Science.gov

Sample records for advance promising electric-vehicle

  1. Advanced electric vehicle

    SciTech Connect

    O'Connell, L.G.

    1980-07-01

    The Advanced Electric Vehicle is defined as an automobile which can fulfill the general-purpose role of today's internal-combustion-engine-powered car without utilizing petroleum fuels directly. It relies principally on the utilization of electricity. A number of candidate systems are described. The present status of each is discussed as are the problems to be overcome before implementation can proceed.

  2. Advanced batteries for electric vehicles

    SciTech Connect

    Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. )

    1994-11-01

    The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

  3. Recycling of Advanced Batteries for Electric Vehicles

    SciTech Connect

    JUNGST,RUDOLPH G.

    1999-10-06

    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

  4. Advanced ac powertrain for electric vehicles

    SciTech Connect

    Slicker, J.M.; Kalns, L.

    1985-01-01

    The design of an ac propulsion system for an electric vehicle includes a three-phase induction motor, transistorized PWM inverter/battery charger, microprocessor-based controller, and two-speed automatic transaxle. This system was built and installed in a Mercury Lynx test bed vehicle as part of a Department of Energy propulsion system development program. An integral part of the inverter is a 4-kw battery charger which utilizes one of the bridge transistors. The overall inverter strategy for this configuration is discussed. The function of the microprocessor-based controller is described. Typical test results of the total vehicle and each of its major components are given, including system efficiencies and test track performance results.

  5. Electric vehicles look promising for use in utility fleets

    SciTech Connect

    Minner, D.

    1984-06-01

    The Electric Vehicle Development Corp. (EVDV) expects EV fleets to find a market for urban driving, especially among service fleets, once mass production begins. Electric utilities joined to form EVDC in order to keep abreast of research developments and the results of demonstrations taking place in several cities, where driver acceptance in utility demonstration programs is high. Major auto makers still need persuasion to develop a commercial prototype. Marketing will focus on controlled fleets having the management skills and the motivation to make the program work.

  6. Hydro-Quebec powertrain for electric vehicles looks promising

    SciTech Connect

    Hobart, S.

    1995-05-01

    This article is a review of Hydro-Quebec`s electric vehicle design efforts. This design incorporates electric motors into each wheel, which is expected to result in high torque at all speeds and improved handling and traction. The design is thought to be highly efficient because: (1) it is better at transforming stored energy into usable mechanical energy, and (2) regenerative braking and better aerodynamics require less energy at the wheels to propel the vehicle. System designers expect to have the system installed in a full-size vehicle (a Chrysler Intrepid) by early 1996, and eventually, Hydro-Quebec expects to sell the technology to automakers.

  7. Results of advanced battery technology evaluations for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-09-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  8. Results of advanced batter technology evaluations for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-01-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

  9. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  10. Advancements in electric and hybrid electric vehicle technology

    SciTech Connect

    1994-12-31

    Contents of this volume include: Influence of Battery Characteristics on Traction Drive Performance; Chassis Design for a Small Electric City Car; Thermal Comfort of Electric Vehicles; Power Quality Problems at Electric Vehicle`s Charging Station; The Development and Performance of the AMPhibian Hybrid Electric Vehicle; The Selection of Lead-Acid Batteries for Use in Hybrid Electric Vehicles; and more.

  11. Recycling readiness of advanced batteries for electric vehicles

    SciTech Connect

    Jungst, R.G.

    1997-09-01

    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  12. An assessment of research and development leadership in advanced batteries for electric vehicles

    SciTech Connect

    Bruch, V.L.

    1994-02-01

    Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

  13. An assessment of research and development leadership in advanced batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Bruch, V. L.

    1994-02-01

    Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles' heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

  14. Advanced batteries for electric vehicles-A status report

    SciTech Connect

    Walsh, W.J.

    1981-01-01

    The candidate battery systems for electric vehicles have been evaluated on a common basis. The batteries with the highest probability of successful development and commercialization appear to be lead-acid, nickel-iron, nickel-zinc, zinc-chlorine, lithium-metal sulfide, and sodium sulfur. The relative development risk was assessed and compared to the desirability of the corresponding batteries.

  15. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  16. Laboratory evaluation of advanced battery technologies for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Kulaga, J.E.; Hogrefe, R.L.; Tummilo, A.F.; Webster, C.E.

    1989-01-01

    During 1988, battery technology evaluations were performed for the Department of Energy and Electric Power Research Institute at the Argonne Analysis and Diagnostic Laboratory. Cells and multicell modules from four developers were examined to determine their performance and life characteristics for electric vehicle propulsion applications. The results provide an interim measure of the progress being made in battery RandD programs, a comparison of battery technologies, and a source of basic data for modeling and continuing RandD. This paper summarizes the performance and life characterizations of twelve single cells and six 3- to 24-cell modules that encompass four technologies (Na/S, Ni/Fe, lead-acid, and Fe/Air). 4 figs., 1 tab.

  17. Laboratory evaluation of advanced battery technologies for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Kulaga, J.E.; Hogrefe, R.L.; Tummillo, A.F.; Webster, C.E.

    1989-01-01

    During 1988, battery technology evaluations were performed for the Department of Energy and Electric Power Research Institute at the Argonne Analysis and Diagnostic Laboratory. Cells and multicell modules from four developers were examined to determine their performance and life characteristics for electric vehicle propulsion applications. the results provide an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R and D. This paper summarizes the performance and life characterizations of twelve single cells and six 3- to 24-cell modules that encompass four technologies (Na/S, Ni/Fe, lead-acid, and Fe/Air).

  18. Advanced batteries for electric vehicle applications: Nontechnical summary

    NASA Astrophysics Data System (ADS)

    Henriksen, G. L.

    This paper provides an overview of the performance characteristics of the most prominent batteries under development for electric vehicles (EV's) and compares these characteristics to the USABC Mid-Term and Long-Term criteria, as well as to typical vehicle-related battery requirements. Most of the battery performance information was obtained from independent tests, conducted using simulated driving power profiles, for DOE and EPRI at Argonne National Laboratory. The EV batteries are categorized as near-term, mid-term, and long-term technologies based on their relative development status, as well as our estimate of their potential availability as commercial EV batteries. Also, the performance capabilities generally increase in going from the near-term to the mid-term and on to the long-term technologies. To date, the USABC has chosen to fund a few selected mid-term and long-term battery technologies.

  19. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  20. Electric Vehicle Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  1. An advanced energy management system for controlling the ultracapacitor discharge and improving the electric vehicle range

    NASA Astrophysics Data System (ADS)

    Armenta, Jesús; Núñez, Ciro; Visairo, Nancy; Lázaro, Isabel

    2015-06-01

    Over the last years issues regarding both the use and the improvement of energy management in electric vehicles have been highlighted by industry and academic fields. Some of the research has been focused on exploiting the ultracapacitor characteristics and on protecting the battery life. From this standpoint, this paper proposes an advanced energy management system based on the adequate discharge of the ultracapacitor bank in order to utilize all the energy available from the regenerative breaking. In this way, the energy consumption is reduced and the electric vehicle range is increased. This strategy, based on simple rules, takes advantage of the high power density of the ultracapacitor and prevents an overstress of the battery. The benefits are featured using three standard drive cycles for a 1550 kg electric vehicle via simulations.

  2. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    SciTech Connect

    Caruthers, James; Dietz, J.; Pelter, Libby; Chen, Jie; Roberson, Glen; McGinn, Paul; Kizhanipuram, Vinodegopal

    2013-01-31

    The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college student electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.

  3. Electric vehicle traction motors - The development of an advanced motor concept

    NASA Technical Reports Server (NTRS)

    Campbell, P.

    1980-01-01

    An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.

  4. Advanced electric vehicle controls and power conversion electronics for transit buses and light rail

    SciTech Connect

    Peticolas, B.W.

    1994-12-31

    The majority of development which has taken place in AC electric vehicle drive technology has focused on small vehicles (i.e. 3,000 lbs and less) with emphasis on high performance and rapid acceleration. Examples of this type of development are the GM Impact and the Ford Ecostar. These vehicles have been developed to demonstrate technology advances by Detroit, but the high performance capabilities of these vehicles have raised expectations that cannot be met with contemporary batteries, or perhaps, any batteries. Larger vehicles such as buses, trucks, and even light rail cars may in fact be better near term targets for electric conversion since many of these vehicles have lower performance demands, and operate on fixed routes with designated stops for several minutes, allowing ``opportunity`` charging for range extension. The basis of this paper is to propose a near term drive system for large vehicles that overcomes some of the problems of electric vehicles to date, while providing a platform which is adaptable to future improvements in technology. The advanced transit bus will not only require power electronics for the vehicle drive, but will require power electronics and electric actuators for a variety of nonpropulsion equipment such as air conditioning, wheel chair lifts, and power steering. 6 refs.

  5. Research and development of advanced nickel-iron batteries for electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    The purpose of this program was to develop and demonstrate an advanced nickel-iron battery suitable for use in electric vehicles. During the course of this contract various steps were taken to improve nickel-iron battery performance while reducing cost. Improvement of the nickel electrode through slurry formulations and substrate changes, as seen with the fiber electrode, were investigated. Processing parameters for impregnation and formation were also manipulated to improve efficiency. Impregnation saw the change of anode type from platinized titanium to the consumable nickel anode. Formation changes were also made allowing for doubled processing capabilities of positive electrodes, a savings in both time and money. A final design change involved the evolution of the NIF-200 from the NIF-220. This change permitted the use of 1.2 mm iron electrodes and maintained the necessary performance characteristics for electric vehicle propulsion. Emphasis on a pilot plant became the main focus during the late 1989 - 90 period. The pilot plant facility would be a culmination of the program providing the best product at the lowest price.

  6. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  7. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect

    2012-01-01

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  8. Performance and life evaluation of advanced battery technologies for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1991-01-01

    Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R D. 1 ref., 4 figs., 2 tabs.

  9. Performance and life evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis and Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies: (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R and D.

  10. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  11. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  12. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect

    Lai, Jason; Yu, Wensong; Sun, Pengwei; Leslie, Scott; Prusia, Duane; Arnet, Beat; Smith, Chris; Cogan, Art

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  13. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility

    NASA Astrophysics Data System (ADS)

    Rezvanizaniani, Seyed Mohammad; Liu, Zongchang; Chen, Yan; Lee, Jay

    2014-06-01

    As hybrid and electric vehicle technologies continue to advance, car manufacturers have begun to employ lithium ion batteries as the electrical energy storage device of choice for use in existing and future vehicles. However, to ensure batteries are reliable, efficient, and capable of delivering power and energy when required, an accurate determination of battery performance, health, and life prediction is necessary. This paper provides a review of battery prognostics and health management (PHM) techniques, with a focus on major unmet needs in this area for battery manufacturers, car designers, and electric vehicle drivers. A number of approaches are presented that have been developed to monitor battery health status and performance, as well as the evolution of prognostics modeling methods. The goal of this review is to render feasible and cost effective solutions for dealing with battery life issues under dynamic operating conditions.

  14. Batteries for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  15. Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Newnham, R. H.; Ozgun, H.; Fleming, F. A.

    A novel design of lead-acid battery has been developed for use in hybrid electric vehicles (HEVs). The battery has current take-offs at both ends of each of the positive and negative plates. This feature markedly reduces battery operating temperatures, improves battery capacity, and extends cycle-life under HEV duty. The battery also performs well under partial-state-of-charge (PSoC)/fast-charge, electric-vehicle operation. The improvements in performance are attributed to more uniform utilization of the plate active-materials. The battery, combined with an internal-combustion engine and a new type of supercapacitor, will be used to power an HEV, which is being designed and constructed by an Australian industry-government consortium.

  16. Recent advances in the US Department of Energy's energy storage technology research and development programs for hybrid electric and electric vehicles

    NASA Astrophysics Data System (ADS)

    Weinstock, Irwin B.

    This paper provides an overview of recent advances in battery technology resulting from the Department of Energy's (DOE's) energy storage research and development (R&D) programs for hybrid electric vehicles (HEVs) and electrical vehicles (EVs). The DOE's Office of Advanced Automotive Technologies (OAAT) is working with industry, national laboratories, universities, and other government agencies to develop technologies that will lead to a reduction in the petroleum used and the emissions generated by the transportation sector. The programs reviewed in this paper are focused on accelerating the development of energy storage technologies that are critical for the commercialization of HEVs and EV. These include the research conducted at DOE's national laboratories to develop the high-power batteries needed for hybrid electric vehicles (HEVs) and the collaborative research with the US Advanced Battery Consortium (USABC) to develop the high-energy batteries needed for EVs.

  17. Advanced electric propulsion system concept for electric vehicles. Addendum 1: Voltage considerations

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1980-01-01

    The two electric vehicle propulsion systems that best met cost and performance goals were examined to assess the effect of battery pack voltage on system performance and cost. A voltage range of 54 to 540 V was considered for a typical battery pack capacity of 24 k W-hr. The highest battery specific energy (W-hr/kg) and the lowest cost ($/kW-hr) were obtained at the minimum voltage level. The flywheel system traction motor is a dc, mechanically commutated with shunt field control, and due to the flywheel the traction motor and the battery are not subject to extreme peaks of power demand. The basic system uses a permanent-magnet motor with electronic commutation supplied by an ac power control unit. In both systems battery cost were the major factor in system voltage selection, and a battery pack with the minimum voltage of 54 V produced the lowest life-cycle cost. The minimum life-cycle cost for the basic system with lead-acid batteries was $0.057/km and for the flywheel system was $0.037/km.

  18. Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles

    NASA Astrophysics Data System (ADS)

    Neubauer, Jeremy; Pesaran, Ahmad; Bae, Chulheung; Elder, Ron; Cunningham, Brian

    2014-12-01

    Battery electric vehicles (BEVs) offer significant potential to reduce the nation's consumption of petroleum based products and the production of greenhouse gases however, their widespread adoption is limited largely by the cost and performance limitations of modern batteries. With recent growth in efforts to accelerate BEV adoption (e.g. the Department of Energy's (DOE) EV Everywhere Grand Challenge) and the age of existing BEV battery technology targets, there is sufficient motivation to re-evaluate the industry's technology targets for battery performance and cost. Herein we document the analysis process that supported the selection of the United States Advanced Battery Consortium's (USABC) updated BEV battery technology targets. Our technology agnostic approach identifies the necessary battery performance characteristics that will enable the vehicle level performance required for a commercially successful, mass market full BEV, as guided by the workgroup's OEM members. The result is an aggressive target, implying that batteries need to advance considerably before BEVs can be both cost and performance competitive with existing petroleum powered vehicles.

  19. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    SciTech Connect

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  20. Research and development of advanced lead-acid batteries for electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    Andrew, M. G.; Bowman, D. E.

    1987-04-01

    The purpose was to develop an advanced lead-acid battery based on the concept of forced flow of electrolyte through porous electrodes for enhanced battery performance. The objectives were: specific energy of 42 Wh/kg, energy density of 70 Wh/l, and cycle life of 100 cycles. Accomplishments were: 35 flow-through cells with reduced construction time, higher fiber content in the positive active materials (PAM) with increased strength by a factor of 3, high-density PAM for increased life without utilization losses, confirmation of solid-state relaxation theory, methods for measuring permeability, 31 cycles achieved in C-450, oxygen recombination in many test cells, electrolyte reservoir can be below the top of the cells, and completed designs for positive and negative flow-through grids and for the injection molds to produce the grid/plastic laminates.

  1. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  2. Electric vehicle propulsion alternatives

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  3. Electric vehicle technology

    SciTech Connect

    Not Available

    1990-01-01

    This book contains proceedings on electric vehicle technology. Topics covered include: flow-by lead-acid---improving the performance standard for EV battery systems; Townobile purpose-built electric commuter cars, vans and mini-buses; An electric van with extended range; and The future of electric vehicles in meeting the air quality challenges in Southern California.

  4. Energy 101: Electric Vehicles

    SciTech Connect

    2012-01-01

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  5. Electric Vehicle Battery Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  6. Energy 101: Electric Vehicles

    ScienceCinema

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  7. Electric-vehicle batteries

    NASA Astrophysics Data System (ADS)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  8. 1997 hybrid electric vehicle specifications

    SciTech Connect

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  9. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric

  10. Hybrid Turbine Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  11. Hybrid electric vehicles TOPTEC

    SciTech Connect

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  12. Electric vehicle drive systems

    NASA Astrophysics Data System (ADS)

    Appleyard, M.

    1992-01-01

    New legislation in the State of California requires that 2% of vehicles sold there from 1998 will be 'zero-emitting'. This provides a unique market opportunity for developers of electric vehicles but substantial improvements in the technology are probably required if it is to be successfully exploited. There are around a dozen types of battery that are potentially relevant to road vehicles but, at the present, lead/acid and sodium—sulphur come closest to combining acceptable performance, life and cost. To develop an efficient, lightweight electric motor system requires up-to-date techniques of magnetics design, and the latest power-electronic and microprocessor control methods. Brushless machines, coupled with solid-state inverters, offer the most economical solution for mass production, even though their development costs are higher than for direct-current commutator machines. Fitted to a small car, even the highest energy-density batteries will only provide around 200 km average range before recharging. Therefore, some form of supplementary on-board power generation will probably be needed to secure widespread acceptance by the driving public. Engine-driven generators of quite low power can achieve useful increases in urban range but will fail to qualify as 'zero-emitting'. On the other hand, if the same function could be economically performed by a small fuel-cell using hydrogen derived from a methanol reformer, then most of the flexibility provided by conventional vehicles would be retained. The market prospects for electric cars would then be greatly enhanced and their dependence on very advanced battery technology would be reduced.

  13. The Electric Vehicle Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  14. Electric vehicle activities

    NASA Astrophysics Data System (ADS)

    Delmonaco, J. L.; Pandya, D. A.

    1995-02-01

    The data and information collected for the Public Service Electric and Gas Company's (PSE&G) electric vehicle demonstration program were intended to support and enhance DOE's Electric and Hybrid Vehicle Site Operator Program. The DOE Site Operator Program is focused on the life cycle and reliability of Electric Vehicles (EV's). Of particular interest are vehicles currently available with features that are likely to be put into production or demonstrate new technology. PSE&G acquired eight GMC Electric G-Vans in 1991, and three TEVans in 1993, and conducted a program plan to test and assess the overall performance of these electric vehicles. To accomplish the objectives of DOE's Site Operator's test program, a manual data collection system was implemented. The manual data collection system has provided energy use and mileage data. From September 1991 to October 1994 PSE&G logged 69,368 miles on eleven test vehicles. PSE&G also demonstrated the EVs to diverse groups and associations at fifty seven various events. Included in the report are lessons learned concerning maintenance, operation, public reactions, and driver's acceptance of the electric vehicles.

  15. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  16. Research results from the Advanced Lead-Acid Battery Consortium point the way to longer life and higher specific energy for lead/acid electric-vehicle batteries

    NASA Astrophysics Data System (ADS)

    Moseley, P. T.

    Amidst the welter of publicity devoted to the newer battery chemistries, the remarkable progress made by lead/acid battery technologists in response to the needs of the emerging electric-vehicle market has tended to be overlooked. The flooded design of battery, launched by Gaston Planté around 1860, has given way to a valve-regulated variant which has a history dating only from the 1970s. The key parameters of this `maintenance free' battery have been improved markedly during the course of the development programme of the Advanced Lead-Acid Battery Consortium (ALABC), and it is likely that lead/acid will continue to feature strongly in motive-power applications as a result of its cost advantage and of its enhanced effectiveness.

  17. Simple Electric Vehicle Simulation

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  18. Electric Vehicle Battery Performance

    1992-02-20

    DIANE is used to analyze battery performance in electric vehicle (EV) applications. The principal objective of DIANE is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. Two releases are included with the package. Diane21 has a graphics capability; DIANENP has no graphics capability.

  19. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  20. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  1. Overview of electrochemical power sources for electric and hybrid-electric vehicles.

    SciTech Connect

    Dees, D. W.

    1999-02-12

    Electric and hybrid-electric vehicles are being developed and commercialized around the world at a rate never before seen. These efforts are driven by the prospect of vehicles with lower emissions and higher fuel efficiencies. The widespread adaptation of such vehicles promises a cleaner environment and a reduction in the rate of accumulation of greenhouse gases, Critical to the success of this technology is the use of electrochemical power sources such as batteries and fuel cells, which can convert chemical energy to electrical energy more efficiently and quietly than internal combustion engines. This overview will concentrate on the work being conducted in the US to develop advanced propulsion systems for the electric and hybrid vehicles, This work is spearheaded by the US Advanced Battery Consortium (USABC) for electric vehicles and the Partnership for a New Generation of Vehicle (PNGV) for hybrid-electric vehicles, both of which can be read about on the world wide web (www.uscar.tom). As is commonly known, electric vehicles rely strictly on batteries as their source of power. Hybrid-electric vehicles, however, have a dual source of power. An internal combustion engine or eventually a fuel cell supplies the vehicle with power at a relatively constant rate. A battery pack (much smaller than a typical electric-vehicle battery pack) provides the vehicle with its fast transient power requirements such as during acceleration. This hybrid arrangement maximizes vehicle fuel efficiency. Electric and hybrid-electric vehicles will also be able to convert the vehicle's change in momentum during braking into electrical energy and store it in its battery pack (instead of lose the energy as heat). This process, known as regenerative braking, will add to the vehicle's fuel efficiency in an urban environment.

  2. Assessment of US electric vehicle programs with ac powertrains

    SciTech Connect

    Kevala, R.J. . Transportation Consulting Div.)

    1990-02-01

    AC powertrain technology is a promising approach to improving the performance of electric vehicles. Four major programs are now under way in the United States to develop ac powertrains: the Ford/General Electric single-shaft electric propulsion system (ETX-II), the Eaton dual-shaft electric propulsion system (DSEP), the Jet Propulsion Laboratories (JPL) integrated ac motor drive and recharge system, and the Massachusetts Institute of Technology (MIT) variable reluctance motor (VRM) drive. The JPL program is sponsored by EPRI; the other three programs are funded by the US Department of Energy. This preliminary assessment of the four powertrain programs focuses on potential performance, costs, safety, and commercial feasibility. Interviews with program personnel were supplemented by computer simulations of electric vehicle performance using the four systems. Each of the four powertrains appears superior to standard dc powertrain technology in terms of performance and weight. The powertrain technologies studied in this assessment are at varying degrees of technological maturity. One or more of the systems may be ready for incorporation into an advanced electric vehicle during the early 1990s. Each individual report will have a separate abstract. 5 refs., 37 figs., 29 tabs.

  3. BEEST: Electric Vehicle Batteries

    SciTech Connect

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  4. Going Green with Electric Vehicles

    ERIC Educational Resources Information Center

    Deal, Walter F., III

    2010-01-01

    There is considerable interest in electric and hybrid cars because of environmental and climate change concerns, tougher fuel efficiency standards, and increasing dependence on imported oil. In this article, the author describes the history of electric vehicles in the automotive world and discusses the components of a hybrid electric vehicle.…

  5. Environmental implication of electric vehicles in China.

    PubMed

    Huo, Hong; Zhang, Qiang; Wang, Michael Q; Streets, David G; He, Kebin

    2010-07-01

    Today, electric vehicles (EVs) are being proposed in China as one of the potential options to address the dramatically increasing energy demand from on-road transport. However, the mass use of EVs could involve multiple environmental issues, because EVs use electricity that is generated primarily from coal in China. We examined the fuel-cycle CO(2), SO(2), and NO(x) emissions of EVs in China in both current (2008) and future (2030) periods and compared them with those of conventional gasoline vehicles and gasoline hybrids. EVs do not promise much benefit in reducing CO(2) emissions currently, but greater CO(2) reduction could be expected in future if coal combustion technologies improve and the share of nonfossil electricity increases significantly. EVs could increase SO(2) emissions by 3-10 times and also double NO(x) emissions compared to gasoline vehicles if charged using the current electricity grid. In the future, EVs would be able to reach the NO(x) emission level of gasoline vehicles with advanced emission control devices equipped in thermal power plants but still increase SO(2). EVs do represent an effective solution to issues in China such as oil shortage, but critical policy support is urgently needed to address the environmental issues caused by the use of EVs to make EVs competitive with other vehicle alternatives. PMID:20496930

  6. New electric-vehicle batteries

    SciTech Connect

    Oman, H.

    1994-12-31

    Electric vehicles that can`t reach trolley wires need batteries. In the early 1900`s electric cars disappeared when owners found that replacing the car`s worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today`s electric cars are still propelled by lead-acid batteries. General Motors` Impact, for example, uses starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon`s new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda travelled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck travelled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour. 12 refs.

  7. Electric vehicle performance in 1994 DOE competitions

    SciTech Connect

    Quong, S.; Duoba, M.; Larsen, R.; LeBlanc, N.; Gonzales, R.; Buitrago, C.

    1995-06-01

    The US Department of Energy (DOE) through Argonne National Laboratory sponsored and recorded energy data of electric vehicles (EVs) at five competitions in 1994. Each competition provided different test conditions (closed-track, on-road, and dynamometer). The data gathered at these competitions includes energy efficiency, range, acceleration, and vehicle characteristics. The results of the analysis show that the vehicles performed as expected. Some of the EVs were also tested on dynamometers and compared to gasoline vehicles, including production vehicles with advanced battery systems. Although the EVs performed well at these competitions, the results show that only the vehicles with advanced technologies perform as well or better than conventional gasoline vehicles.

  8. Electric vehicle performance in 1994 DOE competitions

    NASA Astrophysics Data System (ADS)

    Quong, Spencer; Duoba, Michael; Larsen, Robert; Leblanc, Nicole; Gonzales, Richard; Buitrago, Carlos

    The US Department of Energy (DOE) through Argonne National Laboratory sponsored and recorded energy data of electric vehicles (EV's) at five competitions in 1994. Each competition provided different test conditions (closed-track, on-road, and dynamometer). The data gathered at these competitions includes energy efficiency, range, acceleration, and vehicle characteristics. The results of the analysis show that the vehicles performed as expected. Some of the EV's were also tested on dynamometers and compared to gasoline vehicles, including production vehicles with advanced battery systems. Although the EV's performed well at these competitions, the results show that only the vehicles with advanced technologies perform as well or better than conventional gasoline vehicles.

  9. Impact of increased electric vehicle use on battery recycling infrastructure

    SciTech Connect

    Vimmerstedt, L.; Hammel, C.; Jungst, R.

    1996-12-01

    State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

  10. EPRI electric vehicle conference

    SciTech Connect

    Pfleeger, D.

    1999-10-01

    Lower operating and maintenance costs, quiet and clean operation appear the main factors in choosing electric over the typical internal combustion powered equipment. The Conference was sponsored by the Electric Power Research Institute (EPRI). EPRI is a cooperative effort by major electric companies across the USA, founded in 1973 and headquartered in Palo Alto, CA. Featured at the Conference were presentations on regulatory issues, lift truck technologies, automotive advances and other industrial applications to include automated guided vehicles, personnel carriers and electric bicycles. Approximately 25 exhibitors displayed components, subassemblies and complete vehicles.

  11. Overview of Sandia's electric vehicle battery program

    NASA Astrophysics Data System (ADS)

    Clark, R. P.

    1993-11-01

    Sandia National Laboratories is actively involved in several projects which are part of an overall Electric Vehicle Battery Program. Part of this effort is funded by the United States Department of Energy/Office of Transportation Technologies (DOE/OTT) and the remainder is funded through the United States Advanced Battery Consortium (USABC). DOE/OTT supported activities include research and development of zinc/air and sodium/sulfur battery technologies as well as double layer capacitor (DLC) R&D. Projects in the USABC funded work include lithium/polymer electrolyte (LPE) R&D, sodium/sulfur activities and battery test and evaluation.

  12. Air-Conditioning for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Popinski, Z.

    1984-01-01

    Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.

