Science.gov

Sample records for adv colloid interface

  1. Interface colloidal robotic manipulator

    DOEpatents

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  2. Nonequilibrium interfaces in colloidal fluids

    NASA Astrophysics Data System (ADS)

    Bier, Markus; Arnold, Daniel

    2013-12-01

    The time-dependent structure, interfacial tension, and evaporation of an oversaturated colloid-rich (liquid) phase in contact with an undersaturated colloid-poor (vapor) phase of a colloidal dispersion is investigated theoretically during the early-stage relaxation, where the interface is relaxing towards a local equilibrium state while the bulk phases are still out of equilibrium. Since systems of this type exhibit a clear separation of colloidal and solvent relaxation time scales with typical times of interfacial tension measurements in between, they can be expected to be suitable for analogous experimental studies, too. The major finding is that, irrespective of how much the bulk phases differ from two-phase coexistence, the interfacial structure and the interfacial tension approach those at two-phase coexistence during the early-stage relaxation process. This is a surprising observation since it implies that the relaxation towards global equilibrium of the interface is not following but preceding that of the bulk phases. Scaling forms for the local chemical potential, the flux, and the dissipation rate exhibit qualitatively different leading order contributions depending on whether an equilibrium or a nonequilibrium system is considered. The degree of nonquilibrium between the bulk phases is found to not influence the qualitative relaxation behavior (i.e., the values of power-law exponents), but to determine the quantitative deviation of the observed quantities from their values at two-phase coexistence. Whereas the underlying dynamics differs between colloidal and molecular fluids, the behavior of quantities such as the interfacial tension approaching the equilibrium values during the early-stage relaxation process, during which nonequilibrium conditions of the bulk phases are not changed, can be expected to occur for both types of systems.

  3. Colloids at NAPL-Interfaces

    NASA Astrophysics Data System (ADS)

    Baumann, Thomas; Metz, Christian

    2014-05-01

    Non-aqueous phase liquids in subsurface are relevant in the scope of contaminated sites as well as for enhanced oil recovery. In both cases colloids and engineered nanoparticles are applied to increase the efficiency of NAPL removal. Particle tracking experiments using fluoresecent latex beads and opaque particles have been run in micromodels mimicking the pore structure of subsurface media. The results show that the interface between NAPL and water is highly dynamic, especially in its early stage. There is a distinct circular flow pattern at the interface, effectively increasing the interfacial area. Concentration gradients measured with Raman Microspectrometry at low Peclet numbers suggest that the mass transfer of dissolved contaminants from the NAPL into the water is highly affected by the interface dynamics. On the other hand the interfaces themselves are less accessible, which has implications for the remediation of contaminated sites.

  4. Colloidal dynamics near an interface

    NASA Astrophysics Data System (ADS)

    Mani, Madhav; Manoharan, Vinothan; Brenner, Michael; Kaz, David; McGorty, Ryan

    2010-11-01

    Although the equilibrium state of a colloidal particle at an interface is well understood, the dynamics associated with the approach to equilibrium is not. Recent high-resolution experiments have shown that the dynamics are richer than expected. This part of the study focuses on the evolution of the system after the initiation of a contact-line. We model the dynamics associated with the three degrees of motion in this regime, the center of mass (c.o.m.) of the colloid, the location of the contact-line and the dynamic contact-angle. Following Nikolov et al. (Journal of Colloid and Interface Science - 112,1,1986), we derive the statements of force balance by taking variations of an energy functional. Appealing to a balance of power we are able to derive the dynamical laws. Associated with the degrees of motion are three modes of dissipation corresponding to a moving c.o.m., a moving contact-line and an evolving contact angle. We derive an asymptotically valid model for the system, which we integrate numerically and compare to experiments.

  5. Gold Nanocups: Colloidal Gold Nanocups with Orientation-Dependent Plasmonic Properties (Adv. Mater. 30/2016).

    PubMed

    Jiang, Ruibin; Qin, Feng; Liu, Yejing; Ling, Xing Yi; Guo, Jun; Tang, Minghua; Cheng, Si; Wang, Jianfang

    2016-08-01

    On page 6322, J. F. Wang and co-workers report a wet-chemistry method for the preparation of colloidal Au nanocups and their plasmonic properties. The Au nanocups are prepared through single-vertex-initiated Au deposition on PbS nano-octahedrons and subsequent selective dissolution of PbS. Owing to the orientation-dependent coupling strengths, the obtained Au nanocups display orientation-dependent plasmonic properties and Raman enhancements when deposited on substrates. PMID:27493069

  6. Does colloid shape affect detachment of colloids by a moving air-water interface?

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (<1.5%). Among the different colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  7. Tuning Colloid-Interface Interactions by Salt Partitioning.

    PubMed

    Everts, J C; Samin, S; van Roij, R

    2016-08-26

    We show that the interaction of an oil-dispersed colloidal particle with an oil-water interface is highly tunable from attractive to repulsive, either by varying the sign of the colloidal charge via charge regulation or by varying the difference in hydrophilicity between the dissolved cations and anions. In addition, we investigate the yet unexplored interplay between the self-regulated colloidal surface charge distribution with the planar double layer across the oil-water interface and the spherical one around the colloid. Our findings explain recent experiments and have direct relevance for tunable Pickering emulsions. PMID:27610887

  8. Tuning Colloid-Interface Interactions by Salt Partitioning

    NASA Astrophysics Data System (ADS)

    Everts, J. C.; Samin, S.; van Roij, R.

    2016-08-01

    We show that the interaction of an oil-dispersed colloidal particle with an oil-water interface is highly tunable from attractive to repulsive, either by varying the sign of the colloidal charge via charge regulation or by varying the difference in hydrophilicity between the dissolved cations and anions. In addition, we investigate the yet unexplored interplay between the self-regulated colloidal surface charge distribution with the planar double layer across the oil-water interface and the spherical one around the colloid. Our findings explain recent experiments and have direct relevance for tunable Pickering emulsions.

  9. A continuum model of colloid-stabilized interfaces

    NASA Astrophysics Data System (ADS)

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2011-06-01

    Colloids that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. Examples include bicontinuous interfacially jammed emulsion gels (bijels), which were proposed in this study by Stratford et al. [Science 309, 2198 (2005)] as a hypothetical new class of soft materials in which interpenetrating, continuous domains of two immiscible viscous fluids are maintained in a rigid state by a jammed layer of colloidal particles at their interface. We develop a continuum model for such a system that is capable of simulating the long-time evolution. A Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase flow system is combined with a surface phase-field-crystal model for the microscopic colloidal system along the interface. The presence of colloids introduces elastic forces at the interface between the two immiscible fluid phases. An adaptive finite element method is used to solve the model numerically. Using a variety of flow configurations in two dimensions, we demonstrate that as colloids jam on the interface and the interface crystallizes, the elastic force may be strong enough to make the interface sufficiently rigid to resist external forces, such as an applied shear flow, as well as surface tension induced coarsening in bicontinuous structures.

  10. A continuum model of colloid-stabilized interfaces

    NASA Astrophysics Data System (ADS)

    Lowengrub, John

    2012-02-01

    Colloids that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. Examples include bicontinuous interfacially jammed emulsion gels (``bijels''), which were proposed in Stratford et al. (Science (2005) 309:2198) as a hypothetical new class of soft materials in which interpenetrating, continuous domains of two immiscible viscous fluids are maintained in a rigid state, by a jammed layer of colloidal particles at their interface. We develop a continuum model for such a system that is capable of simulating the long-time evolution. A Navier-Stokes- Cahn-Hilliard model for the macroscopic two-phase flow system is combined with a surface Phase- Field-Crystal model for the microscopic colloidal system along the interface. The presence of colloids introduces elastic forces at the interface between the two immiscible fluid phases. An adaptive finite element method is used to solve the model numerically. Using a variety of flow configurations, we demonstrate that as colloids jam on the interface and the interface crystallizes, the elastic force may be strong enough to make the interface sufficiently rigid to resist external forces, such as an applied shear flow, as well as surface tension induced coarsening in bicontinuous structures.

  11. Tissue Boundaries: Mimicking Tissue Boundaries by Sharp Multiparameter Matrix Interfaces (Adv. Healthcare Mater. 15/2016).

    PubMed

    Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Pompe, Tilo

    2016-08-01

    Engineering interfaces of extracellular compartments mimicking native tissues is key to study cell behavior in a physiologically relevant context and for a successful translation of these new biomaterials engineering principles in regenerative and therapeutic applications. Tilo Pompe and co-workers demonstrate a strategy to engineer multiparameter matrix interfaces using a sequential reconstitution of two well-defined Collagen I based matrices on page 1861. Such matrix interfaces trigger cell migration directionality normal to the interface plane in dependence on matrix pore size. PMID:27511951

  12. Charge-Controlled Colloids on Liquid-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Kunz, Daniel A.; Reck, Bernd; Manoharan, Vinothan N.

    2014-03-01

    The tendency of colloidal particles to stabilize interfaces has been exploited for many years to generate Pickering emulsions with a variety of industrial applications. However, the exact stabilization mechanism and its dependence on the surface properties of the colloidal particles are not yet fully understood. We provide new interfacial studies on the nonequilibrium dynamics of a colloidal system with tunable surface charge density. We push individual sub-micron colloidal particles towards an oil-water interface and track their motion in three-dimensions using holographic microscopy to examine the influence of zeta potential on the dynamics of the system. This project was funded by the BASF Advanced Research Initiative, BASF SE, Germany.

  13. Ultrafast desorption of colloidal particles from fluid interfaces

    PubMed Central

    Poulichet, Vincent; Garbin, Valeria

    2015-01-01

    The self-assembly of solid particles at fluid–fluid interfaces is widely exploited to stabilize emulsions and foams, and in materials synthesis. The self-assembly mechanism is very robust owing to the large capillary energy associated with particle adsorption, of the order of millions of times the thermal energy for micrometer-sized colloids. The microstructure of the interfacial colloid monolayer can also favor stability, for instance in the case of particle-stabilized bubbles, which can be indefinitely stable against dissolution due to jamming of the colloid monolayer. As a result, significant challenges arise when destabilization and particle removal are a requirement. Here we demonstrate ultrafast desorption of colloid monolayers from the interface of particle-stabilized bubbles. We drive the bubbles into periodic compression–expansion using ultrasound waves, causing significant deformation and microstructural changes in the particle monolayer. Using high-speed microscopy we uncover different particle expulsion scenarios depending on the mode of bubble deformation, including highly directional patterns of particle release during shape oscillations. Complete removal of colloid monolayers from bubbles is achieved in under a millisecond. Our method should find a broad range of applications, from nanoparticle recycling in sustainable processes to programmable particle delivery in lab-on-a-chip applications. PMID:25922529

  14. Stokesian Dynamic Simulations of Colloid Assembly at a Fluid Interface

    NASA Astrophysics Data System (ADS)

    Dani, Archit; Maldarelli, Charles

    2015-11-01

    The collective dynamics and self-assembly of colloids floating at a gas/liquid or a liquid/liquid interface is a balance between deterministic lateral interaction forces, e.g. capillary attraction and dipolar electrostatic repulsion if the particles are charged, viscous resistance to colloid motion along the surface and thermal fluctuations. As the colloid size decreases, thermal (Brownian) forces become important and can affect the self assembly into ordered patterns and crystal structures that are the starting point for materials applications. Stokesian dynamics simulations are presented to describe the lateral organization of particles along the surface in Brownian dominated regimes that includes (using a pairwise approximation) capillary attraction and the hydrodynamic interaction between particles (incorporating the effect of the particle immersion depth) and thermal fluctuations. Clustering, fractal growth and particle ordering are observed at critically large values of the Peclet numbers, while smaller values yield states in which particles remain uncorrelated in space and more widely separated.

  15. Detachment of colloids from a solid surface by a moving air-water interface.

    PubMed

    Sharma, Prabhakar; Flury, Markus; Zhou, Jun

    2008-10-01

    Colloid attachment to liquid-gas interfaces is an important process used in industrial applications to separate suspended colloids from the fluid phase. Moving gas bubbles can also be used to remove colloidal dust from surfaces. Similarly, moving liquid-gas interfaces lead to colloid mobilization in the natural subsurface environment, such as in soils and sediments. The objective of this study was to quantify the effect of moving air-water interfaces on the detachment of colloids deposited on an air-dried glass surface, as a function of colloidal properties and interface velocity. We selected four types of polystyrene colloids (positive and negative surface charge, hydrophilic and hydrophobic). The colloids were deposited on clean microscope glass slides using a flow-through deposition chamber. Air-water interfaces were passed over the colloid-deposited glass slides, and we varied the number of passages and the interface velocity. The amounts of colloids deposited on the glass slides were visualized using confocal laser scanning microscopy and quantified by image analysis. Our results showed that colloids attached under unfavorable conditions were removed in significantly greater amounts than those attached under favorable conditions. Hydrophobic colloids were detached more than hydrophilic colloids. The effect of the air-water interface on colloid removal was most pronounced for the first two passages of the air-water interface. Subsequent passages of air-water interfaces over the colloid-deposited glass slides did not cause significant additional colloid removal. Increasing interface velocity led to decreased colloid removal. The force balances, calculated from theory, supported the experimental findings, and highlight the dominance of detachment forces (surface tension forces) over the attachment forces (DLVO forces).

  16. Detachment of deposited colloids by advancing and receding air-water interfaces.

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B

    2011-08-16

    Moving air-water interfaces can detach colloidal particles from stationary surfaces. The objective of this study was to quantify the effects of advancing and receding air-water interfaces on colloid detachment as a function of interface velocity. We deposited fluorescent, negatively charged, carboxylate-modified polystyrene colloids (diameter of 1 μm) into a cylindrical glass channel. The colloids were hydrophilic with an advancing air-water contact angle of 60° and a receding contact angle of 40°. After colloid deposition, two air bubbles were sequentially introduced into the glass channel and passed through the channel at different velocities (0.5, 7.7, 72, 982, and 10,800 cm/h). The passage of the bubbles represented a sequence of receding and advancing air-water interfaces. Colloids remaining in the glass channel after each interface passage were visualized with confocal microscopy and quantified by image analysis. The advancing air-water interface was significantly more effective in detaching colloids from the glass surface than the receding interface. Most of the colloids were detached during the first passage of the advancing air-water interface, while the subsequent interface passages did not remove significant amounts of colloids. Forces acting on the colloids calculated from theory corroborate our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface movement were stronger than during the receding movement. Theory indicates that, for hydrophilic colloids, the advancing interface movement generally exerts a stronger detachment force than the receding, except when the hysteresis of the colloid-air-water contact angle is small and that of the channel-air-water contact angle is large.

  17. Phases transitions and interfaces in temperature-sensitive colloidal systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Schall, Peter

    2013-03-01

    Colloids are widely used because of their exceptional properties. Beside their own applications in food, petrol, cosmetics and drug industries, photonic, optical filters and chemical sensor, they are also known as powerful model systems to study molecular phase behavior. Here, we examine both aspects of colloids using temperature-sensitive colloidal systems to fully investigate colloidal phase behavior and colloidal assembly.

  18. Colloidal crystal formation at the "Nafion-water" interface.

    PubMed

    Bunkin, Nikolay F; Gorelik, Vladimir S; Kozlov, Valeriy A; Shkirin, Alexey V; Suyazov, Nikolay V

    2014-03-27

    In our recent work [Bunkin et al. Water 2013, 4, 129-154] it was first obtained that the water layer, having a size of several tens of micrometers and being adjacent to the swollen Nafion interface, is characterized by enhanced optical density; the refractive index of water at the interface is 1.46. Furthermore, the birefringence effect was observed in this layer. To explain these results, it has been hypothesized that because of "disentangling" of charged polymer chains from the Nafion surface toward the bulk of water, a photonic crystal close to the surface is formed [Bunkin et al. Water 2013, 4, 129-154]. In this paper, we describe experiments with laser-stimulated luminescence from dry and swollen Nafion. It was shown in the experiment with dry Nafion that the apparatus function of our experimental setup (Green's function) is well-described by a Gaussian profile. It was obtained that a highly concentrated colloidal suspension of Nafion particles with a steep spatial boundary is formed in the water layer adjacent to the interface. The volume density of the Nafion particles as a function of the distance from the Nafion interface was found. These findings can be considered indirect confirmation of the previously formulated photonic crystal hypothesis [Bunkin et al. Water 2013, 4, 129-154]. PMID:24568638

  19. Colloidal crystal formation at the "Nafion-water" interface.

    PubMed

    Bunkin, Nikolay F; Gorelik, Vladimir S; Kozlov, Valeriy A; Shkirin, Alexey V; Suyazov, Nikolay V

    2014-03-27

    In our recent work [Bunkin et al. Water 2013, 4, 129-154] it was first obtained that the water layer, having a size of several tens of micrometers and being adjacent to the swollen Nafion interface, is characterized by enhanced optical density; the refractive index of water at the interface is 1.46. Furthermore, the birefringence effect was observed in this layer. To explain these results, it has been hypothesized that because of "disentangling" of charged polymer chains from the Nafion surface toward the bulk of water, a photonic crystal close to the surface is formed [Bunkin et al. Water 2013, 4, 129-154]. In this paper, we describe experiments with laser-stimulated luminescence from dry and swollen Nafion. It was shown in the experiment with dry Nafion that the apparatus function of our experimental setup (Green's function) is well-described by a Gaussian profile. It was obtained that a highly concentrated colloidal suspension of Nafion particles with a steep spatial boundary is formed in the water layer adjacent to the interface. The volume density of the Nafion particles as a function of the distance from the Nafion interface was found. These findings can be considered indirect confirmation of the previously formulated photonic crystal hypothesis [Bunkin et al. Water 2013, 4, 129-154].

  20. Fabrication of colloidal photonic crystal heterostructures free of interface imperfection based on solvent vapor annealing.

    PubMed

    Liu, Xiaomiao; Zhao, Duobiao; Geng, Chong; Zhang, Lijing; Tan, Tianya; Hu, Mingzhe; Yan, Qingfeng

    2014-11-15

    We describe the transformation of a colloidal photonic crystal into a photonic crystal heterostructure. It was achieved by annealing a polystyrene multilayer colloidal photonic crystal partially immersed in water using a solvent vapor. The floating polystyrene colloidal photonic crystal was divided into two parts by the liquid level, which can be manipulated by the addition of ethanol into the water. The top part protruding out of the water experienced a uniform lattice stretching upon exposure to the solvent vapor. The bottom part that stayed immersed in the water remained unaffected due to the protection by the water. The inconsistent behaviors of the two parts resulted in the formation of a colloidal photonic crystal heterostructure. Such a heterostructure was free of interface imperfection since it was a direct descendant of the original colloidal crystal. Meanwhile, optical measurements demonstrated the presence of a wider photonic band gap along the crystallographic [111] direction in these photonic crystal heterostructures compared with the original colloidal photonic crystals.

  1. Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability

    PubMed Central

    Wang, Lilin; You, Jiaxue; Wang, Zhijun; Wang, Jincheng; Lin, Xin

    2016-01-01

    Freezing colloidal suspensions widely exists in nature and industry. Interface instability has attracted much attention for the understandings of the pattern formation in freezing colloidal suspensions. However, the interface instability modes, the origin of the ice banding or ice lamellae, are still unclear. In-situ experimental observation of the onset of interface instability remains absent up to now. Here, by directly imaging the initial transient stage of planar interface instability in directional freezing colloidal suspensions, we proposed three interface instability modes, Mullins-Sekerka instability, global split instability and local split instability. The intrinsic mechanism of the instability modes comes from the competition of the solute boundary layer and the particle boundary layer, which only can be revealed from the initial transient stage of planar instability in directional freezing. PMID:26996630

  2. Effective interaction between a colloid and a soft interface near criticality

    SciTech Connect

    Law, A. D. Harnau, L. Tröndle, M. Dietrich, S.

    2014-10-07

    Within mean-field theory we determine the universal scaling function for the effective force acting on a single colloid located near the interface between two coexisting liquid phases of a binary liquid mixture close to its critical consolute point. This is the first study of critical Casimir forces emerging from the confinement of a fluctuating medium by at least one shape responsive, soft interface, instead of by rigid walls only as studied previously. For this specific system, our semi-analytical calculation illustrates that knowledge of the colloid-induced, deformed shape of the interface allows one to accurately describe the effective interaction potential between the colloid and the interface. Moreover, our analysis demonstrates that the critical Casimir force involving a deformable interface is accurately described by a universal scaling function, the shape of which differs from that one for rigid walls.

  3. Physical ageing of the contact line on colloidal particles at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Kaz, David M.; McGorty, Ryan; Mani, Madhav; Brenner, Michael P.; Manoharan, Vinothan N.

    2012-02-01

    Young’s law predicts that a colloidal sphere in equilibrium with a liquid interface will straddle the two fluids, its height above the interface defined by an equilibrium contact angle. This has been used to explain why colloids often bind to liquid interfaces, and has been exploited in emulsification, water purification, mineral recovery, encapsulation and the making of nanostructured materials. However, little is known about the dynamics of binding. Here we show that the adsorption of polystyrene microspheres to a water/oil interface is characterized by a sudden breach and an unexpectedly slow relaxation. The relaxation appears logarithmic in time, indicating that complete equilibration may take months. Surprisingly, viscous dissipation appears to play little role. Instead, the observed dynamics, which bear strong resemblance to ageing in glassy systems, agree well with a model describing activated hopping of the contact line over nanoscale surface heterogeneities. These results may provide clues to longstanding questions on colloidal interactions at an interface.

  4. In situ observation the interface undercooling of freezing colloidal suspensions with differential visualization method

    NASA Astrophysics Data System (ADS)

    You, Jiaxue; Wang, Lilin; Wang, Zhijun; Li, Junjie; Wang, Jincheng; Lin, Xin; Huang, Weidong

    2015-08-01

    Interface undercooling is one of the most significant parameters in the solidification of colloidal suspensions. However, quantitative measurement of interface undercooling of colloidal suspensions is still a challenge. Here, a new experimental facility and gauging method are designed to directly reveal the interface undercooling on both static and dynamic cases. The interface undercooling is visualized through the discrepancy of solid/liquid interface positions between the suspensions and its solvent in a thermal gradient apparatus. The resolutions of the experimental facility and gauging method are proved to be 0.01 K. The high precision of the method comes from the principle of converting temperature measurement into distance measurement in the thermal gradient platform. Moreover, both static and dynamic interface undercoolings can be quantitatively measured.

  5. Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature.

    PubMed

    Ershov, Dmitry; Sprakel, Joris; Appel, Jeroen; Cohen Stuart, Martien A; van der Gucht, Jasper

    2013-06-01

    Objects floating at a liquid interface, such as breakfast cereals floating in a bowl of milk or bubbles at the surface of a soft drink, clump together as a result of capillary attraction. This attraction arises from deformation of the liquid interface due to gravitational forces; these deformations cause excess surface area that can be reduced if the particles move closer together. For micrometer-sized colloids, however, the gravitational force is too small to produce significant interfacial deformations, so capillary forces between spherical colloids at a flat interface are negligible. Here, we show that this is different when the confining liquid interface has a finite curvature that is also anisotropic. In that case, the condition of constant contact angle along the three-phase contact line can only be satisfied when the interface is deformed. We present experiments and numerical calculations that demonstrate how this leads to quadrupolar capillary interactions between the particles, giving rise to organization into regular square lattices. We demonstrate that the strength of the governing anisotropic interactions can be rescaled with the deviatoric curvature alone, irrespective of the exact shape of the liquid interface. Our results suggest that anisotropic interactions can easily be induced between isotropic colloids through tailoring of the interfacial curvature.

  6. Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature.

    PubMed

    Ershov, Dmitry; Sprakel, Joris; Appel, Jeroen; Cohen Stuart, Martien A; van der Gucht, Jasper

    2013-06-01

    Objects floating at a liquid interface, such as breakfast cereals floating in a bowl of milk or bubbles at the surface of a soft drink, clump together as a result of capillary attraction. This attraction arises from deformation of the liquid interface due to gravitational forces; these deformations cause excess surface area that can be reduced if the particles move closer together. For micrometer-sized colloids, however, the gravitational force is too small to produce significant interfacial deformations, so capillary forces between spherical colloids at a flat interface are negligible. Here, we show that this is different when the confining liquid interface has a finite curvature that is also anisotropic. In that case, the condition of constant contact angle along the three-phase contact line can only be satisfied when the interface is deformed. We present experiments and numerical calculations that demonstrate how this leads to quadrupolar capillary interactions between the particles, giving rise to organization into regular square lattices. We demonstrate that the strength of the governing anisotropic interactions can be rescaled with the deviatoric curvature alone, irrespective of the exact shape of the liquid interface. Our results suggest that anisotropic interactions can easily be induced between isotropic colloids through tailoring of the interfacial curvature. PMID:23690591

  7. Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature

    PubMed Central

    Ershov, Dmitry; Sprakel, Joris; Appel, Jeroen; Cohen Stuart, Martien A.; van der Gucht, Jasper

    2013-01-01

    Objects floating at a liquid interface, such as breakfast cereals floating in a bowl of milk or bubbles at the surface of a soft drink, clump together as a result of capillary attraction. This attraction arises from deformation of the liquid interface due to gravitational forces; these deformations cause excess surface area that can be reduced if the particles move closer together. For micrometer-sized colloids, however, the gravitational force is too small to produce significant interfacial deformations, so capillary forces between spherical colloids at a flat interface are negligible. Here, we show that this is different when the confining liquid interface has a finite curvature that is also anisotropic. In that case, the condition of constant contact angle along the three-phase contact line can only be satisfied when the interface is deformed. We present experiments and numerical calculations that demonstrate how this leads to quadrupolar capillary interactions between the particles, giving rise to organization into regular square lattices. We demonstrate that the strength of the governing anisotropic interactions can be rescaled with the deviatoric curvature alone, irrespective of the exact shape of the liquid interface. Our results suggest that anisotropic interactions can easily be induced between isotropic colloids through tailoring of the interfacial curvature. PMID:23690591

  8. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    NASA Astrophysics Data System (ADS)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls

  9. Probing the PEDOT:PSS/cell interface with conductive colloidal probe AFM-SECM

    NASA Astrophysics Data System (ADS)

    Knittel, P.; Zhang, H.; Kranz, C.; Wallace, G. G.; Higgins, M. J.

    2016-02-01

    Conductive colloidal probe Atomic Force-Scanning Electrochemical Microscopy (AFM-SECM) is a new approach, which employs electrically insulated AFM probes except for a gold-coated colloid located at the end of the cantilever. Hence, force measurements can be performed while biasing the conductive colloid under physiological conditions. Moreover, such colloids can be modified by electrochemical polymerization resulting, e.g. in conductive polymer-coated spheres, which in addition may be loaded with specific dopants. In contrast to other AFM-based single cell force spectroscopy measurements, these probes allow adhesion measurements at the cell-biomaterial interface on multiple cells in a rapid manner while the properties of the polymer can be changed by applying a bias. In addition, spatially resolved electrochemical information e.g., oxygen reduction can be obtained simultaneously. Conductive colloid AFM-SECM probes modified with poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) are used for single cell force measurements in mouse fibroblasts and single cell interactions are investigated as a function of the applied potential.Conductive colloidal probe Atomic Force-Scanning Electrochemical Microscopy (AFM-SECM) is a new approach, which employs electrically insulated AFM probes except for a gold-coated colloid located at the end of the cantilever. Hence, force measurements can be performed while biasing the conductive colloid under physiological conditions. Moreover, such colloids can be modified by electrochemical polymerization resulting, e.g. in conductive polymer-coated spheres, which in addition may be loaded with specific dopants. In contrast to other AFM-based single cell force spectroscopy measurements, these probes allow adhesion measurements at the cell-biomaterial interface on multiple cells in a rapid manner while the properties of the polymer can be changed by applying a bias. In addition, spatially resolved electrochemical

  10. An on-chip micromagnet frictionometer based on magnetically driven colloids for nano-bio interfaces.

    PubMed

    Hu, Xinghao; Goudu, Sandhya Rani; Torati, Sri Ramulu; Lim, Byeonghwa; Kim, Kunwoo; Kim, CheolGi

    2016-09-21

    A novel method based on remotely controlled magnetic forces of bio-functionalized superparamagnetic colloids using micromagnet arrays was devised to measure frictional force at the sub-picoNewton (pN) scale for bio-nano-/micro-electromechanical system (bio-NEMS/MEMS) interfaces in liquid. The circumferential motion of the colloids with phase-locked angles around the periphery of the micromagnets under an in-plane rotating magnetic field was governed by a balance between tangential magnetic force and drag force, which consists of viscous and frictional forces. A model correlating the phase-locked angles of the steady colloid rotation was formulated and validated by measuring the angles under controlled magnetic forces. Hence, the frictional forces on the streptavidin/Teflon interface between the colloids and the micromagnet arrays were obtained using the magnetic forces at the phase-locked angles. The friction coefficient for the streptavidin/Teflon interface was estimated to be approximately 0.036 regardless of both vertical force in the range of a few hundred pN and velocity in the range of a few tenths of μm s(-1). PMID:27456049

  11. An on-chip micromagnet frictionometer based on magnetically driven colloids for nano-bio interfaces.

    PubMed

    Hu, Xinghao; Goudu, Sandhya Rani; Torati, Sri Ramulu; Lim, Byeonghwa; Kim, Kunwoo; Kim, CheolGi

    2016-09-21

    A novel method based on remotely controlled magnetic forces of bio-functionalized superparamagnetic colloids using micromagnet arrays was devised to measure frictional force at the sub-picoNewton (pN) scale for bio-nano-/micro-electromechanical system (bio-NEMS/MEMS) interfaces in liquid. The circumferential motion of the colloids with phase-locked angles around the periphery of the micromagnets under an in-plane rotating magnetic field was governed by a balance between tangential magnetic force and drag force, which consists of viscous and frictional forces. A model correlating the phase-locked angles of the steady colloid rotation was formulated and validated by measuring the angles under controlled magnetic forces. Hence, the frictional forces on the streptavidin/Teflon interface between the colloids and the micromagnet arrays were obtained using the magnetic forces at the phase-locked angles. The friction coefficient for the streptavidin/Teflon interface was estimated to be approximately 0.036 regardless of both vertical force in the range of a few hundred pN and velocity in the range of a few tenths of μm s(-1).

  12. Charging and discharging of single colloidal particles at oil/water interfaces

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Xing, Xiaochen; Li, Ye; Ngai, To; Jin, Fan

    2014-05-01

    The physical behavior of solid colloids trapped at a fluid-fluid interface remains in itself an open fundamental issue. Here, we show that the gradients of surface tension can induce particles to jet towards the oil/water interface with velocities as high as ~ 60 mm/s when particle suspensions come in contact with the interface. We hypothesize that rubbing between the particles and oil lead to the spontaneous accumulation of negative charges on the hemisphere of those interfacial particles that contact the oil phase by means of triboelectrification. The charging process is highly dependent on the sliding distances, and gives rise to long-ranged repulsions that protect interfacial particles from coagulating at the interface by the presence of electrolyte. These triboelectric charges, however, are compensated within several hours, which affect the stability of interfacial particles. Importantly, by charging different kinds of colloidal particles using various spreading solvents and dispersion methods, we have demonstrated that charging and discharging of single colloidal particles at oil/water interfaces impacts a broad range of dynamical behavior.

  13. Charging and discharging of single colloidal particles at oil/water interfaces

    PubMed Central

    Gao, Peng; Xing, XiaoChen; Li, Ye; Ngai, To; Jin, Fan

    2014-01-01

    The physical behavior of solid colloids trapped at a fluid-fluid interface remains in itself an open fundamental issue. Here, we show that the gradients of surface tension can induce particles to jet towards the oil/water interface with velocities as high as ≈ 60 mm/s when particle suspensions come in contact with the interface. We hypothesize that rubbing between the particles and oil lead to the spontaneous accumulation of negative charges on the hemisphere of those interfacial particles that contact the oil phase by means of triboelectrification. The charging process is highly dependent on the sliding distances, and gives rise to long-ranged repulsions that protect interfacial particles from coagulating at the interface by the presence of electrolyte. These triboelectric charges, however, are compensated within several hours, which affect the stability of interfacial particles. Importantly, by charging different kinds of colloidal particles using various spreading solvents and dispersion methods, we have demonstrated that charging and discharging of single colloidal particles at oil/water interfaces impacts a broad range of dynamical behavior. PMID:24786477

  14. Dynamics of non-spherical colloidal particles near and at oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Anna; Dimiduk, Thomas G.; Fung, Jerome; Chaudhary, Kundan; Lewis, Jennifer A.; Razavi, Sepideh; Kretzschmar, Ilona; Manoharan, Vinothan N.

    2014-03-01

    Whereas much is known about how spherical colloidal particles interact with and at oil-water interfaces, not much is known about their non-spherical counterparts. The rotation of non-spherically symmetric particles adds extra degrees of freedom to how such particles interact with each other and the interface, so to study their three-dimensional dynamics we must first be able to image the rotation which has so far only been possible in viscous fluids or for particles with large aspect ratios. Here we track both the three-dimensional translation and the rotation of non-spherical colloidal particles at high speeds using the discrete dipole approximation in conjunction with digital holographic microscopy. We study the dynamics of such particles at an oil-water interface to determine interactions and dynamics prior to or after attachment. We aim to connect these measurements to the formation and stability of Pickering emulsions.

  15. Squares of spheres: capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature

    NASA Astrophysics Data System (ADS)

    van der Gucht, Jasper; Ershov, Dmitry

    2014-03-01

    Objects floating at a liquid interface, such as breakfast cereals floating in a bowl of milk or bubbles at the surface of a soft drink, clump together in space-saving hexagons to minimize the disruption of the liquid interface. Micrometer-sized colloidal particles embedded in a liquid interface normally do not disrupt the interface, so that such clustering does not occur. Here, we show that this is different when the interface has a curvature that is anisotropic. We find that in this case the condition of constant contact angle along the three-phase contact line can only be satisfied when the interface is deformed. We present experiments and numerical calculations that demonstrate how this leads to quadrupolar capillary interactions between the particles, giving rise to organization into regular square lattices. We demonstrate that the strength of the governing anisotropic interactions can be rescaled with the deviatoric curvature alone, irrespective of the exact shape of the liquid interface. Our results suggest that anisotropic interactions can easily be induced between isotropic colloids through tailoring of the interfacial curvature.

  16. Active colloids at liquid-liquid interfaces: dynamic self-assembly and functionality

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Aranson, Igor

    2012-02-01

    Self-assembled materials must actively consume energy and remain out of equilibrium in order to support structural complexity and functional diversity. Colloids of interacting particles suspended at liquid-liquid interfaces and maintained out of equilibrium by external alternating electromagnetic fields develop nontrivial collective dynamics and self-assembly. We use ferromagnetic colloidal micro-particles (so the magnetic moment is fixed in each particle and interactions between colloids is highly anisotropic and directional) suspended over an interface of two immiscible liquids and energized by vertical alternating magnetic fields to demonstrate novel dynamic and active self-assembled structures (``asters'') which are not accessible through thermodynamic assembly. Structures are attributed to the interplay between surface waves, generated at the liquid/liquid interface by the collective response of magnetic microparticles to the alternating magnetic field, and hydrodynamic fields induced in the boundary layers of both liquids forming the interface. Two types of magnetic order are reported. We demonstrate that asters develop self-propulsion in the presence of a small in-plane dc magnetic field. We show that asters can capture, transport, and position target microparticles.

  17. Polystyrene colloidal crystals: Interface controlled thermal conductivity in an open-porous mesoparticle superstructure.

    PubMed

    Nutz, Fabian A; Ruckdeschel, Pia; Retsch, Markus

    2015-11-01

    Colloidal crystals typically consist of sub-micron sized monodisperse particles, which are densely packed on a face centered cubic lattice. While many properties of this material class have been studied over the past decades, little is known about their thermal transport properties. The high amount of interfaces and their small interparticle contact area should result in efficient thermal insulation. Using laser flash analysis we report for the first time on the temperature dependent thermal conductivity of a freestanding 366 nm polystyrene (PS) colloidal crystal. Macroscopic monoliths of these samples were fabricated by colloidal self-assembly. We demonstrate a very low thermal conductivity κ of 51 mW K(-1) m(-1) (κ of bulk PS∼140 mW K(-1) m(-1)). Remarkably, this low thermal conductivity is reached at a comparatively high density of 750 kg m(-3). It can be further increased by almost 300% upon film formation and loss of the colloidal mesostructure. Additionally, this open porous structure is largely independent of the surrounding atmosphere. This can be rationalized by the small size (∼100 nm) of the pores present within this colloidal crystal.

  18. Entropic wetting and the free isotropic-nematic interface of hard colloidal platelets.

    PubMed

    Reich, Hendrik; Dijkstra, Marjolein; van Roij, René; Schmidt, Matthias

    2007-07-12

    We study bulk and interfacial properties of a model suspension of hard colloidal platelets with continuous orientations and vanishing thickness using both density functional theory, based on either a second virial approach or fundamental measure theory (FMT), and Monte Carlo (MC) simulations. We calculate the bulk equation of state, bulk isotropic-nematic (IN) coexistence, and properties of the (planar) free IN interface and of adsorption at a planar hard wall, where we find complete wetting of the nematic phase at the isotropic-wall interface upon approaching bulk IN coexistence. We investigate in detail the asymptotic decay of correlations at large distances. In all cases, the results from FMT and MC agree quantitatively. Our findings are of direct relevance to understanding interfacial properties of dispersions of colloidal platelets. PMID:17579390

  19. The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots.

    PubMed

    Grisorio, Roberto; Debellis, Doriana; Suranna, Gian Paolo; Gigli, Giuseppe; Giansante, Carlo

    2016-06-01

    Colloidal quantum dots are composed of nanometer-sized crystallites of inorganic semiconductor materials bearing organic molecules at their surface. The organic/inorganic interface markedly affects forms and functions of the quantum dots, therefore its description and control are important for effective application. Herein we demonstrate that archetypal colloidal PbS quantum dots adapt their interface to the surroundings, thus existing in solution phase as equilibrium mixtures with their (metal-)organic ligand and inorganic core components. The interfacial equilibria are dictated by solvent polarity and concentration, show striking size dependence (leading to more stable ligand/core adducts for larger quantum dots), and selectively involve nanocrystal facets. This notion of ligand/core dynamic equilibrium may open novel synthetic paths and refined nanocrystal surface-chemistry strategies.

  20. The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots.

    PubMed

    Grisorio, Roberto; Debellis, Doriana; Suranna, Gian Paolo; Gigli, Giuseppe; Giansante, Carlo

    2016-06-01

    Colloidal quantum dots are composed of nanometer-sized crystallites of inorganic semiconductor materials bearing organic molecules at their surface. The organic/inorganic interface markedly affects forms and functions of the quantum dots, therefore its description and control are important for effective application. Herein we demonstrate that archetypal colloidal PbS quantum dots adapt their interface to the surroundings, thus existing in solution phase as equilibrium mixtures with their (metal-)organic ligand and inorganic core components. The interfacial equilibria are dictated by solvent polarity and concentration, show striking size dependence (leading to more stable ligand/core adducts for larger quantum dots), and selectively involve nanocrystal facets. This notion of ligand/core dynamic equilibrium may open novel synthetic paths and refined nanocrystal surface-chemistry strategies. PMID:27038221

  1. Trapping and assembly of living colloids at water-water interfaces.

    PubMed

    Hann, Sarah D; Goulian, Mark; Lee, Daeyeon; Stebe, Kathleen J

    2015-03-01

    We study the assembly of inert and living colloids in a two-phase water-water system that provides an environment that can sustain bacteria, providing a new structure with rich potential to confine and structure microbial communities. The water-water system, formed via phase separation of a casein and xanthan mixture, forms a 3-D structure of coexisting casein-rich and xanthan-rich phases. Fluorescent labelling and confocal microscopy reveal the attachment of these living colloids, including Escherichia coli and Pseudomonas aeruginosa, at the interface between the two phases. Inert colloids also become trapped at the interfaces, suggesting that the observed attachment can be attributed to capillarity. Over time, these structures coarsen and eventually degrade, illustrating the dynamic nature of these systems. This system lays the foundation for future studies of the interplay of physicochemical properties of the fluid interfaces and bulk phases and microbial responses they provoke to induce complex spatial organization, to study species which occupy distinct niches, and to optimize efficient microbial cross-feeding or protection from competitors.

  2. Concentration-Polarization, Electro-Convection and Colloid Dynamics in Microchannel-Nanochannel Interface Devices

    NASA Astrophysics Data System (ADS)

    Yossifon, Gilad; Leibowitz, Neta; Green, Yoav; Liel, Uri; Schiffbauer, Jarrod; Park, Sinwook

    2014-11-01

    Understanding concentration-polarization (CP) and electroconvection processes along with colloid dynamics in microchannel-nanochannel/membrane interface devices are of particular interest in the field of micro- and nano-fluidics. Our design consists of a nano-slot/permselective membrane bounded by two micro-chambers, wherein we introduce dispersed colloids. Here we report various curios phenomena occurring in these systems. Among them: dielectrophoretic trapping of colloids at the nanoslot entrance in conjunction with the formation of electro-convective instability induced vortices; accumulation of colloids due field-focusing gradient effects within the diffusion layers; depression of the slope in the Warburg branch of the electrochemical impedance spectrum with increasing dc bias voltage as a result of nanochannel net electro-osmotic flow; suppression of the diffusion layer length via AC electrokinetics and its effect on ion transport; anomalous resistance minimum and unique chronopotentiometric signatures due to non-ideal nanochannel permselectivity. All of these stand as examples that highlight the essential differences between fabricated straight nanoslot and permselective membrane systems.

  3. Poisson-Boltzmann study of the effective electrostatic interaction between colloids at an electrolyte interface

    NASA Astrophysics Data System (ADS)

    Majee, Arghya; Bier, Markus; Dietrich, S.

    2016-08-01

    The effective electrostatic interaction between a pair of colloids, both of them located close to each other at an electrolyte interface, is studied by employing the full, nonlinear Poisson-Boltzmann (PB) theory within classical density functional theory. Using a simplified yet appropriate model, all contributions to the effective interaction are obtained exactly, albeit numerically. The comparison between our results and those obtained within linearized PB theory reveals that the latter overestimates these contributions significantly at short inter-particle separations. Whereas the surface contributions to the linear and the nonlinear PB results differ only quantitatively, the line contributions show qualitative differences at short separations. Moreover, a dependence of the line contribution on the solvation properties of the two adjacent fluids is found, which is absent within the linear theory. Our results are expected to enrich the understanding of effective interfacial interactions between colloids.

  4. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Self-Assembling of Colloidal Particles Dispersed in Mixture of Ethanol and Water at the Air-Liquid Interface of Colloidal Suspension at Room Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Ai-Jun; Chen, Sheng-Li; Dong, Peng; Zhou, Qian; Yuan, Gui-Mei; Su, Gu-Cong

    2009-08-01

    Self-assembling of colloidal particles dispersed in a mixture of ethanol and water at the air-liquid interface of the colloidal suspension at room temperature is investigated, and a method of rapidly assembling colloidal particles is proposed. By this method, a uniform colloidal crystal thin film over ten square centimeters in area can be fabricated in 10 min without special facilities and heating the suspension. SEM images and a normal incidence transmission spectrum of the sample show that the colloidal crystal film fabricated by this method is of high quality. In addition, this method is very suitable for fabricating colloidal crystal heterostructures.

  5. Colloidal particle adsorption at liquid interfaces: capillary driven dynamics and thermally activated kinetics.

    PubMed

    Rahmani, Amir M; Wang, Anna; Manoharan, Vinothan N; Colosqui, Carlos E

    2016-08-14

    The adsorption of single colloidal microparticles (0.5-1 μm radius) at a water-oil interface has been recently studied experimentally using digital holographic microscopy [Kaz et al., Nat. Mater., 2012, 11, 138-142]. An initially fast adsorption dynamics driven by capillary forces is followed by an unexpectedly slow relaxation to equilibrium that is logarithmic in time and can span hours or days. The slow relaxation kinetics has been attributed to the presence of surface "defects" with nanoscale dimensions (1-5 nm) that induce multiple metastable configurations of the contact line perimeter. A kinetic model considering thermally activated transitions between such metastable configurations has been proposed [Colosqui et al., Phys. Rev. Lett., 2013, 111, 028302] to predict both the relaxation rate and the crossover point to the slow logarithmic regime. However, the adsorption dynamics observed experimentally before the crossover point has remained unstudied. In this work, we propose a Langevin model that is able to describe the entire adsorption process of single colloidal particles by considering metastable states produced by surface defects and thermal motion of the particle and liquid interface. Invoking the fluctuation dissipation theorem, we introduce a drag term that considers significant dissipative forces induced by thermal fluctuations of the liquid interface. Langevin dynamics simulations based on the proposed adsorption model yield close agreement with experimental observations for different microparticles, capturing the crossover from (fast) capillary driven dynamics to (slow) thermally activated kinetics. PMID:27373956

  6. Adsorption-induced reversible colloidal aggregation

    NASA Astrophysics Data System (ADS)

    Law, B. M.; Petit, J.-M.; Beysens, D.

    1998-05-01

    Reversible colloidal aggregation in binary liquid mixtures has been studied for a number of years. As the phase separation temperature of the liquid mixture is approached the thickness of an adsorption layer around the colloidal particles increases. Beysens et al. [Phys. Rev. Lett. 54, 2123 (1985); Ber. Bunsenges. Phys. Chem. 98, 382 (1994)] have demonstrated experimentally that this adsorption layer is intimately connected with the aggregation of the colloidal particles; however, no definitive theory has been available that can explain all of the experimental observations. In a recent work [J.-M. Petit, B. M. Law, and D. Beysens, J. Colloid Interface Sci. (to be published)] we have extended and improved the Derjaguin-Landau-Verwey-Overbeek theory of colloidal aggregation [E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, New York, 1948)] by taking into account the presence of an adsorption layer and by more realistically modeling the attractive dispersion interactions using the Dzyaloshinskii-Lifshitz-Pitaevskii theory [Adv. Phys. 10, 165 (1961)]. In the present paper we apply this theory to a lutidine-water mixture containing a small volume fraction of silica colloidal particles. We demonstrate that the theory can quantitatively account for many of the experimentally observed features such as the characteristics of the aggregated state, the general shape of the aggregation line, and the temperature dependence of the second virial coefficient.

  7. Dynamics of ordered colloidal particle monolayers at nematic liquid crystal interfaces.

    PubMed

    Wei, Wei-Shao; Gharbi, Mohamed Amine; Lohr, Matthew A; Still, Tim; Gratale, Matthew D; Lubensky, T C; Stebe, Kathleen J; Yodh, A G

    2016-05-25

    We prepare two-dimensional crystalline packings of colloidal particles on surfaces of the nematic liquid crystal (NLC) 5CB, and we investigate the diffusion and vibrational phonon modes of these particles using video microscopy. Short-time particle diffusion at the air-NLC interface is well described by a Stokes-Einstein model with viscosity similar to that of 5CB. Crystal phonon modes, measured by particle displacement covariance techniques, are demonstrated to depend on the elastic constants of 5CB through interparticle forces produced by LC defects that extend from the interface into the underlying bulk material. The displacement correlations permit characterization of transverse and longitudinal sound velocities of the crystal packings, as well as the particle interactions produced by the LC defects. All behaviors are studied in the nematic phase as a function of increasing temperature up to the nematic-isotropic transition. PMID:27109759

  8. Interaction between colloidal particles on an oil-water interface in dilute and dense phases.

    PubMed

    Parolini, Lucia; Law, Adam D; Maestro, Armando; Buzza, D Martin A; Cicuta, Pietro

    2015-05-20

    The interaction between micron-sized charged colloidal particles at polar/non-polar liquid interfaces remains surprisingly poorly understood for a relatively simple physical chemistry system. By measuring the pair correlation function g(r) for different densities of polystyrene particles at the decane-water interface, and using a powerful predictor-corrector inversion scheme, effective pair-interaction potentials can be obtained up to fairly high densities, and these reproduce the experimental g(r) in forward simulations, so are self consistent. While at low densities these potentials agree with published dipole-dipole repulsion, measured by various methods, an apparent density dependence and long range attraction are obtained when the density is higher. This condition is thus explored in an alternative fashion, measuring the local mobility of colloids when confined by their neighbors. This method of extracting interaction potentials gives results that are consistent with dipolar repulsion throughout the concentration range, with the same magnitude as in the dilute limit. We are unable to rule out the density dependence based on the experimental accuracy of our data, but we show that incomplete equilibration of the experimental system, which would be possible despite long waiting times due to the very strong repulsions, is a possible cause of artefacts in the inverted potentials. We conclude that to within the precision of these measurements, the dilute pair potential remains valid at high density in this system.

  9. Directed Self-assembly of Colloidal Particles on a Blue Phase I Interface

    NASA Astrophysics Data System (ADS)

    Martinez-Gonzalez, Jose; Zhou, Ye; Sadati, Monirosadat; Abbott, Nicholas; de Pablo, Juan

    Blue phases are liquid states of matter with a highly ordered defect structure which confers unique properties among complex fluids. In this work, a free energy model of chiral liquid crystals is used to consider the self-assembly of colloids and nanoparticles on the interface of a Blue Phase I. It is shown that the crystalline defect structure of the blue phase produces intricate, two-dimensional hexagonal and Kagome structures among the nanoparticle arrangements, with lattice parameters that depend on the type of anchoring of the liquid crystal at the particle's surface. These parameters can be tuned via the chirality of the material, thereby offering intriguing possibilities for the creation of hierarchical materials based on the directed assembly of particles in chiral liquid crystals. This work is supported by the Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division, Biomaterials Program, through DE-SC004025.

  10. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Alonso, Úrsula; Turrero, Maria Jesús

    2003-03-01

    The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (˜1×10 -3 M) and alkaline (pH≥8) waters.

  11. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository.

    PubMed

    Missana, Tiziana; Alonso, Ursula; Turrero, Maria Jesús

    2003-03-01

    The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (approximately 1 x 10(-3) M) and alkaline (pH > or = 8) waters.

  12. Introducing high-quality planar defects into colloidal crystals via self-assembly at the air/water interface

    NASA Astrophysics Data System (ADS)

    Zhong, Kuo; Demeyer, Pieter-Jan; Zhou, Xingping; Kruglova, Olga; Verellen, Niels; Moshchalkov, Victor V.; Song, Kai; Clays, Koen

    2015-02-01

    We demonstrate a facile method for fabrication of colloidal crystals containing a planar defect by using PS@SiO2 core-shell spheres as building blocks. A monolayer of solid spheres was embedded in core-shell colloidal crystals serving as the defect layer, which formed by means of self-assembly at the air/water interface. Compared with previous methods, this fabrication method results in pronounced passbands in the band gaps of the colloidal photonic crystal. The FWHM of the obtained passband is only ~16nm, which is narrower than the previously reported results. The influence of the defect layer thickness on the optical properties of these sandwiched structures was also investigated. No high-cost processes or specific equipment is needed in our approach. Inverse opals with planar defects can be obtained via calcination of the PS cores, without the need of infiltration. The experimental results are in good agreement with simulations performed using the FDTD method.

  13. Nanoscale Interfaces in Colloidal Quantum Dot Solar Cells: Physical Insights and Materials Engineering Strategies

    NASA Astrophysics Data System (ADS)

    Kemp, Kyle Wayne

    With growing global energy demand there will be an increased need for sources of renewable energy such as solar cells. To make these photovoltaic technologies more competitive with conventional energy sources such as coal and natural gas requires further reduction in manufacturing costs that can be realized by solution processing and roll-to-roll printing. Colloidal quantum dots are a bandgap tunable, solution processible, semiconductor material which may offer a path forward to efficient, inexpensive photovoltaics. Despite impressive progress in performance with these materials, there remain limitations in photocarrier collection that must be overcome. This dissertation focuses on the characterization of charge recombination and transport in colloidal quantum dot photovoltaics, and the application of this knowledge to the development of new and better materials. Core-shell, PbS-CdS, quantum dots were investigated in an attempt to achieve better surface passivation and reduce electronic defects which can limit performance. Optimization of this material led to improved open circuit voltage, exceeding 0.6 V for the first time, and record published performance of 6% efficiency. Using temperature-dependent and transient photovoltage measurements we explored the significance of interface recombination on the operation of these devices. Careful engineering of the electrode using atomic layer deposition of ZnO helped lead to better TiO2 substrate materials and allowed us to realize a nearly two-fold reduction in recombination rate and an enhancement upwards of 50 mV in open circuit voltage. Carrier extraction efficiency was studied in these devices using intensity dependent current-voltage data of an operational solar cell. By developing an analytical model to describe recombination loss within the active layer of the device we were able to accurately determine transport lengths ranging up to 90 nm. Transient absorption and photoconductivity techniques were used to study

  14. Triangular tessellation scheme for the adsorption free energy at the liquid-liquid interface: Towards nonconvex patterned colloids.

    PubMed

    de Graaf, Joost; Dijkstra, Marjolein; van Roij, René

    2009-11-01

    We present a numerical technique, namely, triangular tessellation, to calculate the free energy associated with the adsorption of a colloidal particle at a flat interface. The theory and numerical scheme presented here are sufficiently general to handle nonconvex patchy colloids with arbitrary surface patterns characterized by a wetting angle, e.g., amphiphilicity. We ignore interfacial deformation due to capillary, electrostatic, or gravitational forces, but the method can be extended to take such effects into account. It is verified that the numerical method presented is accurate and sufficiently stable to be applied to more general situations than presented in this paper. The merits of the tessellation method prove to outweigh those of traditionally used semianalytic approaches, especially when it comes to generality and applicability. PMID:20364983

  15. Controlling the Transient Interface Shape and Deposition Profile Left by Desiccation of Colloidal Droplets on Multiple Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Dunning, Peter David

    A colloidal suspension is a small constituent of insoluble solid particles suspended in a liquid medium. Control over the wetting, evaporation, and deposition patterns left by colloidal suspensions is valuable in many biological, medical, industrial, and agricultural applications. Understanding the governing principles of wetting and evaporative phenomena of these colloidal suspensions may lead to greater control over resultant deposition patterns. Perhaps the most familiar pattern forms when an initially heterogeneous colloidal suspension leaves a dark ring pattern at the edge of a drop. This pattern is referred to as a coffee-stain and it can be seen from dried droplets of spilled coffee. This coffee-stain effect was first investigated by Deegan et. al. who discovered that these patterns occur when outward radial flows driven by evaporation at the triple contact line dominate over other effects. While the presence of coffee-stain patterns is undesirable in many printing and medical diagnostic processes, it can also be advantageous in the production of low cost transparent conductive films, the deposition of metal vapor, and the manipulation of biological structures. Controlling the interactions between the substrate, liquid, vapor, and particles can lead to control over the size and morphology of evaporative deposition patterns left by aqueous colloidal suspensions. Several methods have been developed to control the evaporation of colloidal suspensions to either suppress or enhance the coffee stain effect. Electrowetting on Dielectric (EWOD) is one promising method that has been used to control colloidal depositions by applying either an AC or DC electric field. EWOD actuation has the potential to dynamically control colloidal deposition left by desiccated droplets to either suppress or enhance the coffee stain effect. It may also allow for independent control of the fluidic interface and deposition of particles via electrowetting and electrokinetic forces

  16. Influence of an Additive-Free Particle Spreading Method on Interactions between Charged Colloidal Particles at an Oil/Water Interface.

