells expressing sonic hedgehog became detectable on day 5 in both the recombinant intestine of Tg Ep and Tg non-Ep (Tg/Tg) and that of Tg Ep and Wt non-Ep (Tg/Wt). However, in Tg/Wt intestine, they did not express other stem cell markers such as Musashi-1 and never generated the adult epithelium expressing a marker for absorptive epithelial cells. Our results indicate that, while it is unclear why some larval epithelial cells dedifferentiate into adult progenitor/stem cells, TR-mediated gene expression in the surrounding tissues other than the epithelium is required for them to develop into adult stem cells, suggesting the importance of TH-inducible epithelial-connective tissue interactions in establishment of the stem cell niche in the amphibian intestine. PMID:21280164

  19. Immunomodulatory Effects of the Agaricus blazei Murrill-Based Mushroom Extract AndoSan in Patients with Multiple Myeloma Undergoing High Dose Chemotherapy and Autologous Stem Cell Transplantation: A Randomized, Double Blinded Clinical Study

    PubMed Central

    Tierens, Anne; Caers, Jo; Binsfeld, Marilene; Olstad, Ole Kristoffer; Trøseid, Anne-Marie Siebke; Wang, Junbai; Tjønnfjord, Geir Erland; Hetland, Geir

    2015-01-01

    Forty patients with multiple myeloma scheduled to undergo high dose chemotherapy with autologous stem cell support were randomized in a double blinded fashion to receive adjuvant treatment with the mushroom extract AndoSan, containing 82% of Agaricus blazei Murrill (19 patients) or placebo (21 patients). Intake of the study product started on the day of stem cell mobilizing chemotherapy and continued until the end of aplasia after high dose chemotherapy, a period of about seven weeks. Thirty-three patients were evaluable for all study endpoints, while all 40 included patients were evaluable for survival endpoints. In the leukapheresis product harvested after stem cell mobilisation, increased percentages of Treg cells and plasmacytoid dendritic cells were found in patients receiving AndoSan. Also, in this group, a significant increase of serum levels of IL-1ra, IL-5, and IL-7 at the end of treatment was found. Whole genome microarray showed increased expression of immunoglobulin genes, Killer Immunoglobulin Receptor (KIR) genes, and HLA genes in the Agaricus group. Furthermore, AndoSan displayed a concentration dependent antiproliferative effect on mouse myeloma cells in vitro. There were no statistically significant differences in treatment response, overall survival, and time to new treatment. The study was registered with Clinicaltrials.gov NCT00970021. PMID:25664323

  20. Programming Hippocampal Neural Stem/Progenitor Cells into Oligodendrocytes Enhances Remyelination in the Adult Brain after Injury.

    PubMed

    Braun, Simon M G; Pilz, Gregor-Alexander; Machado, Raquel A C; Moss, Jonathan; Becher, Burkhard; Toni, Nicolas; Jessberger, Sebastian

    2015-06-23

    Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain. PMID:26074082

  1. Control of adult stem cells in vivo by a dynamic physiological environment: diet-dependent systemic factors in Drosophila and beyond

    PubMed Central

    Ables, Elizabeth T.; Laws, Kaitlin M.; Drummond-Barbosa, Daniela

    2012-01-01

    Adult stem cells are inextricably linked to whole-body physiology and nutrient availability through complex systemic signaling networks. A full understanding of how stem cells sense and respond to dietary fluctuations will require identifying key systemic mediators, as well as elucidating how they are regulated and integrated with local and intrinsic factors across multiple tissues. Studies focused on the Drosophila germline have generated valuable insights into how stem cells are controlled by diet-dependent pathways, and increasing evidence suggests that diverse adult stem cell populations respond to nutrients through similar mechanisms. Systemic signals, including nutrients themselves and diet-regulated hormones such as Insulin/Insulin-like growth factor or steroid hormones, can directly or indirectly affect stem cell behavior by modifying local cell-cell communication or intrinsic factors. The physiological regulation of stem cells in response to nutritional status not only is a fascinating biological problem, but also has clinical implications, as research in this field holds the key to non-invasive approaches for manipulating stem cells in vivo. In addition, given the known associations between diet, stem cells, and cancer risk, this research may inspire novel anti-cancer therapies. PMID:23799567