  13. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  14. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  15. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  16. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  17. Hybrid and Plug-in Electric Vehicles

    SciTech Connect

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  18. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  19. Electric vehicle energy management system

    NASA Astrophysics Data System (ADS)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  20. 77 FR 24560 - National Highway Traffic Safety Administration Electric Vehicle Safety Technical Symposium

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... electric vehicles powered by lithium-ion (Li-ion) batteries. The symposium will include brief NHTSA presentations outlining current agency research and activities related to Li-ion batteries and Li-ion battery... lithium-ion (Li-ion) battery-powered vehicles. Electric vehicles show great promise as an innovative...

  1. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    NASA Astrophysics Data System (ADS)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  2. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Humphreys, K. K.; Brown, D. R.

    1990-01-01

    A comparison is presented of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O and M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O and M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O and M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  3. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  4. Battery requirements for electric vehicles

    NASA Astrophysics Data System (ADS)

    Gosden, D. F.

    1993-05-01

    As interest grows in the possibility of electric vehicles (EVs) replacing conventional internal-combustion-engined-powered vehicles in many major cities, attention is being given to the development of improved batteries. Heavy-duty, lead/acid batteries have served the needs of low-performance vehicles, such as milk floats and fork-lifts, for many years. The demands of high performance in a lightweight vehicle, however, have increased the battery loading substantially. The performance requirements of a modern, traffic-compatible EV are reviewed and corresponding requirements on the battery discussed.

  5. Electric Vehicle Site Operator Program

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one electric or hybrid van and four electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two Soleq 1992 Ford EVcort stationwagons.

  6. Electric Vehicle Site Operator Program

    SciTech Connect

    Not Available

    1992-01-01

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

  7. Lithium Battery Power Delivers Electric Vehicles to Market

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Hybrid Technologies Inc., a manufacturer and marketer of lithium-ion battery electric vehicles, based in Las Vegas, Nevada, and with research and manufacturing facilities in Mooresville, North Carolina, entered into a Space Act Agreement with Kennedy Space Center to determine the utility of lithium-powered fleet vehicles. NASA contributed engineering expertise for the car's advanced battery management system and tested a fleet of zero-emission vehicles on the Kennedy campus. Hybrid Technologies now offers a series of purpose-built lithium electric vehicles dubbed the LiV series, aimed at the urban and commuter environments.

  8. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  9. Network Infrastructure for Electric Vehicle Charging

    NASA Astrophysics Data System (ADS)

    Lim, Yujin; Park, Jaesung; Ahn, Sanghyun

    Controlled charging of electric vehicles can take care of fluctuating electricity supply. In this paper, we design network infrastructure to collect and deliver data of charging data of electric vehicles to remote monitoring center. In our network infrastructure, we analyze and compare the existing routing mechanisms for multi-hop wireless networks from aspect of the control overhead for the path establishment.

  10. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  11. Electric vehicle drive train components

    SciTech Connect

    Silver, F.

    1994-12-31

    Power Control Systems has developed a family of electric vehicle drive systems that range from 65 horsepower through 300 horse power. These propulsion systems support vehicle applications ranging from light cars and pickups to buses and trucks weighing as much as 40,000 lbs (18,400 kg). These robust systems are designed specifically for automotive applications including safety, electromagnetic emissions, and environment ruggedness. Dolphin Drive Systems are very flexible. Their inverter controllers are programmable and can be provided as stand alone components matched to customer specified motors. A selection of pre-calibrated systems including motor and inverter/controller can be provided. Accessory tools are also available for customer self programming. Dolphin Drive Systems provide precision control of AC induction motors providing excellent torque-speed performance usually eliminating the need for multistage transmissions. In addition, they are very efficient over a wide speed/torque range. This provides for excellent power management over a variety of continuous speed and stop and go applications.

  12. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect

    J. Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  13. Zinc air battery development for electric vehicles

    SciTech Connect

    Putt, R.A. )

    1990-05-01

    This document reports the progress and accomplishments of a 16 month program to develop a rechargeable zinc-air battery for electric vehicle propulsion, from October 1988 through January 1990. The program was the first stage in the transition of alkaline zinc electrode technology, invented at Lawrence Berkeley Laboratory, to private industry. The LBL invention teaches the use of a copper metal foam substrate for the zinc electrode, in combination with forced convection of electrolyte through the foam during battery operation. Research at LBL showed promise that this approach would avoid shape change (densification and dendrite growth), the primary failure mode of this electrode. The program comprised five tasks; (1) cell design, (2) capacity maximization, (3) cycle testing, (4) materials qualification, and (5) a cost/design study. The cell design contemplates a plate and frame stack, with alternating zinc and oxygen electrode frame assemblies between rigid end plates. A 200 Ah cell, as may be required for the EV application, would comprise a stack of five zinc and six oxygen electrode frame/assemblies. 8 figs., 2 tabs.

  14. Electric vehicle battery research and development

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1973-01-01

    High energy battery technology for electric vehicles is reviewed. The state-of-the-art in conventional batteries, metal-gas batteries, alkali-metal high temperature batteries, and organic electrolyte batteries is reported.

  15. Electric Vehicles at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  16. Electric Vehicles--A Historical Snapshot

    ERIC Educational Resources Information Center

    Kraft, Thomas E.

    2012-01-01

    Most people don't realize that the history of electric vehicles (EVs) predates the Civil War. This article provides a historical snapshot of EVs to spark the interest of both teachers and students in this important transportation technology.

  17. The ANL electric vehicle battery R&D program for DOE-EHP

    NASA Astrophysics Data System (ADS)

    1993-06-01

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce air pollution and petroleum consumption due to the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, and project management on advanced battery technologies for DOE-EHP. The battery-related activities undertaken during the period of 1 Jan. 1993 through 31 Mar. 1993 are summarized. The objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: Project Management; Sodium/Metal Chloride R&D and Microreference Electrodes for Lithium/Polymer Batteries.

  18. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  19. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  20. Feasibility study of advanced technology hov systems. Volume 2A. Feasibility of implementing roadway-powered electric vehicle technology in El-Monte busway. A case study. Research report

    SciTech Connect

    Chira-Chavala, T.; Lechner, E.H.; Empey, D.M.

    1992-12-01

    Electric vehicles (EV's) are essentially emission free,' in that they themselves do not emit pollutants while running on the road or stopping in traffic, although power plants supplying electric power to them do. One way to increase the range of EV's between overnight battery recharging is through the use of roadway powered electric vehicles (RPEV's). These are hybrid electric-electric vehicles using an inductive' coupling power transfer principle, whereby energy in the battery is supplemented by energy transferred to the vehicle through an inductive coupling system (ICS). RPEV's can operate both on and off the electrified roadway. The objective of this study is to assess the feasibility of early deployment of the RPEV technology in existing high-occupancy-vehicle (HOV) facilities in California.

  1. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  2. S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1

    SciTech Connect

    Not Available

    1992-12-01

    Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

  3. Impact of propulsion system R and D on electric vehicle performance and cost

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.; Gordan, A. L.

    1980-01-01

    The efficiency, weight, and manufacturing cost of the propulsion subsystem (motor, motor controller, transmission, and differential, but excluding the battery) are major factors in the purchase price and cost of ownership of a traffic-compatible electric vehicle. The relative impact of each was studied, and the conclusions reached are that propulsion system technology advances can result in a major reduction of the sticker price of an electric vehicle and a smaller, but significant, reduction in overall cost of ownership.

  4. Vehicle to grid: electric vehicles as an energy storage solution

    NASA Astrophysics Data System (ADS)

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  5. The promise of advanced technology for future air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1978-01-01

    Progress in all weather 4-D navigation and wake vortex attenuation research is discussed and the concept of time based metering of aircraft is recommended for increased emphasis. The far term advances in aircraft efficiency were shown to be skin friction reduction and advanced configuration types. The promise of very large aircraft, possibly all wing aircraft is discussed, as is an advanced concept for an aerial relay transportation system. Very significant technological developments were identified that can improve supersonic transport performance and reduce noise. The hypersonic transport was proposed as the ultimate step in air transportation in the atmosphere. Progress in the key technology areas of propulsion and structures was reviewed. Finally, the impact of alternate fuels on future air transports was considered and shown not to be a growth constraint.

  6. Controlling death: the false promise of advance directives.

    PubMed

    Perkins, Henry S

    2007-07-01

    Advance directives promise patients a say in their future care but actually have had little effect. Many experts blame problems with completion and implementation, but the advance directive concept itself may be fundamentally flawed. Advance directives simply presuppose more control over future care than is realistic. Medical crises cannot be predicted in detail, making most prior instructions difficult to adapt, irrelevant, or even misleading. Furthermore, many proxies either do not know patients' wishes or do not pursue those wishes effectively. Thus, unexpected problems arise often to defeat advance directives, as the case in this paper illustrates. Because advance directives offer only limited benefit, advance care planning should emphasize not the completion of directives but the emotional preparation of patients and families for future crises. The existentialist Albert Camus might suggest that physicians should warn patients and families that momentous, unforeseeable decisions lie ahead. Then, when the crisis hits, physicians should provide guidance; should help make decisions despite the inevitable uncertainties; should share responsibility for those decisions; and, above all, should courageously see patients and families through the fearsome experience of dying. PMID:17606961

  7. 26 CFR 1.30-1 - Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 1 2013-04-01 2013-04-01 false Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle. 1.30-1 Section 1.30-1 Internal Revenue INTERNAL REVENUE... qualified electric vehicle and recapture of credit for qualified electric vehicle. (a) Definition...

  8. 26 CFR 1.30-1 - Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle. 1.30-1 Section 1.30-1 Internal Revenue INTERNAL REVENUE... qualified electric vehicle and recapture of credit for qualified electric vehicle. (a) Definition...

  9. 26 CFR 1.30-1 - Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 1 2012-04-01 2012-04-01 false Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle. 1.30-1 Section 1.30-1 Internal Revenue INTERNAL REVENUE... qualified electric vehicle and recapture of credit for qualified electric vehicle. (a) Definition...

  10. 26 CFR 1.30-1 - Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle. 1.30-1 Section 1.30-1 Internal Revenue INTERNAL REVENUE... qualified electric vehicle and recapture of credit for qualified electric vehicle. (a) Definition...

  11. 26 CFR 1.30-1 - Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 1 2014-04-01 2013-04-01 true Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle. 1.30-1 Section 1.30-1 Internal Revenue INTERNAL REVENUE... qualified electric vehicle and recapture of credit for qualified electric vehicle. (a) Definition...

  12. New batteries and their impact on electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1977-01-01

    The paper is concerned with the development of electric vehicles and electric vehicle batteries. The present and predicted performance levels of some battery systems such as lead-acid, nickel-iron, nickel-zinc, and zinc-chlorine are considered, as are the characteristics that an electric vehicle must possess in order to appeal to customers. The implications of battery improvements for manufacturers of electric vehicles are discussed. Lack of knowledge of passenger range requirements for electric vehicles is noted.

  13. Advanced batteries for electric vehicle applications

    SciTech Connect

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  14. Mechanically refuelable zinc/air electric vehicle cells

    NASA Astrophysics Data System (ADS)

    Noring, J.; Gordon, S.; Maimoni, A.; Spragge, M.; Cooper, J. F.

    1992-12-01

    Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells, and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration - factors which define the essential functions of common automobiles. Such an electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.

  15. Mechanically refuelable zinc/air electric vehicle cells

    SciTech Connect

    Noring, J.; Gordon, S.; Maimoni, A.; Spragge, M.; Cooper, J.F.

    1992-12-01

    Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration -- factors which define the essential functions of common automobiles. Such a electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described in this report focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.

  16. Design study of flat belt CVT for electric vehicles

    NASA Technical Reports Server (NTRS)

    Kumm, E. L.

    1980-01-01

    A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

  17. Variable-Reluctance Motor For Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Lang, Jeffrey H.

    1987-01-01

    Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

  18. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect

    Gao, Yimin

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS

  19. Nissan Hypermini Urban Electric Vehicle Testing

    SciTech Connect

    James Francfort; Robert Brayer

    2006-01-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), which is part of DOE’s FreedomCAR and Vehicle Technologies Program, in partnership with the California cities of Vacaville and Palm Springs, collected mileage and maintenance and repairs data for a fleet of eleven Nissan Hypermini urban electric vehicles (UEVs). The eleven Hyperminis were deployed for various periods between January 2001 and June 2005. During the combined total of 439 months of use, the eleven Hyperminis were driven a total of 41,220 miles by staff from both cities. This equates to an average use of about 22 miles per week per vehicle. There were some early problems with the vehicles, including a charging problem and a need to upgrade the electrical system. In addition, six vehicles required drive system repairs. However, the repairs were all made under warranty. The Hyperminis were generally well-liked and provided drivers with the ability to travel any of the local roads. Full charging of the Hypermini’s lithiumion battery pack required up to 4 hours, with about 8–10 miles of range available for each hour of battery charging. With its right-side steering wheel, some accommodation of the drivers’ customary driving methods was required to adapt for different blind spots and vehicle manipulation. For that reason, the drivers received orientation and training before using the vehicle. The Hypermini is instrumented in kilometers rather than in miles, which required an adjustment for the drivers to calculate speed and range. As the drivers gained familiarity with the vehicles, there was increased acceptance and a preference for using it over traditional city vehicles. In all cases, the Hyperminis attracted a great amount of attention and interest from the general public.

  20. Identification of potential locations of electric vehicle supply equipment

    NASA Astrophysics Data System (ADS)

    Brooker, R. Paul; Qin, Nan

    2015-12-01

    Proper placement of electric vehicle supply equipment (charging stations) requires an understanding of vehicle usage patterns. Using data from the National Household Travel Survey on vehicle mileage and destination patterns, analyses were performed to determine electric vehicles' charging needs, as a function of battery size and state of charge. This paper compares electric vehicle charging needs with Department of Energy electric vehicle charging data from real-world charging infrastructure. By combining the electric vehicles charging needs with charging data from real-world applications, locations with high electric vehicle charging likelihood are identified.

  1. New propulsion components for electric vehicles

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1982-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  2. New propulsion components for electric vehicles

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1983-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982

  3. Electric Vehicles. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John E., Comp.

    This document reviews the literature in the collections of the Library of Congress on electric vehicles. Not intended as a comprehensive bibliography, this guide is designed as the title implies, to put the reader "on target." This is of greatest utility to the beginning student of the topic. (AA)

  4. Test and evaluation of electric vehicles

    NASA Astrophysics Data System (ADS)

    The Los Angeles Department of Water and Power currently operates 11 electric vehicles: 6 G-Vans, 4 Chrysler TEVans, and 1 Hybrid minivan. LADWP's participation in US DOE's site operator program involves the Hybrid electric minivan (manufactured by Unique Mobility, Englewood, CO) and one Chrysler TEVan. The program efforts are described.

  5. Overview of Sandia`s Electric Vehicle Battery Program

    SciTech Connect

    Clark, R.P.

    1993-12-31

    Sandia National Laboratories is actively involved several projects which are part of an overall Electric Vehicle Battery Program. Part of this effort is funded by the United States Department of Energy/Office of Transportation Technologies (DOE/OTT) and the remainder is funded through the United States Advanced Battery Consortium (USABC). DOE/OTT supported activities include research and development of zinc/air and sodium/sulfur battery technologies as well as double layer capacitor (DLC) R&D. Projects in the USABC funded work include lithium/polymer electrolyte (LPE) R&D, sodium/sulfur activities and battery test and evaluation.

  6. 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  7. 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  8. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  9. Electric Vehicle Careers: On the Road to Change

    ERIC Educational Resources Information Center

    Hamilton, James

    2012-01-01

    Many occupations related to electric vehicles are similar to those that help to make and maintain all types of automobiles. But the industry is also adding some nontraditional jobs, and workers' skill sets must evolve to keep up. This article describes careers related to electric vehicles. The first section is about the electric vehicle industry…

  10. Medium Duty Electric Vehicle Demonstration Project

    SciTech Connect

    Mackie, Robin J. D.

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  11. Multilevel Inverters for Electric Vehicle Applications

    SciTech Connect

    Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

    1998-10-22

    This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

  12. Trouble shooting system for an electric vehicle

    SciTech Connect

    Horiuchi, M.

    1986-01-14

    This patent describes a trouble shooting system for an electric vehicle. The electric vehicle contains a driving mechanism, a driving operation part and a control device. The driving mechanism includes a power source, an electric motor and a modality for controlling output level from the power supply to the electric motor in response to the driving operation part. The control device includes a microprocessor which receives commands from the driving operation part and supplies a control signal to the driving mechanism in response to a stored drive control program. The trouble shooting system consists of control device storage mechanisms for storing trouble shooting programs for various parts of the vehicle which are executed by the microprocessor. This system also includes a command generating modality responsive to manual operation for supplying a command to the microprocessor to initiate the execution and read out of a selected trouble shooting program and a method by which the microprocessor may display the program being processed.

  13. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun; DeVault, Robert C

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major

  14. Sodium sulfur electric vehicle battery engineering program final report, September 2, 1986--June 15, 1993

    SciTech Connect

    1993-06-01

    In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for its platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.

  15. The ANL Electrichemical Program for DOE on electric vehicle R D

    SciTech Connect

    Not Available

    1992-01-01

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of July 1, 1992 through September 30, 1992. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: Project Management and Coordination; Lithium/Sulfide Batteries; Advanced Sodium/Beta Batteries; Advanced Ambient-Temperature Batteries; and EV Battery Performance and Life Evaluation.

  16. The ANL electric vehicle battery R D program for DOE-EHP

    SciTech Connect

    Not Available

    1992-01-01

    The Electrochemical Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby. significantly reduce petroleum consumption in the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of October 1, 1991 through March 31, 1992. In this report, the objective, background, technical progress, and status are described for each task. These tasks are structured into the following task areas: 1.0 Project Management and Coordination; 2.0 Lithium/Sulfide Batteries; 3.0 Advanced Sodium/Beta Batteries; 4.0 Advanced Ambient-Temperature Batteries; 5.0 EV Battery Performance and Life Evaluation.

  17. The ANL Electrochemical Program for DOE on electric vehicle R/D

    NASA Astrophysics Data System (ADS)

    1992-11-01

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of July 1, 1992 through September 30, 1992. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: Project Management and Coordination; Lithium/Sulfide Batteries; Advanced Sodium/Beta Batteries; Advanced Ambient-Temperature Batteries; and EV Battery Performance and Life Evaluation.

  18. The ANL electric vehicle battery R/D program for DOE-EHP

    NASA Astrophysics Data System (ADS)

    1992-11-01

    The Electrochemical Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby, significantly reduce petroleum consumption in the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery and fuel cell technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of October 1, 1991 through March 31, 1992. In this report, the objective, background, technical progress, and status are described for each task. These tasks are structured into the following task areas: 1.0 Project Management and Coordination; 2.0 Lithium/Sulfide Batteries; 3.0 Advanced Sodium/Beta Batteries; 4.0 Advanced Ambient-Temperature Batteries; 5.0 eV Battery Performance and Life Evaluation.

  19. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  20. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  1. Hybrid electric vehicle power management system

    DOEpatents

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  2. Wireless Power Transfer for Electric Vehicles

    SciTech Connect

    Scudiere, Matthew B; McKeever, John W

    2011-01-01

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  3. Realizing the electric-vehicle revolution

    NASA Astrophysics Data System (ADS)

    Tran, Martino; Banister, David; Bishop, Justin D. K.; McCulloch, Malcolm D.

    2012-05-01

    Full battery electric vehicles (BEVs) have become an important policy option to mitigate climate change, but there are major uncertainties in the scale and timing of market diffusion. Although there has been substantial work showing the potential energy and climate benefits of BEVs, demand-side factors, such as consumer behaviour, are less recognized in the debate. We show the importance of assessing BEV diffusion from an integrated perspective, focusing on key interactions between technology and behaviour across different scales, including power-system demand, charging infrastructure, vehicle performance, driving patterns and individual adoption behaviour.

  4. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    SciTech Connect

    Love, Lonnie J.

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  5. Energy and environmental impacts of electric vehicle battery production and recycling

    SciTech Connect

    Gaines, L.; Singh, M.

    1995-12-31

    Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle.

  6. UTILITY OF BIG AREA ADDITIVE MANUFACTURING (BAAM) FOR THE RAPID MANUFACTURE OF CUSTOMIZED ELECTRIC VEHICLES

    SciTech Connect

    Love, Lonnie J

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  7. Electric Vehicle Grid Interaction Exploration: Cooperative Research and Development Final Report, CRADA Number CRD-11-431

    SciTech Connect

    Simpson, M.

    2013-09-01

    Under this agreement NREL plans to collect, analyze, and share with Xcel Energy data regarding the driving and charging performance of plug-in electric vehicles. NREL will research activities critical to energy storage, electric propulsion, and the emerging issues surrounding the integration of vehicles into the current and future grid. It will provide NREL with access to one of the firstall-electric vehicles available in the market as part of NREL's Advanced Technology Vehicle Fleet (ATVF).

  8. Polymer selection and cell design for electric-vehicle supercapacitors

    SciTech Connect

    Mastragostino, M.; Arbizzani, C.; Paraventi, R.; Zanelli, A.

    2000-02-01

    Supercapacitors are devices for applications requiring high operating power levels, such as secondary power sources in electric vehicles (EVs) to provide peak power for acceleration and hill climbing. While electronically conducting polymers yield different redox supercapacitor configurations, devices with the n-doped polymer as the negative electrode and the p-doped polymer as the positive one are the most promising for EV applications. Indeed, this type of supercapacitor has a high operating potential, is able to deliver all the doping charge and, when charged, has both electrodes in the conducting (p- and n-doped) states. This study reports selection criteria for polymer materials and cell design for high performance EV supercapacitors and experimental results of selected polymer materials.

  9. The ANL electric vehicle battery R D program for DOE-EHP

    SciTech Connect

    Not Available

    1990-01-01

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  10. Hybrid electric vehicles in Europe and Japan

    SciTech Connect

    Wyczalek, F.A.

    1996-12-31

    Beginning in 1990, the major automotive passenger vehicle manufacturers once again reexamined the battery powered electric vehicle (EV). This intensive effort to reduce the battery EV to commercial practice focused attention on the key issue of limited vehicle range, resulting from the low energy density and high mass characteristics of batteries, in comparison to liquid hydrocarbon fuels. Consequently, by 1995, vehicle manufacturers turned their attention to hybrid electric vehicles (HEV). This redirection of EV effort is highlighted by the focus on experimental hybrid EV displayed at the 1995 Frankfurt Motor Show and the Tokyo Motor Show in Japan. In Europe the 56th IAA in Frankfurt included twelve or more EV designed for personnel transportation, and among them, two featured hybrid-electric (HEV) systems: the Peugeot turboelectric HEV, and the Opel Ermscher Selectra HEV. In Japan, at the 31st Tokyo Motor Show, among the twenty or more EV on display, seven were hybrid HEV by: Daihatsu, Mitsubishi, Toyota: and, the Suburu, Suzuki, and the Kia KEV4 parallel type HEV. This paper presents a comparative analysis of the key features of these hybrid propulsion systems. Among the conclusions, two issues are evident: one, the focus is on series-type hybrid systems, with the exception of the parallel Suburu and Suzuki HEV, and, two, the major manufacturers are turning to the hybrid concept in their search for solutions to two key EV Issues: limited driving range; and, heating and air conditioning, associated with the low energy density characteristic of batteries.

  11. Market mature 1998 hybrid electric vehicles

    SciTech Connect

    Wyczalek, F.A.

    1998-07-01

    Beginning in 1990, the major automotive passenger vehicle manufacturers once again re-evaluated the potential of the battery powered electric vehicle (EV). This intensive effort to reduce the battery EV to commercial practice focused attention on the key issue of limited vehicle range, resulting from the low energy density and high mass characteristics of batteries, in comparison to the high energy density of liquid hydrocarbon (HC) fuels. Consequently, by 1995, vehicle manufacturers turned their attention to hybrid electric vehicles (HEV). This redirection of EV effort was highlighted finally, in 1997, at the 57th Frankfurt Motor Show, the Audi Duo parallel type hybrid was released for the domestic market as a 1998 model vehicle. Also at the 1997 32nd Tokyo Motor Show, the Toyota Hybrid System (THS) Prius was released for the domestic market as a 1998 model vehicle. This paper presents a comparative analysis of the key features of these two 1998 model year production hybrid propulsion systems. Among the conclusions, two issues are evident: one, the major manufacturers have turned to the hybrid concept in their search for solutions to the key EV issues of limited range and heating/air conditioning; and, two, the focus is now on introducing hybrid EV for test marketing domestically.

  12. Gelled-electrolyte batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  13. Optimal Decentralized Protocol for Electric Vehicle Charging

    SciTech Connect

    Gan, LW; Topcu, U; Low, SH

    2013-05-01

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guide their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.

  14. A cycle timer for testing electric vehicles

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.

    1978-01-01

    A cycle timer was developed to assist the driver of an electric vehicle in more accurately following and repeating SAE driving schedules. These schedules require operating an electric vehicle in a selected stop-and-go driving cycle and repeating this cycle pattern until the vehicle ceases to meet the requirements of the cycle. The heart of the system is a programmable read-only memory (PROM) that has the required test profiles permanently recorded on plug-in cards, one card for each different driving schedule. The PROM generates a direct current analog signal that drives a speedometer displayed on one scale of a dual movement meter. The second scale of the dual movement meter displays the actual speed of the vehicle as recorded by the fifth wheel. The vehicle operator controls vehicle speed to match the desired profile speed. The PROM controls the recycle start time as well as the buzzer activation. The cycle programmer is powered by the test vehicle's 12-volt accessory battery, through a 5-volt regulator and a 12-volt dc-to-dc converter.

  15. Critical behaviour in charging of electric vehicles

    NASA Astrophysics Data System (ADS)

    Carvalho, Rui; Buzna, Lubos; Gibbens, Richard; Kelly, Frank

    2015-09-01

    The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on two real-world distribution networks. We show that the system undergoes a continuous phase transition to a congested state as a function of the rate of vehicles plugging to the network to charge. We focus on the order parameter and its fluctuations close to the phase transition, and show that the critical point depends on the choice of congestion protocol. Finally, we analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more equitable in proportional fairness than in max-flow.

  16. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  17. Zinc-bromine battery design for electric vehicles

    NASA Astrophysics Data System (ADS)

    Bellows, R. J.; Grimes, P.; Einstein, H.; Kantner, E.; Malachesky, P.; Newby, K.

    1983-02-01

    Design projections for zinc-bromine batteries are attractive for electric vehicle applications in terms of low manufacturing costs ($28/kWh) and good performance characteristics. Zinc-bromine battery projections (60-80 Wh/kg, 130-200 W/kg) compare favorably to both current lead acid batteries and proposed advanced battery candidates. The performance of recently developed battery components with 1200 sq/cm electrodes in a 120V, 10 kWh module is described. Similarly constructed smaller scale (600 sq/cm) components have shown lifetimes exceeding 400 cycles and the ability to follow both regenerative braking (J227aD) and random cycling regimes. Initial dynamometer evaluations of full scale 20 kWh batteries is expected in early 1984.

  18. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  19. Battery Test Manual For Electric Vehicles, Revision 3

    SciTech Connect

    Christophersen, Jon P.

    2015-06-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Electric Vehicles (EV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for EVs. However, it does share some methods described in the previously published battery test manual for plug-in hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Chul Bae of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  20. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles

    PubMed Central

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station’s density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  1. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    PubMed

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  2. Advancing Knowledge-Building Discourse through Judgments of Promising Ideas

    ERIC Educational Resources Information Center

    Chen, Bodong; Scardamalia, Marlene; Bereiter, Carl

    2015-01-01

    Evaluating promisingness of ideas is an important but underdeveloped aspect of knowledge building. The goal of this research was to examine the extent to which Grade 3 students could make promisingness judgments to facilitate knowledge-building discourse. A Promising Ideas Tool was added to Knowledge Forum software to better support…

  3. Combination Therapy Shows Promise for Treating Advanced Breast Cancer

    Cancer.gov

    Adding the drug everolimus (Afinitor®) to exemestane helped postmenopausal women whose advanced breast cancer had stopped responding to hormonal therapy live about 4 months longer without the disease progressing than women who received exemestane alone.