    PubMed

    Gao, Peng; Yi, Zonglin; Xing, Xiaochen; Ngai, To; Jin, Fan

    2016-05-17

    The assembly and manipulation of charged colloidal particles at oil/water interfaces represent active areas of fundamental and applied research. Previously, we have shown that colloidal particles can spontaneously generate unstable residual charges at the particle/oil interface when spreading solvent is used to disperse them at an oil/water interface. These residual charges in turn affect the long-ranged electrostatic repulsive forces and packing of particles at the interface. To further uncover the influence arising from the spreading solvents on interfacial particle interactions, in the present study we utilize pure buoyancy to drive the particles onto an oil/water interface and compare the differences between such a spontaneously adsorbed particle monolayer to the spread monolayer based on solvent spreading techniques. Our results show that the solvent-free method could also lead particles to spread well at the interface, but it does not result in violent sliding of particles along the interface. More importantly, this additive-free spreading method can avoid the formation of unstable residual charges at the particle/oil interface. These findings agree well with our previous hypothesis; namely, those unstable residual charges are triboelectric charges that arise from the violently rubbing of particles on oil at the interface. Therefore, if the spreading solvents could be avoided, then we would be able to get rid of the formation of residual charges at interfaces. This finding will provide insight for precisely controlling the interactions among colloidal particles trapped at fluid/fluid interfaces.

  17. Influence of an Additive-Free Particle Spreading Method on Interactions between Charged Colloidal Particles at an Oil/Water Interface.

    PubMed

    Gao, Peng; Yi, Zonglin; Xing, Xiaochen; Ngai, To; Jin, Fan

    2016-05-17

    The assembly and manipulation of charged colloidal particles at oil/water interfaces represent active areas of fundamental and applied research. Previously, we have shown that colloidal particles can spontaneously generate unstable residual charges at the particle/oil interface when spreading solvent is used to disperse them at an oil/water interface. These residual charges in turn affect the long-ranged electrostatic repulsive forces and packing of particles at the interface. To further uncover the influence arising from the spreading solvents on interfacial particle interactions, in the present study we utilize pure buoyancy to drive the particles onto an oil/water interface and compare the differences between such a spontaneously adsorbed particle monolayer to the spread monolayer based on solvent spreading techniques. Our results show that the solvent-free method could also lead particles to spread well at the interface, but it does not result in violent sliding of particles along the interface. More importantly, this additive-free spreading method can avoid the formation of unstable residual charges at the particle/oil interface. These findings agree well with our previous hypothesis; namely, those unstable residual charges are triboelectric charges that arise from the violently rubbing of particles on oil at the interface. Therefore, if the spreading solvents could be avoided, then we would be able to get rid of the formation of residual charges at interfaces. This finding will provide insight for precisely controlling the interactions among colloidal particles trapped at fluid/fluid interfaces. PMID:27108987

  18. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.

    PubMed

    Snezhko, Alexey

    2011-04-20

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  19. Dynamic Self-Assembly and Self-Propulsion in Nonequilibrium Magnetic Colloidal Ensembles at a Liquid/Liquid Interface

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Aranson, Igor

    2011-03-01

    Ensembles of interacting particles subject to external periodic energy fluxes often develop nontrivial dynamics. Magnetic colloidal particles suspended over an interface of two immiscible liquids and energized by vertical alternating magnetic fields give rise to novel dynamic self-assembled structures (``asters'') which are not accessible at the liquid/air interfaces. Ferromagnetically ordered nickel spherical particles have been used in our experiments. Novel structures are attributed to the interplay between surface waves, generated at the liquid/liquid interface by the collective response of magnetic microparticles to the alternating magnetic field, and hydrodynamic fields induced in the boundary layers of both liquids forming the interface. Two types of magnetic order is reported. We show that self-assembled aster structures become distorted in the presence of a small in-plane dc magnetic field and develop self-propulsion. The speed of locomotion can be effectively tuned by the amplitude of the dc field. The research was supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  20. Self-Assembly of Single-Sized and Binary Colloidal Particles at Air/Water Interface by Surface Confinement and Water Discharge.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2016-09-20

    We present an innovative apparatus allowing self-assembly at air/water interface in a smooth and reproducible way. The combination of water discharge and surface confinement of the area over which self-assembly takes place allows transfer of the assembled monolayer without any risk of damage to the colloidal crystal. As we demonstrate, the designed approach offers remarkable advantages in terms of cost and robustness compared to state-of-the art methods and is suitable for the fabrication of highly ordered monolayers even for more challenging assembly experiments such as transfer on rough substrates or assembly of binary colloids. Hence, our apparatus represents a significant headway toward high scale production of large area colloidal crystals. For the binary colloid assembly experiments, we also report the first experimental demonstration of a morphology based on the alternation of three and four small particles in the interstices between large particles. PMID:27574790

  1. Self-Assembly of Single-Sized and Binary Colloidal Particles at Air/Water Interface by Surface Confinement and Water Discharge.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2016-09-20

    We present an innovative apparatus allowing self-assembly at air/water interface in a smooth and reproducible way. The combination of water discharge and surface confinement of the area over which self-assembly takes place allows transfer of the assembled monolayer without any risk of damage to the colloidal crystal. As we demonstrate, the designed approach offers remarkable advantages in terms of cost and robustness compared to state-of-the art methods and is suitable for the fabrication of highly ordered monolayers even for more challenging assembly experiments such as transfer on rough substrates or assembly of binary colloids. Hence, our apparatus represents a significant headway toward high scale production of large area colloidal crystals. For the binary colloid assembly experiments, we also report the first experimental demonstration of a morphology based on the alternation of three and four small particles in the interstices between large particles.

  2. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids

    NASA Astrophysics Data System (ADS)

    Zanini, Michele; Isa, Lucio

    2016-08-01

    Micro and nanoparticles at fluid interfaces have been attracting increasing interest in the last few decades as building blocks for materials, as mechanical and structural probes for complex interfaces and as models for two-dimensional systems. The three-phase contact angle enters practically all aspects of the particle behavior at the interface: its thermodynamics (binding energy to the interface), dynamics (motion and drag at the interface) and interactions with the interface (adsorption and wetting). Moreover, many interactions among particles at the interface also strongly depend on the contact angle. These concepts have been extensively discussed for non-deformable, homogeneous and mostly spherical particles, but recent progress in particle synthesis and fabrication has instead moved in the direction of producing more complex micro and nanoscale objects, which can be responsive, deformable, heterogenous and/or anisotropic in shape, surface chemistry and material properties. These new particles have a much greater potential for applications and new science, and the study of their behavior at interfaces has only very recently started. In this paper, we critically review the current state of the art of the experimental methods available to measure the contact angle of micro and nanoparticles at fluid interfaces, indicating their strengths and limitations. We then comment on new particle systems that are currently attracting increasing interest in relation to their adsorption and assembly at fluid interfaces and discuss if and which ones of the current techniques are suited to investigate their properties at interfaces. Based on this discussion, we will finally try to indicate a direction in which new experimental methods should develop in the future to tackle the new challenges posed by the novel types of particles that more and more often are used at interfaces.

  3. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids.

    PubMed

    Zanini, Michele; Isa, Lucio

    2016-08-10

    Micro and nanoparticles at fluid interfaces have been attracting increasing interest in the last few decades as building blocks for materials, as mechanical and structural probes for complex interfaces and as models for two-dimensional systems. The three-phase contact angle enters practically all aspects of the particle behavior at the interface: its thermodynamics (binding energy to the interface), dynamics (motion and drag at the interface) and interactions with the interface (adsorption and wetting). Moreover, many interactions among particles at the interface also strongly depend on the contact angle. These concepts have been extensively discussed for non-deformable, homogeneous and mostly spherical particles, but recent progress in particle synthesis and fabrication has instead moved in the direction of producing more complex micro and nanoscale objects, which can be responsive, deformable, heterogenous and/or anisotropic in shape, surface chemistry and material properties. These new particles have a much greater potential for applications and new science, and the study of their behavior at interfaces has only very recently started. In this paper, we critically review the current state of the art of the experimental methods available to measure the contact angle of micro and nanoparticles at fluid interfaces, indicating their strengths and limitations. We then comment on new particle systems that are currently attracting increasing interest in relation to their adsorption and assembly at fluid interfaces and discuss if and which ones of the current techniques are suited to investigate their properties at interfaces. Based on this discussion, we will finally try to indicate a direction in which new experimental methods should develop in the future to tackle the new challenges posed by the novel types of particles that more and more often are used at interfaces. PMID:27299800

  4. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids.

    PubMed

    Zanini, Michele; Isa, Lucio

    2016-08-10

    Micro and nanoparticles at fluid interfaces have been attracting increasing interest in the last few decades as building blocks for materials, as mechanical and structural probes for complex interfaces and as models for two-dimensional systems. The three-phase contact angle enters practically all aspects of the particle behavior at the interface: its thermodynamics (binding energy to the interface), dynamics (motion and drag at the interface) and interactions with the interface (adsorption and wetting). Moreover, many interactions among particles at the interface also strongly depend on the contact angle. These concepts have been extensively discussed for non-deformable, homogeneous and mostly spherical particles, but recent progress in particle synthesis and fabrication has instead moved in the direction of producing more complex micro and nanoscale objects, which can be responsive, deformable, heterogenous and/or anisotropic in shape, surface chemistry and material properties. These new particles have a much greater potential for applications and new science, and the study of their behavior at interfaces has only very recently started. In this paper, we critically review the current state of the art of the experimental methods available to measure the contact angle of micro and nanoparticles at fluid interfaces, indicating their strengths and limitations. We then comment on new particle systems that are currently attracting increasing interest in relation to their adsorption and assembly at fluid interfaces and discuss if and which ones of the current techniques are suited to investigate their properties at interfaces. Based on this discussion, we will finally try to indicate a direction in which new experimental methods should develop in the future to tackle the new challenges posed by the novel types of particles that more and more often are used at interfaces.

  5. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface.

    PubMed

    Dai, Zhengfei; Li, Yue; Duan, Guotao; Jia, Lichao; Cai, Weiping

    2012-08-28

    Flexible structural design and accurate controlled fabrication with structural tunability according to need for binary or multicomponent colloidal crystals have been expected. However, it is still a challenge. In this work, the phase diagram of monolayer binary colloidal crystals (bCCs) is established on the assumption that both large and small polystyrene (PS) colloidal spheres can stay at the air/water interface, and the range diagram for the size ratio and number ratio of small to large colloidal spheres is presented. From this phase diagram, combining the range diagram, we can design and relatively accurately control fabrication of the bCCs with specific structures (or patterns) according to need, including single or mixed patterns with the given relative content. Further, a simple and facile approach is presented to fabricate large-area (more than 10 cm(2)) monolayer bCCs without any surfactants, using differently sized PS spheres, based on ethanol-assisted self-assembly at the air/water interface. bCCs with different patterns and stoichiometries are thus designed from the established phase diagram and then successfully fabricated based on the volume ratios (V(S/L)) of the small to large PS suspensions using the presented colloidal self-assembling method. Interestingly, these monolayer bCCs can be transferred to any desired substrates using water as the medium. This study allows us to design desired patterns of monolayer bCCs and to more accurately control their structures with the used V(S/L).

  6. Novel film-calliper method of measuring the contact angle of colloidal particles at liquid interfaces.

    PubMed

    Horozov, Tommy S; Braz, Dulce A; Fletcher, Paul D I; Binks, Bernard P; Clint, John H

    2008-03-01

    A simple and reliable film-calliper method of measuring the particle contact angle at the water-air (oil) interface in real time has been developed. Its applicability to submicrometer and micrometer latex and silica particles is demonstrated.

  7. Simultaneous investigation of sedimentation and diffusion of a single colloidal particle near an interface.

    PubMed

    Oetama, Ratna J; Walz, John Y

    2006-04-28

    We describe here a new procedure for the simultaneous investigation of sedimentation and diffusion of a colloidal particle in close proximity to a solid, planar wall. The measurements were made using the optical technique of total internal reflection microscopy, coupled with optical radiation pressure, for dimensionless separation distances (gap width/radius of particle) ranging from 0.01 to 0.05. In this region, the hydrodynamic mobility and diffusion coefficient are substantially reduced below bulk values. The procedure involved measuring the mean and the variance of vertical displacements of a Brownian particle settling under gravity toward the plate. The spatially varying diffusion coefficient was calculated from the displacements at small times (where diffusive motion was dominant). The mobility relationship for motion normal to a flat plate was tested by measuring the average distance of travel versus time as the particle settled under the constant force of gravity. For the simple Newtonian fluid used here (aqueous salt solution), the magnitude of the diffusion coefficient and mobility, plus their dependence on separation distance, showed excellent agreement with predictions. This new technique could be of great value in measuring the mobility and diffusion coefficient for near-contact motion in more complex fluids for which the hydrodynamic correction factors are not known a priori, such as shear-thinning fluids.

  8. A semi-analytical calculation of the electrostatic pair interaction between nonuniformly charged colloidal spheres at an air-water interface

    NASA Astrophysics Data System (ADS)

    Lian, Zengju

    2016-07-01

    We study the electrostatic pair interaction between two nonuniformly like-charged colloidal spheres trapped in an air-water interface. Under the linear Poisson-Boltzmann approximation, a general form of the electrostatic potential for the system is shown in terms of multipole expansions. After combining the translation-rotation transform of the coordinates with the numerical multipoint collection, we give a semi-analytical result of the electrostatic pair interaction between the colloids. The pair interaction changes quantitatively or even qualitatively with different distributions of the surface charges on the particles. Because of the anisotropic distribution of the surface charge and the asymmetric dielectric medium, the dipole moment of the ion cloud associating with the particle orients diagonally to the air-water interface with an angle α. When the angle is large, the colloids interact repulsively, while they attract each other when the angle is small. The attractive colloids may be "Janus-like" charged and be arranged with some specific configurations. Whatever the repulsions or the attractions, they all decay asymptotically ∝1/d3 (d is the center-center distance of the particles) which is consistent with our general acknowledge. The calculation results also provide an insight of the effect of the ion concentration, particle size, and the total charge of the particle on the pair interaction between the particles.

  9. A semi-analytical calculation of the electrostatic pair interaction between nonuniformly charged colloidal spheres at an air-water interface.

    PubMed

    Lian, Zengju

    2016-07-01

    We study the electrostatic pair interaction between two nonuniformly like-charged colloidal spheres trapped in an air-water interface. Under the linear Poisson-Boltzmann approximation, a general form of the electrostatic potential for the system is shown in terms of multipole expansions. After combining the translation-rotation transform of the coordinates with the numerical multipoint collection, we give a semi-analytical result of the electrostatic pair interaction between the colloids. The pair interaction changes quantitatively or even qualitatively with different distributions of the surface charges on the particles. Because of the anisotropic distribution of the surface charge and the asymmetric dielectric medium, the dipole moment of the ion cloud associating with the particle orients diagonally to the air-water interface with an angle α. When the angle is large, the colloids interact repulsively, while they attract each other when the angle is small. The attractive colloids may be "Janus-like" charged and be arranged with some specific configurations. Whatever the repulsions or the attractions, they all decay asymptotically ∝1/d(3) (d is the center-center distance of the particles) which is consistent with our general acknowledge. The calculation results also provide an insight of the effect of the ion concentration, particle size, and the total charge of the particle on the pair interaction between the particles. PMID:27394119

  10. The influence of the membrane-polymer interface on colloidal membrane dynamics and phase behavior

    NASA Astrophysics Data System (ADS)

    Zakhary, Mark J.

    A primary challenge in the field of self-assembly is to identify simple interactions that produce well-defined, complex, and controllable materials. A large part of this task is to creatively engineer appropriate assembly components with such suitable interactions built-in. Here, we demonstrate that rod-like subunits, experimentally modeled by fd bacteriophage viruses, with simple and predictable hard-core repulsive interactions, exhibit a great wealth of fascinating self-assembly behavior. These rods form two-dimensional liquid crystalline colloidal membranes consisting of monolayers of aligned particles owing purely to entropic considerations. Due to surface tension, rods near the edge of the monolayers twist, resulting in an elastic nematic ring surrounding the fluid-like membrane interior, and it is the rich phenomena rooted in the interplay between the edge and the interior that is the subject of this thesis. The chiral nature of the fd subunits causes a symmetry breaking at the membrane edge, which leads to chiral control of interfacial tension and resultantly a controllable, reversible morphological transition between membranes and one-dimensional twisted ribbons. Using optical microscopic and optical tweezer techniques, we show that a nucleation barrier exists in association with the membrane-ribbon transition, and investigate this barrier using fluctuation analysis as well as highly controlled force-extension experiments. The finite bending rigidity of the membrane edge is studied, and we show that long filamentous polymers spontaneously adhere to the edge, introducing the concept of geometrical edge-active agents. By analyzing the suppressed edge fluctuations of filament-bound membranes, it is found that the edge bending rigidity varies by up to an order of magnitude in a predictable and controllable way. Finally, we study the effect of the monolayer edge on the membrane coalescence, and observe two types of stable liquid crystalline defects that form at

  11. ADV36 adipogenic adenovirus in human liver disease

    PubMed Central

    Trovato, Francesca M; Catalano, Daniela; Garozzo, Adriana; Martines, G Fabio; Pirri, Clara; Trovato, Guglielmo M

    2014-01-01

    Obesity and liver steatosis are usually described as related diseases. Obesity is regarded as exclusive consequence of an imbalance between food intake and physical exercise, modulated by endocrine and genetic factors. Non-alcoholic fatty liver disease (NAFLD), is a condition whose natural history is related to, but not completely explained by over-nutrition, obesity and insulin resistance. There is evidence that environmental infections, and notably adipogenic adenoviruses (ADV) infections in humans, are associated not only with obesity, which is sufficiently established, but also with allied conditions, such as fatty liver. In order to elucidate the role, if any, of previous ADV36 infection in humans, we investigated association of ADV36-ADV37 seropositivity with obesity and fatty liver in humans. Moreover, the possibility that lifestyle-nutritional intervention in patients with NAFLD and different ADV36 seropositive status, achieves different clinical outcomes on ultrasound bright liver imaging, insulin resistance and obesity was challenged. ADV36 seropositive patients have a more consistent decrease in insulin resistance, fatty liver severity and body weight in comparison with ADV36 seronegative patients, indicating a greater responsiveness to nutritional intervention. These effects were not dependent on a greater pre-interventional body weight and older age. These results imply that no obvious disadvantage - and, seemingly, that some benefit - is linked to ADV36 seropositivity, at least in NAFLD. ADV36 previous infection can boost weight loss and recovery of insulin sensitivity under interventional treatment. PMID:25356033

  12. The relationship between capsid protein (VP2) sequence and pathogenicity of Aleutian mink disease parvovirus (ADV): a possible role for raccoons in the transmission of ADV infections.

    PubMed Central

    Oie, K L; Durrant, G; Wolfinbarger, J B; Martin, D; Costello, F; Perryman, S; Hogan, D; Hadlow, W J; Bloom, M E

    1996-01-01

    Aleutian mink disease parvovirus (ADV) DNA was identified by PCR in samples from mink and raccoons on commercial ranches during an outbreak of Aleutian disease (AD). Comparison of DNA sequences of the hypervariable portion of VP2, the major capsid protein of ADV, indicated that both mink and raccoons were infected by a new isolate of ADV, designated ADV-TR. Because the capsid proteins of other parvoviruses play a prominent role in the determination of viral pathogenicity and host range, we decided to examine the relationship between the capsid protein sequences and pathogenicity of ADV. Comparison of the ADV-TR hypervariable region sequence with sequences of other isolates of ADV revealed that ADV-TR was 94 to 100% related to the nonpathogenic type 1 ADV-G at both the DNA and amino acid levels but less than 90% related to other pathogenic ADVs like the type 2 ADV-Utah, the type 3 ADV-ZK8, or ADV-Pullman. This finding indicated that a virus with a type 1 hypervariable region could be pathogenic. To perform a more comprehensive analysis, the complete VP2 sequence of ADV-TR was obtained and compared with that of the 647-amino-acid VP2 of ADV-G and the corresponding VP2 sequences of the pathogenic ADV-Utah, ADV-Pullman, and ADV-ZK8. Although the hypervariable region amino acid sequence of ADV-TR was identical to that of ADV-G, there were 12 amino acid differences between ADV-G and ADV-TR. Each of these differences was at a position where other pathogenic isolates also differed from ADV-G. Thus, although ADV-TR had the hypervariable sequence of the nonpathogenic type 1 ADV-G, the remainder of the VP2 sequence resembled sequences of other pathogenic ADVs. Under experimental conditions, ADV-TR and ADV-Utah were highly pathogenic and induced typical AD in trios of both Aleutian and non-Aleutian mink, whereas ADV-Pullman was pathogenic only for Aleutian mink and ADV-G was noninfectious. Trios of raccoons experimentally inoculated with ADV-TR and ADV-Utah all became infected

  13. Stilling Basin Performance Analysis by ADV

    NASA Astrophysics Data System (ADS)

    Aleyasin, Sobhan; Fathi, Nima; Vorobieff, Peter

    2014-11-01

    The outlet flow from dams, channels, and pipes, as well as the river flow, can cause damage to the bed of the river or channel and cause scouring of structures such as the saddles of bridges, because of the huge amount of the kinetic energy carried by the flow. One of the ways to dissipate this energy is via the use of stilling basins, which are structures that calm the flow. Here we present a study of one type of stilling basins for pipe outlets based on a widely used standard. During the study, splitters and cellular baffles were placed in the stilling basin, and their locations were changed to assess their effect on the flow dissipation. Velocity at several locations in the basin was measured via acoustic Doppler velocimetry (ADV) for different Froude numbers to investigate the effect of flow rate and inlet velocity. Based on the findings of the experiments, we make several suggestions regarding the efficiency and geometry of stilling basins.

  14. Colloidal Instability Fosters Agglomeration of Subvisible Particles Created by Rupture of Gels of a Monoclonal Antibody Formed at Silicone Oil-Water Interfaces.

    PubMed

    Mehta, Shyam B; Carpenter, John F; Randolph, Theodore W

    2016-08-01

    In this study, we investigated the effect of ionic strength (1.25-231 mM) on viscoelastic interfacial gels formed by a monoclonal antibody at silicone oil-water interfaces, and the formation of subvisible particles due to rupture of these gels. Rates of gel formation and their elastic moduli did not vary significantly with ionic strength. Likewise, during gel rupture no significant effects of ionic strength were observed on particle formation and aggregation as detected by microflow imaging, resonance mass measurement, and size exclusion chromatography. Subvisible particles formed by mechanical rupturing of the gels agglomerated over time, even during quiescent incubation, due to the colloidal instability of the particles. PMID:27422087

  15. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  16. Magnetic cylindrical colloids at liquid interfaces exhibit non-volatile switching of their orientation in an external field.

    PubMed

    Newton, Bethany J; Buzza, D Martin A

    2016-06-28

    We study the orientation of magnetic cylindrical particles adsorbed at a liquid interface in an external field using analytical theory and high resolution finite element simulations. Cylindrical particles are interesting since they possess multiple locally stable orientations at the liquid interface so that the orientational transitions induced by an external field will not disappear when the external field is removed, i.e., the switching effect is non-volatile. We show that, in the absence of an external field, as we reduce the aspect ratio α of the cylinders below a critical value (αc≈ 2) the particles undergo spontaneous symmetry breaking from a stable side-on state to one of two equivalent stable tilted states, similar to the spontaneous magnetisation of a ferromagnet going through the Curie point. By tuning both the aspect ratio and contact angle of the cylinders, we show that it is possible to engineer particles that have one, two, three or four locally stable orientations. We also find that the magnetic responses of cylinders with one or two stable states are similar to that of paramagnets and ferromagnets respectively, while the magnetic response of systems with three or four stable states are even more complex and have no analogs in simple magnetic systems. Magnetic cylinders at liquid interfaces therefore provide a facile method for creating switchable functional monolayers where we can use an external field to induce multiple non-volatile changes in particle orientation and self-assembled structure. PMID:27200513

  17. Magnetic cylindrical colloids at liquid interfaces exhibit non-volatile switching of their orientation in an external field.

    PubMed

    Newton, Bethany J; Buzza, D Martin A

    2016-06-28

    We study the orientation of magnetic cylindrical particles adsorbed at a liquid interface in an external field using analytical theory and high resolution finite element simulations. Cylindrical particles are interesting since they possess multiple locally stable orientations at the liquid interface so that the orientational transitions induced by an external field will not disappear when the external field is removed, i.e., the switching effect is non-volatile. We show that, in the absence of an external field, as we reduce the aspect ratio α of the cylinders below a critical value (αc≈ 2) the particles undergo spontaneous symmetry breaking from a stable side-on state to one of two equivalent stable tilted states, similar to the spontaneous magnetisation of a ferromagnet going through the Curie point. By tuning both the aspect ratio and contact angle of the cylinders, we show that it is possible to engineer particles that have one, two, three or four locally stable orientations. We also find that the magnetic responses of cylinders with one or two stable states are similar to that of paramagnets and ferromagnets respectively, while the magnetic response of systems with three or four stable states are even more complex and have no analogs in simple magnetic systems. Magnetic cylinders at liquid interfaces therefore provide a facile method for creating switchable functional monolayers where we can use an external field to induce multiple non-volatile changes in particle orientation and self-assembled structure.

  18. Comparison of vapor formation of water at the solid/water interface to colloidal solutions using optically excited gold nanostructures.

    PubMed

    Baral, Susil; Green, Andrew J; Livshits, Maksim Y; Govorov, Alexander O; Richardson, Hugh H

    2014-02-25

    The phase transformation properties of liquid water to vapor is characterized by optical excitation of the lithographically fabricated single gold nanowrenches and contrasted to the phase transformation properties of gold nanoparticles located and optically excited in a bulk solution system [two and three dimensions]. The 532 nm continuous wave excitation of a single gold nanowrench results in superheating of the water to the spinodal decomposition temperature of 580 ± 20 K with bubble formation below the spinodal decomposition temperature being a rare event. Between the spinodal decomposition temperature and the boiling point liquid water is trapped into a metastable state because a barrier to vapor nucleation exists that must be overcome before the thermodynamically stable state is realized. The phase transformation for an optically heated single gold nanowrench is different from the phase transformation of optically excited colloidal gold nanoparticles solution where collective heating effects dominates and leads to the boiling of the solution exactly at the boiling point. In the solution case, the optically excited ensemble of nanoparticles collectively raises the ambient temperature of water to the boiling point where liquid is converted into vapor. The striking difference in the boiling properties of the single gold nanowrench and the nanoparticle solution system can be explained in terms of the vapor-nucleation mechanism, the volume of the overheated liquid, and the collective heating effect. The interpretation of the observed regimes of heating and vaporization is consistent with our theoretical modeling. In particular, we explain with our theory why the boiling with the collective heating in a solution requires 3 orders of magnitude less intensity compared to the case of optically driven single nanowrench.

  19. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  20. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  1. Colloid Mobilization and Transport during Capillary Fringe Fluctuations

    NASA Astrophysics Data System (ADS)

    Aramrak, Surachet; Flury, Markus

    2016-04-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead filled column. Confocal images showed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively-charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively-charged colloids did not attach to static air-bubbles, but hydrophobic negatively-charged and hydrophilic positively-charged colloids did.

  2. Optimized combination therapies with adefovir dipivoxil (ADV) and lamivudine, telbivudine, or entecavir may be effective for chronic hepatitis B patients with a suboptimal response to ADV monotherapy

    PubMed Central

    Li, Xiangyong; Jie, Yusheng; You, Xu; Shi, Hong; Zhang, Min; Wu, Yuankai; Lin, Guoli; Li, Xinhua; Gao, Zhiliang; Chong, Yutian

    2015-01-01

    Objective: To identify high risk factors in chronic hepatitis B (CHB) patients for suboptimal response to adefovir dipivoxil (ADV) monotherapy, and to assess the efficacy of optimized therapy combining ADV with lamivudine (LAM), telbivudine (LdT), or entecavir (ETV) in patients with a suboptimal response to ADV alone. Methods: Suboptimal response to ADV monotherapy was defined as having a decline in serum hepatitis B virus (HBV) DNA level of more than 1 log compared to baseline, but with viremia still detectable (HBV DNA ≥ 100 IU/mL), after 48 weeks of therapy. All patients who received ADV monotherapy in our clinic were analyzed retrospectively. Both univariate and multivariate logistic regression models were applied for risk factor analysis. Patients who showed suboptimal response completed at least 12 months of optimized combination therapy consisting of ADV plus LAM, ADV plus LdT, ADV plus ETV, or continuous ADV monotherapy. The primary outcome measurement was complete viral suppression, indicated by a reduction of HBV DNA to undetectable levels (CVS, with HBV DNA < 100 IU/mL). Secondary outcome measures were HBeAg seroconversion for HBeAg-positive patients, HBsAg loss, alanine aminotransferase (ALT) normalization and virological breakthrough rates. Results: Of 521 patients who received ADV monotherapy, 170 showed a suboptimal response. These were grouped for continued therapy as follows: 34 in group A (continuous ADV monotherapy), 55 in group B (ADV plus LAM), 38 in group C (ADV plus LdT), and 43 in group D (ADV plus ETV). Using a logistic model, five conditions were identified as high risk factors for suboptimal response: presence of the tyrosine-methionine-aspartate-aspartate (YMDD) HBV DNA polymerase mutation; being HBeAg positive; having a high baseline level of HBV DNA; having a primary virological non-response to ADV; and [initial virological response] to ADV. After 48 weeks of ADV monotherapy, there were no withdrawn patients who had experienced side

  3. Colloid update.

    PubMed

    Argalious, Maged Y

    2012-01-01

    This update aims to provide an evidence based review of natural and synthetic colloids with a special emphasis on the various generations of the synthetic colloid hydroxyethyl starch. The effect of 1(st), 2(nd) and 3(rd) generation hetastarches on bleeding, coagulopathy, acute kidney injury and mortality will be discussed. The results of randomised controlled trials addressing morbidity and mortality outcomes of colloid versus crystalloid resuscitation in critically ill patients will be described. In addition, the rationale and evidence behind early goal directed fluid therapy (EGDFT) including a practical approach to assessment of dynamic measures of fluid responsiveness will be presented.

  4. Colloidal polypyrrole

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized aromatic heterocyclic monomer, a stabilizing effective amount of a vinyl pyridine-containing polymer and dopant anions and a method of preparing such polymer compositions are disclosed.

  5. Hexadecapolar Colloids

    DOE PAGES

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-11

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Becausemore » of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.« less

  6. Hexadecapolar colloids

    PubMed Central

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-01-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously. PMID:26864184

  7. Colloid mobilization and transport during capillary fringe fluctuations.

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  8. Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids.

    PubMed

    Louie, Stacey M; Phenrat, Tanapon; Small, Mitchell J; Tilton, Robert D; Lowry, Gregory V

    2012-07-17

    Soft particle electrokinetic models have been used to determine adsorbed nonionic polymer and polyelectrolyte layer properties on nanoparticles or colloids by fitting electrophoretic mobility data. Ohshima first established the formalism for these models and provided analytical approximations ( Ohshima, H. Adv. Colloid Interface Sci.1995, 62, 189 ). More recently, exact numerical solutions have been developed, which account for polarization and relaxation effects and require fewer assumptions on the particle and soft layer properties. This paper characterizes statistical uncertainty in the polyelectrolyte layer charge density, layer thickness, and permeability (Brinkman screening length) obtained from fitting data to either the analytical or numerical electrokinetic models. Various combinations of particle core and polymer layer properties are investigated to determine the range of systems for which this analysis can provide a solution with reasonably small uncertainty bounds, particularly for layer thickness. Identifiability of layer thickness in the analytical model ranges from poor confidence for cases with thick, highly charged coatings, to good confidence for cases with thin, low-charged coatings. Identifiability is similar for the numerical model, except that sensitivity is improved at very high charge and permeability, where polarization and relaxation effects are significant. For some poorly identifiable cases, parameter reduction can reduce collinearity to improve identifiability. Analysis of experimental data yielded results consistent with expectations from the simulated theoretical cases. Identifiability of layer charge density and permeability is also evaluated. Guidelines are suggested for evaluation of statistical confidence in polymer and polyelectrolyte layer parameters determined by application of the soft particle electrokinetic theory.

  9. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration.

    PubMed

    Zhang, Wei; Morales, Verónica L; Cakmak, M Ekrem; Salvucci, Anthony E; Geohring, Larry D; Hay, Anthony G; Parlange, Jean-Yves; Steenhuis, Tammo S

    2010-07-01

    Colloids play an important role in facilitating transport of adsorbed contaminants in soils. Recent studies showed that under saturated conditions colloid retention was a function of its concentration. It is unknown if this is the case under unsaturated conditions. In this study, the effect of colloid concentration on colloid retention was investigated in unsaturated columns by increasing concentrations of colloid influents with varying ionic strength. Colloid retention was observed in situ by bright field microscopy and quantified by measuring colloid breakthrough curves. In our unsaturated experiments, greater input concentrations resulted in increased colloid retention at ionic strength above 0.1 mM, but not in deionized water (i.e., 0 mM ionic strength). Bright field microscope images showed that colloid retention mainly occurred at the solid-water interface and wedge-shaped air-water-solid interfaces, whereas the retention at the grain-grain contacts was minor. Some colloids at the air-water-solid interfaces were rotating and oscillating and thus trapped. Computational hydrodynamic simulation confirmed that the wedge-shaped air-water-solid interface could form a "hydrodynamic trap" by retaining colloids in its low velocity vortices. Direct visualization also revealed that colloids once retained acted as new retention sites for other suspended colloids at ionic strength greater than 0.1 mM and thereby could explain the greater retention with increased input concentrations. Derjaguin-Landau-Verwey-Overbeek (DLVO) energy calculations support this concept. Finally, the results of unsaturated experiments were in agreement with limited saturated experiments under otherwise the same conditions.

  10. Nucleotide sequence and genomic organization of Aleutian mink disease parvovirus (ADV): sequence comparisons between a nonpathogenic and a pathogenic strain of ADV.

    PubMed Central

    Bloom, M E; Alexandersen, S; Perryman, S; Lechner, D; Wolfinbarger, J B

    1988-01-01

    A DNA sequence of 4,592 nucleotides (nt) was derived for the nonpathogenic ADV-G strain of Aleutian mink disease parvovirus (ADV). The 3'(left) end of the virion strand contained a 117-nt palindrome that could assume a Y-shaped configuration similar to, but less stable than, that of other parvoviruses. The sequence obtained for the 5' end was incomplete and did not contain the 5' (right) hairpin structure but ended just after a 25-nt A + T-rich direct repeat. Features of ADV genomic organization are (i) major left (622 amino acids) and right (702 amino acids) open reading frames (ORFs) in different translational frames of the plus-sense strand, (ii) two short mid-ORFs, (iii) eight potential promoter motifs (TATA boxes), including ones at 3 and 36 map units, and (iv) six potential polyadenylation sites, including three clustered near the termination of the right ORF. Although the overall homology to other parvoviruses is less than 50%, there are short conserved amino acid regions in both major ORFs. However, two regions in the right ORF allegedly conserved among the parvoviruses were not present in ADV. At the DNA level, ADV-G is 97.5% related to the pathogenic ADV-Utah 1. A total of 22 amino acid changes were found in the right ORF; changes were found in both hydrophilic and hydrophobic regions and generally did not affect the theoretical hydropathy. However, there is a short heterogeneous region at 64 to 65 map units in which 8 out of 11 residues have diverged; this hypervariable segment may be analogous to short amino acid regions in other parvoviruses that determine host range and pathogenicity. These findings suggested that this region may harbor some of the determinants responsible for the differences in pathogenicity of ADV-G and ADV-Utah 1. PMID:2839709

  11. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  12. 17 CFR 279.2 - Form ADV-W, notice of withdrawal from registration as investment adviser.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: For Federal Register citations affecting Form ADV-W, see the List of CFR Sections Affected, which... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Form ADV-W, notice of... § 279.2 Form ADV-W, notice of withdrawal from registration as investment adviser. This form shall...

  13. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    SciTech Connect

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  14. Soil colloidal behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  15. Research gaps and technology needs in development of PHM for passive AdvSMR components

    NASA Astrophysics Data System (ADS)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.

    2014-02-01

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

  16. Research Gaps and Technology Needs in Development of PHM for Passive AdvSMR Components

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2014-01-01

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically due to losses in economy of scale, thus, there is increased motivation to reduce the controllable operations and maintenance (O&M) costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components. state-of-the-art in PHM.

  17. Research gaps and technology needs in development of PHM for passive AdvSMR components

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Henagar, Chuck H. Jr.; Coble, Jamie B.; Bond, Leonard J.

    2014-02-18

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

  18. Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Russel, W. B.; Saville, D. A.; Schowalter, W. R.

    1992-03-01

    The book covers the physical side of colloid science from the individual forces acting between submicron particles suspended in a liquid through the resulting equilibrium and dynamic properties. The relevant forces include Brownian motion, electrostatic repulsion, dispersion attraction, both attraction and repulsion due to soluble polymer, and viscous forces due to relative motion between the particles and the liquid. The balance among Brownian motion and the interparticle forces decides the questions of stability and phase behavior. Imposition of external fields produces complex effects, i.e. electrokinetic phenomena (electric field), sedimentation (gravitational field), diffusion (concentration/chemical potential gradient), and non-Newtonian rheology (shear field). The treatment aims to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterized model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of technological problems and design critical experiments. Some exposure to fluid mechanics, statistical mechanics, and electricity and magnetism is assumed, but each subject is reintroduced in a self-contained manner.

  19. Research on ADV-Hop localization algorithm in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhao, Shijun; Xu, Xiulan; Zhang, Zhaohui; Sun, Meiling

    2008-10-01

    Wireless sensor networks (WSN) have wide applicability to many important applications including environmental monitoring, military applications and disaster management, etc. In many applications, sensors are assumed to know their absolute locations. Some localization methods of WSN have been proposed. In these methods, nodes equipped with GPS to get precise location information, namely the anchor nodes, are employed to derive the locations of other nodes. Most of the recent work focuses on increasing the accuracy in position estimation. In this paper, aiming at the high communication cost and average positioning error of DV-hop algorithm, an advanced algorithm which is called ADV-hop algorithm is proposed. Simulations are made by the network simulator NS2. The simulation results show that ADV-hop algorithm has lower communication cost and smaller average positioning error than DV-hop algorithm, which makes ADV-hop algorithm more suitable for the node location of WSN.

  20. Colloids: current recommendations.

    PubMed

    Chan, Daniel L

    2008-05-01

    Colloids are increasingly becoming considered indispensable in the management of critically ill patients. Typical indications for colloid administration include patients with tissue edema, hypovolemia, and low oncotic pressure. Current guidelines for the use of colloids in veterinary patients balance the purported benefits of colloid fluid administration with the potential risks, such as volume overload and coagulation disturbances. This article focuses primarily on hydroxyethyl starches, because they are the most commonly used colloid in veterinary practice, and because recent advances in colloid therapy have been achieved with this colloid. Newer colloids have been modified to limit effects on the coagulation system, and they may be used to modulate the inflammatory response, which could prove to be particularly useful in the management of critically ill patients. A better understanding of how different fluids influence the host response may enable us to explore new applications of fluid replacement therapy beyond simply replenishing volume deficits.

  1. Local-Level Prognostics Health Management Systems Framework for Passive AdvSMR Components. Interim Report

    SciTech Connect

    Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.; Pardini, Allan F.; Jones, Anthony M.; Deibler, John E.

    2014-09-12

    This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.

  2. Electrokinetic properties of polymer colloids

    NASA Technical Reports Server (NTRS)

    Micale, F. J.; Fuenmayor, D. Y.

    1986-01-01

    The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.

  3. Surface freezing and surface coverage as key factors for spontaneous formation of colloidal fibers in vacuum drying of colloidal suspensions.

    PubMed

    Inasawa, S; Katayama, T; Yamaguchi, Y

    2016-09-28

    In this study, we investigated vacuum drying of droplets of colloidal suspension. Because of the loss of the latent heat of vaporization, the drying droplet was cooled and then formed ice. Colloidal fibers consisting of packed particles spontaneously formed when the droplet froze from the gas-liquid interface. Conversely, we observed formation of sponge-like porous structures of particles when the whole droplet almost simultaneously froze. However, the freezing mode was not the only factor for formation of colloidal fibers. We found that the surface coverage of particles on the gas-liquid interface was also important. Owing to drying, some particles accumulated at the interface before freezing. When the surface coverage was higher than a threshold value, formation of fibers was severely restricted even in the surface freezing mode. Our results clearly show the important roles of surface freezing and the surface coverage of particles on the gas-liquid interface in formation of colloidal fibers. PMID:27550740

  4. What Is a Colloid?

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)

  5. Surface pressure isotherm for a monolayer of charged colloidal particles at a water/nonpolar-fluid interface: experiment and theoretical model.

    PubMed

    Petkov, Plamen V; Danov, Krassimir D; Kralchevsky, Peter A

    2014-03-18

    Monolayers from electrically charged micrometer-sized silica particles, spread on the air/water interface, are investigated. Because of the electrostatic repulsion, the distances between the particles are considerably greater than their diameters, i.e., we are dealing with nondensely packed interfacial layers. The electrostatic repulsion between the particles occurs through the air phase. Surface pressure vs area isotherms were measured by Langmuir trough, and the monolayers' morphology was monitored by microscope. The mean area per particle is determined by Delaunay triangulation and Voronoi diagrams. In terms of mean area, the surface pressure for monolayers from polydisperse and monodisperse particles obeys the same law. The experiments show that Π ∝ L(-3) at large L, where Π is the surface pressure and L is the mean interparticle distance. A theoretical cell model is developed, which predicts not only the aforementioned asymptotic law but also the whole Π(L) dependence. The model presumes a periodic distribution of the surface charge density, which induces a corresponding electric field in the air phase. Then, the Maxwell pressure tensor of the electric field in the air phase is calculated and integrated according to the Bakker's formula to determine the surface pressure. Thus, all collective effects from the electrostatic interparticle interactions are taken into account as well as the effects from the particle finite size. By evaporation of water, the particle monolayers are deposited on a solid substrate placed on the bottom of the trough. The electrostatic interparticle repulsion is strong enough to withstand the attractive lateral capillary immersion forces that are operative during the drying of the monolayer on the substrate. The obtained experimental results and the developed theoretical model can be useful for prediction and control of the properties of nondensely packed interfacial monolayers from charged particles that find applications for

  6. Hyperbolic interfaces.

    PubMed

    Giomi, Luca

    2012-09-28

    Fluid interfaces, such as soap films, liquid droplets, or lipid membranes, are known to give rise to several special geometries, whose complexity and beauty continue to fascinate us, as observers of the natural world, and challenge us as scientists. Here I show that a special class of surfaces of constant negative Gaussian curvature can be obtained in fluid interfaces equipped with an orientational ordered phase. These arise in various soft and biological materials, such as nematic liquid crystals, cytoskeletal assemblies, or hexatic colloidal suspensions. The purely hyperbolic morphology originates from the competition between surface tension, that reduces the area of the interface at the expense of increasing its Gaussian curvature, and the orientational elasticity of the ordered phase, that in turn suffers for the distortion induced by the underlying curvature. PMID:23030106

  7. Hyperbolic Interfaces

    NASA Astrophysics Data System (ADS)

    Giomi, Luca

    2012-09-01

    Fluid interfaces, such as soap films, liquid droplets, or lipid membranes, are known to give rise to several special geometries, whose complexity and beauty continue to fascinate us, as observers of the natural world, and challenge us as scientists. Here I show that a special class of surfaces of constant negative Gaussian curvature can be obtained in fluid interfaces equipped with an orientational ordered phase. These arise in various soft and biological materials, such as nematic liquid crystals, cytoskeletal assemblies, or hexatic colloidal suspensions. The purely hyperbolic morphology originates from the competition between surface tension, that reduces the area of the interface at the expense of increasing its Gaussian curvature, and the orientational elasticity of the ordered phase, that in turn suffers for the distortion induced by the underlying curvature.

  8. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  9. Quantifying colloid retention in partially saturated porous media

    NASA Astrophysics Data System (ADS)

    Zevi, Yuniati; Dathe, Annette; Gao, Bin; Richards, Brian K.; Steenhuis, Tammo S.

    2006-12-01

    The transport of colloid-contaminant complexes and colloid-sized pathogens through soil to groundwater is of concern. Visualization and quantification of pore-scale colloid behavior will enable better description and simulation of retention mechanisms at individual surfaces, in contrast to breakthrough curves which only provide an integrated signal. We tested two procedures for quantifying colloid movement and retention as observed in pore-scale image sequences. After initial testing with static images, three series of images of synthetic microbead suspensions passing through unsaturated sand were examined. The region procedure (implemented in ImageJ) and the Boolean procedure (implemented in KS400) yielded nearly identical results for initial test images and for total colloid-covered areas in three image series. Because of electronic noise resulting in pixel-level brightness fluctuations the Boolean procedure tended to underestimate attached colloid counts and conversely overestimate mobile colloid counts. The region procedure had a smaller overestimation error of attached colloids. Reliable quantification of colloid retention at pore scale can be used to improve current understanding on the transport mechanisms of colloids in unsaturated porous media. For example, attachment counts at individual air/water meniscus/solid interface were well described by Langmuir isotherms.

  10. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  11. Saturated Zone Colloid Transport

    SciTech Connect

    H. Viswanathan; P. Reimus

    2003-09-05

    Colloid retardation is influenced by the attachment and detachment of colloids from immobile surfaces. This analysis demonstrates the development of parameters necessary to estimate attachment and detachment of colloids and, hence, retardation in both fractured tuff and porous alluvium. Field and experimental data specific to fractured tuff are used for the analysis of colloid retardation in fractured tuff. Experimental data specific to colloid transport in alluvial material from Yucca Mountain as well as bacteriophage field studies in alluvial material, which are thought to be good analogs for colloid transport, are used to estimate attachment and detachment of colloids in the alluvial material. There are no alternative scientific approaches or technical methods for calculating these retardation factors.

  12. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  13. Microfluidic colloid filtration.

    PubMed

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J C; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today's water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a "cake layer"--often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  14. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.

    PubMed

    Kanti Sen, Tushar; Khilar, Kartic C

    2006-02-28

    In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media. PMID:16324681

  15. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.

    PubMed

    Kanti Sen, Tushar; Khilar, Kartic C

    2006-02-28

    In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.

  16. Density functional theory of charged colloidal systems

    NASA Astrophysics Data System (ADS)

    Chan, Derek Y.

    2001-06-01

    The phase behavior of charged colloidal systems has been studied recently by the density functional theory formalism (DFT) [R. van Roij, M. Dijkstra, and J. P. Hansen, Phys. Rev. E 59, 2010 (1999)]. A key feature of this approach is the appearance of a density and temperature-dependent effective Hamiltonian between the charged colloids. Under certain approximations, the effective Hamiltonian is made up only of a sum of position-independent one-body or volume terms and two-body colloid-separation dependent terms. In the limit of low colloidal densities, the DFT results do not reduce to the familiar Debye-Hückel limiting law nor do the results agree with previous work based on an identical approach but were developed using traditional statistical-mechanical methods [B. Beresford-Smith, D. Y. C. Chan, and D. J. Mitchell J. Colloid Interface Sci. 105, 216 (1985)]. This paper provides a reconciliation of these differences and comments on the significance of the one-body volume terms in the effective Hamiltonian of a system of charged colloids in determining thermodynamics and phase behavior.

  17. Saturated Zone Colloid Transport

    SciTech Connect

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  18. Effect of hydrophobicity on colloid transport during two-phase flow in a micromodel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiulan; Hassanizadeh, S. M.; Liu, B.; Schijven, J. F.; Karadimitriou, N. K.

    2014-10-01

    The goal of this research was to investigate the difference in behavior of hydrophilic and hydrophobic colloids during transport in two-phase flow, in general, and their attachment and remobilization characters, in particular. Experiments were performed in a hydrophobic polydimethylsiloxane (PDMS) micromodel. Water and fluorinert-FC43 were used as the two immiscible liquids. Given the fact that PDMS is a hydrophobic material, fluorinert was the wetting phase and water was the nonwetting phase in this micromodel. As model colloids, we used hydrophilic polystyrene carboxylate-modified microspheres (dispersible in water) and hydrophobic fluorous-modified silica microspheres (dispersible in fluorinert) in separate experiments. Using a confocal laser scanning microscope, we directly observed fluid distribution and colloid movement within pores of the micromodel. We also obtained concentration breakthrough curves by measuring the fluorescent intensities in the outlet of the micromodel. The breakthrough curves during steady-state flow showed that the colloid attachment rate is inversely related to the background saturation of the fluid in which the colloids were dispersed. Our visualization results showed that the enhanced attachment of hydrophilic colloids at lower water saturations was due to the retention at the fluorinert-water interface and fluorinert-water-solid contact lines. This effect was observed to be much less in the case of hydrophobic colloids (dispersed in fluorinert). In order to explain the colloids behavior, we calculated interaction potential energies of colloids with PDMS surfaces, fluid-fluid interfaces, and fluid-fluid-solid contact lines. Also, balance of forces that control colloid, including DLVO, hydrodynamic, and surface tension forces, were determined. Our calculations showed that there is a stronger repulsive energy barrier between hydrophobic colloids and fluorinert-water interface and solid-fluid interface, compared with the hydrophilic

  19. A colloidal singularity reveals the crucial role of colloidal stability for nanomaterials in-vitro toxicity testing: nZVI-microalgae colloidal system as a case study.

    PubMed

    Gonzalo, Soledad; Llaneza, Veronica; Pulido-Reyes, Gerardo; Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganes, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael

    2014-01-01

    Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs.

  20. A Colloidal Singularity Reveals the Crucial Role of Colloidal Stability for Nanomaterials In-Vitro Toxicity Testing: nZVI-Microalgae Colloidal System as a Case Study

    PubMed Central

    Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganes, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael

    2014-01-01

    Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs. PMID:25340509

  1. Analysis of colloid transport

    SciTech Connect

    Travis, B.J.; Nuttall, H.E.

    1985-12-31

    The population balance methodology is described and applied to the transport and capture of polydispersed colloids in packed columns. The transient model includes particle growth, capture, convective transport, and dispersion. We also follow the dynamic accumulation of captured colloids on the solids. The multidimensional parabolic partial differential equation was solved by a recently enhanced method of characteristics technique. This computational technique minimized numerical dispersion and is computationally very fast. The FORTRAN 77 code ran on a VAX-780 in less than a minute and also runs on an IBM-AT using the Professional FORTRAN compiler. The code was extensively tested against various simplified cases and against analytical models. The packed column experiments by Saltelli et al. were re-analyzed incorporating the experimentally reported size distribution of the colloid feed material. Colloid capture was modeled using a linear size dependent filtration function. The effects of a colloid size dependent filtration factor and various initial colloid size distributions on colloid migration and capture were investigated. Also, we followed the changing colloid size distribution as a function of position in the column. Some simple arguments are made to assess the likelihood of colloid migration at a potential NTS Yucca Mountain waste disposal site. 10 refs., 3 figs., 1 tab.

  2. UZ Colloid Transport Model

    SciTech Connect

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  3. Organized Assemblies of Colloids Formed at the Poles of Micrometer-Sized Droplets of Liquid Crystal

    PubMed Central

    Wang, Xiaoguang; Miller, Daniel S.; de Pablo, Juan J.

    2014-01-01

    We report on the formation of organized assemblies of 1 μm-in-diameter colloids (polystyrene (PS)) at the poles of water-dispersed droplets (diameters 7 - 20 μm) of nematic liquid crystal (LC). For 4-cyano-4′-pentylbiphenyl droplets decorated with two to five PS colloids, we found 32 distinct arrangements of the colloids to form at the boojums of bipolar droplet configurations. Significantly, all but one of these configurations (a ring comprised of five PS colloids) could be mapped onto a local (non-close packed) hexagonal lattice. To provide insight into the origin of the hexagonal lattice, we investigated planar aqueous—LC interfaces, and found that organized assemblies of PS colloids did not form at these interfaces. Experiments involving the addition of salts revealed that a repulsive interaction of electrostatic origin prevented formation of assemblies at planar interfaces, and that regions of high splay near the poles of the LC droplets generated cohesive interactions between colloids that could overcome the repulsion. Support for this interpretation was obtained from a model that included (i) a long-range attraction between adsorbed colloids and the boojum due to the increasing rate of strain (splay) of LC near the boojum (splay attraction), (ii) an attractive inter-colloid interaction that reflects the quadrupolar symmetry of the strain in the LC around the colloids, and (iii) electrostatic repulsion between colloids. The model predicts that electrostatic repulsion between colloids can lead to a ∼1,000 kBT energy barrier at planar interfaces of LC films, and that the repulsive interaction can be overcome by splay attraction of the colloids to the boojums of the LC droplets. Overall, the results reported in this paper advance our understanding of the directed assembly of colloids at interfaces of LC droplets. PMID:25284139

  4. Industrial application of surface and colloid science

    SciTech Connect

    Borgarello, E.

    1995-12-01

    Interfacial phenomena are playing a key role in several industrial processes such as oil production and refining, synthesis of chemicals and catalytic reactions. Eniricerche has gained a quite wide experience in applied colloid science in the last fifteen years working together with the Operating Companies of the ENI group. The main areas of interest have been oil production and transportation, fuel formulation, lubrication, bitumen, detergency, reactions in microemulsions, gels for cosmetics, blood substitutes, and photocatalytic degradation of pollutants in colloidal dispersions. The understanding of the interfacial phenomena occurring at the solid-liquid or at the liquid-liquid interface has been a major contribution to the solution of industrial problems. After a short description of Eniricerche activities in applied colloid science, two examples will be described: the hydroformulation of olefines in a microemulsion and the transportation of heavy oil in an oil-in-water emulsion.

