Science.gov

Sample records for advance scientific understanding

  1. Socioscientific Issues: A Path Towards Advanced Scientific Literacy and Improved Conceptual Understanding of Socially Controversial Scientific Theories

    NASA Astrophysics Data System (ADS)

    Pinzino, Dean William

    This thesis investigates the use of socioscientific issues (SSI) in the high school science classroom as an introduction to argumentation and socioscientific reasoning, with the goal of improving students' scientific literacy (SL). Current research is reviewed that supports the likelihood of students developing a greater conceptual understanding of scientific theories as well as a deeper understanding of the nature of science (NOS), through participation in informal and formal forms of argumentation in the context of SSI. Significant gains in such understanding may improve a student's ability to recognize the rigor, legitimacy, and veracity of scientific claims and better discern science from pseudoscience. Furthermore, students that participate in significant SSI instruction by negotiating a range of science-related social issues can make significant gains in content knowledge and develop the life-long skills of argumentation and evidence-based reasoning, goals not possible in traditional lecture-based science instruction. SSI-based instruction may therefore help students become responsible citizens. This synthesis also suggests that that the improvements in science literacy and NOS understanding that develop from sustained engagement in SSI-based instruction will better prepare students to examine and scrutinize socially controversial scientific theories (i.e., evolution, global warming, and the Big Bang).

  2. Scientific progress: Knowledge versus understanding.

    PubMed

    Dellsén, Finnur

    2016-04-01

    What is scientific progress? On Alexander Bird's epistemic account of scientific progress, an episode in science is progressive precisely when there is more scientific knowledge at the end of the episode than at the beginning. Using Bird's epistemic account as a foil, this paper develops an alternative understanding-based account on which an episode in science is progressive precisely when scientists grasp how to correctly explain or predict more aspects of the world at the end of the episode than at the beginning. This account is shown to be superior to the epistemic account by examining cases in which knowledge and understanding come apart. In these cases, it is argued that scientific progress matches increases in scientific understanding rather than accumulations of knowledge. In addition, considerations having to do with minimalist idealizations, pragmatic virtues, and epistemic value all favor this understanding-based account over its epistemic counterpart.

  3. Advancing Scientific Research in Education

    ERIC Educational Resources Information Center

    Towne, Lisa, Ed.; Wise, Lauress L., Ed.; Winters, Tina M., Ed.

    2005-01-01

    The title of this report reveals its purpose precisely: to spur actions that will advance scientific research in education. The recommendations for accomplishing this goal, detailed in this report, build on the National Research Council (NRC) report "Scientific Research in Education" (National Research Council, 2002). That report offers an…

  4. Scientific foundations of advanced technology

    NASA Astrophysics Data System (ADS)

    Lymzin, V. N.

    The objective of increasing the efficiency of production is viewed as a complex scientific and engineering problem which includes the development of advanced processes, materials, and machinery on the basis of fundamental scientific research. Particular attention is given to a systems approach to the design of complex engineering structures and the use of computer-aided design and manufacturing. Some applications of advanced technology are discussed, such as machining by a pulsed laser plasma, the use of laser analyzers for the monitoring and control of technological and physicochemical processes, and vibrational technology applications. Other topics discussed include the development of metallurgical engineering, and automation in engineering industry.

  5. Advances in understanding COPD

    PubMed Central

    Anderson, Gary P.

    2016-01-01

    In recent years, thousands of publications on chronic obstructive pulmonary disease (COPD) and its related biology have entered the world literature, reflecting the increasing scientific and medical interest in this devastating condition. This article is a selective review of several important emerging themes that offer the hope of creating new classes of COPD medicines. Whereas basic science is parsing molecular pathways in COPD, its comorbidities, and asthma COPD overlap syndrome (ACOS) with unprecedented sophistication, clinical translation is disappointingly slow. The article therefore also considers solutions to current difficulties that are impeding progress in translating insights from basic science into clinically useful treatments. PMID:27746898

  6. Advances in understanding hypopituitarism

    PubMed Central

    Stieg, Mareike R.; Renner, Ulrich; Stalla, Günter K.; Kopczak, Anna

    2017-01-01

    The understanding of hypopituitarism has increased over the last three years. This review provides an overview of the most important recent findings. Most of the recent research in hypopituitarism has focused on genetics. New diagnostic techniques like next-generation sequencing have led to the description of different genetic mutations causative for congenital dysfunction of the pituitary gland while new molecular mechanisms underlying pituitary ontogenesis have also been described. Furthermore, hypopituitarism may occur because of an impairment of the distinctive vascularization of the pituitary gland, especially by disruption of the long vessel connection between the hypothalamus and the pituitary. Controversial findings have been published on post-traumatic hypopituitarism. Moreover, autoimmunity has been discussed in recent years as a possible reason for hypopituitarism. With the use of new drugs such as ipilimumab, hypopituitarism as a side effect of pharmaceuticals has come into focus. Besides new findings on the pathomechanism of hypopituitarism, there are new diagnostic tools in development, such as new growth hormone stimulants that are currently being tested in clinical trials. Moreover, cortisol measurement in scalp hair is a promising tool for monitoring cortisol levels over time. PMID:28299199

  7. Thinking Scientifically: Understanding Measurement and Errors

    ERIC Educational Resources Information Center

    Alagumalai, Sivakumar

    2015-01-01

    Thinking scientifically consists of systematic observation, experiment, measurement, and the testing and modification of research questions. In effect, science is about measurement and the understanding of causation. Measurement is an integral part of science and engineering, and has pertinent implications for the human sciences. No measurement is…

  8. Scientific Challenges for Understanding the Quantum Universe

    SciTech Connect

    Khaleel, Mohammad A.

    2009-10-16

    A workshop titled "Scientific Challenges for Understanding the Quantum Universe" was held December 9-11, 2008, at the Kavli Institute for Particle Astrophysics and Cosmology at the Stanford Linear Accelerator Center-National Accelerator Laboratory. The primary purpose of the meeting was to examine how computing at the extreme scale can contribute to meeting forefront scientific challenges in particle physics, particle astrophysics and cosmology. The workshop was organized around five research areas with associated panels. Three of these, "High Energy Theoretical Physics," "Accelerator Simulation," and "Experimental Particle Physics," addressed research of the Office of High Energy Physics’ Energy and Intensity Frontiers, while the"Cosmology and Astrophysics Simulation" and "Astrophysics Data Handling, Archiving, and Mining" panels were associated with the Cosmic Frontier.

  9. Educational interventions to advance children's scientific thinking.

    PubMed

    Klahr, David; Zimmerman, Corinne; Jirout, Jamie

    2011-08-19

    The goal of science education interventions is to nurture, enrich, and sustain children's natural and spontaneous interest in scientific knowledge and procedures. We present taxonomy for classifying different types of research on scientific thinking from the perspective of cognitive development and associated attempts to teach science. We summarize the literature on the early--unschooled--development of scientific thinking, and then focus on recent research on how best to teach science to children from preschool to middle school. We summarize some of the current disagreements in the field of science education and offer some suggestions on ways to continue to advance the science of science instruction.

  10. Recent advances in understanding neutrophils

    PubMed Central

    Deniset, Justin F.; Kubes, Paul

    2016-01-01

    Neutrophils have long been regarded as key effectors of the innate immune response during acute inflammation. Recent evidence has revealed a greater functional diversity for these cells than previously appreciated, expanding roles for neutrophils in adaptive immunity and chronic pathologies. In this review, we summarize some of the evolving paradigms in the neutrophil field and highlight key advances that have contributed to our understanding of neutrophil behavior and function in vivo. We examine the concept of neutrophil subsets and polarization, we discuss novel immunomodulatory roles for neutrophils in shaping the immune response, and, finally, we identify technical advances that will further enhance our ability to track the function and fate of neutrophils. PMID:28105328

  11. Advances in Scientific Investigation and Automation.

    ERIC Educational Resources Information Center

    Abt, Jeffrey; And Others

    1987-01-01

    Six articles address: (1) the impact of science on the physical examination and treatment of books; (2) equipment for physical examination of books; (3) research using the cyclotron for historical analysis; (4) scientific analysis of paper and ink in early maps; (5) recent advances in automation; and (6) cataloging standards. (MES)

  12. Laboratory Astrophysics: Enabling Scientific Discovery and Understanding

    NASA Technical Reports Server (NTRS)

    Kirby, K.

    2006-01-01

    NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.

  13. Advances in understanding begomovirus satellites.

    PubMed

    Zhou, Xueping

    2013-01-01

    Begomoviruses are numerous and geographically widespread viruses that cause devastating diseases in many crops. Monopartite begomoviruses are frequently associated with betasatellites or alphasatellites. Both betasatellite and alphasatellite DNA genomes are approximately half the size of begomovirus DNA genomes. Betasatellites are essential for induction of typical disease symptoms. The βC1 genes encoded by the betasatellites have important roles in symptom induction, in suppression of transcriptional and posttranscriptional gene silencing, and they can affect jasmonic acid responsive genes. Host plants of begomoviruses have evolved diverse innate defense mechanisms against the βC1 protein to counter these challenges. Alphasatellites have been identified mainly in monopartite begomoviruses that associate with betasatellites and have no known contributions to pathogenesis of begomovirus-betasatellite disease complexes. Applications of current molecular tools are facilitating viral diagnosis and the discovery of novel species of geminiviruses and satellite DNAs and are also advancing our understanding of the global diversity and evolution of satellite DNAs.

  14. Recent advances in understanding schizophrenia

    PubMed Central

    Haller, Chiara S.; Padmanabhan, Jaya L.; Lizano, Paulo; Torous, John

    2014-01-01

    Schizophrenia is a highly disabling disorder whose causes remain to be better understood, and treatments have to be improved. However, several recent advances have been made in diagnosis, etiopathology, and treatment. Whereas reliability of diagnosis has improved with operational criteria, including Diagnostic and Statistical Manual of Mental Disorders, (DSM) Fifth Edition, validity of the disease boundaries remains unclear because of substantive overlaps with other psychotic disorders. Recent emphasis on dimensional approaches and translational bio-behavioral research domain criteria may eventually help move toward a neuroscience-based definition of schizophrenia. The etiology of schizophrenia is now thought to be multifactorial, with multiple small-effect and fewer large-effect susceptibility genes interacting with several environmental factors. These factors may lead to developmentally mediated alterations in neuroplasticity, manifesting in a cascade of neurotransmitter and circuit dysfunctions and impaired connectivity with an onset around early adolescence. Such etiopathological understanding has motivated a renewed search for novel pharmacological as well as psychotherapeutic targets. Addressing the core features of the illness, such as cognitive deficits and negative symptoms, and developing hypothesis-driven early interventions and preventive strategies are high-priority goals for the field. Schizophrenia is a severe, chronic mental disorder and is among the most disabling disorders in all of medicine. It is estimated by the National Institute of Mental Health (NIMH) that 2.4 million people over the age of 18 in the US suffer from schizophrenia. This illness typically begins in adolescence and derails the formative goals of school, family, and work, leading to considerable suffering and disability and reduced life expectancy by about 20 years. Treatment outcomes are variable, and some people are successfully treated and reintegrated (i.e. go back to work

  15. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  16. Understanding Scientific Misconduct: What Do We Know?

    ERIC Educational Resources Information Center

    Knowledge: Creation, Diffusion, Utilization, 1992

    1992-01-01

    Ten articles in this special section address the incidence and nature of scientific misconduct in the research publication process. Discussed are definitions of the problem, its prevalence, policies which may be developed to address ethical issues, and the results of a survey of the scientific community. (EA)

  17. Recent advances in understanding dengue

    PubMed Central

    Yacoub, Sophie; Mongkolsapaya, Juthathip; Screaton, Gavin

    2016-01-01

    Dengue is an emerging threat to billions of people worldwide. In the last 20 years, the incidence has increased four-fold and this trend appears to be continuing. Caused by one of four viral serotypes, dengue can present as a wide range of clinical phenotypes with the severe end of the spectrum being defined by a syndrome of capillary leak, coagulopathy, and organ impairment. The pathogenesis of severe disease is thought to be in part immune mediated, but the exact mechanisms remain to be defined. The current treatment of dengue relies on supportive measures with no licensed therapeutics available to date. There have been recent advances in our understanding of a number of areas of dengue research, of which the following will be discussed in this review: the drivers behind the global dengue pandemic, viral structure and epitope binding, risk factors for severe disease and its pathogenesis, as well as the findings of recent clinical trials including therapeutics and vaccines. We conclude with current and future dengue control measures and key areas for future research. PMID:26918159

  18. Proportional Reasoning: An Essential Component of Scientific Understanding

    ERIC Educational Resources Information Center

    Hilton, Annette; Hilton, Geoff

    2016-01-01

    In many scientific contexts, students need to be able to use mathematical knowledge in order to engage in scientific reasoning and problem-solving, and their understanding of scientific concepts relies heavily on their ability to understand and use mathematics in often new or unfamiliar contexts. Not only do science students need high levels of…

  19. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    SciTech Connect

    David Watson

    2005-04-18

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  20. An Experiment in Scientific Program Understanding

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Owen, Karl (Technical Monitor)

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. Results are shown for three intensively studied codes and seven blind test cases; all test cases are state of the art scientific codes. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  1. Recent advances in understanding vitiligo

    PubMed Central

    Manga, Prashiela; Elbuluk, Nada; Orlow, Seth J.

    2016-01-01

    Vitiligo, an acquired depigmentation disorder, manifests as white macules on the skin and can cause significant psychological stress and stigmatization. Recent advances have shed light on key components that drive disease onset and progression as well as therapeutic approaches. Vitiligo can be triggered by stress to the melanin pigment-producing cells of the skin, the melanocytes. The triggers, which range from sunburn to mechanical trauma and chemical exposures, ultimately cause an autoimmune response that targets melanocytes, driving progressive skin depigmentation. The most significant progress in our understanding of disease etiology has been made on three fronts: (1) identifying cellular responses to stress, including antioxidant pathways and the unfolded protein response (UPR), as key players in disease onset, (2) characterizing immune responses that target melanocytes and drive disease progression, and (3) identifying major susceptibility genes. The current model for vitiligo pathogenesis postulates that oxidative stress causes cellular disruptions, including interruption of protein maturation in the endoplasmic reticulum (ER), leading to the activation of the UPR and expression of UPR-regulated chemokines such as interleukin 6 (IL-6) and IL-8. These chemokines recruit immune components to the skin, causing melanocytes to be targeted for destruction. Oxidative stress can further increase melanocyte targeting by promoting antigen presentation. Two key components of the autoimmune response that promote disease progression are the interferon (IFN)-γ/CXCL10 axis and IL-17-mediated responses. Several genome-wide association studies support a role for these pathways, with the antioxidant gene NRF2, UPR gene XBP1, and numerous immune-related genes including class I and class II major histocompatibility genes associated with a risk for developing vitiligo. Novel approaches to promote repigmentation in vitiligo are being investigated and may yield effective, long

  2. Recent advances in understanding apicomplexan parasites

    PubMed Central

    Seeber, Frank; Steinfelder, Svenja

    2016-01-01

    Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts. Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion. Toxoplasma gondii and Theileria sp., besides Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol ( T. gondii and Plasmodium) and how a secreted protein can immortalize the host cell ( Theileria sp.) have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against T. gondii and the liver stages of Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen. PMID:27347391

  3. Scientific opportunities at the advanced light source

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.

    1989-04-01

    The Advanced Light Source (ALS) is a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. Now under construction at the Lawrence Berkeley Laboratory with a projected completion date of September 1992, the ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in eleven long straight sections. It will also have up to 48 bending-magnet ports. Scientific opportunities in materials science, surface science, chemistry, atomic and molecular physics, life science and other fields are reflected in Letters of Interest received for the establishment of beamlines.

  4. 75 FR 64720 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    .../Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department...

  5. 75 FR 9887 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U.S. Department...

  6. 78 FR 6087 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of...

  7. 75 FR 43518 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing Advisory..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of...

  8. 76 FR 41234 - Advanced Scientific Computing Advisory Committee Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Advanced Scientific Computing Advisory Committee Charter Renewal AGENCY: Department of Energy, Office of... Administration, notice is hereby given that the Advanced Scientific Computing Advisory Committee will be renewed... concerning the Advanced Scientific Computing program in response only to charges from the Director of...

  9. 76 FR 9765 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing..., Office of Advanced Scientific Computing Research, SC-21/Germantown Building, U.S. Department of...

  10. 77 FR 45345 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    .../Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U.S. Department...

  11. 78 FR 41046 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... hereby given that the Advanced Scientific Computing Advisory Committee will be renewed for a two-year... (DOE), on the Advanced Scientific Computing Research Program managed by the Office of...

  12. Understanding and teaching important scientific thought processes

    NASA Astrophysics Data System (ADS)

    Reif, Frederick

    1995-12-01

    This article analyzes the cognitive processes and kinds of knowledge needed to work in a scientific domain like physics. In particular, it discusses the processes needed to interpret properly scientific concepts and principles, complementary uses of quantitative and qualitative descriptions, useful hierarchical ways of organizing scientific knowledge, and description and decision processes facilitating effective problem solving. The importance of these processes is illustrated by some experimental evidence and by specific instructional implications. It has been possible to design a physics course where these thought processes are explicitly taught and where students' learning is correspondingly improved. However, there remain practical implementation problems—particularly students' naive conceptions about the nature of science and the very limited amount of individual guidance and feedback that students receive in ordinary classroom situations.

  13. The scientific modeling assistant: An advanced software tool for scientific model building

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Sims, Michael H.

    1991-01-01

    Viewgraphs on the scientific modeling assistant: an advanced software tool for scientific model building are presented. The objective is to build a specialized software tool to assist in scientific model-building.

  14. Approaches for advancing scientific understanding of macrosystems

    USGS Publications Warehouse

    Levy, Ofir; Ball, Becky A.; Bond-Lamberty, Ben; Cheruvelil, Kendra S.; Finley, Andrew O.; Lottig, Noah R.; Surangi W. Punyasena,; Xiao, Jingfeng; Zhou, Jizhong; Buckley, Lauren B.; Filstrup, Christopher T.; Keitt, Tim H.; Kellner, James R.; Knapp, Alan K.; Richardson, Andrew D.; Tcheng, David; Toomey, Michael; Vargas, Rodrigo; Voordeckers, James W.; Wagner, Tyler; Williams, John W.

    2014-01-01

    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them.

  15. Understanding Peer Review of Scientific Research

    ERIC Educational Resources Information Center

    Association of American Universities, 2011

    2011-01-01

    An important factor in the success of America's national research system is that federal funds for university-based research are awarded primarily through peer review, which uses panels of scientific experts, or "peers," to evaluate the quality of grant proposals. In this competitive process, proposals compete for resources based on their…

  16. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  17. Transition from Personal to Scientific Understanding.

    ERIC Educational Resources Information Center

    McElwee, Paul

    1991-01-01

    Concepts used by two classes of grade eight students, one advanced and the other average, to explain the changes that occur when water is heated to boiling are presented. Little difference was found between groups in terms of the personal misconceptions used to explain boiling. The changes that take place in conceptual knowledge immediately after…

  18. A Scientific Understanding of Keystroke Dynamics

    DTIC Science & Technology

    2012-01-01

    Authentication personal. In Interna- tional Conference on Intelligent and Advanced Systems ( ICAIS 2007), pages 254–256, November 25–28, 2007, Kuala...Bangalore, India , 2007. IEEE, Piscataway, NJ. R. Joyce and G. Gupta. Identity authentication based on keystroke latencies. Communica- tions of the ACM, 33...Intelligence and Com- puting Research, pages 1–4, December 28–29, 2010, Tamilnadu, India , 2010. IEEE, Piscataway, NJ. H. B. Kekre, V. A. Bharadi, P. Shaktia, V

  19. Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  20. Maternal Immunization: Opportunities for Scientific Advancement

    PubMed Central

    Beigi, Richard H.; Fortner, Kimberly B.; Munoz, Flor M.; Roberts, Jeff; Gordon, Jennifer L.; Han, Htay Htay; Glenn, Greg; Dormitzer, Philip R.; Gu, Xing Xing; Read, Jennifer S.; Edwards, Kathryn; Patel, Shital M.; Swamy, Geeta K.

    2014-01-01

    Maternal immunization is an effective strategy to prevent and/or minimize the severity of infectious diseases in pregnant women and their infants. Based on the success of vaccination programs to prevent maternal and neonatal tetanus, maternal immunization has been well received in the United States and globally as a promising strategy for the prevention of other vaccine-preventable diseases that threaten pregnant women and infants, such as influenza and pertussis. Given the promise for reducing the burden of infectious conditions of perinatal significance through the development of vaccines against relevant pathogens, the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH) sponsored a series of meetings to foster progress toward clinical development of vaccines for use in pregnancy. A multidisciplinary group of stakeholders convened at the NIH in December 2013 to identify potential barriers and opportunities for scientific advancement in maternal immunization. PMID:25425719

  1. Public understanding of science is not scientific literacy

    SciTech Connect

    McGowan, A.

    1995-12-31

    The author notes that public understanding of science has, in many quarters, been taken over by the wrong notion of scientific literacy. The need for the scientific community to develop the language that speaks to the public in general is explored. Methodologies to improve communication to the general public and increase their understanding with clearly developed metaphors are examined.

  2. 75 FR 57742 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building;...

  3. Taming theory with thought experiments: Understanding and scientific progress.

    PubMed

    Stuart, Michael T

    2016-08-01

    I claim that one way thought experiments contribute to scientific progress is by increasing scientific understanding. Understanding does not have a currently accepted characterization in the philosophical literature, but I argue that we already have ways to test for it. For instance, current pedagogical practice often requires that students demonstrate being in either or both of the following two states: 1) Having grasped the meaning of some relevant theory, concept, law or model, 2) Being able to apply that theory, concept, law or model fruitfully to new instances. Three thought experiments are presented which have been important historically in helping us pass these tests, and two others that cause us to fail. Then I use this operationalization of understanding to clarify the relationships between scientific thought experiments, the understanding they produce, and the progress they enable. I conclude that while no specific instance of understanding (thus conceived) is necessary for scientific progress, understanding in general is.

  4. Using Advanced Scientific Diving Technologies to Assess the Underwater Environment

    SciTech Connect

    Southard, John A.; Williams, Greg D.; Sargeant, Susan L.; Diefenderfer, Heida L.; Blanton, Michael L.

    2003-03-31

    Scientific diving can provide unique information for addressing complex environmental issues in the marine environment and is applied to a variety of increasingly important issues throughout Puget Sound, including habitat degradation, endangered species, biological availability of contaminants, and the effects of overwater structures and shoreline protection features. The Pacific Northwest National Laboratory, Battelle Marine Sciences Laboratory uses trained scientific divers in conjunction with advanced technologies to collect in-situ information best obtained through direct observation and requiring minimal environmental disturbance. For example, advances in underwater communications allow divers to discuss observations and data collection techniques in real time, both with each other and with personnel on the surface. Other examples include the use of Dual frequency IDentification SONar (DIDSON), an underwater camera used to capture digital images of benthic structures, fish, and organisms during low light and high turbidity levels; the use of voice-narrated underwater video; and the development of sediment collection methods yielding one-meter cores. The combination of using trained scientific SCUBA divers and advanced underwater technologies is a key element in addressing multifaceted environmental problems, resulting in a more comprehensive understanding of the underwater environment and more reliable data with which to make resource management decisions.

  5. Recent advances in understanding Streptomyces.

    PubMed

    Chater, Keith F

    2016-01-01

    About 2,500 papers dated 2014-2016 were recovered by searching the PubMed database for Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for Streptomyces developmental biology, Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome

  6. Recent advances in understanding Streptomyces

    PubMed Central

    Chater, Keith F.

    2016-01-01

    About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for Streptomyces developmental biology, Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome

  7. Recent advances in understanding noroviruses

    PubMed Central

    Bartnicki, Eric; Cunha, Juliana Bragazzi; Kolawole, Abimbola O.; Wobus, Christiane E.

    2017-01-01

    Noroviruses are the leading cause of acute gastroenteritis around the world. An individual living in the United States is estimated to develop norovirus infection five times in his or her lifetime. Despite this, there is currently no antiviral or vaccine to combat the infection, in large part because of the historical lack of cell culture and small animal models. However, the last few years of norovirus research were marked by a number of ground-breaking advances that have overcome technical barriers and uncovered novel aspects of norovirus biology. Foremost among them was the development of two different in vitro culture systems for human noroviruses. Underappreciated was the notion that noroviruses infect cells of the immune system as well as epithelial cells within the gastrointestinal tract and that human norovirus infection of enterocytes requires or is promoted by the presence of bile acids. Furthermore, two proteinaceous receptors are now recognized for murine norovirus, marking the first discovery of a functional receptor for any norovirus. Recent work further points to a role for certain bacteria, including those found in the gut microbiome, as potential modulators of norovirus infection in the host, emphasizing the importance of interactions with organisms from other kingdoms of life for viral pathogenesis. Lastly, we will highlight the adaptation of drop-based microfluidics to norovirus research, as this technology has the potential to reveal novel insights into virus evolution. This review aims to summarize these new findings while also including possible future directions. PMID:28163914

  8. Advancing Drought Understanding, Monitoring and Prediction

    NASA Technical Reports Server (NTRS)

    Mariotti, Annarita; Schubert, Siegfried D.; Mo, Kingtse; Peters-Lidard, Christa; Wood, Andy; Pulwarty, Roger; Huang, Jin; Barrie, Dan

    2013-01-01

    Having the capacity to monitor droughts in near-real time and providing accurate drought prediction from weeks to seasons in advance can greatly reduce the severity of social and economic damage caused by drought, a leading natural hazard for North America. The congressional mandate to establish the National Integrated Drought Information System (NIDIS; Public Law 109-430) in 2006 was a major impulse to develop, integrate, and provide drought information to meet the challenges posed by this hazard. Significant progress has been made on many fronts. On the research front, efforts by the broad scientific community have resulted in improved understanding of North American droughts and improved monitoring and forecasting tools. We now have a better understanding of the droughts of the twentieth century including the 1930s "Dust Bowl"; we have developed a broader array of tools and datasets that enhance the official North American Drought Monitor based on different methodologies such as state-of-the-art land surface modeling (e.g., the North American Land Data Assimilation System) and remote sensing (e.g., the evaporative stress index) to better characterize the occurrence and severity of drought in its multiple manifestations. In addition, we have new tools for drought prediction [including the new National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2, for operational prediction and an experimental National Multimodel Ensemble] and have explored diverse methodologies including ensemble hydrologic prediction approaches. Broad NIDIS-inspired progress is influencing the development of a Global Drought Information System (GDIS) under the auspices of the World Climate Research Program. Despite these advances, current drought monitoring and forecasting capabilities still fall short of users' needs, especially the need for skillful and reliable drought forecasts at regional and local scales. To tackle this outstanding challenging problem

  9. Dialogic Framing of Scientific Content for Conceptual and Epistemic Understanding

    ERIC Educational Resources Information Center

    Ford, Michael J.; Wargo, Brian M.

    2012-01-01

    This article draws on M. M. Bakhtin's (1981) notion of dialogism to articulate what it means to understand a scientific idea. In science, understanding an idea is both conceptual and epistemic and is exhibited by an ability to use it in explanation and argumentation. Some distillation of these activities implies that dialogic understanding of a…

  10. Advances in Understanding the Biosynthesis of Fumonisins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are a group of economically important mycotoxins that are derived polyketides. Since the cloning of the fumonisin polyketide synthase (PKS) gene from Fusarium verticillioides in 1999, significant advances have been made in understanding the molecular mechanisms for fumonisin biosynthesis...

  11. 76 FR 45786 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of Science, Department of Energy... Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown...

  12. OPENING REMARKS: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2006-01-01

    Good morning. Welcome to SciDAC 2006 and Denver. I share greetings from the new Undersecretary for Energy, Ray Orbach. Five years ago SciDAC was launched as an experiment in computational science. The goal was to form partnerships among science applications, computer scientists, and applied mathematicians to take advantage of the potential of emerging terascale computers. This experiment has been a resounding success. SciDAC has emerged as a powerful concept for addressing some of the biggest challenges facing our world. As significant as these successes were, I believe there is also significance in the teams that achieved them. In addition to their scientific aims these teams have advanced the overall field of computational science and set the stage for even larger accomplishments as we look ahead to SciDAC-2. I am sure that many of you are expecting to hear about the results of our current solicitation for SciDAC-2. I’m afraid we are not quite ready to make that announcement. Decisions are still being made and we will announce the results later this summer. Nearly 250 unique proposals were received and evaluated, involving literally thousands of researchers, postdocs, and students. These collectively requested more than five times our expected budget. This response is a testament to the success of SciDAC in the community. In SciDAC-2 our budget has been increased to about 70 million for FY 2007 and our partnerships have expanded to include the Environment and National Security missions of the Department. The National Science Foundation has also joined as a partner. These new partnerships are expected to expand the application space of SciDAC, and broaden the impact and visibility of the program. We have, with our recent solicitation, expanded to turbulence, computational biology, and groundwater reactive modeling and simulation. We are currently talking with the Department’s applied energy programs about risk assessment, optimization of complex systems - such

  13. Scientific Literacy: The Role of Goal-Directed Reading and Evaluation in Understanding Scientific Information

    ERIC Educational Resources Information Center

    Britt, M. Anne; Richter, Tobias; Rouet, Jean-François

    2014-01-01

    In this article, we examine the mental processes and representations that are required of laypersons when learning about science issues from texts. We begin by defining scientific literacy as the ability to understand and critically evaluate scientific content in order to achieve one's goals. We then present 3 challenges of learning from…

  14. Predictors of scientific understanding of middle school students

    NASA Astrophysics Data System (ADS)

    Strate, Joshua Matthew

    The purpose of this study was to determine if middle school student scientific understanding could be predicted by the variables: standardized 5th grade score in science, standardized 5th grade score in mathematics, standardized 5th grade score in reading, student attitude towards science, socioeconomic status, gender, and ethnicity. The areas of the comprehensive literature review were trends in science learning and teaching, research in the K-12 science education arena, what factors have influenced K-12 science education, scientific understanding, what research has been done on K-12 scientific understanding, and what factors have influenced science understanding in the K-12 arenas. Based on the results of the literature review, the researcher of this study examined a sample of middle school 8th grade students. An Attitude Towards Science Survey (SATS) Simpson & Oliver (1990) and a Survey of Scientific Understandings (Klapper, DeLucia, & Trent, 1993) were administered to these 116 middle school 8th grade students drawn from a total population of 1109 who attend this middle school in a typical county in Florida during the 2010- 2011 school year. Multiple linear regression analysis was used to test each sub-hypothesis and to provide a model that attempted to predict student scientific understanding. Seven null sub-hypotheses were formed to determine if there were significant relationships between student scientific understanding and the abovementioned variables. The results of the tests of the seven null sub-hypotheses showed that the sub-hypothesis that involved socioeconomic status was rejected, which indicated that the socioeconomic status of a family does influence the level of scientific understanding of a student. Low SES students performed lower on the scientific understanding survey, on average, than high SES students. This study can be a source of information for teachers in low-income schools by recognizing potential areas of concern for low

  15. Advances in Understanding Air Pollution and CVD.

    PubMed

    Kaufman, Joel D; Spalt, Elizabeth W; Curl, Cynthia L; Hajat, Anjum; Jones, Miranda R; Kim, Sun-Young; Vedal, Sverre; Szpiro, Adam A; Gassett, Amanda; Sheppard, Lianne; Daviglus, Martha L; Adar, Sara D

    2016-09-01

    The MESA Air (Multi-Ethnic Study of Atherosclerosis and Air Pollution) leveraged the platform of the MESA cohort into a prospective longitudinal study of relationships between air pollution and cardiovascular health. MESA Air researchers developed fine-scale, state-of-the-art air pollution exposure models for the MESA Air communities, creating individual exposure estimates for each participant. These models combine cohort-specific exposure monitoring, existing monitoring systems, and an extensive database of geographic and meteorological information. Together with extensive phenotyping in MESA-and adding participants and health measurements to the cohort-MESA Air investigated environmental exposures on a wide range of outcomes. Advances by the MESA Air team included not only a new approach to exposure modeling, but also biostatistical advances in addressing exposure measurement error and temporal confounding. The MESA Air study advanced our understanding of the impact of air pollutants on cardiovascular disease and provided a research platform for advances in environmental epidemiology.

  16. Understanding and Using Scientific Evidence: How To Critically Evaluate Data.

    ERIC Educational Resources Information Center

    Gott, Richard; Duggan, Sandra

    The basic understanding which underlies scientific evidence--ideas such as the structure of experiments, causality, repeatability, validity and reliability--is not straightforward. But these ideas are needed to judge evidence in school science, in physics or chemistry or biology or psychology, in undergraduate science, and in understanding…

  17. Understanding Scientific Texts: From Structure to Process and General Culture

    ERIC Educational Resources Information Center

    Ensar, Ferhat; Sallabas, Muhammed Eyyüp

    2016-01-01

    In this study, the historical development of experimental research on learning processes from scientific texts has been introduced. Then a detailed analysis of the main contributions of cognitive science has been provided and the theoretical developments that are considered to have had a major role in the comprehension and understanding of…

  18. Cognitive Implications of Nominalizations in the Advancement of Scientific Discourse

    ERIC Educational Resources Information Center

    Bello, Iria

    2016-01-01

    Nominalizations are well-known features of scientific writing. Scholars have been intrigued by their form and by their functions. While these features have been widely studied, the cognitive side of nominalizations in scientific texts still needs further attention. Nominalizations contribute to the advancement of discourse and at the same time add…

  19. Recent advances in understanding and managing asthma

    PubMed Central

    Loo, Su-Ling; Wark, Peter A.B.

    2016-01-01

    This review highlights the important articles published in the area of asthma research from January 2015 to July 2016. In basic science, significant advances have been made in understanding the link between the innate immune response and type II acquired immune responses in asthma and the role of the airway epithelium. Novel information continues to emerge with regard to the pathogenesis and heterogeneity of severe asthma. There have been important translational clinical trials in the areas of childhood asthma, treatment of allergy to improve asthma outcomes, and improving drug delivery to optimize the management of asthma. In addition, there are increasing data concerning the application of biological agents to the management of severe asthma. This body of work discusses the most notable advances in the understanding and management of asthma. PMID:27610226

  20. Recent advances in managing and understanding uveitis

    PubMed Central

    Chen, Shih-Chou; Sheu, Shwu-Jiuan

    2017-01-01

    Uveitis is a sight-threatening disease entity with intraocular inflammation that arises from various causes. It mainly affects working-age individuals and may lead to irreversible visual loss if not treated properly in a timely manner. This article reviews recent advances in the management and understanding of uveitis since 2014, including treatment with new immunosuppressive therapies that use biological agents, local therapy with steroid implants, and imaging studies for the evaluation of uveitis. PMID:28357059

  1. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Damevski, Kostadin

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  2. Advances in Scientific Balloon Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Bohaboj, T.; Cathey, H. M., Jr.

    2004-01-01

    The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.

  3. Understanding the Scientific Enterprise: A Conversation with Alan Leshner

    ERIC Educational Resources Information Center

    Perkins-Gough, Deborah

    2007-01-01

    Understanding the nature of science is even more important than mastering its details, says Alan Leshner, Chief Executive Officer of the American Association for the Advancement of Science, in an interview with Educational Leadership. In this article, Leshner discusses the controversy about teaching evolution, and he asserts that demands to…

  4. Measuring Student Gains in Understanding the Process of Scientific Research

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Krok, M.; Young, M.

    2011-05-01

    We have developed a "Research-Based Science Education" (RBSE) curriculum in which undergraduate non-science majors participate in authentic astrophysical research in the "astro 101" setting. The primary goal of the RBSE curriculum is to develop a student's understanding of the nature of scientific research; i.e. that science is not just a body of knowledge but a process by which knowledge is gained. The RBSE curriculum is now being tested at seven partner institutions. To measure student gains in understanding the process of scientific research we use a modified concept mapping methodology. We will present the methodology, identified student misconceptions about the process of science, and initial results on measured student gains. This work is supported through NSF DUE-CCLI grant 0920293.

  5. Simulation methods for advanced scientific computing

    SciTech Connect

    Booth, T.E.; Carlson, J.A.; Forster, R.A.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to create effective new algorithms for solving N-body problems by computer simulation. The authors concentrated on developing advanced classical and quantum Monte Carlo techniques. For simulations of phase transitions in classical systems, they produced a framework generalizing the famous Swendsen-Wang cluster algorithms for Ising and Potts models. For spin-glass-like problems, they demonstrated the effectiveness of an extension of the multicanonical method for the two-dimensional, random bond Ising model. For quantum mechanical systems, they generated a new method to compute the ground-state energy of systems of interacting electrons. They also improved methods to compute excited states when the diffusion quantum Monte Carlo method is used and to compute longer time dynamics when the stationary phase quantum Monte Carlo method is used.

  6. Scientific thinking in elementary school: Children's social cognition and their epistemological understanding promote experimentation skills.

    PubMed

    Osterhaus, Christopher; Koerber, Susanne; Sodian, Beate

    2017-03-01

    Do social cognition and epistemological understanding promote elementary school children's experimentation skills? To investigate this question, 402 children (ages 8, 9, and 10) in 2nd, 3rd, and 4th grades were assessed for their experimentation skills, social cognition (advanced theory of mind [AToM]), epistemological understanding (understanding the nature of science), and general information-processing skills (inhibition, intelligence, and language abilities) in a whole-class testing procedure. A multiple indicators multiple causes model revealed a significant influence of social cognition (AToM) on epistemological understanding, and a McNemar test suggested that children's development of AToM is an important precursor for the emergence of an advanced, mature epistemological understanding. Children's epistemological understanding, in turn, predicted their experimentation skills. Importantly, this relation was independent of the common influences of general information processing. Significant relations between experimentation skills and inhibition, and between epistemological understanding, intelligence, and language abilities emerged, suggesting that general information processing contributes to the conceptual development that is involved in scientific thinking. The model of scientific thinking that was tested in this study (social cognition and epistemological understanding promote experimentation skills) fitted the data significantly better than 2 alternative models, which assumed nonspecific, equally strong relations between all constructs under investigation. Our results support the conclusion that social cognition plays a foundational role in the emergence of children's epistemological understanding, which in turn is closely related to the development of experimentation skills. Our findings have significant implications for the teaching of scientific thinking in elementary school and they stress the importance of children's epistemological understanding in

  7. Recent advances in understanding and managing gout.

    PubMed

    Igel, Talia F; Krasnokutsky, Svetlana; Pillinger, Michael H

    2017-01-01

    Gout is the most common crystal arthropathy and the leading cause of inflammatory arthritis. It is associated with functional impairment and, for many, a diminished health-related quality of life. Numerous studies have demonstrated the impact of gout and its associated conditions on patient morbidity and mortality. Unfortunately, gout remains under-diagnosed and under-treated in the general community. Despite major advances in treatment strategies, as many as 90% of patients with gout are poorly controlled or improperly managed and their hyperuricemia and recurrent flares continue. The introduction of novel urate-lowering therapies, new imaging modalities, and a deeper understanding of the pathogenesis of gout raise the possibility of better gout care and improved patient outcomes. Here, we spotlight recent advances in the diagnosis and management of gout and discuss novel therapeutics in gout treatment.