  2. LIF independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease

    PubMed Central

    Griffiths, Dean S.; Li, Juan; Dawson, Mark A.; Trotter, Matthew W.B.; Cheng, Yi-Han; Smith, Aileen M.; Mansfield, William; Liu, Pentao; Kouzarides, Tony; Nichols, Jennifer; Bannister, Andrew J.; Green, Anthony R; Göttgens, Berthold

    2010-01-01

    Activating mutations in the tyrosine kinase JAK2 cause myeloproliferative neoplasms, clonal blood stem cell disorders with a propensity for leukaemic transformation. LIF signalling through JAK-STAT enables ES cell self-renewal. Here we show that mouse ES cells carrying the human JAK2V617F mutation could self-renew in chemically defined conditions without cytokines or small molecule inhibitors independently of JAK signalling through STAT3 or PI3K pathways. Phosphorylation of histone H3Y41 by JAK2 was recently shown to interfere with HP1α binding. Chromatin bound HP1α was lower in JAK2V617F ES cells but increased following JAK2 inhibition, coincident with a global reduction in H3Y41ph. JAK2 inhibition reduced Nanog, with a reduction in H3Y41ph and concomitant increase in HP1α at the Nanog promoter. Furthermore, Nanog was required for factor-independence of JAK2V617F ES cells. Taken together, these results uncover a previously unrecognised role for direct signalling to chromatin by JAK2 as an important mediator of ES cell self-renewal. PMID:21151131

  3. Progenitor cells in the adult pancreas.

    PubMed

    Holland, Andrew M; Góñez, L Jorge; Harrison, Leonard C

    2004-01-01

    The beta-cell mass in the adult pancreas possesses the ability to undergo limited regeneration following injury. Identifying the progenitor cells involved in this process and understanding the mechanisms leading to their maturation will open new avenues for the treatment of type 1 diabetes. However, despite steady advances in determining the molecular basis of early pancreatic development, the identification of pancreatic stem cells or beta-cell progenitors and the molecular mechanisms underlying beta-cell regeneration remain unclear. Recent advances in the directed differentiation of embryonic and adult stem cells has heightened interest in the possible application of stem cell therapy in the treatment of type 1 diabetes. Drawing on the expanding knowledge of pancreas development, beta-cell regeneration and stem cell research, this review focuses on progenitor cells in the adult pancreas as a potential source of beta-cells. PMID:14737742

  4. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment.

    PubMed

    Fong, Chui-Yee; Subramanian, Arjunan; Gauthaman, Kalamegam; Venugopal, Jayarama; Biswas, Arijit; Ramakrishna, Seeram; Bongso, Ariff

    2012-03-01

    The current treatments used for osteoarthritis from cartilage damage have their disadvantages of donor site morbidity, complicated surgical interventions and risks of infection and graft rejection. Recent advances in tissue engineering have offered much promise in cartilage repair but the best cell source and in vitro system have not as yet been optimised. Human bone marrow mesenchymal stem cells (hBMSCs) have thus far been the cell of choice. However, we derived a unique stem cell from the human umbilical cord Wharton's jelly (hWJSC) that has properties superior to hBMSCs in terms of ready availability, prolonged stemness characteristics in vitro, high proliferation rates, wide multipotency, non-tumorigenicity and tolerance in allogeneic transplantation. We observed enhanced cell attachment, cell proliferation and chondrogenesis of hWJSCs over hBMSCs when grown on PCL/Collagen nanoscaffolds in the presence of a two-stage sequential complex/chondrogenic medium for 21 days. Improvement of these three parameters were confirmed via inverted optics, field emission scanning electron microscopy (FESEM), MTT assay, pellet diameters, Alcian blue histology and staining, glycosaminglycans (GAG) and hyaluronic acid production and expression of key chondrogenic genes (SOX9, Collagen type II, COMP, FMOD) using immunohistochemistry and real-time polymerase chain reaction (qRT-PCR). In separate experiments we demonstrated that the 16 ng/ml of basic fibroblast growth factor (bFGF) present in the complex medium may have contributed to driving chondrogenesis. We conclude that hWJSCs are an attractive stem cell source for inducing chondrogenesis in vitro when grown on nanoscaffolds and exposed sequentially first to complex medium and then followed by chondrogenic medium. PMID:21671058