  5. Colloids in food: ingredients, structure, and stability.

    PubMed

    Dickinson, Eric

    2015-01-01

    This article reviews progress in the field of food colloids with particular emphasis on advances in novel functional ingredients and nanoscale structuring. Specific aspects of ingredient development described here are the stabilization of bubbles and foams by the protein hydrophobin, the emulsifying characteristics of Maillard-type protein-polysaccharide conjugates, the structural and functional properties of protein fibrils, and the Pickering stabilization of dispersed droplets by food-grade nanoparticles and microparticles. Building on advances in the nanoscience of biological materials, the application of structural design principles to the fabrication of edible colloids is leading to progress in the fabrication of functional dispersed systems-multilayer interfaces, multiple emulsions, and gel-like emulsions. The associated physicochemical insight is contributing to our mechanistic understanding of oral processing and textural perception of food systems and to the development of colloid-based strategies to control delivery of nutrients during food digestion within the human gastrointestinal tract.

  6. Manipulating semiconductor colloidal stability through doping.

    PubMed

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  7. Switching light with light - advanced functional colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Bley, K.; Sinatra, N.; Vogel, N.; Landfester, K.; Weiss, C. K.

    2013-12-01

    Colloidal monolayers comprising of highly ordered two dimensional crystals are of high interest to generate surface patterns for a variety of different applications. Mostly, unfunctionalized polymer or silica colloids are assembled into monolayers. However, the incorporation of functional molecules into such colloids offers a convenient possibility of implementing additional properties to the two-dimensional crystal. Here, we present the formation of novel functional colloidal monolayers with photoswitchable fluorescence. The miniemulsion polymerization technique was used to incorporate an appropriate dye system of a perylene-based fluorophore and a bis-arylethene as a photochrome in polymeric colloids in defined ratios. Upon irradiation with UV or visible light the photochrome reversibly isomerizes from the ring-closed form, which is able to absorb light of the emission wavelength of the fluorescent dye and the ring-open form, which is not. The fluorescence emission of the dye can thus be reversibly switched on and off with light even when embedded in colloids. The colloids were self-assembled at the air-water interface to produce hexagonally ordered functional monolayers and more complex binary crystals. We investigate in detail the influence of the polymeric matrix on the switching properties of the fluorophore/photochrome system and find that the rate constants for the photoswitching, which all lie in the same range, are less influenced by the polymeric environment than expected. We demonstrate the reversible switching of the fluorescence emission in self-assembled colloidal monolayers. The arrangement of broadly distributed functional colloids into ordered monolayers with high addressability was obtained by the formation of binary colloidal monolayers.Colloidal monolayers comprising of highly ordered two dimensional crystals are of high interest to generate surface patterns for a variety of different applications. Mostly, unfunctionalized polymer or silica

  8. Direct visualization of the interfacial position of colloidal particles and their assemblies.

    PubMed

    Vogel, N; Ally, J; Bley, K; Kappl, M; Landfester, K; Weiss, C K

    2014-06-21

    A method for direct visualization of the position of nanoscale colloidal particles at air-water interfaces is presented. After assembling hard (polystyrene, poly(methyl methacrylate), silica) or soft core-shell gold-hydrogel composite (Au@PNiPAAm) colloids at the air-water interface, butylcyanoacrylate is introduced to the interface via the gas phase. Upon contact with water, an anionic polymerization reaction of the monomer is initiated and a film of poly(butylcyanoacrylate) (PBCA) is generated, entrapping the colloids at their equilibrium position at the interface. We apply this method to investigate the formation of complex, binary assembly structures directly at the interface, to visualize soft, nanoscale hydrogel colloids in the swollen state, and to visualize and quantify the equilibrium position of individual micro- and nanoscale colloids at the air-water interface depending of the amount of charge present on the particle surface. We find that the degree of deprotonation of the carboxyl group shifts the air-water contact angle, which is further confirmed by colloidal probe atomic force microscopy. Remarkably, the contact angles determined for individual colloidal particles feature a significant distribution that greatly exceeds errors attributable to the size distribution of the colloids. This finding underlines the importance of accessing soft matter on an individual particle level.

  9. From crystal chemistry to colloid stability

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Burrows, N.; Penn, R. L.

    2008-12-01

    Aqueous suspensions of ferrihydrite nanoparticles form a colloid with properties that can be understood using classical theories but which additionally exhibit the distinctive phenomenon of nanocluster formation. While use of in situ light and x-ray scattering methods permit the quantitative determination of colloid stability, interparticle interactions, and cluster or aggregate geometry, there are currently few approaches to predict the colloidal behavior of mineral nanoparticles. A longstanding goal of aqueous geochemistry is the rationalization and prediction of the chemical properties of hydrated mineral interfaces from knowledge of interface structure at the molecular scale. Because interfacial acid-base reactions typically lead to the formation of a net electrostatic charge at the surfaces of oxide, hydroxide, and oxyhydroxide mineral surfaces, quantitative descriptions of this behavior have the potential to permit the prediction of long-range interactions between mineral particles. We will evaluate the feasibility of this effort by constructing a model for surface charge formation for ferrihydrite that combines recent insights into the crystal structure of this phase and proposed methods for estimating the pKa of acidic surface groups. We will test the ability of this model to predict the colloidal stability of ferrihydrite suspensions as a function of solution chemistry.

  10. Switching light with light - advanced functional colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Bley, K.; Sinatra, N.; Vogel, N.; Landfester, K.; Weiss, C. K.

    2013-12-01

    Colloidal monolayers comprising of highly ordered two dimensional crystals are of high interest to generate surface patterns for a variety of different applications. Mostly, unfunctionalized polymer or silica colloids are assembled into monolayers. However, the incorporation of functional molecules into such colloids offers a convenient possibility of implementing additional properties to the two-dimensional crystal. Here, we present the formation of novel functional colloidal monolayers with photoswitchable fluorescence. The miniemulsion polymerization technique was used to incorporate an appropriate dye system of a perylene-based fluorophore and a bis-arylethene as a photochrome in polymeric colloids in defined ratios. Upon irradiation with UV or visible light the photochrome reversibly isomerizes from the ring-closed form, which is able to absorb light of the emission wavelength of the fluorescent dye and the ring-open form, which is not. The fluorescence emission of the dye can thus be reversibly switched on and off with light even when embedded in colloids. The colloids were self-assembled at the air-water interface to produce hexagonally ordered functional monolayers and more complex binary crystals. We investigate in detail the influence of the polymeric matrix on the switching properties of the fluorophore/photochrome system and find that the rate constants for the photoswitching, which all lie in the same range, are less influenced by the polymeric environment than expected. We demonstrate the reversible switching of the fluorescence emission in self-assembled colloidal monolayers. The arrangement of broadly distributed functional colloids into ordered monolayers with high addressability was obtained by the formation of binary colloidal monolayers.Colloidal monolayers comprising of highly ordered two dimensional crystals are of high interest to generate surface patterns for a variety of different applications. Mostly, unfunctionalized polymer or silica

  11. Colloidal microcapsules: Surface engineering of nanoparticles for interfacial assembly

    NASA Astrophysics Data System (ADS)

    Patra, Debabrata

    2011-12-01

    Colloidal Microcapsules (MCs), i.e. capsules stabilized by nano-/microparticle shells are highly modular inherently multi-scale constructs with applications in many areas of material and biological sciences e.g. drug delivery, encapsulation and microreactors. These MCs are fabricated by stabilizing emulsions via self-assembly of colloidal micro/nanoparticles at liquid-liquid interface. In these systems, colloidal particles serve as modular building blocks, allowing incorporation of the particle properties into the functional capabilities of the MCs. As an example, nanoparticles (NPs) can serve as appropriate antennae to induce response by external triggers (e.g. magnetic fields or laser) for controlled release of encapsulated materials. Additionally, the dynamic nature of the colloidal assembly at liquid-liquid interfaces result defects free organized nanostructures with unique electronic, magnetic and optical properties which can be tuned by their dimension and cooperative interactions. The physical properties of colloidal microcapsules such as permeability, mechanical strength, and biocompatibility can be precisely controlled through the proper choice of colloids and preparation conditions for their. This thesis illustrates the fabrication of stable and robust MCs through via chemical crosslinking of the surface engineered NPs at oil-water interface. The chemical crosslinking assists NPs to form a stable 2-D network structure at the emulsion interface, imparting robustness to the emulsions. In brief, we developed the strategies for altering the nature of chemical interaction between NPs at the emulsion interface and investigated their role during the self-assembly process. Recently, we have fabricated stable colloidal microcapsule (MCs) using covalent, dative as well as non-covalent interactions and demonstrated their potential applications including encapsulation, size selective release, functional devices and biocatalysts.

  12. Waveguides in colloidal nanosuspensions

    NASA Astrophysics Data System (ADS)

    López-Peña, Luis A.; Salazar-Romero, Yadira; Terborg, Roland A.; Hernández-Cordero, Juan; Torres, Juan P.; Volke-Sepúlveda, K.

    2014-09-01

    We present and discuss a set of experiments based on the application of the nonlinear properties of colloidal nanosuspensions to induce waveguides with a high-power CW laser beam (wavelength 532nm) and its use for controlling an additional probe beam. The probe is a CW laser of a different wavelength (632nm), whose power is well below the critical value to induce nonlinear effects in the colloidal medium. We also discuss a technique for the characterization of the induced waveguides.

  13. Brownian diffusion of a partially wetted colloid

    NASA Astrophysics Data System (ADS)

    Boniello, Giuseppe; Blanc, Christophe; Fedorenko, Denys; Medfai, Mayssa; Mbarek, Nadia Ben; in, Martin; Gross, Michel; Stocco, Antonio; Nobili, Maurizio

    2015-09-01

    The dynamics of colloidal particles at interfaces between two fluids plays a central role in microrheology, encapsulation, emulsification, biofilm formation, water remediation and the interface-driven assembly of materials. Common intuition corroborated by hydrodynamic theories suggests that such dynamics is governed by a viscous force lower than that observed in the more viscous fluid. Here, we show experimentally that a particle straddling an air/water interface feels a large viscous drag that is unexpectedly larger than that measured in the bulk. We suggest that such a result arises from thermally activated fluctuations of the interface at the solid/air/liquid triple line and their coupling to the particle drag through the fluctuation-dissipation theorem. Our findings should inform approaches for improved control of the kinetically driven assembly of anisotropic particles with a large triple-line-length/particle-size ratio, and help to understand the formation and structure of such arrested materials.

  14. Magnetic manipulation of self-assembled colloidal asters

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Aranson, Igor S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots.

  15. Magnetic manipulation of self-assembled colloidal asters.

    SciTech Connect

    Snezhko, A.; Aranson, I. S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots

  16. Switching light with light--advanced functional colloidal monolayers.

    PubMed

    Bley, K; Sinatra, N; Vogel, N; Landfester, K; Weiss, C K

    2014-01-01

    Colloidal monolayers comprising of highly ordered two dimensional crystals are of high interest to generate surface patterns for a variety of different applications. Mostly, unfunctionalized polymer or silica colloids are assembled into monolayers. However, the incorporation of functional molecules into such colloids offers a convenient possibility of implementing additional properties to the two-dimensional crystal. Here, we present the formation of novel functional colloidal monolayers with photoswitchable fluorescence. The miniemulsion polymerization technique was used to incorporate an appropriate dye system of a perylene-based fluorophore and a bis-arylethene as a photochrome in polymeric colloids in defined ratios. Upon irradiation with UV or visible light the photochrome reversibly isomerizes from the ring-closed form, which is able to absorb light of the emission wavelength of the fluorescent dye and the ring-open form, which is not. The fluorescence emission of the dye can thus be reversibly switched on and off with light even when embedded in colloids. The colloids were self-assembled at the air-water interface to produce hexagonally ordered functional monolayers and more complex binary crystals. We investigate in detail the influence of the polymeric matrix on the switching properties of the fluorophore/photochrome system and find that the rate constants for the photoswitching, which all lie in the same range, are less influenced by the polymeric environment than expected. We demonstrate the reversible switching of the fluorescence emission in self-assembled colloidal monolayers. The arrangement of broadly distributed functional colloids into ordered monolayers with high addressability was obtained by the formation of binary colloidal monolayers. PMID:24227011

  17. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures

    PubMed Central

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-01-01

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121

  18. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures

    NASA Astrophysics Data System (ADS)

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-07-01

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates.

  19. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  20. Software for fitting and simulating fate and transport of dense colloids and biocolloids in one-dimensional porous media: Re-introducing ColloidFit.

    NASA Astrophysics Data System (ADS)

    Katzourakis, Vasileios; Chrysikopoulos, Constantinos

    2016-04-01

    The present work re-introduces ColloidFit, which is an autonomous, modular, multipurpose fitting software for dense colloid and biocolloid transport phenomena in porous media. The initial version of ColloidFit, introduced by Sim and Chrysikopoulos (1995), was substantially improved and combined with a relatively intuitive and easy to use graphical user interface. The re-introduced ColloidFit can simulate the migration of suspended colloid or biocolloid particles in one-dimensional, water saturated, homogeneous porous media with uniform flow, accounting for non-equilibrium attachment onto the solid matrix, as well as gravitational effects. Furthermore, the improved ColloidFit software employs a variety of non-equilibrium, linear and nonlinear models for the simulation of colloid attachment onto a solid matrix under batch experimental conditions. The re-introduced ColloidFit uses the state of the art fitting software "Pest" to estimate unknown model parameter values, together with their 95% confidence intervals. Pest is a model-independent parameter estimation software capable of adjusting model parameters, so that discrepancies between model-generated data and the corresponding experimental measurements are reduced to a user preselected minimum. The fitting process is graphed and displayed in real time. The user is allowed to overview every step of the fitting progress, and if needed to change the initial parameter values. The re-introduced ColloidFit software is expected to make the fitting process of colloid and biocolloid transport data, just a simple task.

  1. Charge-extraction strategies for colloidal quantum dot photovoltaics.

    PubMed

    Lan, Xinzheng; Masala, Silvia; Sargent, Edward H

    2014-03-01

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p- and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction.

  2. Anisotropic Model Colloids

    NASA Astrophysics Data System (ADS)

    van Kats, C. M.

    2008-10-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with

  3. Enhanced adhesion of bioinspired nanopatterned elastomers via colloidal surface assembly

    PubMed Central

    Akerboom, Sabine; Appel, Jeroen; Labonte, David; Federle, Walter; Sprakel, Joris; Kamperman, Marleen

    2015-01-01

    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the immersion depth of the particles were tuned by altering the pH and ionic strength of the water. Initially, PDMS completely wetted the air/water interface outside the monolayer, thereby compressing the monolayer as in a Langmuir trough; further application of PDMS subsequently covered the colloidal monolayers. PDMS curing and particle extraction resulted in elastomers patterned with nanodimples. Adhesion and friction of these nanopatterned surfaces with varying dimple depth were studied using a spherical probe as a counter-surface. Compared with smooth surfaces, adhesion of nanopatterned surfaces was enhanced, which is attributed to an energy-dissipating mechanism during pull-off. All nanopatterned surfaces showed a significant decrease in friction compared with smooth surfaces. PMID:25392404

  4. Viscosity of colloidal suspensions

    SciTech Connect

    Cohen, E.G.D.; Schepper, I.M. de

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  5. EVALUATION OF RANGE ESTIMATES FOR TOYOTA FCHV-ADV UNDER OPEN ROAD DRIVING CONDITIONS

    SciTech Connect

    Anton, D.; Wipke, K.; Sprik, S.

    2009-07-10

    The objective of this evaluation was to independently and objectively verify driving ranges of >400 miles announced by Toyota for its new advanced Fuel Cell Hybrid Vehicle (FCHV-adv) utilizing 70 MPa compressed hydrogen. To accomplish this, participants from both Savannah River National Laboratory (SRNL) and the National Renewable Energy Laboratory (NREL) witnessed and participated in a 2-vehicle evaluation with Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA) over a typical open road route for over 11 hours in one day with all relevant data recorded. SRNL and TEMA first entered into discussions of verifying the range of the advanced Toyota Fuel Cell Hybrid Vehicle (FCHV-adv) in August 2008 resulting from reported 400+ mile range by Toyota. After extended negotiations, a CRADA agreement, SRNS CRADA No. CR-04-003, was signed on May 6, 2009. Subsequently, on June 30, 2009 SRNL and NREL participated in an all-day evaluation of the FCHV-adv with TEMA to determine the real-world driving range of this vehicle through on-road driving on an extended round-trip drive between Torrance and San Diego, California. SRNL and NREL observed the vehicles being refueled at Toyota's headquarters the day before the evaluation in Torrance, CA on June 29. At 8:00 AM on June 30, the vehicles departed Torrance north toward downtown Los Angeles, then west to the Pacific Coast Highway, and down to San Diego. After lunch the vehicles retraced their route back to Torrance. The traffic encountered was much heavier than anticipated, causing the vehicles to not return to Torrance until 9 PM. Each vehicle was driven by the same Toyota driver all day, with one SRNL/NREL observer in each vehicle the entire route. Data was logged by Toyota and analyzed by NREL. The maximum range of the FCHV-adv vehicles was calculated to be 431 miles under these driving conditions. This distance was calculated from the actual range of 331.5 miles during over 11 hours driving, plus 99.5 miles of

  6. COLLOIDS. Colloidal matter: Packing, geometry, and entropy.

    PubMed

    Manoharan, Vinothan N

    2015-08-28

    Colloidal particles with well-controlled shapes and interactions are an ideal experimental system for exploring how matter organizes itself. Like atoms and molecules, these particles form bulk phases such as liquids and crystals. But they are more than just crude analogs of atoms; they are a form of matter in their own right, with complex and interesting collective behavior not seen at the atomic scale. Their behavior is affected by geometrical or topological constraints, such as curved surfaces or the shapes of the particles. Because the interactions between the particles are often short-ranged, we can understand the effects of these constraints using geometrical concepts such as packing. The geometrical viewpoint gives us a window into how entropy affects not only the structure of matter, but also the dynamics of how it forms. PMID:26315444

  7. Effect of fluid-colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids.

    PubMed

    Fedosov, Dmitry A; Sengupta, Ankush; Gompper, Gerhard

    2015-09-01

    Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid-colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid-colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid-colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity. PMID:26223678

  8. Colloidally deposited nanoparticle wires for biophysical detection

    NASA Astrophysics Data System (ADS)

    Shen, Sophie C.; Liu, Wen-Tao; Diao, Jia-Jie

    2015-12-01

    Among the techniques developed to prepare nanoparticle wires for multiple applications, the colloidal deposition method at interface has been regarded as cost-efficient and eco-friendly, and hence has attracted an increasing amount of research attention. In this report, the recent developments in preparing nanoparticle wires and integrated nanoparticle wire arrays using this technique have been reviewed. Furthermore, we have also discussed the application of these nanoparticle structures in detecting chemical and biological molecules. Project supported by the Fundamental Research Funds for the Central Universities through Xi’an Jiaotong University and the National Key Basic Research Program of China (Grant No. 2015CB856304).

  9. Direct visualization of the interfacial position of colloidal particles and their assemblies

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Ally, J.; Bley, K.; Kappl, M.; Landfester, K.; Weiss, C. K.

    2014-05-01

    A method for direct visualization of the position of nanoscale colloidal particles at air-water interfaces is presented. After assembling hard (polystyrene, poly(methyl methacrylate), silica) or soft core-shell gold-hydrogel composite (Au@PNiPAAm) colloids at the air-water interface, butylcyanoacrylate is introduced to the interface via the gas phase. Upon contact with water, an anionic polymerization reaction of the monomer is initiated and a film of poly(butylcyanoacrylate) (PBCA) is generated, entrapping the colloids at their equilibrium position at the interface. We apply this method to investigate the formation of complex, binary assembly structures directly at the interface, to visualize soft, nanoscale hydrogel colloids in the swollen state, and to visualize and quantify the equilibrium position of individual micro- and nanoscale colloids at the air-water interface depending of the amount of charge present on the particle surface. We find that the degree of deprotonation of the carboxyl group shifts the air-water contact angle, which is further confirmed by colloidal probe atomic force microscopy. Remarkably, the contact angles determined for individual colloidal particles feature a significant distribution that greatly exceeds errors attributable to the size distribution of the colloids. This finding underlines the importance of accessing soft matter on an individual particle level.A method for direct visualization of the position of nanoscale colloidal particles at air-water interfaces is presented. After assembling hard (polystyrene, poly(methyl methacrylate), silica) or soft core-shell gold-hydrogel composite (Au@PNiPAAm) colloids at the air-water interface, butylcyanoacrylate is introduced to the interface via the gas phase. Upon contact with water, an anionic polymerization reaction of the monomer is initiated and a film of poly(butylcyanoacrylate) (PBCA) is generated, entrapping the colloids at their equilibrium position at the interface. We apply

  10. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  11. Colloid-Facilitated Radionuclide Transport at the Potential Yucca Mountain Repository

    NASA Astrophysics Data System (ADS)

    Alcorn, S. R.; Mertz, C. J.

    2001-12-01

    In a geologic repository for nuclear waste, transport of radionuclides on or within colloids may be important for radionuclides of concern that have low solubility and can be entrained in, or sorbed onto, colloidal particles generated within the repository system. It is anticipated that colloids will be formed and mobilized at the potential Yucca Mountain repository as a result of alteration of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) waste forms, as well as corrosion of engineered barrier system (EBS) components. The abundance of colloids leaving a breached waste package and entering the repository drift will depend on the extent of waste form and EBS component alteration and the alteration products formed. Further, colloid abundance and stability will depend on such environmental factors as the ionic strength, pH, cation concentrations, natural colloid content, and organic acid and microbe content of groundwater entering the waste package from the drift. Colloids may flocculate and settle, be chemically retarded, mechanically filtered, or dissolve. In addition, colloids may sorb readily at the interfaces between air and water in rocks and engineered barriers and, depending upon the characteristics and degree of saturation of the porous medium, may be immobilized, retarded, or transported. A methodology for modeling colloid-facilitated radionuclide transport in the potential repository at Yucca Mountain was developed for use in Total System Performance Assessment calculations. The model incorporates several colloid sources and addresses factors affecting colloid stability and concentration as well as distribution and attachment of radionuclides onto colloids. Waste form corrosion tests performed at Argonne National Laboratory (ANL) have focused on determination of colloid composition, stability, concentration, size distribution, and associated radionuclide concentration. Data from these experiments were used as model inputs.

  12. Rapid fabrication of large area binary polystyrene colloidal crystals

    NASA Astrophysics Data System (ADS)

    Luo, Chun-Li; Yang, Rui-Xia; Yan, Wei-Guo; Zhao, Jian; Yang, Guang-Wu; Jia, Guo-Zhi

    2016-07-01

    Binary colloidal crystals (BCCs) possess great potentials in tuning material and optical properties. In this paper, the combination of interface transferred method and spin-coating method is used to fabricate BCCs with different patterns via controlling the size ratio of small (S) to large (L) colloidal spheres and the spin speeds. It is found that BCCs formed LS2, LS4 and LS6 by changing the size ratio. In addition, there are some new and complicated structures, such as LS12, Janus arrays, formed at the low spin speed. This simple assembly method has potential to allow for the creation of optical metmaterials and the plasmonic structures with chiral optical properties.

  13. Development of a model colloidal system for rheology simulation.

    SciTech Connect

    Schunk, Peter Randall; Tallant, David Robert; Piech, Martin; Bell, Nelson Simmons; Frischknecht, Amalie Lucile

    2008-10-01

    The objective of the experimental effort is to provide a model particle system that will enable modeling of the macroscopic rheology from the interfacial and environmental structure of the particles and solvent or melt as functions of applied shear and volume fraction of the solid particles. This chapter describes the choice of the model particle system, methods for synthesis and characterization, and results from characterization of colloidal dispersion, particle film formation, and the shear and oscillatory rheology in the system. Surface characterization of the grafted PDMS interface, dispersion characterization of the colloids, and rheological characterization of the dispersions as a function of volume fraction were conducted.

  14. Equilibrium Shape of Colloidal Crystals.

    PubMed

    Sehgal, Ray M; Maroudas, Dimitrios

    2015-10-27

    Assembling colloidal particles into highly ordered configurations, such as photonic crystals, has significant potential for enabling a broad range of new technologies. Facilitating the nucleation of colloidal crystals and developing successful crystal growth strategies require a fundamental understanding of the equilibrium structure and morphology of small colloidal assemblies. Here, we report the results of a novel computational approach to determine the equilibrium shape of assemblies of colloidal particles that interact via an experimentally validated pair potential. While the well-known Wulff construction can accurately capture the equilibrium shape of large colloidal assemblies, containing O(10(4)) or more particles, determining the equilibrium shape of small colloidal assemblies of O(10) particles requires a generalized Wulff construction technique which we have developed for a proper description of equilibrium structure and morphology of small crystals. We identify and characterize fully several "magic" clusters which are significantly more stable than other similarly sized clusters.

  15. Functional models for colloid retention in porous media at the triple line.

    PubMed

    Dathe, Annette; Zevi, Yuniati; Richards, Brian K; Gao, Bin; Parlange, J-Yves; Steenhuis, Tammo S

    2014-01-01

    Spectral confocal microscope visualizations of microsphere movement in unsaturated porous media showed that attachment at the Air Water Solid (AWS) interface was an important retention mechanism. These visualizations can aid in resolving the functional form of retention rates of colloids at the AWS interface. In this study, soil adsorption isotherm equations were adapted by replacing the chemical concentration in the water as independent variable by the cumulative colloids passing by. In order of increasing number of fitted parameters, the functions tested were the Langmuir adsorption isotherm, the Logistic distribution, and the Weibull distribution. The functions were fitted against colloid concentrations obtained from time series of images acquired with a spectral confocal microscope for three experiments performed where either plain or carboxylated polystyrene latex microspheres were pulsed in a small flow chamber filled with cleaned quartz sand. Both moving and retained colloids were quantified over time. In fitting the models to the data, the agreement improved with increasing number of model parameters. The Weibull distribution gave overall the best fit. The logistic distribution did not fit the initial retention of microspheres well but otherwise the fit was good. The Langmuir isotherm only fitted the longest time series well. The results can be explained that initially when colloids are first introduced the rate of retention is low. Once colloids are at the AWS interface they act as anchor point for other colloids to attach and thereby increasing the retention rate as clusters form. Once the available attachment sites diminish, the retention rate decreases.

  16. Quantification of colloid retention and release by straining and energy minima in variably saturated porous media.

    PubMed

    Sang, Wenjing; Morales, Verónica L; Zhang, Wei; Stoof, Cathelijne R; Gao, Bin; Schatz, Anna Lottie; Zhang, Yalei; Steenhuis, Tammo S

    2013-08-01

    The prediction of colloid transport in unsaturated porous media in the presence of large energy barrier is hampered by scant information of the proportional retention by straining and attractive interactions at surface energy minima. This study aims to fill this gap by performing saturated and unsaturated column experiments in which colloid pulses were added at various ionic strengths (ISs) from 0.1 to 50 mM. Subsequent flushing with deionized water released colloids held at the secondary minimum. Next, destruction of the column freed colloids held by straining. Colloids not recovered at the end of the experiment were quantified as retained at the primary minimum. Results showed that net colloid retention increased with IS and was independent of saturation degree under identical IS and Darcian velocity. Attachment rates were greater in unsaturated columns, despite an over 3-fold increase in pore water velocity relative to saturated columns, because additional retention at the readily available air-associated interfaces (e.g., the air-water-solid [AWS] interfaces) is highly efficient. Complementary visual data showed heavy retention at the AWS interfaces. Retention by secondary minima ranged between 8% and 46% as IS increased, and was greater for saturated conditions. Straining accounted for an average of 57% of the retained colloids with insignificant differences among the treatments. Finally, retention by primary minima ranged between 14% and 35% with increasing IS, and was greater for unsaturated conditions due to capillary pinning.

  17. Transport and retention of colloidal particles in partially saturated porous media: Effect of ionic strength

    NASA Astrophysics Data System (ADS)

    Zevi, Yuniati; Dathe, Annette; Gao, Bin; Zhang, Wei; Richards, Brian K.; Steenhuis, Tammo S.

    2009-12-01

    We directly observed pore-scale attachment of fluorescent synthetic polystyrene colloids (1.0 μm diameter) in a partially saturated sand pack (pore space saturation ranging from 0.7 to 0.9) at four solution ionic strengths (0, 1, 100, 200 mmol NaCl). Sequential confocal laser microscope images were analyzed to quantify colloid retention, particularly at air-water meniscus-solid (AWmS) interfaces. We concurrently measured effluent colloid concentrations to determine overall matrix retention. Ionic strength had no effect on meniscus contact angles (26.7 ± 3.7 degrees) or surface tension (63-67 mN/m), both important components of the capillary forces thought to play the primary role in retention at the AWmS interfaces. AWmS interfaces attachment was greatest at 1 mmol, with the 0 mmol ionic strength reducing attachment by half. Increasing ionic strength to 100 and 200 mmol markedly decreased colloid retention at the AWmS interfaces due to observed increased competing attachment at grain surfaces (solid/water interface) that reduced the number of colloids available for AWmS interface attachment.

  18. Crystalloid and colloid therapy.

    PubMed

    Fielding, Langdon

    2014-08-01

    Fluid therapy is a cornerstone of emergency medicine, but equine practitioners should be aware of recent developments that have modified previous recommendations. First, new emphasis on the avoidance of hyperchloremia suggests that crystalloids with a lower chloride concentration may be more appropriate for use. Second, modifications to the understanding of the Starling equation suggest that the benefits of colloids may be more limited than previously thought. In addition, the negative effects of fluid overload on morbidity and mortality are becoming increasingly recognized. Although more specific research in horses is needed, these principles are likely to apply across all species.

  19. Colloid solutions: a clinical update.

    PubMed

    Niemi, Tomi T; Miyashita, Ryo; Yamakage, Michiaki

    2010-12-01

    Albumin, dextran, gelatin, and hydroxyethyl starch (HES) solutions are colloids that efficiently expand the circulating blood volume. The administration of colloids restores the intravascular volume with minimal risk of tissue edema in comparison with crystalloid solutions alone. However, colloids are always given for surgical and critically ill patients. The type of the colloid, volumes applied, aggressiveness of fluid resuscitation, and the volume status at the initial phase of administration determine their clinical responses. The outcome after fluid resuscitation with various colloids in critically ill patients seems to be comparable according to systematic reviews. A randomized, adequately powered clinical trial comparing modern nonprotein colloid to albumin is still lacking. Rapidly degradable HES solutions have good hemodynamic effects, and the risk of adverse renal and coagulation effects, as well as allergic reactions, is minimal. The current investigation has also shown the beneficial effect of HES solution (especially HES 130/0.4) on inflammatory response, postoperative nausea and vomiting, and postoperative outcome. The indication of colloids with an assessment of the degree of hypovolemia and safety profiles should thus be taken into consideration before colloid administration.

  20. Adsorption-induced colloidal aggregation

    NASA Astrophysics Data System (ADS)

    Law, B. M.; Petit, J.-M.; Beysens, D.

    1998-03-01

    Reversible colloidal aggregation in binary liquid mixtures has been studied for a number of years. As the phase separation temperature of the liquid mixture is approached the thickness of an adsorption layer around the colloidal particles increases. Beysens and coworkers have demonstrated experimentally that this adsorption layer is intimately connected with the aggregation of the colloidal particles, however, no definitive theory has been available which can explain all of the experimental observations. In this contribution we describe an extension of the Derjaguin, Landau, Verwey, and Overbeek theory of colloidal aggregation which takes into account the presence of the adsorption layer and which more realistically models the attractive dispersion interactions. This modified theory can quantitatively account for many of the observed experimental features such as the characteristics of the aggregated state, the general shape of the aggregation line, and the temperature dependence of the second virial coefficient for a lutidine-water mixture containing a small volume fraction of silica colloidal particles.

  1. Intermittent filtration of bacteria and colloids in porous media

    NASA Astrophysics Data System (ADS)

    Auset, Maria; Keller, Arturo A.; Brissaud, FrançOis; Lazarova, Valentina

    2005-09-01

    Intermittent filtration through porous media used for water and wastewater treatment can achieve high pathogen and colloid removal efficiencies. To predict the removal of bacteria, the effects of cyclic infiltration and draining events (transient unsaturated flow) were investigated. Using physical micromodels, we visualized the intermittent transport of bacteria and other colloids in unsaturated porous media. Column experiments provided quantitative measurements of the phenomena observed at the pore scale. Tagged Escherichia coli and a conservative tracer (NaI) were introduced in an initial pulse into a 1.5 m sand column. Subsequent hydraulic flushes without tagged bacteria or tracer were repeated every 4 hours for the next 4 days, during which outflow concentrations were monitored. Breakthrough behavior between colloids and dissolved tracer differed significantly, reflecting the differences in transport processes. Advancement of the wetting front remobilized bacteria which were held in thin water films, attached to the air-water interface (AWI), or entrapped in stagnant pore water between gas bubbles. In contrast, the tracer was only remobilized by diffusion from immobile to mobile water. Remobilization led to successive concentration peaks of bacteria and tracer in the effluent but with significant temporal differences. Observations at the pore-scale indicated that the colloids were essentially irreversibly attached to the solid-water interface, which explained to some extent the high removal efficiency of microbes in the porous media. Straining, cluster filtration, cell lysis, protozoa grazing, and bacteriophage parasitism could also contribute to the removal efficiency of bacteria.

  2. Forced spreading of films and droplets of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Espin, Leonardo; Kumar, Satish

    2014-11-01

    When a thin film of a colloidal suspension flows over a substrate, uneven distribution of the suspended particles can lead to an uneven coating. Motivated by this phenomenon, we analyse the flow of perfectly wetting films and droplets of colloidal suspensions down an inclined plane. Lubrication theory and the rapid-vertical-diffusion approximation are used to derive a coupled pair of one-dimensional partial differential equations describing the evolution of the interface height and particle concentration. Precursor films are assumed to be present, the colloidal particles are taken to be hard spheres, and particle and liquid dynamics are coupled through a concentration-dependent viscosity and diffusivity. We find that for sufficiently high Péclet numbers, even small initial concentration inhomogeneities produce viscosity gradients that cause the film or droplet front to evolve continuously in time instead of travelling without changing shape as happens in the absence of colloidal particles. Our results suggest that particle concentration gradients can have a dramatic influence on interface evolution in flowing films and droplets, a finding which may be relevant for understanding the onset of patterns that are observed experimentally.

  3. Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics.

    PubMed

    Morales, Verónica L; Zhang, Wei; Gao, Bin; Lion, Leonard W; Bisogni, James J; McDonough, Brendan A; Steenhuis, Tammo S

    2011-02-01

    Although numerous studies have been conducted to discern colloid transport and stability processes, the mechanistic understanding of how dissolved organic matter (DOM) affects colloid fate in unsaturated soils (i.e., the vadose zone) remains unclear. This study aims to bridge the gap between the physicochemical responses of colloid complexes and porous media interfaces to solution chemistry, and the effect these changes have on colloid transport and fate. Measurements of adsorbed layer thickness, density, and charge of DOM-colloid complexes and transport experiments with tandem internal process visualization were conducted for key constituents of DOM, humic (HA) and fulvic acids (FA), at acidic, neutral and basic pH and two CaCl(2) concentrations. Polymeric characteristics reveal that, of the two tested DOM constituents, only HA electrosterically stabilizes colloids. This stabilization is highly dependent on solution pH which controls DOM polymer adsorption affinity, and on the presence of Ca(+2) which promotes charge neutralization and inter-particle bridging. Transport experiments indicate that HA improved colloid transport significantly, while FA only marginally affected transport despite having a large effect on particle charge. A transport model with deposition and pore-exclusion parameters fit experimental breakthrough curves well. Trends in deposition coefficients are correlated to the changes in colloid surface potential for bare colloids, but must include adsorbed layer thickness and density for sterically stabilized colloids. Additionally, internal process observations with bright field microscopy reveal that, under optimal conditions for retention, experiments with FA or no DOM promoted colloid retention at solid-water interfaces, while experiments with HA enhanced colloid retention at air-water interfaces, presumably due to partitioning of HA at the air-water interface and/or increased hydrophobic characteristics of HA-colloid complexes.

  4. Colloid retention at the meniscus-wall contact line in an open microchannel.

    PubMed

    Zevi, Yuniati; Gao, Bin; Zhang, Wei; Morales, Verónica L; Cakmak, M Ekrem; Medrano, Evelyn A; Sang, Wenjing; Steenhuis, Tammo S

    2012-02-01

    Colloid retention mechanisms in partially saturated porous media are currently being researched with an array of visualization techniques. These visualization techniques have refined our understanding of colloid movement and retention at the pore scale beyond what can be obtained from breakthrough experiments. One of the remaining questions is what mechanisms are responsible for colloid immobilization at the triple point where air, water, and soil grain meet. The objective of this study was to investigate how colloids are transported to the air-water-solid (AWS) contact line in an open triangular microchannel, and then retained as a function of meniscus contact angle with the wall and solution ionic strength. Colloid flow path, meniscus shape and meniscus-wall contact angle, and colloid retention at the AWS contact line were visualized and quantified with a confocal microscope. Experimental results demonstrated that colloid retention at the AWS contact line was significant when the meniscus-wall contact angle was less than 16°, but was minimal for the meniscus-wall contact angles exceeding 20°. Tracking of individual colloids and computational hydrodynamic simulation both revealed that for small contact angles (e.g., 12.5°), counter flow and flow vortices formed near the AWS contact line, but not for large contact angles (e.g., 28°). This counter flow helped deliver the colloids to the wall surface just below the contact line. In accordance with DLVO and hydrodynamic torque calculations, colloid movement may be stopped when the colloid reached the secondary minimum at the wall near the contact line. However, contradictory to the prediction of the torque analysis, colloid retention at the AWS contact line decreased with increasing ionic strength for contact angles of 10-20°, indicating that the air-water interface was involved through both counter flow and capillary force. We hypothesized that capillary force pushed the colloid through the primary energy

  5. Colloidal spheres confined by liquid droplets: Geometry, physics, and physical chemistry

    NASA Astrophysics Data System (ADS)

    Manoharan, Vinothan N.

    2006-09-01

    I discuss how colloidal particles organize when they are confined by emulsion droplets. In these systems, the interplay between surface tension and interparticle repulsion drives the formation of complex, non-crystalline 3D arrangements. These can be classified into three groups: colloidosomes, or Pickering emulsions, structures that form when particles are bound to the interface of a spherical droplet; colloidal clusters, small polyhedral configurations of colloids formed by capillary forces generated in an evaporating emulsion droplet; and supraparticles, ball-shaped crystallites formed in the interior of emulsion droplets. I discuss the preparation, properties, and structure of each of these systems, using relevant results from geometry to describe how the particles organize.

  6. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops.

    PubMed

    Still, Tim; Yunker, Peter J; Yodh, Arjun G

    2012-03-20

    The influence of the small ionic surfactant sodium dodecyl sulfate (SDS) on the evaporation of drying colloidal droplets is quantitatively investigated. The addition of SDS leads to a significantly more uniform deposition of colloidal particles after evaporation (i.e., the so-called "coffee-ring effect" is dramatically altered). We understand this phenomenon in the context of circulating radial Marangoni flows induced by the variation of SDS concentration along the air-water interface. Video microscopy permits the direct visualization of the colloidal particles involved in these flows, revealing a surprisingly stable "Marangoni eddy" that prevents particle deposition at the drop perimeter. PMID:22369657

  7. Experimental study on thermophoresis of colloids in aqueous surfactant solutions

    NASA Astrophysics Data System (ADS)

    Dong, Ruo-Yu; Zhou, Yi; Yang, Chun; Cao, Bing-Yang

    2015-12-01

    Thermophoresis refers to the motion of particles under a temperature gradient and it is one of the particle manipulation techniques. Regarding the thermophoresis of particles in liquid media, however, many open questions still remain, especially the role of the interfacial effect. This work reports on a systematic experimental investigation of surfactant effects, especially the induced interfacial effect, on the thermophoresis of colloids in aqueous solutions via a microfluidic approach. Two kinds of commonly used surfactants, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), are selected and the results show that from relatively large concentrations, the two surfactants can greatly enhance the thermophilic mobilities. Specifically, it is found that the colloid-water interfaces modified with more polar end groups can potentially lead to a stronger thermophilic tendency. Due to the complex effects of surfactants, further theoretical model development is needed to quantitatively describe the dependence of thermophoresis on the interface characteristics.

  8. Modeling the co-transport of viruses and colloids in unsaturated porous media.

    PubMed

    Seetha, N; Mohan Kumar, M S; Majid Hassanizadeh, S

    2015-10-01

    A mathematical model is developed to simulate the co-transport of viruses and colloids in unsaturated porous media under steady-state flow conditions. The virus attachment to the mobile and immobile colloids is described using a linear reversible kinetic model. Colloid transport is assumed to be decoupled from virus transport; that is, we assume that colloids are not affected by the presence of attached viruses on their surface. The governing equations are solved numerically using an alternating three-step operator splitting approach. The model is verified by fitting three sets of experimental data published in the literature: (1) Syngouna and Chrysikopoulos (2013) and (2) Walshe et al. (2010), both on the co-transport of viruses and clay colloids under saturated conditions, and (3) Syngouna and Chrysikopoulos (2015) for the co-transport of viruses and clay colloids under unsaturated conditions. We found a good agreement between observed and fitted breakthrough curves (BTCs) under both saturated and unsaturated conditions. Then, the developed model was used to simulate the co-transport of viruses and colloids in porous media under unsaturated conditions, with the aim of understanding the relative importance of various processes on the co-transport of viruses and colloids in unsaturated porous media. The virus retention in porous media in the presence of colloids is greater during unsaturated conditions as compared to the saturated conditions due to: (1) virus attachment to the air-water interface (AWI), and (2) co-deposition of colloids with attached viruses on its surface to the AWI. A sensitivity analysis of the model to various parameters showed that the virus attachment to AWI is the most sensitive parameter affecting the BTCs of both free viruses and total mobile viruses and has a significant effect on all parts of the BTC. The free and the total mobile viruses BTCs are mainly influenced by parameters describing virus attachment to the AWI, virus interaction

  9. Modeling the co-transport of viruses and colloids in unsaturated porous media.

    PubMed

    Seetha, N; Mohan Kumar, M S; Majid Hassanizadeh, S

    2015-10-01

    A mathematical model is developed to simulate the co-transport of viruses and colloids in unsaturated porous media under steady-state flow conditions. The virus attachment to the mobile and immobile colloids is described using a linear reversible kinetic model. Colloid transport is assumed to be decoupled from virus transport; that is, we assume that colloids are not affected by the presence of attached viruses on their surface. The governing equations are solved numerically using an alternating three-step operator splitting approach. The model is verified by fitting three sets of experimental data published in the literature: (1) Syngouna and Chrysikopoulos (2013) and (2) Walshe et al. (2010), both on the co-transport of viruses and clay colloids under saturated conditions, and (3) Syngouna and Chrysikopoulos (2015) for the co-transport of viruses and clay colloids under unsaturated conditions. We found a good agreement between observed and fitted breakthrough curves (BTCs) under both saturated and unsaturated conditions. Then, the developed model was used to simulate the co-transport of viruses and colloids in porous media under unsaturated conditions, with the aim of understanding the relative importance of various processes on the co-transport of viruses and colloids in unsaturated porous media. The virus retention in porous media in the presence of colloids is greater during unsaturated conditions as compared to the saturated conditions due to: (1) virus attachment to the air-water interface (AWI), and (2) co-deposition of colloids with attached viruses on its surface to the AWI. A sensitivity analysis of the model to various parameters showed that the virus attachment to AWI is the most sensitive parameter affecting the BTCs of both free viruses and total mobile viruses and has a significant effect on all parts of the BTC. The free and the total mobile viruses BTCs are mainly influenced by parameters describing virus attachment to the AWI, virus interaction

  10. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2012-11-01

    tailor a random substrate potential for colloids [20] or to bind colloids optically [21]. External magnetic fields are typically used to create dipolar repulsions of colloids pending at an air-water interface. This provides an avenue to two-dimensional systems, where the freezing transition [22] and various transport phenomena through channels are the focus of recent research [23, 24]. Confinement typically leads to interfaces. The classical problem of the Tolman length for a fluid-fluid interface is reviewed in detail in [25]. In fact, colloid-polymer mixtures constitute ideal model systems for liquid-gas interfaces in various geometries [26] and are also suitable for measuring the Tolman length experimentally. Crystalline phases in confinement [27] and crystal-fluid interfaces [28] are even more complex due to the inhomogeneity of the solid phase. Also in the confined fluid phase, there are still open issues in slit-pore geometry. These include how to scale the interparticle distance [29] and how to measure hydrodynamic interactions between colloidal particles [30]. Other external fields which can be applied to colloids are gravity [31] and temperature [32]. An important field of recently emerging research is active colloidal particles (so-called microswimmers) which possess fascinating nonequilibrium properties; for recent reviews see [33-35]. Two examples are also included in this issue: an active deformable particle [36] moving in gravity and the collective turbulent swarming behaviour of dense self-propelled colloidal rod suspensions [37]. References [1]Löwen H 2001 J. Phys. Condens. Matter 13 R415 [2]Löwen H and Likos C N (ed) 2004 J. Phys. Condens. Matter 16 (special issue) [3]Löwen H 1976 J. Phys. Condens. Matter 20 404201 [4]Guu D, Dhont J K G, Vliegenthart G A and Lettinga M P 2012 J. Phys. Condens. Matter 24 464101 [5]Gupta S, Kundu S, Stellbrink J, Willner L, Allgaier J and Richter D 2012 J. Phys. Condens. Matter 24 464102 [6]Singh S P, Fedosov D A

  11. Fibrinogen monolayer characterization by colloid deposition.

    PubMed

    Nattich-Rak, Małgorzata; Adamczyk, Zbigniew; Wasilewska, Monika; Sadowska, Marta

    2013-09-24

    Colloid particle deposition was applied to characterize bovine and human fibrinogen (Fb) monolayers on mica produced by controlled adsorption under diffusion transport at pH 3.5. The surface concentration of Fb was determined by AFM enumeration of single molecules adsorbed over the substrate surface. The electrokinetic properties of Fb monolayers for various ionic strength were studied using the in situ streaming potential measurements. It was shown that Fb adsorbs irreversibly on mica for a broad range of ionic strength of 4 × 10(-4) to 0.15 M, NaCl. The overcharging of initially negative mica surface occurred for fibrinogen surface concentrations higher than 1400 μm(-2). The orientation of fibrinogen molecules in the monolayers was evaluated by the colloid deposition method involving negatively charged polystyrene latex microspheres, 820 nm in diameter. An anomalous deposition of negative latex particles on substrates exhibiting a negative zeta potential was observed, which contradicts the mean-field DLVO predictions. Measurable deposition was observed even at low ionic strength where the minimum approach distance of latex particles to the interface exceeds 70 nm (for 6 × 10(-4) M NaCl). This confirms that, at this pH, fibrinogen molecules adsorb end-on on mica assuming extended conformations with the positive charge located mostly in the end part of the αA chains. This agrees with previous experimental and theoretical results discussed in the literature (Santore, M. M.; Wertz Ch. F. Protein spreading kinetics at liquid-solid interfaces via an adsorption probe method. Langmuir 2005, 21, 10172-10178 (experimental); Adamczyk, Z.; Barbasz, J.; Cieśla, M.; Mechanisms of fibrinogen adsorption at solid substrates. Langmuir, 2011, 25, 6868-6878 (theoretical)). This unusual latex deposition on Fb monolayers was quantitatively interpreted in terms of the model developed in ref 55 (Jin, X.; Wang, N. H. L.; Tarjus, G.; Talbot, J. Irreversible adsorption on nonuniform

  12. Colloids in Acute Burn Resuscitation.

    PubMed

    Cartotto, Robert; Greenhalgh, David

    2016-10-01

    Colloids have been used in varying capacities throughout the history of formula-based burn resuscitation. There is sound experimental evidence that demonstrates colloids' ability to improve intravascular colloid osmotic pressure, expand intravascular volume, reduce resuscitation requirements, and limit edema in unburned tissue following a major burn. Fresh frozen plasma appears to be a useful and effective immediate burn resuscitation fluid but its benefits must be weighed against its costs, and risks of viral transmission and acute lung injury. Albumin, in contrast, is less expensive and safer and has demonstrated ability to reduce resuscitation requirements and possibly limit edema-related morbidity. PMID:27600123

  13. Two-dimensional dipolar nematic colloidal crystals.

    PubMed

    Skarabot, M; Ravnik, M; Zumer, S; Tkalec, U; Poberaj, I; Babic, D; Osterman, N; Musevic, I

    2007-11-01

    We study the interactions and directed assembly of dipolar nematic colloidal particles in planar nematic cells using laser tweezers. The binding energies for two stable configurations of a colloidal pair with homeotropic surface alignment are determined. It is shown that the orientation of the dipolar colloidal particle can efficiently be controlled and changed by locally quenching the nematic liquid crystal from the laser-induced isotropic phase. The interaction of a single colloidal particle with a single colloidal chain is determined and the interactions between pairs of colloidal chains are studied. We demonstrate that dipolar colloidal chains self-assemble into the two-dimensional (2D) dipolar nematic colloidal crystals. An odd-even effect is observed with increasing number of colloidal chains forming the 2D colloidal crystal. PMID:18233658

  14. Coffee-rings and glasses: Colloids out of equilibrium

    NASA Astrophysics Data System (ADS)

    Yunker, Peter Joseph

    This thesis describes experiments that utilize colloids to explore nonequilibrium phenomena. Specifically, the deposition of particles during evaporation and the glass transition are explored. In the first set of experiments, we found that particle shape has a profound effect on particle deposition. We evaporated drops of colloidal suspensions containing micron-sized particles that range in shape from isotropic spheres to very anisotropic ellipsoids. For sessile drops, i.e., drops sitting on a solid surface, spheres are deposited in a ring-like stain, while ellipsoids are deposited uniformly. We also confined drops between glass plates and allowed them to evaporate. During evaporation, colloidal particles coat the air-water interface, forming colloidal monolayer membranes (CMMs). As particle anisotropy increases, CMM bending rigidity was found to increase. This increase in bending rigidity provides a new mechanism that produces a uniform deposition of ellipsoids and a heterogeneous deposition of spheres. In the second set of experiments, we employed colloidal suspensions to investigate the character of glassy materials. "Anisotropic glasses'' were investigated with ellipsoidal particles confined to two-dimensional chambers at high packing fractions; this system enabled the study of the effects of particle shape on the vibrational properties of colloidal glasses. Low frequency modes in glasses composed of slightly anisotropic particles are found to have predominantly rotational character. Conversely, low frequency modes in glasses of highly anisotropic particles exhibit a mix of rotational and translational character. Aging effects in glasses were explored using suspensions of temperature-sensitive microgel spheres. We devised a method to rapidly quench from liquid to glass states, and then observed the resultant colloidal glasses as they aged. Particle rearrangements in glasses occur collectively, i.e., many particles move in a correlated manner. During aging, we

  15. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  16. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  17. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  18. Emergent behavior in active colloids

    NASA Astrophysics Data System (ADS)

    Zöttl, Andreas; Stark, Holger

    2016-06-01

    Active colloids are microscopic particles, which self-propel through viscous fluids by converting energy extracted from their environment into directed motion. We first explain how artificial microswimmers move forward by generating near-surface flow fields via self-phoresis or the self-induced Marangoni effect. We then discuss generic features of the dynamics of single active colloids in bulk and in confinement, as well as in the presence of gravity, field gradients, and fluid flow. In the third section, we review the emergent collective behavior of active colloidal suspensions, focusing on their structural and dynamic properties. After summarizing experimental observations, we give an overview of the progress in modeling collectively moving active colloids. While active Brownian particles are heavily used to study collective dynamics on large scales, more advanced methods are necessary to explore the importance of hydrodynamic and phoretic particle interactions. Finally, the relevant physical approaches to quantify the emergent collective behavior are presented.

  19. Colloidal caterpillars for cargo transportation.

    PubMed

    Sasaki, Yuji; Takikawa, Yoshinori; Jampani, V S R; Hoshikawa, Hikaru; Seto, Takafumi; Bahr, Christian; Herminghaus, Stephan; Hidaka, Yoshiki; Orihara, Hiroshi

    2014-11-28

    Tunable transport of tiny objects in fluid systems is demanding in diverse fields of science such as drug delivery, active matter far from equilibrium, and lab-on-a-chip applications. Here, we report the directed motion of colloidal particles and self-assembled colloidal chains in a nematic liquid crystal matrix using electrohydrodynamic convection (EHC) rolls. The asymmetric distortion of the molecular orientation around the particles results - for single particles - in a hopping motion from one EHC roll to the next and - for colloidal chains - in a caterpillar-like motion in the direction perpendicular to the roll axes. We demonstrate the use of colloidal chains as microtraction engines for the transport of various types of microcargo.

  20. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  1. Re-shaping colloidal clusters

    NASA Astrophysics Data System (ADS)

    Kraft, Daniela

    2015-03-01

    Controlling the geometry and yield of anisotropic colloidal particles remains a challenge for hierarchical self-assembly. I will discuss a synthetic strategy for fabricating colloidal clusters by creating order in randomly aggregated polymer spheres using surface tension and geometrical constraints. The technique can be extended to a variety of charge-stabilized polymer spheres and offers control over the cluster size distribution. VENI grant from The Netherlands Organization for Scientific Research (NWO).

  2. Fractionalization of interstitials in curved colloidal crystals

    NASA Astrophysics Data System (ADS)

    Irvine, William T. M.; Bowick, Mark J.; Chaikin, Paul M.

    2012-11-01

    Understanding the effect of curvature and topological frustration in crystals yields insights into the fragility of the ordered state. For instance, a one-dimensional crystal of identical charged particles can accommodate an extra particle (interstitial) if all the particle positions are readjusted, yet in a planar hexagonal crystal interstitials remain trapped between lattice sites and diffuse by hopping. Using optical tweezers operated independently of three-dimensional imaging, we inserted interstitials in a lattice of similar colloidal particles sitting on flat or curved oil/glycerol interfaces, and imaged the ensuing dynamics. We find that, unlike in flat space, the curved crystals self-heal through a collective particle rearrangement that redistributes the increased density associated with the interstitial. This process can be interpreted in terms of the out-of-equilibrium interaction of topological defects with each other and with the underlying curvature. Our observations suggest the existence of particle fractionalization on curved surface crystals.

  3. MOLECULAR DESIGN OF COLLOIDS IN SUPERCRITICAL FLUIDS

    SciTech Connect

    Keith P. Johnston

    2009-04-06

    The environmentally benign, non-toxic, non-flammable fluids water and carbon dioxide (CO2) are the two most abundant and inexpensive solvents on earth. Emulsions of these fluids are of interest in many industrial processes, as well as CO2 sequestration and enhanced oil recovery. Until recently, formation of these emulsions required stabilization with fluorinated surfactants, which are expensive and often not environmentally friendly. In this work we overcame this severe limitation by developing a fundamental understanding of the properties of surfactants the CO2-water interface and using this knowledge to design and characterize emulsions stabilized with either hydrocarbon-based surfactants or nanoparticle stabilizers. We also discovered a new concept of electrostatic stabilization for CO2-based emulsions and colloids. Finally, we were able to translate our earlier work on the synthesis of silicon and germanium nanocrystals and nanowires from high temperatures and pressures to lower temperatures and ambient pressure to make the chemistry much more accessible.