  8. Recent advances in understanding and managing gout

    PubMed Central

    Igel, Talia F.; Krasnokutsky, Svetlana; Pillinger, Michael H.

    2017-01-01

    Gout is the most common crystal arthropathy and the leading cause of inflammatory arthritis. It is associated with functional impairment and, for many, a diminished health-related quality of life. Numerous studies have demonstrated the impact of gout and its associated conditions on patient morbidity and mortality. Unfortunately, gout remains under-diagnosed and under-treated in the general community. Despite major advances in treatment strategies, as many as 90% of patients with gout are poorly controlled or improperly managed and their hyperuricemia and recurrent flares continue. The introduction of novel urate-lowering therapies, new imaging modalities, and a deeper understanding of the pathogenesis of gout raise the possibility of better gout care and improved patient outcomes. Here, we spotlight recent advances in the diagnosis and management of gout and discuss novel therapeutics in gout treatment. PMID:28357052

  9. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee Report on Scientific and Technical Information

    SciTech Connect

    Hey, Tony; Agarwal, Deborah; Borgman, Christine; Cartaro, Concetta; Crivelli, Silvia; Van Dam, Kerstin Kleese; Luce, Richard; Arjun, Shankar; Trefethen, Anne; Wade, Alex; Williams, Dean

    2015-09-04

    The Advanced Scientific Computing Advisory Committee (ASCAC) was charged to form a standing subcommittee to review the Department of Energy’s Office of Scientific and Technical Information (OSTI) and to begin by assessing the quality and effectiveness of OSTI’s recent and current products and services and to comment on its mission and future directions in the rapidly changing environment for scientific publication and data. The Committee met with OSTI staff and reviewed available products, services and other materials. This report summaries their initial findings and recommendations.

  10. 76 FR 64330 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... Reliability, Diffusion on Complex Networks, and Reversible Software Execution Systems Report from Applied Math... at: (301) 903-7486 or by email at: Melea.Baker@science.doe.gov . You must make your request for...

  11. 78 FR 56871 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION... Exascale technical approaches subcommittee Facilities update Report from Applied Math Committee of Visitors...: ( Melea.Baker@science.doe.gov ). You must make your request for an oral statement at least five...

  12. Recent advances in understanding antitumor immunity

    PubMed Central

    Munhoz, Rodrigo Ramella; Postow, Michael Andrew

    2016-01-01

    The term “antitumor immunity” refers to innate and adaptive immune responses which lead to tumor control. Turning the immune system into a destructive force against tumors has been achieved in a broad range of human cancers with the use of non-specific immunotherapies, vaccines, adoptive-cell therapy, and, more recently with significant success, through blockade of immune checkpoints. Nevertheless, the efficacy of these approaches is not universal, and tools to identify long-term responders and primarily refractory patients are warranted. In this article, we review recent advances in understanding the complex mechanisms of antitumor immunity and how these developments can be used to address open questions in a setting of growing clinical indications for the use of immunotherapy. PMID:27803807

  13. Recent advances in understanding & managing male infertility

    PubMed Central

    Bieniek, Jared M.; Lo, Kirk C.

    2016-01-01

    Male infertility remains a struggle to definitively diagnose and treat with many men labelled as “idiopathic infertility” and eventually requiring assisted reproductive techniques.  Along those lines, research groups are continuing to explore current social and environmental factors, including the obesity epidemic, and their effects on male fertility potential.  Novel biomarkers of natural fertility status and azoospermia etiology have additionally seen recent attention with ACRV1 and TEX101/ECM1 assays either currently or soon to be commercially available.  Despite these advancements, however, medical treatment options have seen little progress.  Though surgical therapies have similarly seen little transformation, groups are exploring the use of testicular sperm for couples with elevated sperm DNA fragmentation and either planned or previously failed IVF/ICSI.  Concerted collaborative efforts will be needed as we move forward to better understand the challenges men face when struggling to conceive. PMID:27990271

  14. Recent advances in understanding multiple myeloma.

    PubMed

    Dhakal, Binod; Girnius, Saulius; Hari, Parameswaran

    2016-01-01

    There have been major recent advancements in the understanding and management of multiple myeloma. Diagnostic criteria have been revised and former ultra-high-risk smoldering multiple myeloma is now considered multiple myeloma in need of treatment. Understanding clonal progression, evolution, and tides not only has helped elucidate the disease behavior but might help expand therapeutic choices in order to select appropriate treatment for patients. Unprecedented response rates with modern triplet induction therapies containing proteasome inhibitor and immunomodulators have made this approach standard for initial treatment. The US Food and Drug Administration approved four new drugs (two targeted antibodies and two oral agents) in 2015 in relapsed/refractory multiple myeloma and these drugs along with the other already-available drugs have now increased the choices of regimens. Even drugs without single-agent activity, such as panobinostat and elotuzumab, have an important role, especially in the proteasome inhibitor refractory setting. Recent studies done in the context of novel agent induction suggest that high-dose therapy followed by autologous transplant continues to improve response rates and progression-free survival, thus underscoring their role in transplant-eligible patients. Evolving paradigms in the treatment of multiple myeloma include newer promising immune approaches, such as adoptive cellular therapies, vaccines, or antibody-based immune manipulations. Though multiple myeloma is still considered incurable, it is clear that with the improved understanding of disease biology and clonal architecture of relapse combined with the availability of multi-targeted approaches, we are ever closer to a lasting cure or transformation into indolent and long-lasting disease courses or both.

  15. Recent advances in understanding multiple myeloma

    PubMed Central

    Dhakal, Binod; Girnius, Saulius; Hari, Parameswaran

    2016-01-01

    There have been major recent advancements in the understanding and management of multiple myeloma. Diagnostic criteria have been revised and former ultra-high-risk smoldering multiple myeloma is now considered multiple myeloma in need of treatment. Understanding clonal progression, evolution, and tides not only has helped elucidate the disease behavior but might help expand therapeutic choices in order to select appropriate treatment for patients. Unprecedented response rates with modern triplet induction therapies containing proteasome inhibitor and immunomodulators have made this approach standard for initial treatment. The US Food and Drug Administration approved four new drugs (two targeted antibodies and two oral agents) in 2015 in relapsed/refractory multiple myeloma and these drugs along with the other already-available drugs have now increased the choices of regimens. Even drugs without single-agent activity, such as panobinostat and elotuzumab, have an important role, especially in the proteasome inhibitor refractory setting. Recent studies done in the context of novel agent induction suggest that high-dose therapy followed by autologous transplant continues to improve response rates and progression-free survival, thus underscoring their role in transplant-eligible patients. Evolving paradigms in the treatment of multiple myeloma include newer promising immune approaches, such as adoptive cellular therapies, vaccines, or antibody-based immune manipulations. Though multiple myeloma is still considered incurable, it is clear that with the improved understanding of disease biology and clonal architecture of relapse combined with the availability of multi-targeted approaches, we are ever closer to a lasting cure or transformation into indolent and long-lasting disease courses or both. PMID:27610224

  16. Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin

    NASA Astrophysics Data System (ADS)

    von Huene, R.; Vannucchi, P.; Ranero, C. R.

    2010-12-01

    A program of IODP with great societal relevance is sampling and instrumenting the seismogenic zone. The zone generates great earthquakes that trigger tsunamis, and submarine slides thereby endangering coastal communities containing over sixty percent of the earth’s population. To asses and mitigate this endangerment it is urgent to advance understanding of fault dynamics that allows more timely anticipation of hazardous seismicity. Seismogenesis on accreting and eroding convergent plate boundaries apparently differ because of dissimilar materials along the interplate fault. As the history of instrumentally recorded earthquakes expands the difference becomes clearer. The more homogeneous clay, silt and sand subducted at accreting margins is associated with great earthquakes (M 9) whereas the fragmented upper plate rock that can dominate subducted material along an eroding margin plate interface is associated with many tsunamigenic earthquakes (Bilek, 2010). Few areas have been identified where the seismogenic zone can be reached with scientific drilling. In IODP accreting margins are studied on the NanTroSeize drill transect off Japan where the ultimate drilling of the seismogenic interface may occur by the end of IODP. The eroding Costa Rica margin will be studied in CRISP where a drill program will begin in 2011. The Costa Rican geophysical site survey will be complete with acquisition and processing of 3D seismic data in 2011 but the entire drilling will not be accomplished in IODP. It is appropriate that the accreting margin study be accomplished soon considering the indications of a pending great earthquake that will affect a country that has devoted enormous resources to IODP. However, understanding the erosional end-member is scientifically as important to an understanding of fault mechanics. Transoceanic tsunamis affect the entire Pacific rim where most subduction zones are eroding margins. The Costa Rican subduction zone is less complex operationally and

  17. Advances in understanding drug-induced neuropathies.

    PubMed

    Peltier, Amanda C; Russell, James W

    2006-01-01

    Many commonly used medications have neurotoxic adverse effects; the most common of these is peripheral neuropathy. Neuropathy can be a dose-limiting adverse effect for many medications used in life-threatening conditions, such as malignancy and HIV-related disease. Epidemiological evidence supports previous case reports of HMG-CoA reductase inhibitors (or 'statins') causing an axonal sensorimotor neuropathy or a purely small-fibre neuropathy in some patients. The neuropathy improves when the medication is withdrawn. Despite the association between HMG-CoA reductase inhibitors and neuropathy, the risk is low compared with the significant vascular protective benefits. Oxaliplatin, a new platinum chemotherapy agent designed to have fewer adverse effects than other such agents, has been shown to cause a transient initial dysaesthesia in addition to an axonal polyneuropathy. Thalidomide, an old therapy currently being utilised for new therapeutic indications (e.g. treatment of haematological malignancies), is associated with a painful, axonal sensorimotor neuropathy that does not improve on withdrawal of the drug. Nucleoside reverse transcriptase inhibitors are important components of highly active antiretroviral therapy, but are associated with a sensory neuropathy that is likely to be due to a direct effect of these drugs on mitochondrial DNA replication. New research demonstrates that lactate levels may help discriminate between neuropathy caused by nucleoside analogues and HIV-induced neuropathy. Understanding the mechanism of drug-induced neuropathy has led to advances in preventing this disabling condition.

  18. Children's understanding of scientific concepts: A developmental study

    NASA Astrophysics Data System (ADS)

    Bickerton, Gillian Valerie

    Combining theory-oriented inquiry and research that aims to improve instruction is a major goal of neo-Piagetian theory. Within this tradition, Case's (1992) developmental model enables educational researchers to conduct a detailed analysis of the structural and conceptual changes that occur in children's representation of knowledge in different domains at various points in their development. In so doing, it is now possible for educators to first assess children's "entering competence" in a specific subject and then set developmentally realistic instructional goals. Using Case's (1992) model as a theoretical framework, a developmental study was conducted investigating children's understanding of scientific phenomena, specifically buoyancy, at the ages of 6, 8, and 10 years. The main goal was to determine whether or not children's conceptual levels of understanding change systematically with age in a progressive manner consistent with neo-Piagetian stages of development hypothesized by Case. Participants attended one elementary school in a suburban school district near Vancouver, B.C. Sixty children were individually administered a set of five buoyancy tasks that varied in level of difficulty and involved objects of different weights, shapes and sizes. Each student was asked to predict whether an object would float or sink in different liquids and to support their prediction with an explanation. Analyses using the neo-Piagetian approach of articulating the semantic and syntactic nature of children's mental structures were conducted on the students' responses. Shape, size, weight and substance were identified as the semantic components of buoyancy which are syntactically related Using Case's dimensional metric for classifying different levels of conceptual understanding of buoyancy, the results of the study confirmed that children's understanding of buoyancy did progress through the developmental sequence as hypothesized. The structural progression from

  19. Psychiatric education in an era of rapidly occurring scientific advances.

    PubMed

    Rubin, Eugene H; Zorumski, Charles F

    2003-04-01

    Scientific advances in the fields of molecular biology, neurobiology, pharmacology, epidemiology, genetics, neuroimaging, and cognitive neuroscience are influencing psychiatric diagnosis and treatment, and this influence will grow substantially in the future. The current shortage of psychiatrists will increase over the next several decades, resulting in the need to train primary care physicians in basic psychiatric care and the use of non-physician mental health professionals to administer time-intensive, formal psychotherapies. The juxtaposition of these two trends-an increasing scientific influence on the clinical practice of psychiatry and fewer psychiatrists to deliver that treatment-is cause for changes in the approach to psychiatric education. In addressing these issues, the authors suggest that (1) psychiatry should be more integrated into undergraduate medical education in both basic science and clinical curricula, (2) residents in primary care disciplines should have more direct exposure to psychiatric training, (3) joint instructional experiences involving psychiatry and primary care residents should be encouraged, (4) psychiatry residency programs should maintain flexibility in order to incorporate rapid advances in diagnostic procedures and treatments into residency training, (5) research experience should be integrated into psychiatry residency programs, and (6) departments of psychiatry must develop the leadership and expertise necessary to implement the incorporation of rapidly advancing scientific discoveries into the psychiatric curriculum.

  20. Recent advances in understanding idiopathic pulmonary fibrosis

    PubMed Central

    Daccord, Cécile; Maher, Toby M.

    2016-01-01

    Despite major research efforts leading to the recent approval of pirfenidone and nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains unchanged. The elaboration of international diagnostic criteria and disease stratification models based on clinical, physiological, radiological, and histopathological features has improved the accuracy of IPF diagnosis and prediction of mortality risk. Nevertheless, given the marked heterogeneity in clinical phenotype and the considerable overlap of IPF with other fibrotic interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis remain unclassifiable. Moreover, currently available tools fail to detect early IPF, predict the highly variable course of the disease, and assess response to antifibrotic drugs. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. These different disease endotypes appear to confer variable susceptibility to the condition, differing risks of rapid progression, and, possibly, altered responses to therapy. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behaviour. The availability of approved antifibrotic therapies together with potential new drugs currently under evaluation also highlights the need for biomarkers able to predict and assess treatment responsiveness, thereby allowing individualised treatment based on risk of progression and drug response. This approach of disease stratification and personalised medicine is already used in the routine management of many cancers and provides a potential road map for guiding clinical care in IPF. PMID:27303645

  1. Scientific understanding and clinical management of Dupuytren disease.

    PubMed

    Shih, Barbara; Bayat, Ardeshir

    2010-12-01

    Dupuytren disease (DD) is a fibroproliferative disorder of unknown etiology that often results in shortening and thickening of the palmar fascia, leading to permanent and irreversible flexion contracture of the digits. This Review provides a detailed update of the scientific understanding of DD and its clinical management, with perspectives on emerging research and therapy. Established risk factors include genetic predisposition and ethnicity, as well as sex and age. Several environmental risk factors (some considered controversial) include smoking, alcohol intake, trauma, diabetes, epilepsy and use of anticonvulsant drugs, and exposure to vibration. DD has been variously attributed to the presence of oxygen free radicals, trauma to the palmar fascia, or aberrant immune responses with altered antigen presentation, or to interactions between these proposed mechanisms. The presence of immune cells and related phenomena in DD-affected tissue suggests that DD is possibly immune-related. Mechanically, digital contracture is caused by myofibroblasts in the DD palmar fascia; however, the exact origin of this cell type remains unknown. The mainstay of treatment is surgical release or excision of the affected palmodigital tissue, but symptoms often recur. Nonsurgical correction of DD contractures can be achieved by Clostridium histolyticum collagenase injection, although the long-term safety and recurrence rate of this procedure requires further assessment.

  2. Scientific and technological advancements in inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.

    2013-10-01

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. This synergy is summarized here, and future scientific studies are detailed.

  3. Scientific and technological advancements in inertial fusion energy

    SciTech Connect

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  4. Scientific and technological advancements in inertial fusion energy

    DOE PAGES

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  5. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  6. Scientists and Scientific Thinking: Understanding Scientific Thinking through an Investigation of Scientists Views about Superstitions and Religious Beliefs

    ERIC Educational Resources Information Center

    Coll, Richard K.; Lay, Mark C.; Taylor, Neil

    2008-01-01

    Scientific literacy is explored in this paper which describes two studies that seek to understand a particular feature of the nature of science; namely scientists' habits of mind. The research investigated scientists' views of scientific evidence and how scientists judge evidence claims. The first study is concerned with scientists' views of what…

  7. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires

  8. RECENT ADVANCES IN UNDERSTANDING LIGNIN BIOSYNTHESIS.

    PubMed

    Whetten, Ross W.; MacKay, John J.; Sederoff, Ronald R.

    1998-06-01

    After a long period of little change, the basic concepts of lignin biosynthesis have been challenged by new results from genetic modification of lignin content and composition. New techniques for making directed genetic changes in plants, as well as improvements in the analytical techniques used to determine lignin content and composition in plant cell walls, have been used in experimental tests of the accepted lignin biosynthetic pathway. The lignins obtained from genetically modified plants have shown unexpected properties, and these findings have extended the known range of variation in lignin content and composition. These results argue that the accepted lignin biosynthetic pathway is either incomplete or incorrect, or both; and also suggest that plants may have a high level of metabolic plasticity in the formation of lignins. If this is so, the properties of novel lignins could be of significant scientific and practical interest.

  9. Recent advances in understanding and managing chordomas

    PubMed Central

    Youssef, Carl; Aoun, Salah; Moreno, Jessica R.; Bagley, Carlos A.

    2016-01-01

    Chordomas are rare primary bone tumors arising from embryonic remnants of the notochord. They are slow-growing, locally aggressive, and destructive and typically involve the axial skeleton. Genetic studies have identified several mutations implicated in the pathogenesis of these tumors. Treatment poses a challenge given their insidious progression, degree of local invasion at presentation, and high recurrence rate. They tend to respond poorly to conventional chemotherapy and radiation. This makes radical resection the mainstay of their treatment. Recent advances in targeted chemotherapy and focused particle beam radiation, however, have improved the management and prognosis of these tumors. PMID:28105324

  10. Advances in understanding and managing bullous pemphigoid

    PubMed Central

    Zhao, Cathy Y.; Murrell, Dedee F.

    2015-01-01

    Bullous pemphigoid (BP) is the commonest subtype of autoimmune blistering disease in most countries of the world. It occurs most frequently in elderly patients and is characterised clinically by large, tense blisters in the skin preceded by urticarial plaques and pruritus. Immunopathologically, it is characterised by autoantibodies directed against the 180 kD antigen (BP180) and the 230 kD antigen (BP230). New knowledge regarding BP is being continually uncovered. This article reviews the recent advances in BP, including newer diagnostic tests, standardised outcome measures and emerging therapeutic options, as well as the evidence supporting their use. PMID:26918143

  11. Recent advances in understanding and treating vasculitis

    PubMed Central

    Koster, Matthew J.; Warrington, Kenneth J.

    2016-01-01

    Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are near universally fatal conditions if untreated. Although effective therapeutic options are available for these diseases, treatment regimens are associated with both short- and long-term adverse effects. The recent identification of effective B-cell-targeted therapy with an anti-CD20 monoclonal antibody has transformed the treatment landscape of AAV. Questions, nevertheless, remain regarding the appropriate timing, dose, frequency, duration, and long-term effects of treatment. The aim of this article is to provide an overview of the current information, recent advances, ongoing clinical trials, and future treatment possibilities in AAV. PMID:27347395

  12. Advancing Future Network Science through Content Understanding

    DTIC Science & Technology

    2014-05-01

    used a metaphor of gaining situational awareness in the context of cars parked at a sports event stadium. Likening this to content understanding...nature of defense for insurgency versus counter insurgency is move-counter move. Tivnen looks at this problem as a Red Queen Dance , as per Alice in

  13. Advances in understanding paternally transmitted Chromosomal Abnormalities

    SciTech Connect

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  14. Science and Creativity: The Importance of Ontology for Scientific Understanding

    ERIC Educational Resources Information Center

    Martin, Lee

    2010-01-01

    The history of science presented by Hisham B. Ghassib (2010) on his article, "Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?," reveals the significance of knowledge generating action throughout human history. Ghassib's (2010) paper explores the embedded nature of scientific practise and in doing so offers…

  15. A Novel Approach to Understanding the Process of Scientific Inquiry

    ERIC Educational Resources Information Center

    Anders, Mark H.

    2007-01-01

    Many of the basic concepts involved in the process of scientific inquiry can be represented by analogy to a simple game called Battleships. The same processes used in this child's game demonstrate what role hypothesis generation and testing play in the search for truth in nature. The analogy can also be extended to demonstrate how scientists…

  16. Scientific opportunities with advanced facilities for neutron scattering

    SciTech Connect

    Lander, G.H.; Emery, V.J.

    1984-01-01

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10/sup 15/ n cm/sup -2/s/sup -1/ steady state source or a 10/sup 17/ n cm/sup -2/s/sup -1/ peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee.

  17. Recent Scientific Advances Towards the Development of Tendon Healing Strategies

    PubMed Central

    Sayegh, Eli T.; Sandy, John D.; Virk, Mandeep S.; Romeo, Anthony A.; Wysocki, Robert W.; Galante, Jorge O.; Trella, Katie J.; Plaas, Anna; Wang, Vincent M.

    2015-01-01

    There exists a range of surgical and non-surgical approaches to the treatment of both acute and chronic tendon injuries. Despite surgical advances in the management of acute tears and increasing treatment options for tendinopathies, strategies frequently are unsuccessful, due to impaired mechanical properties of the treated tendon and/or a deficiency in progenitor cell activities. Hence, there is an urgent need for effective therapeutic strategies to augment intrinsic and/or surgical repair. Such approaches can benefit both tendinopathies and tendon tears which, due to their severity, appear to be irreversible or irreparable. Biologic therapies include the utilization of scaffolds as well as gene, growth factor, and cell delivery. These treatment modalities aim to provide mechanical durability or augment the biologic healing potential of the repaired tissue. Here, we review the emerging concepts and scientific evidence which provide a rationale for tissue engineering and regeneration strategies as well as discuss the clinical translation of recent innovations. PMID:26753125

  18. Media Articles Describing Advances in Scientific Research as a Vehicle for Student Engagement Fostering Climate Literacy

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.

    2014-12-01

    "Records of Global Climate Change" enables students to fulfill the science component of an undergraduate distribution requirement in "Critical Approaches" at IU Bloomington. The course draws students from all disciplines with varying levels of understanding of scientific approaches and often limited familiarity with climate issues. Its discussion sessions seek to foster scientific literacy via an alternating series of assignments focused on a combination of exercises that involve either examination and interpretation of on-line climate data or consideration and assessment of the scientific basis of new discoveries about climate change contained in recently published media articles. The final assignment linked to the discussion sessions requires students to review and summarize the topics discussed during the semester. Their answers provide direct evidence of newly acquired abilities to assimilate and evaluate scientific information on a range of topics related to climate change. In addition, student responses to an end-of-semester survey confirm that the vast majority considers that their knowledge and understanding of climate change was enhanced, and unsolicited comments note that the discussion sessions contributed greatly to this advancement. Many students remarked that the course's emphasis on examination of paleoclimate records helped their comprehension of the unprecedented nature of present-day climate trends. Others reported that their views on the significance of climate change had been transformed, and some commented that they now felt well equipped to engage in discussions about climate change because they were better informed about its scientific basis and facts.

  19. Recent advances in understanding ichthyosis pathogenesis

    PubMed Central

    Marukian, Nareh V.; Choate, Keith A.

    2016-01-01

    The ichthyoses, also known as disorders of keratinization (DOK), encompass a heterogeneous group of skin diseases linked by the common finding of abnormal barrier function, which initiates a default compensatory pathway of hyperproliferation, resulting in the characteristic clinical manifestation of localized and/or generalized scaling. Additional cutaneous findings frequently seen in ichthyoses include generalized xerosis, erythroderma, palmoplantar keratoderma, hypohydrosis, and recurrent infections. In 2009, the Ichthyosis Consensus Conference established a classification consensus for DOK based on pathophysiology, clinical manifestations, and mode of inheritance. This nomenclature system divides DOK into two main groups: nonsyndromic forms, with clinical findings limited to the skin, and syndromic forms, with involvement of additional organ systems. Advances in next-generation sequencing technology have allowed for more rapid and cost-effective genetic analysis, leading to the identification of novel, rare mutations that cause DOK, many of which represent phenotypic expansion. This review focuses on new findings in syndromic and nonsyndromic ichthyoses, with emphasis on novel genetic discoveries that provide insight into disease pathogenesis. PMID:27408699

  20. Advances in understanding and treating ADHD

    PubMed Central

    2011-01-01

    Attention deficit hyperactivity disorder (ADHD) is a neurocognitive behavioral developmental disorder most commonly seen in childhood and adolescence, which often extends to the adult years. Relative to a decade ago, there has been extensive research into understanding the factors underlying ADHD, leading to far more treatment options available for both adolescents and adults with this disorder. Novel stimulant formulations have made it possible to tailor treatment to the duration of efficacy required by patients, and to help mitigate the potential for abuse, misuse and diversion. Several new non-stimulant options have also emerged in the past few years. Among these, cognitive behavioral interventions have proven popular in the treatment of adult ADHD, especially within the adult population who cannot or will not use medications, along with the many medication-treated patients who continue to show residual disability. PMID:21658285

  1. Advances in understanding the leukaemia microenvironment.

    PubMed

    Tabe, Yoko; Konopleva, Marina

    2014-03-01

    Dynamic interactions between leukaemic cells and cells of the bone marrow are a feature of haematological malignancies. Two distinct microenvironmental niches in the bone marrow, the 'osteoblastic (endosteal)' and 'vascular' niches, provide a sanctuary for subpopulations of leukaemic cells to evade chemotherapy-induced death and allow acquisition of drug resistance. Key components of the bone marrow microenvironment as a home for normal haematopoietic stem cells and the leukaemia stem cell niches, and the molecular pathways critical for microenvironment/leukaemia interactions via cytokines, chemokines and adhesion molecules as well as hypoxic conditions, are described in this review. Finally, the genetic abnormalities of leukaemia-associated stroma are discussed. Further understanding of the contribution of the bone marrow niche to the process of leukaemogenesis may provide new targets that allow destruction of leukaemia stem cells without adversely affecting normal stem cell self-renewal.

  2. Advances in understanding hydration of Portland cement

    SciTech Connect

    Scrivener, Karen L.; Juilland, Patrick; Monteiro, Paulo J.M.

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  3. Recent advances in understanding provoked vestibulodynia

    PubMed Central

    Lev-Sagie, Ahinoam; Witkin, Steven S.

    2016-01-01

    Vulvodynia refers to pain in the vulva of at least 3 months’ duration in the absence of a recognized underlying cause. Provoked, localized vestibulodynia is the term used to describe superficial pain confined to the vulvar vestibule, provoked by touch. This review will focus on provoked vestibulodynia with regard to its suggested causative factors and will discuss the role of inflammation, vulvovaginal infections, mucosal nerve fiber proliferation, hormonal associations, central pain mechanisms, pelvic floor muscle dysfunction, and genetic factors. Clinical observations, epidemiological studies, and data from basic research emphasize the heterogeneity of vulvar pain syndromes. There is a critical need to perform prospective, longitudinal studies that will allow better diagnostic criteria and subgrouping of patients that would lead to improvements in our understanding of provoked vestibulodynia and its treatment. PMID:27853523

  4. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalacchi, Antonio J.

    1999-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  5. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalaacchi, Antonio J.

    1998-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL- FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few shiptracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  6. Small Explorer for Advanced Missions - cubesat for scientific mission

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Ivchenko, Nickolay

    2015-04-01

    A class of nanosatellites is defined by the cubesat standard, primarily setting the interface to the launcher, which allows standardizing cubesat preparation and launch, thus making the projects more affordable. The majority of cubesats have been launched are demonstration or educational missions. For scientific and other advanced missions to fully realize the potential offered by the low cost nanosatellites, there are challenges related to limitations of the existing cubesat platforms and to the availability of small yet sufficiently sensitive sensors. The new project SEAM (Small Explorer for Advanced Missions) was selected for realization in frames of FP-7 European program to develop a set of improved critical subsystems and to construct a prototype nanosatellite in the 3U cubesat envelope for electromagnetic measurements in low Earth orbit. The SEAM consortium will develop and demonstrate in flight for the first time the concept of an electromagnetically clean nanosatellite with precision attitude determination, flexible autonomous data acquisition system, high-bandwidth telemetry and an integrated solution for ground control and data handling. As the first demonstration, the satellite is planned to perform the Space Weather (SW) mission using novel miniature electric and magnetic sensors, able to provide science-grade measurements. To enable sensitive magnetic measurements onboard, the sensors must be deployed on booms to bring them away from the spacecraft body. Also other thorough yet efficient procedures will be developed to provide electromagnetic cleanliness (EMC) of the spacecraft. This work is supported by EC Framework 7 funded project 607197.

  7. Recent advances in understanding hepatic drug transport

    PubMed Central

    Stieger, Bruno; Hagenbuch, Bruno

    2016-01-01

    Cells need to strictly control their internal milieu, a function which is performed by the plasma membrane. Selective passage of molecules across the plasma membrane is controlled by transport proteins. As the liver is the central organ for drug metabolism, hepatocytes are equipped with numerous drug transporters expressed at the plasma membrane. Drug disposition includes absorption, distribution, metabolism, and elimination of a drug and hence multiple passages of drugs and their metabolites across membranes. Consequently, understanding the exact mechanisms of drug transporters is essential both in drug development and in drug therapy. While many drug transporters are expressed in hepatocytes, and some of them are well characterized, several transporters have only recently been identified as new drug transporters. Novel powerful tools to deorphanize (drug) transporters are being applied and show promising results. Although a large set of tools are available for studying transport in vitro and in isolated cells, tools for studying transport in living organisms, including humans, are evolving now and rely predominantly on imaging techniques, e.g. positron emission tomography. Imaging is an area which, certainly in the near future, will provide important insights into "transporters at work" in vivo. PMID:27781095

  8. Recent advances in understanding and managing urolithiasis

    PubMed Central

    Strohmaier, Walter L.

    2016-01-01

    During the last few years, there has been relevant progress in both understanding and managing urolithiasis. Our knowledge of stone formation has changed; although the importance of urine biochemistry was questioned by several investigators years ago, the decisive role of cellular processes (induced by oxidative stress) and the renal papilla has only recently been generally accepted as the most important step in stone formation. For calcium oxalate urolithiasis, the formation of papillary calcifications plays a key role and is of prognostic relevance. Further research has to concentrate on these aspects of preventing urolithiasis. Stone prevention (metaphylaxis) is a major issue when considering the burden it places on healthcare systems. An effective metaphylaxis could lower the cost of stone therapy significantly. For uric acid urolithiasis, so far there is only preliminary information available showing that papillary plaques are not as important as they are in calcium oxalate urolithiasis. Concerning stone management, endourology has improved stone therapy significantly during the last few years. Morbidity decreased and success (stone-free) rates increased. Therefore, the indications for extracorporeal shockwave lithotripsy (ESWL) narrowed. ESWL, however, still has its place in stone therapy. There is not one single treatment modality that is equally effective for all situations. It is important to observe the differential indications for different stones depending on size, localization, and composition. PMID:27853528

  9. The Blue LED Nobel Prize: Historical context, current scientific understanding, human benefit

    SciTech Connect

    Tsao, Jeffrey Y.; Han, Jung; Haitz, Roland H.; Pattison, P. Morgan

    2015-06-19

    Here, the paths that connect scientific understanding with tools and technology are rarely linear. Sometimes scientific understanding leads and enables, sometimes tools and technologies lead and enable. But by feeding on each other, they create virtuous spirals of forward and backward innovation.

  10. 76 FR 17962 - Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... Geological Survey Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater... titled ``Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of... freshwater resources that are likely to result from a changing climate. DATES: We must receive any...

  11. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  12. Center for Technology for Advanced Scientific Componet Software (TASCS)

    SciTech Connect

    Govindaraju, Madhusudhan

    2010-10-31

    Advanced Scientific Computing Research Computer Science FY 2010Report Center for Technology for Advanced Scientific Component Software: Distributed CCA State University of New York, Binghamton, NY, 13902 Summary The overall objective of Binghamton's involvement is to work on enhancements of the CCA environment, motivated by the applications and research initiatives discussed in the proposal. This year we are working on re-focusing our design and development efforts to develop proof-of-concept implementations that have the potential to significantly impact scientific components. We worked on developing parallel implementations for non-hydrostatic code and worked on a model coupling interface for biogeochemical computations coded in MATLAB. We also worked on the design and implementation modules that will be required for the emerging MapReduce model to be effective for scientific applications. Finally, we focused on optimizing the processing of scientific datasets on multi-core processors. Research Details We worked on the following research projects that we are working on applying to CCA-based scientific applications. 1. Non-Hydrostatic Hydrodynamics: Non-static hydrodynamics are significantly more accurate at modeling internal waves that may be important in lake ecosystems. Non-hydrostatic codes, however, are significantly more computationally expensive, often prohibitively so. We have worked with Chin Wu at the University of Wisconsin to parallelize non-hydrostatic code. We have obtained a speed up of about 26 times maximum. Although this is significant progress, we hope to improve the performance further, such that it becomes a practical alternative to hydrostatic codes. 2. Model-coupling for water-based ecosystems: To answer pressing questions about water resources requires that physical models (hydrodynamics) be coupled with biological and chemical models. Most hydrodynamics codes are written in Fortran, however, while most ecologists work in MATLAB. This

  13. Gender Differences in Lunar-Related Scientific and Mathematical Understandings

    ERIC Educational Resources Information Center

    Wilhelm, Jennifer

    2009-01-01

    This paper reports an examination on gender differences in lunar phases understanding of 123 students (70 females and 53 males). Middle-level students interacted with the Moon through observations, sketching, journalling, two-dimensional and three-dimensional modelling, and classroom discussions. These lunar lessons were adapted from the Realistic…

  14. Scientific Models Help Students Understand the Water Cycle

    ERIC Educational Resources Information Center

    Forbes, Cory; Vo, Tina; Zangori, Laura; Schwarz, Christina

    2015-01-01

    The water cycle is a large, complex system that encompasses ideas across the K-12 science curriculum. By the time students leave fifth grade, they should understand "that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot" and be able to describe both components and processes…

  15. Analysing Adjectives in Scientific Discourse: An Exploratory Study with Educational Applications for Spanish Speakers at Advanced University Level.

    ERIC Educational Resources Information Center

    Soler, Viviana

    2002-01-01

    Explores frequency and use of adjectives in five advanced scientific texts on biochemistry and analyzes the semantic implications of the observed occurrence. The aim is to provide a better understanding of the role of adjectives in research articles and to suggest how to guide Spanish-speaking students to effectively comprehend, read, write, and…

  16. Advanced Science Students' Understandings on Nature of Science in Finland

    ERIC Educational Resources Information Center

    Sormunen, Kari; Köksal, Mustafa Serdar

    2014-01-01

    Majority of NOS studies comprise of determination or assessment studies conducted with ordinary students. In order to gain further understanding on variation in NOS understandings among the students, there should be different research attempts focusing on unconventional students such as academically advanced students. The purpose of this study is…

  17. Advancing the understanding of autism disease mechanisms through genetics

    PubMed Central

    de la Torre-Ubieta, Luis; Won, Hyejung; Stein, Jason L; Geschwind, Daniel H

    2016-01-01

    Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of rational, targeted molecular therapies. PMID:27050589

  18. Scientific advances provide opportunities to improve pediatric environmental health

    USGS Publications Warehouse

    Reddy, Michael M.; Reddy, Micaela B.; Reddy, Carol F.

    2004-01-01

    The health consequences of contaminants in the environment, with respect to the health of children and infants, recently have been dramatically brought to public attention by the motion pictures Erin Brockovich and A Civil Action. These productions focused public attention on the potential link between water contaminants and pediatric health, a continuing subject of public concern. As a consequence of the increasing production of new commercial chemicals, many chemicals have appeared in the scientific and public awareness as potential threats to health. These new or novel compounds eventually distribute in the environment and often are termed emerging contaminants. Gitterman and Bearer stated, "Children may serve as unwitting sentinels for society; they are often the youngest exposed to many environmental toxicants and may become the youngest in age to manifest adverse responses." The discipline of pediatric environmental health is still in its adolescence, but it will be increasingly important as new chemicals are generated and as more is learned about the health effects of chemicals already in commerce. Here, we provide an overview of recent advances in biomonitoring and environmental monitoring of environmental contaminants including emerging contaminants. Our purpose in writing this commentary is to make pediatricians aware of the current resources available for learning about pediatric environmental health and of ongoing research initiatives that provide opportunities to improve pediatric environmental health.

  19. Meaningful Assessment of Learners' Understandings about Scientific Inquiry--The Views about Scientific Inquiry (VASI) Questionnaire

    ERIC Educational Resources Information Center

    Lederman, Judith S.; Lederman, Norman G.; Bartos, Stephen A.; Bartels, Selina L.; Meyer, Allison Antink; Schwartz, Renee S.

    2014-01-01

    Helping students develop informed views about scientific inquiry (SI) has been and continues to be a goal of K-12 science education, as evidenced in various reform documents. Nevertheless, research focusing on understandings of SI has taken a perceptible backseat to that which focuses on the "doing" of inquiry. We contend that this is…

  20. A Study on Development of an Instrument to Determine Turkish Kindergarten Students' Understandings of Scientific Concepts and Scientific Inquiry Processes

    ERIC Educational Resources Information Center

    Senocak, Erdal; Samarapungavan, Ala; Aksoy, Pinar; Tosun, Cemal

    2013-01-01

    The aim of this study was to develop a valid and reliable instrument to measure Turkish kindergarten students' understandings of some science concepts and scientific inquiry processes which are grounded in the Turkish Preschool Curriculum. The sample of the study was 371 kindergarten students, 12 Subject Area Experts (SAE), and 7 Turkish Language…

  1. The pallid sturgeon: Scientific investigations help understand recovery needs

    USGS Publications Warehouse

    DeLonay, Aaron J.

    2010-01-01

    Understanding of the pallid sturgeon (Scaphirhynchus albus) has increased significantly since the species was listed as endangered over two decades ago. Since 2005, scientists at the U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC) have been engaged in an interdisciplinary research program in cooperation with the U.S. Army Corps of Engineers Missouri River Recovery Program, U.S. Fish and Wildlife Service, Nebraska Game and Parks Commission, and numerous other State and Federal cooperators to provide managers and policy makers with the knowledge needed to evaluate recovery options. During that time, the USGS has worked collaboratively with river scientists and managers to develop methods, baseline information, and research approaches that are critical contributions to recovery success. The pallid sturgeon is endangered throughout the Missouri River because of insufficient reproduction and survival of early life stages. Primary management actions on the Missouri River designed to increase reproductive success and survival have focused on flow regime, channel morphology, and propagation. The CERC research strategies have, therefore, been designed to examine the linkages among flow regime, re-engineered channel morphology, and reproductive success and survival. Specific research objectives include the following: (1) understanding reproductive physiology of pallid sturgeon and relations to environmental conditions; (2) determining movement, habitat use, and reproductive behavior of pallid sturgeon; and (3) quantifying availability and dynamics of aquatic habitats needed by pallid sturgeon for all life stages.