  5. The evaluation of NT-proCNP, C-reactive protein and serum amyloid A protein concentration in patients with multiple myeloma undergoing stem cell transplantation.

    PubMed

    Tomasiuk, Ryszard; Gawroński, Krzysztof; Rzepecki, Piotr; Rabijewski, Michał; Cacko, Marek

    2016-08-01

    The importance of proinflamatory cytokines and acute phase proteins in pathogenesis and progression of MM is well known. However, there are any studies evaluating the role of NT-proCN in management and treatment of MM. The aim of our study was to evaluate the concentration of NT-proCNP and acute phase proteins in patients with MM before and after stem cell transplantation. We involved 40 newly diagnosed MM patients in stage III according to the Durie-Salmon classification and treated with high dose of melphalan (200mg/m2) prior to ASCT. Concentration of NT-proCNP, hs-CRP and SAA were measured before conditioning treatment and every 4days until the 24th day after stem cell infusion. We observed low NT-proCNP levels before conditioning treatment (0.121±0.04pmol/l), the higher in day on ASCT (0.28±0.14pmol/l). Further we showed significant gradual increase concentration of NT-proCNP up to 12days after stem cells infusion (1.07±0.72pmol/l). The kinetics of hs-CRP and SAA levels were similar to NT-proCNP. We showed positive correlation between NT-proCNP levels and absolute neutrophil and platelets count in patients after ASCT. NT-proCNP can be useful parameter to assess effectiveness of treatment and monitoring of hematopoetic recovery time in patients with MM after stem cell transplantations. PMID:27322507

  6. Uterine stem cells: what is the evidence?

    PubMed

    Gargett, C E

    2007-01-01

    The mucosal lining (endometrium) of the human uterus undergoes cyclical processes of regeneration, differentiation and shedding as part of the menstrual cycle. Endometrial regeneration also follows parturition, almost complete resection and in post-menopausal women taking estrogen replacement therapy. In non-menstruating species, there are cycles of endometrial growth and apoptosis rather than physical shedding. The concept that endometrial stem/progenitor cells are responsible for the remarkable regenerative capacity of endometrium was proposed many years ago. However, attempts to isolate, characterize and locate endometrial stem cells have only been undertaken in the last few years as experimental approaches to identify adult stem/progenitor cells in other tissues have been developed. Adult stem cells are defined by their functional properties rather than by marker expression. Evidence for the existence of adult stem/progenitor cells in human and mouse endometrium is now emerging because functional stem cell assays are being applied to uterine cells and tissues. These fundamental studies on endometrial stem/progenitor cells will provide new insights into the pathophysiology of various gynaecological disorders associated with abnormal endometrial proliferation, including endometrial cancer, endometrial hyperplasia, endometriosis and adenomyosis. PMID:16960017

  7. Positron Emission Tomography Using Fluorine F 18 EF5 to Find Oxygen in Tumor Cells of Patients Who Are Undergoing Surgery or Biopsy for Newly Diagnosed Brain Tumors

    ClinicalTrials.gov

    2013-01-15

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Meningeal Melanocytoma

  8. Hindsight/RREB-1 functions in both the specification and differentiation of stem cells in the adult midgut of Drosophila.