  4. Imbibition kinetics of spherical colloidal aggregates.

    PubMed

    Debacker, A; Makarchuk, S; Lootens, D; Hébraud, P

    2014-07-11

    The imbibition kinetics of a millimeter-sized aggregate of 300 nm diameter colloidal particles by a wetting pure solvent is studied. Three successive regimes are observed. First, the imbibition proceeds by compressing the air inside the aggregate. Next, the solvent stops when the pressure of the compressed air is equal to the excess of capillary pressure at the meniscus of the wetting solvent in the porous aggregate. The interface is pinned and the aggregate slowly degases up to the point where the pressure of the entrapped air stops decreasing and is controlled by the capillary pressure. Finally, the imbibition starts again at a constant excess of pressure, smaller than the capillary pressure but larger than the one of the atmosphere. This last stage leads to the complete infiltration of the aggregate. PMID:25062241

  5. Building devices from colloidal quantum dots.

    PubMed

    Kagan, Cherie R; Lifshitz, Efrat; Sargent, Edward H; Talapin, Dmitri V

    2016-08-26

    The continued growth of mobile and interactive computing requires devices manufactured with low-cost processes, compatible with large-area and flexible form factors, and with additional functionality. We review recent advances in the design of electronic and optoelectronic devices that use colloidal semiconductor quantum dots (QDs). The properties of materials assembled of QDs may be tailored not only by the atomic composition but also by the size, shape, and surface functionalization of the individual QDs and by the communication among these QDs. The chemical and physical properties of QD surfaces and the interfaces in QD devices are of particular importance, and these enable the solution-based fabrication of low-cost, large-area, flexible, and functional devices. We discuss challenges that must be addressed in the move to solution-processed functional optoelectronic nanomaterials. PMID:27563099

  6. Dynamics of a colloid-stabilized cream

    NASA Astrophysics Data System (ADS)

    Herzig, E. M.; Robert, A.; van 'T Zand, D. D.; Cipelletti, L.; Pusey, P. N.; Clegg, P. S.

    2009-01-01

    We use x-ray photon correlation spectroscopy to investigate the dynamics of a high-volume-fraction emulsion creaming under gravity. The dodecane-in-water emulsion has interfaces stabilized solely by colloidal particles (silica). The samples were observed soon after mixing: as the emulsion becomes compact we discern two regimes of aging with a crossover between them. The young emulsion has faster dynamics associated with creaming in a crowded environment accompanied by local rearrangements. The dynamics slow down for the older emulsion, although our studies show that motion is associated with large intermittent events. The relaxation rate, as seen from the intensity autocorrelation function, depends linearly on the wave vector at all times; however, the exponent associated with the line shape changes from 1.5 for young samples to less than 1 as the emulsion ages. The combination of ballisticlike dynamics, an exponent that drops below 1, and large intermittent fluctuations has not been reported before to our knowledge.

  7. Colloids in Flatland: a perspective on 2D phase-separated systems, characterisation methods, and lineactant design.

    PubMed

    Bernardini, C; Stoyanov, S D; Arnaudov, L N; Cohen Stuart, M A

    2013-03-01

    In 1861 Thomas Graham gave birth to a new field of science, today known as colloid science. Nowadays, the notion "colloid" is often used referring to systems consisting of two immiscible phases, one of which is finely dispersed into the other. Research on colloids deals mostly with sols (solids dispersed in a liquid), emulsions (liquids dispersed in liquid), and foams (gas dispersed in a liquid). Because the dispersed particles are small, there is a lot of interface per unit mass. Not surprisingly, therefore, the properties of the interface have often a decisive effect on the behaviour of colloids. Water-air interfaces have a special relevance in this field: many water-insoluble molecules can be spread on water and, given the right spreading conditions and enough available surface area, their spreading proceeds until a monolayer (a one-molecule thick layer) eventually remains. Several 2D phases have been identified for such monolayers, like "gas", "liquid expanded", "liquid condensed", and "solid". The central question of this review is whether these 2D phases can also exist as colloidal systems, and what stabilizes the dispersed state in such systems. We shall present several systems capable of yielding 2D phase separation, from those based on either natural or fluorinated amphiphiles, to polymer-based ones. We shall seek for analogies in 3D and we shall try to clarify if the lines between these 2D objects play a similar role as the interfaces between 3D colloidal systems. In particular, we shall consider the special role of molecules that tend to accumulate at the phase boundaries, that is, at the contact lines, which will therefore be denoted "line-actants" (molecules that adsorb at a 1D interface, separating two 2D colloidal entities), by analogy to the term "surfactant" (which indicates a molecule that adsorbs at a 2D interface separating two 3D colloidal entities).

  8. Aggregation of Heterogeneously Charged Colloids.

    PubMed

    Dempster, Joshua M; Olvera de la Cruz, Monica

    2016-06-28

    Patchy colloids are attractive as programmable building blocks for metamaterials. Inverse patchy colloids, in which a charged surface is decorated with patches of the opposite charge, are additionally noteworthy as models for heterogeneously charged biological materials such as proteins. We study the phases and aggregation behavior of a single charged patch in an oppositely charged colloid with a single-site model. This single-patch inverse patchy colloid model shows a large number of phases when varying patch size. For large patch sizes we find ferroelectric crystals, while small patch sizes produce cross-linked gels. Intermediate values produce monodisperse clusters and unusual worm structures that preserve finite ratios of area to volume. The polarization observed at large patch sizes is robust under extreme disorder in patch size and shape. We examine phase-temperature dependence and coexistence curves and find that large patch sizes produce polarized liquids, in contrast to mean-field predictions. Finally, we introduce small numbers of unpatched charged colloids. These can either suppress or encourage aggregation depending on their concentration and the size of the patches on the patched colloids. These effects can be exploited to control aggregation and to measure effective patch size.

  9. A coupled field study of subsurface fracture flow and colloid transport

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Tang, Xiang-Yu; Weisbrod, Noam; Zhao, Pei; Reid, Brian J.

    2015-05-01

    Field studies of subsurface transport of colloids, which may act as carriers of contaminants, are still rare. This is particularly true for heterogeneous and fractured matrices. To address this knowledge gap, a 30-m long monitoring trench was constructed at the lower end of sloping farmland in central Sichuan, southwest China. During the summer of 2013, high resolution dynamic and temporal fracture flow discharging from the interface between fractured mudrock and impermeable sandstone was obtained at intervals of 5 min (for fast rising stages), 30-60 min (for slow falling stages) or 15 min (at all other times). This discharge was analyzed to elucidate fracture flow and colloid transport in response to rainfall events. Colloid concentrations were observed to increase quickly once rainfall started (∼15-90 min) and reached peak values of up to 188 mg/L. Interestingly, maximum colloid concentration occurred prior to the arrival of flow discharge peak (i.e. maximum colloid concentration was observed before saturation of the soil layer). Rainfall intensity (rather than its duration) was noted to be the main factor controlling colloid response and transport. Dissolved organic carbon concentration and δ18O dynamics in combination with soil water potential were used to apportion water sources of fracture flow at different stages. These approaches suggested the main source of the colloids discharged to be associated with the flushing of colloids from the soil mesopores and macropores. Beyond the scientific interest of colloid mobilization and transport at the field scale, these results have important implications for a region of about 160,000 km2 in southwest China that featured similar hydrogeologic settings as the experimental site. In this agriculture-dominated area, application of pesticides and fertilizers to farmland is prevalent. These results highlight the need to avoid such applications immediately before rainfall events in order to reduce rapid migration to

  10. Photodoping of Colloidal Nanocrystals

    NASA Astrophysics Data System (ADS)

    Cohn, Alicia W.

    This dissertation addresses various aspects of photodoping colloidal nanocrystals. Photodoped ZnO nanocrystals were found to be versatile tuneable reducers using both quantum confinement and band-gap engineering with Mg2+ doping to change the conduction band potential. Using photoluminescence of the visible trap and magnetic circular dichroism spectroscopy of Mg2+ and Mn2+ co-doped ZnO, Mg2+ was shown to change the potential of both the conduction and valence band in a ratio of 0.68:0.32. The hole scavenging reaction using ethanol as the hole scavenger was investigated using continuous-wave and time resolved photoluminescence of the visible trap state of ZnO. The reaction was found to occur between the valence band hole and with a rate of > 15 ps-1. Quenching of the ZnO visible trap luminescence upon photodoping was shown to be due to trap/electron Auger process while the concomitant enhancement of the UV band-gap emission was hypothesized to be due to a reduction in non-radiative processes due to extra electrons in the conduction-band. The trap/electron Auger process in ZnO nanocrystals was further characterized by a size-dependence and shown to scale with R2. Another previously unknown Auger size dependence was measured in CdSe/ZnS trions and shown to scale with R4.3.

  11. Consolidation of colloidal suspensions

    SciTech Connect

    Shih, Wei-Heng; Kim, Seong Il; Shih, Wan Y.; Aksay, I.A. ); Schilling, C.H. Pacific Northwest Lab., Richland, WA )

    1990-08-01

    A key step in the processing of ceramics is the consolidation of powders into engineered shapes. Colloidal processing uses solvents (usually water) and dispersants to break up powder agglomerates in suspension and thereby reduce the pore size in a consolidated compact. However, agglomeration and particle rearrangement leading to pore enlargement can still occur during drying. Therefore, it is beneficial to consolidate the compact as densely as possible during the suspension stage. The consolidation techniques of pressure filtration and centrifugation were studied and the results are reported in this paper. In particular, the steady-state pressure- density relationship was studied, and information was obtained regarding the consolidation process, the microstructure, and the average density profile of consolidated cakes. Recently, we performed Monte Carlo simulations on a cluster-cluster aggregation model with restructuring, and found the exponential relationship between pressure and density is indeed the result of the breaking up of the fractal structural units. Furthermore, we calculated density profiles from the bottom to the top of the consolidated cakes by solving the local static force balance equation in the continuum particulate network. 11 refs., 3 figs.

  12. Colloidal Suspensions in Shear Flow : a Real Space Study

    NASA Astrophysics Data System (ADS)

    Derks, D.

    2006-09-01

    decomposition pattern is observed. As the structure coarsens, the domains become highly stretched along the flow direction, and the domain width along the vorticity axis reaches a stationary size, corresponding to a steady state. In the final stage of phase separation the denser colloidal liquid phase settles on the bottom of the cell, while the gas phase floats on top. The interface between these phases is the topic of Chapter 5. We investigate the thermal fluctuations of the colloidal gas-liquid interface subjected to a shear flow parallel to the interface. Strikingly, we find that the shear strongly suppresses capillary waves, making the interface smoother. Finally, we consider the demixing process in systems of attractive rods (Chapter 6). A mixture of rod-like viruses (fd) and polymer (dextran) is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist (at zero shear). Dependent on the concentration of rods we observe either demixing by nucleation-and-growth (high concentration) or spinodal decomposition (low concentration). At intermediate concentrations we see the transition between both types of demixing processes, where we locate the spinodal point.

  13. Colloid facilitated transport of strongly sorbing contaminants in natural porous media: mathematical modeling and laboratory column experiments.

    PubMed

    Grolimund, Daniel; Borkovec, Michal

    2005-09-01

    Mobile colloidal particles may act as carriers of strongly sorbing contaminants in subsurface materials. Such colloid-facilitated transport can be induced by changes in salinity, similar to freshwater intrusion to a contaminated aquifer saturated with saltwater, or groundwater penetration into a contaminated site saturated with a dumpsite leachate. This process is studied for noncalcareous soil material with laboratory column experiments with sodium and calcium as major cations and with lead as a strongly sorbing model contaminant. The measured breakthrough curves of these elements were described with a mathematical transport model, which invokes release and deposition kinetics of the colloids, together with adsorption and desorption of the relevant ions to the solid matrix as well as to the suspended colloids. In particular, the specific coupling between colloid and solute transport is considered. The crux of a successful description of such colloidal transport processes is to capture the inhibition of the particle release by adsorbed divalent ions properly and explicitly to considerthe dependence of colloid release on the solution chemistry and the chemical conditions at the solid-liquid interface. Experiments and modeling address colloid-facilitated transport of lead out of a contaminated zone and through a noncontaminated zone, including effects of flow velocity and length of the noncontaminated zone. We finally show that colloid-facilitated transport can be suppressed by the injection of a suitably chosen solution of a calcium salt.

  14. Preliminary 3-D site-scale studies of radioactive colloid transport in the unsaturated zone at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Moridis, G. J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G. S.

    2003-02-01

    The U.S. Department of Energy (DOE) is actively investigating the technical feasibility of permanent disposal of high-level nuclear waste in a repository to be situated in the unsaturated zone (UZ) at Yucca Mountain (YM), Nevada. In this study we investigate, by means of numerical simulation, the transport of radioactive colloids under ambient conditions from the potential repository horizon to the water table. The site hydrology and the effects of the spatial distribution of hydraulic and transport properties in the Yucca Mountain subsurface are considered. The study of migration and retardation of colloids accounts for the complex processes in the unsaturated zone of Yucca Mountain, and includes advection, diffusion, hydrodynamic dispersion, kinetic colloid filtration, colloid straining, and radioactive decay. The results of the study indicate that the most important factors affecting colloid transport are the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The transport of colloids is strongly influenced by their size (as it affects diffusion into the matrix, straining at hydrogeologic unit interfaces, and transport velocity) and by the parameters of the kinetic-filtration model used for the simulations. Arrival times at the water table decrease with an increasing colloid size because of smaller diffusion, increased straining, and higher transport velocities. The importance of diffusion as a retardation mechanism increases with a decreasing colloid size, but appears to be minimal in large colloids.

  15. Preliminary 3-D site-scale studies of radioactive colloid transport in the unsaturated zone at Yucca Mountain, Nevada.

    PubMed

    Moridis, G J; Hu, Q; Wu, Y-S; Bodvarsson, G S

    2003-02-01

    The U.S. Department of Energy (DOE) is actively investigating the technical feasibility of permanent disposal of high-level nuclear waste in a repository to be situated in the unsaturated zone (UZ) at Yucca Mountain (YM), Nevada. In this study we investigate, by means of numerical simulation, the transport of radioactive colloids under ambient conditions from the potential repository horizon to the water table. The site hydrology and the effects of the spatial distribution of hydraulic and transport properties in the Yucca Mountain subsurface are considered. The study of migration and retardation of colloids accounts for the complex processes in the unsaturated zone of Yucca Mountain, and includes advection, diffusion, hydrodynamic dispersion, kinetic colloid filtration, colloid straining, and radioactive decay. The results of the study indicate that the most important factors affecting colloid transport are the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The transport of colloids is strongly influenced by their size (as it affects diffusion into the matrix, straining at hydrogeologic unit interfaces, and transport velocity) and by the parameters of the kinetic-filtration model used for the simulations. Arrival times at the water table decrease with an increasing colloid size because of smaller diffusion, increased straining, and higher transport velocities. The importance of diffusion as a retardation mechanism increases with a decreasing colloid size, but appears to be minimal in large colloids. PMID:12504362

  16. A test of the ADV-based Reynolds flux method for in situ estimation of sediment settling velocity in a muddy estuary

    NASA Astrophysics Data System (ADS)

    Cartwright, Grace M.; Friedrichs, Carl T.; Smith, S. Jarrell

    2013-12-01

    Under conditions common in muddy coastal and estuarine environments, acoustic Doppler velocimeters (ADVs) can serve to estimate sediment settling velocity ( w s) by assuming a balance between upward turbulent Reynolds flux and downward gravitational settling. Advantages of this method include simple instrument deployment, lack of flow disturbance, and relative insensitivity to biofouling and water column stratification. Although this method is being used with increasing frequency in coastal and estuarine environments, to date it has received little direct ground truthing. This study compared in situ estimates of w s inferred by a 5-MHz ADV to independent in situ observations from a high-definition video settling column over the course of a flood tide in the bottom boundary layer of the York River estuary, Virginia, USA. The ADV-based measurements were found to agree with those of the settling column when the current speed at about 40 cm above the bed was greater than about 20 cm/s. This corresponded to periods when the estimated magnitude of the settling term in the suspended sediment continuity equation was four or more times larger than the time rate of change of concentration. For ADV observations restricted to these conditions, ADV-based estimates of w s (mean 0.48±0.04 mm/s) were highly consistent with those observed by the settling column (mean 0.45±0.02 mm/s). However, the ADV-based method for estimating w s was sensitive to the prescribed concentration of the non-settling washload, C wash. In an objective operational definition, C wash can be set equal to the lowest suspended solids concentration observed around slack water.

  17. Edge pinning and transformation of defect lines induced by faceted colloidal rings in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Senyuk, Bohdan; Liu, Qingkun; Yuan, Ye; Smalyukh, Ivan I.

    2016-06-01

    Nematic colloids exhibit a large diversity of topological defects and structures induced by colloidal particles in the orientationally ordered liquid crystal host fluids. These defects and field configurations define elastic interactions and medium-mediated self-assembly, as well as serve as model systems in exploiting the richness of interactions between topologies and geometries of colloidal surfaces, nematic fields, and topological singularities induced by particles in the nematic bulk and at nematic-colloidal interfaces. Here we demonstrate formation of quarter-strength surface-pinned disclinations, as well as a large variety of director field configurations with splitting and reconnections of singular defect lines, prompted by colloidal particles with sharp edges and size large enough to define strong boundary conditions. Using examples of faceted ring-shaped particles of genus g =1 , we explore transformation of defect lines as they migrate between locations in the bulk of the nematic host to edge-pinned locations at the surfaces of particles and vice versa, showing that this behavior is compliant with topological constraints defined by mathematical theorems. We discuss how transformation of bulk and surface defect lines induced by faceted colloids can enrich the diversity of elasticity-mediated colloidal interactions and how these findings may impinge on prospects of their controlled reconfigurable self-assembly in nematic hosts.

  18. Micro-scale flow simulation and colloid transport modeling in saturated porous media

    NASA Astrophysics Data System (ADS)

    Qiu, Queming; Jin, Yan; Wang, Lian-Ping

    2013-11-01

    Adequate understanding of the mechanisms governing colloid retention by soil porous media is essential to the prediction and monitoring of the transport of contaminants through groundwater in the subsurface environment. This talk focuses on the representation of micro-scale flow and colloid-grain surface interactions in a computational approach with 3D porous media packed with glass beads. A corresponding 2D porous media is also developed to save some computational efforts. After solving the flow field with the Lattice Boltzmann method, a Lagrangian colloid tracking model is used to study the dynamics of colloidal particles considering Brownian force, hydrodynamic forces, and physicochemical forces. The attachment efficiency at favorable condition in our 3D model is compared with experimental data and also the efficiency predicted from other research group with different models. Under the unfavorable condition, the modeling and analysis of colloid transport will explore the effects of solution ionic strength on colloid reversible retention in both 2D and 3D models. To speed up our colloid tracking modeling, parallel implementation using Message Passing Interface (MPI) is performed and the related complexity analysis and scalability results will also be presented. This work is partially supported by NSF.

  19. Edge pinning and transformation of defect lines induced by faceted colloidal rings in nematic liquid crystals.

    PubMed

    Senyuk, Bohdan; Liu, Qingkun; Yuan, Ye; Smalyukh, Ivan I

    2016-06-01

    Nematic colloids exhibit a large diversity of topological defects and structures induced by colloidal particles in the orientationally ordered liquid crystal host fluids. These defects and field configurations define elastic interactions and medium-mediated self-assembly, as well as serve as model systems in exploiting the richness of interactions between topologies and geometries of colloidal surfaces, nematic fields, and topological singularities induced by particles in the nematic bulk and at nematic-colloidal interfaces. Here we demonstrate formation of quarter-strength surface-pinned disclinations, as well as a large variety of director field configurations with splitting and reconnections of singular defect lines, prompted by colloidal particles with sharp edges and size large enough to define strong boundary conditions. Using examples of faceted ring-shaped particles of genus g=1, we explore transformation of defect lines as they migrate between locations in the bulk of the nematic host to edge-pinned locations at the surfaces of particles and vice versa, showing that this behavior is compliant with topological constraints defined by mathematical theorems. We discuss how transformation of bulk and surface defect lines induced by faceted colloids can enrich the diversity of elasticity-mediated colloidal interactions and how these findings may impinge on prospects of their controlled reconfigurable self-assembly in nematic hosts. PMID:27415331

  20. Quantification of Colloid Retention in Unsaturated Porous Media Using Microscopic Image Analysis Data

    NASA Astrophysics Data System (ADS)

    Dathe, A.; Zevi, Y.; Gao, B.; Richards, B. K.; Steenhuis, T. S.

    2006-05-01

    The movement of contaminants via colloidal transport mechanisms through the vadose zone to groundwater is of growing concern. Normally-immobile contaminants can enter an aquifer via colloid-facilitated transport, and pathogens themselves (e.g. Cryptosporidium parvum) are colloidal in scale. Little is known about the complex pore-scale mechanisms of transport and retention of colloids in soils. Measurements of colloid and microbial transport have been typically limited to the evaluation of breakthrough curves from column experiments (which yield only an integrated signal of all retention processes in the column) or to the visualization in micromodels with limited applicability to realistic conditions. The objective of the work discussed here is to observe and model colloid transport and retention on the pore scale. Flow experiments were run in a horizontal flow chamber containing clean quartz sand as the porous medium. Synthetic fluorescent microspheres were used as easily-detected colloid surrogates. A syringe inlet pump and peristaltic outlet pump controlled the chamber moisture content and flow rate. The chamber was mounted under a Laser Scanning Confocal Microscope (Leica TCS SP2, 10x 0.40 UV objective) which allowed the acquisition of time series images and 3D reconstruction of pore-scale images. Three spectral channels were used to detect: 1) fluorescent microsphere emissions (500 to 540 nm) excited at 488 nm by an argon laser; 2) water phase emissions (555 to 650 nm) due to Rhodamine B stain excited at 543 nm by a green HeNe laser; and 3) reflectance of laser light at the grain surfaces. Three 8-bit images were detected simultaneously for every time step. The system is also capable of obtaining image stacks in the z-direction, which allow the determination of the position of attached colloids relative to the interface between air, water menisci, and solid grains. The 3D z-axis stacks reveal that the colloids are attaching at the air/water meniscus/solid (AWm

  1. Crack formation and prevention in colloidal drops

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  2. Crack formation and prevention in colloidal drops

    PubMed Central

    Kim, Jin Young; Cho, Kun; Ryu, Seul-a; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  3. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid.

    PubMed

    Park, SungJun; Park, Hye Hun; Kim, Sung Yeon; Kim, Su Jung; Woo, Kyoungja; Ko, GwangPyo

    2014-04-01

    Silver nanoparticles (AgNPs) are considered to be a potentially useful tool for controlling various pathogens. However, there are concerns about the release of AgNPs into environmental media, as they may generate adverse human health and ecological effects. In this study, we developed and evaluated a novel micrometer-sized magnetic hybrid colloid (MHC) decorated with variously sized AgNPs (AgNP-MHCs). After being applied for disinfection, these particles can be easily recovered from environmental media using their magnetic properties and remain effective for inactivating viral pathogens. We evaluated the efficacy of AgNP-MHCs for inactivating bacteriophage ΦX174, murine norovirus (MNV), and adenovirus serotype 2 (AdV2). These target viruses were exposed to AgNP-MHCs for 1, 3, and 6 h at 25°C and then analyzed by plaque assay and real-time TaqMan PCR. The AgNP-MHCs were exposed to a wide range of pH levels and to tap and surface water to assess their antiviral effects under different environmental conditions. Among the three types of AgNP-MHCs tested, Ag30-MHCs displayed the highest efficacy for inactivating the viruses. The ΦX174 and MNV were reduced by more than 2 log10 after exposure to 4.6 × 10(9) Ag30-MHCs/ml for 1 h. These results indicated that the AgNP-MHCs could be used to inactivate viral pathogens with minimum chance of potential release into environment.

  4. Entropy favours open colloidal lattices.

    PubMed

    Mao, Xiaoming; Chen, Qian; Granick, Steve

    2013-03-01

    Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.

  5. Bicompartmental phase transfer vehicles based on colloidal dimers.

    PubMed

    Wang, Sijia; Wu, Ning

    2014-11-26

    Colloidal particles have been used extensively for stabilizing oil-water interfaces in petroleum, food, and cosmetics industries. They have also demonstrated promising potential in the encapsulation and delivery of drugs. Our work is motivated by challenging applications that require protecting and transporting active agents across the water-oil interfaces, such as delivering catalysts to underground oil phase through water flooding for in situ cracking of crude oil. In this Research Article, we successfully design, synthesize, and test a unique type of bicompartmental targeting vehicle that encapsulates catalytic molecules, finds and accumulates at oil-water interface, releases the catalysts toward the oil phase, and performs hydrogenation reaction of unsaturated oil. This vehicle is based on colloidal dimers that possess structural anisotropy between two compartments. We encapsulate active species, such as fluorescent dye and catalytic molecules in one lobe which consists of un-cross-linked polymers, while the other polymeric lobe is highly cross-linked. Although dimers are dispersible in water initially, the un-cross-linked lobe swells significantly upon contact with a trace amount of oil in aqueous phase. The dimers then become amphiphilic, migrate toward, and accumulate at the oil-water interface. As the un-cross-linked lobe swells and eventually dissolves in oil, the encapsulated catalysts are fully released. We also show that hydrogenation of unsaturated oil can be performed subsequently with high conversion efficiency. By further creating the interfacial anisotropy on the dimers, we can reduce the catalyst release time from hundred hours to 30 min. Our work demonstrates a new concept in making colloidal emulsifiers and phase-transfer vehicles that are important for encapsulation and sequential release of small molecules across two different phases.

  6. Exploiting the colloidal nanocrystal library to construct electronic devices

    NASA Astrophysics Data System (ADS)

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T.; Murray, Christopher B.; Kagan, Cherie R.

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high–dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

  7. Exploiting the colloidal nanocrystal library to construct electronic devices

    NASA Astrophysics Data System (ADS)

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T.; Murray, Christopher B.; Kagan, Cherie R.

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high-dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

  8. A quick and simple route to form soft Janus colloids

    NASA Astrophysics Data System (ADS)

    Sosa, Chris; Priestley, Rodney; Prud'Homme, Robert

    2014-03-01

    Janus colloids, i.e., particles with two chemically distinct compartments or ``faces,'' are of significant scientific interest as they could serve as the enabling material for self-organizing superstructures and functional nanodevices. The internally segregated structures present in Janus particles are not only beneficial for self-assembly applications, but are also attractive from a more fundamental scientific perspective for the insight they can provide on hybrid material interfaces. Here, we present a novel, one-step nano-precipitation process for the formation of soft Janus colloids composed of two compositionally distinct and surface-active polymer domains. In particular, this approach allows for the fabrication of Janus particles from both homopolymers and block co-polymers, generates phase-separated Janus structures on extremely fast timescales, and provides excellent scalability. Supported, in part, by the Department of Energy (DOE) Office of Science Graduate Fellowship Program (DOE SCGF).

  9. Exploiting the colloidal nanocrystal library to construct electronic devices.

    PubMed

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high-dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second. PMID:27124455

  10. When Colloidal Particles Become Polymer Coils.

    PubMed

    Mourran, Ahmed; Wu, Yaodong; Gumerov, Rustam A; Rudov, Andrey A; Potemkin, Igor I; Pich, Andrij; Möller, Martin

    2016-01-26

    This work concerns interfacial adsorption and attachment of swollen microgel with low- to medium-level cross-linking density. Compared to colloids that form a second, dispersed phase, the suspended swollen microgel particles are ultrahigh molecular weight molecules, which are dissolved like a linear polymer, so that solvent and solute constitute only one phase. In contrast to recent literature in which microgels are treated as particles with a distinct surface, we consider solvent-solute interaction as well as interfacial adsorption based on the chain segments that can form trains of adsorbed segments and loops protruding from the surface into the solvent. We point out experimental results that support this discrimination between particles and microgels. The time needed for swollen microgels to adsorb at the air/water interface can be 3 orders of magnitude shorter than that for dispersed particles and decreases with decreasing cross-linking density. Detailed analysis of the microgels deformation, in the dry state, at a solid surface enabled discrimination particle like microgel in which case spreading was controlled predominantly by the elasticity and molecule like adsorption characterized by a significant overstreching, ultimately leading to chain scission of microgel strands. Dissipative particle dynamics simulations confirms the experimental findings on the interfacial activity and spreading of microgel at liquid/air interface. PMID:26717422

  11. Colloidal Particles in Thin Nematic Wetting Films.

    PubMed

    Jeridi, Haifa; Tasinkevych, Mykola; Othman, Tahar; Blanc, Christophe

    2016-09-01

    We experimentally and theoretically study the variety of elastic deformations that appear when colloidal inclusions are embedded in thin wetting films of a nematic liquid crystal with hybrid anchoring conditions. In the thickest films, the elastic dipoles formed by particles and their accompanying defects share features with the patterns commonly observed in liquid crystal cells. When the film gets thinner than the particles size, however, the capillary effects strongly modify the appearance of the elastic dipoles and the birefringence patterns. The influence of the film thickness and particles sizes on the patterns has been explored. The main experimental features and the transitions observed at large scale-with respect to the inclusions' size-are explained with a simple two-dimensional Ansatz, combining capillarity and nematic elasticity. In a second step, we discuss the origin of the variety of observed textures. Developing a three-dimensional Landau-de Gennes model at the scale of the particles, we show that the presence of free interfaces and the beads confinement yield metastable configurations that are quenched during the film spreading or the beads trapping at interfaces. PMID:27538098

  12. Photophysics of carbon-60 colloids

    NASA Astrophysics Data System (ADS)

    Clements, Andrew F.

    The goal of this dissertation is to study the photophysics of suspensions of colloidal C60 particles to determine if their nonlinear optical (NLO) response is superior in any way to benchmark NLO materials such as molecular solutions of C60 and carbon black suspensions (CBS). C60 in molecular form is known to exhibit strong reverse saturable absorption (RSA) and it is posited that colloidal particles composed of many C60 molecules would maintain some degree of RSA behavior upon association, although some quenching is to be expected. CBS is known to have an NLO response that is dominated by nonlinear scattering resulting from a phase change due to heating of the carbon black particles by absorbed energy. Colloidal C 60 particles that are many nanometers in diameter are similar to CBS, so it is posited that they would also have a nonlinear scattering mechanism contributing to their NLO response. Three samples of C60 colloids are characterized by several techniques, along with two carbon black suspensions and one molecular solution of C60. Transmission electron microscopy is used to determine morphology. Femtosecond pump-probe spectroscopy is used to determine the absorption spectrum and the relaxation kinetics of the first excited singlet state. Nanosecond laser flash photolysis is used to determine the absorption spectrum and the relaxation kinetics of the first excited triplet state. Z-scan is used to determine triplet-triplet absorption cross-sections. An experiment is performed to determine the percentage of the input energy that is transmitted, scattered, or absorbed by each sample. Computer modeling is performed to compare the experimental results to theory. Results show that all materials that exhibit nonlinear scattering have a constant extinction coefficient in the nonlinear regime, implying a characteristic size for the scattering centers that is independent of input energy. Quenching processes in C60 colloids are found to be morphology dependent, with more

  13. Synthesis and Characterization of Supramolecular Colloids.

    PubMed

    Vilanova, Neus; De Feijter, Isja; Voets, Ilja K

    2016-01-01

    Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer. PMID:27168201

  14. Colloids and Nucleation

    NASA Technical Reports Server (NTRS)

    Ackerson, Bruce

    1997-01-01

    The objectives of the work funded under this grant were to develop a microphotographic technique and use it to monitor the nucleation and growth of crystals of hard colloidal spheres. Special attention is given to the possible need for microgravity studies in future experiments. A number of persons have been involved in this work. A masters student, Keith Davis, began the project and developed a sheet illumination apparatus and an image processing system for detection and analysis. His work on a segmentation program for image processing was sufficient for his master's research and has been published. A post doctoral student Bernie Olivier and a graduate student Yueming He, who originally suggested the sheet illumination, were funded by another source but along with Keith made photographic series of several samples (that had been made by Keith Davis). Data extraction has been done by Keith, Bernie, Yueming and two undergraduates employed on the grant. Results are published in Langmuir. These results describe the sheet lighting technique as one which illuminates not only the Bragg scattering crystal, but all the crystals. Thus, accurate crystal counts can be made for nucleation rate measurements. The strange crystal length scale reduction, observed in small angle light scattering (SALS) studies, following the initial nucleation and growth period, has been observed directly. The Bragg scattering (and dark) crystal size decreases in the crossover region. This could be an effect due to gravitational forces or due to over- compression of the crystal during growth. Direct observations indicate a complex morphology for the resulting hard sphere crystals. The crystal edges are fairly sharp but the crystals have a large degree of internal structure. This structure is a result of (unstable) growth and not aggregation. As yet unpublished work compares growth exponents data with data obtained by SALS. The nucleation rate density is determined over a broad volume fraction range

  15. Colloid Transport in Unsaturated Porous Media: 3D Visualization Using Synchrotron X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Brueck, C. L.; Meisenheimer, D.; Wildenschild, D.

    2015-12-01

    Understanding the mechanisms controlling colloid transport and deposition in the vadose zone is an important step in protecting our water resources. Not only may these particles themselves be undesirable contaminants, but they can also aid in the transport of smaller, molecular-scale contaminants by chemical attachment. In this research, we examined the influence that air-water interfaces (AWI) and air-water-solid contact lines (AWS) have on colloid deposition and mobilization in three-dimensional systems. We used x-ray microtomography to visualize the transport of hydrophobic colloids as they move through a partially saturated glass bead pack. Drainage and imbibition experiments were conducted using syringe pumps to control the flow of a colloid suspension through the porous media at 0.6 mL/hr. The high ionic strength fluid was adjusted to a pH of 9.5 and a concentration of 1.0 mol/L KI. During the drainage and imbibition, the flow was periodically halted and allowed to equilibrate before collecting the microtomography scans. Dopants were used to enhance the contrast between the four phases (water, air, beads, and colloids), including potassium iodide dissolved in the fluid, and an outer layer of silver coating the colloids. We hypothesized that AWIs and AWSs will scour and mobilize a significant percentage of colloids, and therefore reduce the concentration of colloids along the vertical profile of the column. The concentration of potassium iodide, and thus the ionic strength, necessary for adequate image segmentation was also explored in separate experiments so that the influence of ionic strength on colloid deposition and mobilization can be studied.

  16. Evaluation of Colloid Retention Site Dominance in Variably Saturated Porous Media: An All Pores Pore-Scale Analysis

    NASA Astrophysics Data System (ADS)

    Morales, Veronica; Perez-Reche, Francisco; Holzner, Markus; Kinzelbach, Wolfgang

    2016-04-01

    It is well accepted that colloid and nanoparticle transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to particle immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Yet, the current understanding of the importance of particle retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which Silver particles were transported for conditions of varying water content and water chemistry. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the main locations where colloids can become retained (interfaces with the water-solid, air-water, air-solid, and air-water-solid, grain-grain contacts, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, and iii) channel widths of 3-dimensional pore-water network representations. The results presented provide a direct statistical evaluation on the significance of colloid retention by attachment to interfaces or by strainig at contact points where multiple interfaces meet.

  17. Site-specific retention of colloids at rough rock surfaces.

    PubMed

    Darbha, Gopala Krishna; Fischer, Cornelius; Luetzenkirchen, Johannes; Schäfer, Thorsten

    2012-09-01

    The spatial deposition of polystyrene latex colloids (d = 1 μm) at rough mineral and rock surfaces was investigated quantitatively as a function of Eu(III) concentration. Granodiorite samples from Grimsel test site (GTS), Switzerland, were used as collector surfaces for sorption experiments. At a scan area of 300 × 300 μm(2), the surface roughness (rms roughness, Rq) range was 100-2000 nm, including roughness contribution from asperities of several tens of nanometers in height to the sample topography. Although, an increase in both roughness and [Eu(III)] resulted in enhanced colloid deposition on granodiorite surfaces, surface roughness governs colloid deposition mainly at low Eu(III) concentrations (≤5 × 10(-7) M). Highest deposition efficiency on granodiorite has been found at walls of intergranular pores at surface sections with roughness Rq = 500-2000 nm. An about 2 orders of magnitude lower colloid deposition has been observed at granodiorite sections with low surface roughness (Rq < 500 nm), such as large and smooth feldspar or quartz crystal surface sections as well as intragranular pores. The site-specific deposition of colloids at intergranular pores is induced by small scale protrusions (mean height = 0.5 ± 0.3 μm). These protrusions diminish locally the overall DLVO interaction energy at the interface. The protrusions prevent further rolling over the surface by increasing the hydrodynamic drag required for detachment. Moreover, colloid sorption is favored at surface sections with high density of small protrusions (density (D) = 2.6 ± 0.55 μm(-1), asperity diameter (φ) = 0.6 ± 0.2 μm, height (h) = 0.4 ± 0.1 μm) in contrast to surface sections with larger asperities and lower asperity density (D = 1.2 ± 0.6 μm(-1), φ = 1.4 ± 0.4 μm, h = 0.6 ± 0.2 μm). The study elucidates the importance to include surface roughness parameters into predictive colloid-borne contaminant migration calculations.

  18. Site-specific retention of colloids at rough rock surfaces.

    PubMed

    Darbha, Gopala Krishna; Fischer, Cornelius; Luetzenkirchen, Johannes; Schäfer, Thorsten

    2012-09-01

    The spatial deposition of polystyrene latex colloids (d = 1 μm) at rough mineral and rock surfaces was investigated quantitatively as a function of Eu(III) concentration. Granodiorite samples from Grimsel test site (GTS), Switzerland, were used as collector surfaces for sorption experiments. At a scan area of 300 × 300 μm(2), the surface roughness (rms roughness, Rq) range was 100-2000 nm, including roughness contribution from asperities of several tens of nanometers in height to the sample topography. Although, an increase in both roughness and [Eu(III)] resulted in enhanced colloid deposition on granodiorite surfaces, surface roughness governs colloid deposition mainly at low Eu(III) concentrations (≤5 × 10(-7) M). Highest deposition efficiency on granodiorite has been found at walls of intergranular pores at surface sections with roughness Rq = 500-2000 nm. An about 2 orders of magnitude lower colloid deposition has been observed at granodiorite sections with low surface roughness (Rq < 500 nm), such as large and smooth feldspar or quartz crystal surface sections as well as intragranular pores. The site-specific deposition of colloids at intergranular pores is induced by small scale protrusions (mean height = 0.5 ± 0.3 μm). These protrusions diminish locally the overall DLVO interaction energy at the interface. The protrusions prevent further rolling over the surface by increasing the hydrodynamic drag required for detachment. Moreover, colloid sorption is favored at surface sections with high density of small protrusions (density (D) = 2.6 ± 0.55 μm(-1), asperity diameter (φ) = 0.6 ± 0.2 μm, height (h) = 0.4 ± 0.1 μm) in contrast to surface sections with larger asperities and lower asperity density (D = 1.2 ± 0.6 μm(-1), φ = 1.4 ± 0.4 μm, h = 0.6 ± 0.2 μm). The study elucidates the importance to include surface roughness parameters into predictive colloid-borne contaminant migration calculations. PMID:22861645

  19. Synthesis and Applications of Non-spherical Dimer Colloids

    NASA Astrophysics Data System (ADS)

    Yoon, Kisun

    Colloids are promising building blocks in material synthesis because of their controllability of size and surface properties. The synthesis of chemically and/or geometrically anisotropic colloidal particles has received attentions with the expectation of building blocks for complex structures. However, the synthesis of anisotropic colloidal particles is by far more difficult than the synthesis of spherical colloidal particles. Lack of monodispersity and productivity of many anisotropic particles often limits their applications as a building block for complex structures. Thus, it is highly desirable to develop methods which can produce a large amount of monodisperse non-spherical particles with controllable asymmetric surface properties. This dissertation details the work for developing such a method. The major result of this dissertation is a synthetic method to produce monodisperse non-spherical colloids with anisotropic surface property in a large quantity. The anisotropic colloid, which we call it as Dimer particle, has two fused lobes like a dumbbell and each lobe's size can be independently controlled. We present a novel method to synthesize sub-micron size Dimer particles. This method can produce a large amount of submicron-sized Dimer particles with good monodispersity and well-controlled shape. Submicron-sized Dimer particles have been highly desired since they can be used as a building block for self assembly using Brownian motion, colloidal surfactant for Pickering emulsion, and photonic materials. To fully take advantage of the anisotropy of the particles, we develop a facile method to tailor the surface property of each lobe independently by asymmetrically coating the particles with gold nanoparticles. This method doesn't need the arrangement of particles onto any type of interfaces. Asymmetric coating of gold nanoparticles can be carried out simply by mixing Dimer particles with gold nanoparticles. The formation mechanism of the submicron-sized Dimer

  20. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    NASA Astrophysics Data System (ADS)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  1. Colloid characterization and quantification in groundwater samples

    SciTech Connect

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples

  2. Colloidal Assembly via Shape Complementarity

    SciTech Connect

    Macfarlane, Robert John; Mirkin, Chad A.

    2010-07-15

    A simple method for selectively assembling colloidal particles with depletion forces is achieved using the concept of shape complementarity, reminiscent of Fischer's “lock and key” enzyme model. A spherical particle can fit inside a second particle with an indentation of similar size and shape, allowing access to a large variety of assembled structures.

  3. Sonochemical synthesis of iron colloids

    SciTech Connect

    Suslick, K.S.; Fang, M.; Hyeon, T.

    1996-11-27

    We present here a new method for the preparation of stable ferromagnetic colloids of iron using high-intensity ultrasound to sonochemically decompose volatile organometallic compounds. These colloids have narrow size distributions centered at a few nanometers and are found to be superparamagnetic. In conclusion, a simple synthetic method has been discovered to produce nanosized iron colloid using high-intensity ultrasound. Nanometer iron particles dispersed in polyvinylpyrrolidone (PVP) matrix or stabilized by adsorption of oleic acid have been synthesized by sonochemical decomposition of Fe(CO){sub 5}. Transmission electron micrographs show that the iron particles have a relatively narrow range in size from 3 to 8 nm for polyvinylpyrrolidone, while oleic acid gives an even more uniform distribution at 8 nm. magnetic measurements revealed that these nanometer iron particles are superparamagnetic with a saturation magnetization of 101 emu/g (Fe) at 290 K. This work is easily extended to colloids of other metals and to alloys of two or more metals, simply by using multiple volatile precursors. 29 refs., 4 figs.

  4. Dynamics of evaporative colloidal patterning

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, L.

    2015-09-01

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

  5. Microbial effects on colloidal agglomeration

    SciTech Connect

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  6. Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    Weitz, Dave; Weeks, Eric; Gasser, Urs; Dinsmore, Tony; Mawley, Suliana; Segre, Phil; Cipelletti, Lucia

    2000-01-01

    This talk will present recent results from ground-based research to support the "Physics of Colloids in Space" project which is scheduled to fly in the ISS approximately one year from now. In addition, results supporting future planned flights will be discussed.

  7. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  8. Effective Forces Between Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Tehver, Riina; Banavar, Jayanth R.; Koplik, Joel

    1999-01-01

    Colloidal suspensions have proven to be excellent model systems for the study of condensed matter and its phase behavior. Many of the properties of colloidal suspensions can be investigated with a systematic variation of the characteristics of the systems and, in addition, the energy, length and time scales associated with them allow for experimental probing of otherwise inaccessible regimes. The latter property also makes colloidal systems vulnerable to external influences such as gravity. Experiments performed in micro-ravity by Chaikin and Russell have been invaluable in extracting the true behavior of the systems without an external field. Weitz and Pusey intend to use mixtures of colloidal particles with additives such as polymers to induce aggregation and form weak, tenuous, highly disordered fractal structures that would be stable in the absence of gravitational forces. When dispersed in a polarizable medium, colloidal particles can ionize, emitting counterions into the solution. The standard interaction potential in these charged colloidal suspensions was first obtained by Derjaguin, Landau, Verwey and Overbeek. The DLVO potential is obtained in the mean-field linearized Poisson-Boltzmann approximation and thus has limited applicability. For more precise calculations, we have used ab initio density functional theory. In our model, colloidal particles are charged hard spheres, the counterions are described by a continuum density field and the solvent is treated as a homogeneous medium with a specified dielectric constant. We calculate the effective forces between charged colloidal particles by integrating over the solvent and counterion degrees of freedom, taking into account the direct interactions between the particles as well as particle-counterion, counterion-counterion Coulomb, counterion entropic and correlation contributions. We obtain the effective interaction potential between charged colloidal particles in different configurations. We evaluate two

  9. Distorted colloidal arrays as designed template

    NASA Astrophysics Data System (ADS)

    Yu, Ye; Zhou, Ziwei; Möhwald, Helmuth; Ai, Bin; Zhao, Zhiyuan; Ye, Shunsheng; Zhang, Gang

    2015-01-01

    In this paper, a novel type of colloidal template with broken symmetry was generated using commercial, inductively coupled plasma reactive ion etching (ICP-RIE). With proper but simple treatment, the traditional symmetric non-close-packed colloidal template evolves into an elliptical profile with high uniformity. This unique feature can add flexibility to colloidal lithography and/or other lithography techniques using colloidal particles as building blocks to fabricate nano-/micro-structures with broken symmetry. Beyond that the novel colloidal template we developed possesses on-site tunability, i.e. the transformability from a symmetric into an asymmetric template. Sandwich-type particles with eccentric features were fabricated utilizing this tunable template. This distinguishing feature will provide the possibility to fabricate structures with unique asymmetric features using one set of colloidal template, providing flexibility and broad tunability to enable nano-/micro-structure fabrication with colloidal templates.

  10. Glass/Jamming Transition in Colloidal Aggregation

    NASA Technical Reports Server (NTRS)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  11. ADV-based estimates of sediment settling velocity on the shelf of the Yellow and East China seas: evidence of marked seasonal and intra-tidal variations

    NASA Astrophysics Data System (ADS)

    Bian, Changwei; Mao, Xinyan; Jiang, Wensheng; Gu, Yanzhen

    2015-02-01

    Sediment settling velocity ( w s) patterns are well established at the Huanghe and Changjiang river mouths, but no w s results have been reported for the Yellow Sea and the East China Sea (YSECS) shelves due to the labor-intensive and time-consuming aspect of traditional w s measurement approaches (e.g., settling column method). This disadvantage can be overcome by the acoustic Doppler velocimeter (ADV). In this study, ten ADV-based field campaigns were conducted over various seasons of the years 2011 and 2013 at six YSECS sites, five on the East China Sea shelf (28 to 87 m depth) and one on the Yellow Sea shelf (74 m depth). The results demonstrate that ADV backscatter was a reliable proxy of suspended sediment concentration over a measurement range of 1 to 1,000 mg/L. The ADV-estimated w s was highest (1.43-1.88 mm/s) in summer in the southern East China Sea, and lowest (0.07 mm/s) in spring in the northern Yellow Sea. This can plausibly be explained by the hydrodynamic environment and bottom sediment type at the campaign sites. More importantly, the data reveal evidence of marked seasonal variations of w s in the middle sector of the East China Sea, as well as intra-tidal variations at all campaign sites. However, these variations of w s are not directly regulated by current velocity or suspended sediment concentration. This aspect represents a major challenge in future research in this shelf region and, for that matter, in similar settings worldwide. Evidently, expanding on the well-resolved continuous time series provided by the ADV approach is a key step in this direction.

  12. Micro- and Nanotechnologies for Optical Neural Interfaces

    PubMed Central

    Pisanello, Ferruccio; Sileo, Leonardo; De Vittorio, Massimo

    2016-01-01

    In last decade, the possibility to optically interface with the mammalian brain in vivo has allowed unprecedented investigation of functional connectivity of neural circuitry. Together with new genetic and molecular techniques to optically trigger and monitor neural activity, a new generation of optical neural interfaces is being developed, mainly thanks to the exploitation of both bottom-up and top-down nanofabrication approaches. This review highlights the role of nanotechnologies for optical neural interfaces, with particular emphasis on new devices and methodologies for optogenetic control of neural activity and unconventional methods for detection and triggering of action potentials using optically-active colloidal nanoparticles. PMID:27013939

  13. Magnetic Assisted Colloidal Pattern Formation

    NASA Astrophysics Data System (ADS)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  14. Optically induced melting of colloidal crystals and their recrystallization.

    PubMed

    Harada, Masashi; Ishii, Masahiko; Nakamura, Hiroshi

    2007-04-15

    Colloidal crystals melt by applying focused light of optical tweezers and recrystallize after removing it. The disturbed zone by the light grows radially from the focus point and the ordering starts from the interface with the crystal. Although the larger disturbed zone is observed for the higher power optical tweezers, a master curve is extracted by normalization of the disturbed zone. The temporal changes of the normalized disturbed zone are well described with exponential functions, indicating that the melting and recrystallization process is governed by a simple relaxation mechanism.

  15. Statistical Physics of Colloidal Dispersions.

    NASA Astrophysics Data System (ADS)

    Canessa, E.

    Available from UMI in association with The British Library. Requires signed TDF. This thesis is concerned with the equilibrium statistical mechanics of colloidal dispersions which represent useful model systems for the study of condensed matter physics; namely, charge stabilized colloidal dispersions and polymer stabilized colloidal dispersions. A one-component macroparticle approach is adopted in order to treat the macroscopic and microscopic properties of these systems in a simple and comprehensive manner. The thesis opens with the description of the nature of the colloidal state before reviewing some basic definitions and theory in Chapter II. In Chapter III a variational theory of phase equilibria based on the Gibbs-Bogolyobov inequality is applied to sterically stabilized colloidal dispersions. Hard spheres are chosen as the reference system for the disordered phases while an Einstein model is used for the ordered phases. The new choice of pair potential, taken for mathematical convenience, is a superposition of two Yukawa functions. By matching a double Yukawa potential to the van der Waals attractive potential at different temperatures and introducing a purely temperature dependent coefficient to the repulsive part, a rich variety of observed phase separation phenomena is qualitatively described. The behaviour of the potential is found to be consistent with a small decrease of the polymer layer thickness with increasing temperature. Using the same concept of a collapse transition the non-monotonic second virial coefficient is also explained and quantified. It is shown that a reduction of the effective macroparticle diameter with increasing temperature can only be partially examined from the point of view of a (binary-) polymer solution theory. This chapter concludes with the description of the observed, reversible, depletion flocculation behaviour. This is accomplished by using the variational formalism and by invoking the double Yukawa potential to allow

  16. Colloidal aspects of texture perception.

    PubMed

    van Vliet, Ton; van Aken, George A; de Jongh, Harmen H J; Hamer, Rob J

    2009-08-30

    Recently, considerable attention has been given to the understanding of texture attributes that cannot directly be related to physical properties of food, such as creamy, crumbly and watery. The perception of these attributes is strongly related to the way the food is processed during food intake, mastication, swallowing of it and during the cleaning of the mouth after swallowing. Moreover, their perception is modulated by the interaction with other basic attributes, such as taste and aroma attributes (e.g. sourness and vanilla). To be able to link the composition and structure of food products to more complicated texture attributes, their initial physical/colloid chemical properties and the oral processing of these products must be well understood. Understanding of the processes in the mouth at colloidal length scales turned out to be essential to grasp the interplay between perception, oral physiology and food properties. In view of the huge differences in physical chemical properties between food products, it is practical to make a distinction between solid, semi-solid, and liquid food products. The latter ones are often liquid dispersions of emulsion droplets or particles in general. For liquid food products for instance flow behaviour and colloidal stability of dispersed particles play a main role in determining their textural properties. For most solid products stiffness and fracture behaviour in relation to water content are essential while for semi-solids a much larger range of mechanical properties will play a role. Examples of colloidal aspects of texture perception will be discussed for these three categories of products based on selected sensory attributes and/or relevant colloidal processes. For solid products some main factors determining crispness will be discussed. For crispiness of dry cellular solid products these are water content and the architecture of the product at mesoscopic length scales (20-1000 microm). In addition the distribution of

  17. Colloid dispersion on the pore scale.

    PubMed

    Baumann, Thomas; Toops, Laura; Niessner, Reinhard

    2010-02-01

    Dispersion describes the spreading of a tracer or contaminant in an aquifer. Detailed knowledge of dispersion is the key to successful risk assessment in case of groundwater pollution or groundwater protection. The dispersion of colloids on the pore scale is controlled by flow velocity, ionic strength, colloid size, colloid concentration, and colloid-matrix interactions. The objective of this study was to provide quantitative data and to assess the scale dependency of colloid dispersion on the pore scale. The positions of carboxylated polystyrene microspheres (1 microm, 0.5 microm) were recorded during transport experiments in silicon micromodels with three pore topologies. The positions were combined into particle trajectories revealing the flow path of individual colloids. More than thousand trajectories were evaluated for each experiment to obtain the dispersivity of the colloids for flow distances between 10 and 1000 microm. All experiments were run at high Peclet numbers. The pore scale dispersivity was on the order of 8-30% of the flow distance with pure water, dependent on the heterogeneity of the pore topology. The dispersivity was positively correlated with the ionic strength and inversely correlated with the colloid size and the flow velocity. A coating of the micromodel surface with humic acid also increased dispersivity. The quantitative data set presented here supports the theoretical framework for colloid transport and allows to parametrize colloid transport on the pore scale.

  18. What happens when pharmaceuticals meet colloids.

    PubMed

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems). PMID:26427370

  19. Colloid dispersion on the pore scale.

    PubMed

    Baumann, Thomas; Toops, Laura; Niessner, Reinhard

    2010-02-01

    Dispersion describes the spreading of a tracer or contaminant in an aquifer. Detailed knowledge of dispersion is the key to successful risk assessment in case of groundwater pollution or groundwater protection. The dispersion of colloids on the pore scale is controlled by flow velocity, ionic strength, colloid size, colloid concentration, and colloid-matrix interactions. The objective of this study was to provide quantitative data and to assess the scale dependency of colloid dispersion on the pore scale. The positions of carboxylated polystyrene microspheres (1 microm, 0.5 microm) were recorded during transport experiments in silicon micromodels with three pore topologies. The positions were combined into particle trajectories revealing the flow path of individual colloids. More than thousand trajectories were evaluated for each experiment to obtain the dispersivity of the colloids for flow distances between 10 and 1000 microm. All experiments were run at high Peclet numbers. The pore scale dispersivity was on the order of 8-30% of the flow distance with pure water, dependent on the heterogeneity of the pore topology. The dispersivity was positively correlated with the ionic strength and inversely correlated with the colloid size and the flow velocity. A coating of the micromodel surface with humic acid also increased dispersivity. The quantitative data set presented here supports the theoretical framework for colloid transport and allows to parametrize colloid transport on the pore scale. PMID:20042215

  20. What happens when pharmaceuticals meet colloids.

    PubMed

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).