  2. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    SciTech Connect

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  3. Advanced I/O for large-scale scientific applications.

    SciTech Connect

    Klasky, Scott; Schwan, Karsten; Oldfield, Ron A.; Lofstead, Gerald F., II

    2010-01-01

    As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be attained while

  4. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations

  5. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  6. Probing Student Understanding of Scientific Thinking in the Context of Introductory Astrophysics

    ERIC Educational Resources Information Center

    Steinberg, Richard N.; Cormier, Sebastien; Fernandez, Adiel

    2009-01-01

    Common forms of testing of student understanding of science content can be misleading about their understanding of the nature of scientific thinking. Observational astronomy integrated with related ideas of force and motion is a rich context to explore the correlation between student content knowledge and student understanding of the scientific…

  7. Understanding Scientific Methodology in the Historical and Experimental Sciences via Language Analysis

    ERIC Educational Resources Information Center

    Dodick, Jeff; Argamon, Shlomo; Chase, Paul

    2009-01-01

    A key focus of current science education reforms involves developing inquiry-based learning materials. However, without an understanding of how working scientists actually "do" science, such learning materials cannot be properly developed. Until now, research on scientific reasoning has focused on cognitive studies of individual scientific fields.…

  8. Adherence to Scientific Method while Advancing Exposure Science

    EPA Science Inventory

    Paul Lioy was simultaneously a staunch adherent to the scientific method and an innovator of new ways to conduct science, particularly related to human exposure. Current challenges to science and the application of the scientific method are presented as they relate the approaches...

  9. Communication, interventions, and scientific advances in autism: a commentary.

    PubMed

    Llaneza, Danielle C; DeLuke, Susan V; Batista, Myra; Crawley, Jacqueline N; Christodulu, Kristin V; Frye, Cheryl A

    2010-06-01

    Autism spectrum disorders (ASD) affect approximately 1 in 150 children across the U.S., and are characterized by abnormal social actions, language difficulties, repetitive or restrictive behaviors, and special interests. ASD include autism (autistic disorder), Asperger Syndrome, and Pervasive Developmental Disorder not otherwise specified (PDD-NOS or atypical autism). High-functioning individuals may communicate with moderate-to-high language skills, although difficulties in social skills may result in communication deficits. Low-functioning individuals may have severe deficiencies in language, resulting in poor communication between the individual and others. Behavioral intervention programs have been developed for ASD, and are frequently adjusted to accommodate specific individual needs. Many of these programs are school-based and aim to support the child in the development of their skills, for use outside the classroom with family and friends. Strides are being made in understanding the factors contributing to the development of ASD, particularly the genetic contributions that may underlie these disorders. Mutant mouse models provide powerful research tools to investigate the genetic factors associated with ASD and its co-morbid disorders. In support, the BTBR T+tf/J mouse strain incorporates ASD-like social and communication deficits and high levels of repetitive behaviors. This commentary briefly reviews the reciprocal relationship between observations made during evidence-based behavioral interventions of high- versus low-functioning children with ASD and the accumulating body of research in autism, including animal studies and basic research models. This reciprocity is one of the hallmarks of the scientific method, such that research may inform behavioral treatments, and observations made during treatment may inform subsequent research.

  10. Communication, Interventions, and Scientific Advances in Autism: A Commentary

    PubMed Central

    Llaneza, Danielle C.; DeLuke, Susan V.; Batista, Myra; Crawley, Jacqueline N.; Christodulu, Kristin V.; Frye, Cheryl A.

    2010-01-01

    Autism spectrum disorders (ASD) affect approximately 1 in 150 children across the U.S., and are characterized by abnormal social actions, language difficulties, repetitive or restrictive behaviors, and special interests. ASD include autism (autistic disorder), Asperger syndrome, and Pervasive Developmental Disorder not otherwise specified (PDD-NOS or atypical autism). High-functioning individuals may communicate with moderate-to-high language skills, although difficulties in social skills may result in communication deficits. Low-functioning individuals may have severe deficiencies in language, resulting in poor communication between the individual and others. Behavioral intervention programs have been developed for ASD, and are frequently adjusted to accommodate specific individual needs. Many of these programs are school-based and aim to support the child in the development of their skills, for use outside the classroom with family and friends. Strides are being made in understanding the factors contributing to the development of ASD, particularly the genetic contributions that may underlie these disorders. Mutant mouse models provide powerful research tools to investigate the genetic factors associated with ASD and its co-morbid disorders. In support, the BTBR T+tf/J mouse strain incorporates ASD-like social and communication deficits and high levels of repetitive behaviors. This commentary briefly reviews the reciprocal relationship between observations made during evidence-based behavioral interventions of high- versus low-functioning children with ASD and the accumulating body of research in autism, including animal studies and basic research models. This reciprocity is one of the hallmarks of the scientific method, such that research may inform behavioral treatments, and observations made during treatment may inform subsequent research. PMID:20093134

  11. Understanding the composite practice that forms when classrooms take up the practice of scientific argumentation

    NASA Astrophysics Data System (ADS)

    Kuhn Berland, Leema

    Traditional classroom practices communicate epistemic commitments and goals that might be contrary to those needed for meaningful participation in scientific inquiry practices. In this dissertation, I explore how traditional classroom practices influence students' participation in the practice of scientific argumentation. I address this through a two-pronged approach. First, given that students do not typically engage in collaborative knowledge-building through scientific argumentation, I used the best-practices put forth by relevant research to support teachers in facilitating this practice. Second, I worked with four classes as they enacted a unit designed to foster scientific argumentation. I observed the emergent class discussions and engaged in discourse analysis in which I related the interaction patterns found in non-argumentative class discussions to those that occurred in lessons designed to foster scientific argumentation. Examining the argumentative discussions reveals that each class transformed the practice in different ways. Comparing these interactions to those of the non-argumentative suggests that students used the goals and beliefs that guided their typical classroom practices to interpret the activity structures for and teacher's framings of the new practice of scientific argumentation. In this dissertation, I present a research methodology for understanding the relationship between typical classroom practices and student adaptations of new scientific practices; design strategies for supporting scientific argumentation; and a framework for understanding how and why classroom communities adapt the practice of scientific argumentation.

  12. Korean Students' Perceptions of Scientific Practices and Understanding of Nature of Science

    NASA Astrophysics Data System (ADS)

    Yoon, Sae Yeol; Suh, Jee Kyung; Park, Soonhye

    2014-11-01

    Korean students have shown relatively little interest and confidence in learning science, despite being ranked in the top percentile in international evaluations of academic achievement in science such as the Trends in International Mathematics and Science Study. Although research indicates a positive relationship between student perceptions of science and their science learning, this area has not been sufficiently explored in Korea. Particularly, even though both students' perceptions of scientific practice and their understanding of the nature of science (NOS) are influenced by their science learning experiences at schools, little research examines how this perception, understanding, and experience are related to one another. This study aimed to uncover Korean students' perceptions of school scientific practice through exploring their drawings, writings, and responses to questionnaires. Participants were 500 Korean students in 3rd, 7th, and 10th grades who were asked to complete an open-ended questionnaire. The results indicated that Korean students typically viewed school scientific practices as experimental activities or listening to lecture; and that most participants held an insufficient understanding of the NOS. Overall, no significant relationship emerged between students' perceptions of school scientific practice and their understanding of the NOS. Our findings highlight the need to help both teachers and students understand the potential breadth of school scientific practices, beyond simple 'activity mania.' This study also suggests that teachers must balance implicit and explicit instructional approaches to teaching about the NOS through scientific practices in school science contexts.

  13. Advanced Test Reactor National Scientific User Facility Progress

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  14. 77 FR 12823 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... final report, Advanced Networking update Status from Computer Science COV Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR awards Data-intensive...

  15. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    SciTech Connect

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  16. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    NASA Astrophysics Data System (ADS)

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-10-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them experiment, science fair, and hypothesis, is used to probe the students' knowledge structures. Students from grades four, five, and eight, as well as first-year college students were tested to reveal their knowledge structures relating to the scientific method. Younger students were found to have a naïve view of the science process with little understanding of how science relates to the real world. However, students' conceptions about the scientific process appear to be malleable, with science fairs a potentially strong influencer. The strength of associations between words is observed to change from grade to grade, with younger students placing science fair near the center of their knowledge structure regarding the scientific method, whereas older students conceptualize the scientific method around experiment.

  17. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    SciTech Connect

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  18. The real-time learning mechanism of the Scientific Research Associates Advanced Robotic System (SRAARS)

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y.

    1990-01-01

    Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.

  19. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    SciTech Connect

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    The development and safety evaluation of a nuclear waste geologic repository require a proper scientific understanding of the site response. Such scientific understanding depends on information from a number of geoscience disciplines, including geology, geophysics, geochemistry, geomechanics and hydrogeology. The information comes in four stages: (1) general regional survey data base, (2) surface-based testing, (3) exploratory shaft testing, and (4) repository construction and evaluation. A discussion is given on the dynamic use of the information through the different stages. We point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure. 2 figs.

  20. Final Report for "Center for Technology for Advanced Scientific Component Software"

    SciTech Connect

    Svetlana Shasharina

    2010-12-01

    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  1. Advances in Domain Mapping of Massively Parallel Scientific Computations

    SciTech Connect

    Leland, Robert W.; Hendrickson, Bruce A.

    2015-10-01

    One of the most important concerns in parallel computing is the proper distribution of workload across processors. For most scientific applications on massively parallel machines, the best approach to this distribution is to employ data parallelism; that is, to break the datastructures supporting a computation into pieces and then to assign those pieces to different processors. Collectively, these partitioning and assignment tasks comprise the domain mapping problem.

  2. Nursing staff's understanding expressions of people with advanced dementia disease.

    PubMed

    Eggers, Thomas; Ekman, Sirkka-Liisa; Norberg, Astrid

    2013-01-01

    People with advanced dementia disease (ADD) are known to have communication difficulties and thus it presents a challenge in understanding the expressions of these people. Because successful communication presupposes cooperation at least between 2 individuals, both individual's actions must be acknowledged. The aim of this study is to describe nursing staff's ways of understanding the expressions of people with ADD when communicating with them. Interviews from 8 nursing staff were analyzed using qualitative content analysis. Two themes were constructed: "Being in communication" and "Doing communication." Being in communication means that nursing staff perceive people with ADD as being capable of communication. Doing communication means that nursing staff attempt different individualized strategies to understand what people with ADD communicate. Good care of people with ADD presupposes nursing staff that are willing and able to relate to other people and to maintain good care for people with ADD continuous education and supervision are needed.

  3. Recent scientific advances in the use of radar in scientific hydrology

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1993-01-01

    The data needs in scientific hydrology involve measurements of system states and fluxes. The microwave region is particularly well suited for measuring the system states of soil moisture and snow and the major flux into the earth as rainfall. This paper discusses the unique data needs of hydrology and presents some recent examples from AIRSAR experiments.

  4. Advances in understanding basic mechanisms of epilepsy and seizures.

    PubMed

    Jefferys, John G R

    2010-12-01

    Sixty years ago the clinical neurophysiology of epilepsy had progressed to the stage that it posed questions that could be addressed by major advances in cellular electrophysiology made around the that time. However, it took about 25-30 years to build up serious momentum in understanding the mechanisms of epileptic discharges. Over the past 2-3 decades developments in pharmacology and molecular biology have substantially increased the depth and complexity of our insights into the nervous system in general and the epileptic brain in particular. One of the biggest advances in our understanding of the brain is in its plasticity in the adult - that is its ability to modify its structure and function. The current state of play is that for most chronic epileptic foci it is possible to identify multiple differences from normal brain tissue in both the structure and function of neurons, neuronal networks and glia. This review will chart some of this progress to give an idea of the pace of advances over the decades.

  5. Recent advances in understanding Epstein-Barr virus

    PubMed Central

    Stanfield, Brent A.; Luftig, Micah A.

    2017-01-01

    Epstein-Barr virus (EBV) is a common human herpes virus known to infect the majority of the world population. Infection with EBV is often asymptomatic but can manifest in a range of pathologies from infectious mononucleosis to severe cancers of epithelial and lymphocytic origin. Indeed, in the past decade, EBV has been linked to nearly 10% of all gastric cancers. Furthermore, recent advances in high-throughput next-generation sequencing and the development of humanized mice, which effectively model EBV pathogenesis, have led to a wealth of knowledge pertaining to strain variation and host-pathogen interaction. This review highlights some recent advances in our understanding of EBV biology, focusing on new findings on the early events of infection, the role EBV plays in gastric cancer, new strain variation, and humanized mouse models of EBV infection.

  6. a Roadmap to Advance Understanding of the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Schrijver, K.; Kauristie, K.; Aylward, A.; De Nardin, C. M.; Gibson, S. E.; Glover, A.; Gopalswamy, N.; Grande, M.; Hapgood, M. A.; Heynderickx, D.; Jakowski, N.; Kalegaev, V. V.; Lapenta, G.; Linker, J.; Liu, S.; Mandrini, C. H.; Mann, I. R.; Nagatsuma, T.; Nandy, D.; Obara, T.; O'Brien, T. P., III; Onsager, T. G.; Opgenoorth, H. J.; Terkildsen, M. B.; Valladares, C. E.; Vilmer, N.

    2015-12-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. A COSPAR/ILWS team recently completed a roadmap that identifies the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications and costs for society. This presentation provides a summary of the highest-priority recommendations from that roadmap.

  7. Recent advances in understanding the cellular roles of GSK-3

    PubMed Central

    Cormier, Kevin W.; Woodgett, James R.

    2017-01-01

    Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed protein kinase that sits at the nexus of multiple signaling pathways. Its deep integration into cellular control circuits is consummate to its implication in diseases ranging from mood disorders to diabetes to neurodegenerative diseases and cancers. The selectivity and insulation of such a promiscuous kinase from unwanted crosstalk between pathways, while orchestrating a multifaceted response to cellular stimuli, offer key insights into more general mechanisms of cell regulation. Here, we review recent advances that have contributed to the understanding of GSK-3 and its role in driving appreciation of intracellular signal coordination. PMID:28299185

  8. Effects of Representation Sequences and Spatial Ability on Students' Scientific Understandings about the Mechanism of Breathing

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Lin, Yu-Fen; Hsu, Ying-Shao

    2013-01-01

    The purpose of this study was to investigate the effects of representation sequences and spatial ability on students' scientific understandings about the mechanism of breathing in human beings. 130 seventh graders were assigned to two groups with different sequential combinations of static and dynamic representations: SD group (i.e., viewing…

  9. Articulating Scientific Practice: Understanding Dean Hamer's "Gay Gene" Study as Overlapping Material, Social and Rhetorical Registers

    ERIC Educational Resources Information Center

    Lynch, John A.

    2009-01-01

    Rhetoricians have tried to develop a better understanding of the connection between words and things, but these attempts often employ a logic of representation that undermines a full examination of materiality and the complexity of scientific practice. A logic of articulation offers a viable alternative by focusing attention on the linkages…

  10. How Some College Students Represent Their Understandings of the Nature of Scientific Theories

    ERIC Educational Resources Information Center

    Dagher, Zoubeida R.; Brickhouse, Nancy W.; Shipman, Harry; Letts, William J.

    2004-01-01

    This study explores college students' representations about the nature of theories during their enrollment in a large astronomy course with instruction designed to address a number of nature of science issues. We focus our investigation on how nine students represent their understanding of theory, how they distinguish between scientific theories…

  11. 76 FR 16443 - Proposed Information Collection: Strengthening the Scientific Understanding of Climate Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Climate Change Impacts on Freshwater Resources of the United States AGENCY: United States Geological... draft report to Congress titled ``Strengthening the Scientific Understanding of Climate Change Impacts... freshwater resource data and climate change and identifies next steps to improve the Nation's capacity...

  12. Scaffolded Instruction Improves Student Understanding of the Scientific Method & Experimental Design

    ERIC Educational Resources Information Center

    D'Costa, Allison R.; Schlueter, Mark A.

    2013-01-01

    Implementation of a guided-inquiry lab in introductory biology classes, along with scaffolded instruction, improved students' understanding of the scientific method, their ability to design an experiment, and their identification of experimental variables. Pre- and postassessments from experimental versus control sections over three semesters…

  13. Children's Understanding of Scientific Inquiry: Their Conceptualization of Uncertainty in Investigations of Their Own Design

    ERIC Educational Resources Information Center

    Metz, Kathleen E.

    2004-01-01

    The study examined children's understanding of scientific inquiry, through the lens of their conceptualization of uncertainty in investigations they had designed and implemented with a partner. These largely student-regulated investigations followed a unit about animal behavior that emphasized the scaffolding of independent inquiry. Participants…

  14. Using Scaffolding Strategies to Promote Young Children's Scientific Understandings of Floating and Sinking

    ERIC Educational Resources Information Center

    Hsin, Ching-Ting; Wu, Hsin-Kai

    2011-01-01

    The purposes of this study are to examine young children's explanations of floating and sinking and to investigate how scaffolding strategies provided by a tutor could promote their scientific understandings. Fifteen 4-year-olds and fifteen 5-year-olds from a public kindergarten in northern Taiwan participated in this study. The children were…

  15. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    SciTech Connect

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  16. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Kostadin, Damevski

    2015-01-25

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  17. Using the Scientific Python ecosystem to advance open radar science

    NASA Astrophysics Data System (ADS)

    Collis, S. M.; Helmus, J.

    2015-12-01

    The choice of a programming language or environment is rarely made with consideration of its benefits and disadvantages. Often it is something inherited from mentor or enforced by an institution. Python, developed as a "hobby" programming project, has seen increased migration of users from more traditional domain specific environments. This presentation charts our own journey in using the scientific python ecosystem, first as users and then as the developers of a community based toolkit for working with weather radar data, the Python ARM Radar Toolkit, Py-ART. We will highlight how a data model driven design approach can extend the usefulness and reusability of code and act as a bridge between amorphous mathematical algorithms and domain specific data. Finally we will showcase how Python and Py-ART can be used on clusters to tackle pleasantly parallel problems like deriving climatologies swiftly, painlessly and most importantly: reproducibly.

  18. Recent advances in understanding nuclear size and shape.

    PubMed

    Mukherjee, Richik N; Chen, Pan; Levy, Daniel L

    2016-04-25

    Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells.

  19. Scientific Society Partnerships & Effective Strategies for Advancing Policy Objectives

    NASA Astrophysics Data System (ADS)

    Hammer, P. W.; Greenamoyer, J.

    2012-12-01

    From the perspective of Congress, science is just another interest group that seeks a generous slice of an increasingly shrinking federal budget pie. Traditionally, the science community has not been effective at lobbying for the legislative advances and federal appropriations that enable the R&D enterprise. However, over the last couple decades, science societies have become more strategic in their outreach to Congress and the President. Indeed, many societies have lobbyists on staff, many of whom have a background in science. Yet, while science societies are beginning to be more effective as a political interest group, their members have been much slower to come around to this perspective as an important component of their professional lives. In this talk, we will illustrate how the American Institute of Physics partners with AGU and other science societies to identify joint policy priorities and then reach out to Congress and the President to advance these priorities. The biggest issue is funding for R&D, but science education is increasingly important as is other issues such as publishing policy. We will draw from a number examples, such as the NSF budget, funding for Pu-238, K-12 physical science education policy, and Open Access to illustrate how partnerships work and how scientists can be engaged as powerful political actors in the process.

  20. Recent Advances in Understanding and Managing Autism Spectrum Disorders

    PubMed Central

    Germain, Blair; Eppinger, Melissa A.; Mostofsky, Stewart H.; DiCicco-Bloom, Emanuel; Maria, Bernard L.

    2017-01-01

    Autism spectrum disorder in children is a group of neurodevelopmental disorders characterized by difficulties with social communication and behavior. Growing scientific evidence in addition to clinical practice has led the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) to categorize several disorders into the broader category of autism spectrum disorder. As more is learned about how autism spectrum disorder manifests, progress has been made toward better clinical management including earlier diagnosis, care, and when specific interventions are required. The 2014 Neurobiology of Disease in Children symposium, held in conjunction with the 43rd annual meeting of the Child Neurology Society, aimed to (1) describe the clinical concerns involving diagnosis and treatment, (2) review the current status of understanding in the pathogenesis of autism spectrum disorder, (3) discuss clinical management and therapies for autism spectrum disorder, and (4) define future directions of research. The article summarizes the presentations and includes an edited transcript of question-and-answer sessions. PMID:26336201

  1. The Effects of Science Models on Students' Understanding of Scientific Processes

    NASA Astrophysics Data System (ADS)

    Berglin, Riki Susan

    This action research study investigated how the use of science models affected fifth-grade students' ability to transfer their science curriculum to a deeper understanding of scientific processes. This study implemented a variety of science models into a chemistry unit throughout a 6-week study. The research question addressed was: In what ways do using models to learn and teach science help students transfer classroom knowledge to a deeper understanding of the scientific processes? Qualitative and quantitative data were collected through pre- and post-science interest inventories, observations field notes, student work samples, focus group interviews, and chemistry unit tests. These data collection tools assessed students' attitudes, engagement, and content knowledge throughout their chemistry unit. The results of the data indicate that the model-based instruction program helped with students' engagement in the lessons and understanding of chemistry content. The results also showed that students displayed positive attitudes toward using science models.

  2. `Quantum Mechanics' and `Scientific Explanation' An Explanatory Strategy Aiming at Providing `Understanding'

    NASA Astrophysics Data System (ADS)

    Hadzidaki, Pandora

    2008-01-01

    Empirical studies persistently indicate that the usual explanatory strategies used in quantum mechanics (QM) instruction fail, in general, to yield understanding. In this study, we propose an instructional intervention, which: (a) incorporates into its subject matter a critical comparison of QM scientific content with the fundamental epistemological and ontological commitments of the prominent philosophical theories of explanation, a weak form of which we meet in QM teaching; (b) illuminates the reasons of their failure in the quantum domain; and (c) implements an explanatory strategy highly inspired by the epistemological pathways through which, during the birth-process of QM, science has gradually reached understanding. This strategy, an inherent element of which is the meta-cognitive and meta-scientific thinking, aims at leading learners not only to an essential understanding of QM worldview, but to a deep insight into the ‘Nature of Science’ as well.

  3. Advancing the scientific basis of trivalent actinide-lanthanide separations

    SciTech Connect

    Nash, K.L.

    2013-07-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl{sup -}). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  4. Understanding the Dialectical Relations Between Everyday Concepts and Scientific Concepts Within Play-Based Programs

    NASA Astrophysics Data System (ADS)

    Fleer, Marilyn

    2009-03-01

    In recent times there has been an enormous interest in Vygotsky’s writing on conceptual development, particularly his insights on the differences between everyday and scientific thinking. In drawing upon cultural-historical theory, this paper seeks to examine the relations between everyday concepts and scientific concepts within playful contexts, such as preschools, with a view to better understanding how very young children develop conceptual understandings in science. This paper presents an overview of a study which sought to map the transformation and appropriation of scientific concepts within two early childhood settings. Approximately ten weeks of data gathering took place, with video recordings, field notes, photographic documentation, and child and teacher interviews for recording child concept formation within these naturalistic settings. The findings indicate that when teacher programs are more oriented towards concepts rather than materials, children’s play is focused on conceptual connections. Importantly, the study showed that: It was possible to map the multiple and dynamic levels or stratas of thinking that a child or group of children may exhibit within play-based contexts; An analysis of ‘unorganised heaps’ and ‘complexive thinking’ evident in conceptually or materially oriented play-based programs can be determined; the dialectical relations between everyday concepts and scientific concepts in play-based programs can be understood; and greater understanding about the nature of concept formation in situated playful contexts have been possible.

  5. Climate Solutions based on advanced scientific discoveries of Allatra physics

    NASA Astrophysics Data System (ADS)

    Vershigora, Valery

    2016-01-01

    Global climate change is one of the most important international problems of the 21st century. The overall rapid increase in the dynamics of cataclysms, which have been observed in recent decades, is particularly alarming. Howdo modern scientists predict the occurrence of certain events? In meteorology, unusually powerful cumulonimbus clouds are one of the main conditions for the emergence of a tornado. The former, in their turn, are formed during the invasion of cold air on the overheated land surface. The satellite captures the cloud front, and, based on these pictures, scientists make assumptions about the possibility of occurrence of the respective natural phenomena. In fact, mankind visually observes and draws conclusions about the consequences of the physical phenomena which have already taken place in the invisible world, so the conclusions of scientists are assumptions by their nature, rather than precise knowledge of the causes of theorigin of these phenomena in the physics of microcosm. The latest research in the field of the particle physics and neutrino astrophysics, which was conducted by a working team of scientists of ALLATRA International Public Movement (hereinafter ALLATRA SCIENCE group), offers increased opportunities for advanced fundamental and applied research in climatic engineering.

  6. Scientific program of the advanced light source at LBL

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Schlachter, A. S.

    1992-08-01

    Construction of the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory is nearing completion, with operation as a US Department of Energy national user facility scheduled to begin in the spring of 1993. Based on a low-emittance, 1.5 GeV electron storage ring with ten long straight sections available for insertion devices and, initially, 24 bend-magnet ports, the ALS will be a third-generation source of soft X-ray and ultraviolet (collectively, the XUV) synchrotron radiation. Experimental facilities (insertion devices, beamlines, and end stations) will be developed and operated by participating research teams working with the ALS staff. The ability to exploit the high spectral brightness of the ALS was the main criterion for PRT selection. In the XUV spectral regions served by the ALS, a major benefit of high brightness will be the ability to achieve spatial resolution in the neighborhood of 200 Å in X-ray microscopy and holography and in spatially resolved spectroscopy. Other beneficiaries of high brightness include very-high-resolution spectroscopy, spectroscopy of dilute species, diffraction from very small samples, and time-resolved spectroscopy and diffraction.

  7. Supporting Scientific Reasoning and Conceptual Understanding Through the use of Inscriptions

    NASA Astrophysics Data System (ADS)

    Wong, Nicole

    While there is a vast body of research on visual representations, the results do not paint a clear picture of how to use inscriptions to support learning. Part of the difficulty stems from the need for research that investigates the use of inscriptions in classroom learning contexts. Toward this end, there is a small body of work that investigates the role of inscriptions in supporting students' engagement in scientific reasoning practices. Through the development of a case study of expert practice, this dissertation contributes to that literature by examining the potential power of inscriptions as resources for science teaching and learning in the context of a teacher professional development course that aims to support 4th grade teachers' content knowledge around the topic of electric circuits. This study examined the curriculum and video record from one enactment of this course to analyze the affordances of particular representations for supporting conceptual understanding and scientific reasoning practices; examine the facilitator's inscriptional practices that supported collaborative learning; and analyze the interactions among the learners, facilitator, and inscriptions that supported conceptual understanding. This exemplary facilitator successfully used inscriptions to engage learners in scientific reasoning practices that supported their conceptual understanding. She used inscriptions to structure and support discussions that were based on learner-generated ideas, yet led to curriculum-directed conceptual and pedagogical goals. The curriculum provided a series of inscriptional resources that were well suited for the conceptual and scientific reasoning activities that they proposed to support. By using curricular inscriptions to shape the content and form of the discussions, the facilitator created opportunities to learn that were 1) contingent on learner contributions and understanding, and 2) congruent with curricular goals. This work identifies several

  8. Scientific Understanding: Lacey's `Critical Self-Consciousness' Seen as Echoes of J.D. Bernal

    NASA Astrophysics Data System (ADS)

    Cross, Roger T.

    From a consideration of the nature of scientific understanding and the control of nature Lacey proposes a set of criteria by which the reform of science teaching might be guided. He uses the term critical self-consciousness to describe the development of learner's appreciation of the character of scientific activity, its applications, and the choices citizens face in society. By this latter he means responsible participation, presumably in the debates surrounding the character of scientific activity, its applications, and the choices inherent in these. In this paper I show that Lacey's vision of the schooling of science through the development of critical self-consciousness has been articulated by others at different epochs, and probably from different ideological perspectives. Knowledge of these will help Lacey in his search for an education in science which promotes citizens' participation rather than alienating them from decision-making in society.

  9. Instructional games: Scientific language use, concept understanding, and attitudinal development of middle school learners

    NASA Astrophysics Data System (ADS)

    Mongillo, Geraldine

    The purpose of this qualitative study was to discover the influence of instructional games on middle school learners' use of scientific language, concept understanding, and attitude toward learning science. The rationale for this study stemmed from the lack of research concerning the value of play as an instructional strategy for older learners. Specifically, the study focused on the ways in which 6 average ability 7th grade students demonstrated scientific language and concept use during gameplay. The data were collected for this 6-week study in a southern New Jersey suburban middle school and included audio recordings of the 5 games observed in class, written documents (e.g., student created game questions, self-evaluation forms, pre- and post-assessments, and the final quiz) interviews, and researcher field notes. Data were coded and interpreted borrowing from the framework for scientific literacy developed by Bybee (1997). Based on the findings, the framework was modified to reflect the level of scientific understanding demonstrated by the participants and categorized as: Unacquainted, Nominal, Functional, and Conceptual. Major findings suggested that the participants predominantly achieved the Functional level of scientific literacy (i.e., the ability to adequately and appropriately use scientific language in both written and oral discourse) during games. Further, it was discovered that the participants achieved the Conceptual level of scientific literacy during gameplay. Through games participants were afforded the opportunity to use common, everyday language to explore concepts, promoted through peer collaboration. In games the participants used common language to build understandings that exceeded Nominal or token use of the technical vocabulary and concepts. Additionally, the participants reported through interviews and self-evaluation forms that their attitude (patterns included: Motivation, Interest, Fun, Relief from Boredom, and an Alternate Learning

  10. Scientific truth or false hope? Understanding Alzheimer's disease from an aging perspective.

    PubMed

    Chen, Ming; Maleski, Jerome J; Sawmiller, Darrell R

    2011-01-01

    In this paper, we argue that the current official definition for Alzheimer's disease is misleading, since it defines senile dementia (SD), a long-known incurable senile/geriatric condition, as a discrete/curable disease. This overly optimistic definition was incepted in the 1970s amid the public's fear of the upcoming SD crisis and desperate hope for a cure. Scientifically, however, it has overturned Alois Alzheimer's age-based concept for disease classification-the essence of modern Geriatric Medicine and the National Institute of Aging. Thus, the current definition for SD, though socially and politically appealing, would be scientifically flawed. As an authoritative study guideline, it has caused profound and far-reaching confusions in research by misleading attention to the presumptive pathogenic/erroneous factors as drug targets for "silver bullets". Such well-intentioned studies would generate numerous data, but render SD a scientific and logical enigma. In this context we discuss: 1) why and how senile conditions including SD differ from discrete diseases by origin, thus also by study paradigm and intervention strategy; 2) why senile conditions may not be explained by abnormal/pathogenic factors, but logically should be explained by "normal" elements in life, perhaps advanced aging plus risk factors; and 3) why the "amyloid-β toxicity" controversy, a simple scientific issue, has lasted for so long. Finally, we ask: can scientific inquiry preserve its integrity and objectivity under social pressure? It appears that these fundamental questions warrant serious attention if the scientific nature of SD is to be eventually understood.

  11. Diagramming Scientific Papers - A New Idea for Understanding/Teaching/Sharing Science

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Fedi, M.

    2014-12-01

    How do we best communicate scientific results? As the number of scientists and scientific papers steadily increases, one of the greatest challenges is effective and efficient sharing of science. The official repository of scientific knowledge is the peer-reviewed journal archive. However, this primary knowledge can be difficult to access and understand by anyone but a relevant specialist. We propose some new ideas for diagramming the content and significance of scientific papers using a simple and intuitive graphical approach. We propose a visual mapping that highlights four fundamental aspects of most scientific papers: Data, Methods/Models, Results/Ideas, and Implications/Importance. Each of these aspects is illustrated within boxed fields which contain one or more labeled elements positioned to reflect novelty (aka originality) and impact relative to the vertical and horizontal axes. The relative position of the boxed fields themselves indicates the relative significance of data, methods, ideas, or implications to the paper. Optional lines between boxed elements indicate the flow and dependence of data/methods/ideas within the paper. As with any graphical depiction, you need to see it to best appreciate it -- this written abstract is only meant as an introduction to the idea.We anticipate that diagramming may prove useful in both communication of scientific ideas among scientists as well as in education and outreach. For example, professors could assign diagramming of papers as a way to help students organize their thoughts about the structure and impact of scientific articles. Students could compare and defend their diagrams as a way to facilitate discussion/debate. Authors could diagram their own work as a way to efficiently summarize the importance and significance of their work. We also imagine that (in the future) automatic diagramming might be used to help summarize or facilitate the discovery of archived work.

  12. Acid rain and its environmental effects: Recent scientific advances

    NASA Astrophysics Data System (ADS)

    Burns, Douglas A.; Aherne, Julian; Gay, David A.; Lehmann, Christopher M. B.

    2016-12-01

    The term 'acid rain' refers to atmospheric deposition of acidic constituents that impact the earth as rain, snow, particulates, gases, and vapor. Acid rain was first recognized by Ducros (1845) and subsequently described by the English chemist Robert Angus Smith (Smith, 1852) whose pioneering studies linked the sources to industrial emissions and included early observations of deleterious environmental effects (Smith, 1872). Smith's work was largely forgotten until the mid-20th century when observations began to link air pollution to the deposition of atmospheric sulfate (SO42-) and other chemical constituents, first near the metal smelter at Sudbury, Ontario, Canada, and later at locations in Europe, North America, and Australia (Gorham, 1961). Our modern understanding of acid rain as an environmental problem caused largely by regional emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) stems from observations in the 1960s and early 1970s in Sweden by Svante Odén (Odén, 1976), and in North America by Gene Likens and colleagues (Likens and Bormann, 1974). These scientists and many who followed showed the link to emissions from coal-fired power plants and other industrial sources, and documented the environmental effects of acid rain such as the acidification of surface waters and toxic effects on vegetation, fish, and other biota.

  13. Acid rain and its environmental effects: Recent scientific advances

    USGS Publications Warehouse

    Burns, Douglas A.; Aherne, Julian; Gay, David A.; Lehmann, Christopher M.B.

    2016-01-01

    The term ‘acid rain’ refers to atmospheric deposition of acidic constituents that impact the earth as rain, snow, particulates, gases, and vapor. Acid rain was first recognized by Ducros (1845) and subsequently described by the English chemist Robert Angus Smith (Smith, 1852) whose pioneering studies linked the sources to industrial emissions and included early observations of deleterious environmental effects (Smith, 1872). Smith's work was largely forgotten until the mid-20th century when observations began to link air pollution to the deposition of atmospheric sulfate (SO42−) and other chemical constituents, first near the metal smelter at Sudbury, Ontario, Canada, and later at locations in Europe, North America, and Australia (Gorham, 1961). Our modern understanding of acid rain as an environmental problem caused largely by regional emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) stems from observations in the 1960s and early 1970s in Sweden by Svante Odén (Odén, 1976), and in North America by Gene Likens and colleagues (Likens and Bormann, 1974). These scientists and many who followed showed the link to emissions from coal-fired power plants and other industrial sources, and documented the environmental effects of acid rain such as the acidification of surface waters and toxic effects on vegetation, fish, and other biota.

  14. Recent advances in understanding Antarctic subglacial lakes and hydrology.

    PubMed

    Siegert, Martin J; Ross, Neil; Le Brocq, Anne M

    2016-01-28

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from 'active' lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further 'active' subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many 'active' lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface).

  15. Advancing our understanding of the human microbiome using QIIME

    PubMed Central

    Navas-Molina, José A.; Peralta-Sánchez, Juan M.; González, Antonio; McMurdie, Paul J.; Vázquez-Baeza, Yoshiki; Xu, Zhenjiang; Ursell, Luke K.; Lauber, Christian; Zhou, Hongwei; Song, Se Jin; Huntley, James; Ackermann, Gail L.; Berg-Lyons, Donna; Holmes, Susan; Caporaso, J. Gregory; Knight, Rob

    2014-01-01

    High-throughput DNA sequencing technologies, coupled with advanced bioinformatics tools, have enabled rapid advances in microbial ecology and our understanding of the human microbiome. QIIME (Quantitative Insights Into Microbial Ecology) is an open-source bioinformatics software package designed for microbial community analysis based on DNA sequence data, which provides a single analysis framework for analysis of raw sequence data through publication quality statistical analyses and interactive visualizations. In this paper, we demonstrate the use of the QIIME pipeline to analyze microbial communities obtained from several sites on the bodies of transgenic and wild-type mice, as assessed using 16S rRNA gene sequences generated on the Illumina MiSeq platform. We present our recommended pipeline for performing microbial community analysis, and provide guidelines for making critical choices in the process. We present examples of some of the types of analyses that are enabled by QIIME, and discuss how other tools, such as phyloseq and R, can be applied to expand upon these analyses. PMID:24060131

  16. Recent advances in understanding Antarctic subglacial lakes and hydrology

    PubMed Central

    Siegert, Martin J.; Ross, Neil; Le Brocq, Anne M.

    2016-01-01

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from ‘active’ lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further ‘active’ subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many ‘active’ lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface). PMID:26667914

  17. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  18. Recent advances in the understanding and management of delayed puberty.

    PubMed

    Wei, Christina; Crowne, Elizabeth Clare

    2016-05-01

    Delayed puberty, especially in boys, is a common presentation in paediatrics. Recent advances have improved our understanding of the neuroendocrine, genetic and environmental factors controlling pubertal development, and hence inform the pathophysiology of delayed puberty. The discovery of kisspeptin signalling through its receptor identified neuroendocrine mechanisms controlling the gonadotrophin-releasing hormone (GnRH) pulse generator at the onset of puberty. Genetic mechanisms from single gene mutations to single nucleotide polymorphism associated with delayed puberty are being identified. Environmental factors, including nutritional factors and endocrine disruptors, have also been implicated in changes in secular trends and abnormal timing of puberty. Despite these advances, the key clinical question is to distinguish delayed puberty associated with an underlying pathology or hypogonadism from constitutional delay in growth and puberty, which remains challenging as biochemical tests are not always discriminatory. The diagnostic accuracies of newer investigations, including 36-hour luteinising hormone releasing hormone (LHRH) tests, GnRH-agonist tests, antimullerian hormone and inhibin-B, require further evaluation. Sex hormone replacement remains the main available treatment for delayed puberty, the choice of which is largely dictated by clinical practice and availability of the various sex steroid preparations. Spontaneous reversal of hypogonadism has been reported in boys with idiopathic hypogonadotrophic hypogonadism after a period of sex steroid treatment, highlighting the importance of reassessment at the end of pubertal induction. Novel therapies with a more physiological basis such as gonadotrophins or kisspeptin-agonist are being investigated for the management of hypogonadotrophic hypogonadism. Careful clinical assessment and appreciation of the normal physiology remain the key approach to patients with delayed puberty.

  19. Mismatches between 'scientific' and 'non-scientific' ways of knowing and their contributions to public understanding of science.