  4. The ANL electric vehicle battery R/D program for DOE-EHP

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid PropuLsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce air pollution and petroleum consumption. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, and technical management of industrial R&D contracts on advanced battery technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of 1 Oct. 1992 - 31 Dec. 1992. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Project Management and Coordination; 2.0 Sodium/Metal Chloride R&D 3.0 Microreference Electrodes for Lithium/Polymer Batteries; and 4.0 USABC Support. The Project Management and Coordination Task Area encompasses planning, organization, coordination, integration, and overall management of battery R&D projects for DOE-EHP, as well as work performed in behalf of DOE-directed inter-laboratory tasks. Section 3 of this report recounts the work performed during this reporting period on each task within these task areas.

  5. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  6. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  7. The requirements for batteries for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1976-01-01

    The paper reassesses the role of electric vehicles in the modern transportation system and their potential impact on oil consumption. Three major factors determining the size of this impact are discussed: the market potential, the date of introduction, and the rate of consumer acceptance. The strategy of selecting the battery type for an urban car to introduce in coming years is analyzed. The results of the analysis suggest that the research and development emphasis should be placed on near- and mid-term battery technology. From the standpoint of maximizing both the cumulative impact and the benefits derived in the year 2000, however, a strategy of early introduction of near-term and mid-term cars followed by the far-term vehicles seems to produce the optimum result.

  8. Electric vehicles in the next millennium

    NASA Astrophysics Data System (ADS)

    Harding, G. G.

    It is well known that the history of battery electric vehicles (EVs) is a long one that covers a period in excess of one hundred years. It is also well known that, in their early days, these vehicles were capable of out-performing their contemporary internal combustion-engined (ICEV) equivalents in terms of speed and acceleration. Since those days, and indeed until quite recently, there has been a quite remarkable difference between the vast strides made in developing ICEVs in general and cars in particular, and the relatively small improvements made in the capabilities of EVs. It is now being argued that this must change and the purpose of this paper is to consider the extent to which it is practical to expect such a change, on a large scale, in the early part of the next millennium.

  9. Propulsion Wheel Motor for an Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); Weber, Steven J. (Inventor); Junkin, Lucien Q. (Inventor); Rogers, James Jonathan (Inventor)

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  10. Nuclear Electric Vehicle Optimization Toolset (NEVOT)

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Kos, Larry D.; Qualls, A. Lou; Greene, Sherrell

    2004-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major nuclear electric propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a genetic algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be considered through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  11. ac propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  12. An SCR inverter for electric vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.

    1980-01-01

    An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.

  13. A cycle timer for testing electric vehicles

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.

    1978-01-01

    The paper presents a cycle timer which enables the accurate following and repetition of SAE driving schedules of stop and go cycles, for electric vehicles, by reducing the human factor. The system which consists of a programmable read-only memory (PROM) stores each of these cycles, which are detailed, on its own plug-in card. The actual vehicle speed, and the PROM indicated desired speed are displayed on a dual scale meter allowing the driver to match them. A speed change is preceded by a half second buzzer warning and a new cycle by a one second warning. The PROM controls the recycle start time as well as the buzzer activation. A 5 volt regulator providing logic power, and a 12 volt dc-dc converter providing analog and memory power are described.

  14. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  15. CITELEC — electric vehicles on the move in Europe's cities

    NASA Astrophysics Data System (ADS)

    Van den Bossche, P.; Maggetto, G.; Liccardo, M.

    Today, urban areas are faced with major environment- and traffic-related problems. Electric vehicles are able to bring a contribution to the solution of these problems; currently available electric vehicles are well suited for the typical speed and range characteristics shown by cars and vans operating in towns and cities. Cities are thus likely to be the first large-scale operation theatre for electric vehicles, whether for municipal use, for public transport or as private vehicles. A growing number of European cities are united into CITELEC (European association of cities interested in electric vehicles) to study the opportunities for the introduction of electric vehicles, to share common experiences and to follow up developments. CITELEC informs and assists its members in the introduction and exploitation of electric vehicles; furthermore, it is organizing realistic test demonstrations of electric vehicles in urban traffic ("Twelve Electric Hours') and performs studies on different aspects of the introduction of electric vehicles in cities: user's requirements, battery charging, energy distribution, infrastructure, safety aspects, and others. The paper will present the Association and its activities, focusing on current and future developments in European cities.

  16. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see

  17. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    SciTech Connect

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecular processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.

  18. Zinc air battery development for electric vehicles

    NASA Astrophysics Data System (ADS)

    Putt, R. A.; Merry, G. W.

    1991-07-01

    This report summarizes the results of research conducted during the sixteen month continuation of a program to develop rechargeable zinc-air batteries for electric vehicles. The zinc-air technology under development incorporates a metal foam substrate for the zinc electrode, with flow of electrolyte through the foam during battery operation. In this 'soluble' zinc electrode the zincate discharge product dissolves completely in the electrolyte stream. Cycle testing at Lawrence Berkeley Laboratory, where the electrode was invented, and at MATSI showed that this approach avoids the zinc electrode shape change phenomenon. Further, electrolyte flow has been shown to be necessary to achieve significant cycle life (greater than 25 cycles) in this open system. Without it, water loss through the oxygen electrode results in high resistance failure of the cell. The Phase 1 program, which focused entirely on the zinc electrode, elucidated the conditions necessary to increase electrode capacity from 75 to as much as 300 mAh/sq cm. By the end of the Phase 1 program over 500 cycles had accrued on one of the zinc-zinc half cells undergoing continuous cycle testing. The Phase 2 program continued the half cell cycle testing and separator development, further refined the foam preplate process, and launched into performance and cycle life testing of zinc-air cells.

  19. Zinc air battery development for electric vehicles

    SciTech Connect

    Putt, R.A.; Merry, G.W. )

    1991-07-01

    This report summarizes the results of research conducted during the sixteen month continuation of a program to develop rechargeable zinc-air batteries for electric vehicles. The zinc-air technology under development incorporates a metal foam substrate for the zinc electrode, with flow of electrolyte through the foam during battery operation. In this soluble'' zinc electrode the zincate discharge product dissolves completely in the electrolyte stream. Cycle testing at Lawrence Berkeley Laboratory, where the electrode was invented, and at MATSI showed that this approach avoids the zinc electrode shape change phenomenon. Further, electrolyte flow has been shown to be necessary to achieve significant cycle life (> 25 cycles) in this open system. Without it, water loss through the oxygen electrode results in high-resistance failure of the cell. The Phase I program, which focused entirely on the zinc electrode, elucidated the conditions necessary to increase electrode capacity from 75 to as much as 300 mAh/cm{sup 2}. By the end of the Phase I program over 500 cycles had accrued on one of the zinc-zinc half cells undergoing continuous cycle testing. The Phase II program continued the half cell cycle testing and separator development, further refined the foam preplate process, and launched into performance and cycle life testing of zinc-air cells.

  20. Exploring the promises of intersectionality for advancing women's health research

    PubMed Central

    2010-01-01

    Women's health research strives to make change. It seeks to produce knowledge that promotes action on the variety of factors that affect women's lives and their health. As part of this general movement, important strides have been made to raise awareness of the health effects of sex and gender. The resultant base of knowledge has been used to inform health research, policy, and practice. Increasingly, however, the need to pay better attention to the inequities among women that are caused by racism, colonialism, ethnocentrism, heterosexism, and able-bodism, is confronting feminist health researchers and activists. Researchers are seeking new conceptual frameworks that can transform the design of research to produce knowledge that captures how systems of discrimination or subordination overlap and "articulate" with one another. An emerging paradigm for women's health research is intersectionality. Intersectionality places an explicit focus on differences among groups and seeks to illuminate various interacting social factors that affect human lives, including social locations, health status, and quality of life. This paper will draw on recently emerging intersectionality research in the Canadian women's health context in order to explore the promises and practical challenges of the processes involved in applying an intersectionality paradigm. We begin with a brief overview of why the need for an intersectionality approach has emerged within the context of women's health research and introduce current thinking about how intersectionality can inform and transform health research more broadly. We then highlight novel Canadian research that is grappling with the challenges in addressing issues of difference and diversity. In the analysis of these examples, we focus on a largely uninvestigated aspect of intersectionality research - the challenges involved in the process of initiating and developing such projects and, in particular, the meaning and significance of social

  1. Exploring the promises of intersectionality for advancing women's health research.

    PubMed

    Hankivsky, Olena; Reid, Colleen; Cormier, Renee; Varcoe, Colleen; Clark, Natalie; Benoit, Cecilia; Brotman, Shari

    2010-01-01

    Women's health research strives to make change. It seeks to produce knowledge that promotes action on the variety of factors that affect women's lives and their health. As part of this general movement, important strides have been made to raise awareness of the health effects of sex and gender. The resultant base of knowledge has been used to inform health research, policy, and practice. Increasingly, however, the need to pay better attention to the inequities among women that are caused by racism, colonialism, ethnocentrism, heterosexism, and able-bodism, is confronting feminist health researchers and activists. Researchers are seeking new conceptual frameworks that can transform the design of research to produce knowledge that captures how systems of discrimination or subordination overlap and "articulate" with one another. An emerging paradigm for women's health research is intersectionality. Intersectionality places an explicit focus on differences among groups and seeks to illuminate various interacting social factors that affect human lives, including social locations, health status, and quality of life. This paper will draw on recently emerging intersectionality research in the Canadian women's health context in order to explore the promises and practical challenges of the processes involved in applying an intersectionality paradigm. We begin with a brief overview of why the need for an intersectionality approach has emerged within the context of women's health research and introduce current thinking about how intersectionality can inform and transform health research more broadly. We then highlight novel Canadian research that is grappling with the challenges in addressing issues of difference and diversity. In the analysis of these examples, we focus on a largely uninvestigated aspect of intersectionality research - the challenges involved in the process of initiating and developing such projects and, in particular, the meaning and significance of social

  2. Evaluation of battery models for prediction of electric vehicle range

    NASA Technical Reports Server (NTRS)

    Frank, H. A.; Phillips, A. M.

    1977-01-01

    Three analytical models for predicting electric vehicle battery output and the corresponding electric vehicle range for various driving cycles were evaluated. The models were used to predict output and range, and then compared with experimentally determined values determined by laboratory tests on batteries using discharge cycles identical to those encountered by an actual electric vehicle while on SAE cycles. Results indicate that the modified Hoxie model gave the best predictions with an accuracy of about 97 to 98% in the best cases and 86% in the worst case. A computer program was written to perform the lengthy iterative calculations required. The program and hardware used to automatically discharge the battery are described.

  3. A desiccant dehumidifier for electric vehicle heating

    SciTech Connect

    Aceves, S.M.; Smith, J.R.

    1996-09-01

    Vehicle heating requires a substantial amount of energy. Engines in conventional cars produce enough waste heat to provide comfort heating and defogging/defrosting, even under very extreme conditions. Electric vehicles (EVs), however, generate little waste heat. Using battery energy for heating may consume a substantial fraction of the energy storage capacity, reducing the vehicle range, which is one of the most important parameters in determining EV acceptability. Water vapor generated by the vehicle passengers is in large part responsible for the high heating loads existing in vehicles. In cold climates, the generation of water vapor inside the car may result in water condensation on the windows, diminishing visibility. Two strategies are commonly used to avoid condensation on windows: windows are kept warm, and a large amount of ambient air is introduced in the vehicle. Either strategy results in a substantial heating load. These strategies are often used in combination, and a trade-off exists between them. If window temperature is decreased, ventilation rate has to be increased. Reducing the ventilation rate requires an increase of the temperature of the windows to prevent condensation. An alternative solution is a desiccant dehumidifier, which adsorbs water vapor generated by the passengers. Window temperatures and ventilation rates can then be reduced, resulting in a substantially lower heating load. This paper explores the dehumidifier heating concept. The first part shows the energy savings that could be obtained by using this technology. The second part specifies the required characteristics and dimensions of the system. The results indicate that the desiccant system can reduce the steady-state heating load by 60% or more under typical conditions. The reduction in heating load is such that waste heat may be enough to provide the required heating under most ambient conditions. Desiccant system dimensions and weight appear reasonable for packaging in an EV.

  4. The ANL electrochemical program for DOE on electric vehicle R D

    SciTech Connect

    Not Available

    1991-01-01

    This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of January 1 through March 31, 1991. The work is organized into the following six task areas: Project management; battery systems technology; lithium/sulfide batteries; advanced sodium/metal chloride battery; aqueous batteries; and EV Battery performance/life evaluation.

  5. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  6. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  7. Route-Based Control of Hybrid Electric Vehicles: Preprint

    SciTech Connect

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  8. A torque controlled high speed flywheel energy storage system for peak power transfer in electric vehicles

    SciTech Connect

    Schaible, U.; Szabados, B.

    1994-12-31

    This paper provides a design outline and implementation procedure for a flywheel energy storage system using a high speed interior permanent magnet synchronous machine, torque-controlled through the use of a vector control algorithm. The proposed flywheel energy storage system can be used to meet the peak energy requirements of an electric vehicle during both acceleration and regenerative braking. By supplying the peak energy requirements from a secondary source, the life cycle of the electric vehicle`s batteries may be extended considerably. A torque control algorithm is presented and preliminary implementation through a commercially available microcontroller is described. Preliminary testing of the proposed system has been very promising and has proven that bidirectional peak power transfer can be rapidly accomplished. 4 refs.

  9. The ANL electric vehicle battery R&D program for DOE-EHP. Progress report, October 1991--March 1992

    SciTech Connect

    Not Available

    1992-12-31

    The Electrochemical Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE`s Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby. significantly reduce petroleum consumption in the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery and fuel cell technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of October 1, 1991 through March 31, 1992. In this report, the objective, background, technical progress, and status are described for each task. These tasks are structured into the following task areas: 1.0 Project Management and Coordination; 2.0 Lithium/Sulfide Batteries; 3.0 Advanced Sodium/Beta Batteries; 4.0 Advanced Ambient-Temperature Batteries; 5.0 EV Battery Performance and Life Evaluation.

  10. The ANL Electrichemical Program for DOE on electric vehicle R&D. Progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE`s Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of July 1, 1992 through September 30, 1992. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: Project Management and Coordination; Lithium/Sulfide Batteries; Advanced Sodium/Beta Batteries; Advanced Ambient-Temperature Batteries; and EV Battery Performance and Life Evaluation.

  11. The ANL electric vehicle battery R D program for DOE-EHP. [ANL (Argonne National Laboratory); EHP (Electric and Hybrid Propulsion Division)

    SciTech Connect

    Not Available

    1993-06-15

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce air pollution and petroleum consumption due to the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, and project management on advanced battery technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of January 1, 1993 through March 31, 1993. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Project Management; 2.0 Sodium/Metal Chloride R D; 3.0 Microreference Electrodes for Lithium/Polymer Batteries.

  12. Thermoelectric power generation for hybrid-electric vehicle auxiliary power

    NASA Astrophysics Data System (ADS)

    Headings, Leon M.; Washington, Gregory N.; Midlam-Mohler, Shawn; Heremans, Joseph P.

    2009-03-01

    The plug-in hybrid-electric vehicle (PHEV) concept allows for a moderate driving range in electric mode but uses an onboard range extender to capitalize on the high energy density of fuels using a combustion-based generator, typically using an internal combustion engine. An alternative being developed here is a combustion-based thermoelectric generator in order to develop systems technologies which capitalize on the high power density and inherent benefits of solid-state thermoelectric power generation. This thermoelectric power unit may find application in many military, industrial, and consumer applications including range extension for PHEVs. In this research, a baseline prototype was constructed using a novel multi-fuel atomizer with diesel fuel, a conventional thermoelectric heat exchange configuration, and a commercially available bismuth telluride module (maximum 225°C). This prototype successfully demonstrated the viability of diesel fuel for thermoelectric power generation, provided a baseline performance for evaluating future improvements, provided the mechanism to develop simulation and analysis tools and methods, and highlighted areas requiring development. The improvements in heat transfer efficiency using catalytic combustion were evaluated, the system was redesigned to operate at temperatures around 500 °C, and the performance of advanced high temperature thermoelectric modules was examined.

  13. Leakage current and commutation losses reduction in electric drives for Hybrid Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Miliani, El Hadj

    2014-06-01

    Nowadays, leakage current and inverter losses, produced by adjustable-speed AC drive systems become one of the main interested subject for researchers on Electric Vehicle (EV) and Hybrid Electric Vehicle (HEV) technology. The continuous advancements in solid state device engineering have considerably minimized the switching transients for power switches but the high dv/dt and high switching frequency have caused many adverse effects such as shaft voltage, bearing current, leakage current and electromagnetic interference (EMI). The major objective of this paper is to investigate and suppress of the adverse effects of a PWM inverter feeding AC motor in EV and HEV. A technique to simultaneously reduce the leakage current and the switching losses is presented in this paper. Based on a discontinuous space vector pulse width modulation (DSVPWM) and a modular switches gate resistance, inverter losses and leakage current are reduced. Algorithms are presented and implemented on a DSP controller and experimental results are presented.

  14. Electric vehicle battery R D in the context of a propulsion system

    SciTech Connect

    Patil, P.G. . Office of Transportation Systems); Christianson, C.C.; Miller, J.F. )

    1989-01-01

    A battery system for an electric vehicle should be designed and developed in concert with the other components of the propulsion system. Technology development efforts sponsored by the US Department of Energy are addressing all the constituent electric vehicle component technologies, including the battery subsystem technologies, from the perspective of the complete propulsion system. This approach is considered to be essential for three reasons. First, the ultimate viability of a given battery technology can only be assured in the context of a complete propulsion system. Second, many required battery subsystem technology advancements can only be addressed in concert with the other propulsion system components. Third, development and testing of battery subsystem technologies in conjunction with powertrain subsystem technology development is necessary in order to provide essential information to the battery developer and to the vehicle developer that can not be obtained when battery development is performed as a discrete activity. 7 refs., 6 figs.

  15. Electric vehicles: Likely consequences of US and other nations` programs and policies

    SciTech Connect

    Chan, Kwai-Cheung

    1994-12-30

    This report examines international electric vehicle development and commercialization programs. The study encompassed a review of current barriers to widespread electric vehicle implementation, field visits in seven nations and the United States to examine electric vehicle programs and policies, and analyses of electric vehicle effects on economics, energy, and the environment.

  16. The ANL electric vehicle battery R&D program for DOE-EHP. Quarterly progress report, October--December 1990

    SciTech Connect

    Not Available

    1990-12-31

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE`s Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  17. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect

    Swalnick, Natalia

    2013-06-30

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  18. Promises, Promises.

    PubMed

    McLean, Haydn

    2016-03-01

    Presenting a pledge to another establishes expectation in the recipient for the commitment to be fulfilled, particularly when a promise is devoid of coercion. Defaulting on a commitment may damage relationships between people and may predispose the disenchanted recipient to distrust those who proffer succeeding commitments. God's advocates who have been disappointed by God's evident under-delivery may experience a crisis of faith, exemplified in attachment distress, when disappointment intimates God has over-promised his providence, which questions the nature and, ultimately, the relevance of God. PMID:26956758

  19. Development of a software platform for a plug-in hybrid electric vehicle simulator

    NASA Astrophysics Data System (ADS)

    Karlis, Athanasios D.; Bibeau, Eric; Zanetel, Paul; Lye, Zelon

    2012-03-01

    Electricity use for transportation has had limited applications because of battery storage range issues, although many recent successful demonstrations of electric vehicles have been achieved. Renewable biofuels such as biodiesel and bioethanol also contribute only a small percentage of the overall energy mix for mobility. Recent advances in hybrid technologies have significantly increased vehicle efficiencies. More importantly, hybridization now allows a significant reduction in battery capacity requirements compared to pure electric vehicles, allowing electricity to be used in the overall energy mix in the transportation sector. This paper presents an effort made to develop a Plug-in Hybrid Electric Vehicle (PHEV) platform that can act as a comprehensive alternative energy vehicle simulator. Its goal is to help in solving the pressing needs of the transportation sector, both in terms of contributing data to aid policy decisions for reducing fossil fuel use, and to support research in this important area. The Simulator will allow analysing different vehicle configurations, and control strategies with regards to renewable and non-renewable fuel and electricity sources. The simulation platform models the fundamental aspects of PHEV components, that is, process control, heat transfer, chemical reactions, thermodynamics and fluid properties. The outcomes of the Simulator are: (i) determining the optimal combination of fuels and grid electricity use, (ii) performing greenhouse gas calculations based on emerging protocols being developed, and (iii) optimizing the efficient and proper use of renewable energy sources in a carbon constrained world.

  20. Monitoring fleets of electric vehicles: optimizing operational use and maintenance

    NASA Astrophysics Data System (ADS)

    Lenain, P.; Kechmire, M.; Smaha, J. P.

    Electric vehicles can make a substantial contribution to an improved urban environment. Reduced atmospheric pollution and noise emissions make the increased use of electric vehicles highly desirable and their suitability for dedicated fleets of vehicles is well recognized. As a result, a suitable system of supervision and management is necessary for fleet operators, to allow them to see the key parameters for the optimum use of the electric vehicle at all times. A computer-based data acquisition and analysis system will allow access to critical control parameters and display the operation of chargers and batteries in real time. Battery condition and charging can be followed. Information is stored in a database and can be readily analyzed and retrieved to manage extensive charging installations. In this paper, the operation of a battery/charger management system is described. The effective use of the system in electric utility vans is demonstrated.

  1. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.

    PubMed

    Delucchi, M A; Yang, C; Burke, A F; Ogden, J M; Kurani, K; Kessler, J; Sperling, D

    2014-01-13

    Concerns about climate change, urban air pollution and dependence on unstable and expensive supplies of foreign oil have led policy-makers and researchers to investigate alternatives to conventional petroleum-fuelled internal-combustion-engine vehicles in transportation. Because vehicles that get some or all of their power from an electric drivetrain can have low or even zero emissions of greenhouse gases (GHGs) and urban air pollutants, and can consume little or no petroleum, there is considerable interest in developing and evaluating advanced electric vehicles (EVs), including pure battery-electric vehicles, plug-in hybrid electric vehicles and hydrogen fuel-cell electric vehicles. To help researchers and policy-makers assess the potential of EVs to mitigate climate change and reduce petroleum use, this paper discusses the technology of EVs, the infrastructure needed for their development, impacts on emissions of GHGs, petroleum use, materials use, lifetime costs, consumer acceptance and policy considerations. PMID:24298079

  2. Energy storage specification requirements for hybrid-electric vehicle

    SciTech Connect

    Burke, A.F.

    1993-09-01

    A study has been made of energy storage unit requirements for hybrid-electric vehicles. The drivelines for these vehicles included both primary energy storage units and/or pulse power units. The primary energy storage units were sized to provide ``primary energy`` ranges up to 60 km. The total power capability of the drivelines were such that the vehicles had 0 to 100 km/h acceleration times of 10 to 12 s. The power density requirements for primary energy storage devices to be used in hybrid vehicles are much higher than that for devices to be used in electric vehicles. The energy density and power density requirements for pulse-power devices for hybrid vehicles, are not much different than those in an electric vehicle. The cycle life requirements for primary energy-storage units for hybrid vehicles are about double that for electric vehicles, because of the reduced size of the storage units in the hybrid vehicles. The cycle life for pulse-power devices for hybrid vehicles is about the same as for electric vehicles having battery load leveling. Because of the need for additional components in the hybrid driveline, the cost of the energy storage units in hybrid vehicles should be much less (at least a factor of two) than those in electric vehicles. There are no presently available energy storage units that meet all the specifications for hybrid vehicle applications, but ultracapacitors and bipolar lead-acid batteries are under development that have the potential for meeting them. If flywheel systems having a mechanical system energy density of 40 to 50 W{center_dot}h/kg and an electrical system power density of 2 to 3 kw/kg can be developed, they would have the potential of meeting specifications for primary storage and pulse power units.

  3. Application of subharmonics for active sound design of electric vehicles.

    PubMed

    Gwak, Doo Young; Yoon, Kiseop; Seong, Yeolwan; Lee, Soogab

    2014-12-01

    The powertrain of electric vehicles generates an unfamiliar acoustical environment for customers. This paper seeks optimal interior sound for electric vehicles based on psychoacoustic knowledge and musical harmonic theory. The concept of inserting a virtual sound, which consists of the subharmonics of an existing high-frequency component, is suggested to improve sound quality. Subjective evaluation results indicate that the impression of interior sound can be enhanced in this manner. Increased appeal is achieved through two designed stimuli, which proves the effectiveness of the method proposed. PMID:25480088

  4. Batteries for electric vehicles: Research, development, testing and evaluation

    SciTech Connect

    Not Available

    1983-01-01

    This book presents papers given at a conference on batteries for electric vehicles. Topics presented at the conference included the following: A least cost method for prioritizing battery research; development of electric and hybrid vehicle batteries; design considerations for a Li AL/FeS battery for an electric van; transformation toughening of Beta-Alumina; Impact of mismatched cell characteristics on lead acid battery charging; thermal management of lead acid batteries for electric vehicles; and economic analysis of the zinc chloride battery in mobile applications.

  5. Information System for Electric Vehicle in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    Electric vehicle (EV)/plug-in hybrid electric vehicle (PHEV) grid infrastructure is to increase the stability of local power system by managing the charging operations. A user interface device equipped on EVs allows the driver to receive instructions or seeks advice to manage EV's battery charging/backfill process. In this paper, we design vehicle-grid communications system. To improve the performance of the system, we customize our communication protocol for distributing EV charging information. From the experiments, we verify the performance of our protocol with respect to the data delivery ratio and the number of message forwarding.

  6. Price Incentivised Electric Vehicle Charge Control for Community Voltage Regulation

    SciTech Connect

    Kelly, Damian; Baroncelli, Fabio; Fowler, Christopher; Boundy, David; Pratt, Annabelle

    2014-11-03

    With the growing availability of Electric Vehicles, there is a significant opportunity to use battery 'smart-charging' for voltage regulation. This work designs and experimentally evaluates a system for price-incentivised electric vehicle charging. The system is designed to eliminate negative impacts to the user while minimising the cost of charging and achieving a more favourable voltage behaviour throughout the local grid over time. The practical issues associated with a real-life deployment are identified and resolved. The efficacy of the system is evaluated in the challenging scenario in which EVs are deployed in six closely distributed homes, serviced by the same low voltage residential distribution feeder.

  7. Neighborhood electric vehicles: The simple things that move you

    SciTech Connect

    Murphy, M.E.

    1994-12-31

    The neighborhood electric vehicle is one of the newest transportation options. It may develop into one of the largest international forms of personal transportation since the bicycle. A lightweight, fresh approach to personal mobility within the community where lack of speed and range are not liabilities, it provides basic transportation for to and from. The neighbourhood electric vehicle promotes community-based business, safe neighborhoods and community schools. It will help clean up the air, reduce traffic congestion, and two of them can fit in one parking spot. It`s ready, willing, and able and is here today using existing technology.

  8. Hybrid Control of Electric Vehicle Lateral Dynamics Stabilization

    NASA Astrophysics Data System (ADS)

    Tabti, Khatir; Bourahla, Mohamend; Mostefai, Lotfi

    2013-01-01

    This paper presents a novel method for motion control applied to driver stability system of an electric vehicle with independently driven wheels. By formulating the vehicle dynamics using an approximating the tire-force characteristics into piecewise affine functions, the vehicle dynamics cen be described as a linear hybrid dynamical system to design a hybrid model predictive controller. This controller is expected to make the yaw rate follow the reference ensuring the safety of the car passengers. The vehicle speed is estimated using a multi-sensor data fusion method. Simulation results in Matlab/Simulink have shown that the proposed control scheme takes advantages of electric vehicle and enhances the vehicle stability.