  1. Application of ESEM to environmental colloids.

    PubMed

    Nuttall, H E; Kale, R

    1993-08-01

    Environmental colloids are toxic or radioactive particles suspended in ground or surface water. These hazardous particles can facilitate and accelerate the transport of toxicants and enhance the threat to humans by exposure to pathogenic substances. The chemical and physical properties of hazardous colloids have not been well characterized nor are there standard colloid remediation technologies to prevent their deleterious effects. Colloid characterization requires measurement of their size distribution, zeta potential, chemical composition, adsorption capacity, and morphology. The environmental scanning electron microscope (ESEM) by ElectroScan, Inc., analyzes particle sizes, composition, and morphology. It is also used in this study to identify the attachment of colloids onto packing or rock surfaces in our development of a colloid remediation process. The ESEM has confirmed the composition of groundwater colloids in our studies to be generally the same material as the surrounding rock. The morphology studies have generally shown that colloids are simply small pieces of the rock surface that has exfoliated into the surrounding water. However, in general, the source and chemical composition of groundwater colloids is site dependent. We have found that an ESEM works best as a valuable analysis tool within a suite of colloid characterization instruments.

  2. Nematic liquid crystal boojums with handles on colloidal handlebodies

    PubMed Central

    Liu, Qingkun; Senyuk, Bohdan; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2013-01-01

    Topological defects that form on surfaces of ordered media, dubbed boojums, are ubiquitous in superfluids, liquid crystals (LCs), Langmuir monolayers, and Bose–Einstein condensates. They determine supercurrents in superfluids, impinge on electrooptical switching in polymer-dispersed LCs, and mediate chemical response at nematic-isotropic fluid interfaces, but the role of surface topology in the appearance, stability, and core structure of these defects remains poorly understood. Here, we demonstrate robust generation of boojums by controlling surface topology of colloidal particles that impose tangential boundary conditions for the alignment of LC molecules. To do this, we design handlebody-shaped polymer particles with different genus g. When introduced into a nematic LC, these particles distort the nematic molecular alignment field while obeying topological constraints and induce at least 2g − 2 boojums that allow for topological charge conservation. We characterize 3D textures of boojums using polarized nonlinear optical imaging of molecular alignment and explain our findings by invoking symmetry considerations and numerical modeling of experiment-matching director fields, order parameter variations, and nontrivial handle-shaped core structure of defects. Finally, we discuss how this interplay between the topologies of colloidal surfaces and boojums may lead to controlled self-assembly of colloidal particles in nematic and paranematic hosts, which, in turn, may enable reconfigurable topological composites. PMID:23690605

  3. Chancellor Water Colloids: Characterization and Radionuclide Association

    SciTech Connect

    Abdel-Fattah, Amr I.

    2012-06-18

    Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the

  4. Biaxial ferromagnetic liquid crystal colloids.

    PubMed

    Liu, Qingkun; Ackerman, Paul J; Lubensky, Tom C; Smalyukh, Ivan I

    2016-09-20

    The design and practical realization of composite materials that combine fluidity and different forms of ordering at the mesoscopic scale are among the grand fundamental science challenges. These composites also hold a great potential for technological applications, ranging from information displays to metamaterials. Here we introduce a fluid with coexisting polar and biaxial ordering of organic molecular and magnetic colloidal building blocks exhibiting the lowest symmetry orientational order. Guided by interactions at different length scales, rod-like organic molecules of this fluid spontaneously orient along a direction dubbed "director," whereas magnetic colloidal nanoplates order with their dipole moments parallel to each other but pointing at an angle to the director, yielding macroscopic magnetization at no external fields. Facile magnetic switching of such fluids is consistent with predictions of a model based on competing actions of elastic and magnetic torques, enabling previously inaccessible control of light. PMID:27601668

  5. Electrocoagulation of colloidal biogenic selenium.

    PubMed

    Staicu, Lucian C; van Hullebusch, Eric D; Lens, Piet N L; Pilon-Smits, Elizabeth A H; Oturan, Mehmet A

    2015-02-01

    Colloidal elemental selenium (Se(0)) adversely affects membrane separation processes and aquatic ecosystems. As a solution to this problem, we investigated for the first time the removal potential of Se(0) by electrocoagulation process. Colloidal Se(0) was produced by a strain of Pseudomonas fluorescens and showed limited gravitational settling. Therefore, iron (Fe) and aluminum (Al) sacrificial electrodes were used in a batch reactor under galvanostatic conditions. The best Se(0) turbidity removal (97 %) was achieved using iron electrodes at 200 mA. Aluminum electrodes removed 96 % of colloidal Se(0) only at a higher current intensity (300 mA). At the best Se(0) removal efficiency, electrocoagulation using Fe electrode removed 93 % of the Se concentration, whereas with Al electrodes the Se removal efficiency reached only 54 %. Due to the less compact nature of the Al flocs, the Se-Al sediment was three times more voluminous than the Se-Fe sediment. The toxicity characteristic leaching procedure (TCLP) test showed that the Fe-Se sediment released Se below the regulatory level (1 mg L(-1)), whereas the Se concentration leached from the Al-Se sediment exceeded the limit by about 20 times. This might be related to the mineralogical nature of the sediments. Electron scanning micrographs showed Fe-Se sediments with a reticular structure, whereas the Al-Se sediments lacked an organized structure. Overall, the results obtained showed that the use of Fe electrodes as soluble anode in electrocoagulation constitutes a better option than Al electrodes for the electrochemical sedimentation of colloidal Se(0).

  6. Effect of Salt Concentration on the Pattern Formation of Colloidal Suspension

    NASA Astrophysics Data System (ADS)

    Ma, Wenjie; Wang, Yuren

    We study the effect of salt concentration on the drying process and pattern of thin liquid layer colloidal suspension. Panasonic camera is used to capture the drying process and macroscopic pattern. Microscopic patterns are analyzed by optical microscopy. It is shown that broad-ring pattern is avoided by adding little amount of sodium chloide into colloidal suspension. with the increase of salt concentraion, convection strength and interface instability are weakened, thus the edge of film becomes smooth and more homogeneous film forms. Beautiful microscopic patterns demonstrate that the cooperative interaction between sodium chloide and silica spheres has important influence on the pattern formation.

  7. Formation kinetics of particulate films in directional drying of a colloidal suspension.

    PubMed

    Inasawa, S; Oshimi, Y; Kamiya, H

    2016-08-10

    We observed the kinetics of formation of colloidal films through directional drying with a pinned drying interface. The volume fraction of particles accumulated at the pinned drying interface increased in two stages: it rapidly increased in the initial stage of drying and then slowly increased. The final filling factor of the dried films decreased with increasing drying flux. We found a threshold drying flux for the formation of colloidal films below which uneven films are formed at the drying interface. This threshold flux is well explained by the competition between transport of particles by flow and transport by diffusion. We also found a minimum thickness for the formation of a packed layer of particles. The formation kinetics of a packed layer of particles due to drying was discussed. PMID:27471046

  8. Colloidal assembly by ice templating.

    PubMed

    Kumaraswamy, Guruswamy; Biswas, Bipul; Choudhury, Chandan Kumar

    2016-01-01

    We investigate ice templating of aqueous dispersions of polymer coated colloids and crosslinkers, at particle concentrations far below that required to form percolated monoliths. Freezing the aqueous dispersions forces the particles into close proximity to form clusters, that are held together as the polymer chains coating the particles are crosslinked. We observe that, with an increase in the particle concentration from about 10(6) to 10(8) particles per ml, there is a transition from isolated single particles to increasingly larger clusters. In this concentration range, most of the colloidal clusters formed are linear or sheet like particle aggregates. Remarkably, the cluster size distribution for clusters smaller than about 30 particles, as well as the size distribution of linear clusters, is only weakly dependent on the dispersion concentration in the range that we investigate. We demonstrate that the main features of cluster formation are captured by kinetic simulations that do not consider hydrodynamics or instabilities at the growing ice front due to particle concentration gradients. Thus, clustering of colloidal particles by ice templating dilute dispersions appears to be governed only by particle exclusion by the growing ice crystals that leads to their accumulation at ice crystal boundaries.

  9. Nanostructured colloidal crystals from forced hydrolysis methods.

    PubMed

    Otal, Eugenio H; Granada, Mara; Troiani, Horacio E; Cánepa, Horacio; Walsöe de Reca, Noemí E

    2009-08-18

    In this work, an original route for ZnO nanostructured spherical colloids and their assembly into colloidal crystals are presented. The temporal evolution of crystal size and shape was followed by X-ray diffraction and the colloids size distribution by scanning electron microscopy. These spherical colloids showed a change in their size dispersion with aging time. Early stage suspensions, with a narrow size distribution, were settled to the bottom and dried with a slow evaporation rate to obtain colloidal crystals. This original route provides a new material for future applications in opalline photonic crystals, with a dielectric constant higher than that of classical materials (silica and latex). Moreover, this route means an improvement of previously reported data from the literature since it involves a one-pot strategy and room-temperature colloid assembly.

  10. Crystallization of DNA-coated colloids

    PubMed Central

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  11. Crystallization of DNA-coated colloids.

    PubMed

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S; Weck, Marcus; Pine, David J

    2015-06-16

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

  12. Dynamic DNA Interactions with Functionalized Colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Zhu, Yingxi Elaine

    2009-03-01

    Many biomedical processes, such as protein adsorption, DNA hybridization and enzyme reactivity, are intimately related to their interactions with surfaces and complex ionic environments, yet the details of biomacromolecular interaction remain insufficiently understood. In this work, we use confocal laser scanning microscopy to examine the interaction between DNA molecules and functionalized colloidal particles in aqueous suspension. We observe an intriguing attractive interaction between DNAs and carboxyl-functionalized silica particles of varied sizes from 50 nm to 3 um, resulting in complex DNA-colloid aggregation with a strong dependence on DNA/colloid size ration and ionic strength. As colloidal size becomes larger than DNA dimensions, colloidal doublets and triplets with adsorbed DNAs are observed at high DNA concentration and ionic strength. The intriguing DNA-colloid complex structures are further confirmed by SEM and appear stable for at least 2 weeks.

  13. Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts

    SciTech Connect

    Ronald Farris; David Gertman; Jacques Hugo

    2014-03-01

    This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was to develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would

  14. Inactivation of a subtilisin in colloidal systems.

    PubMed

    Maste, M C; Rinia, H A; Brands, C M; Egmond, M R; Norde, W

    1995-10-25

    The aim of the present study is to establish the relation between the inactivation of the proteolytic enzyme Savinase and its adsorption at different types of solid-liquid interfaces. The loss of activity has been determined both in solution and in the presence of colloidal particles, which provide a surface area for adsorption of 25% of the enzyme population. Analysis of the remaining solution at different periods of incubation of the various systems shows that the intact protein is converted into autolytic degradation products at the expense of biological activity. The different particles, however, deactivate the enzymes to a different extent. Under the experimental conditions the half-life of the enzymatic activity in solution is 3.5 hours. In the presence of particles that have hydrophobic surface properties (teflon- or polystyrene latex) the half-life is reduced to 0.7 hours. On the contrary, hydrophilic silica particles stabilize the enzyme against autolysis as compared to the inactivation in solution. Polystyrene latex particles which are chemically grafted with short poly(ethylene oxide) chains ([EO]8) are, for steric reasons, also mild with respect to the reduction of enzymatic stability. It is thus concluded that the type of surface determines the mode in which the enzyme is adsorbed on a particle which, in turn, affects the autocatalytic rate.

  15. Dynamic Colloidal Stabilization by Nanoparticle Halos

    NASA Astrophysics Data System (ADS)

    Karanikas, S.; Louis, A. A.

    2004-12-01

    We explore the conditions under which colloids can be stabilized by the addition of smaller particles. The largest repulsive barriers between colloids occur when the added particles repel each other with soft interactions, leading to an accumulation near the colloid surfaces. At lower densities these layers of mobile particles (nanoparticle halos) result in stabilization, but when too many are added, the interactions become attractive again. We systematically study these effects—accumulation repulsion, reentrant attraction, and bridging—by accurate integral equation techniques.

  16. Binodal Colloidal Aggregation Test - 4: Polydispersion

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.

    2008-01-01

    Binodal Colloidal Aggregation Test - 4: Polydispersion (BCAT-4-Poly) will use model hard-spheres to explore seeded colloidal crystal nucleation and the effects of polydispersity, providing insight into how nature brings order out of disorder. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  17. Binary Colloidal Alloy Test Conducted on Mir

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica I.; Ansari, Rafat R.

    1999-01-01

    Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and

  18. Relationship between the Averaged Deposition Rate Coefficients for Colloids in a Single Pore and Various Pore-scale Parameters

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Mohan Kumar, M.; Hassanizadeh, S. M.; Raoof, A.

    2014-12-01

    The colloid deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, a better understanding of the processes occurring at the Darcy scale can be obtained by studying colloid transport at the pore-scale and then upscaling the results. In this study, we have developed a mathematical model to simulate the transport of colloids in a cylindrical pore by considering various processes such as advection, diffusion, colloid-soil surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, the bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion; whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-solid interaction forces dominate the transport in the potential region where colloid deposition occurs and are calculated using DLVO theory. The expressions for mass transfer rate coefficients between the diffusion and potential regions have been derived for different DLVO energy profiles. These are incorporated in the pore-scale equations in the form of a boundary condition at the diffusion-potential region interface. The model results are used to obtain the colloid breakthrough curve at the end of a long pore, and then it is fitted with 1D advection-dispersion-adsorption model so as to determine the averaged attachment and detachment rate coefficients at the scale of a single pore. A sensitivity analysis of the model to six pore-scale parameters (colloid and wall surface potentials, solution ionic strength, average pore-water velocity, colloid radius, and pore radius) is carried out so as to find the relation between the averaged deposition rate coefficients at pore scale vs the pore-scale parameters. We found an hyper exponential relation between the colloid attachment

  19. Collective motion in populations of colloidal bots

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis

    One of the origins of active matter physics was the idea that flocks, herds, swarms and shoals could be quantitatively described as emergent ordered phases in self-driven materials. From a somehow dual perspective, I will show how to engineer active materials our of colloidal flocks. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors and how to handle them in microfluidic chips. These populations of colloidal bots display a non-equilibrium transition toward collective motion. A special attention will be paid to the robustness of the resulting colloidal flocks with respect to geometrical frustration and to quenched disorder.

  20. Colloid Coalescence with Focused X Rays

    SciTech Connect

    Weon, B. M.; Kim, J. T.; Je, J. H.; Yi, J. M.; Wang, S.; Lee, W.-K.

    2011-07-01

    We show direct evidence that focused x rays enable us to merge polymer colloidal particles at room temperature. This phenomenon is ascribed to the photochemical scission of colloids with x rays, reducing the molecular weight, glass transition temperature, surface tension, and viscosity of colloids. The observation of the neck bridge growth with time shows that the x-ray-induced colloid coalescence is analogous to viscoelastic coalescence. This finding suggests a feasible protocol of photonic nanofabrication by sintering or welding of polymers, without thermal damage, using x-ray photonics.

  1. Aggregation kinetics in a model colloidal suspension

    SciTech Connect

    Bastea, S

    2005-08-08

    The authors present molecular dynamics simulations of aggregation kinetics in a colloidal suspension modeled as a highly asymmetric binary mixture. Starting from a configuration with largely uncorrelated colloidal particles the system relaxes by coagulation-fragmentation dynamics to a structured state of low-dimensionality clusters with an exponential size distribution. The results show that short range repulsive interactions alone can give rise to so-called cluster phases. For the present model and probably other, more common colloids, the observed clusters appear to be equilibrium phase fluctuations induced by the entropic inter-colloidal attractions.

  2. Colloid Titration--A Rapid Method for the Determination of Charged Colloid.

    ERIC Educational Resources Information Center

    Ueno, Keihei; Kina, Ken'yu

    1985-01-01

    "Colloid titration" is a volumetric method for determining charged polyelectrolytes in aqueous solutions. The principle of colloid titration, reagents used in the procedure, methods of endpoint detection, preparation of reagent solutions, general procedure used, results obtained, and pH profile of colloid titration are considered. (JN)

  3. The role of ionic strength and grain size on the transport of colloids in unsaturated sand columns

    NASA Astrophysics Data System (ADS)

    Mitropoulou, Polyxeni N.; Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2013-04-01

    The main objective of this study was to better understand the combined effects of ionic strength, and sand grain size on colloid fate and transport in unsaturated porous media. Spherical fluorescent polymer microspheres with three different sizes (0.075, 0.30 and 2.1 μm), and laboratory columns packed with two size fractions of clean quartz sand (0.513 and 0.181 mm) were used. The saturation level of the packed columns was set to 83-95% with solutions having a wide range of ionic strength (0.1-1000 mM). The electrophoretic mobility of colloids and sand grains were evaluated for all the experimental conditions employed. The various experimental collision efficiencies were quantified using the classical colloid filtration theory. The theoretical collision efficiencies were estimated with appropriate DLVO energies using a Maxwell model. The experimental results suggested that the retention of the bigger colloids (2.1 μm) was slightly higher compared to the conservative tracer and smaller colloids (0.3 and 0.075 μm) in deionized-distilled-water, indicating sorption at air-water interfaces or straining. Moreover, relatively smaller attachment was observed onto fine than medium quartz sand. The mass recovery of the 0.3 μm microspheres in NaCl solution was shown to significantly decrease with increasing ionic strength. Both the experimental and theoretical collision efficiencies based on colloid interactions with solid-water interfaces, were increased with increasing ionic strength.

  4. Transient Colloidal Stability Controls the Particle Formation of SBA-15

    PubMed Central

    2012-01-01

    A hypothesis about (transient) colloidal stability as a controlling mechanism for particle formation in SBA-15 is presented. The hypothesis is based on results from both in situ and ex situ investigations, including cryogenic transmission electron microscopy (cryo-TEM), UV–vis spectroscopy, and dynamic light scattering (DLS). Cryo-TEM images show that particles grow via the formation of silica–Pluronic–water “flocs”, which coalesce in a seemingly arbitrary manner. Despite this, the final material consists of well-defined particles with a small size distribution. We argue that the interface between the flocs and surrounding media is covered by Pluronic molecules, which provide steric stabilization. As the flocs grow, the coverage of polymers at the interface is increased until a stable size is reached, and that regulates the particle size. By targeting the characteristics of the Pluronic molecules, during the on-going synthesis, the hypothesis is tested. The results are consistent with the concept of (transient) colloidal stability. PMID:22758927

  5. Analysis on laser plasma emission for characterization of colloids by video-based computer program

    NASA Astrophysics Data System (ADS)

    Putri, Kirana Yuniati; Lumbantoruan, Hendra Damos; Isnaeni

    2016-02-01

    Laser-induced breakdown detection (LIBD) is a sensitive technique for characterization of colloids with small size and low concentration. There are two types of detection, optical and acoustic. Optical LIBD employs CCD camera to capture the plasma emission and uses the information to quantify the colloids. This technique requires sophisticated technology which is often pricey. In order to build a simple, home-made LIBD system, a dedicated computer program based on MATLAB™ for analyzing laser plasma emission was developed. The analysis was conducted by counting the number of plasma emissions (breakdowns) during a certain period of time. Breakdown probability provided information on colloid size and concentration. Validation experiment showed that the computer program performed well on analyzing the plasma emissions. Optical LIBD has A graphical user interface (GUI) was also developed to make the program more user-friendly.

  6. Colloid transport in dual-permeability media.

    PubMed

    Leij, Feike J; Bradford, Scott A

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  7. Colloid transport in dual-permeability media

    NASA Astrophysics Data System (ADS)

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  8. Structural color from colloidal glasses

    NASA Astrophysics Data System (ADS)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  9. Highly uniform polyhedral colloids formed by colloidal crystal templating

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; McGinley, James; Crocker, John; Crocker Research Group Team

    2015-03-01

    We seek to create polyhedral solid particles by trapping oil droplets in a colloidal crystal, and polymerizing them in situ, resulting in polyhedral particles containing spherical dimples in an ordered arrangement. Specifically, highly monodisperse, micron-sized droplets of 3-methacryloxypropyl trimethoxysilane (TPM) were first prepared through a poly condensation reaction, following well established methods. The droplets were mixed with an excess of polystyrene(PS) particles (diameter in 2.58 μm), which formed close packed (FCC or HCP) colloidal crystals by natural sedimentation and compression under partial drying to an extent, with TPM oil droplets trapped into their tetrahedral and octahedral interstitial sites and wet PS particles. Depending on the initial particle volume fraction and extent of drying, a high yield of dimpled particles having different shapes including tetrahedra and cubes were obtained after oil initiated polymerization and dissolution of the host PS particles, as seen under SEM. The effects of TPM to PS particles size ratio, drying time, and other factors in relation to the yield of tetrahedral and cubic dimpled particles will be presented. Finally, fractionation techniques were used to obtain suspensions of uniform polyhedral particles of high purity.

  10. Theoretical study of line and boundary tension in adsorbed colloid-polymer mixtures.

    PubMed

    Koning, Jesper; Vandecan, Yves; Indekeu, Joseph

    2014-07-28

    An extended theoretical study of interface potentials in adsorbed colloid-polymer mixtures is performed. To describe the colloid-polymer mixture near a hard wall, a simple Cahn-Nakanishi-Fisher free-energy functional is used. The bulk phase behaviour and the substrate-adsorbate interaction are modelled by the free-volume theory for ideal polymers with polymer-to-colloid size ratios q = 0.6 and q = 1. The interface potentials are constructed with help from a Fisher-Jin crossing constraint. By manipulating the crossing density, a complete interface potential can be obtained from natural, single-crossing, profiles. The line tension in the partial wetting regime and the boundary tension along prewetting are computed from the interface potentials. The line tensions are of either sign, and descending with increasing contact angle. The line tension takes a positive value of 10(-14)-10(-12) N near a first-order wetting transition, passes through zero and decreases to minus 10(-14)-10(-12) N away from the first-order transition. The calculations of the boundary tension along prewetting yield values increasing from zero at the prewetting critical point up to the value of the line tension at first-order wetting. PMID:25084953

  11. Binary Colloidal Alloy Test-5: Aspheres

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.; Hollingsworth, Andrew D.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Aspheres (BCAT-5-Aspheres) experiment photographs initially randomized colloidal samples (tiny nanoscale spheres suspended in liquid) in microgravity to determine their resulting structure over time. BCAT-5-Aspheres will study the properties of concentrated systems of small particles when they are identical, but not spherical in microgravity..

  12. Colloid transport in dual-permeability media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the incre...

  13. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  14. Interfacial undercooling in solidification of colloidal suspensions: analyses with quantitative measurements

    PubMed Central

    You, Jiaxue; Wang, Lilin; Wang, Zhijun; Li, Junjie; Wang, Jincheng; Lin, Xin; Huang, Weidong

    2016-01-01

    Interfacial undercooling in the complex solidification of colloidal suspensions is of significance and remains a puzzling problem. Two types of interfacial undercooling are supposed to be involved in the freezing of colloidal suspensions, i.e., solute constitutional supercooling (SCS) caused by additives in the solvent and particulate constitutional supercooling (PCS) caused by particles. However, quantitative identification of the interfacial undercooling in the solidification of colloidal suspensions, is still absent; thus, the question of which type of undercooling is dominant in this complex system remains unanswered. Here, we quantitatively measured the static and dynamic interface undercoolings of SCS and PCS in ideal and practical colloidal systems. We show that the interfacial undercooling primarily comes from SCS caused by the additives in the solvent, while PCS is minor. This finding implies that the thermodynamic effect of particles from the PCS is not the fundamental physical mechanism for pattern formation of cellular growth and lamellar structure in the solidification of colloidal suspensions, a general case of ice-templating method. Instead, the patterns in the ice-templating method can be controlled effectively by adjusting the additives. PMID:27329394

  15. Interfacial undercooling in solidification of colloidal suspensions: analyses with quantitative measurements.

    PubMed

    You, Jiaxue; Wang, Lilin; Wang, Zhijun; Li, Junjie; Wang, Jincheng; Lin, Xin; Huang, Weidong

    2016-01-01

    Interfacial undercooling in the complex solidification of colloidal suspensions is of significance and remains a puzzling problem. Two types of interfacial undercooling are supposed to be involved in the freezing of colloidal suspensions, i.e., solute constitutional supercooling (SCS) caused by additives in the solvent and particulate constitutional supercooling (PCS) caused by particles. However, quantitative identification of the interfacial undercooling in the solidification of colloidal suspensions, is still absent; thus, the question of which type of undercooling is dominant in this complex system remains unanswered. Here, we quantitatively measured the static and dynamic interface undercoolings of SCS and PCS in ideal and practical colloidal systems. We show that the interfacial undercooling primarily comes from SCS caused by the additives in the solvent, while PCS is minor. This finding implies that the thermodynamic effect of particles from the PCS is not the fundamental physical mechanism for pattern formation of cellular growth and lamellar structure in the solidification of colloidal suspensions, a general case of ice-templating method. Instead, the patterns in the ice-templating method can be controlled effectively by adjusting the additives. PMID:27329394

  16. Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model

    NASA Astrophysics Data System (ADS)

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-05-01

    A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained "irreversibly" when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained "irreversibly" upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.

  17. Structural transitions in condensed colloidal virus phases

    NASA Astrophysics Data System (ADS)

    Schmidt, Nathan; Barr, Steve; Udit, Andrew; Gutierrez, Leonardo; Nguyen, Thanh; Finn, M. G.; Luijten, Erik; Wong, Gerard

    2010-03-01

    Analogous to monatomic systems colloidal phase behavior is entirely determined by the interaction potential between particles. This potential can be tuned using solutes such as multivalent salts and polymers with varying affinity for the colloids to create a hierarchy of attractions. Bacteriophage viruses are a naturally occurring type of colloidal particle with characteristics difficult to achieve by laboratory synthesis. They are monodisperse, nanometers in size, and have heterogeneous surface charge distributions. We use the MS2 and Qbeta bacteriophages (diameters 27-28nm) to understand the interplay between different attraction mechanisms on nanometer-sized colloids. Small Angle X-ray Scattering (SAXS) is used to characterize the inter-particle interaction between colloidal viruses using several polymer species and different salt types.

  18. Mechanistic principles of colloidal crystal growth by evaporation-induced convective steering.

    PubMed

    Brewer, Damien D; Allen, Joshua; Miller, Michael R; de Santos, Juan M; Kumar, Satish; Norris, David J; Tsapatsis, Michael; Scriven, L E

    2008-12-01

    We simulate evaporation-driven self-assembly of colloidal crystals using an equivalent network model. Relationships between a regular hexagonally close-packed array of hard, monodisperse spheres, the associated pore space, and selectivity mechanisms for face-centered cubic microstructure propagation are described. By accounting for contact line rearrangement and evaporation at a series of exposed menisci, the equivalent network model describes creeping flow of solvent into and through a rigid colloidal crystal. Observations concerning colloidal crystal growth are interpreted in terms of the convective steering hypothesis, which posits that solvent flow into and through the pore space of the crystal may play a major role in colloidal self-assembly. Aspects of the convective steering and deposition of high-Peclet-number rigid spherical particles at a crystal boundary are inferred from spatially resolved solvent flow into the crystal. Gradients in local flow through boundary channels were predicted due to the channels' spatial distribution relative to a pinned free surface contact line. On the basis of a uniform solvent and particle flux as the criterion for stability of a particular growth plane, these network simulations suggest the stability of a declining {311} crystal interface, a symmetry plane which exclusively propagates fcc microstructure. Network simulations of alternate crystal planes suggest preferential growth front evolution to the declining {311} interface, in consistent agreement with the proposed stability mechanism for preferential fcc microstructure propagation in convective assembly.

  19. Exploiting imperfections in the bulk to direct assembly of surface colloids

    PubMed Central

    Cavallaro, Marcello; Gharbi, Mohamed A.; Beller, Daniel A.; Čopar, Simon; Shi, Zheng; Baumgart, Tobias; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.

    2013-01-01

    We exploit the long-ranged elastic fields inherent to confined nematic liquid crystals (LCs) to assemble colloidal particles trapped at the LC interface into reconfigurable structures with complex symmetries and packings. Spherical colloids with homeotropic anchoring trapped at the interface between air and the nematic LC 4-cyano-4′-pentylbiphenyl create quadrupolar distortions in the director field causing particles to repel and consequently form close-packed assemblies with a triangular habit. Here, we report on complex open structures organized via interactions with defects in the bulk. Specifically, by confining the nematic LC in an array of microposts with homeotropic anchoring conditions, we cause defect rings to form at well-defined locations in the bulk of the sample. These defects source elastic deformations that direct the assembly of the interfacially trapped colloids into ring-like assemblies, which recapitulate the defect geometry even when the microposts are completely immersed in the nematic. When the surface density of the colloids is high, they form a ring near the defect and a hexagonal lattice far from it. Because topographically complex substrates are easily fabricated and LC defects are readily reconfigured, this work lays the foundation for a versatile, robust mechanism to direct assembly dynamically over large areas by controlling surface anchoring and associated bulk defect structure. PMID:24191037

  20. Pickering emulsions stabilized by oppositely charged colloids: Stability and pattern formation

    NASA Astrophysics Data System (ADS)

    Christdoss Pushpam, Sam David; Basavaraj, Madivala G.; Mani, Ethayaraja

    2015-11-01

    A binary mixture of oppositely charged colloids can be used to stabilize water-in-oil or oil-in-water emulsions. A Monte Carlo simulation study to address the effect of charge ratio of colloids on the stability of Pickering emulsions is presented. The colloidal particles at the interface are modeled as aligned dipolar hard spheres, with attractive interaction between unlike-charged and repulsive interaction between like-charged particles. The optimum composition (fraction of positively charged particles) required for the stabilization corresponds to a minimum in the interaction energy per particle. In addition, for each charge ratio, there is a range of compositions where emulsions can be stabilized. The structural arrangement of particles or the pattern formation at the emulsion interface is strongly influenced by the charge ratio. We find well-mixed isotropic, square, and hexagonal arrangements of particles on the emulsion surface for different compositions at a given charge ratio. The distribution of coordination numbers is calculated to characterize structural features. The simulation study is useful for the rational design of Pickering emulsifications wherein oppositely charged colloids are used, and for the control of pattern formation that can be useful for the synthesis of colloidosomes and porous shells derived thereof.

  1. Exploiting imperfections in the bulk to direct assembly of surface colloids.

    PubMed

    Cavallaro, Marcello; Gharbi, Mohamed A; Beller, Daniel A; Čopar, Simon; Shi, Zheng; Baumgart, Tobias; Yang, Shu; Kamien, Randall D; Stebe, Kathleen J

    2013-11-19

    We exploit the long-ranged elastic fields inherent to confined nematic liquid crystals (LCs) to assemble colloidal particles trapped at the LC interface into reconfigurable structures with complex symmetries and packings. Spherical colloids with homeotropic anchoring trapped at the interface between air and the nematic LC 4-cyano-4'-pentylbiphenyl create quadrupolar distortions in the director field causing particles to repel and consequently form close-packed assemblies with a triangular habit. Here, we report on complex open structures organized via interactions with defects in the bulk. Specifically, by confining the nematic LC in an array of microposts with homeotropic anchoring conditions, we cause defect rings to form at well-defined locations in the bulk of the sample. These defects source elastic deformations that direct the assembly of the interfacially trapped colloids into ring-like assemblies, which recapitulate the defect geometry even when the microposts are completely immersed in the nematic. When the surface density of the colloids is high, they form a ring near the defect and a hexagonal lattice far from it. Because topographically complex substrates are easily fabricated and LC defects are readily reconfigured, this work lays the foundation for a versatile, robust mechanism to direct assembly dynamically over large areas by controlling surface anchoring and associated bulk defect structure.

  2. Cocklebur-shaped colloidal dispersions.

    PubMed

    Lestage, David J; Urban, Marek W

    2005-11-01

    Unique cocklebur-shaped colloidal dispersions were prepared using a combination of a nanoextruder applied to the aqueous solution containing methyl methacrylate (MMA) and n-butyl acrylate (n-BA) with azo-bis-isobutyronitrile (AIBN) or potassium persulfate (KPS) initiators and stabilized by a mixture of sodium dioctyl sulfosuccinate (SDOSS) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DCPC) phospholipid. Upon extrusion and heating to 75 degrees C, methyl methacrylate/n-butyl acrylate (MMA/nBA) colloidal particles containing tubules pointing outward were obtained as a result of DCPC phospholipids present at the particle surfaces. The same cocklebur-shaped particles were obtained when classical polymerization was used without a nanoextruder under similar compositional and thermal conditions, giving a particle size of 159 nm. However, when Ca(2+) ions are present during polymerization, cocklebur morphologies are disrupted. Because DCPC tubules undergo a transition at 38 degrees C, such cocklebur morphologies may offer numerous opportunities for devices with stimuli-responsive characteristics. PMID:16262269

  3. Kinetically guided colloidal structure formation

    PubMed Central

    Hecht, Fabian M.; Bausch, Andreas R.

    2016-01-01

    The self-organization of colloidal particles is a promising approach to create novel structures and materials, with applications spanning from smart materials to optoelectronics to quantum computation. However, designing and producing mesoscale-sized structures remains a major challenge because at length scales of 10–100 μm equilibration times already become prohibitively long. Here, we extend the principle of rapid diffusion-limited cluster aggregation (DLCA) to a multicomponent system of spherical colloidal particles to enable the rational design and production of finite-sized anisotropic structures on the mesoscale. In stark contrast to equilibrium self-assembly techniques, kinetic traps are not avoided but exploited to control and guide mesoscopic structure formation. To this end the affinities, size, and stoichiometry of up to five different types of DNA-coated microspheres are adjusted to kinetically control a higher-order hierarchical aggregation process in time. We show that the aggregation process can be fully rationalized by considering an extended analytical DLCA model, allowing us to produce mesoscopic structures of up to 26 µm in diameter. This scale-free approach can easily be extended to any multicomponent system that allows for multiple orthogonal interactions, thus yielding a high potential of facilitating novel materials with tailored plasmonic excitation bands, scattering, biochemical, or mechanical behavior. PMID:27444018

  4. Synthesis of substantially monodispersed colloids

    NASA Technical Reports Server (NTRS)

    Klabunde, Kenneth J. (Inventor); Stoeva, Savka (Inventor); Sorensen, Christopher (Inventor)

    2003-01-01

    A method of forming ligated nanoparticles of the formula Y(Z).sub.x where Y is a nanoparticle selected from the group consisting of elemental metals having atomic numbers ranging from 21-34, 39-52, 57-83 and 89-102, all inclusive, the halides, oxides and sulfides of such metals, and the alkali metal and alkaline earth metal halides, and Z represents ligand moieties such as the alkyl thiols. In the method, a first colloidal dispersion is formed made up of nanoparticles solvated in a molar excess of a first solvent (preferably a ketone such as acetone), a second solvent different than the first solvent (preferably an organic aryl solvent such as toluene) and a quantity of ligand moieties; the first solvent is then removed under vacuum and the ligand moieties ligate to the nanoparticles to give a second colloidal dispersion of the ligated nanoparticles solvated in the second solvent. If substantially monodispersed nanoparticles are desired, the second dispersion is subjected to a digestive ripening process. Upon drying, the ligated nanoparticles may form a three-dimensional superlattice structure.

  5. Colloid-Associated Radionuclide Concentration Limits: ANL

    SciTech Connect

    C. Mertz

    2000-12-21

    The purpose and scope of this report is to describe the analysis of available colloidal data from waste form corrosion tests at Argonne National Laboratory (ANL) to extract characteristics of these colloids that can be used in modeling their contribution to the source term for sparingly soluble radioelements (e.g., Pu). Specifically, the focus is on developing a useful description of the following waste form colloid characteristics: (1) composition, (2) size distribution, and (3) quantification of the rate of waste form colloid generation. The composition and size distribution information are intended to support analysis of the potential transport of the sparingly soluble radionuclides associated with the waste form colloids. The rate of colloid generation is intended to support analysis of the waste form colloid-associated radionuclide concentrations. In addressing the above characteristics, available data are interpreted to address mechanisms controlling colloid formation and stability. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M&O 2000). Because the end objective is to support the source term modeling we have organized the conclusions into two categories: (1) data analysis conclusions and (2) recommendations for colloid source term modeling. The second category is included to facilitate use of the conclusions from the data analysis in the abstraction of a colloid source term model. The data analyses and conclusions that are presented in this report are based on small-scale laboratory tests conducted on a limited number of waste glass compositions and spent fuel types.

  6. MODFLOW-2000 : the U.S. Geological Survey modular ground-water model--documentation of the Advective-Transport Observation (ADV2) Package

    USGS Publications Warehouse

    Anderman, Evan R.; Hill, Mary Catherine

    2001-01-01

    Observations of the advective component of contaminant transport in steady-state flow fields can provide important information for the calibration of ground-water flow models. This report documents the Advective-Transport Observation (ADV2) Package, version 2, which allows advective-transport observations to be used in the three-dimensional ground-water flow parameter-estimation model MODFLOW-2000. The ADV2 Package is compatible with some of the features in the Layer-Property Flow and Hydrogeologic-Unit Flow Packages, but is not compatible with the Block-Centered Flow or Generalized Finite-Difference Packages. The particle-tracking routine used in the ADV2 Package duplicates the semi-analytical method of MODPATH, as shown in a sample problem. Particles can be tracked in a forward or backward direction, and effects such as retardation can be simulated through manipulation of the effective-porosity value used to calculate velocity. Particles can be discharged at cells that are considered to be weak sinks, in which the sink applied does not capture all the water flowing into the cell, using one of two criteria: (1) if there is any outflow to a boundary condition such as a well or surface-water feature, or (2) if the outflow exceeds a user specified fraction of the cell budget. Although effective porosity could be included as a parameter in the regression, this capability is not included in this package. The weighted sum-of-squares objective function, which is minimized in the Parameter-Estimation Process, was augmented to include the square of the weighted x-, y-, and z-components of the differences between the simulated and observed advective-front locations at defined times, thereby including the direction of travel as well as the overall travel distance in the calibration process. The sensitivities of the particle movement to the parameters needed to minimize the objective function are calculated for any particle location using the exact sensitivity

  7. Recent Advances in Colloidal and Interfacial Phenomena Involving Liquid Crystals

    PubMed Central

    Bai, Yiqun; Abbott, Nicholas L.

    2011-01-01

    This article describes recent advances in several areas of research involving the interfacial ordering of liquid crystals (LCs). The first advance revolves around the ordering of LCs at bio/chemically functionalized surfaces. Whereas the majority of past studies of surface-induced ordering of LCs have involved surfaces of solids that present a limited diversity of chemical functional groups (surfaces at which van der Waals forces dominate surface-induced ordering), recent studies have moved to investigate the ordering of LCs on chemically complex surfaces. For example, surfaces decorated with biomolecules (e.g. oligopeptides and proteins) and transition metal ions have been investigated, leading to an understanding of the roles that metal-ligand coordination interactions, electrical double-layers, acid-base interactions, and hydrogen bonding can have on the interfacial ordering of LCs. The opportunity to create chemically-responsive LCs capable of undergoing ordering transitions in the presence of targeted molecular events (e.g., ligand exchange around a metal center) has emerged from these fundamental studies. A second advance has focused on investigations of the ordering of LCs at interfaces with immiscible isotropic fluids, particularly water. In contrast to prior studies of surface-induced ordering of LCs on solid surfaces, LC- aqueous interfaces are deformable and molecules at these interfaces exhibit high levels of mobility and thus can reorganize in response to changes in interfacial environment. A range of fundamental investigations involving these LC-aqueous interfaces have revealed that (i) the spatial and temporal characteristics of assemblies formed from biomolecular interactions can be reported by surface-driven ordering transitions in the LCs, (ii) the interfacial phase behaviour of molecules and colloids can be coupled to (and manipulated via) the ordering (and nematic elasticity) of LCs, and (iii) confinement of LCs leads to unanticipated size

  8. Colloidal membranes: The rich confluence of geometry and liquid crystals

    NASA Astrophysics Data System (ADS)

    Kaplan, Cihan Nadir

    A simple and experimentally realizable model system of chiral symmetry breaking is liquid-crystalline monolayers of aligned, identical hard rods. In these materials, tuning the chirality at the molecular level affects the geometry at systems level, thereby inducing a myriad of morphological transitions. This thesis presents theoretical studies motivated by the rich phenomenology of these colloidal monolayers. High molecular chirality leads to assemblages of rods exhibiting macroscopic handedness. In the first part we consider one such geometry, twisted ribbons, which are minimal surfaces to a double helix. By employing a theoretical approach that combines liquid-crystalline order with the preferred shape, we focus on the phase transition from simple flat monolayers to these twisted structures. In these monolayers, regions of broken chiral symmetry nucleate at the interfaces, as in a chiral smectic A sample. The second part particularly focuses on the detailed structure and thermodynamic stability of two types of observed interfaces, the monolayer edge and domain walls in simple flat monolayers. Both the edge and "twist-walls" are quasi-one-dimensional bands of molecular twist deformations dictated by local chiral interactions and surface energy considerations. We develop a unified theory of these interfaces by utilizing the de Gennes framework accompanied by appropriate surface energy terms. The last part turns to colloidal "cookies", which form in mixtures of rods with opposite handedness. These elegant structures are essentially flat monolayers surrounded by an array of local, three dimensional cusp defects. We reveal the thermodynamic and structural characteristics of cookies. Furthermore, cookies provide us with a simple relation to determine the intrinsic curvature modulus of our model system, an important constant associated with topological properties of membranes. Our results may have impacts on a broader class of soft thin films.

  9. Plutonium and Cesium Colloid Mediated Transport

    NASA Astrophysics Data System (ADS)

    Boukhalfa, H.; Dittrich, T.; Reimus, P. W.; Ware, D.; Erdmann, B.; Wasserman, N. L.; Abdel-Fattah, A. I.

    2013-12-01

    Plutonium and cesium have been released to the environment at many different locations worldwide and are present in spent fuel at significant levels. Accurate understanding of the mechanisms that control their fate and transport in the environment is important for the management of contaminated sites, for forensic applications, and for the development of robust repositories for the disposal of spent nuclear fuel and nuclear waste. Plutonium, which can be present in the environment in multiple oxidations states and various chemical forms including amorphous oxy(hydr)oxide phases, adsorbs/adheres very strongly to geological materials and is usually immobile in all its chemical forms. However, when associated with natural colloids, it has the potential to migrate significant distances from its point of release. Like plutonium, cesium is not very mobile and tends to remain adhered to geological materials near its release point, although its transport can be enhanced by natural colloids. However, the reactivity of plutonium and cesium are very different, so their colloid-mediated transport might be significantly different in subsurface environments. In this study, we performed controlled experiments in two identically-prepared columns; one dedicated to Pu and natural colloid transport experiments, and the other to Cs and colloid experiments. Multiple flow-through experiments were conducted in each column, with the effluent solutions being collected and re-injected into the same column two times to examine the persistence and scaling behavior of the natural colloids, Pu and Cs. The data show that that a significant fraction of colloids were retained in the first elution through each column, but the eluted colloids collected from the first run transported almost conservatively in subsequent runs. Plutonium transport tracked natural colloids in the first run but deviated from the transport of natural colloids in the second and third runs. Cesium transport tracked natural

  10. Colloid Transport in Saturated Porous Media: Elimination of Attachment Efficiency in a New Colloid Transport Model

    SciTech Connect

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-05-11

    A new colloid transport model is introduced that is conceptually simple but captures the essential features of complicated attachment and detachment behavior of colloids when conditions of secondary minimum attachment exist. This model eliminates the empirical concept of collision efficiency; the attachment rate is computed directly from colloid filtration theory. Also, a new paradigm for colloid detachment based on colloid population heterogeneity is introduced. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of colloids that attach irreversibly and (2) the rate at which reversibly attached colloids leave the surface. These two parameters were correlated to physical parameters that control colloid transport such as the depth of the secondary minimum and pore water velocity. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport. This model can be extended to heterogeneous systems characterized by both primary and secondary minimum deposition by simply increasing the fraction of colloids that attach irreversibly.

  11. Nonspherical colloidal crystals fabricated by the thermal pressing of colloidal crystal chips.

    PubMed

    Sun, Z Q; Chen, X; Zhang, J H; Chen, Z M; Zhang, K; Yan, X; Wang, Y F; Yu, W Z; Yang, B

    2005-09-27

    Nonspherical colloids and their ordered arrays may be more attractive in applications such as photonic crystals than their spherical counterparts because of their lower symmetries, although such structures are difficult to achieve. In this letter, we describe the fabrication and characterization of colloidal crystals constructed from nonspherical polyhedrons. We fabricated such nonspherical colloidal crystals by pressing spherical polymer colloidal crystal chips at a temperature slightly lower than the glass-transition temperature (T(g)) of these polymer colloids. During this process, the polymer microspheres were distinctively transformed into polyhedrons according to their crystal structures, whereas the long-range order of the 3D lattice was essentially preserved. Because a working temperature lower than T(g) effectively prevented the colloidal crystals from fusing into films, the spherical colloidal crystals were transformed greatly under pressure, which lead to obvious change in the optical properties of colloidal crystals. Besides their special symmetry and optical properties, these nonspherical colloidal crystals can be used as templates for 2D or 3D structures of special symmetry, such as 2D nano-networks. We anticipate that this fabrication technique for nonspherical colloidal crystals can also be extended to nonspherical porous materials.

  12. Colloid-polymer mixtures in solution with refractive index matched acrylate colloids.

    PubMed

    Kramer, Thomas; Scholz, Stephanie; Maskos, Michael; Huber, Klaus

    2004-11-15

    Colloid-polymer (CP) mixtures extend between two limiting cases, the colloid limit with the polymer coil size small compared to the colloid radius Rcol and the protein limit with the colloidal particles much smaller in size than the radius of gyration of the polymer chains Rg. In the present work, model systems are developed for the protein limit. The colloid-solvent pairs are optimized in terms of their isorefractivity in order to facilitate the characterization of large polystyrene chains in suspensions of small colloids. The degree of isorefractivity of colloidal particles was successfully evaluated in terms of a reduced scattering intensity. Two polystyrene samples with radii of gyration of Rg = 96 nm and Rg = 78 nm, respectively, are used. The radii of the colloidal particles are close to Rcol = 12 nm, leading to size ratios of Rg/Rcol = 8 and Rg/Rcol = 6.5. Four colloid solvent systems were found to be suitable for polymer characterization by light scattering, one based on silica particles and three systems with acrylate particles. The present investigation is focused on the three acrylate systems: poly(methyl methacrylate) in ethyl benzoate (ETB) at 7 degrees C, poly(ethyl methacrylate) in toluene at 7 degrees C and poly(ethyl methacrylate) in ETB at 40 degrees C. Characterization of PS chains is for the first time performed in colloid concentrations up to 2.5% by weight. In all cases, the size and shape of the polymer chains remain unchanged. A slight mismatch of the colloid scattering or a limited colloid solubility prevented investigation of PS chains at higher colloid concentration.

  13. Polymer-Induced Depletion Interaction and Its Effect on Colloidal Sedimentation in Colloid-Polymer Mixtures

    NASA Technical Reports Server (NTRS)

    Tong, Penger

    1996-01-01

    In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.

  14. Assembly of jammed colloidal shells onto micron-sized bubbles by ultrasound.

    PubMed

    Buchcic, C; Tromp, R H; Meinders, M B J; Cohen Stuart, M A

    2015-02-01

    Stabilization of gas bubbles in water by applying solid particles is a promising technique to ensure long-term stability of the dispersion against coarsening. However, the production of large quantities of particle stabilized bubbles is challenging. The delivery of particles to the interface must occur rapidly compared to the typical time scale of coarsening during production. Furthermore, the production route must be able to overcome the energy barriers for interfacial adsorption of particles. Here we demonstrate that ultrasound can be applied to agitate a colloidal dispersion and supply sufficient energy to ensure particle adsorption onto the air-water interface. With this technique we are able to produce micron-sized bubbles, solely stabilized by particles. The interface of these bubbles is characterized by a colloidal shell, a monolayer of particles which adopt a hexagonal packing. The particles are anchored to the interface owing to partial wetting and experience lateral compression due to bubble shrinkage. The combination of both effects stops coarsening once the interface is jammed with particles. As a result, stable bubbles are formed. Individual particles can desorb from the interface upon surfactant addition, though. The latter fact confirms that the particle shell is not covalently linked due to thermal sintering, but is solely held together by capillary interaction. In summary, we show that our ultrasound approach allows for the straightforward creation of micron-sized particle stabilized bubbles with high stability towards coarsening.

  15. The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation.

    PubMed

    Gu, Hai-Ying; Chen, Zhong; Sa, Rong-Xiao; Yuan, Su-Su; Chen, Hong-Yuan; Ding, Yi-Tao; Yu, Ai-Min

    2004-08-01

    Bioartificial liver and hepatocyte transplantation is anticipated to supply a temporary metabolic support for candidates of liver transplantation or for patients with fulminant liver failure. An essential restriction of this form is the inability to acquire an enough amount of hepatocytes. Enhancement of the proliferation and differentiated function of hepatocytes is becoming a pursued target. Here, porcine hepatocytes were successfully immobilized on nano-sized gold colloid particles to construct a "hepatocyte/gold colloid" interface at which hepatocytes can be quickly proliferated. The properties of this resulting interface were characterized and confirmed by scanning electron microscopy and atomic force microscopy. The proliferative mechanism of hepatocytes was also discussed. The proliferated hepatocytes could be applied to the clinic based on their excellent functions for the synthesis of protein, glucose and urea as well as lower lactate dehydrogenase release. PMID:15020118

  16. Ionic colloidal crystals of oppositely charged particles.

    PubMed

    Leunissen, Mirjam E; Christova, Christina G; Hynninen, Antti-Pekka; Royall, C Patrick; Campbell, Andrew I; Imhof, Arnout; Dijkstra, Marjolein; van Roij, René; van Blaaderen, Alfons

    2005-09-01

    Colloidal suspensions are widely used to study processes such as melting, freezing and glass transitions. This is because they display the same phase behaviour as atoms or molecules, with the nano- to micrometre size of the colloidal particles making it possible to observe them directly in real space. Another attractive feature is that different types of colloidal interactions, such as long-range repulsive, short-range attractive, hard-sphere-like and dipolar, can be realized and give rise to equilibrium phases. However, spherically symmetric, long-range attractions (that is, ionic interactions) have so far always resulted in irreversible colloidal aggregation. Here we show that the electrostatic interaction between oppositely charged particles can be tuned such that large ionic colloidal crystals form readily, with our theory and simulations confirming the stability of these structures. We find that in contrast to atomic systems, the stoichiometry of our colloidal crystals is not dictated by charge neutrality; this allows us to obtain a remarkable diversity of new binary structures. An external electric field melts the crystals, confirming that the constituent particles are indeed oppositely charged. Colloidal model systems can thus be used to study the phase behaviour of ionic species. We also expect that our approach to controlling opposite-charge interactions will facilitate the production of binary crystals of micrometre-sized particles, which could find use as advanced materials for photonic applications.

  17. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  18. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  19. Interactions between radioactively labeled colloids and natural particles: Evidence for colloidal pumping

    NASA Astrophysics Data System (ADS)

    Wen, Liang-Saw; Santschi, Peter H.; Tang, Degui

    1997-07-01

    It has been hypothesized that colloidal forms of trace metals can be reactive intermediaries in the scavenging processes leading to the removal of their particulate forms. A series of radiotracer experiments using natural colloidal organic matter from Galveston Bay, USA were carried out in order to test this hypothesis. Suspended particle uptake of originally colloidally bound trace metals occurred in a matter of hours to days in estuarine waters. After ten days, the majority (>50%) of the colloidal trace metals had been transferred into the particulate phase (≥0.45 μm), except for 65Zn. Two distinctively different temporal regions of removal of colloidal trace metals were identified: a faster reaction during the first four hours, followed by a slower reaction after approximately one day. In a separate river water-seawater mixing experiment, the solid/solution partitioning of the radiotracers was investigated in the absence of suspended matter. About 30% of most of the elements, except Ag and Fe (˜60%), were associated with a newly formed particulate phase after eight days. There were two major trends: (1) the particulate fraction of 59Fe and 110Ag increased while the colloidal fraction decreased, suggesting a colloidal pumping mechanism. (2) The particulate fraction of 54Mn, 133Ba, 65Zn, 109Cd, 113Sn, and 60CO increased while the LMW (≤ 1 kDa) fraction decreased, suggesting a direct uptake into the particulate fraction with less involvement of a transitory colloidal phase. The values of the particle-water ( Kd) and colloid-water partitioning ( Kc) coefficients for most trace metals were similar to those observed in Galveston Bay waters, suggesting complementary results to field studies. The results from these experiments suggested two different pathways for colloidal tracer uptake by particles: (1) colloidal pumping of a major component (e.g., biopolymer) of the colloidal pool and (2) coagulation of trace components (e.g., phytochelatins) with varying

  20. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles.

    PubMed

    Fujita, Yosuke; Kobayashi, Motoyoshi

    2016-07-01

    We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. PMID:27045635

  1. Colloidal Synthesis of Gold Semishells

    PubMed Central

    Rodríguez-Fernández, Denis; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M

    2012-01-01

    This work describes a novel and scalable colloid chemistry strategy to fabricate gold semishells based on the selective growth of gold on Janus silica particles (500 nm in diameter) partly functionalized with amino groups. The modulation of the geometry of the Janus silica particles allows us to tune the final morphology of the gold semishells. This method also provides a route to fabricating hollow gold semishells through etching of the silica cores with hydrofluoric acid. The optical properties were characterized by visible near-infrared (vis-NIR) spectroscopy and compared with simulations performed using the boundary element method (BEM). These revealed that the main optical features are located beyond the NIR region because of the large core size. PMID:24551496

  2. Hydrodynamic synchronization of colloidal oscillators

    PubMed Central

    Kotar, Jurij; Leoni, Marco; Bassetti, Bruno; Lagomarsino, Marco Cosentino; Cicuta, Pietro

    2010-01-01

    Two colloidal spheres are maintained in oscillation by switching the position of an optical trap when a sphere reaches a limit position, leading to oscillations that are bounded in amplitude but free in phase and period. The interaction between the oscillators is only through the hydrodynamic flow induced by their motion. We prove that in the absence of stochastic noise the antiphase dynamical state is stable, and we show how the period depends on coupling strength. Both features are observed experimentally. As the natural frequencies of the oscillators are made progressively different, the coordination is quickly lost. These results help one to understand the origin of hydrodynamic synchronization and how the dynamics can be tuned. Cilia and flagella are biological systems coupled hydrodynamically, exhibiting dramatic collective motions. We propose that weakly correlated phase fluctuations, with one of the oscillators typically precessing the other, are characteristic of hydrodynamically coupled systems in the presence of thermal noise. PMID:20385848

  3. Transport in charged colloids driven by thermoelectricity.

    PubMed

    Würger, Alois

    2008-09-01

    We study the thermal diffusion coefficient D{T} of a charged colloid in a temperature gradient, and find that it is to a large extent determined by the thermoelectric response of the electrolyte solution. The thermally induced salinity gradient leads in general to a strong increase with temperature. The difference of the heat of transport of coions and counterions gives rise to a thermoelectric field that drives the colloid to the cold or to the warm, depending on the sign of its charge. Our results provide an explanation for recent experimental findings on thermophoresis in colloidal suspensions. PMID:18851262

  4. Three-dimensional ultrasonic colloidal crystals

    NASA Astrophysics Data System (ADS)

    Caleap, Mihai; Drinkwater, Bruce W.