    PubMed

    Mikulak, Anna

    2011-06-01

    As differentiation within scientific disciplines increases, so does differentiation between the sciences and other ways of knowing. This distancing between 'scientific' and 'non-scientific' cultures reflects differences in what are considered valid and reliable approaches to acquiring knowledge and has played a major role in recent science-oriented controversies. Scientists' reluctance to actively engage in science communication, coupled with journalists' reliance on the norms of balance, conflict, and human interest in covering scientific issues, have combined to exacerbate public mistrust of science on issues like the measles-mumps-rubella (MMR) vaccine. The failure of effective communications between scientists and non-scientists has hindered the progress of both effective science and effective policy. In order to better bridge the gap between the 'scientific' and 'non-scientific' cultures, renewed efforts must be made to encourage substantive public engagement, with the ultimate goal of facilitating an open, democratic policy-making process.

  20. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    NASA Astrophysics Data System (ADS)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in

  1. Recent advances in understanding and treating nephrotic syndrome

    PubMed Central

    Bierzynska, Agnieszka; Saleem, Moin

    2017-01-01

    Idiopathic nephrotic syndrome (INS) is one of the most common glomerular diseases in children and adults, and the central event is podocyte injury. INS is a heterogeneous disease, and treatment is largely empirical and in many cases unsuccessful, and steroids are the initial mainstay of therapy. Close to 70% of children with INS have some response to steroids and are labelled as steroid-‘sensitive’, and the rest as steroid-‘resistant’ (also termed focal segmental glomerulosclerosis), and single-gene mutations underlie a large proportion of the latter group. The burden of morbidity is enormous, both to patients with lifelong chronic disease and to health services, particularly in managing dialysis and transplantation. The target cell of nephrotic syndrome is the glomerular podocyte, and podocyte biology research has exploded over the last 15 years. Major advances in genetic and biological understanding now put clinicians and researchers at the threshold of a major reclassification of the disease and testing of targeted therapies both identified and novel. That potential is based on complete genetic analysis, deep clinical phenotyping, and the introduction of mechanism-derived biomarkers into clinical practice. INS can now be split off into those with a single-gene defect, of which currently at least 53 genes are known to be causative, and the others. Of the others, the majority are likely to be immune-mediated and caused by the presence of a still-unknown circulating factor or factors, and whether there is a third (or more) mechanistic group or groups remains to be discovered. Treatment is therefore now being refined towards separating out the monogenic cases to minimise immunosuppression and further understanding how best to stratify and appropriately direct immunosuppressive treatments within the immune group. Therapies directed specifically towards the target cell, the podocyte, are in their infancy but hold considerable promise for the near future. PMID

  2. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  3. Publication Ethics and the Emerging Scientific Workforce: Understanding ‘Plagiarism’ in a Global Context

    PubMed Central

    Cameron, Carrie; Zhao, Hui; McHugh, Michelle K.

    2013-01-01

    Scientific publication has long been dominated by the English language and is rapidly moving towards near complete hegemony of English, while the majority of the world’s publishing scientists are not native English speakers. This imbalance has important implications for training in and enforcement of publication ethics, particularly with respect to plagiarism. A lack of understanding of what constitutes plagiarism and the use of a linguistic support strategy known as patchwriting can lead to inadvertent misuse of source material by non-native speakers writing in English as well as to unfounded accusations of intentional scientific misconduct on the part of these authors. A rational and well-informed dialogue about this issue is needed among both native English speaking and non-native English speaking writers, editors, educators, and administrators. Recommendations for educating and training are provided. PMID:22104051

  4. Perspective: publication ethics and the emerging scientific workforce: understanding "plagiarism" in a global context.

    PubMed

    Cameron, Carrie; Zhao, Hui; McHugh, Michelle K

    2012-01-01

    English has long been the dominant language of scientific publication, and it is rapidly approaching near-complete hegemony. The majority of the scientists publishing in English-language journals are not native English speakers, however. This imbalance has important implications for training concerning ethics and enforcement of publication standards, particularly with respect to plagiarism. The authors suggest that lack of understanding of what constitutes plagiarism and the use of a linguistic support strategy known as "patchwriting" can lead to inadvertent misuse of source material by nonnative speakers writing in English as well as to unfounded accusations of intentional scientific misconduct on the part of these authors. They propose that a rational and well-informed dialogue about this issue is needed among editors, educators, administrators, and both native-English-speaking and nonnative-English-speaking writers. They offer recommendations for creating environments in which such dialogue and training can occur.

  5. Recent Advances in Understanding Enteric Pathogenic Escherichia coli

    PubMed Central

    Croxen, Matthew A.; Law, Robyn J.; Scholz, Roland; Keeney, Kristie M.; Wlodarska, Marta

    2013-01-01

    SUMMARY Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli. PMID:24092857

  6. Recent Advances in Understanding Audiovestibular Loss of a Vascular Cause

    PubMed Central

    Kim, Hyun-Ah; Lee, Hyung

    2017-01-01

    Acute audiovestibular loss is characterized by abrupt onset of prolonged (lasting days) vertigo and hearing loss. Acute ischemic stroke in the distribution of the anterior inferior cerebellar artery (AICA) is known to be the leading cause of acute audiovestibular loss. So far, eight subgroups of AICA territory infarction have been identified according to the patterns of audiovestibular dysfunctions, among which the most common pattern is the combined loss of auditory and vestibular functions. Unlike inner ear dysfunction of a viral cause, which can commonly present as an isolated vestibular (i.e., vestibular neuritis) or cochlear loss (i.e., sudden deafness), labyrinthine dysfunction of a vascular cause rarely results in isolated loss of vestibular or auditory function. As audiovestibular loss may precede the central symptoms or signs of an ischemic stroke in the posterior circulation, early diagnosis and proper management of audiovestiubular loss may provide a window to prevent the progression of infarction to larger areas of the posterior circulation. A clinician should consider the possibility that acute audiovestibular loss may herald impending AICA territory infarction, especially when patients have basilar artery occlusive disease close to the origin of the AICA on brain MRA. This review aims to highlight the recent advances in understanding audiovestibular loss of a vascular cause and to address its clinical significance. PMID:28030893

  7. Recent advances in understanding and managing psoriatic arthritis

    PubMed Central

    Gladman, Dafna D.

    2016-01-01

    This article reviews recent advances in psoriatic arthritis (PsA) over the past several years with emphasis on early diagnosis, better understanding of pathogenesis, and new therapeutic approaches. Early diagnosis is important, since people who present late do not fare as well. There are a number of clinical, laboratory, and ultrasound features that can help identify patients destined to develop PsA, and several screening tools have been developed. It is recognized that genetic and epigenetic factors, as well as T cells and cytokines, play a role in the pathogenesis of PsA, and several targets have been identified for therapeutic interventions. New therapies have been developed and tested in PsA and have been found to be highly effective for both skin and joint manifestations of the disease. The expectation is that, in the future, PsA patients will be treated early and more aggressively and that there will not be significant progression of joint damage. Moreover, with effective treatment of the skin and joint disease and management of risk factors for the comorbidities, we can expect to reduce their occurrence and further reduce the excess mortality and reduced quality of life and function in these patients. PMID:27928500

  8. Using Scientific Argumentation in a Science Methods Course to Improve Preservice Teachers' Understanding of Climate Change

    NASA Astrophysics Data System (ADS)

    Lambert, J. L.; Bleicher, R. E.; Soden, B. J.

    2014-12-01

    Given that K-12 students have numerous alternative conceptions, it is critical that teachers have an understanding of the fundamental science underlying climate change (Feldman et al., 2010). Many teachers, however, do not demonstrate adequate understanding of these concepts (Daskolia et al., 2006). Argumentation has been identified as a mechanism for conceptual change (Mercer et al., 2004). Even with several educational initiatives promoting and supporting the use of argumentation as an instructional practice, teachers often struggle to implement argumentation in the classroom (Sampson & Blanchard, 2012). To remedy both issues above, we have designed an innovative methods course to provide background in climate change knowledge and argumentation instruction. In our methods course, we utilize Climate Science Investigations (CSI), an online, interactive series of modules and teaching resources funded by a NASA grant to support teachers learning about the basic science concepts underlying climate change. A key assignment is to develop and present an evidence-based scientific argument. The teachers were assigned a typical question and claim of climate skeptics and asked to conduct research on the scientific findings to prepare a counter-argument (rebuttal). This study examined changes in 60 preservice teachers' knowledge and perceptions about climate change after participation in the course. The teachers' understanding of fundamental concepts increased significantly. Their perceptions about climate change became more aligned to those of climate scientists. Findings suggest that scientific argumentation can play an effective role in the preparation of science educators. In addition to reporting findings in more detail, methods course activities, particularly in argumentation, will be shared in our presentation.

  9. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Seah, Lay Hoon

    2016-06-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life cycle of plants, in four grade 4 classrooms (age 10) taught by three teachers constitute the data for this study. Students' written explanations were subjected to a combination of content and linguistic analysis. The linguistic analysis was conducted using selected analytical tools from the systemic functional linguistics framework. A diversity of linguistic resources and meanings were identified from the students' explanations, which reveal the extent to which the students were able to employ linguistic resources to construct written scientific explanations and the challenges involved. Both content and linguistic analyses also illuminate patterns of language use that are significant for realising scientific meanings. Finally, a comparison is made in the use of linguistic resources between the students' explanations and the instructional language to highlight possible links. This comparison reveals that the teachers' expectations of the students' written explanations were seldom reflected in their oral questioning or made explicit during the instruction. The findings of this study suggest that a focus on conceptual development is not sufficient in itself to foster students' ability to construct explanations. Pedagogical implications involving the support needed by primary students to construct scientific explanations are discussed.

  10. Plastic debris and policy: Using current scientific understanding to invoke positive change.

    PubMed

    Rochman, Chelsea M; Cook, Anna-Marie; Koelmans, Albert A

    2016-07-01

    Captain Charles Moore introduced the world to the "Great Pacific Garbage Patch" in the mid-1990s, and images of plastic debris in the oceans began to sweep the media. Since then, there has been increasing interest from scientists, the public, and policy makers regarding plastic debris in the environment. Today, there remains no doubt that plastic debris contaminates aquatic (marine and freshwater) habitats and animals globally. The growing scientific evidence demonstrates widespread contamination from plastic debris, and researchers are beginning to understand the sources, fate, and effects of the material. As new scientific understanding breeds new questions, scientists are working to fill data gaps regarding the fate and effects of plastic debris and the mechanisms that drive these processes. In parallel, policy makers are working to mitigate this contamination. The authors focus on what is known about plastic debris that is relevant to policy by reviewing some of the weight of evidence regarding contamination, fate, and effects of the material. Moreover, they highlight some examples of how science has already been used to inform policy change and mitigation and discuss opportunities for future linkages between science and policy to continue the relationship and contribute to effective solutions for plastic debris. Environ Toxicol Chem 2016;35:1617-1626. © 2016 SETAC.

  11. On Understanding: Maxwell on the Methods of Illustration and Scientific Metaphor

    NASA Astrophysics Data System (ADS)

    Cat, Jordi

    In this paper I examine the notion and role of metaphors and illustrations in Maxwell's works in exact science as a pathway into a broader and richer philosophical conception of a scientist and scientific practice. While some of these notions and methods are still at work in current scientific research-from economics and biology to quantum computation and quantum field theory-, here I have chosen to attest to their entrenchment and complexity in actual science by attempting to make some conceptual sense of Maxwell's own usage; this endeavour includes situating Maxwell's conceptions and applications in his own culture of Victorian science and philosophy. I trace Maxwell's notions to the formulation of the problem of understanding, or interpreting, abstract representations such as potential functions and Lagrangian equations. I articulate the solution in terms of abstract-concrete relations, where the concrete, in tune with Victorian British psychology and engineering, includes the muscular as well as the pictorial. This sets the basis for a conception of understanding in terms of unification and concrete modelling, or representation. I examine the relation of illustration to analogies and metaphors on which this account rests. Lastly, I stress and explain the importance of context-dependence, its consequences for realism-instrumentalism debates, and Maxwell's own emphasis on method.

  12. Current scientific understanding of the environmental biosafety of transgenic fish and shellfish.

    PubMed

    Kapuscinski, A R

    2005-04-01

    A fluorescent zebrafish was the first genetically engineered animal to be marketed, and biotechnologists are developing many transgenic fish and shellfish. Biosafety science is not sufficiently advanced to be able to draw scientifically reliable and broadly trusted conclusions about the environmental effects of these animals. The science is best developed for identifying hazards posed by environmental spread of a transgenic fish or shellfish and least developed for assessing potential ecological harms of spread. Environmental spread of certain transgenic fish or shellfish could be an indirect route of entry into the human food supply. The management of predicted environmental risks is in its infancy and has thus far focused on the first step of the risk management process, i.e. risk reduction, via a few confinement methods. There is a critical need to improve scientific methods of environmental safety assessment and management and to gather empirical data needed to substantiate biosafety conclusions and to effectively manage transgenic fish and shellfish. Scientists and potentially affected parties should participate in prioritising the knowledge gaps to be addressed.

  13. [Scientific advice by the national and European approval authorities concerning advanced therapy medicinal products].

    PubMed

    Jost, Nils; Schüssler-Lenz, Martina; Ziegele, Bettina; Reinhardt, Jens

    2015-11-01

    The aim of scientific advice is to support pharmaceutical developers in regulatory and scientific questions, thus facilitating the development of safe and efficacious new medicinal products. Recent years have shown that the development of advanced therapy medicinal products (ATMPs) in particular needs a high degree of regulatory support. On one hand, this is related to the complexity and heterogeneity of this group of medicinal products and on the other hand due to the fact that mainly academic research institutions and small- and medium-sized enterprises (SMEs) are developing ATMPs. These often have limited regulatory experience and resources. In 2009 the Paul-Ehrlich-Institut (PEI) initiated the Innovation Office as a contact point for applicants developing ATMPs. The mandate of the Innovation Office is to provide support on regulatory questions and to coordinate national scientific advice meetings concerning ATMPs for every phase in drug development and especially with view to the preparation of clinical trial applications. On the European level, the Scientific Advice Working Party (SAWP) of the Committee for Medicinal Products for Human Use (CHMP) of the European Medicinal Agency (EMA) offers scientific advice. This article describes the concepts of national and EMA scientific advice concerning ATMPs and summarizes the experience of the last six years.

  14. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    NASA Astrophysics Data System (ADS)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  15. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Sussman, Alan

    2014-10-21

    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  16. Students' Participation in an Interdisciplinary, Socioscientific Issues Based Undergraduate Human Biology Major and Their Understanding of Scientific Inquiry

    ERIC Educational Resources Information Center

    Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.

    2013-01-01

    The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an…

  17. Explicitly Targeting Pre-Service Teacher Scientific Reasoning Abilities and Understanding of Nature of Science through an Introductory Science Course

    ERIC Educational Resources Information Center

    Koenig, Kathleen; Schen, Melissa; Bao, Lei

    2012-01-01

    Development of a scientifically literate citizenry has become a national focus and highlights the need for K-12 students to develop a solid foundation of scientific reasoning abilities and an understanding of nature of science, along with appropriate content knowledge. This implies that teachers must also be competent in these areas; but…

  18. Effect of Two-Tier Diagnostic Tests on Promoting Learners' Conceptual Understanding of Variables in Conducting Scientific Experiments

    ERIC Educational Resources Information Center

    Çil, Emine

    2015-01-01

    Taking a test generally improves the retention of the material tested. This is a phenomenon commonly referred to as testing effect. The present research investigated whether two-tier diagnostic tests promoted student teachers' conceptual understanding of variables in conducting scientific experiments, which is a scientific process skill. In this…

  19. Scientific Process Flowchart Assessment (SPFA): A Method for Evaluating Changes in Understanding and Visualization of the Scientific Process in a Multidisciplinary Student Population

    PubMed Central

    Wilson, Kristy J.; Rigakos, Bessie

    2016-01-01

    The scientific process is nonlinear, unpredictable, and ongoing. Assessing the nature of science is difficult with methods that rely on Likert-scale or multiple-choice questions. This study evaluated conceptions about the scientific process using student-created visual representations that we term “flowcharts.” The methodology, Scientific Process Flowchart Assessment (SPFA), consisted of a prompt and rubric that was designed to assess students’ understanding of the scientific process. Forty flowcharts representing a multidisciplinary group without intervention and 26 flowcharts representing pre- and postinstruction were evaluated over five dimensions: connections, experimental design, reasons for doing science, nature of science, and interconnectivity. Pre to post flowcharts showed a statistically significant improvement in the number of items and ratings for the dimensions. Comparison of the terms used and connections between terms on student flowcharts revealed an enhanced and more nuanced understanding of the scientific process, especially in the areas of application to society and communication within the scientific community. We propose that SPFA can be used in a variety of circumstances, including in the determination of what curricula or interventions would be useful in a course or program, in the assessment of curriculum, or in the evaluation of students performing research projects. PMID:27856551

  20. Measuring Student Understanding of the Process of Scientific Research through Three Modes of Assessment

    NASA Astrophysics Data System (ADS)

    Krok, Michelle; Rector, T.; Young, M. J.

    2012-01-01

    We have continued to develop "Research-Based Science Education" (RBSE) curriculum and assessment for a semester-long program in which undergraduate non-science majors participate in authentic research. The instruction is mainly astronomy-based, but can be used in any introductory science course. Currently, the curriculum is being used by five universities over an assortment of introductory science and astronomy classrooms. The primary goal of the RBSE curriculum is to develop a student's understanding of the nature and process of scientific research. We will present trends and misconceptions discovered based upon our analysis of Fall 2011 semester student responses to several types of assessments including weekly assigned reflective journal questions on the nature of science and pre/post semester concept maps. Additionally, gains observed from a pre/post semester survey of participatory students’ confidence on their science process skills abilities will be discussed.

  1. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    SciTech Connect

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems

  2. The Effects of Scientific Representations on Primary Students' Development of Scientific Discourse and Conceptual Understandings during Cooperative Contemporary Inquiry-Science

    ERIC Educational Resources Information Center

    Gillies, Robyn M.; Nichols, Kim; Khan, Asaduzzaman

    2015-01-01

    Teaching students to use and interpret representations in science is critically important if they are to become scientifically literate and learn how to communicate their understandings and learning in science. This study involved 248 students (119 boys and 129 girls) from 26 grade 6 teachers' classes in nine primary schools in Brisbane,…

  3. Using Scaffolding Strategies to Promote Young Children's Scientific Understandings of Floating and Sinking

    NASA Astrophysics Data System (ADS)

    Hsin, Ching-Ting; Wu, Hsin-Kai

    2011-10-01

    The purposes of this study are to examine young children's explanations of floating and sinking and to investigate how scaffolding strategies provided by a tutor could promote their scientific understandings. Fifteen 4-year-olds and fifteen 5-year-olds from a public kindergarten in northern Taiwan participated in this study. The children were interviewed before and after an instructional intervention to examine their understandings about how the weight, volume, and material of an object are related to sinking and floating. During the intervention, children manipulated objects made of different materials and were assigned to one of the three groups: scaffolding-material (provided with teaching scaffolding and allowed to see the materials of the objects), scaffolding (teaching scaffolding only), and material groups (seeing the materials only). In the first two groups, 16 teaching strategies based on six scaffolding principles were employed. Analyses of interviews showed that before the intervention, the 4-year-olds seemed to have a variety of explanations for sinking and floating and a majority of the 5-year-olds used weight as an explanation for floatation. After the intervention, both 4- and 5-year-olds in the scaffolding-material and scaffolding groups improved their understandings of floating and sinking. Particularly, three out of five 5-years-olds in the scaffolding-material group related the material of an object to its buoyancy and generalized their explanations to the objects made of the same material. The findings suggest that manipulative experiences alone might not be enough for children to further their understandings about floatation and that combining teaching scaffolding with children's perceiving of the materials of objects is more effective. This study provides insight into how to support young children to learn science through effective teaching strategies.

  4. Recent Advances in Understanding, Diagnosing, and Treating Ovarian Cancer

    PubMed Central

    Mills, Kathryn; Fuh, Katherine

    2017-01-01

    Ovarian cancer, a term that encompasses ovarian, fallopian, and peritoneal cancers, is the leading cause of gynecologic cancer mortality. To improve patient outcomes, the field is currently focused on defining the mechanisms of cancer formation and spread, early diagnosis and prevention, and developing novel therapeutic options. This review summarizes recent advances in these areas. PMID:28184293

  5. Manganese: Recent advances in understanding its transport and neurotoxicity

    SciTech Connect

    Aschner, Michael . E-mail: Michael.Aschner@vanderbilt.edu; Guilarte, Tomas R.; Schneider, Jay S.; Zheng Wei

    2007-06-01

    The present review is based on presentations from the meeting of the Society of Toxicology in San Diego, CA (March 2006). It addresses recent developments in the understanding of the transport of manganese (Mn) into the central nervous system (CNS), as well as brain imaging and neurocognitive studies in non-human primates aimed at improving our understanding of the mechanisms of Mn neurotoxicity. Finally, we discuss potential therapeutic modalities for treating Mn intoxication in humans.

  6. The Biopsychosocial Approach to Chronic Pain: Scientific Advances and Future Directions

    ERIC Educational Resources Information Center

    Gatchel, Robert J.; Peng, Yuan Bo; Peters, Madelon L.; Fuchs, Perry N.; Turk, Dennis C.

    2007-01-01

    The prevalence and cost of chronic pain is a major physical and mental health care problem in the United States today. As a result, there has been a recent explosion of research on chronic pain, with significant advances in better understanding its etiology, assessment, and treatment. The purpose of the present article is to provide a review of…

  7. Recent advances in understanding hypertension development in sub-Saharan Africa.

    PubMed

    Schutte, A E; Botha, S; Fourie, C M T; Gafane-Matemane, L F; Kruger, R; Lammertyn, L; Malan, L; Mels, C M C; Schutte, R; Smith, W; van Rooyen, J M; Ware, L J; Huisman, H W

    2017-03-23

    Consistent reports indicate that hypertension is a particularly common finding in black populations. Hypertension occurs at younger ages and is often more severe in terms of blood pressure levels and organ damage than in whites, resulting in a higher incidence of cardiovascular disease and mortality. This review provides an outline of recent advances in the pathophysiological understanding of blood pressure elevation and the consequences thereof in black populations in Africa. This is set against the backdrop of populations undergoing demanding and rapid demographic transition, where infection with the human immunodeficiency virus predominates, and where under and over-nutrition coexist. Collectively, recent findings from Africa illustrate an increased lifetime risk to hypertension from foetal life onwards. From young ages black populations display early endothelial dysfunction, increased vascular tone and reactivity, microvascular structural adaptions as well as increased aortic stiffness resulting in elevated central and brachial blood pressures during the day and night, when compared to whites. Together with knowledge on the contributions of sympathetic activation and abnormal renal sodium handling, these pathophysiological adaptations result in subclinical and clinical organ damage at younger ages. This overall enhanced understanding on the determinants of blood pressure elevation in blacks encourages (a) novel approaches to assess and manage hypertension in Africa better, (b) further scientific discovery to develop more effective prevention and treatment strategies and

  8. Lost in Translation: The Gap in Scientific Advancements and Clinical Application

    PubMed Central

    Fernandez-Moure, Joseph S.

    2016-01-01

    The evolution of medicine and medical technology hinges on the successful translation of basic science research from the bench to clinical implementation at the bedside. Out of the increasing need to facilitate the transfer of scientific knowledge to patients, translational research has emerged. Significant leaps in improving global health, such as antibiotics, vaccinations, and cancer therapies, have all seen successes under this paradigm, yet today, it has become increasingly difficult to realize this ideal scenario. As hospital revenue demand increases, and financial support declines, clinician-protected research time has been limited. Researchers, likewise, have been forced to abandon time- and resource-consuming translational research to focus on publication-generating work to maintain funding and professional advancement. Compared to the surge in scientific innovation and new fields of science, realization of transformational scientific findings in device development and materials sciences has significantly lagged behind. Herein, we describe: how the current scientific paradigm struggles in the new health-care landscape; the obstacles met by translational researchers; and solutions, both public and private, to overcoming those obstacles. We must rethink the old dogma of academia and reinvent the traditional pathways of research in order to truly impact the health-care arena and ultimately those that matter most: the patient. PMID:27376058

  9. Advances in understanding glycosyltransferases from a structural perspective

    PubMed Central

    Gloster, Tracey M

    2014-01-01

    Glycosyltransferases (GTs), the enzymes that catalyse glycosidic bond formation, create a diverse range of saccharides and glycoconjugates in nature. Understanding GTs at the molecular level, through structural and kinetic studies, is important for gaining insights into their function. In addition, this understanding can help identify those enzymes which are involved in diseases, or that could be engineered to synthesize biologically or medically relevant molecules. This review describes how structural data, obtained in the last 3–4 years, have contributed to our understanding of the mechanisms of action and specificity of GTs. Particular highlights include the structure of a bacterial oligosaccharyltransferase, which provides insights into N-linked glycosylation, the structure of the human O-GlcNAc transferase, and the structure of a bacterial integral membrane protein complex that catalyses the synthesis of cellulose, the most abundant organic molecule in the biosphere. PMID:25240227

  10. A Hydrological Perspective to Advance Understanding of the Water Cycle

    NASA Astrophysics Data System (ADS)

    Berghuijs, W.

    2014-12-01

    In principle hydrologists are scientists that study relationships within the water cycle. Yet, current technology makes it tempting for hydrology students to lose their "hydrological perspective" and become instead full-time computer programmers or statisticians. I assert that students should ensure their hydrological perspective thrives, notwithstanding the importance and possibilities of current technology. This perspective is necessary to advance the science of hydrology. As other hydrologists have pondered similar views before, I make no claims of originality here. I just hope that in presenting my perspective on this issue I may spark the interest of other early career hydrologists.

  11. National facility for advanced computational science: A sustainable path to scientific discovery

    SciTech Connect

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  12. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Report: Exascale Computing Initiative Review

    SciTech Connect

    Reed, Daniel; Berzins, Martin; Pennington, Robert; Sarkar, Vivek; Taylor, Valerie

    2015-08-01

    On November 19, 2014, the Advanced Scientific Computing Advisory Committee (ASCAC) was charged with reviewing the Department of Energy’s conceptual design for the Exascale Computing Initiative (ECI). In particular, this included assessing whether there are significant gaps in the ECI plan or areas that need to be given priority or extra management attention. Given the breadth and depth of previous reviews of the technical challenges inherent in exascale system design and deployment, the subcommittee focused its assessment on organizational and management issues, considering technical issues only as they informed organizational or management priorities and structures. This report presents the observations and recommendations of the subcommittee.

  13. Understanding the operational environment: implications for advanced visualizations

    NASA Astrophysics Data System (ADS)

    Aleva, Denise; Fitzhugh, Elisabeth; Dixon, Sharon

    2009-05-01

    With the changing character of warfare, information superiority is a high priority. Given the complexity of current and future operating environments, analysts, strategists and planners need a multidimensional understanding of the battlespace. Asymmetric warfare necessitates that our strategists look beyond targets-based operations, where we simply identify and destroy enemy entities. Effects-based operations models the enemy as a system which reacts to our actions. This requires the capability to predict the adversary response to a selected action. Actions may be diplomatic, information, military or economic (DIME). Effects may be political, military, economic, social, information or infrastructure (PMESII). Timing must be explicitly considered and effects dynamically assessed. Visualizations of intelligence information are needed which will promote full understanding of all aspects of adversary strengths and weaknesses by providing the extensive data about adversary forces, organic essentials, infrastructure, leadership, population, and science and technology in an easily accessible and understandable format. This will enhance Effectsbased operations, and therefore, the capability to predict and counter adversary courses of action. This paper outlines a systems engineering approach to designing visualizations which convey the multidimensional information to decision makers. Visualization issues inherent in understanding the multidimensional operational environment will be discussed.

  14. Advancing our understanding of charcoal rot in soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot (Macrophomina phaseolina (Tassi) Goid ) of soybean [Glycine max (L.) Merr.], is an important but commonly misidentified disease, and very few summary articles exist on this pathosystem. Research conducted over the last 10 years has improved our understanding of the environment conducive...

  15. Advanced UXO Discrimination using Magnetometry: Understanding Remanent Magnetization

    DTIC Science & Technology

    2009-09-01

    of metals and metal- lography, 104(5):469(9), 2007. [12] Richard P. Feynman , Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics ...being left in the ground, a comprehensive understanding of the physical phenomena was deemed necessary. This was the impetus for this project. As...are placed on the holder and are slowly spun through two complete rotations. The measurement is repeated after the sample is physically rotated by

  16. Understanding Texts with the Help of Experimentation: The Example of Cupellation in Arabic Scientific Literature.

    PubMed

    Moureau, Sébastien; Thomas, Nicolas

    2016-05-01

    The article aims to show how experimentation can help us understand historical texts, by focusing on the specific case of cupellation in Arabic scientific literature. It also provides new information about cupellation in the Arab-Muslim Middle Ages. The article consists of translations of three of the most detailed accounts of cupellation: Hamdānī's Kitāb al-jawharatayn al-'atīqatayn (first half of the fourth/tenth century), Maslama b. Qāsim al-Qurṭubī, Rutbat al-ḥakīm (339-342/950-953), and Manṣūr b. Ba'ra, Kitāb kashf al-asrār al-'ilmiyya bi-dār al-ḍarb al-miṣriyya (615-635/1218-1238). These are accompanied by commentaries based on a series of experiments carried out in the course of archaeological research on cupellation, which are here used to shed new light on the medieval texts and resolve several problems in interpreting them.

  17. Beyond continuous mathematics and traditional scientific analysis: understanding and mining Wolfram's A New Kind of Science.

    PubMed

    McDowell, J J; Popa, Andrei

    2009-06-01

    In A New Kind of Science, Stephen Wolfram recommends abandoning traditional scientific analysis and the continuous mathematical description that it affords in favor of the study of simple rules. He focuses on a machine known as a cellular automaton as the prototype generator of complex phenomena such as those we see in nature. The simplest cellular automaton consists of a row of cells, each existing in one of two states. The states of the cells are updated from moment to moment by simple rules. Wolfram shows that these machines and their many variations can generate a host of outcomes ranging from very simple to extremely complex. He argues that among these outcomes representations of all the phenomena in the universe will be found, including presumably the behavior of organisms. The output of cellular automata can be mapped to behavior by considering, for example, one of the states of a cell to represent the emission of a behavior. For some cellular automaton rules, these mappings generate cumulative records and inter-response time distributions that are similar to those produced by live organisms. In addition, at least one cellular automaton generates the Herrnstein hyperbola as an emergent outcome. These results suggest that Wolfram's program and its mainstream version, which is known as complexity theory, is worth pursuing as a possible means of understanding and accounting for the behavior of organisms.

  18. Preservice special education teachers' understandings, enactments, views, and plans for scientific inquiry: Issues and hopes

    NASA Astrophysics Data System (ADS)

    Ghosh, Rajlakshmi

    This study examined the understandings, enactments, views, and plans for scientific inquiry held by preservice special education teachers enrolled in a K--8 general science methods course. Sixteen participants from four special education concentration areas---Mild to Moderate Educational Needs, Moderate to Intense Educational Needs, Mild to Moderate Educational Needs with Language Arts and Reading Emphasis, and Early Childhood Intervention---participated in this study. Qualitative data were collected from questionnaires, interviews, teaching videos, lesson plans, planning commentaries, and reflection papers. Data were analyzed using a grounded theory approach (Strauss & Corbin, 1990) and compared against the theoretical view of inquiry as conceptualized by the National Research Council (NRC, 2000). The participants held unique interpretations of inquiry that only partially matched with the theoretical insights provided by the NRC. The participants' previous science learning experiences and experiences in special education played an important role in shaping their conceptualizations of inquiry as learned in the science methods class. The impacts of such unique interpretations are discussed with reference to both science education and special education, and implications for teacher education are provided.

  19. Traditional Chinese medicine formulas for irritable bowel syndrome: from ancient wisdoms to scientific understandings.

    PubMed

    Xiao, Hai-Tao; Zhong, Linda; Tsang, Siu-Wai; Lin, Ze-Si; Bian, Zhao-Xiang

    2015-01-01

    Traditional Chinese Medicine (TCM) serves as the most common alternative therapeutic approach for Western medicine and benefits IBS patients globally. Due to the lack of scientific evidence in the past, TCM formulas were not internationally well recognized as promising IBS remedies. In this review, firstly, we present the etiology and therapy of IBS in terms of traditional Chinese medical theory. Secondly, we summarize the clinical randomized controlled trials (RCTs) of TCM formulas for IBS patients that are available in the literature (from 1998 to September 2013), in which 14 RCTs conducted of high quality were discussed in detail. Of the 14 selected trials, 12 of those concluded that TCM formulas provided superior improvement in the global symptoms of IBS patients over the placebo or conventional medicines. As well, all 14 RCTs suggested that TCM formulas have good safety and tolerability. Last but not least, we explore the pharmacological mechanisms of the anti-IBS TCM formulas available in the literature (from 1994 to September, 2013). Collectively, in combating IBS symptoms, most TCM formulas exert multi-targeting actions including the regulation of neurotransmitters and hormones in the enteric nervous system (ENS), modulation of smooth muscle motility in the gastrointestinal (GI) tract, modulation of the hypothalamic-pituitary-adrenal (HPA) axis, attenuation of intestinal inflammation and restoration of intestinal flora, etc. In conclusion, TCM formulas appear to be promising for IBS treatment. This review provides a useful reference for the public in furthering a better understanding and acceptance of TCM formulas as IBS remedies.

  20. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae

    PubMed Central

    Sartor, R. Balfour

    2015-01-01

    Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection. PMID:26097735

  1. Advances in understanding the interrelations between leptin resistance and obesity.

    PubMed

    Pan, Haitao; Guo, Jiao; Su, Zhengquan

    2014-05-10

    Obesity, which has developed into a global epidemic, is a risk factor in most chronic diseases and some forms of malignancy. The discovery of leptin in 1994 has opened a new field in obesity research. Currently, we know that leptin is the primary signal from energy stores and exerts negative feedback effects on energy intake. However, most individuals with diet-induced obesity (DIO) develop leptin resistance, which is characterized by elevated circulating leptin levels and decreased leptin sensitivity. To date, though various mechanisms have been proposed to explain leptin resistance, the exact mechanisms of leptin resistance in obesity are poorly understood. Consequently, it's an important issue worth discussing regarding what the exact interrelations between leptin resistance and obesity are. Here, we review the latest advancements in the molecular mechanisms of leptin resistance and the exact interrelations between leptin resistance, obesity, and obesity-related diseases, in order to supply new ideas for the study of obesity.

  2. A view on advances in spheromak understanding and parameters

    SciTech Connect

    Fernandez, J.C.; Chrien, R.E.; Wysocki, F.J.; Mayo, R.M.; Henins, I.

    1990-01-01

    A spheromak is a toroidally-shaped magnetized plasma configuration in which no material (such as coils or vacuum vessels) links the torus, so that the topology of the spheromak boundary is spherical. In the period since the properties of a nearly force-free ({Delta} {times} {rvec B} {approx} {lambda}{rvec B}) spheromak configuration were described using single-fluid MHD theory, and since the first spheromak was formed at the Univ. of Maryland, remarkable theoretical and experimental advances have been made. This paper highlights some of that work. Some of the latest results from the CTX group at Los Alamos are also presented. These include the observation of suprathermal electrons in CTX, evidence by X-ray bursts with photon energies above 1 MeV.

  3. Recent advances in managing and understanding menstrual disorders

    PubMed Central

    Ali, Moazzam

    2015-01-01

    Menstrual disorders are a major reason for gynaecological consultations worldwide and, unfortunately there are many different definitions and classifications of this condition. Clear definitions and terminology are necessary for scientific literature, particularly for clinicians, and for clinical trials comparing two treatments. The International Federation of Gynaecology and Obstetrics (FIGO) Menstrual Disorders Working Group has proposed abandoning the use of one common term, dysfunctional uterine bleeding (DUB), while continuing to use the terms abnormal uterine bleeding (AUB) and heavy menstrual bleeding (HMB). Furthermore, the group issued the PALM-COEIN classification system for menstrual disorders, which has quickly been adopted around the world. The PALM-COEIN system allows clinicians and researchers to identify and classify women with both AUB and HMB in a systematic manner, provides reliable information for research purposes and for epidemiological and prevalence studies in different settings, and supports accurate diagnoses and treatment. Additionally, this classification system is useful for selecting treatments appropriate for different stages of women's reproductive years and for different patterns of menstrual bleeding. Among the proposed treatments are the use of combined oral contraceptives, the levonorgestrel-releasing intrauterine system, tranexamic acid, mefenamic acid, and other nonsteroidal anti-inflammatory drugs (NSAIDs). PMID:25926984

  4. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    PubMed

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  5. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    PubMed Central

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  6. Recent advances in understanding haemochromatosis: a transition state

    PubMed Central

    Robson, K; Merryweather-Clar..., A; Cadet, E; Viprakasit, V; Zaahl, M; Pointon, J; Weatherall, D; Rochette, J

    2004-01-01

    Mutations in the hepcidin gene HAMP and the hemojuvelin gene HJV have recently been shown to result in juvenile haemochromatosis (JH). Hepcidin is an antimicrobial peptide that plays a key role in regulating intestinal iron absorption. Hepcidin levels are reduced in patients with haemochromatosis due to mutations in the HFE and HJV genes. Digenic inheritance of mutations in HFE and HAMP can result in either JH or hereditary haemochromatosis (HH) depending upon the severity of the mutation in HAMP. Here we review these findings and discuss how understanding the different types of haemochromatosis and our increasing knowledge of iron metabolism may help to elucidate the host's response to infection. PMID:15466004

  7. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges

    SciTech Connect

    Lucas, Robert; Ang, James; Bergman, Keren; Borkar, Shekhar; Carlson, William; Carrington, Laura; Chiu, George; Colwell, Robert; Dally, William; Dongarra, Jack; Geist, Al; Haring, Rud; Hittinger, Jeffrey; Hoisie, Adolfy; Klein, Dean Micron; Kogge, Peter; Lethin, Richard; Sarkar, Vivek; Schreiber, Robert; Shalf, John; Sterling, Thomas; Stevens, Rick; Bashor, Jon; Brightwell, Ron; Coteus, Paul; Debenedictus, Erik; Hiller, Jon; Kim, K. H.; Langston, Harper; Murphy, Richard Micron; Webster, Clayton; Wild, Stefan; Grider, Gary; Ross, Rob; Leyffer, Sven; Laros III, James

    2014-02-10

    Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a system that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.

  8. Advances in understanding the gravity wave spectrum during MAP

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1989-01-01

    Prior to MAP, virtually nothing was known about gravity wave spectra in the atmosphere. The development of observational techniques has played a major role in these studies. Radar and lidar have been particularly important since they can measure atmospheric parameters continuously over large height ranges. Some advances made are: (1) The observed fluctuations and power spectra in the free atmosphere are mostly if not entirely due to a superposition of gravity waves, which can be modeled by the Garrett Munk (GM) model; (2) There is no evidence that 2-D turbulence makes a significant contribution to the observed fluctuations. In any case, the agreement between observations and the GM model shows that the 2DT contribution must be relatively small; (3) Spectra versus vertical wave number are saturated at large wave number, with theory and observations indicating that t approximately equals 3; and (4) Vertical velocity fluctuations and spectra measured near rough terrain are strongly contaminated by mountain waves. But over very flat terrain the spectra are dominated by gravity waves at periods shorter than about 6 hours and apparently by synoptic scale velocities at periods longer than 6 hours. Thus it may be possible to study synoptic scale vertical velocities using radars located in very flat terrain.