    PubMed

    Baechler, Brittany L; McKnight, Cameron; Pruchnicki, Porsha C; Biro, Nicole A; Reed, Bruce H

    2015-01-01

    The adult Drosophila midgut is established during the larval/pupal transition from undifferentiated cells known as adult midgut precursors (AMPs). Four fundamental cell types are found in the adult midgut epithelium: undifferentiated intestinal stem cells (ISCs) and their committed daughter cells, enteroblasts (EBs), plus enterocytes (ECs) and enteroendocrine cells (EEs). Using the Drosophila posterior midgut as a model, we have studied the function of the transcription factor Hindsight (Hnt)/RREB-1 and its relationship to the Notch and Egfr signaling pathways. We show that hnt is required for EC differentiation in the context of ISC-to-EC differentiation, but not in the context of AMP-to-EC differentiation. In addition, we show that hnt is required for the establishment of viable or functional ISCs. Overall, our studies introduce hnt as a key factor in the regulation of both the developing and the mature adult midgut. We suggest that the nature of these contextual differences can be explained through the interaction of hnt with multiple signaling pathways. PMID:26658272

  9. Hindsight/RREB-1 functions in both the specification and differentiation of stem cells in the adult midgut of Drosophila

    PubMed Central

    Baechler, Brittany L.; McKnight, Cameron; Pruchnicki, Porsha C.; Biro, Nicole A.; Reed, Bruce H.

    2016-01-01

    ABSTRACT The adult Drosophila midgut is established during the larval/pupal transition from undifferentiated cells known as adult midgut precursors (AMPs). Four fundamental cell types are found in the adult midgut epithelium: undifferentiated intestinal stem cells (ISCs) and their committed daughter cells, enteroblasts (EBs), plus enterocytes (ECs) and enteroendocrine cells (EEs). Using the Drosophila posterior midgut as a model, we have studied the function of the transcription factor Hindsight (Hnt)/RREB-1 and its relationship to the Notch and Egfr signaling pathways. We show that hnt is required for EC differentiation in the context of ISC-to-EC differentiation, but not in the context of AMP-to-EC differentiation. In addition, we show that hnt is required for the establishment of viable or functional ISCs. Overall, our studies introduce hnt as a key factor in the regulation of both the developing and the mature adult midgut. We suggest that the nature of these contextual differences can be explained through the interaction of hnt with multiple signaling pathways. PMID:26658272

  10. Mediation of Autophagic Cell Death by Type 3 Ryanodine Receptor (RyR3) in Adult Hippocampal Neural Stem Cells

    PubMed Central

    Chung, Kyung Min; Jeong, Eun-Ji; Park, Hyunhee; An, Hyun-Kyu; Yu, Seong-Woon

    2016-01-01

    Cytoplasmic Ca2+ actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca2+ levels is observed in various neuropathological states including Alzheimer’s and Parkinson’s diseases. Ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs), the main Ca2+ release channels located in endoplasmic reticulum (ER) membranes, are known to direct various cellular events such as autophagy and apoptosis. Here we investigated the intracellular Ca2+-mediated regulation of survival and death of adult hippocampal neural stem (HCN) cells utilizing an insulin withdrawal model of autophagic cell death (ACD). Despite comparable expression levels of RyR and IP3R transcripts in HCN cells at normal state, the expression levels of RyRs—especially RyR3—were markedly upregulated upon insulin withdrawal. While treatment with the RyR agonist caffeine significantly promoted the autophagic death of insulin-deficient HCN cells, treatment with its inhibitor dantrolene prevented the induction of autophagy following insulin withdrawal. Furthermore, CRISPR/Cas9-mediated knockout of the RyR3 gene abolished ACD of HCN cells. This study delineates a distinct, RyR3-mediated ER Ca2+ regulation of autophagy and programmed cell death in neural stem cells. Our findings provide novel insights into the critical, yet understudied mechanisms underlying the regulatory function of ER Ca2+ in neural stem cell biology. PMID:27199668