    2016-05-01

    Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications. xml:lang="fr"

  5. Colloidal CdSe Quantum Rings.

    PubMed

    Fedin, Igor; Talapin, Dmitri V

    2016-08-10

    Semiconductor quantum rings are of great fundamental interest because their non-trivial topology creates novel physical properties. At the same time, toroidal topology is difficult to achieve for colloidal nanocrystals and epitaxially grown semiconductor nanostructures. In this work, we introduce the synthesis of luminescent colloidal CdSe nanorings and nanostructures with double and triple toroidal topology. The nanorings form during controlled etching and rearrangement of two-dimensional nanoplatelets. We discuss a possible mechanism of the transformation of nanoplatelets into nanorings and potential utility of colloidal nanorings for magneto-optical (e.g., Aharonov-Bohm effect) and other applications.

  6. Straining soft colloids in aqueous nematic liquid crystals.

    PubMed

    Mushenheim, Peter C; Pendery, Joel S; Weibel, Douglas B; Spagnolie, Saverio E; Abbott, Nicholas L

    2016-05-17

    Liquid crystals (LCs), because of their long-range molecular ordering, are anisotropic, elastic fluids. Herein, we report that elastic stresses imparted by nematic LCs can dynamically shape soft colloids and tune their physical properties. Specifically, we use giant unilamellar vesicles (GUVs) as soft colloids and explore the interplay of mechanical strain when the GUVs are confined within aqueous chromonic LC phases. Accompanying thermal quenching from isotropic to LC phases, we observe the elasticity of the LC phases to transform initially spherical GUVs (diameters of 2-50 µm) into two distinct populations of GUVs with spindle-like shapes and aspect ratios as large as 10. Large GUVs are strained to a small extent (R/r < 1.54, where R and r are the major and minor radii, respectively), consistent with an LC elasticity-induced expansion of lipid membrane surface area of up to 3% and conservation of the internal GUV volume. Small GUVs, in contrast, form highly elongated spindles (1.54 < R/r < 10) that arise from an efflux of LCs from the GUVs during the shape transformation, consistent with LC-induced straining of the membrane leading to transient membrane pore formation. A thermodynamic analysis of both populations of GUVs reveals that the final shapes adopted by these soft colloids are dominated by a competition between the LC elasticity and an energy (∼0.01 mN/m) associated with the GUV-LC interface. Overall, these results provide insight into the coupling of strain in soft materials and suggest previously unidentified designs of LC-based responsive and reconfigurable materials.

  7. Straining soft colloids in aqueous nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Mushenheim, Peter C.; Pendery, Joel S.; Weibel, Douglas B.; Spagnolie, Saverio E.; Abbott, Nicholas L.

    2016-05-01

    Liquid crystals (LCs), because of their long-range molecular ordering, are anisotropic, elastic fluids. Herein, we report that elastic stresses imparted by nematic LCs can dynamically shape soft colloids and tune their physical properties. Specifically, we use giant unilamellar vesicles (GUVs) as soft colloids and explore the interplay of mechanical strain when the GUVs are confined within aqueous chromonic LC phases. Accompanying thermal quenching from isotropic to LC phases, we observe the elasticity of the LC phases to transform initially spherical GUVs (diameters of 2–50 µm) into two distinct populations of GUVs with spindle-like shapes and aspect ratios as large as 10. Large GUVs are strained to a small extent (R/r < 1.54, where R and r are the major and minor radii, respectively), consistent with an LC elasticity-induced expansion of lipid membrane surface area of up to 3% and conservation of the internal GUV volume. Small GUVs, in contrast, form highly elongated spindles (1.54 < R/r < 10) that arise from an efflux of LCs from the GUVs during the shape transformation, consistent with LC-induced straining of the membrane leading to transient membrane pore formation. A thermodynamic analysis of both populations of GUVs reveals that the final shapes adopted by these soft colloids are dominated by a competition between the LC elasticity and an energy (˜0.01 mN/m) associated with the GUV–LC interface. Overall, these results provide insight into the coupling of strain in soft materials and suggest previously unidentified designs of LC-based responsive and reconfigurable materials.

  8. Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model.

    PubMed

    Zhang, Qiulan; Karadimitriou, N K; Hassanizadeh, S M; Kleingeld, P J; Imhof, A

    2013-07-01

    As a representation of a porous medium, a closed micro-fluidic device made of polydimethylsiloxane (PDMS), with uniform wettability and stable hydrophobic properties, was designed and fabricated. A flow network, with a mean pore size of 30 μm, was formed in a PDMS slab, covering an area of 1 mm × 10 mm. The PDMS slab was covered and bonded with a 120-μm-thick glass plate to seal the model. The glass plate was first spin-coated with a thin layer, roughly 10 μm, of PDMS. The micro-model was treated with silane in order to make it uniformly and stably hydrophobic. Fluorescent particles of 300 μm in diameter were used as colloids. It is known that more removal of colloids occurs under unsaturated conditions, compared to saturated flow in soil. At the same time, the change of saturation has been observed to cause remobilization of attached colloids. The mechanisms for these phenomena are not well understood. This is the first time that a closed micro-model, made of PDMS with uniform and stable wettability, has been used in combination with confocal microscopy to study colloid transport under transient two-phase flow conditions. With confocal microscopy, the movement of fluorescent particles and flow of two liquids within the pores can be studied. One can focus at different depths within the pores and thus determine where the particles exactly are. Thus, remobilization of attached colloids by moving fluid-fluid interfaces was visualized. In order to allow for the deposition and subsequent remobilization of colloids during two-phase flow, three micro-channels for the injection of liquids with and without colloids were constructed. An outlet channel was designed where effluent concentration breakthrough curves can be quantified by measuring the fluorescence intensity. A peak concentration also indicated in the breakthrough curve with the drainage event. The acquired images and breakthrough curve successfully confirmed the utility of the combination of such a PDMS

  9. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    PubMed

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. PMID:27494632

  10. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    PubMed

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering.

  11. Polarity inversion of ζ-potential in concentrated colloidal dispersions.

    PubMed

    Manzanilla-Granados, Héctor M; Jiménez-Ángeles, Felipe; Lozada-Cassou, Marcelo

    2011-10-27

    A concentrated colloidal dispersion is studied by applying an integral equations theory to the colloidal primitive model fluid. Important effects, attributed to large size and charge and to the finite concentration of colloidal particles, are found. We observe a polarity inversion of ζ-potential for concentrated colloidal dispersions, while it is not present for a single colloidal particle at infinite dilution. An excellent qualitative agreement between our theoretical predictions and our computer simulations is observed.

  12. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    SciTech Connect

    Flury, Markus; Harsh, James B.; Zachara, John M.; McCarthy, John F.; Lichtner, Peter C.

    2006-05-31

    This project seeks to improve the basic understanding of the role of colloids in facilitating the transport of contaminants in the vadose zone. We focus on three major thrusts: (1) thermodynamic stability and mobility of colloids formed by reactions of sediments with highly alkaline tank waste solutions, (2) colloid-contaminant interactions, and (3) in-situ colloid mobilization and colloid facilitated contaminant transport occurring in both contaminated and uncontaminated Hanford sediments.

  13. Universal Scaling of Correlated Diffusion in Colloidal Monolayers

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Li, Na; Bohinc, Klemen; Tong, Penger; Chen, Wei

    2013-10-01

    Using the techniques of optical microscopy and particle tracking, we measure the correlated diffusion in a monolayer of uniform silica spheres dispersed at a water-air interface. It is found that the correlated motion of the interfacial particles can be well described by two universal response functions, the normalized longitudinal and transverse diffusion coefficients D˜∥(r/r0) and D˜⊥(r/r0), where r is the interparticle distance and r0=a(λS/a)3/2 is a new scaling length, which depends on both the Saffman length λS and particle radius a. The obtained response functions characterize the crossover behavior of the colloidal monolayers from the subphase-dominated three-dimensional hydrodynamics at low surface coverage to the monolayer-dominated 2D hydrodynamics at high concentrations. The surface viscosity ηs(2) of the colloidal monolayer obtained by two-particle rheology compares well with the one-particle measurements.

  14. Classical growth of hard-sphere colloidal crystals

    NASA Astrophysics Data System (ADS)

    Ackerson, Bruce J.; Schätzel, Klaus

    1995-12-01

    The classical theory of nucleation and growth of crystals is examined for concentrated suspensions of hard-sphere colloidal particles. The work of Russel is modified, extended, and evaluated, explicitly. Specifically, the Wilson-Frenkel growth law is modified to include the Gibbs-Thomson effect and is evaluated numerically. The results demonstrate that there is a critical nucleus radius below which crystal nuclei will not grow. A kinetic coefficient determines the maximum growth velocity possible. For large values of this coefficient, quenches to densities above the melting density show interface limited growth with the crystal radius increasing linearly with time. For quenches into the coexistence region the growth is diffusion limited, with the crystal radius increasing as the square root of elapsed time. Smaller values of the kinetic coefficient produce long lived transients which evidence quasi-power-law growth behavior with exponents between one half and unity. The smaller kinetic coefficients also lead to larger crystal compression. Crystal compression and nonclassical exponents have been observed in recent experiments. The theory is compared to data from small angle scattering studies of nucleation and growth in suspensions of hard colloidal spheres. The experimental nucleation rate is much larger than the theoretically predicted value as the freezing point is approached but shows better agreement near the melting point. The crystal growth with time is described reasonably well by the theory and suggests that the experiments are observing long lived transient rather than asymptotic growth behavior. (c) 1995 The American Physical Society

  15. Charged colloids and polyelectrolytes: from statics to electrokinetics

    NASA Astrophysics Data System (ADS)

    Löwen, H.; Esztermann, A.; Wysocki, A.; Allahyarov, E.; Messina, R.; Jusufi, A.; Hoffmann, N.; Gottwald, D.; Kahl, G.; Konieczny, M.; Likos, C. N.

    2005-01-01

    A review is given on recent studies of charged colloidal suspensions and polyelectrolytes both in static and non-equilibrium situations. As far as static equilibrium situations are concerned, we discuss three different problems: 1) Sedimentation density profiles in charged suspensions are shown to exhibit a stretched non-bariometric wing at large heights and binary suspensions under gravity can exhibit an analog of the brazil-nut effect known from granular matter, i.e. the heavier particles settle on top of the lighter ones. 2) Soft polyelectrolyte systems like polyelectrolyte stars and microgels show an ultra-soft effective interaction and this results into an unusual equilibrium phase diagram including reentrant melting transitions and stable open crystalline lattices. 3) The freezing transition in bilayers of confined charged suspensions is discussed and a reentrant behaviour is obtained. As far as nonequilibrium problems are concerned, we discuss an interface instability in oppositely driven colloidal mixtures and discuss possible approaches to simulate electrokinetic effects in charged suspensions.

  16. Dynamical Threshold of Diluteness of Soft Colloids

    SciTech Connect

    Chen, Wei-Ren; Do, Changwoo; Egami, T; Falus, Peter; Li, Xin; Liu, Dazhi; Porcar, L.; Sanchez-Diaz, Luis E; Smith, Gregory Scott; Wu, Bin

    2014-01-01

    The dynamics of soft colloids in solutions is characterized by internal collective motion as well as center-of-mass diffusion. Using neutron scattering we demonstrate that the competition between the relaxation processes associated with these two degrees of freedom results in strong dependence of dynamics and structure on colloid concentration, c, well below the overlap concentration c*. Triggered by the increasing inter-particle collisions, substantial structural dehydration and slowing-down of internal dynamics occurs before geometrically defined colloidal overlap develops. This observation is surprising since it is generally believed that the internal dynamics and conformation of soft colloidal particles essentially remain invariant below c*. The competition between these two relaxation processes gives rise to a new dynamically-defined dilute threshold concentration well below c*.

  17. Colloidal suspension simulates linear dynamic pressure profile

    NASA Technical Reports Server (NTRS)

    Mc Cann, R. J.

    1966-01-01

    Missile nose fairings immersed in colloidal suspension prepared with various specific gravities simulate pressure profiles very similar to those encountered during reentry. Stress and deflection conditions similar to those expected during atmospheric reentry are thus attained in the laboratory.

  18. A Course in Colloid and Surface Science.

    ERIC Educational Resources Information Center

    Scamehorn, John F.

    1984-01-01

    Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)

  19. Solid colloids with surface-mobile linkers.

    PubMed

    van der Meulen, Stef A J; Helms, Gesa; Dogterom, Marileen

    2015-06-17

    In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell-cell interactions and cell adhesion processes.

  20. Ultrasonically assisted deposition of colloidal crystals

    SciTech Connect

    Wollmann, Sabine; Patel, Raj B.; Wixforth, Achim; Krenner, Hubert J.

    2014-07-21

    Colloidal particles are a versatile physical system which have found uses across a range of applications such as the simulation of crystal kinetics, etch masks for fabrication, and the formation of photonic band-gap structures. Utilization of colloidal particles often requires a means to produce highly ordered, periodic structures. One approach is the use of surface acoustic waves (SAWs) to direct the self-assembly of colloidal particles. Previous demonstrations using standing SAWs were shown to be limited in terms of crystal size and dimensionality. Here, we report a technique to improve the spatial alignment of colloidal particles using traveling SAWs. Through control of the radio frequency power, which drives the SAW, we demonstrate enhanced quality and dimensionality of the crystal growth. We show that this technique can be applied to a range of particle sizes in the μm-regime and may hold potential for particles in the sub-μm-regime.

  1. Patterning microsphere surfaces by templating colloidal crystals.

    PubMed

    Zhang, Gang; Wang, Dayang; Möhwald, Helmuth

    2005-01-01

    By using the upper single or double layers in colloidal crystals as masks during Au vapor deposition, various Au patterns have been successfully constructed on the surfaces of the lower spheres. The dimension and geometry of the Au patterns obtained are dependent on the orientation of the colloidal crystal templates. Our patterning procedure is independent of the curvature and chemical composition of the surfaces, which definitely pave a promising way to pattern highly curved surfaces.

  2. Compact Video Microscope Imaging System Implemented in Colloid Studies

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2002-01-01

    Long description Photographs showing fiber-optic light source, microscope and charge-coupled discharge (CCD) camera head connected to camera body, CCD camera body feeding data to image acquisition board in PC, and Cartesian robot controlled via PC board. The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. CMIS can be used in situ with a minimum amount of user intervention. This system can scan, find areas of interest in, focus on, and acquire images automatically. Many multiple-cell experiments require microscopy for in situ observations; this is feasible only with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control. The software also has a user-friendly interface, which can be used independently of the hardware for further post-experiment analysis. CMIS has been successfully developed in the SML Laboratory at the NASA Glenn Research Center and adapted for use for colloid studies and is available for telescience experiments. The main innovations this year are an improved interface, optimized algorithms, and the ability to control conventional full-sized microscopes in addition to compact microscopes. The CMIS software-hardware interface is being integrated into our SML Analysis package, which will be a robust general-purpose image-processing package that can handle over 100 space and industrial applications.

  3. Local crystalline order in a 2D colloidal glass former.

    PubMed

    Ebert, F; Keim, P; Maret, G

    2008-01-01

    A mixture of two types of super-paramagnetic colloidal particles with long-range dipolar interaction is confined by gravity to a flat interface of a hanging water droplet. The particles are observed by video microscopy and the dipolar interaction strength is controlled by an external magnetic field. The local structure as obtained by pair correlation functions and bond order statistics is investigated as a function of system temperature and relative concentration. Although the system has no long-range order and exhibits glassy dynamics, different types of stable crystallites coexist. The local order of the globally disordered structure is explained by a small set of specific crystal structures. The statistics of crystal unit cells show a continuous increase of local order with decreasing system temperature as well as a dependence on sample history and local composition.

  4. Floating nematic phase in colloidal platelet-sphere mixtures.

    PubMed

    de las Heras, Daniel; Doshi, Nisha; Cosgrove, Terence; Phipps, Jonathan; Gittins, David I; van Duijneveldt, Jeroen S; Schmidt, Matthias

    2012-01-01

    The phase behaviour of colloidal dispersions is interesting for fundamental reasons and for technological applications such as photonic crystals and electronic paper. Sedimentation, which in everyday life is relevant from blood analysis to the shelf life of paint, is a means to determine phase boundaries by observing distinct layers in samples that are in sedimentation-diffusion equilibrium. However, disentangling the effects due to interparticle interactions, which generate the bulk phase diagram, from those due to gravity is a complex task. Here we show that a line in the space of chemical potentials µ(i), where i labels the species, represents a sedimented sample and that each crossing of this sedimentation path with a binodal generates an interface under gravity. Complex phase stacks can result, such as the sandwich of a floating nematic layer between top and bottom isotropic phases that we observed in a mixture of silica spheres and gibbsite platelets.

  5. Domain and droplet sizes in emulsions stabilized by colloidal particles

    NASA Astrophysics Data System (ADS)

    Frijters, Stefan; Günther, Florian; Harting, Jens

    2014-10-01

    Particle-stabilized emulsions are commonly used in various industrial applications. These emulsions can present in different forms, such as Pickering emulsions or bijels, which can be distinguished by their different topologies and rheology. We numerically investigate the effect of the volume fraction and the uniform wettability of the stabilizing spherical particles in mixtures of two fluids. For this, we use the well-established three-dimensional lattice Boltzmann method, extended to allow for the added colloidal particles with non-neutral wetting properties. We obtain data on the domain sizes in the emulsions by using both structure functions and the Hoshen-Kopelman (HK) algorithm, and we demonstrate that both methods have their own (dis)advantages. We confirm an inverse dependence between the concentration of particles and the average radius of the stabilized droplets. Furthermore, we demonstrate the effect of particles detaching from interfaces on the emulsion properties and domain-size measurements.

  6. Photocatalytic Applications of Colloidal Heterostructured Nanocrystals: What's Next?

    PubMed

    Razgoniaeva, Natalia; Moroz, Pavel; Lambright, Scott; Zamkov, Mikhail

    2015-11-01

    Recent progress in the colloidal synthesis of inorganic nanocrystals has led to the realization of complex, multidomain nanoparticle morphologies that give rise to advanced optoelectronic properties. Such nanocomposites are particularly appealing for photocatalytic applications where tunable absorption, extensive charge separation, and large surface-to-volume ratios are important. To date, heterostructured nanocrystals featuring a metal catalyst and a semiconductor "chromophore" component have shown compelling efficiencies in photoreduction reactions, including sacrificial hydrogen production. Time-resolved optical studies have attributed their success to a near-complete separation of photoinduced charges across dissimilar nanoparticle domains. The spectroscopy approach has also identified the key performance-limiting factors of nanocrystal catalysts that arise from inefficient extraction of photoinduced charges to catalytic sites. Along these lines, the main scope of present-day efforts targets the improvement of interstitial charge transfer pathways across the chromophore-catalyst assembly through the design of high-quality stoichiometric interfaces.

  7. Floating nematic phase in colloidal platelet-sphere mixtures

    PubMed Central

    de las Heras, Daniel; Doshi, Nisha; Cosgrove, Terence; Phipps, Jonathan; Gittins, David I.; van Duijneveldt, Jeroen S.; Schmidt, Matthias

    2012-01-01

    The phase behaviour of colloidal dispersions is interesting for fundamental reasons and for technological applications such as photonic crystals and electronic paper. Sedimentation, which in everyday life is relevant from blood analysis to the shelf life of paint, is a means to determine phase boundaries by observing distinct layers in samples that are in sedimentation-diffusion equilibrium. However, disentangling the effects due to interparticle interactions, which generate the bulk phase diagram, from those due to gravity is a complex task. Here we show that a line in the space of chemical potentials µi, where i labels the species, represents a sedimented sample and that each crossing of this sedimentation path with a binodal generates an interface under gravity. Complex phase stacks can result, such as the sandwich of a floating nematic layer between top and bottom isotropic phases that we observed in a mixture of silica spheres and gibbsite platelets. PMID:23145313

  8. Linked topological colloids in a nematic host.

    PubMed

    Martinez, Angel; Hermosillo, Leonardo; Tasinkevych, Mykola; Smalyukh, Ivan I

    2015-04-14

    Geometric shape and topology of constituent particles can alter many colloidal properties such as Brownian motion, self-assembly, and phase behavior. Thus far, only single-component building blocks of colloids with connected surfaces have been studied, although topological colloids, with constituent particles shaped as freestanding knots and handlebodies of different genus, have been recently introduced. Here we develop a topological class of colloids shaped as multicomponent links. Using two-photon photopolymerization, we fabricate colloidal microparticle analogs of the classic examples of links studied in the field of topology, the Hopf and Solomon links, which we disperse in nematic fluids that possess orientational ordering of anisotropic rod-like molecules. The surfaces of these particles are treated to impose tangential or perpendicular boundary conditions for the alignment of liquid crystal molecules, so that they generate a host of topologically nontrivial field and defect structures in the dispersing nematic medium, resulting in an elastic coupling between the linked constituents. The interplay between the topologies of surfaces of linked colloids and the molecular alignment field of the nematic host reveals that linking of particle rings with perpendicular boundary conditions is commonly accompanied by linking of closed singular defect loops, laying the foundations for fabricating complex composite materials with interlinking-based structural organization.

  9. Self-replication with magnetic dipolar colloids.

    PubMed

    Dempster, Joshua M; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  10. Linked topological colloids in a nematic host

    PubMed Central

    Martinez, Angel; Hermosillo, Leonardo; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2015-01-01

    Geometric shape and topology of constituent particles can alter many colloidal properties such as Brownian motion, self-assembly, and phase behavior. Thus far, only single-component building blocks of colloids with connected surfaces have been studied, although topological colloids, with constituent particles shaped as freestanding knots and handlebodies of different genus, have been recently introduced. Here we develop a topological class of colloids shaped as multicomponent links. Using two-photon photopolymerization, we fabricate colloidal microparticle analogs of the classic examples of links studied in the field of topology, the Hopf and Solomon links, which we disperse in nematic fluids that possess orientational ordering of anisotropic rod-like molecules. The surfaces of these particles are treated to impose tangential or perpendicular boundary conditions for the alignment of liquid crystal molecules, so that they generate a host of topologically nontrivial field and defect structures in the dispersing nematic medium, resulting in an elastic coupling between the linked constituents. The interplay between the topologies of surfaces of linked colloids and the molecular alignment field of the nematic host reveals that linking of particle rings with perpendicular boundary conditions is commonly accompanied by linking of closed singular defect loops, laying the foundations for fabricating complex composite materials with interlinking-based structural organization. PMID:25825765

  11. Self-replication with magnetic dipolar colloids

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  12. Colloidal oatmeal: history, chemistry and clinical properties.

    PubMed

    Kurtz, Ellen S; Wallo, Warren

    2007-02-01

    Oatmeal has been used for centuries as a soothing agent to relieve itch and irritation associated with various xerotic dermatoses. In 1945, a ready to use colloidal oatmeal, produced by finely grinding the oat and boiling it to extract the colloidal material, became available. Today, colloidal oatmeal is available in various dosage forms from powders for the bath to shampoos, shaving gels, and moisturizing creams. Currently, the use of colloidal oatmeal as a skin protectant is regulated by the U.S. Food and Drug Administration (FDA) according to the Over-The-Counter Final Monograph for Skin Protectant Drug Products issued in June 2003. Its preparation is also standardized by the United States Pharmacopeia. The many clinical properties of colloidal oatmeal derive from its chemical polymorphism. The high concentration in starches and beta-glucan is responsible for the protective and water-holding functions of oat. The presence of different types of phenols confers antioxidant and anti-inflammatory activity. Some of the oat phenols are also strong ultraviolet absorbers. The cleansing activity of oat is mostly due to saponins. Its many functional properties make colloidal oatmeal a cleanser, moisturizer, buffer, as well as a soothing and protective anti-inflammatory agent.

  13. Inventions Utilizing Microfluidics and Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  14. Interactions between radioactively labeled colloids and natural particles: Evidence for colloidal pumping

    SciTech Connect

    Wen, L.S.; Santschi, P.H.; Tang, D.

    1997-07-01

    It has been hypothesized that colloidal forms of trace metals can be reactive intermediaries in the scavenging processes leading to the removal of their particulate forms. A series of radiotracer experiments using natural colloidal organic matter from Galveston Bay, USA were carried out in order to test this hypothesis. Suspended particle uptake of originally colloidally bound trace metals occurred in a matter of hours to days in estuarine waters. After ten days, the majority ( >50%) of the colloidal trace metals had been transferred into the particulate phase ({ge} 0.45{mu}m), except for {sup 65}Zn. Two distinctively different temporal regions of removal of colloidal trace metals were identified: a faster reaction during the first four hours, followed by a slower reaction after approximately one day. In a separate river water-seawater mixing experiment, the solid/solution partitioning of the radiotracers was investigated in the absence of suspended matter. About 30% of most of the elements, except Ag and Fe ({approximately}60%), were associated with a newly formed particulate phase after eight days. There were two major trends: (1) the particulate fraction of {sup 59}Fe and {sup 110}Ag increased while the colloidal fraction decreased, suggesting a colloidal pumping mechanism. (2) The particulate fraction of {sup 54}Mn, {sup 133}Ba, {sup 65}Zn, {sup 109}Cd, {sup 113}Sn, and {sup 60}Co increased while the LMW({le}1 kDa) fraction decreased, suggesting a direct uptake into the particulate fraction with less involvement of a transitory colloidal phase. The results from these experiments suggested two different pathways for colloidal tracer uptake by particles: (1) colloidal pumping of a major component (e.g., biopolymer) of the colloidal pool and (2) coagulation of trace components (e.g., phytochelatins) with varying affinities for different trace metals. 39 refs., 8 figs., 3 tabs.

  15. Colloidal-sized metal-organic frameworks: synthesis and applications.

    PubMed

    Sindoro, Melinda; Yanai, Nobuhiro; Jee, Ah-Young; Granick, Steve

    2014-02-18

    Colloidal metal-organic frameworks (CMOFs), nanoporous colloidal-sized crystals that are uniform in both size and polyhedral shape, are crystals composed of metal ions and organic bridging ligands, which can be used as building blocks for self-assembly in organic and aqueous liquids. They stand in contrast to conventional metal-organic frameworks (MOFs), which scientists normally study in the form of bulk crystalline powders. However, powder MOFs generally have random crystal size and shape and therefore do not possess either a definite mutual arrangement with adjacent particles or uniformity. CMOFs do have this quality, which can be important in vital uptake and release kinetics. In this Account, we present the diverse methods of synthesis, pore chemistry control, surface modification, and assembly techniques of CMOFs. In addition, we survey recent achievements and future applications in this emerging field. There is potential for a paradigm shift, away from using just bulk crystalline powders, towards using particles whose size and shape are regulated. The concept of colloidal MOFs takes into account that nanoporous MOFs, conventionally prepared in the form of bulk crystalline powders with random crystal size, shape, and orientation, may also form colloidal-sized objects with uniform size and morphology. Furthermore, the traditional MOF functions that depend on porosity present additional control over those MOF functions that depend on pore interactions. They also can enable controlled spatial arrangements between neighboring particles. To begin, we discuss progress regarding synthesis of MOF nano- and microcrystals whose crystal size and shape are well regulated. Next, we review the methods to modify the surfaces with dye molecules and polymers. Dyes are useful when seeking to observe nonluminescent CMOFs in situ by optical microscopy, while polymers are useful to tune their interparticle interactions. Third, we discuss criteria to assess the stability of CMOFs

  16. Colloidal-sized metal-organic frameworks: synthesis and applications.

    PubMed

    Sindoro, Melinda; Yanai, Nobuhiro; Jee, Ah-Young; Granick, Steve

    2014-02-18

    Colloidal metal-organic frameworks (CMOFs), nanoporous colloidal-sized crystals that are uniform in both size and polyhedral shape, are crystals composed of metal ions and organic bridging ligands, which can be used as building blocks for self-assembly in organic and aqueous liquids. They stand in contrast to conventional metal-organic frameworks (MOFs), which scientists normally study in the form of bulk crystalline powders. However, powder MOFs generally have random crystal size and shape and therefore do not possess either a definite mutual arrangement with adjacent particles or uniformity. CMOFs do have this quality, which can be important in vital uptake and release kinetics. In this Account, we present the diverse methods of synthesis, pore chemistry control, surface modification, and assembly techniques of CMOFs. In addition, we survey recent achievements and future applications in this emerging field. There is potential for a paradigm shift, away from using just bulk crystalline powders, towards using particles whose size and shape are regulated. The concept of colloidal MOFs takes into account that nanoporous MOFs, conventionally prepared in the form of bulk crystalline powders with random crystal size, shape, and orientation, may also form colloidal-sized objects with uniform size and morphology. Furthermore, the traditional MOF functions that depend on porosity present additional control over those MOF functions that depend on pore interactions. They also can enable controlled spatial arrangements between neighboring particles. To begin, we discuss progress regarding synthesis of MOF nano- and microcrystals whose crystal size and shape are well regulated. Next, we review the methods to modify the surfaces with dye molecules and polymers. Dyes are useful when seeking to observe nonluminescent CMOFs in situ by optical microscopy, while polymers are useful to tune their interparticle interactions. Third, we discuss criteria to assess the stability of CMOFs

  17. Statistical thermodynamics of charge-stabilized colloids

    NASA Astrophysics Data System (ADS)

    Torres Valderrama, A.

    2008-06-01

    This thesis is a theoretical study of equilibrium statistical thermodynamic properties of colloidal systems in which electrostatic interactions play a dominant role, namely, charge-stabilized colloidal suspensions. Such systems are fluids consisting of a mixture of a large number of mesoscopic particles and microscopic ions which interact via the Coulomb force, suspended in a molecular fluid. Quantum statistical mechanics is essential to fully understand the properties and stability of such systems. A less fundamental but for many purposes, sufficient description, is provided by classical statistical mechanics. In such approximation the system is considered as composed of a great number of charged classical particles with additional hard-core repulsions. The kinetic energy or momentum integrals become independent Gaussians, and hence their contribution to the free energy can be trivially evaluated. The contribution of the potential energy to the free energy on the other hand, depends upon the configuration of all the particles and becomes highly non-trivial due to the long-range character of the Coulomb force and the extremely different length scales involved in the problem. Using the microscopic model described above, we focus on the calculation of equilibrium thermodynamic properties (response functions), correlations (structure factors), and mechanical properties (forces and stresses), which can be measured in experiments and computed by Monte Carlo simulations. This thesis is divided into three parts. In part I, comprising chapters 2 and 3, we focus on finite-thickness effects in colloidal platelets and rigid planar membranes. In chapter 2 we study electrolyte-mediated interactions between two of such colloidal objects. Several aspects of these interactions are considered including the nature (attractive or repulsive) of the force between the objects, the osmotic properties for different types of surfaces and image charge effects. In part II, which includes

  18. Colloids and polymers in random colloidal matrices: demixing under good-solvent conditions.

    PubMed

    Annunziata, Mario Alberto; Pelissetto, Andrea

    2012-10-01

    We consider a simplified coarse-grained model for colloid-polymer mixtures, in which polymers are represented as monoatomic molecules interacting by means of pair potentials. We use it to study polymer-colloid segregation in the presence of a quenched matrix of colloidal hard spheres. We fix the polymer-to-colloid size ratio to 0.8 and consider matrices such that the fraction f of the volume that is not accessible to the colloids due to the matrix is equal to 40%. As in the Asakura-Oosawa-Vrij (AOV) case, we find that binodal curves in the polymer and colloid volume-fraction plane have a small dependence on disorder. As for the position of the critical point, the behavior differs from that observed in the AOV case: While the critical colloid volume fraction is essentially the same in the bulk and in the presence of the matrix, the polymer volume fraction at criticality increases as f increases. At variance with the AOV case, no capillary colloid condensation or evaporation is generically observed.

  19. Colloidal Gelation-2 and Colloidal Disorder-Order Transition-2 Investigations Conducted on STS-95

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica T.

    2000-01-01

    The Colloidal Gelation-2 (CGEL 2) and Colloidal Disorder-Order Transition-2 (CDOT 2) investigations flew on Space Shuttle Discovery mission STS-95 (also known as the John Glenn Mission). These investigations were part of a series of colloid experiments designed to help scientists answer fundamental science questions and reduce the trial and error involved in developing new and better materials. Industries dealing with semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. The goal of the CGEL 2 investigation was to study the fundamental properties of colloids to help scientists better understand their nature and make them more useful for technology. Colloids consist of very small (submicron) particles suspended in a fluid. They play a critical role in the technology of this country, finding uses in materials ranging from paints and coatings to drugs, cosmetics, food, and drink. Although these products are routinely produced and used, there are still many aspects of their behavior about which scientists know little. Understanding their structures may allow scientists to manipulate the physical properties of colloids (a process called "colloidal engineering") to produce new materials and products. Colloid research may even improve the processing of known products to enhance their desirable properties.

  20. Structural properties of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Méndez-Alcaraz, J. M.; Chávez-Páez, M.; D'Aguanno, B.; Klein, R.

    1995-02-01

    Structural properties of three- and two-dimensional colloids composed by hard spheres and/or by Yukawa particles, which can have different diameters and charges, are studied by solving the Ornstein-Zernike equation, together with Percus-Yevick, hypernetted chain and Rogers-Young approximations. From the partial radial distribution functions gij( r) the partial structure factors Sij( k) are determined, and with them the compressibility structure factor Sx( k), the measured structure factor SM( k) and the Bhatia-Thornton structure factors SNN( k), SNQ( k) and SQQ( k). As an effect of diameter and/or charge polydispersity on the structure of binary mixtures, the position and height of the main peak of SM( k), and its value at k = 0, change non-monotonously with the composition. In the case of binary mixtures of hard and Yukawa spheres the structure is given by two different scales. A liquid-solid phase transition induced by a change in the dimensionality was found for monodisperse systems.

  1. Dynamic of Faceted Colloidal Clusters

    NASA Astrophysics Data System (ADS)

    Sindoro, Melinda; Jee, Ah-Young; Yu, Changqian; Granick, Steve

    2014-03-01

    We study the emulsion induced clustering of faceted metal organic frameworks (MOFs) and their dynamics. Our approach to anisotropic building block is through the rational synthesis of water stable and highly uniform MOFs. This generates colloidal-sized MOFs of defined polyhedral shape with tunable size in micrometer range that are suitable for in situ imaging. The 3D clusters formations are promoted by hydrophilic MOFs particles confined in aqueous droplets of binary water-lutidine mixture at transition temperature. Below this temperature, the water droplet decreases in volume due to one phase mixing with lutidine which forces the N-mers of faceted particles to aggregate in close contact. We compare the faceted clusters formed to those made of spherical particles in term of the building block sphericity. Other focus of our study involves the dynamic of the clusters. We found that, unlike spherical clusters, these faceted N-mers are highly stable on large scale of temperature due to their dominant capillary force on their facet-to-facet contact.

  2. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Baumann, Thomas

    2014-05-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau. Samples were collected after each tributary from a sub-catchment and filtered on-site. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analyses provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of indvidual particles. Particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition.

  3. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids

    NASA Astrophysics Data System (ADS)

    Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.

    2012-02-01

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  4. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    NASA Astrophysics Data System (ADS)

    Choi, Young Joon; Djilali, Ned

    2016-01-01

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.

  5. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids.

    PubMed

    Simovic, Spomenka; Barnes, Timothy J; Tan, Angel; Prestidge, Clive A

    2012-02-21

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  6. Stabilization of plutonium nano-colloids by epitaxial distortion on mineral surfaces.

    PubMed

    Powell, Brian A; Dai, Zurong; Zavarin, Mavrik; Zhao, Pihong; Kersting, Annie B

    2011-04-01

    The subsurface migration of Pu may be enhanced by the presence of colloidal forms of Pu. Therefore, complete evaluation of the risk posed by subsurface Pu contamination needs to include a detailed physical/chemical understanding of Pu colloid formation and interactions of Pu colloids with environmentally relevant solid phases. Transmission electron microscopy (TEM) was used to characterize Pu nanocolloids and interactions of Pu nanocolloids with goethite and quartz. We report that intrinsic Pu nanocolloids generated in the absence of goethite or quartz were 2-5 nm in diameter, and both electron diffraction analysis and HRTEM confirm the expected Fm3m space group with the fcc, PuO2 structure. Plutonium nanocolloids formed on goethite have undergone a lattice distortion relative to the ideal fluorite-type structure, fcc, PuO2, resulting in the formation of a bcc, Pu4O7 structure. This structural distortion results from an epitaxial growth of the plutonium colloid on goethite, leading to stronger binding of plutonium to goethite compared with other minerals such as quartz, where the distortion was not observed. This finding provides new insight for understanding how molecular-scale behavior at the mineral-water interface may facilitate transport of plutonium at the field scale.

  7. Interface deformations affect the orientation transition of magnetic ellipsoidal particles adsorbed at fluid-fluid interfaces.

    PubMed

    Davies, Gary B; Krüger, Timm; Coveney, Peter V; Harting, Jens; Bresme, Fernando

    2014-09-21

    Manufacturing new soft materials with specific optical, mechanical and magnetic properties is a significant challenge. Assembling and manipulating colloidal particles at fluid interfaces is a promising way to make such materials. We use lattice-Boltzmann simulations to investigate the response of magnetic ellipsoidal particles adsorbed at liquid-liquid interfaces to external magnetic fields. We provide further evidence for the first-order orientation phase transition predicted by Bresme and Faraudo [Journal of Physics: Condensed Matter, 2007, 19, 375110]. We show that capillary interface deformations around the ellipsoidal particle significantly affect the tilt-angle of the particle for a given dipole-field strength, altering the properties of the orientation transition. We propose scaling laws governing this transition, and suggest how to use these deformations to facilitate particle assembly at fluid-fluid interfaces. PMID:25069609

  8. Interface deformations affect the orientation transition of magnetic ellipsoidal particles adsorbed at fluid-fluid interfaces.

    PubMed

    Davies, Gary B; Krüger, Timm; Coveney, Peter V; Harting, Jens; Bresme, Fernando

    2014-09-21

    Manufacturing new soft materials with specific optical, mechanical and magnetic properties is a significant challenge. Assembling and manipulating colloidal particles at fluid interfaces is a promising way to make such materials. We use lattice-Boltzmann simulations to investigate the response of magnetic ellipsoidal particles adsorbed at liquid-liquid interfaces to external magnetic fields. We provide further evidence for the first-order orientation phase transition predicted by Bresme and Faraudo [Journal of Physics: Condensed Matter, 2007, 19, 375110]. We show that capillary interface deformations around the ellipsoidal particle significantly affect the tilt-angle of the particle for a given dipole-field strength, altering the properties of the orientation transition. We propose scaling laws governing this transition, and suggest how to use these deformations to facilitate particle assembly at fluid-fluid interfaces.

  9. Diffuse interface field approach to modeling arbitrarily-shaped particles at fluid-fluid interfaces

    SciTech Connect

    Paul C. Millett; Yu. U. Wang

    2011-01-01

    We present a novel mesoscale simulation approach to modeling the evolution of solid particles segregated at fluid-fluid interfaces. The approach involves a diffuse- interface field description of each fluid phase in addition to the set of solid particles. The unique strength of the model is its generality to include particles of arbitrary shapes and orientations, as well as the ability to incorporate electrostatic particle interactions and external forces via a previous work [Millett PC, Wang YU, Acta Mater 2009;57:3101]. In this work, we verify that the model produces the correct capillary forces and contact angles by comparing with a well-defined analytical solution. In addition, simulation results of rotations of various-shaped particles at fluid-fluid interfaces, external force- induced capillary attraction/repulsion between particles, and spinodal decomposition arrest due to colloidal particle jamming at the interfaces are presented.

  10. Seismic stress mobilization of natural colloids in a porous rock

    SciTech Connect

    Roberts, Peter M; Abdel-fattah, Amr I

    2008-01-01

    Stress oscillations at 26 Hz enhanced the release of natural micro-particles (colloids) in a porous rock sample. Micron-scale effects were induced by meter-scale wavelengths. The results are attributed to altering the release rate coefficient for colloids trapped in pores. The rate change did not depend on colloid size and thus is not due to altering colloid-pore-wall interactions. Enhanced colloid detachment from pore walls and flushing from dead-end pores are likely mechanisms. This phenomenon could impact a broad range of physical sciences involving colloid dynamics and porous transport.

  11. Liquid crystals and their interactions with colloidal particles and phospholipid membranes: Molecular simulation studies

    NASA Astrophysics Data System (ADS)

    Kim, Evelina B.

    Experimentally, liquid crystals (LC) can be used as the basis for optical biomolecular sensors that rely on LC ordering. Recently, the use of LC as a reporting medium has been extended to investigations of molecular scale processes at lipid laden aqueous-LC interfaces and at biological cell membranes. In this thesis, we present two related studies where liquid crystals are modelled at different length scales. We examine (a) the behavior of nanoscopic colloidal particles in LC systems, using Monte Carlo (MC) molecular simulations and a mesoscopic dynamic field theory (DyFT); and (b) specific interactions of two types of mesogens with a model phospholipid bilayer, using atomistic molecular dynamics (MD) at the A-nm scale. In (a), we consider colloidal particles suspended in a LC, confined between two walls. We calculate the colloid-substrate and colloid-colloid potentials of mean force (PMF). For the MC simulations, we developed a new technique (ExEDOS or Expanded Ensemble Density Of States) that ensures good sampling of phase space without prior knowledge of the energy landscape of the system. Both results, simulation and DyFT, indicate a repulsive force acting between a colloid and a wall. In contrast, both techniques indicate an overall colloid-colloid attraction and predict a new topology of the disclination lines that arises when the particles approach each other. In (b), we find that mesogens (pentylcyanobiphenyl [5CB] or difluorophenyl-pentylbicyclohexyl [5CF]) preferentially partition from the aqueous phase into a dipalmitoylphosphatidylcholine (DPPC) bilayer. We find highly favorable free energy differences for partitioning (-18kBT for 5CB, -26k BT for 5CF). We also simulated fully hydrated bilayers with embedded 5CB or 5CF at concentrations used in recent experiments (6 mol% and 20 mol%). The presence of mesogens in the bilayer enhances the order of lipid acyl tails and changes the spatial and orientational arrangement of lipid headgroup atoms. A stronger

  12. Ceramic Interfaces

    SciTech Connect

    Yet-Ming Chiang

    2004-10-28

    During the period of this grant, we significantly advanced the understanding of stable surface amorphous films (SAFs), the existence of which was first postulated and then demonstrated under this program. SAFs are nanometer-thick amorphous films which are characterized by a self-selecting thickness, and a composition and structure distinct from the bulk phases with which they coexist. Importantly, they are present as an equilibrium, disordered phase below bulk solidus temperatures where all other phases in the system are crystalline. They are true surface phases which coexist in thermodynamic equilibrium with the bulk phases. We have shown that SAFs form in a number of binary oxide systems, and that they play an important role in the processing of materials (e.g., solid-state activated sintering in ZnO-Bi2O3) and in forming surface-active layers in supported catalyst systems. These experimental results as well as a theoretical model for the stability of SAFs have now been published. We believe that SAFs can be controlled and manipulated in a wide range of systems, with potential applications in nanotechnology, MEMS, microelectronics, adhesion, and colloidal crystals.

  13. Saturated Zone Colloid-Facilitated Transport

    SciTech Connect

    A. Wolfsberg; P. Reimus

    2001-12-18

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS M&O 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  14. Soft Interfaces

    NASA Astrophysics Data System (ADS)

    Gilles de Gennes, Pierre; Edwards, Introduction By Sam

    1997-04-01

    Paul Adrien Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. Dirac's college, St. John's of Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This volume contains a much expanded version of the 1994 Dirac Lecture by Nobel Laureate Pierre Gilles de Gennes. The book presents an impressionistic tour of the physics of soft interfaces. Full of insight and interesting asides, it not only provides an accessible introduction to this topic, but also lays down many markers and signposts that will be of interest to researchers in physics or chemistry. Features discussions of wetting and dewetting, the dynamics of different types of interface and adhesion and polymer/polymer welding.

  15. Method for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    1999-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  16. Apparatus for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    2000-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  17. Diffusing colloidal probes of cell surfaces.

    PubMed

    Duncan, Gregg A; Fairbrother, D Howard; Bevan, Michael A

    2016-05-25

    Measurements and analyses are reported to quantify dynamic and equilibrium interactions between colloidal particles and live cell surfaces using dark field video microscopy. Two-dimensional trajectories of micron-sized polyethylene glycol (PEG)-coated silica colloids relative to adherent epithelial breast cancer cell perimeters are determined allowing measurement of position dependent diffusivities and interaction potentials. PEG was chosen as the material system of interest to assess non-specific interactions with cell surfaces and establishes a basis for investigation of specific interactions in future studies. Analysis of measured potential energies on cell surfaces reveals the spatial dependence in cell topography. With the measured cell topography and models for particle-cell surface hydrodynamic interactions, excellent agreement is obtained between theoretical and measured colloidal transport on cell surfaces. Quantitative analyses of association lifetimes showed that PEG coatings act to stabilize colloids above the cell surface through net repulsive, steric interactions. Our results demonstrate a self-consistent analysis of diffusing colloidal probe interactions due to conservative and non-conservative forces to characterize biophysical cell surface properties. PMID:27117575

  18. Interparticle interactions and polarization effects in colloids

    SciTech Connect

    Hayter, J.B.

    1987-01-01

    The physics of simple colloidal systems is usually dominated by three independent length scales: the particle size, the average interparticle distance, and the range of the interparticle potential. The dispersed particles typically have characteristic dimensions in the range 5 to 100 nm, often with spherical or cylindrical symmetry. Dispersion densities vary over volume fractions ranging from 0.5 to 10/sup -4/, with the corresponding mean interparticle distances ranging from about 1 to 10 diameters (in spherical systems). The interaction potential may be very short ranged (hard sphere), very long ranged (Coulomb or dipolar), or anywhere in between (screened Coulomb), and the correlations exhibited in the dispersion may be gas-like, liquid-like or crystalline, depending on the range of the potential relative to the interparticle distance. This rich phase behavior is responsible for the remarkable importance of colloidal studies in many areas of condensed matter physics and biophysics, but it poses often intractable problems in developing the statistical mechanical descriptions necessary for an understanding of scattering data from colloids. This paper will review the considerable recent progress in this field, in the context of SANS experiments on colloids in which the potentials are dominated by either screened Coulomb or magnetic dipolar interactions; in the case of magnetic colloids (ferrofluids), the use of polarization analysis will also be discussed. 32 refs., 4 figs.

  19. Diffusing colloidal probes of cell surfaces.

    PubMed

    Duncan, Gregg A; Fairbrother, D Howard; Bevan, Michael A

    2016-05-25

    Measurements and analyses are reported to quantify dynamic and equilibrium interactions between colloidal particles and live cell surfaces using dark field video microscopy. Two-dimensional trajectories of micron-sized polyethylene glycol (PEG)-coated silica colloids relative to adherent epithelial breast cancer cell perimeters are determined allowing measurement of position dependent diffusivities and interaction potentials. PEG was chosen as the material system of interest to assess non-specific interactions with cell surfaces and establishes a basis for investigation of specific interactions in future studies. Analysis of measured potential energies on cell surfaces reveals the spatial dependence in cell topography. With the measured cell topography and models for particle-cell surface hydrodynamic interactions, excellent agreement is obtained between theoretical and measured colloidal transport on cell surfaces. Quantitative analyses of association lifetimes showed that PEG coatings act to stabilize colloids above the cell surface through net repulsive, steric interactions. Our results demonstrate a self-consistent analysis of diffusing colloidal probe interactions due to conservative and non-conservative forces to characterize biophysical cell surface properties.

  20. Quasicrystalline tilings with nematic colloidal platelets

    PubMed Central

    Dontabhaktuni, Jayasri; Ravnik, Miha; Žumer, Slobodan

    2014-01-01

    Complex nematic fluids have the remarkable capability for self-assembling regular colloidal structures of various symmetries and dimensionality according to their micromolecular orientational order. Colloidal chains, clusters, and crystals were demonstrated recently, exhibiting soft-matter functionalities of robust binding, spontaneous chiral symmetry breaking, entanglement, shape-driven and topological driven assembly, and even memory imprinting. However, no quasicrystalline structures were found. Here, we show with numerical modeling that quasicrystalline colloidal lattices can be achieved in the form of original Penrose P1 tiling by using pentagonal colloidal platelets in layers of nematic liquid crystals. The tilings are energetically stabilized with binding energies up to 2500 kBT for micrometer-sized platelets and further allow for hierarchical substitution tiling, i.e., hierarchical pentagulation. Quasicrystalline structures are constructed bottom-up by assembling the boat, rhombus, and star maximum density clusters, thus avoiding other (nonquasicrystalline) stable or metastable configurations of platelets. Central to our design of the quasicrystalline tilings is the symmetry breaking imposed by the platelet shape and the surface anchoring conditions at the colloidal platelets, which are misaligning and asymmetric over two perpendicular mirror planes. Finally, the design of the quasicrystalline tilings as platelets in nematic liquid crystals is inherently capable of a continuous variety of length scales of the tiling, ranging over three orders of magnitude in the typical length (from to ), which could allow for the design of quasicrystalline photonics at multiple frequency ranges. PMID:24550269

  1. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland [Phys. FluidsPHFLE61070-663110.1063/1.3584815 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  2. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    PubMed

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  3. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model

    PubMed Central

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2013-01-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  4. Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks.

    PubMed

    Tran, Emily; Klein Ben-David, Ofra; Teutch, Nadya; Weisbrod, Noam

    2016-09-01

    Colloid facilitated transport of radionuclides has been implicated as a major transport vector for leaked nuclear waste in the subsurface. Sorption of radionuclides onto mobile carrier colloids such as bentonite and humic acid often accelerates their transport through saturated rock fractures. Here, we employ column studies to investigate the impact of intrinsic, bentonite and humic acid colloids on the transport and recovery of Ce(III) through a fractured chalk core. Ce(III) recovery where either bentonite or humic colloids were added was 7.7-26.9% Ce for all experiments. Greater Ce(III) recovery was observed when both types of carrier colloids were present (25.4-37.4%). When only bentonite colloids were present, Ce(III) appeared to be fractionated between chemical sorption to the bentonite colloid surfaces and heteroaggregation of bentonite colloids with intrinsic carbonate colloids, precipitated naturally in solution. However, scanning electron microscope (SEM) images and colloid stability experiments reveal that in suspensions of humic acid colloids, colloid-facilitated Ce(III) migration results only from the latter attachment mechanism rather than from chemical sorption. This observed heteroaggregation of different colloid types may be an important factor to consider when predicting potential mobility of leaked radionuclides from geological repositories for spent fuel located in carbonate rocks.

  5. Technetium-99m antimony colloid for bone-marrow imaging

    SciTech Connect

    Martindale, A.A.; Papadimitriou, J.M.; Turner, J.H.

    1980-11-01

    Technetium-99m antimony colloid was prepared in our laboratory for bone-marrow imaging. Optimal production of colloid particles of size range 1 to 13 nm was achieved by the use of polyvinylpyrrolidone of mol. wt. 44,000. Electron microscopy was used to size the particles. Studies in rabbits showed exclusive concentration in the subendothelial dendritic phagocytes of the bone marrow. Pseudopods from these cells were found to traverse interendothelial junctions and concentrate colloid from the sinusoids. Imaging studies of bone marrow in rabbits showed the superiority of the Tc-99m antimony colloid over the much larger colloidal particle of Tc-99m sulfur colloid. Tissue distribution studies in the rat confirmed that bone-marrow uptake of Tc-99m antimony colloid was greater than that of Tc-99m sulfur colloid, although blood clearance was much slower.

  6. Shape-shifting colloids via stimulated dewetting

    PubMed Central

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-01-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418

  7. Shape-shifting colloids via stimulated dewetting

    NASA Astrophysics Data System (ADS)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  8. Fluorescence Enhancements on Silver Colloid Coated Surfaces

    PubMed Central

    Lukomska, Joanna; Malicka, Joanna; Gryczynski, Ignacy; Lakowicz, Joseph R.

    2009-01-01

    We observed a strong, more than 16-fold, enhancement of Texas Red-labeled BSA fluorescence emission when deposited on silver colloid coated surfaces (SCCS). The same labeled protein deposited on silver island films (SIFs) showed an approximate 8-fold fluorescence enhancement. The lifetimes of Texas Red-BSA fluorescence are significantly shorter on silvered surfaces than on uncoated quartz substrate indicating a strong change in radiative decay rate of the dyes. We also observed a 36-fold increased brightness of overlabeled fluorescein-HSA deposited on silver colloid coated surface. Stronger enhancement observed for overlabeled Fl-HSA protein indicates that presence of silver particles partially decreased self-quenching. Our results indicate that surfaces coated with silver colloids are valuable substrates for metal-enhanced fluorescence. PMID:15617384

  9. Convection of a stratified colloidal suspension

    SciTech Connect

    Cherepanov, I. N.; Smorodin, B. L.

    2013-11-15

    The convection of a colloidal suspension, which is a binary mixture of a carrier medium with an admixture of nanoparticles having a large positive thermal diffusion parameter, has been studied for the case of the heating of a horizontal cell from below and periodic conditions at the vertical boundaries corresponding to the experimental situation of ring channels. Bifurcation diagrams have been constructed for vibrational and monotonic regimes of the convection of the colloidal mixture. The time dependences of the maximum stream function and the stream function at a fixed point of the cell, as well as the spatial distributions of the concentration field of the colloid admixture, have been obtained. It has been shown that a stable regime of traveling waves exists in a certain region of the parameters of the problem (Boltzmann and Rayleigh numbers characterizing the gravitational stratification and intensity of the thermal effect, respectively)

  10. Colloidal Disorder-Order Transition (CDOT-2)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is an image of a colloidal crystal from the CDOT-2 investigation flown on STS-95. There are so many colloidal particles in this sample that it behaves like a glass. In the laboratory on Earth, the sample remained in an amorphous state, showing no sign of crystal growth. In microgravity the sample crystallized in 3 days, as did the other glassy colloidal samples examined in the CDOT-2 experiment. During the investigation, crystallization occurred in samples that had a volume fraction (number of particles per total volume) larger than the formerly reported glass transition of 0.58. This has great implications for theories of the structural glass transition. These crystals were strong enough to survive space shuttle re-entry and landing.