  9. Proteomics Advances in the Understanding of Pollen–Pistil Interactions

    PubMed Central

    Fu, Ziyang; Yang, Pingfang

    2014-01-01

    The first key point to the successful pollination and fertilization in plants is the pollen-pistil interaction, referring to the cellular and molecular levels, which mainly involve the haploid pollen and the diploid pistil. The process is defined as “siphonogamy”, which starts from the capture of pollen by the epidermis of stigma and ends up with the fusion of sperm with egg. So far, the studies of the pollen-pistil interaction have been explicated around the self-compatibility and self-incompatibility (SI) process in different species from the molecular genetics and biochemistry to cellular and signal levels, especially the mechanism of SI system. Among them, numerous proteomics studies based on the advanced technologies from gel-system to gel-free system were conducted, focusing on the interaction, in order to uncover the mechanism of the process. The current review mainly focuses on the recent developments in proteomics of pollen-pistil interaction from two aspects: self-incompatible and compatible pollination. It might provide a comprehensive insight on the proteins that were involved in the regulation of pollen-pistil interaction. PMID:28250391

  10. Recent advances in our understanding of Streptococcus pneumoniae infection

    PubMed Central

    Anderson, Ronald

    2014-01-01

    A number of significant challenges remain with regard to the diagnosis, treatment, and prevention of infections with Streptococcus pneumoniae (pneumococcus), which remains the most common bacterial cause of community-acquired pneumonia. Although this infection is documented to be extremely common in younger children and in older adults, the burden of pneumonia it causes is considerably underestimated, since the incidence statistics are derived largely from bacteremic infections, because they are easy to document, and yet the greater burden of pneumococcal pneumonias is non-invasive. It has been estimated that for every bacteremic pneumonia that is documented, three non-bacteremic infections occur. Management of these infections is potentially complicated by the increasing resistance of the isolates to the commonly used antibiotics. Furthermore, it is well recognized that despite advances in medical care, the mortality of bacteremic pneumococcal pneumonia has remained largely unchanged over the past 50 years and averages approximately 12%. Much recent research interest in the field of pneumococcal infections has focused on important virulence factors of the organism, on improved diagnostic and prognostication tools, on defining risk factors for death, on optimal treatment strategies involving both antibiotics and adjunctive therapies, and on disease prevention. It is hoped that through these endeavors the outlook of pneumococcal infections will be improved. PMID:25343039

  11. Advances in the understanding, management, and prevention of dengue.

    PubMed

    Hermann, Laura L; Gupta, Swati B; Manoff, Susan B; Kalayanarooj, Siripen; Gibbons, Robert V; Coller, Beth-Ann G

    2015-03-01

    Dengue causes more human morbidity globally than any other vector-borne viral disease. Recent research has led to improved epidemiological methods that predict disease burden and factors involved in transmission, a better understanding of immune responses in infection, and enhanced animal models. In addition, a number of control measures, including preventative vaccines, are in clinical trials. However, significant gaps remain, including the need for better surveillance in large parts of the world, methods to predict which individuals will develop severe disease, and immunologic correlates of protection against dengue illness. During the next decade, dengue will likely expand its geographic reach and become an increasing burden on health resources in affected areas. Licensed vaccines and antiviral agents are needed in order to effectively control dengue and limit disease.

  12. Recent Advances in Understanding and Managing Tourette Syndrome

    PubMed Central

    Thenganatt, Mary Ann; Jankovic, Joseph

    2016-01-01

    Tourette syndrome (TS) is a neurologic and behavioral disorder consisting of motor and phonic tics with onset in childhood or adolescence. The severity of tics can range from barely perceptible to severely impairing due to social embarrassment, discomfort, self-injury, and interference with daily functioning and school or work performance. In addition to tics, most patients with TS have a variety of behavioral comorbidities, including attention deficit hyperactivity disorder and obsessive-compulsive disorder. Studies evaluating the pathophysiology of tics have pointed towards dysfunction of the cortico-striato-thalamo-cortical circuit, but the mechanism of this hyperkinetic movement disorder is not well understood. Treatment of TS is multidisciplinary, typically involving behavioral therapy, oral medications, and botulinum toxin injections. Deep brain stimulation may be considered for “malignant” TS that is refractory to conventional therapy. In this review, we will highlight recent developments in the understanding and management strategies of TS. PMID:26918185

  13. Recent advances in the pathological understanding of eosinophilic esophagitis.

    PubMed

    Cianferoni, Antonella; Spergel, Jonathan M; Muir, Amanda

    2015-01-01

    Eosinophilic esophagitis (EoE) is a chronic allergen-mediated inflammatory disease of the esophagus. This inflammation leads to feeding difficulties, failure to thrive and vomiting in young children, and causes food impaction and esophageal stricture in adolescents and adults. In the 20 years since EoE was first described, we have gained a great deal of knowledge regarding the genetic predisposition of disease, the inflammatory milieu associated with EoE and the long-term complications of chronic inflammation. Herein, we summarize the important breakthroughs in the field including both in vitro and in vivo analysis. We discuss insights that we have gained from large-scale unbiased genetic analysis, a multitude of genetically and chemically altered mouse models of EoE and most importantly, the results of clinical trials of various pharmacologic agents. Understanding these successes and failures may be the key to developing more effective therapeutic strategies.

  14. Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete

    SciTech Connect

    Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann; Remec, Igor; Giorla, Alain B; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.

  15. Advances in Modern Botnet Understanding and the Accurate Enumeration of Infected Hosts

    ERIC Educational Resources Information Center

    Nunnery, Christopher Edward

    2011-01-01

    Botnets remain a potent threat due to evolving modern architectures, inadequate remediation methods, and inaccurate measurement techniques. In response, this research exposes the architectures and operations of two advanced botnets, techniques to enumerate infected hosts, and pursues the scientific refinement of infected-host enumeration data by…

  16. The Effect of Constructivist Learning Using Scientific Approach on Mathematical Power and Conceptual Understanding of Students Grade IV

    NASA Astrophysics Data System (ADS)

    Kusmaryono, Imam; Suyitno, Hardi

    2016-02-01

    This study used a model of Concurrent Embedded with the aim of: (1) determine the difference between the conceptual understanding and mathematical power of students grade fourth who take the constructivist learning using scientific approach and direct learning, (2) determine the interaction between learning approaches and initial competence on the mathematical power and conceptual of understanding, and (3) describe the mathematical power of students grade fourth. This research was conducted in the fourth grade elementary school early 2015. Data initial competence and mathematical power obtained through tests, and analyzed using statistical tests multivariate and univariate. Statistical analysis of the results showed that: (1) There are differences in the concept of understanding and mathematical power among the students who follow the scientifically-based constructivist learning than students who take the Direct Learning in terms of students initial competency (F = 5.550; p = 0.007 < 0.05), and (2) There is an interaction between the scientific-based constructivist learning approach with an initial competence (high and low) on the ability of concept of understanding and mathematical power (F = 5.259; p =0.033 < 0,05). Observations and in-depth interviews with students, shows that the construction of mathematical power of students have influenced the thinking of students in problem solving and contributes tremendous increase students' math skills. Researcher suggested that the learning of mathematics in schools using scientifically- based constructivist approach to improve the mathematical power of students and conceptual understanding.

  17. Understanding the Dialectical Relations between Everyday Concepts and Scientific Concepts within Play-Based Programs

    ERIC Educational Resources Information Center

    Fleer, Marilyn

    2009-01-01

    In recent times there has been an enormous interest in Vygotsky's writing on conceptual development, particularly his insights on the differences between everyday and scientific thinking. In drawing upon cultural-historical theory, this paper seeks to examine the relations between everyday concepts and scientific concepts within playful contexts,…

  18. Understanding and Affecting Science Teacher Candidates' Scientific Reasoning in Introductory Astrophysics

    ERIC Educational Resources Information Center

    Steinberg, Richard; Cormier, Sebastien

    2013-01-01

    This study reports on a content course for science immersion teacher candidates that emphasized authentic practice of science and thinking scientifically in the context of introductory astrophysics. We explore how 122 science teacher candidates spanning three cohorts did and did not reason scientifically and how this evolved in our program. Our…

  19. Promoting the Understanding of Scientific Reasoning, Mathematical Modeling and Data Analysis: A Course for Astrophysics Majors

    NASA Astrophysics Data System (ADS)

    Robbins, Dennis; Ford, S.

    2014-01-01

    The NSF-supported “AstroCom NYC” program, a collaboration of the City University of New York, American Museum of Natural History (AMNH), and Columbia University has the explicit goal of increasing the participation of underrepresented minorities in astronomy and astrophysics by providing pedagogical mentoring and research experiences to undergraduate students. To supplement AstroCom scholars' undergraduate course work, and as a gateway to summer astrophysics research opportunities, we implemented a course called “Methods of Scientific Research” (MSR). The semester-long MSR course emphasizes the study of data using computers and other digital tools in a laboratory environment that encourages collaborative and active learning. We enroll early physical science majors and deliberately seek to inculcate habits of mind needed for science research, including assigning physical meaning to variables and measurements; engaging in mathematical modeling; quantifying error; eliminating bias; proposing hypotheses; creating predictions; testing predictions. Using laptop computers interfaced with probeware, students collect and analyze data using graphing software. Students study concepts such as motion, temperature, magnetism, electricity, gas pressure, and force with open-ended investigations where large data sets can be readily collected and replicated during a course meeting. Students are guided to examine data for patterns and trends, to make meaning of descriptive statistics such as means, standard deviations, maximum and minimum values, correlation coefficients and root mean square error values, and in general to understand, judge, and describe the studied phenomena based on data. A secondary goal of the course is to familiarize students with the facilities at AMNH, where they will do summer research as part of AstroCom NYC, in an effort to build a sense of belonging and to help them begin to self-identify as a scientist. We will discuss some our activities and

  20. Understanding of Mechanisms for Design of Advanced Superconductors

    NASA Astrophysics Data System (ADS)

    Pickett, Warren

    2007-03-01

    A recent DOE panel considered the future of research in superconducting materials and made a number of recommendations for priority research directions (http://www.er.doe.gov/bes/reports/files/SCrpt.pdf), two of which will be discussed. These items, under the rubric of Enabling Superconductivity, emphasize that Finding the Mechanisms is essential for furthering the field, and that once understood, the prospect of Superconductors by Design becomes a viable line of research. Establishing the mechanism in the high temperature superconducting cuprates continues to attract substantial efforts, with no consensus near. In several superconductors, including some discovered in the past decade or so, having Tc around or above 20 K [(Ba,K)BiO3; LixHfNCl; PuCoGa5] the mechanism is in question. On the more positive side, there are several cases established in the past six years, beginning with MgB2 and extending to elemental metals under pressure (Li, Y, Ca), where the familiar electron-phonon mechanism has provided unexpectedly high Tc and thereby stimulated enthusiasm and optimism into this area of superconductivity research. The clear understanding of this mechanism (at least in many respects) provides a path for improvements in superconducting materials.

  1. [Acute pancreatitis: recent advances in understanding its pathophysiology].

    PubMed

    Telek, G; Fehér, J; Jakab, F; Claude, R

    2000-02-06

    This article reviews the recent changes in the understanding of acute pancreatitis pathophysiology emphasizing results deriving from the more detailed comprehension of the local and systemic aspects of the inflammatory process. The authors briefly discuss those theories that have been influencing the basic philosophies of treatment efforts. The role of premature digestive enzyme activation as the principal determinant of the pathoetiology and mortality of this disease has been questioned lately, and the inflammatory explosion has been placed into the center of attention. Simultaneously with the enzyme activation, the pancreatitogenic noxious event rapidly induces the formation of oxygen derived free radicals, activation of the transcription factor NF kappa-B, with consequent citokine production, cellular adhesion molecule upregulation and leukocyte hyperstimulation. Numerous other mediator cascades are activated in parallel, the uncontrolled surge of proinflammatory stimuli, and activity of the effector cells lead to multiple organ failure in severe cases. A genetically determined catastrophe management program is set forth in the acinar cell with pancreatitis associated protein expression and activation of the apoptosis machinery. Therapeutic approaches based on these recent findings are briefly touched upon.

  2. Recent advances in understanding physical properties of metallurgical slags

    NASA Astrophysics Data System (ADS)

    Min, Dong Joon; Tsukihashi, Fumitaka

    2017-01-01

    Present-day knowledge of the structure and physical properties of metallurgical slags is summarized to address structure-property and inter-property relationships. Physical properties of slags including viscosity, electrical conductivity, and surface tension is reviewed focusing on the effect of slag structure, which is comprehensively evaluated using FT-IT, Raman, and MAS-NMR spectroscopy. The effect of the slag composition on slag structure and property is reviewed in detail: Compositional effect encompasses traditional concepts of basicity, network-forming behaviors of anions, and secondary impact of network-modifying cations. Secondary objective of this review is elucidating the mutual relationship between physical properties of slags. For instance, the relationship between slag viscosity and electrical conductivity is suggested by Walden's rule and discussed based on the experimental results. Slag foaming index is also introduced as a comprehensive understanding method of physical properties of slags. The dimensional analysis was made to address the effect of viscosity, density, and surface tension on the foaming index of slags.

  3. Advances in the molecular understanding of gonadotropins-receptors interactions.

    PubMed

    el Tayar, N

    1996-12-20

    The extracellular domain (ECD) of gonadotropin receptors belong to the leucine-rich repeat (LRR) protein superfamily and their transmembrane domain (TMD) is characteristic of the seven alpha-helices G-protein-coupled receptors (GPCR). The availability of the X-ray structures of porcine ribonuclease inhibitor (RI), a LRR protein, and bacteriorhodopsin (bR) allows the construction of 3D models of the ECD and the TMD of gonadotropin receptors, respectively. The predicted models are to a large extent consistent with currently available biochemical and mutational data. The models provide a reliable basis for understanding how the hormone binds and activates its receptor. The ECD, in particular the LRR region, serves as a baseball glove which efficiently catches the large hormone and optimally orient the appropriate parts of it for interaction with the seven-transmembrane-helix domain of the receptor. This in turn is expected to lead to a conformational change to be sensed by the appropriate G-protein complex leading to the stimulation of cAMP synthesis and steroids production.

  4. Reef sharks: recent advances in ecological understanding to inform conservation.

    PubMed

    Osgood, G J; Baum, J K

    2015-12-01

    Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions.

  5. Advances in understanding and utilising ELM control in JET

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; de la Luna, E.; Lang, P. T.; Liang, Y.; Alper, B.; Denner, P.; Frigione, D.; Garzotti, L.; Ham, C. J.; Huijsmans, G. T. A.; Jachmich, S.; Kocsis, G.; Lennholm, M.; Lupelli, I.; Rimini, F. G.; Sips, A. C. C.; Contributors, JET

    2016-01-01

    Edge localised mode (ELM) control may be essential to develop ITER scenarios with a reasonable lifetime of divertor components, whilst ELM pacing may be essential to develop stationary ITER scenarios with a tungsten divertor. Resonant magnetic perturbations (RMPs) have mitigated ELMs in high collisionality plasmas in JET. The efficacy of RMPs in mitigating the ELMs is found to depend on plasma shaping, with the change in magnetic boundary achieved when non-axisymmetric fields are applied facilitating access to small ELM regimes. The understanding of ELM pacing by vertical kicks or pellets has also been improved in a range of pedestal conditions in JET ({{T}\\text{ped}}=0.7 -1.3 keV) encompassing the ITER-expected domain ({β\\text{N}}=1.4 -2.4, H 98(y, 2)  =  0.8-1.2, {{f}\\text{GW}}˜ 0.7 ). ELM triggering is reliable provided the perturbation is above a threshold which depends on pedestal parameters. ELM triggering is achieved even in the first 10% of the natural ELM cycle suggesting no inherent maximum frequency. At high normalised pressure, the peeling-ballooning modes are stabilised as predicted by ELITE, necessitating a larger perturbation from either kicks or pellets in order to trigger ELMs. Both kicks and pellets have been used to pace ELMs for tungsten flushing. This has allowed stationary plasma conditions with low gas injection in plasmas where the natural ELM frequency is such that it would normally preclude stationary conditions.

  6. What I Wish: Three Advancement Professionals Discuss What Their Colleagues Need to Understand about Their Jobs

    ERIC Educational Resources Information Center

    Gurd, Andy; Peirce, Susan; Morris, Sarah

    2012-01-01

    Three advancement professionals discuss what their colleagues need to understand about their jobs. The Ohio State University Alumni Association is currently integrating into the university's advancement office at the behest of the board of trustees, so Andy Gurd is now working more closely with his development and communications colleagues than…

  7. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estellés, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Rosenberg, P.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Woolley, A.

    2015-01-01

    The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under

  8. The Effectiveness of the Brain Based Teaching Approach in Enhancing Scientific Understanding of Newtonian Physics among Form Four Students

    ERIC Educational Resources Information Center

    Saleh, Salmiza

    2012-01-01

    The aim of this study was to assess the effectiveness of Brain Based Teaching Approach in enhancing students' scientific understanding of Newtonian Physics in the context of Form Four Physics instruction. The technique was implemented based on the Brain Based Learning Principles developed by Caine & Caine (1991, 2003). This brain compatible…

  9. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    ERIC Educational Resources Information Center

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  10. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  11. Exploring Learners' Beliefs about Science Reading and Scientific Epistemic Beliefs, and Their Relations with Science Text Understanding

    ERIC Educational Resources Information Center

    Yang, Fang-Ying; Chang, Cheng-Chieh; Chen, Li-Ling; Chen, Yi-Chun

    2016-01-01

    The main purpose of this study was to explore learners' beliefs about science reading and scientific epistemic beliefs, and how these beliefs were associating with their understanding of science texts. About 400 10th graders were involved in the development and validation of the Beliefs about Science Reading Inventory (BSRI). To find the effects…

  12. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    ERIC Educational Resources Information Center

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific…

  13. Scientific Understanding from Long Term Observations: Insights from the Long Term Ecological Research (LTER) Program

    NASA Astrophysics Data System (ADS)

    Gosz, J.

    2001-12-01

    estuaries below by removing all incoming freshwater. At Toolik Lake, long-term experiments of removing top predators from the good web of lakes showed dramatic alterations of lake populations of small fish and zooplankton. In New Mexico, LTER research on small mammal populations is successfully predicting rodent increases and the potential for increased zoonotic diseases such as Hantavirus and bubonic plague. This ability to forecast based on El Nino prediction is being used to increase scientific awareness and public health awareness through media based communication with the public. In Oregon, the Andrews Forest LTER program has had long, strong links with natural resource policy and management. Basic understanding of forest-stream interactions, characteristics of old-growth forests, roles of woody debris in temperate forest ecosystems, invertebrate biodiversity and ecosystem function have been incorporated in management guidelines, plans and regulations for public and private lands throughout the Pacific Northwest. Other examples of the values of long-term research and monitoring will be presented.

  14. Primary healthcare NZ nurses' experiences of advance directives: understanding their potential role.

    PubMed

    Davidson, Raewyn; Banister, Elizabeth; de Vries, Kay

    2013-07-01

    Advance directives are one aspect of advance care planning designed to improve end of life care. The New Zealand Nurses Organisation released their first mission statement in 2010 concerning advance directives suggesting an increase in the use of these. A burgeoning older population, expected to rise over the next few years, places the primary healthcare nurse in a pivotal role to address the challenges in constructing advance directives. While literature supports the role for primary healthcare nurses in promoting advance directives, no research was found on this role in the New Zealand context. This paper presents results of a qualitative study conducted in New Zealand with 13 senior primary healthcare nurses with respect to their knowledge, attitudes, and experiences of advance directives. Results of the analysis revealed a dynamic process involving participants coming to understand their potential role in this area. This process included reflection on personal experience with advance directives; values and ethics related to end of life issues; and professional actions.

  15. BOOK REVIEW: New Understanding Physics for Advanced Level

    NASA Astrophysics Data System (ADS)

    Breithaupt, Jim

    2000-09-01

    Breithaupt's new book is big: at 727 pages, it will be a hefty addition to any student's bag. According to the preface, the book is designed to help students achieve the transition from GCSE to A-level and to succeed well at this level. It also aims to cover the requirements of the compulsory parts of all new syllabuses and to cover most of the optional material, too. The book is organized into seven themes along traditional lines: mechanics, materials, fields, waves, electricity, inside the atom, and physics in medicine. Each theme begins with a colourful title page that outlines what the theme is about, lists the applications that students will meet in their reading, identifies prior learning from GCSE and gives a checklist of what students should be able to do once they have finished their reading of the theme. This is all very useful. The text of the book is illustrated with many colourful photographs, pictures and cartoons, but despite this it looks very dense. There are a lot of words on every page in a small font that makes them seem very unfriendly, and although the book claims to be readable I rather doubt that the layout will encourage voluntary reading of the text. Each chapter ends with a useful summary and a selection of short questions that allow students to test their understanding. Each theme has a set of multiple choice and long questions. Some of the questions have an icon referring the student to the accompanying CD (more of this later). There is much up-to-date material in the book. For example, the section on cosmology gives a brief description of the inflationary scenario within the Big Bang model of the origin of the universe, although no mechanism for the inflation is given, which might prove unsatisfying to some students. I do have some reservations about the presentation of some topics within the book: the discussion of relativistic mass, for example, states that `Einstein showed that the mass ... is given by the formula ...' and quotes

  16. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  17. Estimating increases in outpatient dialysis costs resulting from scientific and technological advancement.

    PubMed

    Ozminkowski, R J; Hassol, A; Firkusny, I; Noether, M; Miles, M A; Newmann, J; Sharda, C; Guterman, S; Schmitz, R

    1995-04-01

    The Medicare program's base payment rate for outpatient dialysis services has never been adjusted for the effects of inflation, productivity changes, or scientific and technological advancement on the costs of treating patients with end-stage renal disease. In recognition of this, Congress asked the Prospective Payment Assessment Commission to annually recommend an adjustment to Medicare's base payment rate to dialysis facilities. One component of this adjustment addresses the cost-increasing effects of technological change--the scientific and technological advances (S&TA) component. The S&TA component is intended to encourage dialysis facilities to adopt technologies that, when applied appropriately, enhance the quality of patient care, even though they may also increase costs. We found the appropriate increase to the composite payment rate for Medicare outpatient dialysis services in fiscal year 1995 to vary from 0.18% to 2.18%. These estimates depend on whether one accounts for the lack of previous adjustments to the composite rate. Mathematically, the S&TA adjustment also depends on whether one considers the likelihood of missing some dialysis sessions because of illness or hospitalization. The S&TA estimates also allow for differences in the incremental costs of technological change that are based on the varying advice of experts in the dialysis industry. The major contributors to the cost of technological change in dialysis services are the use of twin-bag disconnect peritoneal dialysis systems, automated peritoneal dialysis cyclers, and the new generation of hemodialysis machines currently on the market. Factors beyond the control of dialysis facility personnel that influence the cost of patient care should be considered when payment rates are set, and those rates should be updated as market conditions change. The S&TA adjustment is one example of how the composite rate payment system for outpatient dialysis services can be modified to provide appropriate

  18. Scientific and Technological Education in Brazil: Advancements and Challenges for the 21st Century

    NASA Astrophysics Data System (ADS)

    André, Claudio; Reis, Norma Teresinha Oliveira; Bruzzi, Demerval Guillarducci

    There is a complexity of challenges related to scientific and technological education in Brazil, including literacy in basic concepts and principles by students; better pre- and in-service teacher training; sufficient supply of computers, internet and other technological resources to all Brazilian public schools; provision of teacher training on how to effectively use such tools; and promotion of public awareness of science and technology and their vital role socioeconomic development and sovereignty. Recognizing the importance of fostering usage of technologies in education and the urgency of promoting and encouraging synergic efforts in the development, implementation, monitoring and evaluation of policies/programs/projects for science and technology in pre-college education, it was created in 2008, the Coordination of Educational Technologies, in the structure of the Brazilian Ministry of Education. This paper aims to: a) provide a general panorama of Brazilian education; b) discuss some current Brazilian efforts targeted to the advancement of scientific and technological education in pre-college education. As an illustration, we present the so-called “Guide of Educational Technologies,” a publication that allows educational managers to select resources that contribute to the enhancement of education in their school systems. This publication offers a wide range of educational technologies, such as in-service courses for teachers, web resources, software and programs targeted to several educational areas and demands.

  19. Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks

    SciTech Connect

    Frances M. Marshall

    2008-07-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plans for the NSUF.

  20. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    SciTech Connect

    Sadooghi, Iman; Hernandez Martin, Jesus; Li, Tonglin; Brandstatter, Kevin; Zhao, Yong; Maheshwari, Ketan; Pais Pitta de Lacerda Ruivo, Tiago; Timm, Steven; Garzoglio, Gabriele; Raicu, Ioan

    2015-01-01

    Commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context to price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.

  1. Understanding vegetation response to climate variability from space: the scientific objectives, the approach and the concept of the SPECTRA Mission

    NASA Astrophysics Data System (ADS)

    Menenti, M.

    2002-06-01

    The response of vegetation to climate variability is a major scientific question. The monitoring of the carbon stock in terrestrial environments, as well as the improved understanding of the surface-atmosphere interactions controlling the exchange of matter, energy and momentum, is of immediate interest for an improved assessment of the various components of the global carbon cycle. Studies of the Earth System processes at the global scale rely on models that require an advanced understanding and proper characterization of processes at smaller scales. The goal of the SPECTRA mission is to improve the description of those processes by means of better constraints on and parameterizations of the associated models. Many vegetation properties are related to features of reflectance spectra in the region 400 nm - 2500 nm. Detailed observations of spectral reflectance reveal subtle features related to biochemical components of leaves such as chlorophyll and water. The architecture of vegetation canopies determines complex changes of observed reflectance spectra with view and illumination angle. Quantitative analysis of reflectance spectra requires, therefore, an accurate characterization of the anisotropy of reflected radiance. This can be achieved with nearly simultaneous observations at different view angles. Exchange of energy between the biosphere and the atmosphere is an important mechanism determining the response of vegetation to climate variability. This requires measurements of the component temperature of foliage and soil. The prime objective of SPECTRA is to determine the amount, assess the conditions and understand the response of terrestrial vegetation to climate variability and its role in the coupled cycles of energy, water and carbon. The amount and state of vegetation will be determined by the combination of observed vegetation properties and data assimilation. Specifically, the mission will characterize the amount and state of vegetation with observations

  2. Understanding vegetation response to climate variability from space the scientific objectives, the approach and the concept of the Spectra Mission

    NASA Astrophysics Data System (ADS)

    Menenti, M.; Rast, M.; Baret, F.; Hurk, B.; Knorr, W.; Mauser, W.; Miller, J.; Schaepman, M.; Schimel, D.; Verstraete, M.

    The response of vegetation to climate variability is a major scientific question. The monitoring of the carbon stock in terrestrial environments, as well as the improved understanding of the surface-atmosphere interactions controlling the exchange of matter, energy and momentum, is of immediate interest for an improved assessment of the various components of the global carbon cycle. Studies of the Earth System processes at the global scale rely on models that require an advanced understanding and proper characterization of processes at smaller scales. The goal of the SPECTRA mission is to improve the description of those processes by means of better constraints on and parameterizations of the associated models. Many vegetation properties are related to features of reflectance spectra in the region 400 nm - 2500 nm. Detailed observations of spectral reflectance reveal subtle features related to biochemical components of leaves such as chlorophyll and water. The architecture of vegetation canopies determines complex changes of observed reflectance spectra with view and illumination angle. Quantitative analysis of reflectance spectra requires, therefore, an accurate characterization of the anisotropy of reflected radiance. This can be achieved with nearly - simultaneous observations at different view angles. Exchange of energy between the biosphere and the atmosphere is an important mechanism determining the response of vegetation to climate variability. This requires measurements of the component t mperature ofe foliage and soil. The prime objective of SPECTRA is to determine the amount, assess the conditions and understand the response of terrestrial vegetation to climate variability and its role in the coupled cycles of energy, water and carbon. The amount and state of vegetation will be determined by the combination of observed vegetation properties and data assimilation. Specifically, the mission will characterize the amount and state of vegetation with

  3. Understanding Vegetation Response To Climate Variability From Space: The Scientific Objectives< The Approach and The Concept of The Spectra Mission

    NASA Astrophysics Data System (ADS)

    Menenti, M.; Rast, M.; Baret, F.; Mauser, W.; Miller, J.; Schaepman, M.; Schimel, D.; Verstraete, M.

    The response of vegetation to climate variability is a major scientific question. The monitoring of the carbon stock in terrestrial environments, as well as the improved understanding of the surface-atmosphere interactions controlling the exchange of mat- ter, energy and momentum, is of immediate interest for an improved assessment of the various components of the global carbon cycle. Studies of the Earth System processes at the global scale rely on models that require an advanced understanding and proper characterization of processes at smaller scales. The goal of the SPECTRA mission is to improve the description of those processes by means of better constraints on and parameterizations of the associated models. Many vegetation properties are related to features of reflectance spectra in the region 400 nm U 2500 nm. Detailed observa- tions of spectral reflectance reveal subtle features related to biochemical components of leaves such as chlorophyll and water. The architecture of vegetation canopies de- termines complex changes of observed reflectance spectra with view and illumination angle. Quantitative analysis of reflectance spectra requires, therefore, an accurate char- acterization of the anisotropy of reflected radiance. This can be achieved with nearly U simultaneous observations at different view angles. Exchange of energy between the biosphere and the atmosphere is an important mechanism determining the response of vegetation to climate variability. This requires measurements of the component tem- perature of foliage and soil. The prime objective of SPECTRA is to determine the amount, assess the conditions and understand the response of terrestrial vegetation to climate variability and its role in the coupled cycles of energy, water and carbon. The amount and state of vegetation will be determined by the combination of observed vegetation properties and data assimilation. Specifically, the mission will character- ize the amount and state of vegetation

  4. Penile prosthesis implant: scientific advances and technological innovations over the last four decades

    PubMed Central

    2017-01-01

    Despite introduction of oral phosphodiesterase type 5 inhibitors and intracavernosal vasoactive agents, penile prosthesis implant remains a relevant and desired option with sales of penile prostheses continue to stay high, as many men became refractory to medical therapy and/or seeking a more effective and permanent therapy. There are two types of penile prosthesis implants: inflatable and non-inflatable types, and the inflatable penile implants can be subdivided into single-, two- and three-piece devices. Non-inflatable penile prosthesis (non-IPP) may be referred to as semi-rigid rod or malleable prosthesis. IPP is considered a superior option to malleable prosthesis as it produces penile rigidity and flaccidity that closely replicates a normal penile erectile function. Since the introduction of IPP by Scott in 1973, surgical landscape for penile prosthesis implantation has changed dramatically. Advances in prosthesis design, device technologies and surgical techniques have made penile prosthesis implant a more natural, durable and reliable device. The following article reviews the scientific advances and technological innovation in modern penile prosthesis implants over the last four decades. PMID:28217449

  5. Penile prosthesis implant: scientific advances and technological innovations over the last four decades.

    PubMed

    Chung, Eric

    2017-02-01

    Despite introduction of oral phosphodiesterase type 5 inhibitors and intracavernosal vasoactive agents, penile prosthesis implant remains a relevant and desired option with sales of penile prostheses continue to stay high, as many men became refractory to medical therapy and/or seeking a more effective and permanent therapy. There are two types of penile prosthesis implants: inflatable and non-inflatable types, and the inflatable penile implants can be subdivided into single-, two- and three-piece devices. Non-inflatable penile prosthesis (non-IPP) may be referred to as semi-rigid rod or malleable prosthesis. IPP is considered a superior option to malleable prosthesis as it produces penile rigidity and flaccidity that closely replicates a normal penile erectile function. Since the introduction of IPP by Scott in 1973, surgical landscape for penile prosthesis implantation has changed dramatically. Advances in prosthesis design, device technologies and surgical techniques have made penile prosthesis implant a more natural, durable and reliable device. The following article reviews the scientific advances and technological innovation in modern penile prosthesis implants over the last four decades.

  6. Understanding Scientific Knowledge and Communication: Library and Information Science in the Undergraduate Curriculum.

    ERIC Educational Resources Information Center

    Sutton, Brett

    1996-01-01

    Describes an experimental undergraduate seminar on the production and dissemination of scientific knowledge. The course takes a multidisciplinary approach, using case studies to draw together theoretical principles from library and information science, the philosophy and sociology of science, critical thinking and problem solving, and the…

  7. A Method for Understanding Their Method: Discovering Scientific Inquiry through Biographies of Famous Scientists

    ERIC Educational Resources Information Center

    Fairweather, Elizabeth; Fairweather, Thomas

    2010-01-01

    Mendel and his peas. Goodall and her chimpanzees. Bentley and his snowflakes. Pasteur and his sheep. Not only do these stories intrigue students, but they also demonstrate the trials and tribulations associated with scientific inquiry. Using scientists' biographies piques student interest while providing an added dimension to their understanding…

  8. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    ERIC Educational Resources Information Center

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-01-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them "experiment," "science fair," and "hypothesis," is used to probe the students' knowledge structures.…

  9. Developing Deaf Children's Conceptual Understanding and Scientific Argumentation Skills: A Literature Review

    ERIC Educational Resources Information Center

    Jones, Lindsey

    2014-01-01

    There is limited research available in the area of science education for deaf children. In the twenty-first century, the importance of science and specifically scientific argumentation cannot be overlooked as a vital aspect of the curriculum. Current science teaching presents a range of difficulties for deaf students particularly when abstract…

  10. Exploring Teachers' Informal Formative Assessment Practices and Students' Understanding in the Context of Scientific Inquiry

    ERIC Educational Resources Information Center

    Ruiz-Primo, Maria Araceli; Furtak, Erin Marie

    2007-01-01

    This study explores teachers' informal formative assessment practices in three middle school science classrooms. We present a model for examining these practices based on three components of formative assessment (eliciting, recognizing, and using information) and the three domains linked to scientific inquiry (epistemic frameworks, conceptual…

  11. Scientific Highlights of INDEPTH: Our Still-Evolving Understanding of Tibet

    NASA Astrophysics Data System (ADS)

    Klemperer, S. L.; Science Teams, I.

    2011-12-01

    : INDEPTH field activities began in 1992 as a modest Sino-US reflection profile in the Tethyan Himalaya; after 20 years it has spanned the Tibet to cross the KunLun mountains. Three major field campaigns after the first modest test were each spring-boarded by a major discovery in the preceding phase, that in each case highlighted the value of a new scientific technique. INDEPTH-1 imaged the Main Himalayan Thrust for the first time, and wide-angle recording demonstrated India must penetrate north of the Indus-Tsangpo suture at mid-crustal levels. INDEPTH-2 additionally harnessed passive seismic and magneto-telluric recording to discover widespread crustal melting in the Lhasa terrane above subducting India, leading directly to the influential channel-flow model of the development of orogens. INDEPTH-3 crossed into the Qiangtang (northern Tibet), imaged the Indian slab descending into the mantle, and discovering the dramatic change in anisotropy properties of the lithosphere north and south of the Banggong-Nujiang suture. INDEPTH-4 focussed on the interaction of the Qaidam Basin with the high Tibetan plateau, by indentation into the weaker Tibetan crust of the Songpan-Ganzi terrane, and at greater depth provided new images of possible Asian subduction from the north beneath Tibet. Although INDEPTH has provided iconic images of the lithosphere, these have not always translated into agreement about fundamental concerns: the northern limit of Indian crust as part of Tibetan lithosphere (mantle suture) remains debated; and north of that mantle suture, the degree of crust-mantle coupling remains more in the realm of modelers than observational geophysics. Beyond the principal INDEPTH transect, dispersed MT studies in particular have been used to argue the essential collinearity of the Himalayan orogen, and these and passive seismic recordings have suggested relatively uniform plateau-wide processes controlled by a pervasively deforming crust. But as we have deployed more

  12. Issues In-Depth: Advancing Understanding of Drug Addiction and Treatment

    ERIC Educational Resources Information Center

    Miller, Roxanne Greitz

    2009-01-01

    While most school districts utilize a drug abuse resistance curriculum, as science teachers, it is our responsibility to understand the science behind drug addiction in order to most effectively educate our students against drug abuse. In the last two decades, increases in scientific technology have permitted significant discoveries surrounding…

  13. Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda in Education

    ERIC Educational Resources Information Center

    Fischer, Frank; Kollar, Ingo; Ufer, Stefan; Sodian, Beate; Hussmann, Heinrich; Pekrun, Reinhard; Neuhaus, Birgit; Dorner, Birgit; Pankofer, Sabine; Fischer, Martin; Strijbos, Jan-Willem; Heene, Moritz; Eberle, Julia

    2014-01-01

    Scientific reasoning and scientific argumentation are highly valued outcomes of K-12 and higher education. In this article, we first review main topics and key findings of three different strands of research, namely research on the development of scientific reasoning, research on scientific argumentation, and research on approaches to support…

  14. International Space Station Accomplishments Update: Scientific Discovery, Advancing Future Exploration, and Benefits Brought Home to Earth

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore

    2013-01-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of "ocular syndrome" affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic, and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new "cold flame" phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28 million

  15. International space station accomplishments update: Scientific discovery, advancing future exploration, and benefits brought home to earth

    NASA Astrophysics Data System (ADS)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Buckley, Nicole; Johnson-Green, Perry; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore

    2014-10-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of “ocular syndrome” affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new “cold flame” phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28

  16. Study of Environmental Arctic Change (SEARCH): Scientific Understanding of Arctic Environmental Change to Help Society Understand and Respond to a Rapidly Changing Arctic.

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Myers, B.

    2015-12-01

    The Study of Environmental Arctic Change (SEARCH) is a U.S. program with a mission to provide a foundation of Arctic change science through collaboration with the research community, funding agencies, and other stakeholders. To achieve this mission, SEARCH: Generates and synthesizes research findings and promotes Arctic science and scientific discovery across disciplines and among agencies. Identifies emerging issues in Arctic environmental change. Provides scientific information to Arctic stakeholders, policy-makers, and the public to help them understand and respond to arctic environmental change. Facilitates research activities across local-to-global scales, with an emphasis on addressing needs of decision-makers. Collaborates with national and international science programs integral to SEARCH goals. This poster presentation will present SEARCH activities and plans, highlighting those focused on providing information for decision-makers. http://www.arcus.org/search

  17. Advancing the understanding of plasma transport in mid-size stellarators

    NASA Astrophysics Data System (ADS)

    Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams

    2017-01-01

    The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.

  18. The Reproduction of Scientific Understanding about Pendulum Motion in the Public

    ERIC Educational Resources Information Center

    Manabu, Sumida

    2004-01-01

    This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's…

  19. A Whole Different Side of Geology: The Science of Reading and Mostly Understanding Scientific Articles for Beginning Geologists

    NASA Astrophysics Data System (ADS)

    Figg, S.