  11. Lamina-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease.

    PubMed

    Gesson, Kevin; Vidak, Sandra; Foisner, Roland

    2014-05-01

    A-type lamins are components of the lamina network at the nuclear envelope, which mediates nuclear stiffness and anchors chromatin to the nuclear periphery. However, A-type lamins are also found in the nuclear interior. Here we review the roles of the chromatin-associated, nucleoplasmic LEM protein, lamina-associated polypeptide 2α (LAP2α) in the regulation of A-type lamins in the nuclear interior. The lamin A/C-LAP2α complex may be involved in the regulation of the retinoblastoma protein-mediated pathway and other signaling pathways balancing proliferation and differentiation, and in the stabilization of higher-order chromatin organization throughout the nucleus. Loss of LAP2α in mice leads to selective depletion of the nucleoplasmic A-type lamin pool, promotes the proliferative stem cell phenotype of tissue progenitor cells, and delays stem cell differentiation. These findings support the hypothesis that LAP2α and nucleoplasmic lamins are regulators of adult stem cell function and tissue homeostasis. Finally, we discuss potential implications of this concept for defining the molecular disease mechanisms of lamin-linked diseases such as muscular dystrophy and premature aging syndromes. PMID:24374133

  12. Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut

    PubMed Central

    Zeng, Xiankun; Hou, Steven X.

    2015-01-01

    Functional mature cells are continually replenished by stem cells to maintain tissue homoeostasis. In the adult Drosophila posterior midgut, both terminally differentiated enterocyte (EC) and enteroendocrine (EE) cells are generated from an intestinal stem cell (ISC). However, it is not clear how the two differentiated cells are generated from the ISC. In this study, we found that only ECs are generated through the Su(H)GBE+ immature progenitor enteroblasts (EBs), whereas EEs are generated from ISCs through a distinct progenitor pre-EE by a novel lineage-tracing system. EEs can be generated from ISCs in three ways: an ISC becoming an EE, an ISC becoming a new ISC and an EE through asymmetric division, or an ISC becoming two EEs through symmetric division. We further identified that the transcriptional factor Prospero (Pros) regulates ISC commitment to EEs. Our data provide direct evidence that different differentiated cells are generated by different modes of stem cell lineage specification within the same tissues. PMID:25670791

  13. ALK-positive inflammatory myofibroblastic tumor harboring ALK gene rearrangement, occurring after allogeneic stem cell transplant in an adult male.

    PubMed

    Vroobel, Katherine; Judson, Ian; Dainton, Melissa; McCormick, Alison; Fisher, Cyril; Thway, Khin

    2016-08-01

    Inflammatory myofibroblastic tumor arose as a defined neoplasm from the disparate group of tumors (both neoplastic and inflammatory) originally described as inflammatory pseudotumors. The morphologic features are well described, and 50-60% of cases are associated with fusions of the anaplastic lymphoma kinase (ALK) gene. We describe an inflammatory myofibroblastic tumor in the lower abdominal wall of an adult male, which occurred 88days after he received an allogeneic stem cell transplant for T-lymphoblastic lymphoma, and which was positive for ALK immunohistochemistry and showed ALK gene rearrangement by fluorescence in situ hybridization. Two other cases are reported in the post-stem cell transplant setting, but both occurred in children and did not have molecular analysis performed. The etiology remains unclear, but may be due to immune dysregulation caused by any combination of prior chemotherapy, radiotherapy and immune suppression. These neoplasms should be considered as a rare consequence of allogeneic stem cell transplantation and referral to a specialist sarcoma center for further management may be required. PMID:27155927

  14. Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Fong, Ashley H; Romero-López, Mónica; Heylman, Christopher M; Keating, Mark; Tran, David; Sobrino, Agua; Tran, Anh Q; Pham, Hiep H; Fimbres, Cristhian; Gershon, Paul D; Botvinick, Elliot L; George, Steven C; Hughes, Christopher C W

    2016-08-01

    Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation, as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold, compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin, and CASQ2. Consistent with this, we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine, likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together, these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease. PMID:27392582

  15. Adult Bone Marrow-Derived Stem Cells in Muscle Connective Tissue and Satellite Cell Niches

    PubMed Central

    Dreyfus, Patrick A.; Chretien, Fabrice; Chazaud, Bénédicte; Kirova, Youlia; Caramelle, Philippe; Garcia, Luis; Butler-Browne, Gillian; Gherardi, Romain K.