  9. A sealed bipolar lead acid battery for small electric vehicles

    SciTech Connect

    Arias, J.L.; Harbaugh, D.L.; Drake, E.D.; Boughn, D.W.

    1996-11-01

    Arias Research Associates (ARA) has been developing it`s sealed bipolar lead-acid (SBLA) battery technology since 1990 for eventual application in electric vehicles (EVs). The successful development of small SBLA batteries (up to 48V, 10Ah) for use in small electric vehicles (electric powered bicycles, motor scooters, wheelchairs, etc), is reported together with specifications and preliminary test data. Performance and cost comparisons are made with commercially available sealed lead-acid and nickel-cadmium battery packs for an electric power-assist bicycle.

  10. Inductive High Power Transfer Technologies for Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Tonchev, Anton T.

    2014-03-01

    Problems associated with "how to charge the battery pack of the electric vehicle" become more important every passing day. Most logical solution currently is the non-contact method of charge, possessing a number of advantages over standard contact methods for charging. This article focuses on methods for Inductive high power contact-less transfer of energy at relatively small distances, their advantages and disadvantages. Described is a developed Inductive Power Transfer (IPT) system for fast charging of electric vehicles with nominal power of 30 kW over 7 to 9 cm air gap.

  11. Proton exchange membrane fuel cells for space and electric vehicle applications: From basic research to technology development

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James

    1994-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.

  12. ANL's electric vehicle battery activities for USABC

    NASA Astrophysics Data System (ADS)

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides advanced battery R&D technology transfer to industry; technical analyses, assessments, modeling, and databases; and independent testing and post-test analyses of advanced batteries. These capabilities and services are being offered to the US Advanced Battery Consortium (USABC) and Cooperative Research and Development Agreements (CRADA) are being negotiated for USABC-sponsored work at ANL. A small portion of DOE's cost share for USABC projects has been provided to ANL to continue R&D and testing activities on key technologies that were previously supported directly by DOE. This report summarizes progress on these USABC projects during the period of April 1 through September 30, 1992. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Lithium/Sulfide Batteries; 2.0 Nickel/Metal Hydride Support 3.0 EV Battery Performance; and Life Evaluation.

  13. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  14. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  15. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  16. Simulation of demand management and grid balancing with electric vehicles

    NASA Astrophysics Data System (ADS)

    Druitt, James; Früh, Wolf-Gerrit

    2012-10-01

    This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.

  17. Performance testing of the AC propulsion ELX electric vehicle

    NASA Astrophysics Data System (ADS)

    Kramer, W. E.; MacDowall, R. D.; Burke, A. F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. When the vehicle's battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W(center dot)h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W(center dot)h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  18. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  19. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect

    1994-03-01

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  20. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  1. Variable-reluctance motors for electric vehicle propulsion

    SciTech Connect

    Vallese, F.J.; Lang, J.H.

    1985-01-01

    This paper discusses the design, operation, and expected performance of a 60-kW variable-reluctance motor and inverter-designed for electric vehicle propulsion. To substantiate the performance of this system, experimental data obtained with a prototype 3.8-kW motor and inverter are provided.

  2. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey

    DOE PAGESBeta

    Malikopoulos, Andreas

    2014-03-31

    The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

  3. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-03

    With funding from the U.S. Department of Energy’s Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2011, NREL launched a large-scale performance evaluation of medium-duty electric vehicles. With support from vehicle manufacturers Smith and Navistar, NREL research focused on characterizing vehicle operation and drive cycles for electric delivery vehicles operating in commercial service across the nation.

  4. Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)

    SciTech Connect

    Pesaran, A.

    2007-12-01

    Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

  5. Electric vehicle developments in Europe and Japan

    SciTech Connect

    Yerkes, J.W.

    1994-12-31

    Volkswagen, Mercedes, and the big three Japanese companies, Nissan, Toyota and Honda may develop for the 1998 model year good basic electric cars. VW`s Concept 1 will be offered with gasoline, diesel/electric, and full electric drive trains. From a cost stand point most of the cars will be offered with improved lead-acid batteries such as the Horizon with NiCd or some form of advanced battery as an upgrade or high performance option. General Motors will sell the Impact with lead-acid batteries. The position of Ford and Chrysler is unknown at this point, but both are fielding electric versions of vans already in production. At least one of these efforts may pay off and after 2000 the electric car could improve rapidly.

  6. Airport electric vehicle powered by fuel cell

    NASA Astrophysics Data System (ADS)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  7. Advanced bipolar lead-acid battery for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Saakes, Michel; Kleijnen, Christian; Schmal, Dick; ten Have, Peter

    A large size 80 V bipolar lead acid battery was constructed and tested successfully with a drive cycle especially developed for a HEV. The bipolar battery was made using the bipolar plate developed at TNO and an optimised paste developed by Centurion. An empirical model was derived for calculating the Ragone plot from the results from a small size 12 V bipolar lead-acid battery. This resulted in a specific power of 340 W/kg for the 80 V module. The Ragone plot was calculated at t=5 and t=10 s after the discharge started for current densities varying from 0.02 to 1.2 A/cm 2. A further development of the bipolar lead-acid battery will result in a specific power of 500 W/kg or more. From the economic analysis we estimate that the price of this high power battery will be in the order of 500 US$/kWh. This price is substantially lower than for comparable high power battery systems. This makes it an acceptable candidate future for HEV.

  8. Advanced dc motor controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  9. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  10. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  11. Commercial Electric Vehicle (EV) Development and Manufacturing Program

    SciTech Connect

    Leeve, Dion

    2014-06-30

    , valuable insights and lessons into this all-electric vehicle propulsion were gained during the performance of this effort and can be revisited when battery chemistry and technology advance to the point of more suitable economic viability. Additionally, another goal of the ARRA act and this specific grant was to manufacture the product in the, at that time, economically depressed Northwest Indiana area. Navistar chose a location in Wakarusa, Indiana which fulfilled this requirement. Navistar was and continues to be committed to alternative fuel and propulsion options as an industry leader in the medium and heavy duty truck industry.

  12. 40 CFR 600.310-12 - Fuel economy label format requirements-electric vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-electric vehicles. 600.310-12 Section 600.310-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Labeling § 600.310-12 Fuel economy label format requirements—electric vehicles. Fuel economy labels for electric vehicles must meet the specifications described in § 600.302, with the following modifications:...

  13. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect

    Not Available

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  14. Adaptive powertrain control for plugin hybrid electric vehicles

    DOEpatents

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  15. Design of digital load torque observer in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  16. Driving Electric Vehicle by EMG Signal Considering Frequency Components

    NASA Astrophysics Data System (ADS)

    Aso, Shinichi; Sasaki, Akinori; Hashimoto, Hiroshi; Ishii, Chiharu

    This paper proposes a useful method driving the electric vehicle by EMG signals (Electromyographic signals) which are filtered on the basis of frequency components which change with muscle contraction. This method estimates strength of muscular tension by a single EMG signal. By our method, user is able to control speed of the electric vehicle by strength of muscular tension. The method of speed control may give user good or bad operation feeling in the meaning of SD (Semantic Differential) method and factor analysis. The operation feeling is evaluated by experiment on EMG interface in cases of using filters or not. As a result, it is shown that operation feeling is influenced by this method.

  17. A nickel metal hydride battery for electric vehicles.

    PubMed

    Ovshinsky, S R; Fetcenko, M A; Ross, J

    1993-04-01

    Widespread use of electric vehicles can have significant impact on urban air quality, national energy independence, and international balance of trade. An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved. PMID:17807176

  18. A nickel metal hydride battery for electric vehicles

    SciTech Connect

    Ovshinsky, S.R.; Fetcenko, M.A. ); Ross, J. )

    1993-04-09

    Widespread use of electric vehicles can have significant impact on urban air quality, national energy independence, and international balance of trade. An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved. 21 refs., 7 figs., 1 tab.

  19. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy’s (DOE’s) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  20. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    SciTech Connect

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  1. Use of a thermophotovoltaic generator in a hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Morrison, Orion; Seal, Michael; West, Edward; Connelly, William

    1999-03-01

    Viking 29 is the World's first thermophotovoltaic (TPV) powered automobile. The prototype was funded by the Department of Energy and designed and built by students and faculty at the Vehicle Research Institute (VRI) at Western Washington University. Viking 29 is a series hybrid electric vehicle that utilizes TPV generators to charge its battery pack. Acceleration, speed, and handling compare to modern high performance sports cars, while emissions are cleaner than current internal combustion engine vehicles.

  2. Performance of the Lester battery charger in electric vehicles

    NASA Technical Reports Server (NTRS)

    Vivian, H. C.; Bryant, J. A.

    1984-01-01

    Tests are performed on an improved battery charger. The primary purpose of the testing is to develop test methodologies for battery charger evaluation. Tests are developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests show this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  3. Cost-effective electric vehicle charging infrastructure siting for Delhi

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6–7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ∼10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  4. Research and development of electric vehicles for clean transportation.

    PubMed

    Wada, Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied. PMID:19803077

  5. Crash simulation of UNS electric vehicle under frontal front impact

    NASA Astrophysics Data System (ADS)

    Susilo, D. D.; Lukamana, N. I.; Budiana, E. P.; Tjahjana, D. D. D. P.

    2016-03-01

    Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. The purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.

  6. Quantifying a cellular automata simulation of electric vehicles

    NASA Astrophysics Data System (ADS)

    Hill, Graeme; Bell, Margaret; Blythe, Phil

    2014-12-01

    Within this work the Nagel-Schreckenberg (NS) cellular automata is used to simulate a basic cyclic road network. Results from SwitchEV, a real world Electric Vehicle trial which has collected more than two years of detailed electric vehicle data, are used to quantify the results of the NS automata, demonstrating similar power consumption behavior to that observed in the experimental results. In particular the efficiency of the electric vehicles reduces as the vehicle density increases, due in part to the reduced efficiency of EVs at low speeds, but also due to the energy consumption inherent in changing speeds. Further work shows the results from introducing spatially restricted speed restriction. In general it can be seen that induced congestion from spatially transient events propagates back through the road network and alters the energy and efficiency profile of the simulated vehicles, both before and after the speed restriction. Vehicles upstream from the restriction show a reduced energy usage and an increased efficiency, and vehicles downstream show an initial large increase in energy usage as they accelerate away from the speed restriction.

  7. Kansas State University Electric Vehicle Site Operator Program

    SciTech Connect

    Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

    1991-01-01

    During the past fifteen years Kansas State's faculty has been involved in research of alternative fuel vehicles. From formulation of fuels and automotive fuel storage to development of electronic controls, K-State's faculty research has been ongoing. With the increased awareness of what is occurring to the world's environment, the catalyst -- to ensure applied results from faculty research will occur -- has been activated. The Department of Energy's Electric Vehicle Site Operator Program is the platform being used to demonstrate international efforts to bring a more acceptable daily mode of transportation to our highways. The first new electrical vehicle procured at K-State in the last ten years, a G-Van, is a technological dinosaur. It does not incorporate leading edge control or drive systems nor does it provide the type of vehicle frame and body to meet a majority of the daily commuter needs required by the American market. Yet, this vehicle represents initial efforts to bring a federally crash certified vehicle to the commercial automotive market. As such, it is an evolutionary step in the mass production of electric vehicle products.

  8. The aluminum-air battery for electric vehicles - An update

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The development of aluminum-air batteries as mechanically rechargeable power sources to be used in electric vehicles is discussed. The chemistry of the aluminum-air battery, which has a potential for providing the range, acceleration and rapid refueling capability of contemporary automobiles and is based on the reaction of aluminum metal with atmospheric oxygen in the presence of an aqueous sodium hydroxide/sodium aluminate electrolyte, is examined, and it is pointed out that the electric vehicle would be practically emissionless. The battery development program at the Lawrence Livermore National Laboratory, which includes evaluations of electrochemical and chemical phenomena, studies of the economics and energy balance of a transportation system based on aluminum, and power cell design and performance analysis, is presented. It is concluded that although difficult problems must be overcome before the technical and economic feasibility of aluminum-air batteries for electric vehicles can be established, projections indicate that the aluminum-air vehicle is potentially competitive with internal combustion vehicles powered by synthetic liquid fuels.

  9. Unregulated emissions from light-duty hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Suarez-Bertoa, R.; Astorga, C.

    2016-07-01

    The number of registrations of light duty hybrid electric vehicles has systematically increased over the last years and it is expected to keep growing. Hence, evaluation of their emissions becomes very important in order to be able to anticipate their impact and share in the total emissions from the transport sector. For that reason the emissions from a Euro 5 compliant hybrid electric vehicle (HV2) and a Euro 5 plug-in hybrid electric vehicle (PHV1) were investigated with special interest on exhaust emissions of ammonia, acetaldehyde and ethanol. Vehicles were tested over the World harmonized Light-duty Test Cycle (WLTC) at 23 and -7 °C using two different commercial fuels E5 and E10 (gasoline containing 5% and 10% vol/vol of ethanol, respectively). PHV1 resulted in lower emissions than HV2 due to the pure electric strategy used by the former. PHV1 and HV2 showed lower regulated emissions than conventional Euro 5 gasoline light duty vehicles. However, emissions of ammonia (2-8 and 6-15 mg km-1 at 22 and -7 °C, respectively), ethanol (0.3-0.8 and 2.6-7.2 mg km-1 at 22 and -7 °C, respectively) and acetaldehyde (∼0.2 and 0.8-2.7 mg km-1 at 22 and -7 °C, respectively) were in the same range of those recently reported for conventional gasoline light duty vehicles.

  10. Non-exhaust PM emissions from electric vehicles

    NASA Astrophysics Data System (ADS)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  11. Electric vehicle battery testing and development at Argonne National Laboratory

    SciTech Connect

    Smaga, J.A.; Gillie, K.R.; Webster, C.E.; Tummillo, A.F.; Kulaga, J.K.; Marr, J.J. )

    1992-12-01

    The Electric Vehicle Battery Testing and Development Project for the Electric Power Research Institute (EPRI) does selected electric vehicle (EV) battery performance evaluations and special application tests in support of the EPRI Electric Transportation Program. Overall, this program provides information to aid the design and development of improved components and systems for electric vehicles. The Electrochemical Technology Department in the Chemical Technology Division of the Argonne National Laboratory (ANL) manages the project under the sponsorship and direction of the EPRI Electric Transportation Program. This report summarizes the work in this program from January through December 1991. Technical tasks and activities encompassed battery testing, post-test teardown analyses and special technology/application-related studies. Battery testing activities included evaluation of nickel/iron, lead-acid, nickel/cadmium, and nickel/metal-hydride EV battery technologies. Post-test analyses examined 6Vl60 and 3ET205 lead-acid cells. Special studies/analyses were conducted to examine Ni/Fe battery outgas composition and electrolyte variations, the self-discharge loss of nickel/metal-hydride cells, the effects of partial discharge operation on the available energy of Ni/Cd modules, and the effect of charge method/return/pulse-currents on Ni/Fe battery performance.

  12. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOE’s Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  13. Construction and performance of a high voltage zinc bromine battery in an electric vehicle

    SciTech Connect

    Swan, D.H.; Dickinson, B.; Arikara, M.; Prabhu, M.

    1995-07-01

    This paper describes the design, construction, testing and installation of a 391 volt, 35 kWh zinc bromine battery in an electric vehicle. This research project, was referred to as the Endura Project and it resulted in the construction of the highest voltage zinc bromine battery ever to be used in an electric vehicle. The zinc bromine battery is a high energy density battery that utilizes low cost materials (predominantly polyethylene plastic). It has a relatively high energy density (60 to 70 Wh/kg of battery weight) and is modular in its construction. It utilizes a water cooling loop and normally operates between 32 and 45 C. The Endura project constructed a state of the art zinc bromine battery, used an advanced charging system, and an advanced AC propulsion system. These components were integrated in a Geo Prizm and used to compete in the APS Electric 500 in Phoenix, AZ (3rd place, 3/94), the World Clean Air Rally in LA (1st Place, 4/94) and the 1994 American Tour de Sol (2nd Place 5/94).

  14. Implementation Approach for Electric Vehicles at Marine Corps Base Camp Lejeune. Task 4

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense base studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Marine Corps Base Camp Lejeune (MCBCL) located in North Carolina. Task 1 consisted of a survey of the non-tactical fleet of vehicles at MCBCL to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the MCBCL fleet. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from MCBCL personnel.

  15. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    SciTech Connect

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar; Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  16. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  17. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    SciTech Connect

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  18. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  19. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  20. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  1. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  2. 2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS

    SciTech Connect

    Gray, Tyler; Shirk, Matthew; Wishart, Jeffrey

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  3. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  4. The ANL electrochemical program for DOE on electric vehicle R&D. Quarterly progress report, January--March 1991

    SciTech Connect

    Not Available

    1991-12-31

    This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of January 1 through March 31, 1991. The work is organized into the following six task areas: Project management; battery systems technology; lithium/sulfide batteries; advanced sodium/metal chloride battery; aqueous batteries; and EV Battery performance/life evaluation.

  5. Rolling resistance of electric-vehicle tires from track tests

    SciTech Connect

    Dustin, M.O.; Slavik, R.J.

    1982-06-01

    Two sets of low-rolling-resistance tires were track tested to obtain realistic tire characteristics for use in programming the Road Load Simulator, a special dynamometer facility located at the NASA Lewis Research Center. One set was specially made by Goodyear Tire and Rubber Company for DOE's ETV-1 electric vehicle, and the other was a set of standard commercial automotive tires. The tests were conducted over an ambient temperature range of 15/sup 0/ to 32/sup 0/C (59/sup 0/ to 89/sup 0/F) and with tire pressures of 207 and 276 kPa (30 and 40 psi). Both sets of tires had very low rolling resistance. The commercial tires, which were manufactured approximately 3 years after the electric vehicle tires, exhibited lower rolling resistance than the electric vehicle tires. This is a result of the continuing effort by the tire manufacturers to reduce rolling resistance in order to improve fuel economy. At a contained-air temperature of 38/sup 0/C (100/sup 0/F) and a pressure of 207 kPa (30 psi), the resistance of the electric vehicle tires was 0.0102 kilogram per kilogram of vehicle weight and the resistance of the commercial tires was 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38/sup 0/C (100/sup 0/F) and a pressure of 276 kPa (40 psi), the resistance of the electric vehicle tires was 0.009 kilogram per kilogram of vehicle weight and the resistance of the commercial tires was 0.0074 kilogram per kilogram of vehicle weight. The average time for the tires to reach an equilibrium temperature after startup was 20 minutes for the constant-speed tests regardless of vehicle speed and 27 minutes for the SAE J227a Schedule D driving cycle tests. The average change in rolling resistance from startup to final equilibrium value was 5% for all tests. There was very little heating of the tires from velocity-dependent losses. The predominant heating source for these tires was radiation heating from the Sun.

  6. Development of a lead-acid battery for a hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Cooper, A.

    In September 2000, a project reliable, highly optimized lead-acid battery (RHOLAB) started under the UK Foresight Vehicle Programme with the objective of developing an optimized lead-acid battery solution for hybrid electric vehicles. The work is based on a novel, individual, spirally-wound valve-regulated lead-acid 2 V cell optimized for HEV use and low variability. This cell is being used as a building block for the development of a complete battery pack that is managed at the cell level. Following bench testing, this battery pack is to be thoroughly evaluated by substituting it for the Ni-MH pack in a Honda Insight. The RHOLAB cell is based on the 8 Ah Hawker Cyclon cell which has been modified to have current take-off at both ends—the dual-tab design. In addition, a variant has been produced with modified cell chemistry to help deal with problems that can occur when these valve-regulated lead-acid battery (VRLA) cells operate in a partial-state-of-charge condition. The cells have been cycled to a specially formulated test cycle based on real vehicle data derived from testing the Honda Insight on the various test tracks at the Millbrook Proving Grounds in the UK. These cycling tests have shown that the lead-acid pack can be successfully cycled when subjected to the high current demands from the vehicle, which have been measured at up to 15 C on discharge and 8 C during regenerative recharging, and cycle life is looking very promising under this arduous test regime. Concurrent with this work, battery development has been taking place. It was decided early on to develop the 144 V battery as four 36 V modules. Data collection and control has been built-in and special steps taken to minimize the problems of interconnect in this complex system. Development of the battery modules is now at an advanced stage. The project plan then allows for extensive testing of the vehicle with its lead-acid battery at Millbrook so it can be compared with the benchmark tests which

  7. Important Factors for Early Market Microgrids: Demand Response and Plug-in Electric Vehicle Charging

    NASA Astrophysics Data System (ADS)

    White, David Masaki

    Microgrids are evolving concepts that are growing in interest due to their potential reliability, economic and environmental benefits. As with any new concept, there are many unresolved issues with regards to planning and operation. In particular, demand response (DR) and plug-in electric vehicle (PEV) charging are viewed as two key components of the future grid and both will likely be active technologies in the microgrid market. However, a better understanding of the economics associated with DR, the impact DR can have on the sizing of distributed energy resource (DER) systems and how to accommodate and price PEV charging is necessary to advance microgrid technologies. This work characterizes building based DR for a model microgrid, calculates the DER systems for a model microgrid under DR through a minimization of total cost, and determines pricing methods for a PEV charging station integrated with an individual building on the model microgrid. It is shown that DR systems which consist only of HVAC fan reductions provide potential economic benefits to the microgrid through participation in utility DR programs. Additionally, peak shaving DR reduces the size of power generators, however increasing DR capacity does not necessarily lead to further reductions in size. As it currently stands for a microgrid that is an early adopter of PEV charging, current installation costs of PEV charging equipment lead to a system that is not competitive with established commercial charging networks or to gasoline prices for plug-in hybrid electric vehicles (PHEV).

  8. Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple

    NASA Astrophysics Data System (ADS)

    Gutmann, Günter

    In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.

  9. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  10. DOE's near-term electric vehicle battery program. Status of improved lead-acid, nickel/iron, and nickel/zinc battery developments

    SciTech Connect

    Yao, N.P.; Christianson, C.C.; Elliott, R.C.; Lee, T.S.; Miller, J.F.

    1980-01-01

    From the inception of the DOE/ANL Near-Term eV Battery Program in 1978, significant progress in lead-acid, nickel/iron and nickel/zinc battery technology has been made towards achieving the technical performance goals necessary for widespread use of these battery systems in electric vehicle applications. The energy density of lead-acid eV batteries has advanced from 25 to 30 Wh/kg to over 40 Wh/kg. The prospect for obtaining a lead-acid battery having both high energy density and long cycle life in a few years is very promising. Nickel/iron modules have demonstrated a specific energy of nearly 50 Wh/kg and a specific power of 100 W/kg, cycle lives of 300 have been achieved during early 1980 and testing continues, and the energy efficiency has been improved from less than 50% to over 65%. Nickel/zinc module test data have shown a specific energy of nearly 70 Wh/kg and a specific power of 130 W/kg. However, cycle life improvements are still needed. Cost reduction continues to receive major emphasis at developers of both nickel/zinc and nickel/iron batteries. Based on the continued demonstration of viable solutions to technical problems in the 1980 to 1983 time-frame, these near-term batteries will emerge as contenders for electric vehicle applications. The relative cost/performance/life tradeoff of these battery systems continues to receive emphasis in the DOE/ANL R and D Program. While it would be premature at the present time to select winning systems or specific technical approaches, it is the intent of the DOE/ANL program management to continue supporting the development of the most viable approaches in response to the 1986 commercialization goal.

  11. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  12. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  13. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    SciTech Connect

    Bennett, Brion

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  14. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    SciTech Connect

    Bennett, Brion

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  15. Battery availability for near-term (1998) electric vehicles

    SciTech Connect

    Burke, A.F.

    1991-06-01

    Battery Requirements were determined for a wide spectrum of electric vehicles ranging from 2-passenger sports cars and microvans to full-size vans with a payload of 500 kg. All the vehicles utilize ac, high voltage (340--360 V) powertrains and have acceleration performance (0--80 km/h in less than 15 seconds) expected to be the norm in 1988 electric vehicles. Battery packs were configured for each of the vehicles using families of sealed lead-acid and nickel-cadmium modules which are either presently available in limited quantities or are being developed by battery companies which market a similar battery technology. It was found that the battery families available encompass the Ah cell sizes required for the various vehicles and that they could be packaged in the space available in each vehicle. The acceleration performance and range of the vehicles were calculated using the SIMPLEV simulation program. The results showed that all the vehicles had the required acceleration characteristics and ranges between 80--160 km (50--100 miles) with the ranges using nickel-cadmium batteries being 40--60% greater than those using lead-acid batteries. Significant changes in the design of electric vehicles over the last fifteen years are noted. These changes make the design of the batteries more difficult by increasing the peak power density required from about 60 W/kg to 100--150 W/kg and by reducing the Ah cell size needed from about 150 Ah to 30--70 Ah. Both of these changes in battery specifications increase the difficulty of achieving low $/kWh cost and long cycle life. This true for both lead-acid and nickel-cadmium batteries. 25 refs., 6 figs., 16 tabs.

  16. Battery availability for near-term (1998) electric vehicles

    NASA Astrophysics Data System (ADS)

    Burke, A. F.

    1991-06-01

    Battery Requirements were determined for a wide spectrum of electric vehicles ranging from 2-passenger sports cars and microvans to full size vans with a payload of 500 kg. All the vehicles utilize ac, high voltage (340 to 360 V) powertrains and have acceleration performance (0 to 80 km/h in less than 15 seconds) expected to be the norm in 1988 electric vehicles. Battery packs were configured for each of the vehicles using families of sealed lead-acid and nickel-cadmium modules which are either presently available in limited quantities or are being developed by battery companies which market a similar battery technology. It was found that the battery families available encompass the Ah cell sizes required for the various vehicles and that they could be packaged in the space available in each vehicle. The acceleration performance and range of the vehicles were calculated using the SIMPLEV simulation program. The results showed that all the vehicles had the required acceleration characteristics and ranges between 80 to 160 km (50 to 100 miles) with the ranges using nickel-cadmium batteries being 40 to 60 pct. greater than those using lead-acid batteries. Significant changes in the design of electric vehicles over the last fifteen years are noted. These changes make the design of the batteries more difficult by increasing the peak power density required from about 60 W/kg to 100 to 150 W/kg and by reducing the Ah cell size needed from about 150 Ah to 30 to 70 Ah. Both of these changes in battery specifications increase the difficulty of achieving low $/kWh cost and long cycle life. This is true for both lead-acid and nickel-cadmium batteries.

  17. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    PubMed

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs. PMID:27026933

  18. Performance of the Lester battery charger in electric vehicles

    SciTech Connect

    Vivian, H.C.; Bryant, J.A.

    1984-04-15

    Tests were performed on an improved battery charger manufactured by Lester Electrical of Nebraska, Inc. This charger was installed in a South Coast Technology Rabbit No. 4, which was equipped with lead-acid batteries produced by ESB Company. The primary purpose of the testing was to develop test methodologies for battery charger evaluation. To this end tests were developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests showed this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  19. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  20. Electric Vehicle Charging Stations as a Climate Change Mitigation Strategy

    NASA Technical Reports Server (NTRS)

    Cave, Bridget; DeYoung, Russell J.

    2014-01-01

    In order to facilitate the use of electric vehicles at NASA Langley Research Center (LaRC), charging stations should be made available to LaRC employees. The implementation of charging stations would decrease the need for gasoline thus decreasing CO2 emissions improving local air quality and providing a cost savings for LaRC employees. A charging station pilot program is described that would install stations as the need increased and also presents a business model that pays for the electricity used and installation at no cost to the government.