  11. Dynamic Assembly of Magnetic Colloidal Vortices.

    PubMed

    Mohorič, Tomaž; Kokot, Gašper; Osterman, Natan; Snezhko, Alexey; Vilfan, Andrej; Babič, Dušan; Dobnikar, Jure

    2016-05-24

    Magnetic colloids in external time-dependent fields are subject to complex induced many-body interactions governing their self-assembly into a variety of equilibrium and out-of-equilibrium structures such as chains, networks, suspended membranes, and colloidal foams. Here, we report experiments, simulations, and theory probing the dynamic assembly of superparamagnetic colloids in precessing external magnetic fields. Within a range of field frequencies, we observe dynamic large-scale structures such as ordered phases composed of precessing chains, ribbons, and rotating fluidic vortices. We show that the structure formation is inherently coupled to the buildup of torque, which originates from internal relaxation of induced dipoles and from transient correlations among the particles as a result of short-lived chain formation. We discuss in detail the physical properties of the vortex phase and demonstrate its potential in particle-coating applications. PMID:27128501

  12. Two-dimensional colloidal alloys.

    PubMed

    Law, Adam D; Buzza, D Martin A; Horozov, Tommy S

    2011-03-25

    We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations. PMID:21517357

  13. Two-Dimensional Colloidal Alloys

    NASA Astrophysics Data System (ADS)

    Law, Adam D.; Buzza, D. Martin A.; Horozov, Tommy S.

    2011-03-01

    We study the structure of mixed monolayers of large (3μm diameter) and small (1μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.

  14. Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification.

    PubMed

    Baglioni, Piero; Chelazzi, David; Giorgi, Rodorico; Poggi, Giovanna

    2013-04-30

    Serendipity and experiment have been a frequent approach for the development of materials and methodologies used for a long time for either cleaning or consolidation of works of art. Recently, new perspectives have been opened by the application of materials science, colloid science, and interface science frameworks to conservation, generating a breakthrough in the development of innovative tools for the conservation and preservation of cultural heritage. This Article is an overview of the most recent contributions of colloid and materials science to the art conservation field, mainly focusing on the use of amphiphile-based fluids, gels, and alkaline earth metal hydroxide nanoparticles dispersions for the cleaning of pictorial surfaces, the consolidation of artistic substrates, and the deacidification of paper, canvas, and wood. Future possible directions for solving several conservation issues that still need to be faced are also highlighted.

  15. Disorder limited exciton transport in colloidal single-wall carbon nanotubes.

    PubMed

    Crochet, Jared J; Duque, Juan G; Werner, James H; Lounis, Brahim; Cognet, Laurent; Doorn, Stephen K

    2012-10-10

    We present measurements of S(1) exciton transport in (6,5) carbon nanotubes at room temperature in a colloidal environment. Exciton diffusion lengths associated with end quenching paired with photoluminescence lifetimes provide a direct basis for determining a median diffusion constant of approximately 7.5 cm(2)s(-1). Our experimental results are compared to model diffusion constants calculated using a realistic exciton dispersion accounting for a logarithmic correction due to the exchange self-energy and a nonequilibrium distribution between bright and dark excitons. The intrinsic diffusion constant associated with acoustic phonon scattering is too large to explain the observed diffusion length, and as such, we attribute the observed transport to disorder-limited diffusional transport associated with the dynamics of the colloidal interface. In this model an effective surface potential limits the exciton mean free path to the same size as that of the exciton wave function, defined by the strength of the electron-hole Coulomb interaction.

  16. Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification.

    PubMed

    Baglioni, Piero; Chelazzi, David; Giorgi, Rodorico; Poggi, Giovanna

    2013-04-30

    Serendipity and experiment have been a frequent approach for the development of materials and methodologies used for a long time for either cleaning or consolidation of works of art. Recently, new perspectives have been opened by the application of materials science, colloid science, and interface science frameworks to conservation, generating a breakthrough in the development of innovative tools for the conservation and preservation of cultural heritage. This Article is an overview of the most recent contributions of colloid and materials science to the art conservation field, mainly focusing on the use of amphiphile-based fluids, gels, and alkaline earth metal hydroxide nanoparticles dispersions for the cleaning of pictorial surfaces, the consolidation of artistic substrates, and the deacidification of paper, canvas, and wood. Future possible directions for solving several conservation issues that still need to be faced are also highlighted. PMID:23432390

  17. Controlling the geometry (Janus balance) of amphiphilic colloidal particles.

    PubMed

    Jiang, Shan; Granick, Steve

    2008-03-18

    A simple, generalizable method is described to produce Janus colloidal particles in large quantity with control over their respective hydrophobic and hydrophilic areas (Janus balance) in large quantity. To this end, charged particles adsorb onto the liquid-liquid interface of emulsions of molten wax and water in the presence of surfactants of opposite charge, whose concentration modifies how deeply particles penetrate the oil-water interface, and subsequent surface chemical modification of the resulting colloidosomes is performed after lowering temperature to solidify the wax. Silica particles modified in this way using different amounts of didodecyldimethylammonium bromide (DDAB) display contact angles that vary controllably between 37 degrees and 75 degrees. Janus balance also varies but over a more limited range with control of pH, salt concentration, or the presence of nonionic surfactant (Tween 20 or ethanol). Purity, Janus balance, and colloidosome structure are evaluated by a combination of fluorescence microscopy, flow cytometry, and scanning electron microscopy (SEM). The three-phase contact angle is obtained by observing SEM images of voids left by particles escaped from the surface. Colloidosomes made in the presence of DDAB are markedly improved with respect to the hexagonal close packing, which helps increase the efficiency of the method. Gram-sized quantities of particles are synthesized. PMID:18237219

  18. Controlling the geometry (Janus balance) of amphiphilic colloidal particles.

    PubMed

    Jiang, Shan; Granick, Steve

    2008-03-18

    A simple, generalizable method is described to produce Janus colloidal particles in large quantity with control over their respective hydrophobic and hydrophilic areas (Janus balance) in large quantity. To this end, charged particles adsorb onto the liquid-liquid interface of emulsions of molten wax and water in the presence of surfactants of opposite charge, whose concentration modifies how deeply particles penetrate the oil-water interface, and subsequent surface chemical modification of the resulting colloidosomes is performed after lowering temperature to solidify the wax. Silica particles modified in this way using different amounts of didodecyldimethylammonium bromide (DDAB) display contact angles that vary controllably between 37 degrees and 75 degrees. Janus balance also varies but over a more limited range with control of pH, salt concentration, or the presence of nonionic surfactant (Tween 20 or ethanol). Purity, Janus balance, and colloidosome structure are evaluated by a combination of fluorescence microscopy, flow cytometry, and scanning electron microscopy (SEM). The three-phase contact angle is obtained by observing SEM images of voids left by particles escaped from the surface. Colloidosomes made in the presence of DDAB are markedly improved with respect to the hexagonal close packing, which helps increase the efficiency of the method. Gram-sized quantities of particles are synthesized.

  19. The role of colloidal plasmonic nanostructures in organic solar cells.

    PubMed

    Singh, C R; Honold, T; Gujar, T P; Retsch, M; Fery, A; Karg, M; Thelakkat, M

    2016-08-17

    Plasmonic particles can contribute via multiple processes to the light absorption process in solar cells. These particles are commonly introduced into organic solar cells via deposition techniques such as spin-coating or dip-coating. However, such techniques are inherently challenging to achieve homogenous surface coatings as they lack control of inter-particle spacing and particle density on larger areas. Here we introduce interface assisted colloidal self-assembly as a concept for the fabrication of well-defined macroscopic 2-dimensional monolayers of hydrogel encapsulated plasmonic gold nanoparticles. The monolayers showed a pronounced extinction in the visible wavelength range due to localized surface plasmon resonance with excellent optical homogeneity. Moreover this strategy allowed for the investigation of the potential of plasmonic monolayers at different interfaces of P3HT:PCBM based inverted organic solar cells. In general, for monolayers located anywhere underneath the active layer, the solar cell performance decreased due to parasitic absorption. However with thick active layers, where low hole mobility limited the charge transport to the top electrode, the plasmonic monolayer near that electrode spatially redistributed the light and charge generation close to the electrode led to an improved performance. This work systematically highlights the trade-offs that need to be critically considered for designing an efficient plasmonically enhanced organic solar cell.

  20. Dynamic Light Scattering From Colloidal Gels

    NASA Technical Reports Server (NTRS)

    Krall, A. H.; Weitz, David A.

    1996-01-01

    We present a brief, preliminary account of the interpretation of dynamic light scattering from fractal colloidal gels. For small scattering angles, and for high initial colloid particle volume fractions, the correlation functions exhibit arrested decay, reflecting the non-ergodic nature of these systems and allowing us to directly determine the elastic modulus of the gels. For smaller initial volume fractions, the correlation functions decay completely. In all cases, the initial decay is not exponential, but is instead described by a stretched exponential. We summarize the principles of a model that accounts for these data and discuss the scaling behavior of the measured parameters.

  1. Fabrication of anisotropic multifunctional colloidal carriers

    NASA Astrophysics Data System (ADS)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  2. Binary Colloidal Alloy Test-5: Phase Separation

    NASA Technical Reports Server (NTRS)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  3. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.

    1995-01-01

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

  4. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

    1995-11-21

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

  5. Dynamics of Colloidal Disorder-Order Transition

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Experiments with colloidal solutions of plastic microspheres suspended in a liquid serve as models of how molecules interact and form crystals. For the Dynamics of Colloidal Disorder-Order Transition (CDOT) experiment, Paul Chaikin of Princeton University has identified effects that are attributable to Earth's gravity and demonstrated that experiments are needed in the microgravity of orbit. Space experiments have produced unexpected dendritic (snowflake-like) structures. To date, the largest hard sphere crystal grown is a 3 mm single crystal grown at the cool end of a ground sample. At least two more additional flight experiments are plarned aboard the International Space Station. This image is from a video downlink.

  6. Pair Potential of Charged Colloidal Stars

    NASA Astrophysics Data System (ADS)

    Huang, F.; Addas, K.; Ward, A.; Flynn, N. T.; Velasco, E.; Hagan, M. F.; Dogic, Z.; Fraden, S.

    2009-03-01

    We report on the construction of colloidal stars: 1μm polystyrene beads grafted with a dense brush of 1μm long and 10 nm wide charged semiflexible filamentous viruses. The pair interaction potentials of colloidal stars are measured using an experimental implementation of umbrella sampling, a technique originally developed in computer simulations in order to probe rare events. The influence of ionic strength and grafting density on the interaction is measured. Good agreements are found between the measured interactions and theoretical predictions based upon the osmotic pressure of counterions.

  7. Gelatin colloids in the resuscitation of trauma.

    PubMed

    Whitfield, C

    2006-12-01

    To date, the specific role of gelatins in trauma resuscitation remains under-investigated. Their adverse affects are well described and relate principally to the provocation of allergic responses whilst their influence upon haemostasis is relatively benign in comparison to the other colloids. However, their benefits are only sparsely documented and the evidence to choose one gelatin over another virtually non-existent. As knowledge of the microcirculatory dysfunction inherent in the shocked state increases, the role of the gelatins in trauma resuscitation is being increasing sidelined by other colloids--notably the starches. Their role beyond a basic resuscitation tool is now uncertain.

  8. Hydrogel-colloid interfacial interactions: a study of tailored adhesion using optical tweezers.

    PubMed

    Sheikhi, Amir; Hill, Reghan J

    2016-08-21

    Dynamics of colloidal particles adhering to soft, deformable substrates, such as tissues, biofilms, and hydrogels play a key role in many biological and biomimetic processes. These processes, including, but not limited to colloid-based delivery, stitching, and sorting, involve microspheres exploring the vicinity of soft, sticky materials in which the colloidal dynamics are affected by the fluid environment (e.g., viscous coupling), inter-molecular interactions between the colloids and substrates (e.g., Derjaguin-Landau-Verwey-Overbeek (DLVO) theory), and the viscoelastic properties of contact region. To better understand colloidal dynamics at soft interfaces, an optical tweezers back-focal-plane interferometry apparatus was developed to register the transverse Brownian motion of a silica microsphere in the vicinity of polyacrylamide (PA) hydrogel films. The time-dependent mean-squared displacements are well described by a single exponential relaxation, furnishing measures of the transverse interfacial diffusion coefficient and binding stiffness. Substrates with different elasticities were prepared by changing the PA crosslinking density, and the inter-molecular interactions were adjusted by coating the microspheres with fluid membranes. Stiffer PA hydrogels (with bulk Young's moduli ≈1-10 kPa) immobilize the microspheres more firmly (lower diffusion coefficient and position variance), and coating the particles with zwitterionic lipid bilayers (DOPC) completely eliminates adhesion, possibly by repulsive dispersion forces. Remarkably, embedding polyethylene glycol-grafted lipid bilayers (DSPE-PEG2k-Amine) in the zwitterionic fluid membranes produces stronger adhesion, possibly because of polymer-hydrogel attraction and entanglement. This study provides new insights to guide the design of nanoparticles and substrates with tunable adhesion, leading to smarter delivery, sorting, and screening of micro- and nano-systems. PMID:27425660

  9. Hydrogel-colloid interfacial interactions: a study of tailored adhesion using optical tweezers.

    PubMed

    Sheikhi, Amir; Hill, Reghan J

    2016-08-21

    Dynamics of colloidal particles adhering to soft, deformable substrates, such as tissues, biofilms, and hydrogels play a key role in many biological and biomimetic processes. These processes, including, but not limited to colloid-based delivery, stitching, and sorting, involve microspheres exploring the vicinity of soft, sticky materials in which the colloidal dynamics are affected by the fluid environment (e.g., viscous coupling), inter-molecular interactions between the colloids and substrates (e.g., Derjaguin-Landau-Verwey-Overbeek (DLVO) theory), and the viscoelastic properties of contact region. To better understand colloidal dynamics at soft interfaces, an optical tweezers back-focal-plane interferometry apparatus was developed to register the transverse Brownian motion of a silica microsphere in the vicinity of polyacrylamide (PA) hydrogel films. The time-dependent mean-squared displacements are well described by a single exponential relaxation, furnishing measures of the transverse interfacial diffusion coefficient and binding stiffness. Substrates with different elasticities were prepared by changing the PA crosslinking density, and the inter-molecular interactions were adjusted by coating the microspheres with fluid membranes. Stiffer PA hydrogels (with bulk Young's moduli ≈1-10 kPa) immobilize the microspheres more firmly (lower diffusion coefficient and position variance), and coating the particles with zwitterionic lipid bilayers (DOPC) completely eliminates adhesion, possibly by repulsive dispersion forces. Remarkably, embedding polyethylene glycol-grafted lipid bilayers (DSPE-PEG2k-Amine) in the zwitterionic fluid membranes produces stronger adhesion, possibly because of polymer-hydrogel attraction and entanglement. This study provides new insights to guide the design of nanoparticles and substrates with tunable adhesion, leading to smarter delivery, sorting, and screening of micro- and nano-systems.

  10. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau from 2008 to 2014. Samples were collected after each tributary from a sub-catchment and filtered on site using a new filtration device for gentle filtration. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analysis provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of individual particles. As presented at EGU 2014, particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition. This general setting was validated in last year's sampling campaigns. An interesting change in on site parameters and hydrochemical composition was seen during all sampling campaigns at an inflow from the valley Kaunertal, Austria. Therefore

  11. Gallium Adhesion: Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion (Adv. Mater. 25/2016).

    PubMed

    Ye, Zhou; Lum, Guo Zhan; Song, Sukho; Rich, Steven; Sitti, Metin

    2016-07-01

    M. Sitti and co-workers find that gallium exhibits highly reversible and switchable adhesive characteristics during the liquid-solid phase change. As described on page 5088, this reversible adhesive allows miniature capsule-like robots, which are able to easily pick-and-place objects with irregular geometries and rough surfaces, and thus assemble such objects into a complex structure. The contact interface between gallium and the rough object is illustrated in the magnified image. PMID:27372722

  12. Modelling self-assembling of colloid particles in multilayered structures

    NASA Astrophysics Data System (ADS)

    Adamczyk, Zbigniew; Weroński, Paweł; Barbasz, Jakub; Kolasińska, Marta

    2007-04-01

    Simulations of particle multilayer build-up in the layer by layer (LbL) self-assembling processes have been performed according to the generalized random sequential adsorption (RSA) scheme. The first (precursor) layer having an arbitrary coverage of adsorption centers was generated using the standard RSA scheme pertinent to homogeneous surface. Formation of the consecutive layers (up to 20) was simulated by assuming short-range interaction potentials for two kinds of particles of equal size. Interaction of two particles of different kind resulted in irreversible and localized adsorption upon their contact, whereas particles of the same kind were assumed to interact via the hard potential (no adsorption possible). Using this algorithm theoretical simulations were performed aimed at determining the particle volume fraction as a function of the distance from the interface, as well as the multilayer film roughness and thickness as a function of the number of layers. The simulations revealed that particle concentration distribution in the film was more uniform for low precursor layer density than for higher density, where well-defined layers of closely packed particles appeared. On the other hand, the roughness of the film was the lowest at the highest precursor layer density. It was also predicted theoretically that for low precursor layer density the film thickness increased with the number of layers in a non-linear way. However, for high precursor layer density, the film thickness increased linearly with the number of layers and the average layer thickness was equal to 1.58 of the particle radius, which is close to the closely packed hexagonal layer thickness equal to 1.73. It was concluded by analysing the existing data for colloid particles and polyelectrolytes that the theoretical results can be effectively exploited for interpretation of the LbL processes involving colloid particles and molecular species like polymers or proteins.

  13. Measuring colloidal osmotic compressibility of a polymer-crowded colloidal suspension by optical trapping

    NASA Astrophysics Data System (ADS)

    Fu, Jinxin; Kara, Vural; Ou-Yang, H. Daniel

    2013-03-01

    Particle interactions determine the stability of nanoparticle suspensions and the phase separation of particle-polymer mixtures. However, due to the small sizes of the dispersed nanoparticles, it is not easy to directly measure interaction forces between particles in a colloidal suspension. In this paper, we propose an ``Optical Bottle'' approach to quantify these particle interactions in a suspension by measuring the colloidal osmotic compressibility of the nanoparticles. Virial expansion of the colloidal osmotic compressibility yields virial coefficients of different orders. The second order virial coefficient of aqueous suspensions of colloidal polystyrene nanospheres in the presence of high-salt (KCl) and polyethylene glycol (PEG) is found to decrease with increasing PEG concentration, suggesting an attractive depletion interaction between the PEG-crowed polystyrene particles.

  14. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  15. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  16. Detachment energies of spheroidal particles from fluid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Davies, Gary B.; Krüger, Timm; Coveney, Peter V.; Harting, Jens

    2014-10-01

    The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.

  17. Colloidal crystal grain boundary formation and motion.

    PubMed

    Edwards, Tara D; Yang, Yuguang; Beltran-Villegas, Daniel J; Bevan, Michael A

    2014-01-01

    The ability to assemble nano- and micro- sized colloidal components into highly ordered configurations is often cited as the basis for developing advanced materials. However, the dynamics of stochastic grain boundary formation and motion have not been quantified, which limits the ability to control and anneal polycrystallinity in colloidal based materials. Here we use optical microscopy, Brownian Dynamic simulations, and a new dynamic analysis to study grain boundary motion in quasi-2D colloidal bicrystals formed within inhomogeneous AC electric fields. We introduce "low-dimensional" models using reaction coordinates for condensation and global order that capture first passage times between critical configurations at each applied voltage. The resulting models reveal that equal sized domains at a maximum misorientation angle show relaxation dominated by friction limited grain boundary diffusion; and in contrast, asymmetrically sized domains with less misorientation display much faster grain boundary migration due to significant thermodynamic driving forces. By quantifying such dynamics vs. compression (voltage), kinetic bottlenecks associated with slow grain boundary relaxation are understood, which can be used to guide the temporal assembly of defect-free single domain colloidal crystals.

  18. Colloid Formation at Waste Plume Fronts

    SciTech Connect

    Wan, Jiamin; Tokunaga, Tetsu K.; Saiz, Eduardo; Larsen, Joern T.; Zheng, Zuoping; Couture, Rex A.

    2004-05-22

    Highly saline and caustic tank waste solutions containing radionuclides and toxic metals have leaked into sediments at U. S. Department of Energy (DOE) facilities such as the Hanford Site (Washington State). Colloid transport is frequently invoked to explain migration of radionuclides and metals in the subsurface. To understand colloid formation during interactions between highly reactive fluids and sediments and its impact on contaminant transport, we simulated tank waste solution (TWS) leakage processes in laboratory columns at ambient and elevated (70 C) temperatures. We found that maximum formation of mobile colloids occurred at the plume fronts (hundreds to thousands times higher than within the plume bodies or during later leaching). Concentrations of suspended solids were as high as 3 mass%, and their particle-sizes ranged from tens of nm to a few {micro}m. Colloid chemical composition and mineralogy depended on temperature. During infiltration of the leaked high Na{sup +} waste solution, rapid and completed Na{sup +} replacement of exchangeable Ca{sup 2+} and Mg{sup 2+} from the sediment caused accumulation of these divalent cations at the moving plume front. Precipitation of supersaturated Ca{sup 2+}/Mg{sup 2+}-bearing minerals caused dramatic pH reduction at the plume front. In turn, the reduced pH caused precipitation of other minerals. This understanding can help predict the behavior of contaminant trace elements carried by the tank waste solutions, and could not have been obtained through conventional batch studies.

  19. The colloidal chemistry of ceramic clays

    NASA Technical Reports Server (NTRS)

    Phelps, G. W.

    1984-01-01

    The colloidal chemistry and mineralogy of two argil minerals were studied. Deposits of kaolin and of ceramic clays in the United States and England are discussed for the probable mechanism of formation. The structural modifications of the bed, original material associated with the clays and the proper use of flocculants are discussed.

  20. Advanced Colloids Experiment (ACE-H-2)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Chmiel, Alan J.; Eustace, John; LaBarbera, Melissa

    2015-01-01

    Increment 43 - 44 Science Symposium presentation of Advanced Colloids Experiment (ACE-H-2) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  1. Advanced Colloids Experiment (ACE-T1)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  2. Colloidal crystals by electrospraying polystyrene nanofluids

    PubMed Central

    2013-01-01

    This work introduces the electrospray technique as a suitable option to fabricate large-scale colloidal nanostructures, including colloidal crystals, in just a few minutes. It is shown that by changing the deposition conditions, different metamaterials can be fabricated: from scattered monolayers of polystyrene nanospheres to self-assembled three-dimensional ordered nanolayers having colloidal crystal properties. The electrospray technique overcomes the main problems encountered by top-down fabrication approaches, largely simplifying the experimental setup. Polystyrene nanospheres, with 360-nm diameter, were typically electrosprayed using off-the-shelf nanofluids. Several parameters of the setup and deposition conditions were explored, namely the distance between electrodes, nanofluid conductivity, applied voltage, and deposition rate. Layers thicker than 20 μm and area of 1 cm2 were typically produced, showing several domains of tens of microns wide with dislocations in between, but no cracks. The applied voltage was in the range of 10 kV, and the conductivity of the colloidal solution was in the range of 3 to 4 mS. Besides the morphology of the layers, the quality was also assessed by means of optical reflectance measurements showing an 80% reflectivity peak in the vicinity of 950-nm wavelength. PMID:23311494

  3. Practical colloidal processing of multication ceramics

    DOE PAGES

    Bell, Nelson S.; Monson, Todd C.; Diantonio, Christopher; Wu, Yiquan

    2015-09-07

    The use of colloidal processing principles in the formation of ceramic materials is well appreciated for developing homogeneous material properties in sintered products, enabling novel forming techniques for porous ceramics or 3D printing, and controlling microstructure to enable optimized material properties. The solution processing of electronic ceramic materials often involves multiple cationic elements or dopants to affect microstructure and properties. Material stability must be considered through the steps of colloidal processing to optimize desired component properties. This review provides strategies for preventing material degradation in particle synthesis, milling processes, and dispersion, with case studies of consolidation using spark plasma sinteringmore » of these systems. The prevention of multication corrosion in colloidal dispersions can be achieved by utilizing conditions similar to the synthesis environment or by the development of surface passivation layers. The choice of dispersing surfactants can be related to these surface states, which are of special importance for nanoparticle systems. A survey of dispersant chemistries related to some common synthesis conditions is provided for perovskite systems as an example. Furthermore, these principles can be applied to many colloidal systems related to electronic and optical applications.« less

  4. Practical colloidal processing of multication ceramics

    SciTech Connect

    Bell, Nelson S.; Monson, Todd C.; Diantonio, Christopher; Wu, Yiquan

    2015-09-07

    The use of colloidal processing principles in the formation of ceramic materials is well appreciated for developing homogeneous material properties in sintered products, enabling novel forming techniques for porous ceramics or 3D printing, and controlling microstructure to enable optimized material properties. The solution processing of electronic ceramic materials often involves multiple cationic elements or dopants to affect microstructure and properties. Material stability must be considered through the steps of colloidal processing to optimize desired component properties. This review provides strategies for preventing material degradation in particle synthesis, milling processes, and dispersion, with case studies of consolidation using spark plasma sintering of these systems. The prevention of multication corrosion in colloidal dispersions can be achieved by utilizing conditions similar to the synthesis environment or by the development of surface passivation layers. The choice of dispersing surfactants can be related to these surface states, which are of special importance for nanoparticle systems. A survey of dispersant chemistries related to some common synthesis conditions is provided for perovskite systems as an example. Furthermore, these principles can be applied to many colloidal systems related to electronic and optical applications.

  5. Photoelectrochromism in Tungsten Trioxide Colloidal Solutions

    ERIC Educational Resources Information Center

    Chenthamarakshan, C. R.; Tacconi, N. R. de; Xu, Lucy; Rajeshwar, Krishnan

    2004-01-01

    Photophysical and photochemical properties of semiconductor metal oxide colloids are studied in the context of photoelectrochemical conversion and storage of solar energy. The experiment teaches the instrumental principles of UV-visible spectrophotometry, spectral acquisition and background subtraction strategies and diode array spectrometers.

  6. Self assembly of anisotropic colloidal particles

    NASA Astrophysics Data System (ADS)

    Florea, Daniel; Wyss, Hans

    2012-02-01

    Colloidal particles have been successfully used as ''model atoms'', as their behavior can be more directly studied than that of atoms or molecules by direct imaging in a confocal microscope. Most studies have focussed on spherical particles with isotropic interactions. However, a range of interesting materials such as many supramolecular polymers or biopolymers exhibit highly directional interactions. To capture their behavior in colloidal model systems, particles with anisotropic interactions are clearly required. Here we use a colloidal system of nonspherical colloids, where highly directional interactions can be induced via depletion. By biaxially stretching spherical PMMA particles we create oblate spheroidal particles. We induce attractive interactions between these particles by adding a non-adsorbing polymer to the background liquid. The resulting depletion interaction is stronger along the minor axis of the oblate spheroids. We study the phase behavior of these materials as a function of the ellipsoid aspect ratio, the strength of the depletion interactions, and the particle concentration. The resulting morphologies are qualitatively different from those observed with spherical particles. This can be exploited for creating new materials with tailored structures.

  7. Solid colloids with surface-mobile linkers.

    PubMed

    van der Meulen, Stef A J; Helms, Gesa; Dogterom, Marileen

    2015-06-17

    In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell-cell interactions and cell adhesion processes. PMID:25993272

  8. Motile Fluids: Granular, Colloidal and Living

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    2014-03-01

    My talk will present our recent results from theory, simulation and experiment on flocking, swarming and instabilities in diverse realizations of active systems. The findings I will report include: flocking at a distance in vibrated granular monolayers; the active hydrodynamics of self-propelled solids; clusters, asters and oscillations in colloidal chemotaxis. Supported by a J C Bose Fellowship.

  9. Colloidal nickel boride catalyst for hydrogenation of olefins

    SciTech Connect

    Nakao, Y.; Fujishige, S.

    1981-04-01

    Colloidal nickel boride was prepared from nickel(II) chloride by reduction with sodium borohydride in the presence of polyvinylpyrrolidone in ethanol. Hydrogenation of various olefins was examined over the colloidal catalyst at 30/sup 0/C and atmospheric pressure. The colloidal nickel boride was much more effective than the precipitated nickel boride prepared in the absence of polyvinylpyrrolidone as a hydrogenation catalyst, especially for isopropenyl compounds. Additional amines and sodium acetate were slightly inhibitive to the colloidal catalyst, while, being strongly promotive to the precipitated catalyst. The colloidal nickel boride was superior to the charcoal-supported metals of the platinum group in catalytic activity for ..cap alpha..-methylstyrene.

  10. Preparation of iridescent colloidal crystal coatings with variable structural colors.

    PubMed

    Cong, Hailin; Yu, Bing; Wang, Shaopeng; Qi, Limin; Wang, Jilei; Ma, Yurong

    2013-07-29

    Iridescent colloidal crystal coatings with variable structural colors were fabricated by incorporating carbon black nanoparticles (CB-NPs) into the voids of polystyrene (PS) colloidal crystals. The structural color of the colloid crystal coatings was not only greatly enhanced after the composition but also varied with observation angles. By changing the diameter of monodisperse PS colloids in the composites, colloidal crystal coatings with three primary colors for additive or subtractive combination were obtained. After incorporation of the PS/CB-NPs hybrid coatings into polydimethylsiloxane (PDMS) matrix, manmade opal jewelry with variable iridescent colors was made facilely. PMID:23938656

  11. Assembly of Colloidal Materials Using Bioadhesive Interactions

    NASA Technical Reports Server (NTRS)

    Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.

    2002-01-01

    We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using

  12. Colloid suspension stability and transport through unsaturated porous media

    SciTech Connect

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.

  13. Colloid Bound Transport of Contaminats In The Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Christ, A.

    Colloids can play a major role in the relocation of contaminants in the unsaturated zone. The amount of colloid driven transport is defined by soil chemistry, soil water chemistry and water flow velocity as well as colloid composition and formation. In a current research project we investigate the filtration and mobilization of colloids in unsaturated column studies. We use different soil types, chosen by a wide range of mean grain size and heterogeneity. Particle tracers are polystyrene solids with a de- fined negative surface charge and defined size from 50 nm to 10 µm. In addition, we use natural colloids extracted from a wide range of contaminated and uncontaminated land. Experimental conditions are exactly controlled throughout all the time. We alter mainly flow velocity ionic strength in order to study the filtration behaviour of the soils. In addition, Pyrene and Lead are are used as model contaminants. First results show the colloids are not retarded in many coarse structured soil types. Preferential colloid flow shows a major impact in breakthrough behaviour. Colloid bound lead is relocated significant through the unsaturated zone, whereas non colloid bound lead species are strongly retarded. In the presentation we will show results of contami- nant processes and present new results on the filtration behaviour of colloids in the unsaturated zone depending on flow velocity, soil type and colloid size.

  14. Scattering from correlations in colloidal systems

    SciTech Connect

    Hayter, J.B.

    1984-01-01

    Colloidal suspensions typically exhibit spatial correlations over distances of order 10-10/sup 4/ A, corresponding either to the size of individual particles (e.g., polymer chains, surfactant micelles) or to the range of interaction between particles (e.g., charged polymer lattices at low ionic strength). Apart from having fundamental intrinsic interest, such systems are also extremely useful as model systems with which to study, for example, non-Newtonian hydrodynamics, since temporal correlations are generally much longer lived (10/sup -8/-10/sup -3/ sec) than those found in simple atomic or small molecular systems (10/sup -13/-10/sup -10/ sec). Colloids have long been the subject of macroscopic phenomenological research (on rheological properties, for example), but it is only recently that microscopic light, x-ray and neutron scattering techniques have been applied to their study, in large part because of theoretical difficulties in understanding the scattering from dense liquid-like systems of interacting particles. For spherical colloids, such theoretical problems have now been largely overcome, and for anisotropic colloids experimental techniques are being developed which circumvent the intractable theoretical areas. This paper will first review some static light and small-angle neutron scattering (SANS) results on colloidal suspensions, both at equilibrium and in steady-state non-equilibrium situations, and will then discuss some dynamic measurements on polymer solutions and melts made using the neutron spin-echo (NSE) technique. Emphasis is placed on experiments which have a possible counterpart in synchrotron radiation studies. In particular, NSE extends the results of photon correlation spectroscopy (PCS) to larger momentum transfers and shorter time-scales than are available with visible light, and the extension of PCS to short wavelength on a synchrotron source would be of similar fundamental interest.

  15. Active structuring of colloidal armour on liquid drops

    PubMed Central

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets. PMID:23811716

  16. Multifunctional assembly of micrometer-sized colloids for cell sorting.

    PubMed

    Nie, Chenyao; Wang, Bing; Zhang, Jiangyan; Cheng, Yongqiang; Lv, Fengting; Liu, Libing; Wang, Shu

    2015-06-01

    Compared to the extensively studied nanometer-sized colloids, less attention has been paid to the assembly of micrometer-sized colloids with multifunctional characteristics. To address this need, a bottom-up approach is developed for constructing self-assemblies of micrometer-sized magnetic colloids possessing multifunctionality, including magnetic, optical, and biological activities. Biotinylated oligo (p-phenylene vinylene) (OPV) derivatives are designed to mediate the self-assembly of streptavidin-modified magnetic beads. The optical element OPV derivatives provide a fluorescence imaging ability for tracing the assembly process. Target cells can be recognized and assembled by the colloidal assembly with bioactive element antibodies. The colloidal assembly reveals better cell isolation performance by its amplified magnetic response in comparison to monodisperse colloids. The self-assembly of micrometer-sized magnetic colloids through a combination of different functional ingredients to realize multifunction is conceptually simple and easy to achieve.

  17. Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids.

    PubMed

    Kim, Shin-Hyun; Abbaspourrad, Alireza; Weitz, David A

    2011-04-13

    We use a microfluidic device to prepare monodisperse amphiphilic particles in the shape of a crescent-moon and use these particles to stabilize oil droplets in water. The microfluidic device is comprised of a tapered capillary in a theta (θ) shape that injects two oil phases into water in a single receiving capillary. One oil is a fluorocarbon, while the second is a photocurable monomer, which partially wets the first oil drop; silica colloids in the monomer migrate and adsorb to the interface with water but do not protrude into the oil interface. Upon UV-induced polymerization, solid particles with the shape of a crescent moon are formed; removal of fluorocarbon oil yields amphiphilic particles due to the selective adsorption of silica colloids. The resultant amphiphilic microparticles can be used to stabilize oil drops in a mixture of water and ethanol; if they are packed to sufficient surface density on the interface of the oil drop, they become immobilized, preventing direct contact between neighboring drops, thereby providing the stability.

  18. Quantitative uptake of colloidal particles by cell cultures.

    PubMed

    Feliu, Neus; Hühn, Jonas; Zyuzin, Mikhail V; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif; Said, Alaa Hassan; Escudero, Alberto; Pelaz, Beatriz; Gonzalez, Elena; Duarte, Miguel A Correa; Roy, Sathi; Chakraborty, Indranath; Lim, Mei L; Sjöqvist, Sebastian; Jungebluth, Philipp; Parak, Wolfgang J

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  19. Quantitative uptake of colloidal particles by cell cultures.

    PubMed

    Feliu, Neus; Hühn, Jonas; Zyuzin, Mikhail V; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif; Said, Alaa Hassan; Escudero, Alberto; Pelaz, Beatriz; Gonzalez, Elena; Duarte, Miguel A Correa; Roy, Sathi; Chakraborty, Indranath; Lim, Mei L; Sjöqvist, Sebastian; Jungebluth, Philipp; Parak, Wolfgang J

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  20. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2012-11-01

    Colloidal dispersions have long been proven as pivotal model systems for equilibrium phase transition such as crystallization, melting and liquid-gas phase transition. The last decades have revealed that this is also true for nonequilibrium phenomena. In fact, the fascinating possibility to track the individual trajectories of colloidal particles has greatly advanced our understanding of collective behaviour in classical many-body systems and has helped to reveal the underlying physical principles of glass transition, crystal nucleation, and interfacial dynamics (to name just a few typical nonequilibrium effects). External fields can be used to bring colloids out of equilibrium in a controlled way. Different kinds of external fields can be applied to colloidal dispersions, namely shear flow, electric, magnetic and laser-optical fields, and confinement. Typical research areas can be sketched with the by now traditional complexity diagram (figure 1). The complexity of the colloidal system itself as embodied in statistical degrees of freedom is shown on the x-axis while the complexity of the problem posed, namely bulk, an inhomogeneity in equilibrium, steady state nonequilibrium and full time-dependent nonequilibrium are shown on the y-axis. The different external fields which can be imposed are indicated by the different hatched areas. figure1 Figure 1. Diagram of complexity for colloidal dispersions in external fields: while the x-axis shows the complexity of the system, the y-axis shows the complexity of the problem. Regions which can be accessed by different kinds of external fields are indicated. The arrows indicate recent research directions. Active particles are also indicated with a special complexity of internal degrees of freedom [1]. This collection of papers reflects the scientific programme of the International Conference on Colloidal Dispersions in External Fields III (CODEF III) which took place in Bonn-Bad Godesberg from 20-23 March 2012. This was the

  1. Beyond Millikan: The Dynamics of Charging Events on Individual Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Beunis, Filip; Strubbe, Filip; Neyts, Kristiaan; Petrov, Dmitri

    2012-01-01

    By measuring the stable charge on oil drops in air, Millikan demonstrated the discrete nature of electric charge. We extend his approach to the charge on solid-liquid interfaces, and focus on the dynamics of the discrete fluctuations. Our measurements are accurate and fast enough to observe changes of one elementary charge. Experiments over thousands of seconds yield information about the fast dynamics of electrochemical reactions, relevant for physicochemical and biological systems. As an example, we study (dis)charging processes on colloidal particles in a nonpolar liquid.

  2. Beyond Millikan: the dynamics of charging events on individual colloidal particles.

    PubMed

    Beunis, Filip; Strubbe, Filip; Neyts, Kristiaan; Petrov, Dmitri

    2012-01-01

    By measuring the stable charge on oil drops in air, Millikan demonstrated the discrete nature of electric charge. We extend his approach to the charge on solid-liquid interfaces, and focus on the dynamics of the discrete fluctuations. Our measurements are accurate and fast enough to observe changes of one elementary charge. Experiments over thousands of seconds yield information about the fast dynamics of electrochemical reactions, relevant for physicochemical and biological systems. As an example, we study (dis)charging processes on colloidal particles in a nonpolar liquid.

  3. Hierarchical microstructures formed by bidisperse colloidal suspensions within colloid-in-liquid crystal gels.

    PubMed

    Diestra-Cruz, Heberth; Bukusoglu, Emre; Abbott, Nicholas L; Acevedo, Aldo

    2015-04-01

    Past studies have reported that colloids of a single size dispersed in the isotropic phase of a mesogenic solvent can form colloid-rich networks (and gels) upon thermal quenching of the system across the isotropic-nematic phase boundary of the mesogens. Herein we report the observation and characterization of complex hierarchical microstructures that form when bidisperse colloidal suspensions of nanoparticles (NPs; iron oxide with diameters of 188 ± 20 nm or poly(methyl methacrylate) with diameters of 150 ± 15 nm) and microparticles (MPs; polystyrene with diameters of 2.77 ± 0.20 μm) are dispersed in the isotropic phase of 4-pentyl-4'-cyanobiphenyl (5CB) and thermally quenched. Specifically, we document microstructuring that results from three sequential phase separation processes that occur at distinct temperatures during stepwise cooling of the ternary mixture from its miscibility region. The first phase transition demixes the system into coexisting MP-rich and NP-rich phases; the second promotes formation of a particle network within the MP-rich phase; and the third, which coincides with the isotropic-to-nematic phase transition of 5CB, produces a second colloidal network within the NP-rich phase. We quantified the dynamics of each demixing process by using optical microscopy and Fourier transform image analysis to establish that the phase transitions occur through (i) surface-directed spinodal decomposition, (ii) spinodal decomposition, and (iii) nucleation and growth, respectively. Significantly, the observed series of phase transitions leads to a hierarchical organization of cellular microstructures not observed in colloid-in-liquid crystal gels formed from monodisperse colloids. The results of this study suggest new routes to the synthesis of colloidal materials with hierarchical microstructures that combine large surface areas and organized porosity with potential applications in catalysis, separations, chemical sensing, or tissue engineering. PMID

  4. Hierarchical microstructures formed by bidisperse colloidal suspensions within colloid-in-liquid crystal gels.

    PubMed

    Diestra-Cruz, Heberth; Bukusoglu, Emre; Abbott, Nicholas L; Acevedo, Aldo

    2015-04-01

    Past studies have reported that colloids of a single size dispersed in the isotropic phase of a mesogenic solvent can form colloid-rich networks (and gels) upon thermal quenching of the system across the isotropic-nematic phase boundary of the mesogens. Herein we report the observation and characterization of complex hierarchical microstructures that form when bidisperse colloidal suspensions of nanoparticles (NPs; iron oxide with diameters of 188 ± 20 nm or poly(methyl methacrylate) with diameters of 150 ± 15 nm) and microparticles (MPs; polystyrene with diameters of 2.77 ± 0.20 μm) are dispersed in the isotropic phase of 4-pentyl-4'-cyanobiphenyl (5CB) and thermally quenched. Specifically, we document microstructuring that results from three sequential phase separation processes that occur at distinct temperatures during stepwise cooling of the ternary mixture from its miscibility region. The first phase transition demixes the system into coexisting MP-rich and NP-rich phases; the second promotes formation of a particle network within the MP-rich phase; and the third, which coincides with the isotropic-to-nematic phase transition of 5CB, produces a second colloidal network within the NP-rich phase. We quantified the dynamics of each demixing process by using optical microscopy and Fourier transform image analysis to establish that the phase transitions occur through (i) surface-directed spinodal decomposition, (ii) spinodal decomposition, and (iii) nucleation and growth, respectively. Significantly, the observed series of phase transitions leads to a hierarchical organization of cellular microstructures not observed in colloid-in-liquid crystal gels formed from monodisperse colloids. The results of this study suggest new routes to the synthesis of colloidal materials with hierarchical microstructures that combine large surface areas and organized porosity with potential applications in catalysis, separations, chemical sensing, or tissue engineering.

  5. Advanced Colloids Experiment (ACE) Science Overview

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; Yunker, Peter; Lohr, Matthew; Gratale, Matthew; Lynch, Matthew; Kodger, Thomas; Piazza, Roberto; Buzzaccaro, Stefano; Cipelletti, Luca; Schall, Peter; Veen, Sandra; Wegdam, Gerhard; Lee, Chand-Soo; Choi, Chang-Hyung; Paul, Anna-Lisa; Ferl, Robert J.; Cohen, Jacob

    2013-01-01

    The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly

  6. Application of ESEM to environmental colloids. [Environmental Scanning Electron Microscopy

    SciTech Connect

    Nuttall, H.E.; Kale, R. . Dept. of Chemical/Nuclear Engineering)

    1993-08-01

    Environmental colloids are toxic or radioactive particles suspended in ground or surface water. These hazardous particles can facilitate and accelerate the transport of toxicants and enhance the threat to humans by exposure to pathogenic substances. The chemical and physical properties of hazardous colloids have not been well characterized nor are there standard colloid remediation technologies to prevent their deleterious effects. Colloid characterization requires measurement of their size distribution, zeta potential, chemical composition, adsorption capacity and morphology. The environmental scanning electron microscope (ESEM) by ElectroScan, Inc., analyzes particle sizes, composition, and morphology. It is also used in this study to identify the attachment of colloids onto packing or rock surfaces in the development of a colloid remediation process. The ESEM has confirmed the composition of groundwater colloids in these studies to be generally the same material as the surrounding rock. The morphology studies have generally shown that colloids are simply small pieces of the rock surface that have exfoliated into the surrounding water. However, in general, the source and chemical composition of groundwater colloids is site dependent. The authors have found that an ESEM works best as a valuable analysis tool within a suite of colloid characterization instruments.

  7. Mobile linkers on DNA-coated colloids: valency without patches.

    PubMed

    Angioletti-Uberti, Stefano; Varilly, Patrick; Mognetti, Bortolo M; Frenkel, Daan

    2014-09-19

    Colloids coated with single-stranded DNA (ssDNA) can bind selectively to other colloids coated with complementary ssDNA. The fact that DNA-coated colloids (DNACCs) can bind to specific partners opens the prospect of making colloidal "molecules." However, in order to design DNACC-based molecules, we must be able to control the valency of the colloids, i.e., the number of partners to which a given DNACC can bind. One obvious, but not very simple approach is to decorate the colloidal surface with patches of single-stranded DNA that selectively bind those on other colloids. Here we propose a design principle that exploits many-body effects to control the valency of otherwise isotropic colloids. Using a combination of theory and simulation, we show that we can tune the valency of colloids coated with mobile ssDNA, simply by tuning the nonspecific repulsion between the particles. Our simulations show that the resulting effective interactions lead to low-valency colloids self-assembling in peculiar open structures, very different from those observed in DNACCs with immobile DNA linkers.

  8. Colloid Mobilization in Two Atlantic Coastal Plain Aquifers: Field Studies

    NASA Astrophysics Data System (ADS)

    Ryan, Joseph N.; Gschwend, Philip M.

    1990-02-01

    The geochemical mechanisms leading to the mobilization of colloids in groundwater were investigated in the Pine Barrens of New Jersey and in rural central Delaware by sampling pairs of wells screened in oxic and anoxic groundwaters in the same geologic formations. Samples were carefully taken at very low flow rates (˜100 mL min-1) to avoid suspending immobilized particles. The colloidal matter was characterized by light-scattering photometry, scanning electron microscopy, energy-dispersive X ray analysis, microelectrophoresis, and Fe, Al, Si, and organic carbon analyses. The colloids, composed primarily of clays, were observed at high concentrations (up to 60 mg colloids/L) in the anoxic groundwaters, while the oxic groundwaters exhibited ≤1 mg colloids/L. Colloidal organic carbon was present in all groundwaters; but under anoxic conditions, one-third to one-half of the total organic carbon was associated with the inorganic colloids. The field evidence indicates that anoxic conditions cause the mobilization of soil colloids by dissolving the ferric oxyhydroxide coatings cementing the clay particles to the aquifer solids. The depletion of oxidized iron on the surfaces of immobile particles and the addition of organic carbon coatings on the soil particles and colloids apparently stabilizes the colloidal suspension in the anoxic groundwaters.

  9. Surface functionalized LSMO nanoparticles with improved colloidal stability for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Thorat, N. D.; Khot, V. M.; Salunkhe, A. B.; Prasad, A. I.; Ningthoujam, R. S.; Pawar, S. H.

    2013-03-01

    LSMO (La0.7Sr0.3MnO3) magnetic nanoparticles (MNPs) coated with double layer oleic acid (OA) surfactant are prepared to make a water based magnetic nanofluid for hyperthermia application. Various experimental techniques are used for bilayer coating analysis. The effect of the bilayer coating on magnetic properties is studied by superconducting quantum interface device (SQUID). Colloidal behaviour of coated MNPs in aqueous medium is studied by the zeta potential and dynamic light scattering. The effects of pH and ionic strength on the colloidal stability of the MNPs are studied in detail. For the bilayer-coated LSMO MNPs aggregation is not observed even in high ionic strength and at physiological pH (7.4). For making the nanofluid of the bilayer-coated MNPs the colloidal stability is studied in physiological media like phosphate buffer solution. Under induction heating experiment, hyperthermia temperature (42-43 °C) could be achieved by the bilayer-coated sample at a magnetic field of 168-335 Oe and frequency of 267 kHz. The bilayer OA coating can hinder the agglomeration of MNPs significantly and produce stable suspension with improved hyperthermia properties. The bilayer OA coating also improves the specific absorption rate (SAR) of LSMO MNPs from 25 to 40 W g-1.

  10. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.

    PubMed

    Ramachandran; Venkatesan; Tryggvason; Scott Fogler H

    2000-09-15

    The interaction between stable colloidal particles arriving at a pore entrance was studied using a numerical method for the case where the particle size is smaller than but of the same order as the pore size. The numerical method was adapted from a front-tracking technique developed for studying incompressible, multifluid flow by S. O. Unverdi and G. Tryggvason (J. Comp. Phys. 100, 25, 1992). The method is based on the finite difference solution of Navier-Stokes equation on a stationary, structured, Cartesian grid and the explicit representation of the particle-liquid interface using an unstructured grid that moves through the stationary grid. The simulations are in two dimensions, considering both deformable and nondeformable particles, and include interparticle colloidal interactions. The interparticle and particle-pore hydrodynamic interactions, which are very difficult to determine using existing analytical and semi-numerical, semi-analytical techniques in microhydrodynamics, are naturally accounted for in our numerical method and need not be explicity determined. Two- and three-particle motion toward a pore has been considered in our simulations. The simulations demonstrate how the competition between hydrodynamic forces and colloidal forces acting on particles dictate their flow behavior near the pore entrance. The predicted dependence of the particle flow behavior on the flow velocity and the ratio of pore size to particle size are qualitatively consistent with the experimental observations of V. Ramachandran and H. S. Fogler (J. Fluid Mech. 385, 129, 1999). Copyright 2000 Academic Press. PMID:10985810

  11. And yet it moves - propulsion of colloidal clusters under reciprocal actuation

    NASA Astrophysics Data System (ADS)

    Steinbach, Gabi; Gemming, Sibylle; Erbe, Artur

    In the regime of low Reynolds numbers, the challenge of torque-based magnetic actuation lies in the conversion of torque into an effective force via symmetry breaking without inertial effects. Most reported systems rely on the hydrodynamic coupling between rotation and translation by an asymmetry in the environment (surfaces/interfaces) or the object shape. There, net translation can be realized only under non-reciprocal actuation given by precessing and rotating fields. In contrast, under oscillating fields, which are easier to realize, hydrodynamic coupling intrinsically leads to cyclic, reciprocal translation (Scallop theorem) unless the object has a certain flexible shape such as a flagellum. We present an alternative approach where symmetry breaking can be realized by magnetically interacting colloids which have been effectively modeled by spheres with shifted dipoles. If such colloids self-assemble, they form rigid clusters. We show how the collective, non-equilibrium dynamics of the colloids under oscillating fields propel the cluster. Depending on the configuration of the cluster it can rotate, translate and perform screw-like motion. Grants funding by DFG: FOR 1713 GE 1202/9-1 and ER 341/9-1.

  12. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.

    PubMed

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-01-01

    While bismerthiazol [N,N'-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  13. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-06-01

    While bismerthiazol [N,N‧-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH 7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  14. Colloid-probe AFM studies of the interaction forces of proteins adsorbed on colloidal crystals.

    PubMed

    Singh, Gurvinder; Bremmell, Kristen E; Griesser, Hans J; Kingshott, Peter

    2015-04-28

    In recent years, colloid-probe AFM has been used to measure the direct interaction forces between colloidal particles of different size or surface functionality in aqueous media, as one can study different forces in symmerical systems (i.e., sphere-sphere geometry). The present study investigates the interaction between protein coatings on colloid probes and hydrophilic surfaces decorated with hexagonally close packed single particle layers that are either uncoated or coated with proteins. Controlled solvent evaporation from aqueous suspensions of colloidal particles (coated with or without lysozyme and albumin) produces single layers of close-packed colloidal crystals over large areas on a solid support. The measurements have been carried out in an aqueous medium at different salt concentrations and pH values. The results show changes in the interaction forces as the surface charge of the unmodified or modified particles, and ionic strength or pH of the solution is altered. At high ionic strength or pH, electrostatic interactions are screened, and a strong repulsive force at short separation below 5 nm dominates, suggesting structural changes in the absorbed protein layer on the particles. We also study the force of adhesion, which decreases with an increment in the salt concentration, and the interaction between two different proteins indicating a repulsive interaction on approach and adhesion on retraction. PMID:25758979

  15. Collective motion in populations of colloidal robots

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis; Bricard, Antoine; Caussin, Jean-Baptiste; Dauchot, Olivier; Desreumaux, Nicolas

    2014-03-01

    Could the behavior of bacteria swarms, fish schools, and bird flocks be understood within a unified framework? Can one ignore the very details of the interaction mechanisms at the individual level to elucidate how strikingly similar collective motion emerges at the group level in this broad range of motile systems? These seemingly provocative questions have triggered significant advance in the physics and the biology, communities over the last decade. In the physics language these systems, made of motile individuals, can all be though as different realizations of ``active matter.'' In this talk, I will show how to gain more insight into this vivid field using self-propelled colloids as a proxy for motile organism. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors. Then, I will demonstrate that these archetypal populations display spontaneous transitions to swarming motion, and to global directed motion with very few density and orientation fluctuations.

  16. Microscopic dynamics of synchronization in driven colloids

    PubMed Central

    Juniper, Michael P.N.; Straube, Arthur V.; Besseling, Rut; Aarts, Dirk G.A.L.; Dullens, Roel P.A.

    2015-01-01

    Synchronization of coupled oscillators has been scrutinized for over three centuries, from Huygens' pendulum clocks to physiological rhythms. One such synchronization phenomenon, dynamic mode locking, occurs when naturally oscillating processes are driven by an externally imposed modulation. Typically only averaged or integrated properties are accessible, leaving underlying mechanisms unseen. Here, we visualize the microscopic dynamics underlying mode locking in a colloidal model system, by using particle trajectories to produce phase portraits. Furthermore, we use this approach to examine the enhancement of mode locking in a flexible chain of magnetically coupled particles, which we ascribe to breathing modes caused by mode-locked density waves. Finally, we demonstrate that an emergent density wave in a static colloidal chain mode locks as a quasi-particle, with microscopic dynamics analogous to those seen for a single particle. Our results indicate that understanding the intricate link between emergent behaviour and microscopic dynamics is key to controlling synchronization. PMID:25994921

  17. Knot theory realizations in nematic colloids.

    PubMed

    Čopar, Simon; Tkalec, Uroš; Muševič, Igor; Žumer, Slobodan

    2015-02-10

    Nematic braids are reconfigurable knots and links formed by the disclination loops that entangle colloidal particles dispersed in a nematic liquid crystal. We focus on entangled nematic disclinations in thin twisted nematic layers stabilized by 2D arrays of colloidal particles that can be controlled with laser tweezers. We take the experimentally assembled structures and demonstrate the correspondence of the knot invariants, constructed graphs, and surfaces associated with the disclination loop to the physically observable features specific to the geometry at hand. The nematic nature of the medium adds additional topological parameters to the conventional results of knot theory, which couple with the knot topology and introduce order into the phase diagram of possible structures. The crystalline order allows the simplified construction of the Jones polynomial and medial graphs, and the steps in the construction algorithm are mirrored in the physics of liquid crystals.