    2014-12-01

    The idea of reading and understanding scientific articles can be daunting to beginning geology students. A student driven question "How do I read a scientific paper?" became the catalyst for a 1-unit special topic course, specifically devoted to the process of reading scientific articles. Five students participated in the course, which focused on research articles pertaining to an upcoming field study in Death Valley. The course was divided into four main portions: locating articles, reading and understand scientific articles, applying of articles in the field, and creating an abstract. Articles were located electronically through the Palomar College library. The first step was to teach students how to navigate databases for the desired material. Part Two was the most challenging and time consuming: the process of reading, analyzing, and comprehending scholarly articles. What made the course interesting was the student driven approach to the articles. Under guidance of an instructor, students worked as a group, navigating two different articles while developing their own strategies to obtain the basic concepts of the article. Each student then had to analyze an additional two articles of their choosing. During this time observations were made on student confidence, methods developed to assist in understanding articles, student challenges and successes. Information gained from the articles was then applied during a five day field course in Death Valley. Each student gave a brief presentation about the two articles read independently, applying them to various settings in the Death Valley region. Upon returning from the trip, students were tasked with contacting an author from one of the papers. The final portion of the special topic course was for students to produce their own abstracts, requiring them to condense a semester's worth of work into a short amount of words. From this 1-unit course, students learned there is no one way to read a scientific article, and

  20. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  1. The advanced Moon micro-imager experiment (AMIE) on SMART-1: Scientific goals and expected results

    NASA Astrophysics Data System (ADS)

    Pinet, P.; Cerroni, P.; Josset, J.-L.; Beauvivre, S.; Chevrel, S.; Muinonen, K.; Langevin, Y.; Barucci, M. A.; De Sanctis, M. C.; Shkuratov, Yu.; Shevchenko, V.; Plancke, P.; Hofmann, B. A.; Josset, M.; Ehrenfreund, P.; Sodnik, Z.; Koschny, D.; Almeida, M.; Foing, B.

    2005-11-01

    The advanced Moon micro-imager experiment (AMIE) is the imaging system on board ESA mission to the Moon SMART-1; it makes use of a miniaturised detector and micro-processor electronics developed by SPACE X in the frame of the ESA technical programme. The AMIE micro-imager will provide high resolution CCD images of selected lunar areas and it will perform colour imaging through three filters at 750, 915 and 960 nm with a maximum resolution of 46 m/pixel at the perilune of 500 km. Specific scientific objectives will include (1) imaging of high latitude regions in the southern hemisphere, in particular the South Pole Aitken basin (SPA) and the permanently shadowed regions close to the South Pole, (2) determination of the photometric properties of the lunar surface from observations at different phase angles (physical properties of the regolith), (3) multi-band imaging for constraining the chemical and mineral composition of the surface, (4) detection and characterisation of lunar non-mare volcanic units, (5) study of lithological variations from impact craters and implications for crustal heterogeneity. The AMIE micro-imager will also support a Laser-link experiment to Earth, an On Board Autonomous Navigation investigation and a Lunar libration experiment coordinated with radio science measurements.

  2. The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

    SciTech Connect

    S. Blaine Grover

    2008-09-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

  3. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    SciTech Connect

    Ogden, Dan

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  4. Understanding Performance of Parallel Scientific Simulation Codes using Open|SpeedShop

    SciTech Connect

    Ghosh, K K

    2011-11-07

    Conclusions of this presentation are: (1) Open SpeedShop's (OSS) is convenient to use for large, parallel, scientific simulation codes; (2) Large codes benefit from uninstrumented execution; (3) Many experiments can be run in a short time - might need multiple shots e.g. usertime for caller-callee, hwcsamp for HW counters; (4) Decent idea of code's performance is easily obtained; (5) Statistical sampling calls for decent number of samples; and (6) HWC data is very useful for micro-analysis but can be tricky to analyze.

  5. Influence of student-designed experiments with fast plants on their understanding of plants and of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Akey, Ann Kosek

    2000-10-01

    This dissertation investigates the influence of student designed experiments with Fast Plants in an undergraduate agroecology course on the students' conceptual understanding of plant life cycles and on their procedural understanding of scientific experimentation. It also considers students' perspectives on the value of these experiences. Data sources included semi-structured interviews with students and the instructor, a written task, course evaluations, and observations of class meetings. Students came into the course having strong practical experience with plants from their agricultural backgrounds. Students did not always connect aspects of plant biology that they studied in class, particularly respiration and photosynthesis, to plant growth requirements. The instructor was able to bridge the gap between some practical knowledge and textbook knowledge with experiences other than the Fast Plant project. Most students held an incomplete picture of plant reproduction that was complicated by differences between agricultural and scientific vocabulary. There is need for teaching approaches that help students tie together their knowledge of plants into a cohesive framework. Experiences that help students draw on their background knowledge related to plants, and which give students the opportunity to examine and discuss their ideas, may help students make more meaningful connections. The Fast Plant project, a positive experience for most students, was seen by these undergraduate students as being more helpful in learning about scientific experimentation than about plants. The process of designing and carrying out their own experiments gave students insight into experimentation, provoked their curiosity, and resulted in a sense of ownership and accomplishment.

  6. 48 CFR 1552.215-74 - Advanced understanding-uncompensated time.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Advanced understanding-uncompensated time. 1552.215-74 Section 1552.215-74 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions...

  7. Advances in the understanding of dairy and cheese flavors: Symposium Introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A symposium titled “Advances in the Understanding of Dairy and Cheese Flavors” was held in September 2013 at the American Chemical Society’s 246th National Meeting in Indianapolis, IN. The symposium, which was sponsored by the Division of Agricultural and Food Chemistry, was to discuss the state of...

  8. Recent Advances in Our Understanding of the Environmental, Epidemiological, Immunological, and Clinical Dimensions of Coccidioidomycosis

    PubMed Central

    Nguyen, Chinh; Barker, Bridget Marie; Hoover, Susan; Nix, David E.; Ampel, Neil M.; Frelinger, Jeffrey A.; Orbach, Marc J.

    2013-01-01

    SUMMARY Coccidioidomycosis is the endemic mycosis caused by the fungal pathogens Coccidioides immitis and C. posadasii. This review is a summary of the recent advances that have been made in the understanding of this pathogen, including its mycology, genetics, and niche in the environment. Updates on the epidemiology of the organism emphasize that it is a continuing, significant problem in areas of endemicity. For a variety of reasons, the number of reported coccidioidal infections has increased dramatically over the past decade. While continual improvements in the fields of organ transplantation and management of autoimmune disorders and patients with HIV have led to dilemmas with concurrent infection with coccidioidomycosis, they have also led to advances in the understanding of the human immune response to infection. There have been some advances in therapeutics with the increased use of newer azoles. Lastly, there is an overview of the ongoing search for a preventative vaccine. PMID:23824371

  9. Using Multiple Representations to Promote Grade 11 Students' Scientific Understanding of the Particle Theory of Matter

    ERIC Educational Resources Information Center

    Adadan, Emine

    2013-01-01

    This study explored two groups of Grade 11 (age 16-17) students' conceptual understandings about aspects of particle theory before, immediately after, and 3 months after instruction with multiple representations (IMR) and instruction with verbal representations (IVR). Data sources included open-ended questionnaires, interviews, and student…

  10. Understanding the Nature of Science and Scientific Progress: A Theory-Building Approach

    ERIC Educational Resources Information Center

    Chuy, Maria; Scardamalia, Marlene; Bereiter, Carl; Prinsen, Fleur; Resendes, Monica; Messina, Richard; Hunsburger, Winifred; Teplovs, Chris; Chow, Angela

    2010-01-01

    In 1993 Carey and Smith conjectured that the most promising way to boost students' understanding of the nature of science is a "theory-building approach to teaching about inquiry." The research reported here tested this conjecture by comparing results from two Grade 4 classrooms that differed in their emphasis on and technological…

  11. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    ERIC Educational Resources Information Center

    Seah, Lay Hoon

    2016-01-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life…

  12. Models and Moves: Focusing on Dimensions of Causal Complexity To Achieve Deeper Scientific Understanding.

    ERIC Educational Resources Information Center

    Perkins, David N.; Grotzer, Tina A.

    This paper presents the results of a research project based on the Understandings of Consequence Project. This study motivated students to engage in inquiry in science classrooms. The complexity of the models is divided into four categories--underlying causality, relational causality, probabilistic causality, and emergent causality--and provides…

  13. Modeling Scientific Processes with Mathematics Equations Enhances Student Qualitative Conceptual Understanding and Quantitative Problem Solving

    ERIC Educational Resources Information Center

    Schuchardt, Anita M.; Schunn, Christian D.

    2016-01-01

    Amid calls for integrating science, technology, engineering, and mathematics (iSTEM) in K-12 education, there is a pressing need to uncover productive methods of integration. Prior research has shown that increasing contextual linkages between science and mathematics is associated with student problem solving and conceptual understanding. However,…

  14. Improving the Quality and Scientific Understanding of Trophic Magnification Factors (TMFs)

    EPA Science Inventory

    This short 1000 word report presents a series of research needs for improving the measurement and understanding of trophic magnification factors (TMFs). TMFs are useful measures of trophic magnification and represent the diet-weighted average biomagnification factor (BMF) of che...

  15. Towards integrated approaches to advance understanding of ecohydrological systems across scales

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Doerthe; Soulsby, Chris

    2016-04-01

    It is increasingly recognised that the processes and connections in our landscapes are influencing the functioning of aquatic ecosystems. Fundamental scientific understanding of the functioning of both aquatic and terrestrial ecosystems is required for an integrated and sustainable management of landscapes and riverscapes to maintain their ecosystem services and biological integrity at multiple scales. This talk will show how the interactions and feedbacks in ecohydrological systems can be quantitatively assessed through a number of novel, integrated approaches. Importantly, this talk will discuss the need to understand the role of vegetation on water partitioning at the terrestrial and aquatic interface. Terrestrial and aquatic ecosystems are interacting at every scale level and cross-scale investigations are extremely useful to gain an integrated understanding of ecohydrological systems. Environmental tracers are valuable tools to understand the functioning of ecohydrological systems at the landscape scale in terms of understand flow paths, sources of water and associated biogeochemical interactions. Extensive empirical studies were conducted at the plot and hillslope scale to understand ecohydrological systems, and in particular, soil-vegetation-water interlinkages. This empirically based understanding was then integrated into spatially distributed, tracer-aided models to understand mixing of water, flows to the stream and water age distribution at the catchment scale. Finally, remote sensing techniques were used to integrate empirically based findings and to extrapolate system understanding to cross-regional scales, specifically in terms of studying hydroclimatic variability, vegetation dynamics and consequent changes of plant water use and water partitioning.

  16. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    SciTech Connect

    Soelberg, Renae

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at

  17. A New Approach in Advance Network Reservation and Provisioning for High-Performance Scientific Data Transfers

    SciTech Connect

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2010-01-28

    Scientific applications already generate many terabytes and even petabytes of data from supercomputer runs and large-scale experiments. The need for transferring data chunks of ever-increasing sizes through the network shows no sign of abating. Hence, we need high-bandwidth high speed networks such as ESnet (Energy Sciences Network). Network reservation systems, i.e. ESnet's OSCARS (On-demand Secure Circuits and Advance Reservation System) establish guaranteed bandwidth of secure virtual circuits at a certain time, for a certain bandwidth and length of time. OSCARS checks network availability and capacity for the specified period of time, and allocates requested bandwidth for that user if it is available. If the requested reservation cannot be granted, no further suggestion is returned back to the user. Further, there is no possibility from the users view-point to make an optimal choice. We report a new algorithm, where the user specifies the total volume that needs to be transferred, a maximum bandwidth that he/she can use, and a desired time period within which the transfer should be done. The algorithm can find alternate allocation possibilities, including earliest time for completion, or shortest transfer duration - leaving the choice to the user. We present a novel approach for path finding in time-dependent networks, and a new polynomial algorithm to find possible reservation options according to given constraints. We have implemented our algorithm for testing and incorporation into a future version of ESnet?s OSCARS. Our approach provides a basis for provisioning end-to-end high performance data transfers over storage and network resources.

  18. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  19. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  20. Does attainment of Piaget's formal operational level of cognitive development predict student understanding of scientific models?

    NASA Astrophysics Data System (ADS)

    Lahti, Richard Dennis, II

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer standards. Effective methods of instruction will need to be developed to enable students to achieve these standards. The literature reveals an inconsistent history of success with modeling education. These same studies point to a possible cognitive development component which might explain why some students succeeded and others failed. An environmental science course, rich in modeling experiences, was used to test both the extent to which knowledge of models and modeling could be improved over the course of one semester, and more importantly, to identify if cognitive ability was related to this improvement. In addition, nature of science knowledge, particularly related to theories and theory change, was also examined. Pretest and posttest results on modeling (SUMS) and nature of science (SUSSI), as well as data from the modeling activities themselves, was collected. Cognitive ability was measured (CTSR) as a covariate. Students' gain in six of seven categories of modeling knowledge was at least medium (Cohen's d >.5) and moderately correlated to CTSR for two of seven categories. Nature of science gains were smaller, although more strongly correlated with CTSR. Student success at creating a model was related to CTSR, significantly in three of five sub-categories. These results suggest that explicit, reflective experience with models can increase student knowledge of models and modeling (although higher cognitive ability students may have more success), but successfully creating models may depend more heavily on cognitive ability. This finding in particular has implications in the grade placement of modeling standards and

  1. Understanding the advances in biology of orthodontic tooth movement for improved ortho-perio interdisciplinary approach

    PubMed Central

    Patil, Anand K.; Shetty, Adarsh S.; Setty, Swati; Thakur, Srinath

    2013-01-01

    This article provides an insight on detailed current advances in molecular understandings of periodontal ligament cells and the influence of orthodontic force on them in the light of recent advances in molecular and genetic sciences. It sequentially unfolds the cellular events beginning from the mechanical force initiated events of cellular responses to bone remodeling. It also highlights the risks and limitations of orthodontic treatment in certain periodontal conditions, the important areas of team work, orthodontic expectations from periodontal treatment and the possibility of much more future combined research to improve the best possible periodontal health and esthetic outcome of the patient. PMID:24049330

  2. Global Climate Change and the Wildlands of Montana: Promoting Scientific Understanding for K-12 Educators

    NASA Astrophysics Data System (ADS)

    Graumlich, L. J.; Simonsen, L. M.

    2004-12-01

    The complexities and uncertainties associated with the science of global climate change is a barrier to the implementation of global change into K-12 classrooms. This issue is part of a larger conundrum where by teachers who are not well-versed in the content of an emerging science field are less likely to incorporate that topic into their curriculum. As such, it is not surprising that the K-12 community has been slow to embrace global climate change as a curriculum element, given that science underlying global climate change is interdisciplinary and replete with new discoveries, complex models, and competing theories. Faculty members associated with the Big Sky Institute have experimented with ways to promote collaboration between researchers and educators to enhance scientific literacy. In 2004, with funding from the US Environmental Protection Agency and private foundations, we implemented a five-day, field based professional development workshop for middle and high school teachers that focused on the research underlying EPA's Climate Change, Wildlife and Wildlands curriculum. A primary objective of the overall project is to promote one-on-one engagement of teachers with researchers whose work forms the basis of the content of the curriculum. Further, we seek to assess the degree to which increased content knowledge leads to incorporation of global climate change content into classrooms and curricula. During the workshop, we focused on two broad research findings, namely: 1) Global climate change is systemically pervasive such that even wildlands (i.e., unmanaged, pristine parks and reserves) are or potentially will be altered by global climate change. 2) At the same time, natural climate variability may enhance or mask human-induced climate impacts on wildlands and wildlife. In addition, we emphasized two broadly framed "ways of thinking" about global climate change, namely: 1) Wildlands can be used to detect and measure the impacts of human-induced climate

  3. Few believe the world is flat: How embodiment is changing the scientific understanding of cognition.

    PubMed

    Glenberg, Arthur M

    2015-06-01

    Science has changed many of our dearly held and commonsensical (but incorrect) beliefs. For example, few still believe the world is flat, and few still believe the sun orbits the earth. Few still believe humans are unrelated to the rest of the animal kingdom, and soon few will believe human thinking is computer-like. Instead, as with all animals, our thoughts are based on bodily experiences, and our thoughts and behaviors are controlled by bodily and neural systems of perception, action, and emotion interacting with the physical and social environments. We are embodied; nothing more. Embodied cognition is about cognition formatted in sensorimotor experience, and sensorimotor systems make those thoughts dynamic. Even processes that seem abstract, such as language comprehension and goal understanding, are embodied. Thus, embodied cognition is not limited to 1 type of thought or another: It is cognition.

  4. The Harvard case of Xu Xiping: exploitation of the people, scientific advance, or genetic theft?

    PubMed

    Sleeboom, Margaret

    2005-04-01

    A unique history and make-up of a population may make it an attractive research target for population geneticists and pharmaco-genomic investors. The promise of pharmaceutical profits and advances in medical knowledge attracted Harvard researchers and the company Millennium Pharmaceuticals to remote areas in Anhui Province, Central China, leading to international diplomatic disagreements about issues such as the ownership of genetic material and informed consent (IC). This article discusses the role of genomics and genetic sampling in China, the way it is related to population policies (the new eugenics), the national importance of genetic materials and the conflicts it led to between the Chinese government and Harvard University. Here many consider the Xu Xiping case as textbook example of ruthless Western exploitation of development countries, illustrating the cold rationality of science in the process of globalisation. Ten perspectives on this case show that this view is simplistic and contributes little to an understanding of bioethical issues important to the population actually donating the samples. Viewing the Xu Xiping case as the nexus of the intertwinement of international, transnational, national, and local interest groups shows how different interest groups make use of different units of analysis. It also clarifies why the same practice of genetic sampling continues under a different regime, and why the discussion about genetic sampling has shifted from a concern with health care of the poor to an issue of international exploitation, terrorism and development.

  5. Advancing the Scientific Foundation for Evidence-Based Practice in Clinical Child and Adolescent Psychology.

    PubMed

    Roberts, Michael C; Blossom, Jennifer B; Evans, Spencer C; Amaro, Christina M; Kanine, Rebecca M

    2016-05-24

    Evidence-based practice (EBP) has become a central focus in clinical child and adolescent psychology. As originally defined, EBP in psychology is the integration of the best available research evidence, patient characteristics, and clinical expertise. Although evidence-based perspectives have garnered widespread acceptance in recent years, there has also been some confusion and disagreement about the 3-part definition of EBP, particularly the role of research. In this article, we first provide a brief review of the development of EBP in clinical child and adolescent psychology. Next, we outline the following 4 points to help clarify the understanding of EBP: (a) knowledge should not be confused with epistemic processes, (b) research on clinician and client factors is needed for EBP, (c) research on assessment is needed for EBP, and (d) the 3-part conceptualization of EBP can serve as a useful framework to guide research. Based on these principles, we put forth a slightly revised conceptualization of EBP, in which the role of research is expanded and more clearly operationalized. Finally, based on our review of the literature, we offer illustrative examples of specific directions for future research to advance the evidence base for EBP in clinical child and adolescent psychology.

  6. Crossdisciplinary fundamental research--the seed for scientific advance and technological innovation.

    PubMed

    Kroto, Harold

    2011-12-28

    As it was earlier in the 1980's, so it is now, fundamental science research is under threat as decisions are made on science funding by people who do not do fundamental research, seem congenitally incapable of understanding what it is and furthermore in the face of countless examples seem blind to how important it has been to the technologies that govern our modern life and will be to the future technologies that we desperately need to develop to survive. In this article some general observations are made on how the fascination for what happens in space and stars was the key trigger that gave birth to Science itself and a particular case is outlined which indicates that this same fascination is still the catalyst of some fundamental breakthroughs today. This article also outlines an archetypal example of the way major breakthroughs are often made by the synergy that comes from cross-disciplinary research in a way which is totally surprising. In this case it started from a curiosity about the quantum mechanical description of molecular dynamics and involved pioneering advances in synthetic organic chemistry which led to the suprising discovery that some exotic carbon molecules were abundant in space and stars. These results initiated an experiment using a new technology that represented a major breakthrough in cluster science. The upshot was totally unpredictable, the birth of a whole new field of Chemistry as well as a paradigm shift in major areas of Nanoscience and Nanotechnology.

  7. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    SciTech Connect

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  8. The Merapi Interactive Project: Offering a Fancy Cross-Disciplinary Scientific Understanding of Merapi Volcano to a Wide Audience.

    NASA Astrophysics Data System (ADS)

    Morin, J.; Kerlow, I.

    2015-12-01

    The Merapi volcano is of great interest to a wide audience as it is one of the most dangerous volcanoes worldwide and a beautiful touristic spot. The scientific literature available on that volcano both in Earth and Social sciences is rich but mostly inaccessible to the public because of the scientific jargon and the restricted database access. Merapi Interactive aims at developing clear information and attractive content about Merapi for a wide audience. The project is being produced by the Art and Media Group at the Earth Observatory of Singapore, and it takes the shape of an e-book. It offers a consistent, comprehensive, and jargon-filtered synthesis of the main volcanic-risk related topics about Merapi: volcanic mechanisms, eruptive history, associated hazards and risks, the way inhabitants and scientists deal with it, and what daily life at Merapi looks like. The project provides a background to better understand volcanoes, and it points out some interactions between scientists and society. We propose two levels of interpretation: one that is understandable by 10-year old kids and above and an expert level with deeper presentations of specific topics. Thus, the Merapi Interactive project intends to provide an engaging and comprehensive interactive book that should interest kids, adults, as well as Earth Sciences undergraduates and academics. Merapi Interactive is scheduled for delivery in mid-2016.

  9. Drug-induced liver injury: Advances in mechanistic understanding that will inform risk management.

    PubMed

    Mosedale, M; Watkins, P B

    2016-11-09

    Drug-induced liver injury (DILI) is a major public health problem. Intrinsic (dose-dependent) DILI associated with acetaminophen overdose is the number one cause of acute liver failure in the US. However, the most problematic type of DILI impacting drug development is idiosyncratic, occurring only very rarely among treated patients and often only after several weeks or months of treatment with the offending drug. Recent advances in our understanding of the pathogenesis of DILI suggest that three mechanisms may underlie most hepatocyte effects in response to both intrinsic and idiosyncratic DILI drugs: mitochondrial dysfunction, oxidative stress, and alterations in bile acid homeostasis. However, in some cases hepatocyte stress promotes an immune response that results in clinically important idiosyncratic DILI. This review discusses recent advances in our understanding of the pathogenesis of both intrinsic and idiosyncratic DILI as well as emerging tools and techniques that will likely improve DILI risk identification and management.

  10. Advances in the understanding of dairy and cheese flavors: symposium introduction.

    PubMed

    Tunick, Michael H; Gummalla, Sanjay

    2014-06-25

    A symposium titled "Advances in the Understanding of Dairy and Cheese Flavors" was held in September 2013 at the American Chemical Society's 246th National Meeting in Indianapolis, IN, USA. The symposium, which was sponsored by the Division of Agricultural and Food Chemistry, was to discuss the state of the art in the detection and quantitation of flavor in dairy products. The authors of two of the presentations have been selected to expand on their talks by submitting full papers about their research.

  11. Mundane science use in a practice theoretical perspective: Different understandings of the relations between citizen-consumers and public communication initiatives build on scientific claims.

    PubMed

    Halkier, Bente

    2015-08-13

    Public communication initiatives play a part in placing complicated scientific claims in citizen-consumers' everyday contexts. Lay reactions to scientific claims framed in public communication, and attempts to engage citizens, have been important subjects of discussion in the literatures of public understanding and public engagement with science. Many of the public communication initiatives, however, address lay people as consumers rather than citizens. This creates specific challenges for understanding public engagement with science and scientific citizenship. The article compares five different understandings of the relations between citizen-consumers and public issue communication involving science, where the first four types are widely represented in the Public Understanding of Science discussions. The fifth understanding is a practice theoretical perspective. The article suggests how the public understanding of and engagement in science literature can benefit from including a practice theoretical approach to research about mundane science use and public engagement.

  12. Exploring learners' beliefs about science reading and scientific epistemic beliefs, and their relations with science text understanding

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying; Chang, Cheng-Chieh; Chen, Li-Ling; Chen, Yi-Chun

    2016-07-01

    The main purpose of this study was to explore learners' beliefs about science reading and scientific epistemic beliefs, and how these beliefs were associating with their understanding of science texts. About 400 10th graders were involved in the development and validation of the Beliefs about Science Reading Inventory (BSRI). To find the effects of reader beliefs and epistemic beliefs, a new group of 65 10th grade students whose reader and epistemic beliefs were assessed by the newly developed BSRI and an existing SEB questionnaire were invited to take part in a science reading task. Students' text understanding in terms of concept gain and text interpretations was collected and analyzed. By the correlation analysis, it was found that when students had stronger beliefs about meaning construction based on personal goals and experiences (i.e. transaction beliefs), they produced more thematic and critical interpretations of the content of the test article. The regression analysis suggested that students SEBs could predict concept gain as a result of reading. Moreover, among all beliefs examined in the study, transaction beliefs stood out as the best predictor of overall science-text understanding.

  13. Probing Preservice Teachers' Understandings of Scientific Knowledge by Using a Vignette in Conjunction with a Paper and Pencil Test

    ERIC Educational Resources Information Center

    Tasar, Mehmet Fatih

    2006-01-01

    The purpose of this study was to examine how prospective middle school science teachers understood and identified types of scientific knowledge in a presented vignette. Also, their definitions and views of the relationships between types of scientific knowledge (i.e. scientific facts, concepts, generalizations, theories, and scientific laws) were…

  14. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are

  15. Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches

    PubMed Central

    Snyder, Hannah R.; Miyake, Akira; Hankin, Benjamin L.

    2015-01-01

    Executive function (EF) is essential for successfully navigating nearly all of our daily activities. Of critical importance for clinical psychological science, EF impairments are associated with most forms of psychopathology. However, despite the proliferation of research on EF in clinical populations, with notable exceptions clinical and cognitive approaches to EF have remained largely independent, leading to failures to apply theoretical and methodological advances in one field to the other field and hindering progress. First, we review the current state of knowledge of EF impairments associated with psychopathology and limitations to the previous research in light of recent advances in understanding and measuring EF. Next, we offer concrete suggestions for improving EF assessment. Last, we suggest future directions, including integrating modern models of EF with state of the art, hierarchical models of dimensional psychopathology as well as translational implications of EF-informed research on clinical science. PMID:25859234

  16. Uncovering the Visual “Alphabet”: Advances in our understanding of object perception

    PubMed Central

    Ungerleider, Leslie G.; Bell, Andrew H.

    2011-01-01

    The ability to rapidly and accurately recognize visual stimuli represents a significant computational challenge. Yet, despite such complexity, the primate brain manages this task effortlessly. How it does so remains largely a mystery. The study of visual perception and object recognition was once limited to investigations of brain-damaged individuals or lesion experiments in animals. However, in the last 25 years, new methodologies, such as functional neuroimaging and advances in electrophysiological approaches, have provided scientists with the opportunity to examine this problem from new perspectives. This review highlights how some of these recent technological advances have contributed to the study of visual processing and where we now stand with respect to our understanding of neural mechanisms underlying object recognition. PMID:20971130

  17. Controlling & understanding the variables: Key to commercializing micowave processing of advanced materials

    SciTech Connect

    Garard, R.S.

    1995-12-31

    Commercial use of microwave energy for processing advanced materials has been a {open_quotes}promising new development{close_quotes} for over a decade. However, the realization of actual commercial use in most advanced material cases has not yet been achieved. As with any new processing technique, the control and application of process conditions must be reliable, repeatable, and thoroughly understood. This paper will discuss the variables associated with both economic analysis and material properties when determining the potential of microwave processing for a given application. The importance of having a microwave system capable of controlling those variables and distributing the microwave energy uniformly over large volumes within a microwave oven is reviewed. The need for a production equipment supplier to combine materials science expertise with strong microwave engineering background is also discussed with emphasis on ensuring that a good understanding of the material/microwave interaction exists for each specific application.

  18. Advanced Telescopes and Observatories and Scientific Instruments and Sensors Capability Roadmaps: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Coulter, Dan; Bankston, Perry

    2005-01-01

    Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  19. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    SciTech Connect

    BPL Global

    2008-09-30

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at

  20. Advancing Scientific Reasoning in Upper Elementary Classrooms: Direct Instruction versus Task Structuring

    ERIC Educational Resources Information Center

    Lazonder, Ard W.; Wiskerke-Drost, Sjanou

    2015-01-01

    Several studies found that direct instruction and task structuring can effectively promote children's ability to design unconfounded experiments. The present study examined whether the impact of these interventions extends to other scientific reasoning skills by comparing the inquiry activities of 55 fifth-graders randomly assigned to one of…

  1. Recent advances in understanding and preventing human papillomavirus-related disease

    PubMed Central

    Hellner, Karin; Dorrell, Lucy

    2017-01-01

    High-risk human papillomaviruses (hrHPV) are responsible for anogenital and oropharyngeal cancers, which together account for at least 5% of cancers worldwide. Industrialised nations have benefitted from highly effective screening for the prevention of cervical cancer in recent decades, yet this vital intervention remains inaccessible to millions of women in low- and middle-income countries (LMICs), who bear the greatest burden of HPV disease. While there is an urgent need to increase investment in basic health infrastructure and rollout of prophylactic vaccination, there are now unprecedented opportunities to exploit recent scientific and technological advances in screening and treatment of pre-invasive hrHPV lesions and to adapt them for delivery at scale in resource-limited settings. In addition, non-surgical approaches to the treatment of cervical intraepithelial neoplasia and other hrHPV lesions are showing encouraging results in clinical trials of therapeutic vaccines and antiviral agents. Finally, the use of next-generation sequencing to characterise the vaginal microbial environment is beginning to shed light on host factors that may influence the natural history of HPV infections. In this article, we focus on recent advances in these areas and discuss their potential for impact on HPV disease. PMID:28357043

  2. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    PubMed Central

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2013-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research. PMID:23730122

  3. Advances in understanding itching and scratching: a new era of targeted treatments

    PubMed Central

    Sanders, Kristen M.; Nattkemper, Leigh A.; Yosipovitch, Gil

    2016-01-01

    Chronic itch is a significant health burden with few effective treatments. As such, itch researchers seek to understand the mechanisms behind itch and to find potential targets for treatment. The field of itch research is dynamic, and many advances have been made so far this decade. In particular, major steps forward include the identification of new peripheral and central itch mediators and modulators, the discovery of greater roles for immune cells and glia in itch transmission, and a focus on the brain processing of itching and scratching. Finally, several new therapeutic interventions for itch have shown success in clinical trials. PMID:27610225

  4. USE OF COUPLED MULTI-ELECTRODE ARRAYS TO ADVANCE THE UNDERSTANDING OF SELECTED CORROSION PHENOMENA

    SciTech Connect

    N.D. Budiansky; F. Bocher; H. Cong; M.F. Hurley; J.R. Scully

    2006-02-23

    The use of multi-coupled electrode arrays in various corrosion applications is discussed with the main goal of advancing the understanding of various corrosion phenomena. Both close packed and far spaced electrode configurations are discussed. Far spaced electrode arrays are optimized for high throughput experiments capable of elucidating the effects of various variables on corrosion properties. For instance the effects of a statistical distribution of flaws on corrosion properties can be examined. Close packed arrays enable unprecedented spatial and temporal information on the behavior of local anodes and cathodes. Interactions between corrosion sites can trigger or inhibit corrosion phenomena and affect corrosion damage evolution.

  5. Understanding

    ERIC Educational Resources Information Center

    Buxkemper, Andra C.; Hartfiel, D. J.

    2003-01-01

    There is no common agreement on the meaning of the word "understand". However, there is agreement on what students should be able to do with material they understand. Bloom et al. discuss kinds of tasks a student should be able to do, provided that the student understands. In a similar way, Biggs and Collis provide a taxonomy intended to evaluate…

  6. Advances in understanding monoclonal gammopathy of undetermined significance as a precursor of multiple myeloma

    PubMed Central

    Weiss, Brendan M; Kuehl, W Michael

    2010-01-01

    Monoclonal gammopathy of undetermined significance (MGUS) affects at least 3% of the population above the age of 50 and is the precursor to multiple myeloma (MM), an incurable malignancy of plasma cells. Recent advances in MGUS include: an improved understanding of the pathogenesis of MGUS and its progression to MM, involving molecular events intrinsic to the malignant plasma cell as well as the microenvironment; novel techniques to assess risk for progression to MM using serum-free light-chain analysis and immunophenotyping; and a renewed interest in chemoprevention of MM. In the future, continued improvement in our understanding of MGUS will lead to the development of better biomarkers for prognosis and therapies for chemoprevention of MM. PMID:20473362

  7. New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie; S. Curtis Wilkins

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  8. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    SciTech Connect

    Hules, J.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  9. The Radiation Belt Storm Probes Mission: Advancing Our Understanding of the Earth's Radiation Belts

    NASA Technical Reports Server (NTRS)

    Sibeck, David; Kanekal, Shrikanth; Kessel, Ramona; Fox, Nicola; Mauk, Barry

    2012-01-01

    We describe NASA's Radiation Belt Storm Probe (RBSP) mission, whose primary science objective is to understand, ideally to the point of predictability, the dynamics of relativistic electrons and penetrating ions in the Earth's radiation belts resulting from variable solar activity. The overarching scientific questions addressed include: 1. the physical processes that produce radiation belt enhancement events, 2. the dominant mechanisms for relativistic electron loss, and 3. how the ring current and other geomagnetic processes affect radiation belt behavior. The RBSP mission comprises two spacecraft which will be launched during Fall 2012 into low inclination lapping equatorial orbits. The orbit periods are about 9 hours, with perigee altitudes and apogee radial distances of 600 km and 5.8 RE respectively. During the two-year primary mission, the spacecraft orbits precess once around the Earth and lap each other twice in each local time quadrant. The spacecraft are each equipped with identical comprehensive instrumentation packages to measure, electrons, ions and wave electric and magnetic fields. We provide an overview of the RBSP mission, onboard instrumentation and science prospects and invite scientific collaboration.

  10. Experimental Investigation and Fundamental Understanding of a Slowed UH-60A Rotor at High Advance Ratios

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Yeo, Hyeonsoo; Norman, Thomas R.

    2011-01-01

    This paper describes and analyzes the measurements from a full-scale, slowed RPM, UH-60A rotor tested at the National Full-Scale Aerodynamics Complex 40- by 80- ft wind tunnel up to an advance ratio of 1.0. A comprehensive set of measurements, that includes performance, blade loads, hub loads and pressures/airloads makes this data set unique. The measurements reveal new and rich aeromechanical phenomena that are special to this exotic regime. These include reverse chord dynamic stall, retreating side impulse in pitch-link load, large inboard-outboard elastic twist differential, supersonic flow at low subsonic advancing tip Mach numbers, diminishing rotor forces yet dramatic build up of blade loads, and dramatic blade loads yet benign levels of vibratory hub loads. The objective of this research is the fundamental understanding of these unique aeromechanical phenomena. The intent is to provide useful knowledge for the design of high speed, high efficiency, slowed RPM rotors of the future and a challenging database for advanced analyses validation.

  11. Use It or Lose It: Advances in Our Understanding of Terrestrial Nitrogen Retention and Loss (Invited)

    NASA Astrophysics Data System (ADS)

    Silver, W. L.; Yang, W. H.

    2013-12-01

    Understanding of the terrestrial nitrogen (N) cycle has grown over the last decade to include a variety of pathways that have the potential to either retain N in the ecosystem or result in losses to the atmosphere or groundwater. Early work has described the mechanics of these N transformations, but the relevance of these processes to ecosystem, regional, or global scale N cycling has not been well quantified. In this study, we review advances in our understanding of the terrestrial N cycle, and focus on three pathways with particular relevance to N retention and loss: dissimilatory nitrate and nitrite reduction to ammonium (DNRA), anaerobic ammonium oxidation (annamox), and anaerobic ammonium oxidation coupled to iron reduction (Feammox). We discuss the role of these processes in the microbial N economy (sensu Burgin et al. 2011) of the terrestrial N cycle, the environmental and ecological constraints, and relationships with other key biogeochemical cycles. We also discuss recent advances in analytical approaches that have improved our ability to detect these and related N fluxes in terrestrial ecosystems. Finally, we present a scaling exercise that identifies the potential importance of these pathways for N retention and loss across a range of spatial and temporal scales, and discuss their significance in terms of N limitation to net primary productivity, N leaching to groundwater, and the release of reactive N gases to the atmosphere.

  12. Advances in understanding and treating liver diseases during pregnancy: A review.

    PubMed

    Kamimura, Kenya; Abe, Hiroyuki; Kawai, Hirokazu; Kamimura, Hiroteru; Kobayashi, Yuji; Nomoto, Minoru; Aoyagi, Yutaka; Terai, Shuji

    2015-05-07

    Liver disease in pregnancy is rare but pregnancy-related liver diseases may cause threat to fetal and maternal survival. It includes pre-eclampsia; eclampsia; haemolysis, elevated liver enzymes, and low platelets syndrome; acute fatty liver of pregnancy; hyperemesis gravidarum; and intrahepatic cholestasis of pregnancy. Recent basic researches have shown the various etiologies involved in this disease entity. With these advances, rapid diagnosis is essential for severe cases since the decision of immediate delivery is important for maternal and fetal survival. The other therapeutic options have also been shown in recent reports based on the clinical trials and cooperation and information sharing between hepatologist and gynecologist is important for timely therapeutic intervention. Therefore, correct understandings of diseases and differential diagnosis from the pre-existing and co-incidental liver diseases during the pregnancy will help to achieve better prognosis. Therefore, here we review and summarized recent advances in understanding the etiologies, clinical courses and management of liver disease in pregnancy. This information will contribute to physicians for diagnosis of disease and optimum management of patients.

  13. Choroid plexus papillomas: advances in molecular biology and understanding of tumorigenesis.

    PubMed

    Safaee, Michael; Oh, Michael C; Bloch, Orin; Sun, Matthew Z; Kaur, Gurvinder; Auguste, Kurtis I; Tihan, Tarik; Parsa, Andrew T

    2013-03-01

    Choroid plexus papillomas are rare, benign tumors originating from the choroid plexus. Although generally found within the ventricular system, they can arise ectopically in the brain parenchyma or disseminate throughout the neuraxis. We sought to review recent advances in our understanding of the molecular biology and oncogenic pathways associated with this disease. A comprehensive PubMed literature review was conducted to identify manuscripts discussing the clinical, molecular, and genetic features of choroid plexus papillomas. Articles concerning diagnosis, treatment, and long-term patient outcomes were also reviewed. The introduction of atypical choroid plexus papilloma as a distinct entity has increased the need for accurate histopathologic diagnosis. Advances in immunohistochemical staining have improved our ability to differentiate choroid plexus papillomas from other intracranial tumors or metastatic lesions using combinations of key markers and mitotic indices. Recent findings have implicated Notch3 signaling, the transcription factor TWIST1, platelet-derived growth factor receptor, and the tumor necrosis factor-related apoptosis-inducing ligand pathway in choroid plexus papilloma tumorigenesis. A combination of commonly occurring chromosomal duplications and deletions has also been identified. Surgical resection remains the standard of care, although chemotherapy and radiotherapy may be considered for recurrent or metastatic lesions. While generally considered benign, these tumors possess a complex biology that sheds insight into other choroid plexus tumors, particularly malignant choroid plexus carcinomas. Improving our understanding of the molecular biology, genetics, and oncogenic pathways associated with this tumor will allow for the development of targeted therapies and improved outcomes for patients with this disease.