  1. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  2. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  3. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect

    2011-01-01

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  4. A Study on AMB Flywheel Powered Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Rachmanto, Budi; Nonami, Kenzo; Kuriyama, Kenta; Shimazaki, Hiroshi; Kagamiishi, Takahiro; Moriya, Tomoki

    This paper describes a novel concept and configuration of Electric Vehicle powered by flywheel with Active Magnetic Bearing suspended by gimbal mechanism to the vehicle body. The entire system consists of AMB Flywheel Energy Storage including energy charger/discharger module, mechanical 2-DOF gimbal, steer-by-wire module, and autonomous driving module as the supervising controller. This paper shows the results of outdoor field experiments such as the feasibility test of steer-by-wire system, the implementation of input shaping to reduce vibration and gyroscopic effects, simple adaptive control method for flywheel attitude control, and the efficiency measurement of the energy conversion system.

  5. Power control apparatus and methods for electric vehicles

    DOEpatents

    Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li

    2016-03-22

    Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.

  6. High performance nickel-cadmium cells for electric vehicles

    NASA Astrophysics Data System (ADS)

    Cornu, Jean-Pierre

    A new concept of a cadmium electrode associated with a lighter nickel structure, a multi-cell module technology, allows the proposal of a very promisig alternative power source for electric vehicle (EV) batteries, the usable specific energy being 31% of the theoretical value. Every characteristic of this Ni-Cd module (i.e., specific energy and power, energy and power density, energy efficiency, life and reliability) gives the best performing EV battery, to date. Thus, with the efficient support of two major French car manufacturers and the French government, SAFT will launch, during Spring '95, the first pilot line of EV Ni-Cd module manufacturing.

  7. Control system and method for a hybrid electric vehicle

    DOEpatents

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  8. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  9. Use of a thermophotovoltaic generator in a hybrid electric vehicle

    SciTech Connect

    Morrison, O.; Seal, M.; West, E.; Connelly, W.

    1999-03-01

    Viking 29 is the World{close_quote}s first thermophotovoltaic (TPV) powered automobile. The prototype was funded by the Department of Energy and designed and built by students and faculty at the Vehicle Research Institute (VRI) at Western Washington University. Viking 29 is a series hybrid electric vehicle that utilizes TPV generators to charge its battery pack. Acceleration, speed, and handling compare to modern high performance sports cars, while emissions are cleaner than current internal combustion engine vehicles. {copyright} {ital 1999 American Institute of Physics.}

  10. A PWM transistor inverter for an ac electric vehicle drive

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1981-01-01

    A prototype system consisting of closely integrated motor, inverter, and transaxle has been built in order to demonstrate the feasibility of a three-phase ac transistorized inverter for electric vehicle applications. The microprocessor-controlled inverter employs monolithic power transistors to drive an oil-cooled, three-phase induction traction motor at a peak output power of 30 kW from a 144 V battery pack. Transistor safe switching requirements are discussed, and a circuit is presented for recovering trapped snubber inductor energy at transistor turn-off.

  11. Power requirements for batteries in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Nelson, Robert F.

    The operation of batteries in hybrid electric vehicles (HEVs) involves unusual constraints not seen in other applications. This paper reviews the specifications and operational requirements imposed on batteries due to the projected architectures for HEVs as defined by the DOE/PNGV Program. It also reviews the performance issues involved in battery HEV operation and surveys the strengths and weaknesses of the candidate electrochemical technologies. Finally, battery designs are recommended for the two major projected HEV applications, namely the so-called "fast-response" and "slow-response" systems identified in the DOE/PNGV Programme.

  12. Robust broadcast-communication control of electric vehicle charging

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  13. Baseline and verification tests of the electric vehicle associates' current fare station wagon. Final test report, March 27, 1980-November 6, 1981

    SciTech Connect

    Dowgiallo, E.J. Jr.; Chapman, R.D.

    1983-01-01

    The EVA Current Fare Wagon was manufactured by Electric Vehicle Associates, Incorporated (EVA) of Cleveland, Ohio. It is now available from Lectra Motors Corp. of Las Vegas, Nevada. The vehicle was tested under the direction of MERADCOM from 27 March 1980 to 6 November 1981. The tests are part of a Department of Energy project to assess advances in electric vehicle design. This report presents the performance test results on the EVA Current Fare Wagon. The EVA Current Fare Wagon is a 1980 Ford Fairmont station wagon which has been converted to an electric vehicle. The propulsion system is made up of a Cableform controller, a series-wound 30-hp Reliance Electric Motor, and 22 6-V lead-acid batteries. The Current Fare Wagon is also equipped with regenerative braking. Further details of the vehicle are given in the Vehicle Summary Data Sheet, Appendix A. The results of this testing are given in Table 1.

  14. Analysis of plug-in hybrid electric vehicle utility factors

    NASA Astrophysics Data System (ADS)

    Bradley, Thomas H.; Quinn, Casey W.

    Plug-in hybrid electric vehicles (PHEVs) are hybrid electric vehicles that can be fueled from both conventional liquid fuels and grid electricity. To represent the total contribution of both of these fuels to the operation, energy use, and environmental impacts of PHEVs, researchers have developed the concept of the utility factor. As standardized in documents such as SAE J1711 and SAE J2841, the utility factor represents the proportion of vehicle distance travelled that can be allocated to a vehicle test condition so as to represent the real-world driving habits of a vehicle fleet. These standards must be used with care so that the results are understood within the context of the assumptions implicit in the standardized utility factors. This study analyzes and derives alternatives to the standard utility factors from the 2001 National Highway Transportation Survey, so as to understand the sensitivity of PHEV performance to assumptions regarding charging frequency, vehicle characteristics, driver characteristics, and means of defining the utility factor. Through analysis of these alternative utility factors, this study identifies areas where analysis, design, and policy development for PHEVs can be improved by alternative utility factor calculations.

  15. Evaluation of pulse power devices in electric vehicle propulsion systems

    SciTech Connect

    Burke, A.F. ); Dowgiallo, E.J. )

    1990-01-01

    The application of pulse power devices in electric vehicle propulsion systems to load level the main energy storage battery has been studied. Both high energy density capacitors (ultracapacitors) and high power density, bipolar batteries are considered. Computer simulations of vehicle operation with hybrid (two power source) powertrains indicated the energy storage capacities of the pulse power devices required to load level the main battery are 300 to 500 Wh for the capacitors and 5 to 10 Ah for the bipolar batteries can be reduced from 79 W/kg to about 40 W/kg depending on the vehicle gradeability (speed, percent grade, and length of grade) desired. Evaluation of the status of the technology for the pulse power devices indicated that for both devices, improvements in technology are needed before the devices can be used in EV applications. In the case of the ultracapacitor, the energy density of present devices are 1 to 2 Wh/kg. A minimum energy density of about 5 Wh/kg is needed for electric vehicle applications. Progress in increasing the energy density of ultracapacitors has been rapid in recent years and the prospects for meeting the 5 Wh/kg requirement for EVs appear to be good. For bipolar batteries, a minimum power density of 500 W/kg is needed and the internal resistance must be reduced by about a factor of ten from that found in present designs.

  16. Summary of electric vehicle dc motor-controller tests

    SciTech Connect

    McBrien, E F; Tryon, H B

    1982-09-01

    Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

  17. Development of a DC propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  18. Supercapacitors for the energy management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Faggioli, Eugenio; Rena, Piergeorgio; Danel, Veronique; Andrieu, X.; Mallant, Ronald; Kahlen, Hans

    The integration of the on-board energy source of an electrically propelled vehicle with a supercapacitor bank (SB) as a peak power unit, can lead to substantial benefits in terms of electric vehicle performances, battery life and energy economy. Different architectures may be envisaged, to be chosen according to technical-economical trade-off. A research activity, supported by the European Community in the frame of the Joule III program and titled `Development of Supercapacitors for Electric Vehicles' (contract JOE3-CT95-0001), has been in progress since the beginning of 1996. The partners involved are SAFT (project leader), Alcatel Alsthom Research (France), Centro Ricerche Fiat (Italy), University of Kaiserslautern (Germany), Danionics (DK) and ECN (Netherlands). Its objective is to develop a SB and its electronic control and to integrate them in two different full-scale traction systems, supplied, respectively, by sealed lead traction batteries and by a fuel cell system. Through the bench tests, it will be possible to evaluate the impact of the SB on both traction systems. In this paper, a project overview will be given; the power management strategy principles, the supercapacitor's control electronic devices, the system's architecture and the supercapacitor's requirements on the base of the simulation results, will be examined.

  19. Rolling resistance of electric vehicle tires from track tests

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Slavik, R. J.

    1982-01-01

    Special low-rolling-resistance tires were made for DOE's ETV-1 electric vehicle. Tests were conducted on these tires and on a set of standard commercial automotive tires to determine the rolling resistance as a function of time during both constant-speed tires and SAE J227a driving cycle tests. The tests were conducted on a test track at ambient temperatures that ranged from 15 to 32 C (59 to 89 F) and with tire pressures of 207 to 276 kPa (30 to 40 psi). At a contained-air temperature of 38 C (100 F) and a pressure of 207 kPa (30 psi) the rolling resistances of the electric vehicle tires and the standard commercial tires, respectively, were 0.0102 and 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38 C (100 F) and a pressure of 276 kPa (40 psi) the rolling resistances were 0.009 and 0.0074 kilogram per kilogram of vehicle weight, respectively.

  20. Battery electric vehicles - implications for the driver interface.

    PubMed

    Neumann, Isabel; Krems, Josef F

    2016-03-01

    The current study examines the human-machine interface of a battery electric vehicle (BEV) from a user-perspective, focussing on the evaluation of BEV-specific displays, the relevance of provided information and challenges for drivers due to the concept of electricity in a road vehicle. A sample of 40 users drove a BEV for 6 months. Data were gathered at three points of data collection. Participants perceived the BEV-specific displays as only moderately reliable and helpful for estimating the displayed parameters. This was even less the case after driving the BEV for 3 months. A taxonomy of user requirements was compiled revealing the need for improved and additional information, especially regarding energy consumption and efficiency. Drivers had difficulty understanding electrical units and the energy consumption of the BEV. On the background of general principles for display design, results provide implications how to display relevant information and how to facilitate drivers' understanding of energy consumption in BEVs. Practitioner Summary: Battery electric vehicle (BEV) displays need to incorporate new information. A taxonomy of user requirements was compiled revealing the need for improved and additional information in the BEV interface. Furthermore, drivers had trouble understanding electrical units and energy consumption; therefore, appropriate assistance is required. Design principles which are specifically important in the BEV context are discussed. PMID:26444273

  1. Load calculation and system evaluation for electric vehicle climate control

    SciTech Connect

    Aceves-Saborio, S.; Comfort, W.J. III

    1993-10-27

    Providing air conditioning for electric vehicles (EVs) represents an important challenge, because vapor compression air conditioners, which are common in gasoline powered vehicles, may consume a substantial part of the total energy stored in the EV battery. This report consists of two major parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can be used to provide the desired cooling and heating in EVs. Four cases are studied. Short range and full range EVs are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat reflecting windows, to reduce hot soak. Recent legislation has allowed the use of combustion heating whenever the ambient temperature drops below 5{degrees}C. This has simplified the problem of heating, and made cooling the most important problem. Therefore, systems described in this project are designed for cooling, and their applicability to heating at temperatures above 5{degrees}C is described. If the air conditioner systems cannot be used to cover the whole heating load at 5{degrees}C, then the vehicle requires a complementary heating system (most likely a heat recovery system or electric resistance heating). Air conditioners are ranked according to their overall weight. The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation.

  2. Load calculation and system evaluation for electric vehicle climate control

    SciTech Connect

    Aceves, S.M.; Comfort, W.J. III

    1994-09-12

    This paper presents an analysis of the applicability of alternative systems for electric vehicle (EV) heating and air conditioning (HVAC). The paper consists of two parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can provide the desired cooling and heating in EVs. These systems are ranked according to their overall weight The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation. The system with the minimum overall weight is considered to be the best, because minimum vehicle weight decreases the energy required for propulsion, and therefore increases the vehicle range. Three systems are considered as the best choices for EV HVAC. These are, vapor compression, ice storage and adsorption systems. These systems are evaluated, including calculations of system weight, system volume, and COP. The paper also includes a calculation on how the battery energy storage capacity affects the overall system weights and the selection of the optimum system. The results indicate that, at the conditions analyzed in this paper, an ice storage system has the minimum weight of all the systems considered. Vapor compression air conditioners become the system with the minimum weight for battery storage capacities above 230 kJ/kg.

  3. Effects of battery technologies, driving patterns, and climate comfort control on the performance of electric vehicles

    SciTech Connect

    Marr, W.W.; Wang, M.Q.; Santini, D.J.

    1994-05-15

    A computer software package, EAGLES, has been developed at Argonne National Laboratory to analyze electric vehicle (EV) performance. In this paper, we present EAGLES predictions of EV driving range, acceleration rate, and energy consumption under various driving patterns, with different battery technologies, and with assumptions concerning use of air conditioners and/or heaters for climate comfort control. The specifications of a baseline, four-passenger EV for given design performance requirements are established, assuming urban driving conditions represented by the Los Angeles 92 (LA-92) driving cycle and using battery characteristics similar to those of the United States Advanced Battery Consortium (USABC) midterm battery performance goals. To examine the impacts of driving patterns, energy consumption is simulated under three different driving cycles: the New York City Cycle, the Los Angeles 92 Cycle, and the ECE-15 Cycle. To test the impacts of battery technologies, performance attributes of an advanced lead-acid battery, the USABC midterm battery goals, and the USABC long-term battery goals are used. Finally, EV energy consumption from use of air conditioners and/or heaters under different climates is estimated and the associated driving range penalty for one European city (Paris) and two United States cities (Chicago and Los Angeles) is predicted. The results of this paper show the importance of considering various effects, such as battery technology, driving pattern, and climate comfort control, in the determination of EV performances. Electric vehicle energy consumption decreases more than 20% when a battery with characteristics similar to the USABC long-term goals is used instead of an advanced lead-acid battery.

  4. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect

    2011-11-21

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  5. An extended car-following model with consideration of the electric vehicle's driving range

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Chen, Liang; Yang, Shi-Chun; Shang, Hua-Yan

    2015-07-01

    In this paper, we propose a car-following model to explore the influences of the electric vehicle's driving range on the driving behavior under four traffic situations. The numerical results illustrate that the electric vehicle's behavior of exchanging battery at the charge station can destroy the stability of traffic flow and produce some prominent jams, and that the influences are related to the electric vehicle's driving range, i.e., the shorter the driving range is, the greater the effects are.

  6. The Promise of Mixed-Methods for Advancing Latino Health Research

    PubMed Central

    Apesoa-Varano, Ester Carolina; Hinton, Ladson

    2015-01-01

    Mixed-methods research in the social sciences has been conducted for quite some time. More recently, mixed-methods have become popular in health research, with the National Institutes of Health leading the impetus to fund studies that implement such an approach. The public health issues facing us today are great and they range from policy and other macro-level issues, to systems level problems to individuals' health behaviors. For Latinos, who are projected to become the largest minority group bearing a great deal of the burden of social inequality in the U.S., it is important to understand the deeply-rooted nature of these health disparities in order to close the gap in health outcomes. Mixed-methodology thus holds promise for advancing research on Latino heath by tackling health disparities from a variety of standpoints and approaches. The aim of this manuscript is to provide two examples of mixed methods research, each of which addresses a health topic of considerable importance to older Latinos and their families. These two examples will illustrate a) the complementary use of qualitative and quantitative methods to advance health of older Latinos in an area that is important from a public health perspective, and b) the “translation” of findings from observational studies (informed by social science and medicine) to the development and testing of interventions. PMID:23996325

  7. Rapid recharge capability of valve-regulated lead-acid batteries for electric vehicle and hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Fleming, F. A.; Shumard, P.; Dickinson, B.

    Range limitation is a significant drawback to the successful commercialization of electric vehicles (EVs). An apt description of an EV is `a high performance vehicle with a one-gallon fuel tank'. In the absence of a `super battery', there are at least two approaches to resolving this drawback. The first approach is rapid recharge, i.e., recharging the battery as close as possible to the same time period as it takes to fill the petrol tank of an internal-combustion-engined (ICE) vehicle. Whilst not extending the vehicle range as such, this approach does enable high usage of the vehicle without experiencing unduly long recharge times. The ability of the battery to accept rapid recharge is paramount for this approach. The second approach is the development of a hybrid electric vehicle (HEV). In this case, the demand on the battery is the ability to provide, and also absorb from regenerative braking, high specific peak-power levels over a wide range of battery state-of-charge. This paper describes the ability, and indeed limitations, of the valve-regulated Genesis® lead-acid battery in meeting such requirements.

  8. An Research on Electrical Vehicle'S Charge-Discharge Behavior Based on Logit Model

    NASA Astrophysics Data System (ADS)

    Xiaoyin, Wang; Junyong, Liu

    Electric Vehicle is the future trend of the automobile industry, and the energy exchanging between the electrical vehicles and the grid through the vehicle-to-grid (V2G) technology becomes possiable. V2G leads to a rapid load growth effecting the benefit of the grid, which wasn't discussed. The charge and discharge model of the electrical vehicles is discussed using the multinomial logit model based on the discrete choice theory, then preliminarily evaluates the effects of economic benefit both on the motorist and the grid. Finally, suggestions on period division and electricity pricing for charge and discharge of the electrical vehicle are given.

  9. Ecodriving in hybrid electric vehicles - Exploring challenges for user-energy interaction.

    PubMed

    Franke, Thomas; Arend, Matthias Georg; McIlroy, Rich C; Stanton, Neville A

    2016-07-01

    Hybrid electric vehicles (HEVs) can help to reduce transport emissions; however, user behaviour has a significant effect on the energy savings actually achieved in everyday usage. The present research aimed to advance understanding of HEV drivers' ecodriving strategies, and the challenges for optimal user-energy interaction. We conducted interviews with 39 HEV drivers who achieved above-average fuel efficiencies. Regression analyses showed that technical system knowledge and ecodriving motivation were both important predictors for ecodriving efficiency. Qualitative data analyses showed that drivers used a plethora of ecodriving strategies and had diverse conceptualisations of HEV energy efficiency regarding aspects such as the efficiency of actively utilizing electric energy or the efficiency of different acceleration strategies. Drivers also reported several false beliefs regarding HEV energy efficiency that could impair ecodriving efforts. Results indicate that ecodriving support systems should facilitate anticipatory driving and help users locate and maintain drivetrain states of maximum efficiency. PMID:26995034

  10. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    SciTech Connect

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion. Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.

  11. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    DOE PAGESBeta

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.more » Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.« less

  12. Quantification of bottlenecks to fast charging of lithium-ion-insertion cells for electric vehicles

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Rajeswari

    2014-12-01

    In this work, an isothermal, physics-based, dual lithium-ion insertion cell sandwich model is used for simulating the galvanostatic charge performance of a graphite (LixC6)/liquid electrolyte/Liy(NiaCobMnc)O2 at room temperature at various current densities. The modeling results are compared with experimental cell potential vs. capacity data. The validated model is used to identify the bottlenecks to fast charging by quantification of the various contributions to the cell overpotential. Lithium plating at the negative electrode is shown to be thermodynamically feasible during galvanostatic charging at 2C rate and above. This work will aid in research and development activities to overcome the hurdles to fast charging of advance electric vehicle batteries.

  13. Electric and hybrid electric vehicle study utilizing a time-stepping simulation

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.

    1992-01-01

    The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.

  14. Project Milestone. Analysis of Range Extension Techniques for Battery Electric Vehicles

    SciTech Connect

    Neubauer, Jeremy; Wood, Eric; Pesaran, Ahmad

    2013-07-01

    This report documents completion of the July 2013 milestone as part of NREL’s Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy. The objective was to perform analysis on range extension techniques for battery electric vehicles (BEVs). This work represents a significant advancement over previous thru-life BEV analyses using NREL’s Battery Ownership Model, FastSim,* and DRIVE.* Herein, the ability of different charging infrastructure to increase achievable travel of BEVs in response to real-world, year-long travel histories is assessed. Effects of battery and cabin thermal response to local climate, battery degradation, and vehicle auxiliary loads are captured. The results reveal the conditions under which different public infrastructure options are most effective, and encourage continued study of fast charging and electric roadway scenarios.

  15. Optimization of batteries for plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  16. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  17. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  18. Design studies of continuously variable transmissions for electric vehicles

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Loewenthal, S. H.; Fischer, G. K.

    1981-01-01

    Preliminary design studies were performed on four continuously variable transmission (CVT) concepts for use with a flywheel equipped electric vehicle of 1700 kg gross weight. Requirements of the CVT's were a maximum torque of 450 N-m (330 lb-ft), a maximum output power of 75 kW (100 hp), and a flywheel speed range of 28,000 to 14,000 rpm. Efficiency, size, weight, cost, reliability, maintainability, and controls were evaluated for each of the four concepts which included a steel V-belt type, a flat rubber belt type, a toroidal traction type, and a cone roller traction type. All CVT's exhibited relatively high calculated efficiencies (68 percent to 97 percent) over a broad range of vehicle operating conditions. Estimated weight and size of these transmissions were comparable to or less than equivalent automatic transmission. The design of each concept was carried through the design layout stage.

  19. Electric vehicle test report Cutler-Hammer Corvette

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Vehicles were characterized for the state of the art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed.

  20. Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.

    PubMed

    El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z

    2014-01-01

    The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope. PMID:24895464

  1. PWM Inverter control and the application thereof within electric vehicles

    DOEpatents

    Geppert, Steven

    1982-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  2. Development of test procedures for hybrid/electric vehicles

    NASA Astrophysics Data System (ADS)

    Burke, A. F.

    1992-07-01

    This report is concerned with the development of procedures for testing of hybrid/electric vehicles to determine their energy consumption and emissions characteristics. Special emphasis is given to hybrid vehicles, which can be operated above some minimum battery state-of-charge in an all-electric mode for all types of driving (city and highway). When the all-electric range of these vehicles is exceeded, the vehicles are operated in the hybrid mode, in which an engine/generator is turned on to generate electricity on-board the vehicle. Key issues in testing hybrid vehicles are identified and discussed. These issues include the test cycles to be used, the instrumentation required, the effect of battery state-of-charge and control strategy in the hybrid mode on the need for repeated test cycles, and the data to be collected and how that data from repeated cycles is interpreted to determine the vehicle energy consumption and emissions characteristics.

  3. Development of test procedures for hybrid/electric vehicles

    NASA Astrophysics Data System (ADS)

    Burke, A. F.

    1992-07-01

    The development of procedures for testing of hybrid/electric vehicles to determine their energy consumption and emissions characteristics is addressed. Special emphasis is given to hybrid vehicles, which can be operated above some minimum battery state-of-charge in an all-electric mode for all types of driving (city and highway). When the all-electric range of these vehicles is exceeded, the vehicles are operated in the hybrid mode, in which an engine/generator is turned on to generate electricity on-board the vehicle. Key issues in testing hybrid vehicles are identified and discussed. These issues include the test cycles to be used, the instrumentation required, the effect of battery state-of-charge and control strategy in the hybrid mode on the need for repeated test cycles, and the data to be collected and how that data from repeated cycles is interpreted to determine the vehicle energy consumption and emissions characteristics.

  4. A smart control system for electric vehicle batteries

    SciTech Connect

    Arikara, M.P.; Dickinson, B.E.; Branum, B.

    1993-12-31

    A smart control system for electric vehicle (EV) batteries was designed and its performance was evaluated. The hardware for the system was based on the Motorola MC68HC11ENB micro controller. A zinc bromide (Zn/Br{sub 2}) battery was chosen since it is a good candidate as an EV battery and has a large number of user variable parameters that affect its performance. The flexibility of the system arises from the fact that the system can be programmed to do a wide variety of jobs. The use of real time interrupts and other features makes the system safe for use along with the battery systems. Test data indicates that real time control of the different parameters can increase the performance of the battery by 15%. In addition to optimizing the performance of the battery the control system incorporates essential safety features.

  5. Electric vehicle drive train with rollback detection and compensation

    DOEpatents

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  6. Electric vehicle drive train with rollback detection and compensation

    DOEpatents

    Konrad, Charles E.

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  7. Energy control strategy for a hybrid electric vehicle

    DOEpatents

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-08-27

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  8. Energy control strategy for a hybrid electric vehicle

    DOEpatents

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-01-01

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  9. Plug-in hybrid electric vehicles in smart grid

    NASA Astrophysics Data System (ADS)

    Yao, Yin

    In this thesis, in order to investigate the impact of charging load from plug-in hybrid electric vehicles (PHEVs), a stochastic model is developed in Matlab. In this model, two main types of PHEVs are defined: public transportation vehicles and private vehicles. Different charging time schedule, charging speed and battery capacity are considered for each type of vehicles. The simulation results reveal that there will be two load peaks (at noon and in evening) when the penetration level of PHEVs increases continuously to 30% in 2030. Therefore, optimization tool is utilized to shift load peaks. This optimization process is based on real time pricing and wind power output data. With the help of smart grid, power allocated to each vehicle could be controlled. As a result, this optimization could fulfill the goal of shifting load peaks to valley areas where real time price is low or wind output is high.

  10. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  11. An analytical study of electric vehicle handling dynamics

    NASA Technical Reports Server (NTRS)

    Greene, J. E.; Segal, D. J.

    1979-01-01

    Hypothetical electric vehicle configurations were studied by applying available analytical methods. Elementary linearized models were used in addition to a highly sophisticated vehicle dynamics computer simulation technique. Physical properties of specific EV's were defined for various battery and powertrain packaging approaches applied to a range of weight distribution and inertial properties which characterize a generic class of EV's. Computer simulations of structured maneuvers were performed for predicting handling qualities in the normal driving range and during various extreme conditions related to accident avoidance. Results indicate that an EV with forward weight bias will possess handling qualities superior to a comparable EV that is rear-heavy or equally balanced. The importance of properly matching tires, suspension systems, and brake system front/rear torque proportioning to a given EV configuration during the design stage is demonstrated.

  12. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

    2011-07-01

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  13. Electric vehicles: A new challenge for utility planners

    SciTech Connect

    Wittenberg, D.O.; Meurice, J.K.

    1993-04-01

    Most senior utility executives are at least vaguely familiar with the last market appearance of electric vehicles (EVs) in the 1970s, but few have pleasant stories to relate. Those low volume, converted vehicles were relatively expensive, their quality was uncertain, and their customer service support was spotty. Interest the vehicles quickly faded as the reality and the threat of high gasoline prices disappeared in the 1980s, but the unpleasant memories lingered, particularly among managers in electric utilities who had bet more than a few dollars on EVs. This experience has led many of today's utility executives to regard the recent resurgence of interest in EVs with extreme skepticism, or to dismiss it altogether. And while the EVs of the 1990s could go the way of their ancestors, the fact is that current EV promotion and commercialization efforts are being driven by fundamentally different forces, and evidence strongly suggests that this time, EVs are here to stay.

  14. Variable-frequency synchronous motor drives for electric vehicles

    SciTech Connect

    Chalmers, B.J.; Musaba, L.; Gosden, D.F.

    1995-12-31

    The performance capability envelope of a variable-frequency, permanent-magnet synchronous motor drive with field weakening is dependent upon the product of maximum current and direct-axis inductance. To obtain a performance characteristic suitable for a typical electric vehicle drive, in which short-term increase of current is applied, it is necessary to design an optimum value of direct-axis inductance. The paper presents an analysis of a hybrid motor design which uses a two-part rotor construction comprising a surface-magnet part and an axially-laminated reluctance part. This arrangement combines the properties of all other types of synchronous motor and offers a greater choice of design variables. It is shown that the desired form of performance may be achieved when the high-inductance axis of the reluctance part is arranged to lead the magnet axis by 90{degree} (elec.).

  15. Variable-frequency synchronous motor drives for electric vehicles

    SciTech Connect

    Chalmers, B.J.; Musaba, L.; Gosden, D.F.