    2004-01-01

    Skeletal muscle includes satellite cells, which reside beneath the muscle fiber basal lamina and mainly represent committed myogenic precursor cells, and multipotent stem cells of unknown origin that are present in muscle connective tissue, express the stem cell markers Sca-1 and CD34, and can differentiate into different cell types. We tracked bone marrow (BM)-derived stem cells in both muscle connective tissue and satellite cell niches of irradiated mice transplanted with green fluorescent protein (GFP)-expressing BM cells. An increasing number of GFP+ mononucleated cells, located both inside and outside of the muscle fiber basal lamina, were observed 1, 3, and 6 months after transplantation. Sublaminal cells expressed unambiguous satellite cell markers (M-cadherin, Pax7, NCAM) and fused into scattered GFP+ muscle fibers. In muscle connective tissue there were GFP+ cells located close to blood vessels that expressed the ScaI or CD34 stem-cell antigens. The rate of settlement of extra- and intralaminal compartments by BM-derived cells was compatible with the view that extralaminal cells constitute a reservoir of satellite cells. We conclude that both muscle satellite cells and stem cell marker-expressing cells located in muscle connective tissue can derive from BM in adulthood. PMID:14982831

  16. Wnt/Catenin Signaling in Adult Stem Cell Physiology and Disease

    PubMed Central

    Ring, Alexander; Kim, Yong-Mi

    2014-01-01

    Wnt signaling plays an important role in development and disease. In this review we focus on the role of the canonical Wnt signaling pathway in somatic stem cell biology and its critical role in tissue homeostasis. We present current knowledge how Wnt/β-catenin signaling affects tissue stem cell behavior in various organ systems, including the gut, mammary gland, the hematopoietic and nervous system. We discuss evidence that canonical Wnt signaling can both maintain potency and an undifferentiated state as well as cause differentiation in somatic stem cells, depending on the cellular and environmental context. Based on studies by our lab and others, we will attempt to explain the dichotomous behavior of this signaling pathway in determining cell fate decisions and put special emphasis on the interaction of β-catenin with two highly homologous co-activator proteins, CBP and p300, to shed light on the their differential role in the outcome of Wnt/β-catenin signaling. Furthermore, we review current knowledge regarding the aberrant regulation of Wnt/β-catenin signaling in cancer biology, particularly its pivotal role in the context of cancer stem cells. Finally, we discuss data demonstrating that small molecule modulators of the β-catenin/co-activator interaction can be used to shift the balance between undifferentiated proliferation and differentiation, which potentially presents a promising therapeutic approach to stem cell based disease mechanisms. PMID:24825509

  17. Adult stem cells from the hyaluronic acid-rich node and duct system differentiate into neuronal cells and repair brain injury.

    PubMed

    Lee, Seung J; Park, Sang H; Kim, Yu I; Hwang, Sunhee; Kwon, Patrick M; Han, In S; Kwon, Byoung S

    2014-12-01

    The existence of a hyaluronic acid-rich node and duct system (HAR-NDS) within the lymphatic and blood vessels was demonstrated previously. The HAR-NDS was enriched with small (3.0-5.0 μm in diameter), adult stem cells with properties similar to those of the very small embryonic-like stem cells (VSELs). Sca-1(+)Lin(-)CD45(-) cells were enriched approximately 100-fold in the intravascular HAR-NDS compared with the bone marrow. We named these adult stem cells "node and duct stem cells (NDSCs)." NDSCs formed colonies on C2C12 feeder layers, were positive for fetal alkaline phosphatase, and could be subcultured on the feeder layers. NDSCs were Oct4(+)Nanog(+)SSEA-1(+)Sox2(+), while VSELs were Oct4(+)Nanog(+)SSEA-1(+)Sox2(-). NDSCs had higher sphere-forming efficiency and proliferative potential than VSELs, and they were found to differentiate into neuronal cells in vitro. Injection of NDSCs into mice partially repaired ischemic brain damage. Thus, we report the discovery of potential adult stem cells that may be involved in tissue regeneration. The intravascular HAR-NDS may serve as a route that delivers these stem cells to their target tissues. PMID:25027245