  14. Bridging the Gap between Scientific and Indigenous knowledge to Better Understand Social Impacts of Changing Rainfall Regimes

    NASA Astrophysics Data System (ADS)

    Lynch, A. H.; Joachim, L.; Zhu, X.; Hammer, C.; Harris, M.; Griggs, D.

    2011-12-01

    The Murray-Darling Basin incorporates Australia's three longest rivers and is important for an agricultural industry worth more than $9 billion per annum, a rich biodiversity of habitat and species, and the very life of its traditional owners. The complex and sometimes enigmatic relationships between modes of variability and Australian regional rainfall distribution means that reliable projections of future water availability remain highly uncertain. Persistent drought, with associated heat stress and high fire danger, and episodic flooding rains present further challenges. Indeed, recent extremes likely herald a tipping point for the communities and ecosystems that rely on the river system. The Barmah-Millewa region in the Murray-Darling Basin is the heart of Yorta Yorta Traditional Tribal Lands. The Yorta Yorta continue to assert their inherent rights to country and have shown through oral, documentary and material evidence, that their social, spiritual, economic and cultural links with country have never been broken. Current water policy and practice, highly contested community consultation processes, cross-border governance issues and a changing social landscape create in this region a microcosm for understanding the complex demands of economic, environmental and cultural security along the Murray-Darling Basin as the climate changes. New approaches to bridging the gap between scientific and Indigenous epistemologies have emerged in recent years, including for example ecosystem-based adaptation (Vignola et al. 2009) and the analysis of cultural water flows (Weir 2010). The potential for innovation using these approaches has informed a study that investigates how the deep knowledge of country of the Yorta Yorta people can be combined with state of the art climate science to develop a better understanding of the competing demands on water resources in the Barmah-Millewa region now and in the future. An important dimension of this collaborative work with the Yorta

  15. Advanced Light Source First-Phase Scientific Program, 1993/1994

    SciTech Connect

    Not Available

    1992-08-01

    This composite document outlines ten different experiments planned for the beamline at the Advanced Light Source. Researchers from various parts of the country have detailed their methods and equipment to be used in experiments in biology and physics. X-ray spectroscopy and microscopy are the common topics to these experiments. (GHH)

  16. Workshop on Advancing Experimental Rock Deformation Research: Scientific and Technical Needs

    SciTech Connect

    Tullis, Terry E.

    2016-05-31

    A workshop for the experimental rock deformation community was held in Boston on August 16-19, 2012, following some similar but smaller preliminary meetings. It was sponsored primarily by the NSF, with additional support from the DOE, the SCEC, and in-kind support by the USGS. A white paper summarizing the active discussions at the workshop and the outcomes is available (https://brownbox.brown.edu/download.php?hash=0b854d11). Those attending included practitioners of experimental rock deformation, i.e., those who conduct laboratory experiments, as well as users of the data provided by practitioners, namely field geologists, seismologists, geodynamicists, earthquake modelers, and scientists from the oil and gas industry. A considerable fraction of those attending were early-career scientists. The discussion initially focused on identifying the most important unsolved scientific problems in all of the research areas represented by the users that experiments would help solve. This initial session was followed by wide-ranging discussions of the most critical problems faced by practitioners, particularly by early-career scientists. The discussion also focused on the need for designing and building the next generation of experimental rock deformation equipment required to meet the identified scientific challenges. The workshop participants concluded that creation of an experimental rock deformation community organization is needed to address many of the scientific, technical, and demographic problems faced by this community. A decision was made to hold an organizational meeting of this new organization in San Francisco on December 1-2, 2012, just prior to the Fall Meeting of the AGU. The community has decided to name this new organization “Deformation Experimentation at the Frontier Of Rock and Mineral research” or DEFORM. As of May 1, 2013, 64 institutions have asked to be members of DEFORM.

  17. Advancing our understanding of functional genome organisation through studies in the fission yeast.

    PubMed

    Olsson, Ida; Bjerling, Pernilla

    2011-02-01

    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation.

  18. Some recent advances in understanding the mineralogy of Earth's deep mantle.

    PubMed

    Duffy, Thomas S

    2008-11-28

    Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure-temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO3 in the CaIrO3-type (post-perovskite) structure yield insights into the nature of the core-mantle boundary region. Theoretical studies of the behaviour of MgSiO3 liquids under high pressure-temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones).

  19. Some recent advances in understanding the mineralogy of Earth's deep mantle

    SciTech Connect

    Duffy, T S

    2008-12-09

    Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure-temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO{sub 3} in the CaIrO{sub 3}-type (post-perovskite) structure yield insights into the nature of the core-mantle boundary region. Theoretical studies of the behaviour of MgSiO3 liquids under high pressure-temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones).

  20. Predicting Scientific Understanding of Prospective Elementary Teachers: Role of Gender, Education Level, Courses in Science, and Attitudes Toward Science and Mathematics

    NASA Astrophysics Data System (ADS)

    Kumar, David D.; Morris, John D.

    2005-12-01

    A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.

  1. The Present Conditions of the Advances in Modernizing Scientific and Technical Information Processing in China

    NASA Astrophysics Data System (ADS)

    Chen, Written By Tongbao; Li, Translated By Guohua

    The trends of modernization (computerization) in information activities were outlined in focussing on the national computer-based information retrieval system, which was pushed by the State Science and Technology Commission in the 6th National Five-Year Plan. Secondary, the Plan to be promoted by the Institute of Scientific and Technical Information of China (ISTIC) as a central and integrated information center in China was also described for the 7th National Five-Year Plan on the occasion of the movement to the new ISTIC building. Finally, author's views on information programs to be further stressed were introduced, which include the production of reference and fact databases in Chinese and English, the consolidation of online network, standardization, etc.

  2. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural

  3. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    SciTech Connect

    Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..; Easter, Richard C; Elliott, Scott M.; Ghan, Steven J.; Liu, Xiaohong; Lowrie, Robert B.; Lucas, Donald D.; Ma, Po-lun; Sacks, William J.; Shrivastava, Manish; Singh, Balwinder; Tautges, Timothy J.; Taylor, Mark A.; Vertenstein, Mariana; Worley, Patrick H.

    2014-01-15

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  4. New Sensors for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; Joshua E. Daw; Heng Ban; Brandon Fox; Gordon Kohse

    2009-06-01

    A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry.

  5. Advances in understanding the molecular basis of the first steps in color vision

    PubMed Central

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-01-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis–trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. PMID:26187035

  6. Understanding requirements of novel healthcare information systems for management of advanced prostate cancer.

    PubMed

    Wagholikar, Amol S; Fung, Maggie; Nelson, Colleen C

    2012-01-01

    Effective management of chronic diseases is a global health priority. A healthcare information system offers opportunities to address challenges of chronic disease management. However, the requirements of health information systems are often not well understood. The accuracy of requirements has a direct impact on the successful design and implementation of a health information system. Our research describes methods used to understand the requirements of health information systems for advanced prostate cancer management. The research conducted a survey to identify heterogeneous sources of clinical records. Our research showed that the General Practitioner was the common source of patient's clinical records (41%) followed by the Urologist (14%) and other clinicians (14%). Our research describes a method to identify diverse data sources and proposes a novel patient journey browser prototype that integrates disparate data sources.

  7. The impact of recent advances in laboratory astrophysics on our understanding of the cosmos.

    PubMed

    Savin, D W; Brickhouse, N S; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibel, E G

    2012-03-01

    An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.

  8. Advances in understanding the molecular basis of the first steps in color vision.

    PubMed

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-11-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation.

  9. [Advances in understanding Drosophila salivary gland polytene chromosome and its applications in genetics teaching].

    PubMed

    Gang, Li; Fanguo, Chen

    2015-06-01

    Drosophila salivary gland polytene chromosome, one of the three classical chromosomes with remarkable characteristics, has been used as an outstanding model for a variety of genetic studies since 1934. The greatest contribution of this model to genetics has been providing extraordinary angle of view in studying interphase chromosome structure and gene expression regulation. Additionally, it has been extensively used to understand some special genetic phenomena, such as dosage compensation and position-effect variegation. In this paper, we briefly review the advances in the study of Drosophila salivary gland chromosome, and try to systematically and effectively introduce this model system into genetics teaching practice in order to steer and inspire students' interest in genetics.

  10. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    SciTech Connect

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; Nandhikonda, Premchendar; Smith, Richard D.; Wright, Aaron T.

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosic bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.

  11. Recent advances in understanding the role of the hypothalamic circuit during aggression

    PubMed Central

    Falkner, Annegret L.; Lin, Dayu

    2014-01-01

    The hypothalamus was first implicated in the classic “fight or flight” response nearly a century ago, and since then, many important strides have been made in understanding both the circuitry and the neural dynamics underlying the generation of these behaviors. In this review, we will focus on the role of the hypothalamus in aggression, paying particular attention to recent advances in the field that have allowed for functional identification of relevant hypothalamic subnuclei. Recent progress in this field has been aided by the development of new techniques for functional manipulation including optogenetics and pharmacogenetics, as well as advances in technology used for chronic in vivo recordings during complex social behaviors. We will examine the role of the hypothalamus through the complimentary lenses of (1) loss of function studies, including pharmacology and pharmacogenetics; (2) gain of function studies, including specific comparisons between results from classic electrical stimulation studies and more recent work using optogenetics; and (3) neural activity, including both immediate early gene and awake-behaving recordings. Lastly, we will outline current approaches to identifying the precise role of the hypothalamus in promoting aggressive motivation and aggressive action. PMID:25309351

  12. Understanding the role of scientific evidence in consumer evaluation of natural health products for osteoarthritis an application of the means end chain approach

    PubMed Central

    2012-01-01

    Background Over 30% of individuals use natural health products (NHPs) for osteoarthritis-related pain. The Deficit Model for the Public Understanding of Science suggests that if individuals are given more information (especially about scientific evidence) they will make better health-related decisions. In contrast, the Contextual Model argues that scientific evidence is one of many factors that explain how consumers make health-related decisions. The primary objective was to investigate how the level of scientific evidence supporting the efficacy of NHPs impacts consumer decision-making in the self-selection of NHPs by individuals with osteoarthritis. Methods The means-end chain approach to product evaluation was used to compare laddering interviews with two groups of community-dwelling Canadian seniors who had used NHPs to treat their osteoarthritis. Group 1 (n=13) had used only NHPs (glucosamine and/or chondroitin) with “high” scientific evidence of efficacy. Group 2 (n=12) had used NHPs (methylsulfonylmethane (MSM) and/or bromelain) with little or no scientific evidence supporting efficacy. Content analysis and generation of hierarchical value maps facilitated the identification of similarities and differences between the two groups. Results The dominant decision-making chains for participants in the two scientific evidence categories were similar. Scientific evidence was an important decision-making factor but not as important as the advice from health care providers, friends and family. Most participants learned about scientific evidence via indirect sources from health care providers and the media. Conclusions The Contextual Model of the public understanding of science helps to explain why our participants believed scientific evidence is not the most important factor in their decision to use NHPs to help manage their osteoarthritis. PMID:23107559

  13. Socio-Scientific Discussions as a Way to Improve the Comprehension of Science and the Understanding of the Interrelation between Species and the Environment

    NASA Astrophysics Data System (ADS)

    Castano, Carolina

    2008-11-01

    This article reports on a qualitative and quantitative study that explored whether a constructivist Science learning environment, in which 9 to 10-year old Colombian girls had the opportunity to discuss scientific concepts and socio-scientific dilemmas in groups, improved their understanding of the concepts and the complex relations that exists between species and the environment. Data were collected from two fourth grade groups in a private bilingual school, a treatment and a comparison group. Pre and post tests on the understanding of scientific concepts and the possible consequences of human action on living things, transcriptions of the discussions of dilemmas, and pre and post tests of empathy showed that students who had the opportunity to discuss socio-scientific dilemmas gave better definitions for scientific concepts and made better connections between them, their lives and Nature than students who did not. It is argued that Science learning should occur in constructivist learning environments and go beyond the construction of scientific concepts, to discussions and decision-making related to the social and moral implications of the application of Science in the real world. It is also argued that this type of pedagogical interventions and research on them should be carried out in different sociocultural contexts to confirm their impact on Science learning in diverse conditions.

  14. Advances in understanding tumour evolution through single-cell sequencing.

    PubMed

    Kuipers, Jack; Jahn, Katharina; Beerenwinkel, Niko

    2017-02-11

    The mutational heterogeneity observed within tumours poses additional challenges to the development of effective cancer treatments. A thorough understanding of a tumour's subclonal composition and its mutational history is essential to open up the design of treatments tailored to individual patients. Comparative studies on a large number of tumours permit the identification of mutational patterns which may refine forecasts of cancer progression, response to treatment and metastatic potential. The composition of tumours is shaped by evolutionary processes. Recent advances in next-generation sequencing offer the possibility to analyse the evolutionary history and accompanying heterogeneity of tumours at an unprecedented resolution, by sequencing single cells. New computational challenges arise when moving from bulk to single-cell sequencing data, leading to the development of novel modelling frameworks. In this review, we present the state of the art methods for understanding the phylogeny encoded in bulk or single-cell sequencing data, and highlight future directions for developing more comprehensive and informative pictures of tumour evolution. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.

  15. Advancing scientific base lines for the integrated assessment of climate change impacts and adaptation in mountain regions in developing countries

    NASA Astrophysics Data System (ADS)

    Huggel, C.; Jurt, N. Salzmann, C.; Calanca, P.; Ordonez, A. Diaz, J.; Zappa, T. Jonas M.; Konzelmann, T.; Lagos, P.; Obersteiner, M.; Rohrer, M.; Silverio, W.

    2009-04-01

    Adaptation to climate change impacts is a major challenge for the human society. For countries in development, consistent base lines of expected impacts at the regional scale are required to plan and implement low-cost adaptation measures that effectively address societal needs. However, donors and implementing agencies are often confronted with a lack of scientific data. This poses a serious problem to global adaptation funds, such as the one established under the UNFCCC, which are predominantly directed towards developing countries. This contribution summarizes recent experiences gained from international projects in the Andes, by the Peruvian and Swiss Governments, and the World Bank, on the development of scientific base lines for selected regions in the Peruvian Andes. The focus is on the nexus between water resources, food security and natural disasters. The analysis shows that Peruvian Andes are among the most vulnerable regions to climate change. Negative impacts on water resources are expected from the rapid retreat of glaciers, extended and more frequent drought periods and increasing human needs. Climate change impacts are exacerbated by continued sub-optimal resource management. As a consequence of growing stresses, water availability for human consumption, agriculture and energy generation is increasingly limited. Assessment of the current conditions and reliable projections for the future are hampered by scarce data availability and methodological problems, such as downscaling of global and regional climate scenarios, cross-sector effects, and others. It is critical that related uncertainties, and the propagation thereof, are assessed throughout the impact analysis for an improved management of adaptation measures. Challenges furthermore include communication and understanding among different actors, including the scientific community, political and implementation agencies, and local population. Based on our experiences we will outline a good practice

  16. The Center for Technology for Advanced Scientific Component Software (TASCS) Lawrence Livermore National Laboratory - Site Status Update

    SciTech Connect

    Epperly, T W

    2008-12-03

    This report summarizes LLNL's progress for the period April through September of 2008 for the Center for Technology for Advanced Scientific Component Software (TASCS) SciDAC. The TASCS project is organized into four major thrust areas: CCA Environment (72%), Component Technology Initiatives (16%), CCA Toolkit (8%), and User and Application Outreach & Support (4%). The percentage of LLNL's effort allocation is shown in parenthesis for each thrust area. Major thrust areas are further broken down into activity areas, LLNL's effort directed to each activity is shown in Figure 1. Enhancements, Core Tools, and Usability are all part of CCA Environment, and Software Quality is part of Component Technology Initiatives. The balance of this report will cover our accomplishments in each of these activity areas.

  17. Advancing Integrated Understanding of Treeline Response to Environmental Change: the Alpine and Arctic Treeline Ecotone Network

    NASA Astrophysics Data System (ADS)

    Cairns, D. M.; Kueppers, L. M.; Millar, C. I.

    2013-12-01

    Upper elevation and northern treeline ecotones are boundary zones between forest and arctic or alpine tundra. Although presence of upright trees has defined the treeline per se, treeline is more accurately an ecotone structured by complex interactions among vegetation, soils, animals, climate, snow, topography, and disturbance regimes. The position and character of the treeline ecotone are important regulators of the land surface energy balance, biodiversity, and the cycling of carbon and water at high latitudes and elevations. The goal of the Alpine and Arctic Treeline Ecotone Network (AATE-Net) is to create a community of practice for treeline science across traditionally disparate fields of study. The objectives are to synthesize the state of knowledge around four scientific bottlenecks, identify pressing data gaps, broaden the perspectives of individual researchers, and foster a community-driven approach to alpine and Arctic treeline science. In pursuit of this goal and these objectives, the AATE-Net will bring together ecologists, ecosystem scientists, geographers, ecophysiologists, climatologists, hydrologists, and others with interests in treeline and ecotones in general to solidify our understanding of treeline dynamics across domains of time and space. Since treelines are globally distributed, interactions and partnerships with emerging treeline initiatives in Europe and elsewhere will be key components of the AATE-Net.

  18. An Inquiry-Based Practical for a Large, Foundation-Level Undergraduate Laboratory that Enhances Student Understanding of Basic Cellular Concepts and Scientific Experimental Design

    ERIC Educational Resources Information Center

    Bugarcic, A.; Zimbardi, K.; Macaranas, J.; Thorn, P.

    2012-01-01

    Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny,…

  19. Predicting Scientific Understanding of Prospective Elementary Teachers: Role of Gender, Education Level, Courses in Science, and Attitudes toward Science and Mathematics

    ERIC Educational Resources Information Center

    Kumar, David D.; Morris, John D.

    2005-01-01

    A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary…

  20. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    SciTech Connect

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  1. Strengthening sociometric prediction: scientific advances in the assessment of children's peer relations.

    PubMed

    DeRosier, Melissa E; Thomas, James M

    2003-01-01

    This study assessed the strength of sociometric classification in the prediction of concurrent sociobehavioral adjustment. Differential adjustment for subgroups of unclassified children were also examined. Participants were 881 fifth graders (ages 9 to 12). Classification strength (CS) and unclassified subgroups were determined through newly developed algorithms. CS added significantly to the prediction of all areas of adjustment. For example, highly rejected children were at extreme risk for victimization whereas highly controversial children were most likely to be bullies and relationally aggressive. Unclassified subgroups were found to exhibit adjustment problems mirroring those of their extreme status group counterparts. Findings support that increasing the sensitivity of sociometric measurement results in both greater predictive strength and enhanced understanding of underlying social processes.

  2. Better predictions, better allocations: scientific advances and adaptation to climate change.

    PubMed

    Freeman, Mark C; Groom, Ben; Zeckhauser, Richard J

    2015-11-28

    Climate science initially aspired to improve understanding of what the future would bring, and thereby produce appropriate public policies and effective international climate agreements. If that hope is dashed, as now seems probable, effective policies for adapting to climate change become critical. Climate science assumes new responsibilities by helping to foster more appropriate adaptation measures, which might include shifting modes or locales of production. This theoretical article focuses on two broader tools: consumption smoothing in response to the risk of future losses, and physical adaptation measures to reduce potential damages. It shows that informative signals on the effects of climate change facilitate better decisions on the use of each tool, thereby increasing social welfare.

  3. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya; M.J. McKelvy; G.H. Wolf; R.W. Carpenter; D.A. Gormley; J.R. Diefenbacher; R. Marzke

    2006-03-01

    significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO2 mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH)2. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO2 mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach has provided a deeper understanding of the key reaction mechanisms than either individual approach can alone. We used ab initio techniques to significantly advance our understanding of atomic-level processes at the solid/solution interface by

  4. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya

    2003-12-19

    /NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will also

  5. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya

    2002-12-19

    /NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will also

  6. Advancements in the mechanistic understanding of the copper-catalyzed azide-alkyne cycloaddition.

    PubMed

    Berg, Regina; Straub, Bernd F

    2013-12-02

    The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I) alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC's catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I) catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates.

  7. Therapeutic Mechanisms of Lithium in Bipolar Disorder: Recent Advances and Current Understanding.

    PubMed

    Malhi, Gin S; Outhred, Tim

    2016-10-01

    Lithium is the most effective and well established treatment for bipolar disorder, and it has a broad array of effects within cellular pathways. However, the specific processes through which therapeutic effects occur and are maintained in bipolar disorder remain unclear. This paper provides a timely update to an authoritative review of pertinent findings that was published in CNS Drugs in 2013. A literature search was conducted using the Scopus database, and was limited by year (from 2012). There has been a resurgence of interest in lithium therapy mechanisms, perhaps driven by technical advancements in recent years that permit the examination of cellular mechanisms underpinning the effects of lithium-along with the reuptake of lithium in clinical practice. Recent research has further cemented glycogen synthase kinase 3β (GSK3β) inhibition as a key mechanism, and the inter-associations between GSK3β-mediated neuroprotective, anti-oxidative and neurotransmission mechanisms have been further elucidated. In addition to highly illustrative cellular research, studies examining higher-order biological systems, such as circadian rhythms, as well as employing innovative animal and human models, have increased our understanding of how lithium-induced changes at the cellular level possibly translate to changes at behavioural and clinical levels. Neural circuitry research is yet to identify clear mechanisms of change in bipolar disorder in response to treatment with lithium, but important structural findings have demonstrated links to the modulation of cellular mechanisms, and peripheral marker and pharmacogenetic studies are showing promising findings that will likely inform the exploration for predictors of lithium treatment response. With a deeper understanding of lithium's therapeutic mechanisms-from the cellular to clinical levels of investigation-comes the opportunity to develop predictive models of lithium treatment response and identify novel drug targets, and

  8. Advancements in the mechanistic understanding of the copper-catalyzed azide–alkyne cycloaddition

    PubMed Central

    2013-01-01

    Summary The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I) alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC’s catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I) catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates. PMID:24367437

  9. Advances in understanding societal vulnerability to tsunamis in the United States

    NASA Astrophysics Data System (ADS)

    Wood, N. J.

    2009-12-01

    Loss of life and property damage from future tsunamis can be reduced if officials develop risk-reduction strategies and education programs that address how at-risk populations and communities are specifically vulnerable to tsunamis. Prior to the 2004 Indian Ocean tsunami, information concerning societal vulnerability to tsunamis in the U.S. was largely limited to state-level summaries of the number of residents within one kilometer of the coast. Since 2004, the U.S. Geological Survey has furthered the Nation’s understanding of societal vulnerability to tsunamis with several studies that describe the exposure, sensitivity, and adaptive capacity of at-risk populations in tsunami-hazard zones. Community-level assessments have been completed in Hawaii, Oregon, and Washington to document variations in the number and types of people, businesses, and critical facilities in tsunami-prone areas. A method using midresolution satellite imagery was developed to identify community variations in the amount of developed land in tsunami-prone areas. Factor analysis and geospatial analysis were integrated to model variations in demographic sensitivity to tsunamis. Public workshops have been held to examine community sensitivity, adaptive capacity and post-tsunami recovery. Results demonstrate that social vulnerability to tsunamis varies throughout a community or region and that certain areas are likely to suffer disproportionately due to differences in pre-tsunami socioeconomic conditions and other demographic attributes. This presentation will summarize advances in understanding societal vulnerability in the U.S. to tsunamis since the 2004 Indian Ocean tsunami, as well as discuss opportunities and needs for further work.

  10. Advancing our understanding of religion and spirituality in the context of behavioral medicine.

    PubMed

    Park, Crystal L; Masters, Kevin S; Salsman, John M; Wachholtz, Amy; Clements, Andrea D; Salmoirago-Blotcher, Elena; Trevino, Kelly; Wischenka, Danielle M

    2017-02-01

    Recognizing and understanding the potentially powerful roles that religiousness and spirituality (RS) may serve in the prevention and amelioration of disease, as well as symptom management and health related quality of life, significantly enhances research and clinical efforts across many areas of behavioral medicine. This article examines the knowledge established to date and suggests advances that remain to be made. We begin with a brief summary of the current knowledge regarding RS as related to three exemplary health conditions: (a) cardiovascular disease; (b) cancer; and, (c) substance abuse. We then focus on particular concerns for future investigations, emphasizing conceptual issues, possible mediators and moderators of relationships or effects, and methodology. Our discussion is framed by a conceptual model that may serve to guide and organize future investigations. This model highlights a number of important issues regarding the study of links between RS and health: (a) RS comprise many diverse constructs, (b) the mechanisms through which RS may influence health outcomes are quite diverse, and (c) a range of different types of health and health relevant outcomes may be influenced by RS. The multidimensional nature of RS and the complexity of related associations with different types of health relevant outcomes present formidable challenges to empirical study in behavioral medicine. These issues are referred to throughout our review and we suggest several solutions to the presented challenges in our summary. We end with a presentation of barriers to be overcome, along with strategies for doing so, and concluding thoughts.

  11. Bovine viral diarrhea virus infections: manifestations of infection and recent advances in understanding pathogenesis and control.

    PubMed

    Brodersen, B W

    2014-03-01

    Bovine viral diarrhea virus (BVDV) continues to be of economic significance to the livestock industry in terms of acute disease and fetal loss. Many of the lesions relating to BVDV infection have been well described previously. The virus is perpetuated in herds through the presence of calves that are persistently infected. Relationships between various species and biotypes of BVDV and host defenses are increasingly understood. Understanding of the host defense mechanisms of innate immunity and adaptive immunity continues to improve, and the effects of the virus on these immune mechanisms are being used to explain how persistent infection develops. The noncytopathic biotype of BVDV plays the major role in its effects on the host defenses by inhibiting various aspects of the innate immune system and creation of immunotolerance in the fetus during early gestation. Recent advances have allowed for development of affordable test strategies to identify and remove persistently infected animals. With these improved tests and removal strategies, the livestock industry can begin more widespread effective control programs.

  12. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    DOE PAGES

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; ...

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosicmore » bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.« less

  13. Recent advances in the understanding of Quaternary periglacial features of the English Channel coastlands

    NASA Astrophysics Data System (ADS)

    Murton, Julian B.; Lautridou, Jean-Pierre

    2003-02-01

    Recent advances in the understanding of Quaternary periglaciation of the English Channel coastlands concern laboratory modelling of periglacial processes, dating of periglacial sediments and the distribution of permafrost during marine oxygen isotope stage (MOIS) 2. Modelling studies have successfully simulated (i) ice segregation in chalk in artificial permafrost, (ii) periglacial solifluction of natural slope sediments, and (iii) soft-sediment deformation during thaw of ice-rich soil. The resultant structures and deposits in these experiments have similarities with naturally brecciated chalk, solifluction deposits and involutions, respectively, along the English Channel coastlands, providing insights into their genesis and palaeoenvironmental significance.Dating of periglacial sediments is based on radiocarbon assays of organic material in head deposits, luminescence measurements of loess and coversand, and mammalian biostratigraphy in raised-beach and associated slope deposits. Most age estimates fall within MOIS 2, although some are within MOIS 6 and possibly other cold stages.Maps reconstructing the distribution of permafrost during MOIS 2 vary in detail. The precise distribution of permafrost remains to be established owing to problems of (i) imprecise dating in the context of climatic instability, (ii) uncertain palaeoclimatic significance of particular periglacial structures and (iii) sparse data on the age and distribution of relict periglacial features.The wider significance of periglacial processes to the evolution of the Channel coastlands is speculated to involve rapid valley development by flowing water in areas of moist, frost-susceptible bedrock that has been brecciated by ice segregation.

  14. Novel Advances in Understanding of Molecular Pathogenesis of Hepatoblastoma: A Wnt/β-Catenin Perspective

    PubMed Central

    Bell, Danielle; Ranganathan, Sarangarajan; Tao, Junyan; Monga, Satdarshan P. S.

    2017-01-01

    Hepatoblastoma is the most common pediatric liver malignancy, typically striking children within the first 3 years of their young lives. While advances in chemotherapy and newer surgical techniques have improved survival in patients with localized disease, unfortunately, for the 25% of patients with metastasis, the overall survival remains poor. These tumors, which are thought to arise from hepatic progenitors or hepatoblasts, hence the name hepatoblastoma, can be categorized by histological subtyping based on their level of cell differentiation. Genomic and histological analysis of human tumor samples has shown exon-3 deletions or missense mutations in gene coding for β-catenin, a downstream effector of the Wnt signaling pathway, in up to 90% of hepatoblastoma cases. The current article will review key aberrations in molecular pathways that are implicated in various subtypes of hepatoblastoma with an emphasis on Wnt signaling. It will also discuss cooperation among components of pathways such as β-catenin and Yes-associated protein in cancer development. Understanding the complex network of molecular signaling in oncogenesis will undoubtedly aid in the discovery of new therapeutics to help combat hepatoblastoma. PMID:27938502

  15. Recent advances in understanding the role of lamins in health and disease

    PubMed Central

    Reddy, Sita; Comai, Lucio

    2016-01-01

    Lamins are major components of the nuclear lamina, a network of proteins that supports the nuclear envelope in metazoan cells. Over the past decade, biochemical studies have provided support for the view that lamins are not passive bystanders providing mechanical stability to the nucleus but play an active role in the organization of the genome and the function of fundamental nuclear processes. It has also become apparent that lamins are critical for human health, as a large number of mutations identified in the gene that encodes for A-type lamins are associated with tissue-specific and systemic genetic diseases, including the accelerated aging disorder known as Hutchinson-Gilford progeria syndrome. Recent years have witnessed great advances in our understanding of the role of lamins in the nucleus and the functional consequences of disease-associated A-type lamin mutations. Many of these findings have been presented in comprehensive reviews. In this mini-review, we discuss recent breakthroughs in the role of lamins in health and disease and what lies ahead in lamin research. PMID:27803806

  16. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    PubMed Central

    Kim, Tae-Houn; Böhmer, Maik; Hu, Honghong; Nishimura, Noriyuki; Schroeder, Julian I.

    2011-01-01

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms. PMID:20192751

  17. Final Scientific/Technical Report: ADVANCED INTEGRATION OF POWER TAKE-OFF IN VIVACE

    SciTech Connect

    Simiao, Gustavo

    2014-03-21

    Vortex Hydro Energy is commercializing a University of Michigan patented MHK device, the VIVACE converter (Vortex Induced Vibration Aquatic Clean Energy). Unlike water turbines, it does not use propeller blades. Rather, river or ocean currents flow around cylinders causing them to move up and down in Flow Induced Motions (FIM). This kinetic energy of the cylinder is then converted to electricity. Importantly, the VIVACE converter is simpler in design and more cost effective than water turbines. This project accelerated the development of the VIVACE technology. Funding from the DOE enabled VHE to accelerate the development in three ways. One was to increase the efficiency of the hydrodynamics of the system. This aided in maximizing the power output for a wide range of water speeds. The second was to design, build, and test an efficient power take-off (PTO) that converted the most power from the VIVACE cylinders into electricity. This effort was necessary because of the nature of power generated using this technology. Although the PTO uses off-the-shelf components, it is specifically tuned to the specific water flow characteristics. The third way the development was accelerated was by testing the improved Beta 1B prototype over a longer period of time in a river. The greatest benefit from the longer open-water testing-period is a better understand of the power generation characteristics of the system as well as the maintenance lifespan of the device. Renewable energy generation is one of today’s most challenging global dilemmas. The energy crisis requires tapping into every source of energy and developing every technology that can generate energy at a competitive cost within the next 50 years. Development of VIVACE will bolster domestic energy security and mitigate global climate change. There are numerous commercial and military applications for a fully developed system, which could generate clean/renewable energy from small scale (1-5kW) to medium scale (500k

  18. Managing in the trenches of consumer care: the challenges of understanding and initiating the advance care planning process.

    PubMed

    Baughman, Kristin R; Aultman, Julie; Hazelett, Susan; Palmisano, Barbara; O'Neill, Anne; Ludwick, Ruth; Sanders, Margaret

    2012-01-01

    To better understand how community-based long-term care providers define advance care planning and their role in the process, we conducted 8 focus groups with 62 care managers (social workers and registered nurses) providing care for Ohio's Medicaid waiver program. Care managers shared that most consumers had little understanding of advance care planning. The care managers defined it broadly, including legal documentation, social aspects, medical considerations, ongoing communication, and consumer education. Care managers saw their roles as information providers, healthcare team members, and educators/coaches. Better education, resources, and coordination are needed to ensure that consumer preferences are realized.

  19. Detection of Explanation Obstacles in Scientific Texts: The Effect of an Understanding Task vs. an Experiment Task

    ERIC Educational Resources Information Center

    Morgado, Júlia; Otero, José; Vaz-Rebelo, Piedade; Sanjosé, Vicente; Caldeira, Helena

    2014-01-01

    The aim of this study is to analyse the effect of tasks on the detection of explanation obstacles when secondary school students read scientific texts. Students were instructed to read short passages under different task conditions, and to ask questions if necessary. Obstacle detection was operationalised in terms of the type of questions asked by…

  20. Exploring How Research Experiences for Teachers Changes Their Understandings of the Nature of Science and Scientific Inquiry

    ERIC Educational Resources Information Center

    Buxner, Sanlyn R.

    2014-01-01

    The nature of science is a prevalent theme across United States national science education standards and frameworks as well as other documents that guide formal and informal science education reform. To support teachers in engaging their students in authentic scientific practices and reformed teaching strategies, research experiences for teachers…

  1. Preschool Pathways to Science (PrePS[TM]): Facilitating Scientific Ways of Thinking, Talking, Doing, and Understanding

    ERIC Educational Resources Information Center

    Gelman, Rochel; Brenneman, Kimberly; Macdonald, Gay; Roman, Moises

    2009-01-01

    To ensure they're meeting state early learning guidelines for science, preschool educators need fun, age-appropriate, and research-based ways to teach young children about scientific concepts. The basis for the PBS KIDS show "Sid the Science Kid," this teaching resource helps children ages 3-5 investigate their everyday world and develop the…

  2. Deaf Pupils' Reasoning about Scientific Phenomena: School Science as a Framework for Understanding or as Fragments of Factual Knowledge.

    ERIC Educational Resources Information Center

    Molander, B. O.; Pedersen, Svend; Norell, Kia

    2001-01-01

    A Swedish interview study of how deaf pupils reason about phenomena in a science context revealed significant variation in the extent to which pupils used scientific principles for reasoning about science phenomena, which suggests that for some pupils, school science offers little as a framework for reasoning. (Contains references.) (DB)

  3. Deepening Our Understanding of Academic Inbreeding Effects on Research Information Exchange and Scientific Output: New Insights for Academic Based Research

    ERIC Educational Resources Information Center

    Horta, Hugo

    2013-01-01

    This paper analyzes the impact of academic inbreeding in relation to academic research, and proposes a new conceptual framework for its analysis. We find that mobility (or lack of) at the early research career stage is decisive in influencing academic behaviors and scientific productivity. Less mobile academics have more inward oriented…

  4. Scientific Research Activity of Students Pre-Service Teachers of Sciences at University: The Aspects of Understanding, Situation and Improvement

    ERIC Educational Resources Information Center

    Lamanauskas, Vincentas; Augiene, Dalia

    2017-01-01

    The development of student abilities of scientific research activity (SRA) in the process of studies appears as a highly important area. In the course of studies, students not only increase their general competencies, acquire professional abilities and skills but also learn to conduct research. This does not mean that all students will build their…

  5. Does Attainment of Piaget's Formal Operational Level of Cognitive Development Predict Student Understanding of Scientific Models?

    ERIC Educational Resources Information Center

    Lahti, Richard Dennis, II.

    2012-01-01

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer…

  6. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.

    PubMed

    Gao, Wenpei; Hood, Zachary D; Chi, Miaofang

    2017-02-16

    interfaces and providing deeper insight for fine-tuning and optimizing catalyst properties. Scanning transmission electron microscopy (STEM) has long been a primary characterization technique used for studying nanomaterials because of its exceptional imaging resolution and simultaneous chemical analysis. Over the past decade, advances in STEM, that is, the commercialization of both aberration correctors and monochromators, have significantly improved the spatial and energy resolution. Imaging atomic structures with subangstrom resolution and identifying chemical species with single-atom sensitivity are now routine for STEM. These advancements have greatly benefitted catalytic research. For example, the roles of lattice strain and surface elemental distribution and their effect on catalytic stability and reactivity have been well documented in bimetallic catalysts. In addition, three-dimensional atomic structures revealed by STEM tomography have been integrated in theoretical modeling for predictive catalyst NP design. Recent developments in stable electronic and mechanical devices have opened opportunities to monitor the evolution of catalysts in operando under synthesis and reaction conditions; high-speed direct electron detectors have achieved sub-millisecond time resolutions and allow for rapid structural and chemical changes to be captured. Investigations of catalysts using these latest microscopy techniques have provided new insights into atomic-level catalytic mechanisms. Further integration of new microscopy methods is expected to provide multidimensional descriptions of interfaces under relevant synthesis and reaction conditions. In this Account, we discuss recent insights on understanding catalyst activity, selectivity, and stability using advanced STEM techniques, with an emphasis on how critical interfaces dictate the performance of precious metal-based heterogeneous catalysts. The role of extended interfacial structures, including those between core and shell

  7. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis

    PubMed Central

    Scorzoni, Liliana; de Paula e Silva, Ana C. A.; Marcos, Caroline M.; Assato, Patrícia A.; de Melo, Wanessa C. M. A.; de Oliveira, Haroldo C.; Costa-Orlandi, Caroline B.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2017-01-01

    The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the

  8. Recent advances in the understanding and management of atrial fibrillation: a focus on stroke prevention

    PubMed Central

    Shahid, Farhan; Shantsila, Eduard; Lip, Gregory Y. H.

    2016-01-01

    Atrial fibrillation (AF) is associated with an increased risk of stroke compared with the general population. It is anticipated that by 2030 an estimated 14–17 million patients will be diagnosed with this most prevalent arrhythmia within the European Union. AF-related stroke confers a higher mortality and morbidity risk, and thus early detection and assessment for the initiation of effective stroke prevention with oral anticoagulation (OAC) is crucial. Recent guidelines point to the use of non-vitamin K antagonist OACs (NOACs) where appropriate in stroke prevention of patients with non-valvular AF. At present, there are four NOACS available, with no direct head-to-head comparisons to suggest the superiority of one drug over another. Simple and practical risk assessment tools have evolved over the years to facilitate stroke and bleeding risk assessment in busy clinics and wards to aid decision-making. At present, the CHA 2DS 2VASc (congestive heart failure, hypertension, age 65–74/>75, diabetes mellitus, stroke/transient ischemic attack/thromboembolism, vascular disease, female sex) score is recommended by many international guidelines as a simple and practical method of assessing stroke risk in such patients. Alongside this, use of the HAS BLED (hypertension systolic blood pressure >160 mmHg, abnormal liver/renal function [with creatinine ≥200 μmol/L], stroke, bleeding history or predisposition, labile international normalized ratio [range <60% of the time], elderly [>65], concomitant drugs/alcohol) score aims to identify patients at high risk of bleeding for more regular review and follow-up and draws attention to potentially reversible bleeding risk factors. The aim of this review article is to provide an overview of recent advances in the understanding and management of AF with a focus on stroke prevention. PMID:28105320

  9. Experimental alluvial fans: Advances in understanding of fan dynamics and processes

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy E.