  18. Forging Colloidal Nanostructures via Cation Exchange Reactions

    PubMed Central

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  19. Colloidal cholesteric liquid crystal in spherical confinement.

    PubMed

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  20. The NASA GSFC MEMS Colloidal Thruster

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Jamieson, Brian G.; Norgaard, Peter C.; Chepko, Ariane B.

    2004-01-01

    A number of upcoming missions require different thrust levels on the same spacecraft. A highly scaleable and efficient propulsion system would allow substantial mass savings. One type of thruster that can throttle from high to low thrust while maintaining a high specific impulse is a Micro-Electro-Mechanical System (MEMS) colloidal thruster. The NASA GSFC MEMS colloidal thruster has solved the problem of electrical breakdown to permit the integration of the electrode on top of the emitter by a novel MEMS fabrication technique. Devices have been successfully fabricated and the insulation properties have been tested to show they can support the required electric field. A computational finite element model was created and used to verify the voltage required to successfully operate the thruster. An experimental setup has been prepared to test the devices with both optical and Time-Of-Flight diagnostics.

  1. Colloidal cholesteric liquid crystal in spherical confinement

    PubMed Central

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  2. Structure and hydrodynamics of colloidal systems

    NASA Astrophysics Data System (ADS)

    Hayter, John B.

    1986-02-01

    Invited paperColloidal phases (for example, micellar solutions, latex suspensions, ferrofluids and microemulsions) provide excellent model systems with which to test structural and hydrodynamic theories of the liquid state. Interparticle potentials may be attractive or repulsive, and the experimentalist is often free to control the strength, range and symmetry of the interactions. Small-angle neutron scattering (SANS) and small-angle neutron spin-echo (SANSE) provide excellent complementary tools for studying the structure and time-dependence of these systems, where correlation lengths typically vary from about one to several tens of nm. Correlation times are usually in the nsec to μsec range, but may be of order minutes in certain systems. This paper will review some of the current theories and their recent experimental tests, using colloidal systems in which the direct interaction potentials may have spherical, dipolar or cylindrical symmetry and the hydrodynamic interactions may be weak or strong.

  3. Structure and hydrodynamics of colloidal systems

    NASA Astrophysics Data System (ADS)

    Hayter, J. B.

    1985-07-01

    Colloidal phases (for example, micellar solutions, latex suspensions, ferrofluids and microemulsions) provide excellent model systems with which to test structural and hydrodynamic theories of the liquid state. Interparticle potentials may be attractive or repulsive, and the experimentalist is often free to control the strength, range and symmetry of the interactions. Small-angle neutron scattering (SANS) and small-angle neutron spin-echo (SANSE) provide excellent complementary tools for studying the structure and time-dependence of these systems, where correlation lengths typically vary from about one to several tens of nm. Correlation times are usually in the nsec to (MU) sec range, but may be of order minutes in certain systems. This paper will review some of the current theories and their recent experimental tests, using colloidal systems in which the direct interaction potentials may have spherical, dipolar or cylindrical symmetry and the hydrodynamic interactions may be weak or strong.

  4. Hybrid colloidal plasmonic-photonic crystals.

    PubMed

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals. PMID:21594906

  5. Viscoelasticity of colloidal polycrystals doped with impurities

    NASA Astrophysics Data System (ADS)

    Louhichi, Ameur; Tamborini, Elisa; Oberdisse, Julian; Cipelletti, Luca; Ramos, Laurence

    2015-09-01

    We investigate how the microstructure of a colloidal polycrystal influences its linear visco-elasticity. We use thermosensitive copolymer micelles that arrange in water in a cubic crystalline lattice, yielding a colloidal polycrystal. The polycrystal is doped with a small amount of nanoparticles, of size comparable to that of the micelles, which behave as impurities and thus partially segregate in the grain boundaries. We show that the shear elastic modulus only depends on the packing of the micelles and varies neither with the presence of nanoparticles nor with the crystal microstructure. By contrast, we find that the loss modulus is strongly affected by the presence of nanoparticles. A comparison between rheology data and small-angle neutron-scattering data suggests that the loss modulus is dictated by the total amount of nanoparticles in the grain boundaries, which in turn depends on the sample microstructure.

  6. Viscoelasticity of colloidal polycrystals doped with impurities.

    PubMed

    Louhichi, Ameur; Tamborini, Elisa; Oberdisse, Julian; Cipelletti, Luca; Ramos, Laurence

    2015-09-01

    We investigate how the microstructure of a colloidal polycrystal influences its linear visco-elasticity. We use thermosensitive copolymer micelles that arrange in water in a cubic crystalline lattice, yielding a colloidal polycrystal. The polycrystal is doped with a small amount of nanoparticles, of size comparable to that of the micelles, which behave as impurities and thus partially segregate in the grain boundaries. We show that the shear elastic modulus only depends on the packing of the micelles and varies neither with the presence of nanoparticles nor with the crystal microstructure. By contrast, we find that the loss modulus is strongly affected by the presence of nanoparticles. A comparison between rheology data and small-angle neutron-scattering data suggests that the loss modulus is dictated by the total amount of nanoparticles in the grain boundaries, which in turn depends on the sample microstructure. PMID:26465473

  7. Knot theory realizations in nematic colloids

    PubMed Central

    Čopar, Simon; Tkalec, Uroš; Muševič, Igor; Žumer, Slobodan

    2015-01-01

    Nematic braids are reconfigurable knots and links formed by the disclination loops that entangle colloidal particles dispersed in a nematic liquid crystal. We focus on entangled nematic disclinations in thin twisted nematic layers stabilized by 2D arrays of colloidal particles that can be controlled with laser tweezers. We take the experimentally assembled structures and demonstrate the correspondence of the knot invariants, constructed graphs, and surfaces associated with the disclination loop to the physically observable features specific to the geometry at hand. The nematic nature of the medium adds additional topological parameters to the conventional results of knot theory, which couple with the knot topology and introduce order into the phase diagram of possible structures. The crystalline order allows the simplified construction of the Jones polynomial and medial graphs, and the steps in the construction algorithm are mirrored in the physics of liquid crystals. PMID:25624467

  8. Correlated Clusters in Aging Colloidal Glass

    NASA Astrophysics Data System (ADS)

    Robe, Dominic; Boettcher, Stefan; Yunker, Peter

    A numerical model of correlated domains in glassy colloids is recreated, following its development by Becker, et. al.. The model is a course grained representation of 2D colloidal systems inspired by record dynamics, and produces emergent dynamic heterogeneity and aging. Results from the original development are reproduced, and compared to the same observables in an experimental system of bidisperse microgel spheres studied by Yunker, et. al.. Basic observables such as particle persistence and mean square displacement are measured at different waiting times to observe aging. Four-point correlation lengths are also examined for signs of dynamic heterogeneity. Results from both the numerical and experimental systems are consistent with the predictions of record dynamics, that aging systems evolve on a logarithmic time scale. This work is supported by NSF Grant DMR-1207431.

  9. Colloidal cholesteric liquid crystal in spherical confinement

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-08-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.

  10. Structure and hydrodynamics of colloidal systems

    SciTech Connect

    Hayter, J.B.

    1985-07-01

    Colloidal phases (for example, micellar solutions, latex suspensions, ferrofluids and microemulsions) provide excellent model systems with which to test structural and hydrodynamic theories of the liquid state. Interparticle potentials may be attractive or repulsive, and the experimentalist is often free to control the strength, range and symmetry of the interactions. Small-angle neutron scattering (SANS) and small-angle neutron spin-echo (SANSE) provide excellent complementary tools for studying the structure and time-dependence of these systems, where correlation lengths typically vary from about one to several tens of nm. Correlation times are usually in the nsec to ..mu..sec range, but may be of order minutes in certain systems. This paper will review some of the current theories and their recent experimental tests, using colloidal systems in which the direct interaction potentials may have spherical, dipolar or cylindrical symmetry and the hydrodynamic interactions may be weak or strong.

  11. Slab photonic crystals with dimer colloid bases

    SciTech Connect

    Riley, Erin K.; Liddell Watson, Chekesha M.

    2014-06-14

    The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd, even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.

  12. Differential dynamic microscopy for anisotropic colloidal dynamics.

    PubMed

    Reufer, Mathias; Martinez, Vincent A; Schurtenberger, Peter; Poon, Wilson C K

    2012-03-13

    Differential dynamic microscopy (DDM) is a low-cost, high-throughput technique recently developed for characterizing the isotropic diffusion of spherical colloids using white-light optical microscopy. (1) We develop the theory for applying DDM to probe the dynamics of anisotropic colloidal samples such as various ordered phases, or particles interacting with an external field. The q-dependent dynamics can be measured in any direction in the image plane. We demonstrate the method on a dilute aqueous dispersion of anisotropic magnetic particles (hematite) aligned in a magnetic field. The measured diffusion coefficients parallel and perpendicular to the field direction are in good agreement with theoretical values. We show how these measurements allow us to extract the orientational order parameter S(2) of the system.

  13. Entropic attractions in colloid-polymer solutions

    NASA Astrophysics Data System (ADS)

    Verma, Ritu

    We explore the depletion attractions that arise between hard colloidal spheres immersed in a non-adsorbing polymeric solution of DNA molecules. Using a scanning optical tweezer we were able to spatially confine colloidal particles along a line and quantitatively examine the interaction potential between two 1.25 m m silica spheres moving in various complex fluids. At fixed DNA concentration, we found that the range and depth of the inter-particle potentials did not change for background salt concentrations between 0.1 and 20 mM. Then we fixed the background salt concentration at 10 mM, and measured the inter-particle potentials as a function of DNA concentration. The potentials obtained display variations in depth and range that are consistent with scaling behavior expected for semi-flexible polymers near the theta point. In particular we clearly observe the crossover from a dilute solution of Gaussian coils to the weakly fluctuating semi-dilute regime dominated by two-point collisions. We also quantitatively test the Asakura-Oosawa Model for these systems and show how it can be used in both the dilute as well as the semi-dilute regime. We also explore the dynamics of colloidal particles in background DNA solutions. We find that the Stokes-Einstein picture breaks down in these complex fluids as the size ratio of the probe particle to the characteristic polymer length scale is decreased. We explain these deviations in terms of the changes in the microenvironment caused by the presence of the depletion cavity. The colloidal spheres were also used to probe the transition time scales from the viscoelastic regime to the purely viscous regime.

  14. Ultrasonic Studies of Colloids in Aqueous Medium.

    NASA Astrophysics Data System (ADS)

    McCarthy, Jennifer Lee

    Three types of colloidal dispersions were investigated using ultrasonic absorption and velocity measurements. The colloidal dispersions were toluene/water emulsions stabilized with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers, perfluorinated hydrocarbon/water emulsions stabilized with a block copolymer of similar composition and lecithin, and coal/water dispersions stabilized with poly(vinyl acetate)-poly(vinyl alcohol) random block copolymers. The components of the emulsions were also studied; including perfluorodecalin, perfluorophenanthrene, perfluoromethyladamantane and the surface active agents in water. Ultrasonic techniques can be used for concentrated colloidal dispersions and provide an alternative to other methods used to study size and stability. Ultrasound is particularly attractive when the size and stability of a colloidal system are concentration dependent and the other techniques such as light scattering can not be applied to concentrated systems without dilution. Measurements of attenuation as a function of frequency from 100 kHz to 185 MHz were carried out and permitted the average globule size to be determined by comparison with theory. The theoretical treatment followed the work of Allegra and Hawley. The effect of surfactant concentration on globule size using ultrasonic absorption measurements was studied in the toluene/water emulsions. The absorption was measured as a function of time to monitor coalescence in a perfluorinated hydrocarbon/water emulsion. Measurement of the velocity of sound as a function of temperature was used to determine the Theta-point of a polymer (PVA) in solution and the critical flocculation temperature of the same polymer as a stabilizing agent for concentrated coal/water slurries.

  15. Stabilization of Colloidal Silica Using Small Polyols

    SciTech Connect

    GULLEY, GERALD L.; MARTIN, JAMES E.

    1999-09-07

    We have discovered that small polyols are reasonably effective at stabilizing colloidal silica against aggregation, even under the conditions of high pH and salt concentration. Both quasielastic and elastic light scattering were used to show that these polyols dramatically decrease the aggregation rate of the suspension, changing the growth kinetics from diffusion-limited cluster-cluster aggregation to reaction-limited cluster-cluster aggregation. These polyols maybe useful in the treatment of tank wastes at the Hanford site.

  16. Nonlinear refraction in aqueous colloidal gold

    NASA Astrophysics Data System (ADS)

    Mehendale, S. C.; Mishra, S. R.; Bindra, K. S.; Laghate, M.; Dhami, T. S.; Rustagi, K. C.

    1997-02-01

    Nonlinear refraction in aqueous colloidal gold at 527 nm was studied using the z-scan technique. While a z-scan with a 35 ns laser showed a large negative lensing, a z-scan with a 4 ps laser showed no measurable refraction. The observed nonlinear refraction is shown to be of thermal origin resulting from energy transfer from gold particles to the water molecules.

  17. Directed Self-Assembly of Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Zeravcic, Zorana; Collins, Jesse; Manoharan, Vinothan; Brenner, Michael

    2011-03-01

    In nature, simple constituents like atoms, molecules and polymer chains, spontaneously organize into larger, higher order structures. Interactions involved in this self-assembly act on a local level. These facts inspire experimental and theoretical engineering of components able to organize into pre-designed complex systems. We perform numerical simulations of collections of DNA coated colloidal particles. We test different design rules for self-assembly with short-range interactions and explore the stability of equilibrium structures.

  18. CGEL-2: Structural Studies of Colloidal Suspensions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These are images of CGEL-2 samples taken during STS-95. They show binary colloidal suspensions that have formed ordered crystalline structures in microgravity. In sample 5, there are more particles therefore, many, many crystallites (small crystals) form. In sample 6, there are less particles therefore, the particles are far apart and few, much larger crystallites form. The white object in the right corner of sample 5 is the stir bar used to mix the sample at the begirning of the mission.

  19. Effective refractive index of face-centered-cubic and hexagonal close-packed 250 nm-SiO2 based colloidal crystals

    NASA Astrophysics Data System (ADS)

    Salcedo-Reyes, Juan Carlos

    2012-01-01

    A quantitative kinematic analysis, of the refraction properties of face-centered-cubic and hexagonal close-packed 250 nm-SiO2-based colloidal crystals, was performed using the plane wave expansion method. The angle-dependent effective refractive index, for different frequencies, was calculated taking into account the continuity of the tangential component of the wave vector across the interface and the energy conservation principle as well. The results demonstrate that the unusual optical properties, of the close packed SiO2-based colloidal crystals, depend strongly on the sphere-packing symmetry rather than from the material itself.

  20. Influence of biofilms on the movement of colloids in porous media. Implications for colloid facilitated transport in subsurface environments.

    PubMed

    Leon Morales, Carlos Felipe; Strathmann, Martin; Flemming, Hans-Curt

    2007-05-01

    Colloid transport through porous media can be influenced by the presence of biofilms. Sterile and non-sterile sand columns were investigated using Laponite RD as model colloid and a highly mucoid strain of Pseudomonas aeruginosa as model biofilm former. Laponite RD was marked specifically by fluorescent complexes with rhodamine 6G. Breakthrough curves (BTCs) were used as parameters for determination of colloid transport characteristics. In the sterile columns, the colloid was mobile (collision efficiencies from 0.05 to 0.08) both after the presence of Na(+) and Ca(2+) ions followed by deionised water influent. In the biofilm-grown column, the same treatment did not result in colloid retention in the case of Na(+) exposure, but in altered or enhanced colloid transport. In the case of Ca(2+) ions exposure, colloid retention increased with biofilm age. After 3 weeks, almost complete retention was observed. Similar observations were made in columns packed with material from slow sand filtration units. These data reveal the complex interactions between biofilms, cations and colloid transport. Changes in the electrolyte composition of water percolating the subsurface can frequently occur and will result in different colloid transport characteristics with regard to the dominating species of ions and the relative abundance of microbial biofilms. This has to be considered when modelling colloid transport through the subsurface.

  1. Transport of Intrinsic Plutonium Colloids in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.

    2011-12-01

    Actinide contaminants were introduced to the subsurface environment as a result of nuclear weapons development and testing, as well as for nuclear power generation and related research activities for defense and civilian applications. Even though most actinide species were believed to be fairly immobile once in the subsurface, recent studies have shown the transport of actinides kilometers away from their disposal sites. For example, the treated liquid wastes released into Mortandad Canyon at the Los Alamos National Laboratory were predicted to travel less than a few meters; however, plutonium and americium have been detected 3.4 km away from the waste outfall. A colloid-facilitated mechanism has been suggested to account for this unexpected transport of these radioactive wastes. Clays, oxides, organic matters, and actinide hydroxides have all been proposed as the possible mobile phase. Pu ions associated with natural colloids are often referred to as pseudo-Pu colloids, in contrast with the intrinsic Pu colloids that consist of Pu oxides. Significant efforts have been made to investigate the role of pseudo-Pu colloids, while few studies have evaluated the environmental behavior of the intrinsic Pu colloids. Given the fact that Pu (IV) has extremely low solubility product constant, it can be inferred that the transport of Pu in the intrinsic form is highly likely at suitable environmental conditions. This study investigates the transport of intrinsic Pu colloids in a saturated alluvium material packed in a cylindrical column (2.5-cm Dia. x 30-cm high) and compares the results to previous data on the transport of pseudo Pu colloids in the same material. A procedure to prepare a stable intrinsic Pu colloid suspension that produced consistent and reproducible electrokinetic and stability data was developed. Electrokinetic properties and aggregation stability were characterized. The Pu colloids, together with trillium as a conservative tracer, were injected into the

  2. General nonequilibrium theory of colloid dynamics.

    PubMed

    Ramírez-González, Pedro; Medina-Noyola, Magdaleno

    2010-12-01

    A nonequilibrium extension of Onsager's canonical theory of thermal fluctuations is employed to derive a self-consistent theory for the description of the statistical properties of the instantaneous local concentration profile n(r,t) of a colloidal liquid in terms of the coupled time-evolution equations of its mean value n(r,t) and of the covariance [Formula in text] of its fluctuations δn(r,t)=n(r,t)-n(r,t). These two coarse-grained equations involve a local mobility function b(r,t) which, in its turn, is written in terms of the memory function of the two-time correlation function [Formula in text]. For given effective interactions between colloidal particles and applied external fields, the resulting self-consistent theory is aimed at describing the evolution of a strongly correlated colloidal liquid from an initial state with arbitrary mean and covariance n(0)(r) and σ(0)(r,r') toward its equilibrium state characterized by the equilibrium local concentration profile n(eq)(r) and equilibrium covariance σ(eq)(r,r'). This theory also provides a general theoretical framework to describe irreversible processes associated with dynamic arrest transitions, such as aging, and the effects of spatial heterogeneities.

  3. Dynamics of Polymers in Colloidal Flows

    NASA Astrophysics Data System (ADS)

    Chen, Hsieh; Alexander-Katz, Alfredo

    2011-03-01

    This research is motivated by recent studies on the von Willebrand factor (vWF), a large multimeric protein that plays an essential role in the initial stages of blood clotting in blood vessels. Recent experiments substantiated the hypothesis that the vWF is activated by shear stress in blood flow that causes its shape to transform from a compact globule to an extended state, and biological function is obtained only in the extended state. Simple simulations (which only consider a single polymer in bulk shear flow) have successfully reproduced the observed dynamics of the vWF. However, a more refined model is still demanding for the better understanding of the behaviors of this biomolecule in the physiological environments. Here we refine the existing model by adding the drifting colloids into the flows to mimic the presence of the blood cells in the bloodstream. Preliminary result shows that colloids greatly influence the dynamics of the polymers. It is observed that the average extensions of polymers along and perpendicular to the shear flow direction are both increased with the presence of the colloids.

  4. Equilibrium crystal phases of triblock Janus colloids

    NASA Astrophysics Data System (ADS)

    Reinhart, Wesley F.; Panagiotopoulos, Athanassios Z.

    2016-09-01

    Triblock Janus colloids, which are colloidal spheres decorated with attractive patches at each pole, have recently generated significant interest as potential building blocks for functional materials. Their inherent anisotropy is known to induce self-assembly into open structures at moderate temperatures and pressures, where they are stabilized over close-packed crystals by entropic effects. We present a numerical investigation of the equilibrium phases of triblock Janus particles with many different patch geometries in three dimensions, using Monte Carlo simulations combined with free energy calculations. In all cases, we find that the free energy difference between crystal polymorphs is less than 0.2 kBT per particle. By varying the patch fraction and interaction range, we show that large patches stabilize the formation of structures with four bonds per patch over those with three. This transition occurs abruptly above a patch fraction of 0.30 and has a strong dependence on the interaction range. Furthermore, we find that a short interaction range favors four bonds per patch, with longer range increasingly stabilizing structures with only three bonds per patch. By quantifying the effect of patch geometry on the stability of the equilibrium crystal structures, we provide insights into the fundamental design rules for constructing complex colloidal crystals.

  5. Synthesis of metal colloids in inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Barnickel, P.; Wokaun, A.

    Colloidal silver and gold particles have been prepared by reduction of aqueous metal salt solutions in inverse microemulsions. The sols are characterized by absorption spectroscopy and electron microscopy. Ultrasound treatment during reduction results in a narrower size distribution of the colloidal particles, as evidenced by a narrower absorption band. Photochemical silver and gold sol formation, without the addition of a reducing agent, has been observed for inverse microemulsions of metal salt solutions in a medium consisting of dodecyl-heptaethyleneglycol-ether and hexane. The particle sizes determined from electron microscopy have been used as input parameters for the simulation of absorption spectra, based on the electromagnetic theory of localized surface plasmon excitation. For the gold sols a quantitative agreement between experimental and simulated spectra is obtained. With the silver colloids, the observed red-shift of the absorption maximum points to the presence of an ionic layer on the surface of the particles. When this layer is included in the theoretical model, good agreement with the experiment is achieved.

  6. Improving feed slurry rheology by colloidal techniques

    SciTech Connect

    Heath, W.O.; Ternes, R.L.

    1984-06-01

    Pacific Northwest Laboratory (PSN) has investigated three colloidal techniques in the laboratory to improve the sedimentation and flowability of Hanford simulated (nonradioactive) current acid waste (CAW) melter feed slurry: polymer-induced bridging flocculation; manipulating glass former (raw SiO/sub 2/ or frit) particle size; and alteration of nitric acid content. All three methods proved successful in improving the rheology of the simulated CAW feed. This initially had exhibited nearly worst-case flow and clogging properties, but was transformed into a flowable, resuspendable (nonclogging) feed. While each has advantages and disadvantages, the following three specific alternatives proved successful: addition of a polyelectrolyte in 2000 ppM concentration to feed slurry; substitution of a 49 wt % SiO/sub 2/ colloidal suspension (approx. 10-micron particle size) for the -325 mesh (less than or equal to 44-micron particle size) raw-chemical SiO/sub 2/; and increase of nitric acid content from the reference 1.06 M to optimum 1.35 M. The first method, polymer-induced bridging flocculation, results in a high sediment volume, nonclogging CAW feed. The second method, involving the use of colloidal silica particles results in a nonsedimenting feed that when left unagitated forms a gel. The third method, increase in feed acidity, results in a highly resuspendable (nonclogging) melter feed. Further research is therefore required to determine which of the three alternatives is the preferred method of achieving rheological control of CAW melter feeds.

  7. Composition of estuarine colloidal material: organic components

    USGS Publications Warehouse

    Sigleo, A.C.; Hoering, T.C.; Helz, G.R.

    1982-01-01

    Colloidal material in the size range 1.2 nm to 0.4 ??m was isolated by ultrafiltration from Chesapeake Bay and Patuxent River waters (U.S.A.). Temperature controlled, stepwise pyrolysis of the freeze-dried material, followed by gas chromatographic-mass spectrometric analyses of the volatile products indicates that the primary organic components of this polymer are carbohydrates and peptides. The major pyrolysis products at the 450??C step are acetic acid, furaldehydes, furoic acid, furanmethanol, diones and lactones characteristic of carbohydrate thermal decomposition. Pyrroles, pyridines, amides and indole (protein derivatives) become more prevalent and dominate the product yield at the 600??C pyrolysis step. Olefins and saturated hydrocarbons, originating from fatty acids, are present only in minor amounts. These results are consistent with the composition of Chesapeake phytoplankton (approximately 50% protein, 30% carbohydrate, 10% lipid and 10% nucleotides by dry weight). The pyrolysis of a cultured phytoplankton and natural particulate samples produced similar oxygen and nitrogencontaining compounds, although the proportions of some components differ relative to the colloidal fraction. There were no lignin derivatives indicative of terrestrial plant detritus in any of these samples. The data suggest that aquatic microorganisms, rather than terrestrial plants, are the dominant source of colloidal organic material in these river and estuarine surface waters. ?? 1982.

  8. Equilibrium crystal phases of triblock Janus colloids.

    PubMed

    Reinhart, Wesley F; Panagiotopoulos, Athanassios Z

    2016-09-01

    Triblock Janus colloids, which are colloidal spheres decorated with attractive patches at each pole, have recently generated significant interest as potential building blocks for functional materials. Their inherent anisotropy is known to induce self-assembly into open structures at moderate temperatures and pressures, where they are stabilized over close-packed crystals by entropic effects. We present a numerical investigation of the equilibrium phases of triblock Janus particles with many different patch geometries in three dimensions, using Monte Carlo simulations combined with free energy calculations. In all cases, we find that the free energy difference between crystal polymorphs is less than 0.2 kBT per particle. By varying the patch fraction and interaction range, we show that large patches stabilize the formation of structures with four bonds per patch over those with three. This transition occurs abruptly above a patch fraction of 0.30 and has a strong dependence on the interaction range. Furthermore, we find that a short interaction range favors four bonds per patch, with longer range increasingly stabilizing structures with only three bonds per patch. By quantifying the effect of patch geometry on the stability of the equilibrium crystal structures, we provide insights into the fundamental design rules for constructing complex colloidal crystals. PMID:27609002

  9. Light-activated self-propelled colloids

    PubMed Central

    Palacci, J.; Sacanna, S.; Kim, S.-H.; Yi, G.-R.; Pine, D. J.; Chaikin, P. M.

    2014-01-01

    Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap triggers the reaction of decomposition of hydrogen peroxide and produces a chemical cloud around the particle. It induces a phoretic attraction with neighbouring colloids as well as an osmotic self-propulsion of the particle on the substrate. We use these mechanisms to form colloidal cargos as well as self-propelled particles where the light-activated component is embedded into a dielectric sphere. The particles are self-propelled along a direction otherwise randomized by thermal fluctuations, and exhibit a persistent random walk. For sufficient surface density, the particles spontaneously form ‘living crystals’ which are mobile, break apart and reform. Steering the particle with an external magnetic field, we show that the formation of the dense phase results from the collisions heads-on of the particles. This effect is intrinsically non-equilibrium and a novel principle of organization for systems without detailed balance. Engineering families of particles self-propelled by different wavelength demonstrate a good understanding of both the physics and the chemistry behind the system and points to a general route for designing new families of self-propelled particles. PMID:25332383

  10. A molecular view of latex-water interfaces

    NASA Astrophysics Data System (ADS)

    Li, Zifeng; Fichthorn, Kristen; Milner, Scott; Yuan, Fang; Larson, Ronald

    2013-03-01

    Latex paints and coatings are colloidal suspensions, in which amorphous polymer particles are dispersed in an aqueous phase. The polymer-water interface plays a key role in the stability and rheology of the suspension. To obtain a molecular level view of this interface, atomistic simulations were performed for a slab of poly(methyl methacrylate)-poly(butyl acrylate) random copolymer in water, focusing on polymer and water density profiles, the hydrogen bonding of water with polymer carbonyl groups, and surface tension. The carbonyl groups at the interface were found to orient significantly towards water. We also calculated the temperature dependence of the surface tension between the polymer/water and polymer/ vacuum interfaces, including tail corrections for cut-off dispersion interactions, and we predict the contact angle of a water droplet at room temperature. Dow Chemical Corporate

  11. Mechanical Evolution of Bacterial Films at Oil-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Allan, Daniel; Vaccari, Liana; Sheng, Jian; Leheny, Robert; Stebe, Kathleen

    2014-03-01

    Bacteria can assemble at the interface between oil and water to form films that strongly affect the mechanical properties of the interface. In comparison with biofilms on solid substrates, such biofilm formation at fluid-fluid interfaces has been the subject of relatively little study. The microstructure of the films, which can include not only packings of bacteria but macromolecular surfactants secreted by the bacteria and the remains of dead bacteria, resembles a quasi-two-dimensional colloidal suspension in a polymer solution. We have characterized the mechanical response of bacterial films at oil-aqueous interfaces during their formation via passive microrheology and pendant drop imaging. With increasing age, the films undergo a transition from a viscous to an elastic interfacial shear rheology and eventually acquire a bending rigidity. These findings will be discussed in terms of viscoelstic models and in the context of the active nature of the bacteria in the films and in the adjoining aqueous suspension.

  12. On the origin of colloidal particles in the dispersion polymerization of aniline.

    PubMed

    Stejskal, Jaroslav; Sapurina, Irina

    2004-06-15

    When aniline is oxidized in an aqueous medium in the presence of a steric stabilizer, colloidal polyaniline (PANI) dispersions are obtained. The generally accepted model of the stabilization assumes that the macromolecules of the water-soluble steric stabilizer are adsorbed at the polymer, precipitating during the dispersion polymerization, and provide steric protection against further aggregation. An alternative mechanism of conducting-polymer particle formation is proposed in the present study. We suggest that the steric stabilizer provides a site for adsorption of oligoaniline initiation centers; subsequent polymerization from anchored centers yields particle nuclei that grow to produce colloidal PANI particles. This hypothesis is based on the observation that the colloidal particles are obtained only in the case where the steric stabilizer is introduced in the early stages of polymerization when aniline oligomers are present in the reaction mixture. If the stabilizer had been added during the growth of PANI chains, colloidal dispersions would not have been produced. The process of particle growth is completely analogous to the formation of conducting PANI films on the surface of microparticles and various materials. There, the polymerization of aniline at the surfaces is preferred to the same process proceeding in the bulk of the reaction mixture. While the films grow at the interfaces with the reaction mixture, the dispersion particles similarly emanate from the stabilizer chains. The particle size, the formation of nonspherical morphologies, the importance of the chemical nature of the stabilizer chains, and the general relation between the conducting-polymer film and particle growth are discussed in the light of the proposed model.

  13. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    PubMed

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  14. Design and elaboration of colloidal molecules: an overview.

    PubMed

    Duguet, Etienne; Désert, Anthony; Perro, Adeline; Ravaine, Serge

    2011-02-01

    The concept of colloidal molecules was first evoked by van Blaaderen in 2003 for describing small non-spherical colloids made of the aggregation of a small number of particles. He predicted original properties to the complex assemblies of such colloids, in particular in optics. This critical review deals with the different strategies reported for creating robust clusters of spherical particles which could mimic the space-filling models of simple conventional molecules. These routes concern either the controlled clustering of preformed colloids directed by coalescence, physical routes, chemical routes, or 2-D/3-D geometrical confinement, or strategies starting from a single colloid which is decorated by satellite colloids by taking advantage of controlled phase separation or nucleation and growth phenomena. These routes are compared from the viewpoint of the accessible shapes, their tunability and scalability (146 references).

  15. Spatially and temporally reconfigurable assembly of colloidal crystals

    NASA Astrophysics Data System (ADS)

    Kim, Youngri; Shah, Aayush A.; Solomon, Michael J.

    2014-04-01

    The self-assembly of colloidal crystals is important to the production of materials with functional optical, mechanical and conductive properties. Yet, self-assembly methods are limited by their slow kinetics and lack of structural control in space and time. Refinements such as templating and directed assembly partially address the problem, albeit by introducing fixed surface features such as templates or electrodes. A template-free method to reconfigure colloidal crystals simultaneously in three-dimensional space and time would better align work in colloidal assembly with materials applications. Here, we report a photo-induced assembly method that yields regions either filled with colloidal crystals or completely devoid of colloids. The origin of the effect is found to be electrophoresis of colloids generated by photochemistry at an indium tin oxide-coated substrate. Simple optical manipulations are applied to reconfigure these assembly and depletion regions. Thus, the method represents a new kind of template-free, reconfigurable three-dimensional photolithography.

  16. Design and elaboration of colloidal molecules: an overview.

    PubMed

    Duguet, Etienne; Désert, Anthony; Perro, Adeline; Ravaine, Serge

    2011-02-01

    The concept of colloidal molecules was first evoked by van Blaaderen in 2003 for describing small non-spherical colloids made of the aggregation of a small number of particles. He predicted original properties to the complex assemblies of such colloids, in particular in optics. This critical review deals with the different strategies reported for creating robust clusters of spherical particles which could mimic the space-filling models of simple conventional molecules. These routes concern either the controlled clustering of preformed colloids directed by coalescence, physical routes, chemical routes, or 2-D/3-D geometrical confinement, or strategies starting from a single colloid which is decorated by satellite colloids by taking advantage of controlled phase separation or nucleation and growth phenomena. These routes are compared from the viewpoint of the accessible shapes, their tunability and scalability (146 references). PMID:21212874

  17. Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples

    NASA Technical Reports Server (NTRS)

    Kurk, Michael A. (Andy)

    2015-01-01

    Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.

  18. Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry.

    PubMed

    Liu, Minglu; Ma, Yuanyu; Wang, Robert Y

    2015-12-22

    We present a systematic study on the effect of surface chemistry on thermal transport in colloidal nanocrystal (NC) solids. Using PbS NCs as a model system, we vary ligand binding group (thiol, amine, and atomic halides), ligand length (ethanedithiol, butanedithiol, hexanedithiol, and octanedithiol), and NC diameter (3.3-8.2 nm). Our experiments reveal several findings: (i) The ligand choice can vary the NC solid thermal conductivity by up to a factor of 2.5. (ii) The ligand binding strength to the NC core does not significantly impact thermal conductivity. (iii) Reducing the ligand length can decrease the interparticle distance, which increases thermal conductivity. (iv) Increasing the NC diameter increases thermal conductivity. (v) The effect of surface chemistry can exceed the effect of NC diameter and becomes more pronounced as NC diameter decreases. By combining these trends, we demonstrate that the thermal conductivity of NC solids can be varied by an overall factor of 4, from ∼0.1-0.4 W/m-K. We complement these findings with effective medium approximation modeling and identify thermal transport in the ligand matrix as the rate-limiter for thermal transport. By combining these modeling results with our experimental observations, we conclude that future efforts to increase thermal conductivity in NC solids should focus on the ligand-ligand interface between neighboring NCs.

  19. Large-scale production and characterization of biocompatible colloidal nanoalumina.

    PubMed

    Razali, W A W; Sreenivasan, V K A; Goldys, E M; Zvyagin, A V

    2014-12-23

    The rapid uptake of nanomaterials in life sciences calls for the development of universal, high-yield techniques for their production and interfacing with biomolecules. Top-down methods take advantage of the existing variety of bulk and thin-film solid-state materials for improved prediction and control of the resultant nanomaterial properties. We demonstrate the power of this approach using high-energy ball milling (HEBM) of alumina (Al2O3). Nanoalumina particles with a mean size of 25 nm in their most stable α-crystallographic phase were produced in gram quantities, suitable for biological and biomedical applications. Nanomaterial contamination from zirconia balls used in HEBM was reduced from 19 to 2% using a selective acid etching procedure. The biocompatibility of the milled nanomaterial was demonstrated by forming stable colloids in water and physiological buffers, corroborated by zeta potentials of +40 mV and -40 mV and characterized by in vitro cytotoxicity assays. Finally, the feasibility of a milled nanoalumina surface in anchoring a host of functional groups and biomolecules was demonstrated by the functionalization of their surface using facile silane chemistry, resulting in the decoration of the nanoparticle surface with amino groups suitable for further conjugation of biomolecules. PMID:25434921

  20. Dead zones in colloidal quantum dot photovoltaics: evidence and implications.

    PubMed

    Barkhouse, D Aaron R; Kramer, Illan J; Wang, Xihua; Sargent, Edward H

    2010-09-13

    In order to fabricate photovoltaic (PV) cells incorporating light-trapping electrodes, flexible foil substrates, or more than one junction, illumination through the top-contact (i.e.: non-substrate) side of a photovoltaic device is desirable. We investigate the relative collection efficiency for illumination through the top vs. bottom of PbS colloidal quantum dot (CQD) PV devices. The external quantum efficiency spectra of FTO/TiO₂/PbS CQD/ITO PV devices with various PbS layer thicknesses were measured for illumination through either the top (ITO) or bottom (FTO) contacts. By comparing the relative shapes and intensities of these spectra with those calculated from an estimation of the carrier generation profile and the internal quantum efficiency as a function of distance from the TiO₂ interface in the devices, a substantial dead zone, where carrier extraction is dramatically reduced, is identified near the ITO top contact. The implications for device design, and possible means of avoiding the formation of such a dead zone, are discussed.

  1. Cracking in thin films of colloidal particles on elastomeric substrates

    NASA Astrophysics Data System (ADS)

    Smith, Michael; Sharp, James

    2012-02-01

    The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)

  2. Tunable adsorption of soft colloids on model biomembranes.

    PubMed

    Mihut, Adriana M; Dabkowska, Aleksandra P; Crassous, Jérôme J; Schurtenberger, Peter; Nylander, Tommy

    2013-12-23

    A simple procedure is developed to probe in situ the association between lipid bilayers and colloidal particles. Here, a one-step method is applied to generate giant unilamellar 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles (GUVs) by application of an alternating electric field directly in the presence of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) microgels. We demonstrate that the soft PNIPAM microgel particles act as switchable stabilizers for lipid membranes. The change of the particle conformation from the swollen to the collapsed state enables the reversible control of the microgel adsorption as a function of temperature. At 20 °C, the swollen and hydrophilic soft microgel particles adsorb evenly and densely pack in 2D hexagonal arrays at the DOPC GUV surfaces. In contrast, at 40 °C, that is, above the volume phase transition temperature (TVPT = 32 °C) of the PNIPAM microgels, the collapsed and more hydrophobic particles partially desorb and self-organize into domains at the GUV/GUV interfaces. This study shows that thermoresponsive PNIPAM microgels can be used to increase and control the stability of lipid vesicles where the softness and deformability of these types of particles play a major role. The observed self-assembly, where the organization and position of the particles on the GUV surface can be controlled "on demand", opens new routes for the design of nanostructured materials.

  3. Multiarm Star Polymers as Model Soft Colloids

    NASA Astrophysics Data System (ADS)

    Vlassopoulos, Dimitris

    2010-03-01

    Over the last decade, star polymers emerged as a useful model colloids that interpolate between polymers and hard sphere colloids. Together with microgels, they represent two benchmark soft colloidal systems, their internal structure being the key difference. Indeed, in the case of stars with open structure, the arms can interpenetrate in dense suspensions. The latter feature, that can be probed experimentally, is responsible for a number of interesting structural and dynamic properties of star polymers that set them apart from microgels. In this talk we present the basic properties of star polymers and focus on their extraordinary behavior in the highly concentrated regime, which is typically glassy. Our rheological and scattering experiments demonstrate unique features of the star glasses. Here we discuss two major ones: (i) Aging after pre-shear (the so-called rejuvenation) proceeds via a two-step process, associated with a fast arm engagement and a slow cooperative (cage) rearrangement. Remarkably, at extremely long times a steady state is observed and the terminal time in these systems can be experimentally accessible (and hence tailored at molecular level), as a consequence of the arms fluctuations. (ii) Multiple glassy states can be obtained when mixing stars with polymers or with other stars. Simultaneous theoretical and simulations work suggests that the softness is at the core of this unexpected behavior where depletion gives rise to glass melting and eventually re-entrant glasses are formed. Construction of a state diagram suggests kinetic pathways for tailoring the flow of soft colloids. These examples outline the importance of particle architecture on colloidal properties. Stars are a representative of a large class of hairy particles. The parallel important developments in mode coupling theory and its verses provide much needed predictive tools and rationalization for a number of phenomena such as those discussed here, as well as the complex

  4. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    PubMed

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  5. Internal Dynamics of Equilibrium Colloidal Clusters

    NASA Astrophysics Data System (ADS)

    Perry, Rebecca Wood

    Colloidal clusters, aggregates of a few micrometer-sized spherical particles, are a model experimental system for understanding the physics of self-assembly and processes such as nucleation. Colloidal clusters are well suited for studies on these topics because they are the simplest colloidal system with internal degrees of freedom. Clusters made from particles that weakly attract one another continually rearrange between different structures. By characterizing these internal dynamics and the structures connected by the rearrangement pathways, we seek to understand the statistical physics underlying self-assembly and equilibration. In this thesis, we examine the rearrangement dynamics of colloidal clusters and analyze the equilibrium distributions of ground and excited states. We prepare clusters of up to ten microspheres bound by short-range depletion interactions that are tuned to allow equilibration between multiple isostatic arrangements. To study these clusters, we use bright-field and digital holographic microscopy paired with computational post-processing to amass ensemble-averaged and time-averaged probabilities. We study both two-dimensional (2D) and three-dimensional (3D) clusters composed of either one or two species of particles. To learn about geometrical nucleation barriers, we track rearrangements of particles within freely rotating and translating 3D clusters. We show that rearrangements occur on a timescale of seconds, consistent with diffusion-dominated internal dynamics. To better understand excited states and transition pathways, we track hundreds of rearrangements between degenerate ground states in 2D clusters. We show that the rearrangement rates can be understood using a model with two parameters, which account for the diffusion coefficient along the excited-state rearrangement pathways and the interaction potential. To explore new methods to control self-assembly, we analyze clusters of two species with different masses and different

  6. Colloid mobilization by fluid displacement fronts in channels.

    PubMed

    Lazouskaya, Volha; Wang, Lian-Ping; Or, Dani; Wang, Gang; Caplan, Jeffrey L; Jin, Yan

    2013-09-15

    Understanding colloid mobilization during transient flow in soil is important for addressing colloid and contaminant transport issues. While theoretical descriptions of colloid detachment exist for saturated systems, corresponding mechanisms of colloid mobilization during drainage and imbibition have not been considered in detail. In this work, theoretical force and torque analyses were performed to examine the interactive effects of adhesion, drag, friction, and surface tension forces on colloid mobilization and to outline conditions corresponding to the mobilization mechanisms such as lifting, sliding, and rolling. Colloid and substrate contact angles were used as variables to determine theoretical criteria for colloid mobilization mechanisms during drainage and imbibition. Experimental mobilization of hydrophilic and hydrophobic microspheres with drainage and imbibition fronts was investigated in hydrophilic and hydrophobic channels using a confocal microscope. Colloid mobilization differed between drainage and imbibition due to different dynamic contact angles and interfacial geometries on the contact line. Experimental results did not fully follow the theoretical criteria in all cases, which was explained with additional factors not included in the theory such as presence of aggregates and trailing films. Theoretical force and torque analyses resulted in similar mobilization predictions and suggested that all mobilization mechanisms contributed to the observed colloid mobilization.

  7. Study of the stability coated and uncoated nanosilver colloid

    NASA Astrophysics Data System (ADS)

    Harsojo, Respitaningrum, Afrianto, Toto; Sosiati, Harini

    2013-09-01

    The stability of nanosilver colloids made using electrochemical process and chemical process were investigated. In the process using a DC generator cell, two silver electrodes under a DC voltage were used to generate the colloid. In the chemical process the colloid was made using the dilution of AgNO3 in deionized water with the addition of sodium citrate. To increase the stability to this colloid was added polyvinyl alcohol. The stability In those three colloids were investigated using UV-Vis spectrometer. The size of the nano Ag was measured using transmission electron microscope (TEM). The study reveals that within period of two weeks the trend toward a stable colloid is shown by colloid using DC generator. The addition of PVA may stabilize the unstable colloid made using the chemichal process and reduce the size particle to significantly smaller particle compared to the one made using DC generator cell. The condition of obtaining the stable nano colloid silver with smaller particle size was discussed.

  8. Engineering the structures and shapes of colloidal particles

    NASA Astrophysics Data System (ADS)

    Lu, Yu

    Well-defined colloidal particles have wide applications in optics, electronics, catalysis and diagnostics. Considerable effort has recently been devoted to the design and controlled fabrication of colloidal particles with various functionalities. Effective strategies to build tailored colloidal particles reliably and predictably are required in order to meet the ever-increasing demands placed on colloidal materials science. The properties of colloidal particles strongly depend on their size, composition, shape, and spatial organization. This research will develop a few strategies to modify these parameters in producing new types of colloidal particles for a number of applications. The first goal is to coat colloidal particles of metals, metal oxides, and polymers with thin shells of different materials, such as oxides and polymers. The obtained core-shell materials generally have enhanced or specific performance due to the combined properties and/or structuring effects of the components. They will be used as new building blocks in constructing plasmonic waveguides and three-dimensional (3D) photonic crystals. The second goal of this research is to fabricate nonspherical colloidal particles with uniform sizes and shapes. Both direct and indirect methods will be used in producing monodispersed nonspherical colloidal samples. Self-assembly approaches will be explored to organize the nonspherical building blocks into 3D highly ordered lattices. The optical properties of the crystals with nonspherical lattice points will be also studied.

  9. Three-dimensional colloidal crystals in liquid crystalline blue phases

    PubMed Central

    Ravnik, Miha; Alexander, Gareth P.; Yeomans, Julia M.; Žumer, Slobodan

    2011-01-01

    Applications for photonic crystals and metamaterials put stringent requirements on the characteristics of advanced optical materials, demanding tunability, high Q factors, applicability in visible range, and large-scale self-assembly. Exploiting the interplay between structural and optical properties, colloidal lattices embedded in liquid crystals (LCs) are promising candidates for such materials. Recently, stable two-dimensional colloidal configurations were demonstrated in nematic LCs. However, the question as to whether stable 3D colloidal structures can exist in an LC had remained unanswered. We show, by means of computer modeling, that colloidal particles can self-assemble into stable, 3D, periodic structures in blue phase LCs. The assembly is based on blue phases providing a 3D template of trapping sites for colloidal particles. The particle configuration is determined by the orientational order of the LC molecules: Specifically, face-centered cubic colloidal crystals form in type-I blue phases, whereas body-centered crystals form in type-II blue phases. For typical particle diameters (approximately 100 nm) the effective binding energy can reach up to a few 100 kBT, implying robustness against mechanical stress and temperature fluctuations. Moreover, the colloidal particles substantially increase the thermal stability range of the blue phases, for a factor of two and more. The LC-supported colloidal structure is one or two orders of magnitude stronger bound than, e.g., water-based colloidal crystals. PMID:21368186

  10. Analysis of colloidal phases in urban stormwater runoff

    SciTech Connect

    Grout, H.; Wiesner, M.R.; Bottero, J.Y.

    1999-03-15

    The composition and morphology of colloidal materials entering an urban waterway (Brays Bayou, Houston, USA) during a storm event was investigated. Analyses of organic carbon, Si, Al, Fe, Cr, Cu, Mn, Zn, Ca, Mg, and Ba were performed on the fraction of materials passing through a 0.45 {micro}m filter. This fraction, traditionally defined as dissolved, was further fractionated by ultracentrifugation into colloidal and dissolved fractions. Colloids, operationally defined by this procedure, accounted for 17% of the carbon, 32% of the silica, 79% of the Al, 85% of the Fe, 52% of the Cr, 43% of the Mn, and 29% of the Zn present in filtrates when averaged over the storm event. However, the composition of colloidal material was observed to change over time. For example, colloids were predominantly composed of silica during periods of dry weather flow and at the maximum of the stormwater flow, while carbon dominated the colloidal fraction at the beginning and declining stages of the storm event. These changes in colloidal composition were accompanied by changes in colloidal morphologies, varying from organic aggregates to diffuse gel-like structures rich in Si, Al, and Fe. The colloidal phase largely determined the variability of elements in the 0.45 {micro}m filtrate.

  11. Statics and dynamics of colloidal particles on optical tray arrays

    SciTech Connect

    Reichardt, Charles; Reichhardt, Cynthia J

    2009-01-01

    We examine the statics and dynamics of charged colloids interacting with periodic optical trap arrays. In particular we study the regime where more than one colloid is confined in each trap, creating effective dimer, trimer, and higher order states called colloidal molecular crystals. The n-mer states have all effective orientational degree of freedom which can be controlled with an external driving field. In general, the external field causes a polarization effect where the orientation of the n-mers aligns with the external field, similar to liquid crystal systems. Additionally, under a rotating external drive the n-mers can rotate with the drive. In some cases a series of structural transitions in the colloidal crystal states occur in the rotating field due to a competition between the ordering of the colloidal molecular crystals and the polarization effect which orients the n-mers in the direction of the drive. We also show that for some parameters, the n-mers continuously rotate with the drive without witching, that depinning transitions can occur where the colloids jump from well to well, and that there are a number of distinct dynamical transitions between the phases. Finally, we illustrate colloidal orderings at fillings of more than four colloids per trap, indicating that it is possible to create higher order colloidal crystal cluster phases.

  12. Test of the Universal Scaling Law of Diffusion in Colloidal Monolayers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Chen, Wei; Wang, Ziren; Peng, Yuan; Han, Yilong; Tong, Penger

    2013-02-01

    Using the techniques of optical microscopy and particle tracking, we measure the pair correlation function and Brownian diffusion in monolayers of strongly interacting colloidal particles suspended at or near three different interfaces and test the universal scaling law of the normalized diffusion coefficient, D˜≃eαΔS, as a function of the excess entropy ΔS for a wide range of particle concentrations. It is found that the universal scaling law with α=1 holds well for highly charged polystyrene spheres suspended at an air-water interface, where the strong electrostatic interactions play a dominant role. For monolayer suspensions of hard-sphere-like particles, where hydrodynamic interactions become important, deviations from the universal scaling law are observed. The experiment indicates that the hydrodynamic corrections could be incorporated into the universal scaling law of diffusion with an exponent α<1.

  13. Charge regulation at semiconductor-electrolyte interfaces.

    PubMed

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution.

  14. Modes of surface premelting in colloidal crystals composed of attractive particles.

    PubMed

    Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong

    2016-03-24

    Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface

  15. Modes of surface premelting in colloidal crystals composed of attractive particles

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong

    2016-03-01

    Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal–vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid–solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid–vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid–solid transitions challenges existing theories of

  16. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  17. Observation and characterization of colloids derived from leached cement hydrates

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Sugiyama, D.; Swanton, S. W.; Myatt, B. J.

    2003-03-01

    The possibility of colloid generation from cement hydrates in a cementitious repository environment has been investigated through leaching experiments. Pulverized samples of High Flyash and Silica fume-content Cement (HFSC) and 1:9 ordinary portland cement/blast furnace slag (1:9 OPC/BFS) hydrate were leached in low-salinity groundwater at three solid-to-liquid (S/L) mass ratios (1:5, 1:50 and 1:100), and two temperatures (20 and 60 °C) for durations of nearly 2 and 8 months. Detailed characterization of colloid populations has been undertaken by TEM coupled with X-ray analysis. In addition, the surface charge and stability behavior of colloids have been investigated. The colloid concentrations in HFSC hydrate leachates generated at 20 and 60 °C show similar trends with S/L ratio. The colloid concentrations of leachates with the lower S/L ratio (1:50 and 1:100) are in the range of 10 11-10 12 particles per liter. The majority of these particles are composed predominantly of Si, Ca, and Al; the mean particle size is less than 100 nm. The lowest colloid concentrations are found in the leachates with the highest S/L ratios, and the colloid populations tend to be dominated by larger particles. HFSC-derived colloid stability is due to a high negative zeta potential at alkaline pH values, combined with a calcium concentration that is below the critical coagulation concentration (CCC) for the colloids. A preliminary interpretation of HFSC-derived colloid stability based on classical DLVO theory provides a semi-quantitative explanation of the dependence of colloid populations on the S/L ratio in the leaching experiments.

  18. Physics of Colloids in Space (PCS): Microgravity Experiment Completed Operations on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Sankaran, Subramanian

    2003-01-01

    Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.

  19. Developing new synthetic methods for colloidal hybrid nanoparticles: Conversion chemistry and chemoselectivity

    NASA Astrophysics Data System (ADS)

    Bradley, Matthew

    Colloidal hybrid nanoparticles contain multiple domains, and through their solidsolid interfaces, can facilitate synergistic relationships between domains, resulting in the incorporation of multiple functionalities as well as modification of the intrinsic properties of each domain. Although there is a growing number of materials and applications associated with these unique types of particles, new synthetic methods must be investigated in order to realize the full potential of this new class of particles. To address this need, we demonstrate that the concepts used in total synthesis of complex organic molecules, can be applied to the synthesis of colloidal hybrid nanoparticles. Site selective growth, conversion chemistry, condensation chemistry, and protection/deprotection reactions are examined as ways to add complexity to colloidal hybrid nanoparticles. First, we will discuss the synthesis of PtPb-Fe3O4 and Pt3Sn-Fe3O4 heterodimer particles via a solution mediated conversion chemistry process. These types of reactions are known to be useful for nanoparticle systems but had not been explored as a method for adding complexity to colloidal heterodimers. Pt-Fe3O 4 heterodimers react with Pb(acac)2 and Sn(acac)2 at 180-200°C in a mixture of benzyl ether, oleylamine, oleic acid, and tert-butylamine borane to form PtPb-Fe3O4 and Pt3Sn-Fe3O4 heterodimers, respectively. This chemical transformation reaction introduces intermetallic and alloy components into the heterodimers, proceeds with morphological retention, and preserves the solid-solid interface that characterizes these hybrid nanoparticle systems. In addition, the PtPb-Fe3O4 heterodimers spontaneously aggregate to form colloidally stable (PtPb-Fe3O4) n nanoflowers via a process that is conceptually analogous to a molecular condensation reaction. Next, we will discuss the methanol oxidation activity of PtPb-Fe 3O4 and Pt3Sn- Fe3O4 heterodimers as well as examine the role of ligand exchange in this process. Before

  20. New materials for tunable plasmonic colloidal nanocrystals.

    PubMed

    Comin, Alberto; Manna, Liberato

    2014-06-01

    We present a review on the emerging materials for novel plasmonic colloidal nanocrystals. We start by explaining the basic processes involved in surface plasmon resonances in nanoparticles and then discuss the classes of nanocrystals that to date are particularly promising for tunable plasmonics: non-stoichiometric copper chalcogenides, extrinsically doped metal oxides, oxygen-deficient metal oxides and conductive metal oxides. We additionally introduce other emerging types of plasmonic nanocrystals and finally we give an outlook on nanocrystals of materials that could potentially display interesting plasmonic properties.