    1996-07-01

    The performance capability envelope of a variable-frequency, permanent-magnet synchronous motor drive with field weakening is dependent upon the product of maximum current and direct-axis inductance. To obtain a performance characteristic suitable for a typical electric vehicle drive, in which short-term increase of current is applied, it is necessary to design an optimum value of direct-axis inductance. The paper presents an analysis of a hybrid motor design which uses a two-part rotor construction comprising a surface-magnet part and an axially laminated reluctance part. This arrangement combines the properties of all other types of synchronous motor and offers a greater choice of design variables. It is shown that the desired form of performance may be achieved when the high-inductance axis of the reluctance part is arranged to lead the magnet axis by 90{degree} (elec.).

  16. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles

    SciTech Connect

    Prohaska, Robert; Duran, Adam; Ragatz, Adam; Kelly, Kenneth

    2015-05-03

    In an effort to help commercialize technologies for electric vehicles (EVs) through deployment and demonstration projects, the U.S. Department of Energy's (DOE's) American Recovery and Reinvestment Act (ARRA) provided funding to participating U.S. companies to cover part of the cost of purchasing new EVs. Within the medium- and heavy-duty commercial vehicle segment, both Smith Electric Newton and and Navistar eStar vehicles qualified for such funding opportunities. In an effort to evaluate the performance characteristics of the new technologies deployed in these vehicles operating under real world conditions, data from Smith Electric and Navistar medium-duty EVs were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team over a period of 3 years. More than 430 Smith Newton EVs have provided data representing more than 150,000 days of operation. Similarly, data have been collected from more than 100 Navistar eStar EVs, resulting in a comparative total of more than 16,000 operating days. Combined, NREL has analyzed more than 6 million kilometers of driving and 4 million hours of charging data collected from commercially operating medium-duty electric vehicles in various configurations. In this paper, extensive duty-cycle statistical analyses are performed to examine and characterize common vehicle dynamics trends and relationships based on in-use field data. The results of these analyses statistically define the vehicle dynamic and kinematic requirements for each vehicle, aiding in the selection of representative chassis dynamometer test cycles and the development of custom drive cycles that emulate daily operation. In this paper, the methodology and accompanying results of the duty-cycle statistical analysis are presented and discussed. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relate to

  17. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  18. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D. , Inc., Cambridge, MA )

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  19. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D.

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  20. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    Singh, Gurpreet

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  1. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    SciTech Connect

    Not Available

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  2. S/EV 1991: Solar and Electric Vehicle Symposium, Car and Trade Show

    NASA Astrophysics Data System (ADS)

    1991-12-01

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  3. An automatically-shifted two-speed transaxle system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Gordon, H. S.; Hassman, G. V.

    1980-01-01

    An automatic shifting scheme for a two speed transaxle for use with an electric vehicle propulsion system is described. The transaxle system was to be installed in an instrumented laboratory propulsion system of an ac electric vehicle drive train. The transaxle which had been fabricated is also described.

  4. Performance of conventionally powered vehicles tested to an electric vehicle test procedure

    NASA Technical Reports Server (NTRS)

    Slavik, R. J.; Dustin, M. O.; Lumannick, S.

    1977-01-01

    A conventional Volkswagen transporter, a Renault 5, a Pacer, and a U. S. Postal Service general DJ-5 delivery van were treated to an electric vehicle test procedure in order to allow direct comparison of conventional and electric vehicles. Performance test results for the four vehicles are presented.

  5. Direct yaw moment control for distributed drive electric vehicle handling performance improvement

    NASA Astrophysics Data System (ADS)

    Yu, Zhuoping; Leng, Bo; Xiong, Lu; Feng, Yuan; Shi, Fenmiao

    2016-04-01

    For a distributed drive electric vehicle (DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control (DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error (ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to

  6. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    SciTech Connect

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy; LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  7. Direct yaw moment control for distributed drive electric vehicle handling performance improvement

    NASA Astrophysics Data System (ADS)

    Yu, Zhuoping; Leng, Bo; Xiong, Lu; Feng, Yuan; Shi, Fenmiao

    2016-05-01

    For a distributed drive electric vehicle (DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control (DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error (ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to

  8. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2011-01-01

    NASA's goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  9. Progress in the development of recycling processes for electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Jungst, R. G.; Clark, R. P.

    Disposition of electric vehicle (EV) batteries after they have reached the end of their useful life is an issue that could impede the widespread acceptance of EV's in the commercial market. This is especially true for advanced battery systems where working recycling processes have not as yet been established. The DOE sponsors an Ad Hoc Electric Vehicle Battery Readiness Working Group to identify barriers to the introduction of commercial EV's and to advise them of specific issues related to battery reclamation/recycling, in-vehicle battery safety, and battery shipping. A Sub-Working Group on the reclamation/recycle topic has been reviewing the status of recycling process development for the principal battery technologies that are candidates for EV use from the near-term to the long-term. Recycling of near-term battery technologies, such as lead-acid and nickel/cadmium, is occurring today and it is believed that sufficient processing capacity can be maintained to keep up with the large number of units that could result from extensive EV use. Reclamation/recycle processes for midterm batteries are partially developed. Good progress has been made in identifying processes to recycle sodium/sulfur batteries at a reasonable cost and pilot scale facilities are being tested or planned. A pre-feasibility cost study on the nickel/metal hydride battery also indicates favorable economics for some of the proposed reclamation processes. Long-term battery technologies, including lithium-polymer and lithium/iron disulfide, are still being designed and developed for EV's, so descriptions for prototype recycling processes are rather general at this point. Due to the long time required to set up new, full-scale recycling facilities, it is important to develop a reclamation/recycling process in parallel with the battery technologies themselves.

  10. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    SciTech Connect

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  11. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  12. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV

  13. Selected Topics on Decision Making for Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Sweda, Timothy Matthew

    Electric vehicles (EVs) are an attractive alternative to conventional gasoline-powered vehicles due to their lower emissions, fuel costs, and maintenance costs. Range anxiety, or the fear of running out of charge prior to reaching one's destination, remains a significant concern, however. In this dissertation, we address the issue of range anxiety by developing a set of decision support tools for both charging infrastructure providers and EV drivers. In Chapter 1, we present an agent-based information system for identifying patterns in residential EV ownership and driving activities to enable strategic deployment of new charging infrastructure. Driver agents consider their own driving activities within the simulated environment, in addition to the presence of charging stations and the vehicle ownership of others in their social networks, when purchasing a new vehicle. The Chicagoland area is used as a case study to demonstrate the model, and several deployment scenarios are analyzed. In Chapter 2, we address the problem of finding an optimal recharging policy for an EV along a given path. The path consists of a sequence of nodes, each representing a charging station, and the driver must decide where to stop and how much to recharge at each stop. We present efficient algorithms for finding an optimal policy in general instances with deterministic travel costs and homogeneous charging stations, and also for two specialized cases. In addition, we develop two heuristic procedures that we characterize analytically and explore empirically. We further analyze and test our solution methods on model variations that include stochastic travel costs and nonhomogeneous charging stations. In Chapter 3, we study the problem of finding an optimal routing and recharging policy for an electric vehicle in a grid network. Each node in the network represents a charging station and has an associated probability of being available at any point in time or occupied by another vehicle. We

  14. The harmonic impact of electric vehicle battery charging

    NASA Astrophysics Data System (ADS)

    Staats, Preston Trent

    The potential widespread introduction of the electric vehicle (EV) presents both opportunities and challenges to the power systems engineers who will be required to supply power to EV batteries. One of the challenges associated with EV battery charging comes from the potentially high harmonic currents associated with the conversion of ac power system voltages to dc EV battery voltages. Harmonic currents lead to increased losses in distribution circuits and reduced life expectancy of such power distribution components as capacitors and transformers. Harmonic current injections also cause harmonic voltages on power distribution networks. These distorted voltages can affect power system loads and specific standards exist regulating acceptable voltage distortion. This dissertation develops and presents the theory required to evaluate the electric vehicle battery charger as a harmonic distorting load and its possible harmonic impact on various aspects of power distribution systems. The work begins by developing a method for evaluating the net harmonic current injection of a large collection of EV battery chargers which accounts for variation in the start-time and initial battery state-of-charge between individual chargers. Next, this method is analyzed to evaluate the effect of input parameter variation on the net harmonic currents predicted by the model. We then turn to an evaluation of the impact of EV charger harmonic currents on power distribution systems, first evaluating the impact of these currents on a substation transformer and then on power distribution system harmonic voltages. The method presented accounts for the uncertainty in EV harmonic current injections by modeling the start-time and initial battery state-of-charge (SOC) of an individual EV battery charger as random variables. Thus, the net harmonic current, and distribution system harmonic voltages are formulated in a stochastic framework. Results indicate that considering variation in start-time and

  15. Linear engine development for series hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Toth-Nagy, Csaba

    This dissertation argues that diminishing oil reserves, concern over global climate change, and desire to improve ambient air quality all demand the development of environment-friendly personal transportation. In certain applications, series hybrid electric vehicles offer an attractive solution to reducing fuel consumption and emissions. Furthermore, linear engines are emerging as a powerplant suited to series HEV applications. In this dissertation, a linear engine/alternator was considered as the auxiliary power unit of a range extender series hybrid electric vehicle. A prototype linear engine/alternator was developed, constructed and tested at West Virginia University. The engine was a 2-stroke, 2-cylinder, dual piston, direct injection, diesel engine. Experiment on the engine was performed to study its behavior. The study variables included mass of the translator, amount of fuel injected, injection timing, load, and stroke with operating frequency and mechanical efficiency as the basis of comparison. The linear engine was analyzed in detail and a simple simulation model was constructed to compare the trends of simulation with the experimental data and to expand on the area where the experimental data were lacking. The simulation was based on a simple and analytical model, rather than a detailed and intensely numerical one. The experimental and theoretical data showed similar trends. Increasing translator mass decreased the operating frequency and increased compression ratio. Larger mass and increased compression ratio improved the ability of the engine to sustain operation and the engine was able to idle on less fuel injected into the cylinder. Increasing the stroke length caused the operating frequency to drop. Increasing fueling or decreasing the load resulted in increased operating frequency. This projects the possibility of using the operating frequency as an input for feedback control of the engine. Injection timing was varied to investigate two different

  16. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.

    2015-06-05

    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  17. Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles' Electrical Propulsion Systems

    SciTech Connect

    Cao, J.; Bharathan, D.; Emadi, A.

    2007-01-01

    Isolated gate bipolar transistors (IGBTs) are widely used in power electronic applications including electric, hybrid electric, and plug-in hybrid electric vehicles (EVs, HEVs, and PHEVs). The trend towards more electric vehicles (MEVs) has demanded the need for power electronic devices capable of handling power in the range of 10-100 kW. However, the converter losses in this power range are of critical importance. Therefore, thermal management of the power electronic devices/converters is crucial for the reliability and longevity of the advanced vehicles. To aid the design of heat exchangers for the IGBT modules used in propulsion motor drives, a loss model for the IGBTs is necessary. The loss model of the IGBTs will help in the process of developing new heat exchangers and advanced thermal interface materials by reducing cost and time. This paper deals with the detailed loss modeling of IGBTs for advanced electrical propulsion systems. An experimental based loss model is proposed. The proposed loss calculation method utilizes the experimental data to reconstruct the loss surface of the power electronic devices by means of curve fitting and linear extrapolating. This enables the calculation of thermal losses in different voltage, current, and temperature conditions of operation. To verify the calculation method, an experimental test set-up was designed and built. The experimental set-up is an IGBT based bi-directional DC/DC converter. In addition, simulation results are presented to verify the proposed calculation method.

  18. Field Operations Program Neighborhood Electric Vehicles - Fleet Survey

    SciTech Connect

    Francfort, James Edward; Carroll, M.

    2001-07-01

    This report summarizes a study of 15 automotive fleets that operate neighborhood electric vehicles(NEVs) in the United States. The information was obtained to help Field Operations Program personnel understand how NEVs are being used, how many miles they are being driven, and if they are being used to replace other types of fleet vehicles or as additions to fleets. (The Field Operations Program is a U.S. Department of Energy Program within the DOE Office of Energy Efficiency and Renewable Energy, Transportation Technologies). The NEVs contribution to petroleum avoidance and cleaner air can be estimated based on the miles driven and by assuming gasoline use and air emissions values for the vehicles being replaced. Gasoline and emissions data for a Honda Civic are used as the Civic has the best fuel use for a gasoline-powered vehicle and very clean emissions. Based on these conservation assumptions, the 348 NEVs are being driven a total of about 1.2 million miles per year. This equates to an average of 3,409 miles per NEV annually or 9 miles per day. It is estimated that 29,195 gallons of petroleum use is avoided annually by the 348 NEVs. This equates to 87 gallons of petroleum use avoided per NEV, per year. Using the 348 NEVs avoids the generation of at least 775 pounds of smog- forming emissions annually.

  19. Field Operations Program - Neighborhood Electric Vehicle Fleet Use

    SciTech Connect

    Francfort, J. E.; Carroll, M. R.

    2001-07-02

    This report summarizes a study of 15 automotive fleets that operate neighborhood electric vehicles (NEVs) in the United States. The information was obtained to help Field Operations Program personnel understand how NEVs are being used, how many miles they are being driven, and if they are being used to replace other types of fleet vehicles or as additions to fleets. (The Field Operations Program is a U.S. Department of Energy Program within the DOE Office of Energy Efficiency and Renewable Energy, Transportation Technologies). The NEVs contribution to petroleum avoidance and cleaner air can be estimated based on the miles driven and by assuming gasoline use and air emissions values for the vehicles being replaced. Gasoline and emissions data for a Honda Civic are used as the Civic has the best fuel use for a gasoline-powered vehicle and very clean emissions. Based on these conservation assumptions, the 348 NEVs are being driven a total of about 1.2 million miles per year. This equates to an average of 3,409 miles per NEV annually or 9 miles per day. It is estimated that 29,195 gallons of petroleum use is avoided annually by the 348 NEVs. This equates to 87 gallons of petroleum use avoided per NEV, per year. Using the 348 NEVs avoids the generation of at least 775 pounds of smog-forming emissions annually.

  20. Analysis of electric vehicle interconnection with commercial building microgrids

    SciTech Connect

    Stadler, Michael; Mendes, Goncalo; Marnay, Chris; Mégel, Olivier; Lai, Judy

    2011-04-01

    The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  1. Simulation of electric vehicles with hybrid power systems

    SciTech Connect

    Burke, A.F.; Cole, G.H.

    1990-01-01

    Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics. 2 refs., 7 figs., 14 tabs.

  2. Electric vehicle test report, Cutler-Hammer Corvette

    SciTech Connect

    Not Available

    1981-01-01

    The work described was part of the effort to characterize vehicles for the state-of-the-art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The vehicle was based on a standard production 1967 chassis and body. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The remainder of the vehicle, and in particular the remainder of the drive-train (clutch, driveshaft, and differential), was stock, except for the transmission. The overall objective of the tests was to develop performance data at the system and subsystem level. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. There was no evaluation of other aspects of the vehicle such as braking, ride, handling, passenger accomodations, etc. Included are a description of the vehicle, the tests performed and a discussion of the results. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant-speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed. (LCL)

  3. Episodic air quality impacts of plug-in electric vehicles

    NASA Astrophysics Data System (ADS)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  4. Three-dimensional thermal modeling of electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Lee, J.; Choi, K. W.; Yao, N. P.; Christianson, C. C.

    1985-10-01

    A generic three-dimensional thermal model was developed for analyzing the thermal behavior of electric-vehicle batteries. The model calculates temperature distribution and excursion of a battery during discharge, change, and open circuit. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation on the temperature distribution in a battery. The three-dimensional feature of the model permits incorporation of various asymmetric boundary conditions; thus the effects of cell orientation and packaging on thermal behavior can be analyzed for a multiple-cell battery pack. Various modes of boundary heat transfer such as radiation, insulation, and natural and forced convections were also included in the model. Model predictions agreed well with the temperature distributions measured in nickel/iron batteries. Application of the thermal model to a closely packed 330-Ah module of five cells indicated that excessive temperature rise will occur upon discharge. Forced air convection is not effective for cooling the module.

  5. AC propulsion system for an electric vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  6. Analysis and optimization of hybrid electric vehicle thermal management systems

    NASA Astrophysics Data System (ADS)

    Hamut, H. S.; Dincer, I.; Naterer, G. F.

    2014-02-01

    In this study, the thermal management system of a hybrid electric vehicle is optimized using single and multi-objective evolutionary algorithms in order to maximize the exergy efficiency and minimize the cost and environmental impact of the system. The objective functions are defined and decision variables, along with their respective system constraints, are selected for the analysis. In the multi-objective optimization, a Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The corresponding solutions are compared against the exergetic, exergoeconomic and exergoenvironmental single objective optimization results. The results show that the exergy efficiency, total cost rate and environmental impact rate for the baseline system are determined to be 0.29, ¢28 h-1 and 77.3 mPts h-1 respectively. Moreover, based on the exergoeconomic optimization, 14% higher exergy efficiency and 5% lower cost can be achieved, compared to baseline parameters at an expense of a 14% increase in the environmental impact. Based on the exergoenvironmental optimization, a 13% higher exergy efficiency and 5% lower environmental impact can be achieved at the expense of a 27% increase in the total cost.

  7. Hidden benefits of electric vehicles for addressing climate change.

    PubMed

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-01-01

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO2 emissions by 10,686 tonnes. PMID:25790439

  8. High Penetration of Electrical Vehicles in Microgrids: Threats and Opportunities

    NASA Astrophysics Data System (ADS)

    Khederzadeh, Mojtaba; Khalili, Mohammad

    2014-10-01

    Given that the microgrid concept is the building block of future electric distribution systems and electrical vehicles (EVs) are the future of transportation market, in this paper, the impact of EVs on the performance of microgrids is investigated. Demand-side participation is used to cope with increasing demand for EV charging. The problem of coordination of EV charging and discharging (with vehicle-to-grid (V2G) functionality) and demand response is formulated as a market-clearing mechanism that accepts bids from the demand and supply sides and takes into account the constraints put forward by different parts. Therefore, a day-ahead market with detailed bids and offers within the microgrid is designed whose objective is to maximize the social welfare which is the difference between the value that consumers attach to the electrical energy they buy plus the benefit of the EV owners participating in the V2G functionality and the cost of producing/purchasing this energy. As the optimization problem is a mixed integer nonlinear programming one, it is decomposed into one master problem for energy scheduling and one subproblem for power flow computation. The two problems are solved iteratively by interfacing MATLAB with GAMS. Simulation results on a sample microgrid with different residential, commercial and industrial consumers with associated demand-side biddings and different penetration level of EVs support the proposed formulation of the problem and the applied methods.

  9. Zinc air battery development for electric vehicles. Final report

    SciTech Connect

    Putt, R.A.; Merry, G.W.

    1991-07-01

    This report summarizes the results of research conducted during the sixteen month continuation of a program to develop rechargeable zinc-air batteries for electric vehicles. The zinc-air technology under development incorporates a metal foam substrate for the zinc electrode, with flow of electrolyte through the foam during battery operation. In this ``soluble`` zinc electrode the zincate discharge product dissolves completely in the electrolyte stream. Cycle testing at Lawrence Berkeley Laboratory, where the electrode was invented, and at MATSI showed that this approach avoids the zinc electrode shape change phenomenon. Further, electrolyte flow has been shown to be necessary to achieve significant cycle life (> 25 cycles) in this open system. Without it, water loss through the oxygen electrode results in high-resistance failure of the cell. The Phase I program, which focused entirely on the zinc electrode, elucidated the conditions necessary to increase electrode capacity from 75 to as much as 300 mAh/cm{sup 2}. By the end of the Phase I program over 500 cycles had accrued on one of the zinc-zinc half cells undergoing continuous cycle testing. The Phase II program continued the half cell cycle testing and separator development, further refined the foam preplate process, and launched into performance and cycle life testing of zinc-air cells.

  10. Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modelling

    SciTech Connect

    Yao, Yin; Gao, Wenzhong; Momoh, James; Muljadi, Eduard

    2015-10-06

    In this paper, an economic dispatch model with probabilistic modeling is developed for microgrid. Electric power supply in microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Due to the fluctuation of solar and wind plants' output, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar plants, the parameters for probabilistic distribution are further adjusted individually for both power plants. On the other hand, with the growing trend of Plug-in Electric Vehicle (PHEV), an integrated microgrid system must also consider the impact of PHEVs. Not only the charging loads from PHEVs, but also the discharging output via Vehicle to Grid (V2G) method can greatly affect the economic dispatch for all the micro energy sources in microgrid. This paper presents an optimization method for economic dispatch in microgrid considering conventional, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in modern microgrid.

  11. Control system and method for a hybrid electric vehicle

    DOEpatents

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  12. Roadmap for Testing and Validation of Electric Vehicle Communication Standards

    SciTech Connect

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    2012-07-12

    Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

  13. Hidden Benefits of Electric Vehicles for Addressing Climate Change

    NASA Astrophysics Data System (ADS)

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-01

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO2 emissions by 10,686 tonnes.

  14. AC propulsion system for an electric vehicle, phase 2

    NASA Astrophysics Data System (ADS)

    Slicker, J. M.

    1983-06-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  15. Rapidly falling costs of battery packs for electric vehicles

    NASA Astrophysics Data System (ADS)

    Nykvist, Björn; Nilsson, Måns

    2015-04-01

    To properly evaluate the prospects for commercially competitive battery electric vehicles (BEV) one must have accurate information on current and predicted cost of battery packs. The literature reveals that costs are coming down, but with large uncertainties on past, current and future costs of the dominating Li-ion technology. This paper presents an original systematic review, analysing over 80 different estimates reported 2007-2014 to systematically trace the costs of Li-ion battery packs for BEV manufacturers. We show that industry-wide cost estimates declined by approximately 14% annually between 2007 and 2014, from above US$1,000 per kWh to around US$410 per kWh, and that the cost of battery packs used by market-leading BEV manufacturers are even lower, at US$300 per kWh, and has declined by 8% annually. Learning rate, the cost reduction following a cumulative doubling of production, is found to be between 6 and 9%, in line with earlier studies on vehicle battery technology. We reveal that the costs of Li-ion battery packs continue to decline and that the costs among market leaders are much lower than previously reported. This has significant implications for the assumptions used when modelling future energy and transport systems and permits an optimistic outlook for BEVs contributing to low-carbon transport.

  16. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect

    Malikopoulos, Andreas; Smith, David E

    2011-01-01

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  17. Hidden benefits of electric vehicles for addressing climate change

    SciTech Connect

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.

  18. Hidden benefits of electric vehicles for addressing climate change

    DOE PAGESBeta

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought bymore » the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.« less

  19. Design study of toroidal traction CVT for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Kraus, J.; Bell, D. D.

    1980-01-01

    The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.

  20. Generator voltage stabilisation for series-hybrid electric vehicles.

    PubMed

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle. PMID:18262528

  1. Driver perceptions of the safety implications of quiet electric vehicles.

    PubMed

    Cocron, Peter; Krems, Josef F

    2013-09-01

    Previous research on the safety implications of quiet electric vehicles (EVs) has mostly focused on pedestrians' acoustic perception of EVs, and suggests that EVs are more difficult for pedestrians to hear and, therefore, compromise traffic safety. The two German field studies presented here examine the experiences of 70 drivers with low noise emissions of EVs and the drivers' long-term evaluation of the issue. Participants were surveyed via interviews and questionnaires before driving an EV for the first time, after 3 months of driving, and in the first study, again after 6 months. Based on participants' reports, a catalogue of safety-relevant incidents was composed in Study 1. The catalogue revealed that low noise-related critical incidents only rarely occur, and mostly take place in low-speed environments. The degree of hazard related to these incidents was rated as low to medium. In Study 1, driver concern for vulnerable road users as a result of low noise diminished with increasing driving experience, while perceived comfort due to this feature increased. These results were replicated in Study 2. In the second study, it was additionally examined, if drivers adjust their perceived risk of harming other road users over time. Results show that the affective assessment of risk also decreased with increased driving experience. Based on individual experience, drivers adjust their evaluation of noise-related hazards, suggesting that dangers associated with low noise emissions might be less significant than previously expected. PMID:23727553

  2. An optimization study on PEFC drive electric vehicle

    SciTech Connect

    Kishida, K.; Tanaka, M.; Kanai, K.

    1996-12-31

    Efforts have been made to develop fuel cell powered EVs (electric vehicles) in several countries and to demonstrate its high potential. Since 1990 fuel cell research has been conducted at FUT (the Fukui University of Technology) beginning with PAFC. Research effort is now being focused upon the application of fuel cells to the EV drive as this technology shows great future potential, particularly in the area concerning environmental protection. PEFC (Polymer Electrolyte Fuel Cell) has been chosen as the fuel cell for the EV power source because it possesses an inherent high power density and it also has another important feature; operation can be started under ambient temperature without preheating. The principal objective of this research is to pursue the optimum system of a PEFC drive EV. The size of the prototype vehicle in the university project is limited to a certain range and the capacity of the PEFG stack is also limited, for the time being anyway, as the PEFC technology is still under developmental stage in Japan. A 1.5 kW class PEFC stack has become available for the research at FUT by courtesy of a PEFC developer.

  3. Response of lead-acid batteries to chopper-controlled discharge. [for electric vehicles

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1978-01-01

    The results of tests on an electric vehicle battery, using a simulated electric vehicle chopper-speed controller, show energy output losses up to 25 percent compared to constant current discharges at the same average current of 100 A. However, an energy output increase of 22 percent is noticed at the 200 A average level and 44 percent increase at the 300 A level using pulse discharging. Because of these complex results, electric vehicle battery/speed controller interactions must be considered in vehicle design.

  4. Impact of electric vehicles on the IEEE 34 node distribution infrastructure

    DOE PAGESBeta

    Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.

    2014-10-01

    With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less

  5. Impact of electric vehicles on the IEEE 34 node distribution infrastructure

    SciTech Connect

    Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.

    2014-10-01

    With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts to the grid.

  6. Simulating the Household Plug-in Hybrid Electric Vehicle Distribution and its Electric Distribution Network Impacts

    SciTech Connect

    Cui, Xiaohui; Kim, Hoe Kyoung; Liu, Cheng; Kao, Shih-Chieh; Bhaduri, Budhendra L

    2012-01-01

    This paper presents a multi agent-based simulation framework for modeling spatial distribution of plug-in hybrid electric vehicle ownership at local residential level, discovering plug-in hybrid electric vehicle hot zones where ownership may quickly increase in the near future, and estimating the impacts of the increasing plug-in hybrid electric vehicle ownership on the local electric distribution network with different charging strategies. We use Knox County, Tennessee as a case study to highlight the simulation results of the agent-based simulation framework.

  7. Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet

    SciTech Connect

    Roberta Brayer; Donald Karner; Kevin Morrow; James Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests neighborhood electric vehicles (NEVs) in both track and fleet testing environments. NEVs, which are also known as low speed vehicles, are light-duty vehicles with top speeds of between 20 and 25 mph, and total gross vehicle weights of approximately 2,000 pounds or less. NEVs have been found to be very viable alternatives to internal combustion engine vehicles based on their low operating costs. However, special charging infrastructure is usually necessary for successful NEV fleet deployment. Maintenance requirements are also unique to NEVs, especially if flooded lead acid batteries are used as they have watering requirements that require training, personnel protection equipment, and adherence to maintenance schedules. This report provides guidelines for fleet managers to follow in order to successfully introduce and operate NEVs in fleet environments. This report is based on the NEV testing and operational experience of personnel from the Advanced Vehicle Testing Activity, Electric Transportation Applications, and the Idaho National Laboratory.