  18. Adult mesenchymal stem cells in neural regeneration and repair: Current advances and future prospects (Review).

    PubMed

    Trzaska, Katarzyna A; Castillo, Marianne D; Rameshwar, Pranela

    2008-01-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine as they can be easily isolated from bone marrow (BM) aspirates and expanded in culture while maintaining their 'stemness'. In addition to differentiating into mesodermal cells, MSCs have shown considerable plasticity and generate ectodermal neurons and glia, which can be used to replace cells damaged by neurological diseases and injuries. These unique stem cells also exhibit immunomodulatory functions and secrete a variety of trophic factors which support regeneration and repair. This review focuses on the therapeutic usage of MSCs for neurodegenerative diseases and traumatic injuries to the nervous system. Animal studies demonstrate great promise for MSC transplantation in neurological disorders. In fact, a few clinical trials have already been initiated and show that MSCs are a safe cellular therapy and have great potential to become a viable treatment for neural disorders in the years to come. PMID:21479411

  19. Adult DRG Stem/Progenitor Cells Generate Pericytes in the Presence of Central Nervous System (CNS) Developmental Cues, and Schwann Cells in Response to CNS Demyelination.

    PubMed

    Vidal, Marie; Maniglier, Madlyne; Deboux, Cyrille; Bachelin, Corinne; Zujovic, Violetta; Baron-Van Evercooren, Anne

    2015-06-01

    It has been proposed that the adult dorsal root ganglia (DRG) harbor neural stem/progenitor cells (NPCs) derived from the neural crest. However, the thorough characterization of their stemness and differentiation plasticity was not addressed. In this study, we investigated adult DRG-NPC stem cell properties overtime, and their fate when ectopically grafted in the central nervous system. We compared them in vitro and in vivo to the well-characterized adult spinal cord-NPCs derived from the same donors. Using micro-dissection and neurosphere cultures, we demonstrate that adult DRG-NPCs have quasi unlimited self-expansion capacities without compromising their tissue specific molecular signature. Moreover, they differentiate into multiple peripheral lineages in vitro. After transplantation, adult DRG-NPCs generate pericytes in the developing forebrain but remyelinating Schwann cells in response to spinal cord demyelination. In addition, we show that axonal and endothelial/astrocytic factors as well astrocytes regulate the fate of adult DRG-NPCs in culture. Although the adult DRG-NPC multipotency is restricted to the neural crest lineage, their dual responsiveness to developmental and lesion cues highlights their impressive adaptive and repair potentials making them valuable targets for regenerative medicine. PMID:25786382

  20. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation.

    PubMed

    Yanger, Kilangsungla; Knigin, David; Zong, Yiwei; Maggs, Lara; Gu, Guoqiang; Akiyama, Haruhiko; Pikarsky, Eli; Stanger, Ben Z

    2014-09-01

    The liver is thought to utilize facultative stem cells, also known as "oval cells" or "atypical ductal cells" (ADCs), for regeneration following various types of injury. However, this notion has been based largely on in vitro studies and transplantation models; where lineage tracing has been used, results have been conflicting and effect sizes have been small. Here, we used genetic and nucleoside analog-based tools to mark and track the origin and contribution of various cell populations to liver regeneration in vivo following several ADC-inducing insults. We report that, contrary to prevailing stem-cell-based models of regeneration, virtually all new hepatocytes come from preexisting hepatocytes. PMID:25130492