  8. A Comparative Study on Emerging Electric Vehicle Technology Assessments

    SciTech Connect

    Ford, Jonathan; Khowailed, Gannate; Blackburn, Julia; Sikes, Karen

    2011-03-01

    Numerous organizations have published reports in recent years that investigate the ever changing world of electric vehicle (EV) technologies and their potential effects on society. Specifically, projections have been made on greenhouse gas (GHG) emissions associated with these vehicles and how they compare to conventional vehicles or hybrid electric vehicles (HEVs). Similar projections have been made on the volumes of oil that these vehicles can displace by consuming large amounts of grid electricity instead of petroleum-based fuels. Finally, the projected rate that these new vehicle fleets will enter the market varies significantly among organizations. New ideas, technologies, and possibilities are introduced often, and projected values are likely to be refined as industry announcements continue to be made. As a result, over time, a multitude of projections for GHG emissions, oil displacement, and market penetration associated with various EV technologies has resulted in a wide range of possible future outcomes. This leaves the reader with two key questions: (1) Why does such a collective range in projected values exist in these reports? (2) What assumptions have the greatest impact on the outcomes presented in these reports? Since it is impractical for an average reader to review and interpret all the various vehicle technology reports published to date, Sentech Inc. and the Oak Ridge National Laboratory have conducted a comparative study to make these interpretations. The primary objective of this comparative study is to present a snapshot of all major projections made on GHG emissions, oil displacement, or market penetration rates of EV technologies. From the extensive data found in relevant publications, the key assumptions that drive each report's analysis are identified and 'apples-to-apples' comparisons between all major report conclusions are attempted. The general approach that was taken in this comparative study is comprised of six primary steps: (1

  9. The ZEBRA electric vehicle battery: power and energy improvements

    NASA Astrophysics Data System (ADS)

    Galloway, Roy C.; Haslam, Steven

    Vehicle trials with the first sodium/nickel chloride ZEBRA batteries indicated that the pulse power capability of the battery needed to be improved towards the end of the discharge. A research programme led to several design changes to improve the cell which, in combination, have improved the power of the battery to greater than 150 W kg -1 at 80% depth of discharge. Bench and vehicle tests have established the stability of the high power battery over several years of cycling. The gravimetric energy density of the first generation of cells was less than 100 Wh kg -1. Optimisation of the design has led to a cell with a specific energy of 120 Wh kg -1 or 86 Wh kg -1 for a 30 kWh battery. Recently, the cell chemistry has been altered to improve the useful capacity. The cell is assembled in the over-discharged state and during the first charge the following reactions occur: at 1.6 V: Al+4NaCl=NaAlCl 4+3Na; at 2.35 V: Fe+2NaCl=FeCl 2+2Na; at 2.58 V: Ni+2NaCl=NiCl 2+2 Na. The first reaction serves to prime the negative sodium electrode but occurs at too low a voltage to be of use in providing useful capacity. By minimising the aluminium content more NaCl is released for the main reactions to improve the capacity of the cell. This, and further composition optimisation, have resulted in cells with specific energies in excess of 140 Wh kg -1, which equates to battery energies>100 Wh kg -1. The present production battery, as installed in a Mercedes Benz A class electric vehicle, gives a driving range of 205 km (128 miles) in city and hill climbing. The cells with improved capacity will extend the practical driving range to beyond 240 km (150 miles).

  10. Potential impacts of electric vehicles on air quality in Taiwan.

    PubMed

    Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May

    2016-10-01

    The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions. PMID:27285533

  11. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  12. Electric vehicles in China: emissions and health impacts.

    PubMed

    Ji, Shuguang; Cherry, Christopher R; J Bechle, Matthew; Wu, Ye; Marshall, Julian D

    2012-02-21

    E-bikes in China are the single largest adoption of alternative fuel vehicles in history, with more than 100 million e-bikes purchased in the past decade and vehicle ownership about 2× larger for e-bikes as for conventional cars; e-car sales, too, are rapidly growing. We compare emissions (CO(2), PM(2.5), NO(X), HC) and environmental health impacts (primary PM(2.5)) from the use of conventional vehicles (CVs) and electric vehicles (EVs) in 34 major cities in China. CO(2) emissions (g km(-1)) vary and are an order of magnitude greater for e-cars (135-274) and CVs (150-180) than for e-bikes (14-27). PM(2.5) emission factors generally are lower for CVs (gasoline or diesel) than comparable EVs. However, intake fraction is often greater for CVs than for EVs because combustion emissions are generally closer to population centers for CVs (tailpipe emissions) than for EVs (power plant emissions). For most cities, the net result is that primary PM(2.5) environmental health impacts per passenger-km are greater for e-cars than for gasoline cars (3.6× on average), lower than for diesel cars (2.5× on average), and equal to diesel buses. In contrast, e-bikes yield lower environmental health impacts per passenger-km than the three CVs investigated: gasoline cars (2×), diesel cars (10×), and diesel buses (5×). Our findings highlight the importance of considering exposures, and especially the proximity of emissions to people, when evaluating environmental health impacts for EVs. PMID:22201325

  13. Design and analysis of aluminum/air battery system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua; Knickle, Harold

    Aluminum (Al)/air batteries have the potential to be used to produce power to operate cars and other vehicles. These batteries might be important on a long-term interim basis as the world passes through the transition from gasoline cars to hydrogen fuel cell cars. The Al/air battery system can generate enough energy and power for driving ranges and acceleration similar to gasoline powered cars. From our design analysis, it can be seen that the cost of aluminum as an anode can be as low as US 1.1/kg as long as the reaction product is recycled. The total fuel efficiency during the cycle process in Al/air electric vehicles (EVs) can be 15% (present stage) or 20% (projected) comparable to that of internal combustion engine vehicles (ICEs) (13%). The design battery energy density is 1300 Wh/kg (present) or 2000 Wh/kg (projected). The cost of battery system chosen to evaluate is US 30/kW (present) or US$ 29/kW (projected). Al/air EVs life-cycle analysis was conducted and compared to lead/acid and nickel metal hydride (NiMH) EVs. Only the Al/air EVs can be projected to have a travel range comparable to ICEs. From this analysis, Al/air EVs are the most promising candidates compared to ICEs in terms of travel range, purchase price, fuel cost, and life-cycle cost.

  14. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    PubMed Central

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility. PMID:26236771

  15. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.

    PubMed

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility. PMID:26236771

  16. Electric and hybrid electric vehicle technologies. Quarterly report, 1 April--30 June 1998

    SciTech Connect

    1998-06-30

    This document contains a quarterly report on various aspects of research and testing being conducted concerning electric and hybrid electric vehicles technologies under cooperative agreement MDA972-93-1-0027.

  17. Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers

    NASA Astrophysics Data System (ADS)

    Li, Boyuan; Du, Haiping; Li, Weihua

    2016-05-01

    Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.

  18. Fixed Velocity Characteristics for an Electrical Vehicle with the New High-Efficiency Motor

    NASA Astrophysics Data System (ADS)

    Kousaka, Takuji; Matsumoto, Yukihiro; Harada, Taisuke; Abe, Minoru

    Since d-c compound motor have wide industrial applications, theoretical and experimental research in such systems are assumed to be special importance. In previous work, we studied a new d-c compound motor which is suitable for the electronic vehicle and bicycle. This paper provides the fixed velocity characteristics for an electrical vehicle with the new high-efficiency motor. Experimental results show that the electric vehicle with new compund motor is more effective than the conventional one.

  19. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  20. Baseline test data for the EVA electric vehicle. [low energy consumption automobiles

    NASA Technical Reports Server (NTRS)

    Harhay, W. C.; Bozek, J.

    1976-01-01

    Two electric vehicles from Electric Vehicle Associates were evaluated for ERDA at the Transportation Research Center of Ohio. The vehicles, loaded to a gross vehicle weight of 3750 pounds, had a range of 56.3 miles at a steady speed of 25 mph and a 27.4 miles range during acceleration-deceleration tests to a top speed of 30 mph. Energy consumption varied from 0.48 kw-hr/mi. to 0.59 kw-hr/mi.

  1. Design and development of electric vehicle charging station equipped with RFID

    NASA Astrophysics Data System (ADS)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  2. NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2011-07-01

    Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles.

  3. Additional dynamometer tests of the Ford Ecostar Electric Vehicle No. 41

    SciTech Connect

    Cole, G.H.; Richardson, R.A.; Yarger, E.J.

    1996-06-01

    A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over two standard driving regimes, coastdown testing, and typical charge testing. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of dynamometer driving cycle tests, charge data, and coastdown testing for California Air Resources Board (CARB) under a CRADA with the Department Of Energy (DOE).

  4. The Promise and Potential Perils of Big Data for Advancing Symptom Management Research in Populations at Risk for Health Disparities.

    PubMed

    Bakken, Suzanne; Reame, Nancy

    2016-01-01

    Symptom management research is a core area of nursing science and one of the priorities for the National Institute of Nursing Research, which specifically focuses on understanding the biological and behavioral aspects of symptoms such as pain and fatigue, with the goal of developing new knowledge and new strategies for improving patient health and quality of life. The types and volume of data related to the symptom experience, symptom management strategies, and outcomes are increasingly accessible for research. Traditional data streams are now complemented by consumer-generated (i.e., quantified self) and "omic" data streams. Thus, the data available for symptom science can be considered big data. The purposes of this chapter are to (a) briefly summarize the current drivers for the use of big data in research; (b) describe the promise of big data and associated data science methods for advancing symptom management research; (c) explicate the potential perils of big data and data science from the perspective of the ethical principles of autonomy, beneficence, and justice; and (d) illustrate strategies for balancing the promise and the perils of big data through a case study of a community at high risk for health disparities. Big data and associated data science methods offer the promise of multidimensional data sources and new methods to address significant research gaps in symptom management. If nurse scientists wish to apply big data and data science methods to advance symptom management research and promote health equity, they must carefully consider both the promise and perils. PMID:26673385

  5. Solar-Assisted Electric Vehicle Charging Station Interim Report

    SciTech Connect

    Lapsa, Melissa Voss; Durfee, Norman; Maxey, L Curt; Overbey, Randall M

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the

  6. Failure modes in high-power lithium-ion batteries for use inhybrid electric vehicles

    SciTech Connect

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-06-22

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathode and DEC-EC-LiPF{sub 6} electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF{sub 6} salt in the electrolyte at elevated temperature.

  7. Thermal and energy battery management optimization in electric vehicles using Pontryagin's maximum principle

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Suchaneck, Andre; Puente León, Fernando

    2014-01-01

    Depending on the actual battery temperature, electrical power demands in general have a varying impact on the life span of a battery. As electrical energy provided by the battery is needed to temper it, the question arises at which temperature which amount of energy optimally should be utilized for tempering. Therefore, the objective function that has to be optimized contains both the goal to maximize life expectancy and to minimize the amount of energy used for obtaining the first goal. In this paper, Pontryagin's maximum principle is used to derive a causal control strategy from such an objective function. The derivation of the causal strategy includes the determination of major factors that rule the optimal solution calculated with the maximum principle. The optimization is calculated offline on a desktop computer for all possible vehicle parameters and major factors. For the practical implementation in the vehicle, it is sufficient to have the values of the major factors determined only roughly in advance and the offline calculation results available. This feature sidesteps the drawback of several optimization strategies that require the exact knowledge of the future power demand. The resulting strategy's application is not limited to batteries in electric vehicles.

  8. Field test of the Electric Fuel{trademark} zinc-air refuelable battery system for electric vehicles

    SciTech Connect

    Goldstein, J.R.; Koretz, B.; Harats, Y.

    1996-12-31

    The Electric Fuel Limited (EFL) zinc-air refuelable battery system will be tested over the next two years in a number of electric vehicle demonstration projects, the largest of which is an $18-million, 64-vehicle, two-year test sponsored chiefly by Deutsche Post AG (the German Post Corporation). The German field test is the largest-ever EV fleet test of a single advanced-battery technology. It also represents a marked departure from other EV test and demonstration programs, in that it is being sponsored not by government or electric utility interests, but by large fleet operators committed to shifting significant proportions of their vehicles to electric over the next 5--10 years. The Electric Fuel battery has specific energy of 200 Wh/kg, an achievement that allows electric vehicles to go as far on a charge as conventionally fueled vehicles go on a tank of gasoline. Fast, convenient refueling eliminates the need for lengthy electrical recharging, and clean, centralized zinc regeneration plants ensure the most efficient and environment-friendly use of energy resources.

  9. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    SciTech Connect

    Richard Barney Carlson; Don Scoffield; Brion Bennett

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  10. Recovery - Strategy to Accelerate U.S. Transition to Electric Vehicles

    SciTech Connect

    Leach, Richard; LoGrasso, Joseph; Monterosso, Sandra

    2014-04-30

    The objective of this project was to develop Extended Range Electric Vehicle (EREV) advanced propulsion technology and demonstrate a fleet of 146 Volt EREVs to gather data on vehicle performance and infrastructure to understand the impacts on commercialization while also creating or retaining a significant number of jobs in the United States. This objective was achieved by developing and demonstrating EREVs in real world conditions with customers in several diverse locations across the United States and installing, demonstration and testing charging infrastructure while also continuing development on second generation EREV technology. The project completed the development of the Chevrolet Volt and placed the vehicle in the hands of consumers in diverse locations across the United States. This demonstration leveraged the unique telematics platform of OnStar, standard on all Chevrolet Volts, to capture the operating experience that lead to better understanding of customer usage. The project team included utility partners that installed, demonstrated and tested charging infrastructure located in home, workplace and public locations to understand installation issues, customer usage and interaction with the electric grid. Development and demonstration of advanced technologies such as smart charging, fast charging and battery to grid interface were completed. The recipient collected, analyzed and reported the data generated by the demonstration. The recipient also continued to advance the technology of the Chevrolet Volt technology by developing energy storage system enhancements for the next-generation vehicle. Information gathered from the first generation vehicle will be utilized to refine the technology to reduce cost and mass while also increasing energy storage capacity to enhance adoption of the second generation technology into the marketplace. The launch of the first generation Chevrolet Volt will provide additional opportunities to further enhance the RESS

  11. Commercialization of advanced batteries

    SciTech Connect

    Mader, J.

    1996-11-01

    Mader and Associates has been working as a contractor for the South Coast Air Quality Management District (District) for the past several years. During this period it has performed various assessments of advanced battery technology as well as established the Advanced Battery Task Force. The following paper is Mader`s view of the status of battery technologies that are competing for the electric vehicle (EV) market being established by the California Air Resources Board`s Zero Emission Vehicle (ZEV) Mandate. The ZEV market is being competed for by various advanced battery technologies. And, given the likelihood of modifications to the Mandate, the most promising technologies should capture the following market share during the initial 10 years: Lead-Acid--8.4%, Nickel Metal Hydride--50.8%, Sodium Sulfur--7.8%, Lithium Ion 33.0%.

  12. Novel, potent anti-androgens of therapeutic potential: recent advances and promising developments.

    PubMed

    Vasaitis, Tadas S; Njar, Vincent C O

    2010-04-01

    The beneficial effect of androgen ablation has been well established in prostate cancer therapy. Despite the initial response, patients typically relapse with a more aggressive form described as castration-resistant prostate cancer (CRCP), driven by continued androgen receptor (AR) signaling. This review details the current state of anti-androgen therapy, mainly for CRPC, with major emphasis on the most potent and promising compounds under development. Anti-androgen failure has been linked to elevated AR expression, increased expression of coactivator proteins, AR mutations, ligand-independent AR activation and persistent intraprostatic androgens. MDV3100, BMS-641988 and VN/124-1 were developed to overcome these mechanisms. In CRCP, prostate cancer cells still rely on intracellular androgens and, to a greater extent, on active AR for growth and survival. Therefore, potent anti-androgens that efficiently disrupt the functions (signaling) of AR are envisioned to be effective drugs for all types of prostate cancers. PMID:21426013

  13. Isoform-specific inhibitors of ACATs: recent advances and promising developments.

    PubMed

    Ohshiro, Taichi; Tomoda, Hiroshi

    2011-12-01

    Acyl-CoA:cholesterol acyltransferase (ACAT) is a promising therapeutic target for cardiovascular diseases. Although a number of synthetic ACAT inhibitors have been developed, they have failed to show efficacy in clinical trials. Now, the presence of two ACAT isoforms with distinct functions, ACAT1 and ACAT2, has been discovered. Thus, the selectivity of ACAT inhibitors toward the two isoforms is important for their development as novel anti-atherosclerotic agents. The selectivity study indicated that fungal pyripyropene A (PPPA) is only an ACAT2-specific inhibitor. Furthermore, PPPA proved orally active in atherogenic mouse models, indicating it possessed cholesterol-lowering and atheroprotective activities. Certain PPPA derivatives, semi-synthetically prepared, possessed more potent and selective in vitro activity than PPPA against ACAT2. This review covers these studies and describes the future prospects of ACAT2-specific inhibitors. PMID:22098352

  14. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives.

    PubMed

    Rodríguez Villanueva, Javier; Navarro, Manuel Guzmán; Rodríguez Villanueva, Laura

    2016-09-10

    Dendrimers have called the attention of scientists in the area of drug and gene delivery over the last two decades for their versatility, complexity and multibranching properties. Some strategies for optimizing drug pharmacokinetics and site-specific targeting using dendrimers have been proposed. Among them, those related to treating and managing ocular diseases are of special interest. Ocular therapies suffer from significant disadvantages, including frequent administration, poor penetration and/or rapid elimination. This review provides an overview of the recent and promising progress in the dendrimers field, focusing on both the anterior and posterior segments of the eye ocular targets, the use of dendrimers as a strategy for overcoming obstacles to the traditional treatment of ocular diseases and an outlook on future directions. Finally, a first approach to ocular safety with dendrimers is intended that accounts for the state-of-the-art science to date. PMID:27436708

  15. Advances in genetic engineering of the avian genome: "Realising the promise".

    PubMed

    Doran, Timothy J; Cooper, Caitlin A; Jenkins, Kristie A; Tizard, Mark L V

    2016-06-01

    This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express "humanised" antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity. PMID:26820412

  16. Analysis of data from electric and hybrid electric vehicle student competitions

    SciTech Connect

    Wipke, K.B.; Hill, N.; Larsen, R.P.

    1994-01-01

    The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

  17. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    PubMed Central

    Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769

  18. Analysis of data from electric and hybrid electric vehicle student competitions

    NASA Astrophysics Data System (ADS)

    Wipke, K. B.; Hill, N.; Larsen, R. P.

    1994-01-01

    The U.S. Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the 'ground-up' hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a 1 km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

  19. The steady progress of targeted therapies, promising advances for lung cancer

    PubMed Central

    Bombardelli, Lorenzo; Berns, Anton

    2016-01-01

    Lung cancer remains one of the most complex and challenging cancers, being responsible for almost a third of all cancer deaths. This grim picture seems however to be changing, for at least a subset of lung cancers. The number of patients who can benefit from targeted therapies is steadily increasing thanks to the progress made in identifying actionable driver lesions in lung tumours. The success of the latest generation of EGFR and ALK inhibitors in the clinic not only illustrates the value of targeted therapies, but also shows how almost inevitably drug resistance develops. Therefore, more sophisticated approaches are needed to achieve long-term remissions. Although there are still significant barriers to be overcome, technological advances in early detection of relevant mutations and the opportunity to test new drugs in predictive preclinical models justify the hope that we will overcome these obstacles. PMID:27350784

  20. Oxadiazoles as privileged motifs for promising anticancer leads: recent advances and future prospects.

    PubMed

    Khan, Imtiaz; Ibrar, Aliya; Abbas, Naeem

    2014-01-01

    Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. The rapid emergence of hundreds of new agents that modulate an ever-growing list of cancer-specific molecular targets offers tremendous hope for cancer patients. However, almost all of the chemotherapy drugs currently on the market cause serious side effects. Based on these facts, the design of new chemical entities as anticancer agents requires the simulation of a suitable bioactive pharmacophore. The pharmacophore not only should have the required potency but must also be safer on normal cell lines than on tumor cells. In this perspective, oxadiazole scaffolds with well-defined anticancer activity profile have fueled intense academic and industrial research in recent years. This paper is intended to highlight the recent advances along with current developments as well as future outlooks for the design of novel and efficacious anticancer agents based on oxadiazole motifs. PMID:24265208

  1. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-01-01

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  2. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect

    Markel, T.

    2010-04-01

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  3. User experience with on-road electric vehicles in the U.S.A. and Canada

    NASA Technical Reports Server (NTRS)

    Sandberg, J. J.; Leschly, K.

    1978-01-01

    Approximately 3000 on-road electric passenger cars and delivery vans are now in use in the U.S.A. and Canada. The owners and operators of almost one-third of these vehicles have been surveyed directly in an attempt to determine the suitability of commercially sold electric vehicles for real on-road jobs. This paper is primarily concerned with the analysis of the engineering aspects of the user experience with electric vehicles, i.e., mileage and application, failure modes and rates, energy economy, maintenance requirements, life cycle costs, and vehicle performance characteristics. It is concluded that existing electric vehicles can perform satisfactorily in applications that have limited performance requirements, particularly in terms of range.

  4. Smart electric vehicle (EV) charging and grid integration apparatus and methods

    DOEpatents

    Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu

    2015-05-05

    An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.

  5. Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls

    NASA Astrophysics Data System (ADS)

    Egbue, Ona; Long, Suzanna; Ng, Ean-Harn

    2015-10-01

    Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or engineering-related major. This article presents results from a workshop for 7th and 8th grade girls designed to promote knowledge building in the area of sustainability and alternative energy use in transportation and to stimulate greater interest in STEM subjects. The workshop based on research conducted at University X focused on basic concepts of electric vehicles and electric vehicles' batteries. Tests were conducted to evaluate the students' knowledge and perceptions of electric vehicles and to determine the impact of the workshop. Early exposure to meaningful engineering experiences for these young girls may boost interest and the eventual pursuit of engineering and technology education paths.

  6. Antibody-based detection of advanced glycation end-products: promises vs. limitations.

    PubMed

    Nagai, Ryoji; Shirakawa, Jun-Ichi; Ohno, Rei-Ichi; Hatano, Kota; Sugawa, Hikari; Arakawa, Shoutaro; Ichimaru, Kenta; Kinoshita, Shoh; Sakata, Noriyuki; Nagai, Mime

    2016-08-01

    Advanced glycation end-products (AGEs) of the Maillard reaction were originally measured according to their fluorescent and browning properties. A subsequent study with instrumental analyses such as high-performance liquid chromatography and gas chromatography mass spectrometry more clearly demonstrated the involvement of each AGE structure in pathological conditions. Furthermore, immunochemical methods have also been developed to clarify the localization of AGEs in tissues and measurement of AGEs in multiple clinical samples. Although the involvement of AGEs in age-related diseases has progressed due to immunochemical techniques, the relationship between AGE structure and diseases has not been clear because little was known about the epitope structure of each anti-AGE antibody. However, the development of epitope-identified antibodies against AGEs has made it possible to clarify AGE structures involved in diseases. This review discusses not only the usability of anti-AGE antibodies to evaluate AGEs and disease pathology and screen AGE inhibitors, but also describes their usage. PMID:27421861

  7. A novel control and physical realization of a clean hybrid hydrogen fuel-cell/battery low-power personal electric vehicle

    NASA Astrophysics Data System (ADS)

    Watkins, Andrew N.

    With the rapid continuation of global warming, high concentrations of pollutants, and foreign oil conflicts, the green energy push has now begun to manifest into great advancements in renewable or clean energies. Fuel-cells have a promising future for mobile power such as the automotive industry, distributed generation, and portable auxiliary power supplies. The type of fuel-cell that has the most focus today is the hydrogen Proton Exchange Membrane (PEM) fuel-cell. It is widely accepted that a fuel-cell cannot effectively supply a dynamic load on its own. In order to correct this drawback and make the fuel-cell system useful for all occasions, a hybrid FC/storage device system needs to be implemented. In this type of system, a balance is created between the high-energy fuel-cell and the high-power storage devices. In this thesis, a hybrid fuel-cell system topology favorable for use in a "personal" electric vehicle such as a scooter is proposed. This topology consists of a fuel-cell connected directly to the batteries and load via a DC link converter. The converter is used to manage the flow of power within the system. In order to have this flow of power to be stable and within operational limits of the devices, a novel adaptive control algorithm implementing six transfer functions based on six major operating conditions is developed. The development of the adaptive algorithm and the implementation of hardware tests were carried out by Matlab/Simulink and dSPACE. The results of the tests showed that the control algorithm was successful at regulating power flow as well as facilitating DC link stability and accuracy at the major operating points.

  8. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  9. Design of an Advertisement Scenario for Electric Vehicles Using Digital Multimedia Broadcasting

    NASA Astrophysics Data System (ADS)

    Lee, Junghoon; Kim, Hye-Jin; Shin, In-Hye; Cho, Jason; Lee, Sang Joon; Kwak, Ho-Young

    This paper designs an integrative advertisement system based on digital multimedia broadcasting for the electric vehicles, which need a lot of driving information for battery efficiency and charge planning. The advertiser interface interacts with the advertisement processing system to pay the fee and have the contents endorsed. The advertisement contents are registered, monitored, encoded, and finally delivered to vehicles according to the contract via the broadcasting center. Here, this paper defines a new frame format on the data service stream and is in the process of developing and verifying the encoder and decoder modules. Our system is expected to provide the fundamentals for the development of diverse electric vehicle services.

  10. PNGV Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles

    SciTech Connect

    Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Haskind, H. J.; Tartamella, T.; Sutula, R.

    2002-06-01

    Novel testing procedures and analytical methodologies to assess the performance of hybrid electric vehicle batteries have been developed. Tests include both characterization and cycle life and/or calendar life, and have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar and cycle life data. Representative performance data and examples of the application of the analytical methodologies including resistance growth, power fade, and cycle and calendar life modeling for hybrid electric vehicle batteries are presented.

  11. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  12. Response of nickel to zinc cells to electric vehicle chopper discharge waveforms

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1981-01-01

    The preliminary results of simulated electric vehicle chopper controlled discharge of a Nickel/Zinc battery shows delivered energy increases of 5 to 25 percent compared to constant current discharges of the same average current. The percentage increase was a function of chopper frequency, the ratio of peak to average current, and the magnitude of the discharge current. Because the chopper effects are of a complex nature, electric vehicle battery/speed controller interaction must be carefully considered in vehicle design to optimize battery performance.

  13. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOEpatents

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  14. National program plan for electric vehicle battery research and development

    SciTech Connect

    Henriksen, G.L.; Douglas, D.L.; Warde, C.J.; Douglas , Inc., Bloomington, MN; Warde Associates, Inc., Greensboro, NC )

    1989-08-01

    EVs offer the prospect of reducing US petroleum fuel usage and air pollution in major metropolitan areas. In 1987, DOE-EHP commissioned a two-phase study at INEL to produce a national plan for R D on battery technology -- the limiting component in EVs. The battery assessment phase identified the most-promising'' technologies from a comprehensive list of viable EV batteries. This multi-year R D program plan identifies development schedules, milestones, and tasks directed at resolving the critical technical and economic issues for the most-promising developmental batteries: bipolar lead/acid, flow-through lead/acid, iron/air, lithium/iron sulfide, nickel/iron, sodium/metal chloride, sodium/sulfur, zinc/air, and zinc/bromine. 8 refs., 1 fig., 6 tabs.

  15. Managing hypertension in high-risk patients: lessons and promises from the STRATHE and ADVANCE trials.

    PubMed

    Waeber, Bernard

    2006-05-01

    Pharmacological treatment of hypertension represents a cost-effective way of preventing cardiovascular and renal complications. To benefit maximally from antihypertensive treatment, blood pressure should be brought to below 140/90 mmHg in every hypertensive patient, and even lower (< 130/80 mmHg) if diabetes or renal disease co-exists. Such targets cannot usually be reached using monotherapies. This is especially true in patients who present with a high cardiovascular risk. The co-administration of two agents acting by different mechanisms considerably increases the blood pressure control rate. Such combinations are not only efficacious, but are also well tolerated, and some fixed low-dose combinations even have a placebo-like tolerability. This is the case for the preparation containing the angiotensin-converting enzyme inhibitor perindopril (2 mg) and the diuretic indapamide (0.625 mg), a fixed low-dose combination that has been shown in controlled trials to be more effective than monotherapies in reducing albuminuria, regressing cardiac hypertrophy and improving the stiffness of large arteries. Using this combination to initiate antihypertensive therapy has been shown in a double-blind trial (Strategies of Treatment in Hypertension: Evaluation; STRATHE) to normalize blood pressure (< 140/90 mmHg) in significantly more patients (62%) than a sequential monotherapy approach based on atenolol, losartan and amlodipine (49%) and a stepped-care strategy based on valsartan and hydrochlorothiazide (47%), with no difference between the three arm groups in terms of tolerability. An ongoing randomized trial (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; ADVANCE) is a study with a 2 x 2 factorial design assessing the effects of the fixed-dose perindopril-indapamide combination and of the intensive gliclazide modified release-based glucose control regimen in type 2 diabetic patients, with or without hypertension. A

  16. The development of aluminum-air batteries for application in electric vehicles

    SciTech Connect

    Rudd, E.J. . Research and Development Center); Lott, S. )

    1990-12-01

    The recently concluded program, jointly funded by ELTECH Research Corporation and the Department of Energy, focused upon the development of an aluminum-air battery system for electric vehicle applications. The operation of the aluminum-air battery involves the dissolution of aluminum to produce a current and aluminate. Initially the objectives were to evaluate and optimize the battery design that was developed prior to this program (designated as the B300 cell) and to design and evaluate the components of the auxiliary system. During the program, three additional tasks were undertaken, addressing needs identified by ELTECH and by Sandia National Laboratories. First, the capability to produce aluminum alloys as relatively large ingots (100--150 lbs), with the required electrochemical performance, was considered essential to the development of the battery. The second additional task was the adoption of an advanced cell (designated as the AT400 cell), designed by ELTECH in a different program. Finally, it was recognized that a system model would allow evaluation of the interactions of the several unit operations involved in the battery. Therefore, the development of a mathematical model, based upon material and energy balances for the battery, was undertaken. At a systems level, sufficient information was obtained in the completion of this program to support the design, fabrication and operation of a batch'' or solids-free'' battery system. For the first time, the components of the auxiliary system, i.e., a heat exchanger, carbon dioxide scrubber and hydrogen disposal technology, have been defined for a vehicle battery. Progress on each component or system is summarized in the following sections.

  17. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect

    Sikes, Karen; Gross, Thomas; Lin, Zhenhong; Sullivan, John; Cleary, Timothy; Ward, Jake

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  18. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the

  19. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets

  20. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  1. Advanced vehicle systems assessment. Volume 4: Supporting analyses

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 4 (Supporting Analyses) is part of a five-volume report, Advanced Vehicle Systems Assessment. Thirty-nine individuals, knowledgeable in advanced technology, were interviewed to obtain their preferences. Rankings were calculated for the eight groups they represented, using multiplicative and additive utility models. The four topics for consideration were: (1) preferred range for various battery technologies; (2) preferred battery technology for each of a variety of travel ranges; (3) most promising battery technology, vehicle range combination; and (4) comparison of the most preferred electric vehicle with the methanol-fuled, spark-ignition engine vehicle and with the most preferred of the hybrid vehicles.

  2. USABC electric vehicle Battery Test Procedures Manual. Revision 2

    SciTech Connect

    1996-01-01

    This manual summarizes the procedural information needed to perform the battery testing being sponsored by the United States Advanced Battery Consortium (USABC). This information provides the structure and standards to be used by all testing organizations, including the USABC developers, national laboratories, or other relevant test facilities.

  3. Assessment of battery technologies for EV (Electric Vehicle) applications

    NASA Astrophysics Data System (ADS)

    Ratner, Elliot Z.; Henriksen, Gary L.; Warde, Charles J.

    To guide future R and D program planning, the U.S. Department of Energy (DOE) commissioned an assessment of all viable battery techniques for EV applications. Sixty-seven technology developers in the United States, Canada, Europe, Asia, and Africa were solicited to design a power pack for an Improved Dual-Shaft Electric Propulsions (IDSEP) van. A team of 10 consultants and 8 representatives from DOE's National Laboratories evaluated 43 developer responses and consultant-prepared conceptual designs. Using six criteria---five technical/economic criteria and a maturity/technical barriers criterion---the assessment identified 12 most promising battery technologies.

  4. Assessment of battery technologies for electric vehicles, volume 1

    NASA Astrophysics Data System (ADS)

    Ratner, E. Z.; Symons, P. C.; Walsh, W.; Warde, C. J.; Henriksen, G. L.

    1989-08-01

    To help guide future EV battery R and D programs, the U.S. Department of Energy (DOE) commissioned a comprehensive assessment of viable secondary battery technologies. A total of 55 battery developers from the United States, Canada, Europe, Asia, and Africa, were solicited to submit battery design concepts for an Improved Dual-Shaft Electric Propulsion (IDSEP) van. A team of seven representatives from DOE laboratories and ten independent EV and Battery consultants evaluated 42 design concepts. Using six criteria, five technical/economic criteria and a maturity/technical barriers criterion, the Assessment Team identified 12 most-promising batteries.

  5. Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles

    SciTech Connect

    Ehsani, Mark

    2002-10-07

    A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

  6. Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    SciTech Connect

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  7. Households' Stories of Their Encounters with a Plug-In Hybrid Electric Vehicle

    ERIC Educational Resources Information Center

    Caperello, Nicolette D.; Kurani, Kenneth S.

    2012-01-01

    One way to progress toward greenhouse gas reductions is for people to drive plug-in hybrid electric vehicles (PHEVs). Households in this study participated in a 4- to 6-week PHEV driving trial. A narrative of each household's encounter with the PHEV was constructed by the researchers from multiple in-home interviews, questionnaires completed by…

  8. Test and evaluation of 23 electric vehicles for state-of-the-art assessment

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Denington, R. J.

    1978-01-01

    Eleven of the electric vehicles were passenger cars and 12 were commercial vans. Tests were conducted in accordance with an ERDS test procedure which is based on the SAE J227a Test Procedure. Tests included range, acceleration, coast-down, and braking. The results of the tests are presented, and comments on reliability are made.

  9. Automatic vehicle record for electric vehicles. Research Project 1136-18

    SciTech Connect

    Reese, R.W.

    1983-09-01

    This report contains specification requirements for the Automatic Vehicle Record (AVR), a data logging device for electric vehicles (EVs). These specifications were developed under the AVR work task of the Electric Power Research Institute/Tennessee Valley Authority Phase II EV Project. Detailed requirements for the AVR are presented along with recommendations for device construction and operation.

  10. Research Experience with a Plug-In Hybrid Electric Vehicle: Preprint

    SciTech Connect

    Markel, T.; Pesaran, A.; Kelly, K.; Thornton, M.; Nortman, P.

    2007-12-01

    This technical document reports on the exploratory research conducted by NREL on PHEV technology using a Toyota Prius that has been converted to a plug-in hybrid electric vehicle. The data includes both controlled dynamometer and on-road test results, particularly for hilly driving. The results highlight the petroleum savings and benefits of PHEV technology.

  11. 77 FR 73039 - Notice of Issuance of Final Determination Concerning Vantage Electric Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... Electric Vehicles AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION... Protection (``CBP'') has issued a final determination concerning the country of origin of Vantage Vehicle... the United States is the country of origin of the Vantage Vehicle EVX1000 and EVR1000 models...

  12. Long-term impacts of battery electric vehicles on the German electricity system

    NASA Astrophysics Data System (ADS)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  13. Viability study of photo-voltaic systems added to terrestrial electric vehicles

    SciTech Connect

    Rippel, W.E.

    1990-09-01

    The purpose of the following computer study is to determine the set of necessary conditions under which the addition of photo-voltaic (PV) cells to electric vehicles provides a net utility or economic benefit. Economic benefits are given the primary focus and are evaluated in terms of a payback period.

  14. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect

    Not Available

    1980-06-01

    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  15. 75 FR 64318 - Notice of Issuance of Final Determination Concerning Fairplay Legacy Electric Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... Fairplay Legacy line of golf and recreational electric vehicles. Based upon the facts presented, CBP has... determination concerning the country of origin of the Fairplay Legacy line of golf and recreational electric... final determination concerns the country of origin of the Fairplay Legacy line of golf and...

  16. The Effect of Plug-in Electric Vehicles on Harmonic Analysis of Smart Grid

    NASA Astrophysics Data System (ADS)

    Heidarian, T.; Joorabian, M.; Reza, A.

    2015-12-01

    In this paper, the effect of plug-in electric vehicles is studied on the smart distribution system with a standard IEEE 30-bus network. At first, harmonic power flow analysis is performed by Newton-Raphson method and by considering distorted substation voltage. Afterward, proper sizes of capacitors is selected by cuckoo optimization algorithm to reduce the power losses and cost and by imposing acceptable limit for total harmonic distortion and RMS voltages. It is proposed that the impact of generated current harmonics by electric vehicle battery chargers should be factored into overall load control strategies of smart appliances. This study is generalized to the different hours of a day by using daily load curve, and then optimum time for charging of electric vehicles batteries in the parking lots are determined by cuckoo optimization algorithm. The results show that injecting harmonic currents of plug-in electric vehicles causes a drop in the voltage profile and increases power loss. Moreover, charging the vehicle batteries has more impact on increasing the power losses rather than the harmonic currents effect. Also, the findings showed that the current harmonics has a great influence on increasing of THD. Finally, optimum working times of all parking lots was obtained for the utilization cost reduction.

  17. 76 FR 31354 - Notice of Issuance of Final Determination Concerning the Transit Connect Electric Vehicle

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... and Border Protection (``CBP'') has issued a final determination concerning the country of origin of... determination that the United States is the country of origin of the vehicle for purposes of U.S. Government... final determination concerning the country of origin of the Transit Connect Electric Vehicle which...

  18. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect

    Not Available

    1981-03-01

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  19. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  20. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  1. A new controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.; Stone, J.

    1980-01-01

    This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.

  2. Comparison of Hybrid Electric Vehicle Power Electronics Cooling Options

    SciTech Connect

    O'Keefe, M.; Bennion, K.

    2008-01-01

    This study quantifies the heat dissipation potential of three inverter package configurations over a range of control factors. These factors include coolant temperature, number of sides available for cooling, effective heat transfer coefficient, maximum semiconductor junction temperature, and interface material thermal resistance. Heat dissipation potentials are examined in contrast to a research goal to use 105..deg..C coolant and dissipate 200 W/cm2 heat across the insulated gate bipolar transistor and diode silicon area. Advanced double-sided cooling configurations with aggressive heat transfer coefficients show the possibility of meeting these targets for a 125..deg..C maximum junction temperature, but further investigation is needed. Even with maximum tolerable junction temperatures of 200..deg..C, effective heat transfer coefficients of 5,000 to 10,000 W/m2-K will be needed for coolant temperatures of 105..deg..C or higher.

  3. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    NASA Astrophysics Data System (ADS)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  4. Improving the aluminum-air battery system for use in electrical vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is

  5. Dynamic behavior of gasoline fuel cell electric vehicles

    NASA Astrophysics Data System (ADS)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  6. Zinc/air fuel cell for electric vehicles

    SciTech Connect

    Cherepy, N. J.; Krueger, R.; Cooper, J. F.

    1999-01-01

    We are conducting tests of an advanced zinc/air fuel cell design to determine effectiveness in various commercial applications. Our 322-cm2 cell uses gravity-fed zinc pellets as the anode, 12 M KOH electrolyte, and an air cathode catalyzed by a cobalt-porphyrin complex on carbon black. A single 322 cm2 cell runs at a standard operating power of 38 W (1200 W/m2) at 39 A (1245 A/m2) and 0.96 V with a power density of 2400 W/m2 at 0.67 V. With improved current collection hardware, already demonstrated in the laboratory, power generation increases to -3600 W/m2 at 1V. We conducted a 50-hour test in which a cell generated 587 Ah and 569 Wh. The power that may be generated increases by a factor of 2.5 between T = 28 °C and 52 °C. Electrolyte capacity, without stabilization additives, was measured at 147 Ah/L

  7. Flywheels put a new spin on electric vehicles

    SciTech Connect

    Ashley, S.

    1993-10-01

    This article describes advances in high-strength composite materials, frictionless magnetic bearings, high-efficiency motor/generators, and lower-cost miniaturized power conditioning and control electronics that have resurrected the possibility that the venerable flywheel could be used to power pollution-free electric and hybrid vehicles. Recently, many researchers have become convinced that modern flywheel energy storage (FES) systems, fiber-composite rotors spinning at many thousands of rpm on frictionless magnetic bearings, could drive generators that provide power for efficient nonpolluting EVs. Also known as inertial energy storage devices or electromechanical batteries (EMB), these systems could theoretically rival chemical batteries in terms of power, energy density, cycle life, charge time, operating temperature range, environmental friendliness, and maintenance needs. FES is now considered a viable technology for recovering braking energy (regenerative braking), averaging peak power demands, and storing energy for electric and hybrid vehicles. FES systems are also being developed for stationary applications such as utility loadleveling systems, uninterrupted power supplies, and storage capacity for solar and wind power systems.

  8. Light Duty Fuel Cell Electric Vehicle Validation Data. Final Technical Report

    SciTech Connect

    Jelen, Deborah; Odom, Sara

    2015-04-30

    Electricore, along with partners from Quong & Associates, Inc., Honda R&D Americas (Honda), Nissan Technical Center North America (Nissan), and Toyota Motor Engineering & Manufacturing North America, Inc. (Toyota), participated in the Light Duty Fuel Cell Electric Vehicle (FCEV) Validation Data program sponsored by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) (Cooperative Agreement No. DE-EE0005968). The goal of this program was to provide real world data from the operation of past and current FCEVs, in order to measure their performance and improvements over time. The program was successful; 85% of the data fields requested were provided and not restricted due to proprietary reasons. Overall, the team from Electricore provided at least 4.8 GB of data to DOE, which was combined with data from other participants to produce over 33 key data products. These products included vehicle performance and fuel cell stack performance/durability. The data were submitted to the National Renewable Energy Laboratory’s National Fuel Cell Technology Evaluation Center (NREL NFCTEC) and combined with input from other participants. NREL then produced composite data products (CDP) which anonymized the data in order to maintain confidentiality. The results were compared with past data, which showed a measurable improvement in FCEVs over the past several years. The results were presented by NREL at the 2014 Fuel Cell Seminar, and 2014 and 2015 (planned) DOE Annual Merit Review. The project was successful. The team provided all of the data agreed upon and met all of its goals. The project finished on time and within budget. In addition, an extra $62,911 of cost sharing was provided by the Electricore team. All participants believed that the method used to collect, combine, anonymize, and present the data was technically and economically effective. This project helped EERE meet its mission of ensuring America’s security and prosperity by

  9. 40 CFR 600.206-86 - Calculation and use of fuel economy values for gasoline-fueled, diesel, and electric vehicle...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... values for gasoline-fueled, diesel, and electric vehicle configurations. 600.206-86 Section 600.206-86... values for gasoline-fueled, diesel, and electric vehicle configurations. (a) Fuel economy values... exists for an electric vehicle configuration, all values for that vehicle configuration are...

  10. 40 CFR 600.206-86 - Calculation and use of fuel economy values for gasoline-fueled, diesel, and electric vehicle...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... values for gasoline-fueled, diesel, and electric vehicle configurations. 600.206-86 Section 600.206-86... economy values for gasoline-fueled, diesel, and electric vehicle configurations. (a) Fuel economy values... exists for an electric vehicle configuration, all values for that vehicle configuration are...

  11. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    NASA Astrophysics Data System (ADS)

    Raposo, João; Rodrigues, Ana; Silva, Carlos; Dentinho, Tomaz

    2015-05-01

    This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city's urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE's characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  12. SIMPLEV: A simple electric vehicle simulation program, Version 1.0

    SciTech Connect

    Cole, G.H.

    1991-06-01

    An electric vehicle simulation code which can be used with any IBM compatible personal computer was written. This general purpose simulation program is useful for performing parametric studies of electric vehicle performance on user input driving cycles. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by the user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC. This report serves as a users` manual and documents the mathematical relationships used in the simulation.

  13. Autonomous docking based on infrared system for electric vehicle charging in urban areas.

    PubMed

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-01-01

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris. PMID:23429581

  14. Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas

    PubMed Central

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-01-01

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris. PMID:23429581

  15. Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer

    NASA Technical Reports Server (NTRS)

    Price, T. W.; Wirth, V. A., Jr.; Pampa, M. F.

    1981-01-01

    The change of pace, an electric vehicle was tested. These tests were performed to characterize certain parameters of the electric vehicle pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem, the batteries, controller and motor. Coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions were performed. The vehicle's performance was evaluated by comparing its constant speed range performance with described vehicles. It is found that the pacer performance is approximately equal to the majority of the vehicles tested in the 1977 assessment.

  16. An overview of the development of lead/acid traction batteries for electric vehicles in India

    NASA Astrophysics Data System (ADS)

    Sivaramaiah, G.; Subramanian, V. R.

    Electric vehicles (EVs) made an entry into the Indian scene quite recently in the area of passenger transportation, milk floats and other similar applications. The industrial EV market, with various models of fork-lift trucks and platform trucks already in wide use all over India, is a better understood application of EV batteries. The lead/acid traction batteries available in India are not of high-energy density. The best available indigenous lead/acid traction battery has an energy density ( C/5 rate) of 30 W h kg -1 as against 39 W h kg -1 available abroad. This paper reviews the developmental efforts relating to lead/acid traction batteries for electric vehicle applications in India, such as prototype road vehicles, commercial vehicles, rail cars, and locomotives. Due to the need for environmental protection and recognition of exhaustible, finite supplies of petroleum fuel, the Indian government is presently taking active interest in EV projects.

  17. Diffusion of Electric Vehicles and Novel Social Infrastructure from the Viewpoint of Systems Innovation Theory

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takaaki

    This paper describes diffusion of electric vehicles and novel social infrastructure from the viewpoint of systems innovation theory considering both human society aspects and elemental technological aspects. Firstly, fundamentals of the systems innovation theory and the platform theory are mentioned. Secondly, discussion on mobility from the viewpoint of the human-society layer and discussion of electrical vehicles from the viewpoint of the elemental techniques are carried out. Thirdly, based on those, R & D, measures are argued such as establishment of the ubiquitous noncontact feeding and authentication payment system is important. Finally, it is also insisted that after the establishment of this system the super smart grid with temporal and spatial control including demand itself with the low social cost will be expected.

  18. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    NASA Astrophysics Data System (ADS)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  19. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOEpatents

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  20. An electric vehicle propulsion system's impact on battery performance: An overview

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  1. Data Acquisition System for Electric Vehicle's Driving Motor Test Bench Based on VC++

    NASA Astrophysics Data System (ADS)

    Qiang, Song; Chenguang, Lv

    In order to solve such problems as great labor intensity, high cost, low efficiency and accuracy during the performance experiment for driving motor system of electric vehicles, and realize data acquisition automatically and synchronously, a data acquisition system for driving motor test bench based on visual instruments is designed. This data acquisition system can be used to obtain the driving motor's parameters of currents and voltages at the same time. This system's hardware is based on electric vehicle's motor test bench in Beijing Institute of Technology, and combined with PXI2010 data acquisition card from ADLINK Company. Visual c++ software is adopted as development tool. In this paper, the design and realization of the hardware and software are presented. Experiment results show that this system improves the efficiency and quality of testing task with high utility. And experiment data can be obtained accurately.

  2. Analysis of renewable energy sources and electric vehicle penetration into energy systems predominantly based on lignite

    NASA Astrophysics Data System (ADS)

    Dedinec, A.; Jovanovski, B.; Gajduk, A.; Markovska, N.; Kocarev, L.

    2016-05-01

    We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050.

  3. Summary of Market Opportunities for Electric Vehicles and Dispatchable Load in Electrolyzers

    SciTech Connect

    Denholm, Paul; Eichman, Joshua; Markel, Tony; Ma, Ookie

    2015-05-19

    Electric vehicles (EVs) and electrolyzers are potentially significant sources of new electric loads. Both are flexible in that the amount of electricity consumed can be varied in response to a variety of factors including the cost of electricity. Because both EVs and electrolyzers can control the timing of electricity purchases, they can minimize energy costs by timing the purchases of energy to periods of lowest costs.

  4. Analytical modeling of a new disc permanent magnet linear synchronous machine for electric vehicles

    SciTech Connect

    Liu, C.T.; Chen, J.W.; Su, K.S.

    1999-09-01

    This paper develops an analytical approach based on a qd0 reference frame model to analyze dynamic and steady state characteristics of disc permanent magnet linear synchronous machines (DPMLSMs). The established compact mathematical model can be more easily employed to analyze the system behavior and to design the controller. Superiority in operational electromagnetic characteristics of the proposed DPMLSM for electric vehicle (EV) applications is verified by both numerical simulations and experimental investigations.

  5. Preliminary power train design for a state-of-the-art electric vehicle (executive summary)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The preliminary design of a state-of-the-art electric power train is part of a national effort to reap the potential benefit of useful urban electric passenger vehicles. Outlined in a detailed presentation are: (1) assessment of the state-of-the-art in electric vehicle technology; (2) state-of-the-art power train design; (3) improved power train; and (4) summary and recommendations.

  6. Pngv System Analysis Toolkit Non-Proprietary for Electric Vehicle Fuel Economy

    2002-02-01

    The PSAT-NP software is used for hybrid electric vehicle (HEV) simulation. This forward-looking model allows users to simulate more than 150 different HEV configurations through its Graphical User Interface. With the PSAT Graphical User Interface, the user can choose the configurations desired along with the different components to be considered and develop and appropriate control strategy. Several simulations can be run sequentially using PSAT's compilation extension capability.

  7. Performance characteristics of an electric vehicle lead-acid battery pack at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Chapman, P.

    1982-01-01

    Discharge testing data electric car battery pack over initial electrolyte temperature variations between 27 and 55 C are presented. The tests were conducted under laboratory conditions and then compared to detailed electric vehicle simulation models. Battery discharge capacity increased with temperature for constant current discharges, and battery energy capacity increased with temperature for constant power discharges. Dynamometer tests of the electric test vehicle showed an increase in range of 25% for the higher electrolyte temperature.

  8. Study on Planar Antennas for Wireless Power Transmission of Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Horiuchi, Toshikazu; Kawashima, Kazumasa

    Wireless electric power transmission systems are suitable to spread electric vehicles, because non-contact charging systems are convenient tools. Such charging systems recharge automatically without intervention from drivers. In this paper, the results of experiments on the transmitting and receiving antennas of the wireless power transmission systems are presented. To study wireless power transmission efficiency, horn antennas, patch antennas, and array antennas were fabricated and evaluated.

  9. Alleviating a form of electric vehicle range anxiety through on-demand vehicle access

    NASA Astrophysics Data System (ADS)

    King, Christopher; Griggs, Wynita; Wirth, Fabian; Quinn, Karl; Shorten, Robert

    2015-04-01

    On-demand vehicle access is a method that can be used to reduce types of range anxiety problems related to planned travel for electric vehicle owners. Using ideas from elementary queueing theory, basic quality of service (QoS) metrics are defined to dimension a shared fleet to ensure high levels of vehicle access. Using mobility data from Ireland, it is argued that the potential cost of such a system is very low.

  10. NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that 'preconditioning' a vehicle-achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term.

  11. Dr. von Braun and Dr. Stuhlinger With a Model of the Nuclear-Electric Vehicles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, taken at the Walt Disney Studios in California, Dr. Wernher von Braun and Dr. Ernst Stuhlinger are shown discussing the concepts of nuclear-electric spaceships designed to undertake the mission to the planet Mars. As a part of the Disney 'Tomorrowland' series on the exploration of space, the nuclear-electric vehicles were shown in the last three television films, entitled 'Mars and Beyond,' which first aired in December 1957.

  12. Performance characteristics of an electric vehicle lead-acid battery pack at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Chapman, P.

    1982-04-01

    Discharge testing data electric car battery pack over initial electrolyte temperature variations between 27 and 55 C are presented. The tests were conducted under laboratory conditions and then compared to detailed electric vehicle simulation models. Battery discharge capacity increased with temperature for constant current discharges, and battery energy capacity increased with temperature for constant power discharges. Dynamometer tests of the electric test vehicle showed an increase in range of 25% for the higher electrolyte temperature.

  13. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    PubMed

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions. PMID:26125323

  14. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    SciTech Connect

    Su, Gui-Jia; Tang, Lixin

    2013-01-01

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  15. Natural graphite demand and supply: Implications for electric vehicle battery requirements.

    USGS Publications Warehouse

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  16. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    PubMed

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  17. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    NASA Astrophysics Data System (ADS)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-02-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs.

  18. Preliminary power train design for a state-of-the-art electric vehicle

    NASA Technical Reports Server (NTRS)

    Ross, J. A.; Wooldridge, G. A.

    1978-01-01

    The state-of-the-art (SOTA) of electric vehicles built since 1965 was reviewed to establish a base for the preliminary design of a power train for a SOTA electric vehicle. The performance of existing electric vehicles were evaluated to establish preliminary specifications for a power train design using state-of-the-art technology and commercially available components. Power train components were evaluated and selected using a computer simulation of the SAE J227a Schedule D driving cycle. Predicted range was determined for a number of motor and controller combinations in conjunction with the mechanical elements of power trains and a battery pack of sixteen lead-acid batteries - 471.7 kg at 0.093 MJ/Kg (1040 lbs. at 11.7 Whr/lb). On the basis of maximum range and overall system efficiency using the Schedule D cycle, an induction motor and 3 phase inverter/controller was selected as the optimum combination when used with a two-speed transaxle and steel belted radial tires. The predicted Schedule D range is 90.4 km (56.2 mi). Four near term improvements to the SOTA were identified, evaluated, and predicted to increase range approximately 7%.

  19. Nickel cadmium battery evaluation, modeling, and application in an electric vehicle

    NASA Astrophysics Data System (ADS)

    Lynch, William Alfred

    A battery testing facility was set up in the battery evaluation laboratory. This system includes a set of current regulators which were fabricated in the UMASS. Lowell labs and a PC based data acquisition system. Batteries were charged or discharged at any rate within system ratings, and data including battery voltage, current, temperature and impedance were stored by a PC. STM5.140 type nickel-cadmium electric vehicle batteries were subjected to various test procedures using the battery testing facility. The results from these tests were used to determine battery characteristics. An electrical component battery model was also developed using the test data. The validity of the battery model was verified through experimental testing, and it was found to be accurate. Additionally, improved battery charging algorithms were developed which resulted in significant improvements in battery efficiency. Electric car operation with STM5.140 type of batteries was evaluated. Realistic road test data were analyzed experimentally and using the battery model. No battery abuse was found under EV driving conditions. The performance of the STM5.140 battery under abuse conditions was evaluated and it was found that it performs reasonably well under all abuse conditions tested. The model and test methodologies may be incorporated into complete electric vehicle models in order to assist in the design and operation of current and future electric vehicles.

  20. Integrating plug-in electric vehicles into the electric power system

    NASA Astrophysics Data System (ADS)

    Wu, Di

    This dissertation contributes to our understanding of how plug-in hybrid electric vehicles (PHEVs) and plug-in battery-only electric vehicles (EVs)---collectively termed plug-in electric vehicles (PEVs)---could be successfully integrated with the electric power system. The research addresses issues at a diverse range of levels pertaining to light-duty vehicles, which account for the majority of highway vehicle miles traveled, energy consumed by highway travel modes, and carbon dioxide emissions from on-road sources. Specifically, the following topics are investigated: (i) On-board power electronics topologies for bidirectional vehicle-to-grid and grid-to-vehicle power transfer; (ii) The estimation of the electric energy and power consumption by fleets of light-duty PEVs; (iii) An operating framework for the scheduling and dispatch of electric power by PEV aggregators; (iv) The pricing of electricity by PHEV aggregators and how it affects the decision-making process of a cost-conscious PHEV owner; (v) The impacts on distribution systems from PEVs under aggregator control; (vi) The modeling of light-duty PEVs for long-term energy and transportation planning at a national scale.