    2015-09-01

    Alluvial fans are depositional systems that develop because of a disparity between the upstream and downstream sediment transport capacity of a system, usually at the base of mountain fronts as rivers emerge from the constrained mountain area onto the plain. They are dynamic landforms that are prone to abrupt changes on a geomorphological (decades to centuries) time scale, while also being long-term deposition features that preserve sedimentary strata and are sensitive indictors of environmental change. The complexity of interactions between catchment characteristics, climate, tectonics, internal system feedbacks, and environmental processes on field alluvial fans means that it is difficult to isolate individual variables in a field setting; therefore, the controlled conditions afforded by experimental models has provided a novel technique to overcome some of these complexities. The use of experimental models of alluvial fans has a long history and these have been implemented over a range of different research areas utilising various experimental designs. Using this technique, important advances have been made in determining the primary factors influencing fan slope, understanding of avulsion dynamics, identifying autogenic processes driving change on fan systems independent of any change in external conditions, and the mechanics of flow and flood risk on alluvial fans, to name a few. However, experiments cannot be carried out in isolation. Thus, combining the findings from experimental alluvial fans with field research and numerical modelling is important and, likewise, using these techniques to inform experimental design. If this can be achieved, there is potential for future experimental developments to explore key alluvial fan issues such as stratigraphic preservation potential and simulating extra terrestrial fan systems.

  10. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis.

    PubMed

    Scorzoni, Liliana; de Paula E Silva, Ana C A; Marcos, Caroline M; Assato, Patrícia A; de Melo, Wanessa C M A; de Oliveira, Haroldo C; Costa-Orlandi, Caroline B; Mendes-Giannini, Maria J S; Fusco-Almeida, Ana M

    2017-01-01

    The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the

  11. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect

    Saffer, Shelley I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  12. Advancing our understanding of plant adaptation to metal polluted environments - new insights from Biscutella laevigata

    NASA Astrophysics Data System (ADS)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Frérot, Hélène; Vollenweider, Pierre

    2016-04-01

    The legacy of industrial pollution alters ecosystems, particularly at post-mining sites where metal trace elements have created toxic conditions that trigger rapid plant adaptation. Apart from the purely scientific merits, in-depth knowledge of the mechanisms underlying plant adaptation to metal contamination is beneficial for the economic and societal sectors because of its application in bioengineering (e.g. phytoremediation or biofortification). An important process is the evolution and/or enhancement of metal tolerance, a trait that has predominantly been studied by applying acute metal stress on species that allocate large quantities of certain metals to their foliage (so-called hyperaccumulators). As the vast majority of vascular plants does not hyperaccumulate metals, more efforts are needed to investigate non-hyperaccumulating species and thereby broaden understanding of biological mechanisms underlying metal tolerance. The pseudometallophyte Biscutella laevigata has shown potential in this respect, but its characteristics are insufficiently understood. We determined the zinc tolerance level and various plant responses to environmentally relevant zinc concentrations in ten metallicolous and non-metallicolous B. laevigata populations. In a two-phase hydroponic experiment, we scored multiple morphological and physiological traits (e.g. biomass, visible stress symptoms, element content in foliage) and assessed phenotypic variability within plant families. The structure of these quantitative traits was compared to that of neutral molecular markers to test, whether natural selection caused population differentiation in zinc tolerance. While all genotypes were tolerant compared to a zinc sensitive reference species, we found congruent trends toward higher tolerance in metallicolous compared to non-metallicolous plants. We identified the most indicative parameters for these differences and find that enhanced zinc tolerance in metallicolous populations is driven by

  13. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  14. Advancement Information Resources Management: An Information Understanding Profession in Support of Philanthropy.

    ERIC Educational Resources Information Center

    Mayer, Anne E.

    Professional fundraising has given rise to a new information specialist profession. This career path, which has been known as prospect research or advancement research, should be more accurately characterized as information resources management for advancement. With primary emphasis on value-added information processes that involve analysis and…

  15. Understanding of the Dynamics of the Stirling Convertor Advanced by Structural Testing

    NASA Technical Reports Server (NTRS)

    Hughes, William O.

    2003-01-01

    associated harmonics. Therefore, Stirling power systems will not disturb spacecraft science experiments if minimal appropriate mounting efforts are made. The third test program, performed in February and May 2001, resulted in a modal characterization of a Stirling convertor. Since the deflection of the TDC piston rod, under vibration excitation, was of particular interest, the outer pressure shell was removed to allow access to the rod. Through this testing, the Stirling TDC's natural frequencies and modes were identified. This knowledge advanced our understanding of the successful 1999 vibration test and may be utilized to optimize the output power of future Stirling designs. The fourth test program, in April 2001, was conducted to characterize the structural response of a pair of Stirling convertors, as a function of their mounting interface stiffness. The test results provide guidance for the Stirling power package interface design. Properly designed, the interface may lead to increased structural capability and power performance beyond what was demonstrated in the successful 1999 vibration test. Dynamic testing performed to date at Glenn has shown that the Stirling convertors can withstand liftoff random vibration environments and meet "good neighbor" vibratory emission requirements. Furthermore, the future utilization of the information obtained during the tests will allow the corporation selected to be the Stirling system integrator to optimize their convertor and system interfaces designs. Glenn's Thermo-Mechanical Systems Branch provides Stirling technology expertise under a Space Act Agreement with the Department of Energy. Additional vibration testing by Glenn's Structural Systems Dynamics Branch is planned to continue to demonstrate the Stirling power system's vibration capability as its technology and flight system designs progress.

  16. Using Exoplanet Models to Explore NGSS and the Nature of Science and as a Tool for Understanding the Scientific Results from NIRCam/JWST

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; McCarthy, Donald W.; Higgins, Michelle L.; Lebofsky, Nancy R.

    2014-11-01

    Our Solar System is no longer unique. To date, about 1,800 planets are known to orbit over 1,100 other stars and nearly 50% are in multiple-planet systems. Planetary systems seem [to be] fairly common and astronomers are now finding Earth-sized planets in the Goldilocks Zone, suggesting there may be other habitable planets. To this end, characterizing the atmospheric chemistries of such planets is a major science goal of the NIRCam instrument on the James Webb Space Telescope.For NIRCam's E/PO program with the Girl Scouts of the USA, we have produced scale models and associated activities to compare the size, scale, and dynamics of the Solar System with several exoplanet systems. Our models illustrate the techniques used to investigate these systems: radial velocity, transits, direct observations, and gravitational microlensing. By comparing and contrasting these models, we place our Solar System in a more cosmic context and enable discussion of current questions within the scientific community: How do planetary systems form and evolve? Is our present definition of a planet a good definition in the context of other planetary systems? Are there other planets/moons that might harbor life as we know it?These models are appropriate for use in classrooms and conform to the Next Generation Science Standards (NGSS) through the Disciplinary Core Idea: Earth's Place in the Universe and Crosscutting Concepts—Patterns Scale, Portion, and Quantity; and Systems and System Models. NGSS also states that the Nature of Science (NOS) should be an “essential part” of science education. NOS topics include, for example, understanding that scientific investigations use a variety of methods, that scientific knowledge is based on empirical evidence, that scientific explanations are open to revision in light of new evidence, and an understanding the nature of scientific models.

  17. Toward an Understanding of the Environmental and Public Health Impacts of Unconventional Natural Gas Development: A Categorical Assessment of the Peer-Reviewed Scientific Literature, 2009-2015

    PubMed Central

    Hays, Jake; Shonkoff, Seth B. C.

    2016-01-01

    The body of science evaluating the potential impacts of unconventional natural gas development (UNGD) has grown significantly in recent years, although many data gaps remain. Still, a broad empirical understanding of the impacts is beginning to emerge amidst a swell of research. The present categorical assessment provides an overview of the peer-reviewed scientific literature from 2009–2015 as it relates to the potential impacts of UNGD on public health, water quality, and air quality. We have categorized all available original research during this time period in an attempt to understand the weight and direction of the scientific literature. Our results indicate that at least 685 papers have been published in peer-reviewed scientific journals that are relevant to assessing the impacts of UNGD. 84% of public health studies contain findings that indicate public health hazards, elevated risks, or adverse health outcomes; 69% of water quality studies contain findings that indicate potential, positive association, or actual incidence of water contamination; and 87% of air quality studies contain findings that indicate elevated air pollutant emissions and/or atmospheric concentrations. This paper demonstrates that the weight of the findings in the scientific literature indicates hazards and elevated risks to human health as well as possible adverse health outcomes associated with UNGD. There are limitations to this type of assessment and it is only intended to provide a snapshot of the scientific knowledge based on the available literature. However, this work can be used to identify themes that lie in or across studies, to prioritize future research, and to provide an empirical foundation for policy decisions. PMID:27096432

  18. Toward an Understanding of the Environmental and Public Health Impacts of Unconventional Natural Gas Development: A Categorical Assessment of the Peer-Reviewed Scientific Literature, 2009-2015.

    PubMed

    Hays, Jake; Shonkoff, Seth B C

    2016-01-01

    The body of science evaluating the potential impacts of unconventional natural gas development (UNGD) has grown significantly in recent years, although many data gaps remain. Still, a broad empirical understanding of the impacts is beginning to emerge amidst a swell of research. The present categorical assessment provides an overview of the peer-reviewed scientific literature from 2009-2015 as it relates to the potential impacts of UNGD on public health, water quality, and air quality. We have categorized all available original research during this time period in an attempt to understand the weight and direction of the scientific literature. Our results indicate that at least 685 papers have been published in peer-reviewed scientific journals that are relevant to assessing the impacts of UNGD. 84% of public health studies contain findings that indicate public health hazards, elevated risks, or adverse health outcomes; 69% of water quality studies contain findings that indicate potential, positive association, or actual incidence of water contamination; and 87% of air quality studies contain findings that indicate elevated air pollutant emissions and/or atmospheric concentrations. This paper demonstrates that the weight of the findings in the scientific literature indicates hazards and elevated risks to human health as well as possible adverse health outcomes associated with UNGD. There are limitations to this type of assessment and it is only intended to provide a snapshot of the scientific knowledge based on the available literature. However, this work can be used to identify themes that lie in or across studies, to prioritize future research, and to provide an empirical foundation for policy decisions.

  19. Advances in Frozen Ground Studies and Understanding its Role in the Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Zhang, T.

    2004-05-01

    Significant advances in frozen ground studies have been achieved over the past several decades. Knowledge and information on frozen ground would improve our understanding in local, regional, and global water cycle over the cold regions/cold seasons. Permafrost regions occupy approximately 24 percent of the land area in the Northern Hemisphere. The total volume of the excess ground ice contained in the ice-rich permafrost ranges from about 10,800 to 35,460 cubic kilometers or about 2.7 to 8.8 cm sea-level equivalent. Permafrost limits the amount of subsurface water storage and infiltration that can occur, leading to wet soils and standing surface water, unusual for a region with limited precipitation. Observational evidence indicates that permafrost warming and thawing in the Northern Hemisphere have occurred over the past several decades. Active layer thickness has increased and depth of seasonally frozen ground has decreased significantly in the Russian Arctic and Subarctic. Thickening of the active layer and melting of the excess ground ice may partly contribute to the increase of runoff over the Russian Arctic drainage basin. Increase in active layer thickness may also delay the active layer freeze-up date, possibly leading to the increase in winter river runoff. On average, nearly 50 percent of the land surface in the Northern Hemisphere experiences freeze/thaw cycles that last from a few days to several months with thickness up to several meters. The existence of a thin frozen layer near the surface essentially decouples moisture exchange between the atmosphere and deeper soils. Knowing whether the soil is frozen is important in predicting spring surface runoff and soil moisture reserve in northern United States. Coupling of soil freezing and thawing processes into the hydrological model improves the model prediction on river runoff significantly. The timing, duration, areal extent,frequency, and thickness of the near-surface soil freeze/thaw cycle have

  20. Visual representation of scientific information.

    PubMed

    Wong, Bang

    2011-02-15

    Great technological advances have enabled researchers to generate an enormous amount of data. Data analysis is replacing data generation as the rate-limiting step in scientific research. With this wealth of information, we have an opportunity to understand the molecular causes of human diseases. However, the unprecedented scale, resolution, and variety of data pose new analytical challenges. Visual representation of data offers insights that can lead to new understanding, whether the purpose is analysis or communication. This presentation shows how art, design, and traditional illustration can enable scientific discovery. Examples will be drawn from the Broad Institute's Data Visualization Initiative, aimed at establishing processes for creating informative visualization models.

  1. From scientific understanding to operational utility: New concepts and tools for monitoring space weather effects on satellites

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Rodriguez, J. V.; Denig, W. F.; Redmon, R. J.; Blake, J. B.; Mazur, J. E.; Fennell, J. F.; O'Brien, T. P.; Guild, T. B.; Claudepierre, S. G.; Singer, H. J.; Onsager, T. G.; Wilkinson, D. C.

    2013-12-01

    NOAA space weather sensors have monitored the near Earth space radiation environment for more than three decades providing one of the only long-term records of these energetic particles that can disable satellites and pose a threat to astronauts. These data have demonstrated their value for operations for decades, but they are also invaluable for scientific discovery. Here we describe the development of new NOAA tools for assessing radiation impacts to satellites and astronauts working in space. In particular, we discuss the new system implemented for processing and delivering near real time particle radiation data from the POES/MetOp satellites. We also describe the development of new radiation belt indices from the POES/MetOp data that capture significant global changes in the environment needed for operational decision making. Lastly, we investigate the physical processes responsible for dramatic changes of the inner proton belt region and the potential consequences these new belts may have for satellite operations.

  2. Understanding the Quality of Data: A Concept Map for "The Thinking behind the Doing" in Scientific Practice

    ERIC Educational Resources Information Center

    Roberts, Ros; Johnson, Philip

    2015-01-01

    Recent school science curriculum developments in many countries emphasise that scientists derive evidence for their claims through different approaches; that such practices are bound up with disciplinary knowledge; and that the quality of data should be appreciated. This position paper presents an understanding of the validity of data as a set of…

  3. Development of Scientific Understanding of the Essence of the Fiscal Control in Russia over the Past 100 Years

    ERIC Educational Resources Information Center

    Valiela, Elizaveta N.; Milova, Larisa N.; Dozhdeva, Elena E.; Lukin, Andrey G.; Chapaev, Nikolay K.

    2016-01-01

    The relevance of the studied problem is determined by the fact that the modern understanding of the essence of the fiscal control is based on the research of specific essential characteristics. As a rule, they are not of system nature and are not connected with studies of other characteristics. The aim of this article is a synthesis of the main…

  4. Using Memes and Memetic Processes to Explain Social and Conceptual Influences on Student Understanding about Complex Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Yoon, Susan

    2008-01-01

    This study investigated seventh grade learners' decision making about genetic engineering concepts and applications. A social network analyses supported by technology tracked changes in student understanding with a focus on social and conceptual influences. Results indicated that several social and conceptual mechanisms potentially affected how…

  5. How to Generate Understanding of the Scientific Process in Introductory Biology: A Student-Designed Laboratory Exercise on Yeast Fermentation

    ERIC Educational Resources Information Center

    Collins, Linda T.; Bell, Rebekah P.

    2004-01-01

    Heavy faculty teaching loads and limited funds biology teachers designed certain objectives in order to increase the understandability of the subject matter of the laboratory exercises they write. In relation to these objectives an old "cookbook" laboratory exercise on yeast fermentation is introduced which involve students asking questions,…

  6. Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review.

    PubMed

    McCleskey, T Mark; Buchner, Virginia; Field, R William; Scott, Brian L

    2009-01-01

    In this review we summarize the work conducted over the past decade that has advanced our knowledge of pulmonary diseases associated with exposure to beryllium that has provided a molecular-based understanding of the chemistry, immunopathology, and immunogenetics of beryllium toxicity. Beryllium is a strong and lightweight metal that generates and reflects neutrons, resists corrosion, is transparent to X-rays, and conducts electricity. Beryllium is one of the most toxic elements on the periodic table, eliciting in susceptible humans (a) an allergic immune response known as beryllium sensitization (BeS); (b) acute beryllium disease, an acutely toxic, pneumonitis-like lung condition resulting from exposure to high beryllium concentrations that are rarely seen in modern industry; and (c) chronic beryllium disease (CBD) following either high or very low levels of exposure. Because of its exceptional strength, stability, and heat-absorbing capability, beryllium is used in many important technologies in the modern world. In the early 1940s, beryllium was recognized as posing an occupational hazard in manufacturing and production settings. Although acute beryllium disease is now rare, beryllium is an insidious poison with a latent toxicity and the risk of developing CBD persists. Chronic beryllium disease-a systemic granulomatous lung disorder caused by a specific delayed immune response to beryllium within a few months to several decades after exposure-has been called the "unrecognized epidemic". Although not a disease in itself, BeS, the innate immune response to beryllium identified by an abnormal beryllium lymphocyte proliferation test result, is a population-based predictor of CBD. Genetic susceptibility to CBD is associated with alleles of the major histocompatibility gene, human leukocyte antigen DP (HLA-DP) containing glutamic acid at the 69th position of the beta chain (HLA-DPbeta-E69). Other genes are likely to be involved in the disease process, and research on

  7. Design and fundamental understanding of Minimum Quantity Lubrication (MQL) assisted grinding using advanced nanolubricants

    NASA Astrophysics Data System (ADS)

    Kalita, Parash

    Abrasive grinding is widely used across manufacturing industry for finishing parts and components requiring smooth superficial textures and precise dimensional tolerances and accuracy. Unlike any other machining operations, the complex thermo-mechanical processes during grinding produce excessive friction-induced energy consumption, heat, and intense contact seizures. Lubrication and cooling from grinding fluids is crucial in minimizing the deleterious effects of friction and heat to maximize the output part quality and process efficiency. The conventional flood grinding approach of an uneconomical application of large quantities of chemically active fluids has been found ineffective to provide sufficient lubrication and produces waste streams and pollutants that are hazardous to human health and environment. Application of Minimum Quantity Lubrication (MQL) that cuts the volumetric fluid consumption by 3-4 orders of magnitude have been extensively researched in grinding as a high-productivity and environmentally-sustainable alternative to the conventional flood method. However, the lubrication performance and productivity of MQL technique with current fluids has been critically challenged by the extreme thermo-mechanical conditions of abrasive grinding. In this research, an MQL system based on advanced nanolubricants has been proposed to address the current thermo-mechanical challenges of MQL grinding and improve its productivity. The nanolubricants were composed of inorganic Molybdenum Disulphide nanoparticles (≈ 200 nm) intercalated with organic macromolecules of EP/AW property, dispersed in straight (base) oils---mineral-based paraffin and vegetable-based soybean oil. After feasibility investigations into the grindability of cast iron using MQL with nanolubricants, this research focused on the fundamental understanding of tribological behavior and lubricating mechanisms of nanolubricants as a method to improve the productivity of MQL-assisted surface grinding

  8. Recent advances in understanding/management of non-alcoholic steatohepatitis

    PubMed Central

    Pacana, Tommy

    2015-01-01

    Non-alcoholic steatohepatitis (NASH) can lead to advanced fibrosis, hepatocellular carcinoma, and end-stage liver disease requiring liver transplantation. A myriad of pathways and genetic influence contribute to NASH pathogenesis and liver disease progression. Diagnosing patients with NASH and advanced fibrosis is critical prior to treatment and prognostication. There has been ongoing interest in developing non-invasive biomarkers and tools for identifying NASH and advanced fibrosis. To date, there has been no approved therapy for NASH. Recently, the FLINT (Farnesoid X Receptor [FXR] Ligand Obeticholic Acid in NASH Treatment) trial provided promising results of the efficacy of obeticholic acid, a farnesoid X receptor agonist, in improving histological features of NASH and fibrosis. Long-term studies are needed to assess the safety of obeticholic acid and its effects on liver- and cardiovascular-related outcomes. PMID:25926979

  9. Physiology of Penile Erection—A Brief History of the Scientific Understanding up till the Eighties of the 20th Century

    PubMed Central

    2015-01-01

    Abstract Introduction Understanding the physiology of penile erection is important for all who work in the field of sexual medicine. Aim The aim of this study was to highlight and analyze historical aspects of the scientific understanding of penile erection. Methods (i) Review of the chapters on the physiology of erection out of the author's collection of books dealing with male sexual functioning published in the German, French, Dutch, and English language in between 1780 and 1940. (ii) Review of the topic “physiology of penile erection” of relevant chapters of C lassical writings on erectile dysfunction. A n annotated collection of original texts from three millennia, including the study of all relevant references mentioned in these books. Main Outcome Measure The main outcome measure used for the study was the scientific understanding of the physiology of penile erection. Results In Antiquity, Galen considered penile erection as the result the accumulation of air. His ideas so dominated medieval medicine that nearly everyone then alive was a Galenist. The beginning of the Renaissance shows meaningful examples of experimental scientific work on the penis. Da Vinci correctly concluded that erections were caused by blood, and in the 18th century, Von Haller from Switzerland was the first who explained that erections were under the control of the nervous system. In the 19th century, a mindset that emphasized on experimentation determined a new direction, namely experimental physiology. Animal studies clarified that stimulation of the nervi erigentes‐induced small muscle relaxation in the corpora cavernosa. Nearly all were published in the German language. That may be one of the reasons that the existence of the concept of smooth muscle relaxation remained controversial until the first World Congress on Impotence in 1984 in Paris. Conclusions As the Renaissance's innovative research defined neural and vascular physiologic phenomena responsible for penile

  10. Advances toward More Efficient Targeted Delivery of Nanoparticles in Vivo: Understanding Interactions between Nanoparticles and Cells.

    PubMed

    Polo, Ester; Collado, Manuel; Pelaz, Beatriz; Del Pino, Pablo

    2017-03-07

    In this Perspective, we describe current challenges and recent advances in efficient delivery and targeting of nanoparticles in vivo. We discuss cancer therapy, nanoparticle-biomolecule interactions, nanoparticle trafficking in cells, and triggers and responses to nanoparticle-cell interactions. No matter which functionalization strategy to target cancer is chosen, passive or active targeting, more than 99% of the nanoparticles administered in vivo end up in the mononuclear phagocytic system, mainly sequestered by macrophages. Comprehensive studies, such as the one reported by MacParland et al. in this issue of ACS Nano, will help to close the gap between nanotechnology-based drug-delivery solutions and advanced medicinal products.

  11. Advancing Understanding Using Nonaka's Model of Knowledge Creation and Problem-Based Learning

    ERIC Educational Resources Information Center

    Tee, Meng Yew; Lee, Shuh Shing

    2013-01-01

    Nonaka's model of knowledge creation can provide guidance for designing learning environments and activities. However, Bereiter is critical of the model because it does not address whether understanding is deepened in the process of socialization, externalization, combination and internalization. To address this issue of understanding, this…

  12. 48 CFR 1552.215-74 - Advanced understanding-uncompensated time.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hours delivered during the contract. In the event there is a shortage of uncompensated time hours...-uncompensated time. 1552.215-74 Section 1552.215-74 Federal Acquisition Regulations System ENVIRONMENTAL... Clauses 1552.215-74 Advanced understanding—uncompensated time. As prescribed in 1515.408(b), insert...

  13. Understanding Fluorescence Measurements through a Guided-Inquiry and Discovery Experiment in Advanced Analytical Laboratory

    ERIC Educational Resources Information Center

    Wilczek-Vera, Grazyna; Salin, Eric Dunbar

    2011-01-01

    An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…

  14. Annual Research Review: Impact of Advances in Genetics in Understanding Developmental Psychopathology

    ERIC Educational Resources Information Center

    Addington, Anjene M.; Rapoport, Judith L.

    2012-01-01

    It was hoped that diagnostic guidelines for, and treatment of, child psychiatric disorders in DSM-5 would be informed by the wealth of clinical genetic research related to neurodevelopmental disorders. In spite of remarkable advances in genetic technology, this has not been the case. Candidate gene, genome-wide association, and rare copy number…

  15. Role of Commodity Boards in Advancing the Understanding of the Health Benefits of Whole Foods

    PubMed Central

    Bowen, Phyllis E.

    2017-01-01

    Food and agriculture commodity boards have become important funders of nutrition research. There are benefits and cautions (biases toward health benefits, failure to publish negative results, and aggressive promotion of single studies) for this activity. The California Dried Plum Board, along with other commodity boards, have developed independent Scientific Nutrition Advisory Panels to guide and evaluate the research they fund. In the case of the California Dried Plum Board, this has resulted in research that has distinguished the nature and dose of dried plum and juice to maintain bowel health and opened up a surprising new function for dried plum in the prevention of age-related bone loss. PMID:28216794

  16. Accelerating Scientific Advancement for Pediatric Rare Lung Disease Research. Report from a National Institutes of Health-NHLBI Workshop, September 3 and 4, 2015.

    PubMed

    Young, Lisa R; Trapnell, Bruce C; Mandl, Kenneth D; Swarr, Daniel T; Wambach, Jennifer A; Blaisdell, Carol J

    2016-12-01

    Pediatric rare lung disease (PRLD) is a term that refers to a heterogeneous group of rare disorders in children. In recent years, this field has experienced significant progress marked by scientific discoveries, multicenter and interdisciplinary collaborations, and efforts of patient advocates. Although genetic mechanisms underlie many PRLDs, pathogenesis remains uncertain for many of these disorders. Furthermore, epidemiology and natural history are insufficiently defined, and therapies are limited. To develop strategies to accelerate scientific advancement for PRLD research, the NHLBI of the National Institutes of Health convened a strategic planning workshop on September 3 and 4, 2015. The workshop brought together a group of scientific experts, intramural and extramural investigators, and advocacy groups with the following objectives: (1) to discuss the current state of PRLD research; (2) to identify scientific gaps and barriers to increasing research and improving outcomes for PRLDs; (3) to identify technologies, tools, and reagents that could be leveraged to accelerate advancement of research in this field; and (4) to develop priorities for research aimed at improving patient outcomes and quality of life. This report summarizes the workshop discussion and provides specific recommendations to guide future research in PRLD.

  17. Satellite soil moisture for advancing our understanding of earth system processes and climate change

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; de Jeu, Richard

    2016-06-01

    Soil moisture products obtained from active and passive microwave satellites have reached maturity during the last decade (De Jeu and Dorigo, 2016): On the one hand, research algorithms that were initially applied to sensors designed for other purposes, e.g., for measuring wind speed (e.g. the Advanced Scatterometer (ASCAT)), sea ice, or atmospheric parameters (e.g. the TRMM Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometer - Earth Observing System AMSR-E), have developed into fully operational products. On the other hand, dedicated soil moisture satellite missions were designed and launched by ESA (the Soil Moisture Ocean Salinity (SMOS) mission) and NASA (the Soil Moisture Active Passive (SMAP) mission).

  18. Understanding advanced theory of mind and empathy in high-functioning adults with autism spectrum disorder.

    PubMed

    Mathersul, Danielle; McDonald, Skye; Rushby, Jacqueline A

    2013-01-01

    It has been argued that higher functioning individuals with autism spectrum disorders (ASDs) have specific deficits in advanced but not simple theory of mind (ToM), yet the questionable ecological validity of some tasks reduces the strength of this assumption. The present study employed The Awareness of Social Inference Test (TASIT), which uses video vignettes to assess comprehension of subtle conversational inferences (sarcasm, lies/deception). Given the proposed relationships between advanced ToM and cognitive and affective empathy, these associations were also investigated. As expected, the high-functioning adults with ASDs demonstrated specific deficits in comprehending the beliefs, intentions, and meaning of nonliteral expressions. They also had significantly lower cognitive and affective empathy. Cognitive empathy was related to ToM and group membership whereas affective empathy was only related to group membership.

  19. A Changing Landscape of Advanced Prostate Cancer: Understanding Mechanisms of Resistance to Potent Hormonal Therapies

    DTIC Science & Technology

    2015-10-01

    and CpG DNA methylation integrative analyses point to key drivers of NEPC including loss of RB1 and TP53 and primarily epigenetic changes...sequencing (WES) and other molecular analyses of tumor and germline DNA from patients with advanced disease and to follow patients prospectively to...protein expression alterations involving DNA mismatch repair genes consistent with prior studies. The significant overlap between CRPC-Adeno and CRPC

  20. Advances in understanding ventromedial prefrontal function: the accountant joins the executive.

    PubMed

    Fellows, Lesley K

    2007-03-27

    Studies of the brain basis of decision-making and economic behavior are providing a new perspective on the organization and functions of human prefrontal cortex. This line of inquiry has focused particularly on the ventral and medial portions of prefrontal cortex, arguably the most enigmatic regions of the "enigmatic frontal lobes." This review highlights recent advances in the cognitive neuroscience of decision making and neuroeconomics and discusses how these findings can inform clinical thinking about frontal lobe dysfunction.

  1. Korean preschoolers' advanced inhibitory control and its relation to other executive skills and mental state understanding.

    PubMed

    Oh, Seungmi; Lewis, Charlie

    2008-01-01

    This study assessed executive function and mental state understanding in Korean preschoolers. In Experiment 1, forty 3.5- and 4-year-old Koreans showed ceiling performance on inhibition and switching measures, although their performance on working memory and false belief was comparable to that of Western children. Experiment 2 revealed a similar advantage in a sample of seventy-six 3- and 4-year-old Koreans compared with sixty-four age-matched British children. Korean children younger than 3.5 years of age showed ceiling effects on some inhibition measures despite more stringent protocols and the link between executive function and mental state understanding was not as strong as in the British sample. The results raise key questions about the nature and development of the executive system and its relation to social understanding.

  2. Advances in understanding the pathogenesis of the red cell volume disorders.

    PubMed

    Badens, Catherine; Guizouarn, Hélène

    2016-09-01

    Genetic defects of erythrocyte transport proteins cause disorders of red blood cell volume that are characterized by abnormal permeability to the cations Na(+) and K(+) and, consequently, by changes in red cell hydration. Clinically, these disorders are associated with chronic haemolytic anaemia of variable severity and significant co-morbidities, such as iron overload. This review provides an overview of recent insights into the molecular basis of this group of rare anaemias involving cation channels and transporters dysfunction. To date, a total of 5 different membrane proteins have been reported to be responsible for volume homeostasis alteration when mutated, 3 of them leading to overhydrated cells (AE1 [also termed SLC4A1], RHAG and GLUT1 [also termed SCL2A1) and 2 others to dehydrated cells (PIEZO1 and the Gardos Channel). These findings are not only of basic scientific interest, but also of direct clinical significance for improving diagnostic procedures and identify potential approaches for novel therapeutic strategies.

  3. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  4. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS).

    PubMed

    Teachey, David T; Seif, Alix E; Grupp, Stephan A

    2010-01-01

    Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of T cell dysregulation caused by defective Fas-mediated apoptosis. Patients with ALPS can develop a myriad of clinical manifestations including lymphadenopathy, hepatosplenomegaly, autoimmunity and increased rates of malignancy. ALPS may be more common that originally thought, and testing for ALPS should be considered in patients with unexplained lymphadenopathy, hepatosplenomegaly, and/or autoimmunity. As the pathophysiology of ALPS is better characterized, a number of targeted therapies are in preclinical development and clinical trials with promising early results. This review describes the clinical and laboratory manifestations found in ALPS patients, as well as the molecular basis for the disease and new advances in treatment.

  5. Special issue on the advances in understanding of the North Pacific subtropical front ecosystem

    NASA Astrophysics Data System (ADS)

    McKinnell, Skip; Seki, Michael P.; Ichii, Taro

    2017-01-01

    Subtropical, oligotrophic oceanic gyres are the largest marine ecosystems in the world. They provide important habitat for many higher trophic level species of fish, squid, seabirds, and marine mammals, with some taxa undergoing extensive seasonal migrations between the subtropical frontal region and summer feeding grounds in the subarctic. Knowledge of the structure, variability, and trends of these regions has developed slowly because of their immense size, remote location, and cost of sampling. The first consolidation of the general understanding of the physical nature of the subtropical North Pacific Ocean (and subarctic transition) was published 25 years ago (Roden, 1991) with important information on its relationship to biota added by the now defunct International North Pacific Fisheries Commission (INPFC, 1992; Ito et al., 1993). At that time, a research imperative had arisen from a need by governments to understand the effects of large-scale pelagic driftnet fishing on marine ecosystems (Wetherall, 1991).

  6. Recent advances in improvement of forecast skill and understanding climate processes using AIRS Version-5 products

    NASA Astrophysics Data System (ADS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-10-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) generates products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. This paper shows results of some of our research using Version-5 products from the points of view of improving forecast skill as well as aiding in the understanding of climate processes.

  7. Recent Advances in Understanding the Reactivity of Energetic Ionic Liquids in Propulsion Applications

    DTIC Science & Technology

    2014-08-12

    enabled the investigation of anion properties such as basicity and nucleophilicity in the condensed phase. Both the basicity and nucleophilicity of the... anion influence the thermal decomposition of ionic liquids and understanding basicity of the anion is important in interpreting hypergolic ignition...Low flammability. – C+A- : 1018 possible combinations of cations and anions . • Hypergolic Ignition involves: – Pre-ignition chemistry- “chemical

  8. The Understanding by Design Guide to Advanced Concepts in Creating and Reviewing Units

    ERIC Educational Resources Information Center

    McTighe, Jay; Wiggins, Grant

    2012-01-01

    Regardless of your stage at implementing the design tools and using the improved template for Understanding by Design[R] (UbD), this companion to "The UbD Guide to Creating High-Quality Units" is essential for taking your work to a higher plane. This volume features a set of hands-on modules containing worksheets, models, and self-assessments that…

  9. Integrating Syntax, Semantics, and Discourse DARPA (Defense Advanced Research Projects Agency) Natural Language Understanding Program.

    DTIC Science & Technology

    1987-08-12

    efforts. At the Workshop, Rebecca Passonneau and Francois Lang gave demos of the PUNDIT system doing message processing and demonstrating acquisition of...conference was attended under NSF funding.) Lynette Hirschman and Rebecca Passonneau attended the Message Understanding Conference at NOSC (Naval Ocean...papers. Deborah Dahl presented the paper she co-authored with Martha Palmer and Rebecca Passonneau entitled "Nominalizations in PUNDIT" Rebecca

  10. Recent advances in understanding and managing cystic fibrosis transmembrane conductance regulator dysfunction

    PubMed Central

    Alton, Eric W.F.W.

    2015-01-01

    Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians and has been extensively studied for many decades. The cystic fibrosis transmembrane conductance regulator gene was identified in 1989. It encodes a complex protein which has numerous cellular functions. Our understanding of cystic fibrosis pathophysiology and genetics is constantly expanding and being refined, leading to improved management of the disease and increased life expectancy in affected individuals. PMID:26097737

  11. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential.

    PubMed

    Gruninger, Robert J; Puniya, Anil K; Callaghan, Tony M; Edwards, Joan E; Youssef, Noha; Dagar, Sumit S; Fliegerova, Katerina; Griffith, Gareth W; Forster, Robert; Tsang, Adrian; McAllister, Tim; Elshahed, Mostafa S

    2014-10-01

    Anaerobic fungi (phylum Neocallimastigomycota) inhabit the gastrointestinal tract of mammalian herbivores, where they play an important role in the degradation of plant material. The Neocallimastigomycota represent the earliest diverging lineage of the zoosporic fungi; however, understanding of the relationships of the different taxa (both genera and species) within this phylum is in need of revision. Issues exist with the current approaches used for their identification and classification, and recent evidence suggests the presence of several novel taxa (potential candidate genera) that remain to be characterised. The life cycle and role of anaerobic fungi has been well characterised in the rumen, but not elsewhere in the ruminant alimentary tract. Greater understanding of the 'resistant' phase(s) of their life cycle is needed, as is study of their role and significance in other herbivores. Biotechnological application of anaerobic fungi, and their highly active cellulolytic and hemi-cellulolytic enzymes, has been a rapidly increasing area of research and development in the last decade. The move towards understanding of anaerobic fungi using -omics based (genomic, transcriptomic and proteomic) approaches is starting to yield valuable insights into the unique cellular processes, evolutionary history, metabolic capabilities and adaptations that exist within the Neocallimastigomycota.

  12. NOAA's Science On a Sphere Education Program: Application of a Scientific Visualization System to Teach Earth System Science and Improve our Understanding About Creating Effective Visualizations

    NASA Astrophysics Data System (ADS)

    McDougall, C.; McLaughlin, J.

    2008-12-01

    NOAA has developed several programs aimed at facilitating the use of earth system science data and data visualizations by formal and informal educators. One of them, Science On a Sphere, a visualization display tool and system that uses networked LCD projectors to display animated global datasets onto the outside of a suspended, 1.7-meter diameter opaque sphere, enables science centers, museums, and universities to display real-time and current earth system science data. NOAA's Office of Education has provided grants to such education institutions to develop exhibits featuring Science On a Sphere (SOS) and create content for and evaluate audience impact. Currently, 20 public education institutions have permanent Science On a Sphere exhibits and 6 more will be installed soon. These institutions and others that are working to create and evaluate content for this system work collaboratively as a network to improve our collective knowledge about how to create educationally effective visualizations. Network members include other federal agencies, such as, NASA and the Dept. of Energy, and major museums such as Smithsonian and American Museum of Natural History, as well as a variety of mid-sized and small museums and universities. Although the audiences in these institutions vary widely in their scientific awareness and understanding, we find there are misconceptions and lack of familiarity with viewing visualizations that are common among the audiences. Through evaluations performed in these institutions we continue to evolve our understanding of how to create content that is understandable by those with minimal scientific literacy. The findings from our network will be presented including the importance of providing context, real-world connections and imagery to accompany the visualizations and the need for audience orientation before the visualizations are viewed. Additionally, we will review the publicly accessible virtual library housing over 200 datasets for SOS

  13. Gerontology found me: gaining understanding of advanced practice nurses in geriatrics.

    PubMed

    Campbell-Detrixhe, Dia D; Grassley, Jane S; Zeigler, Vicki L

    2013-10-01

    Examining the meanings of the experiences of advanced practice nurses (APNs) who chose to work with older adults and why they continue to work with this population was the focus of this hermeneutic qualitative research study. Twelve geriatric APNs currently practicing in two South Central states were interviewed using an open-ended interview guide. Using Gadamerian hermeneutics, the researchers identified Gerontology Found Me as the significant expression that reflected the fundamental meaning of the experience as a whole. Four themes emerged that further described the meanings of the participants' personal, educational, and professional experiences: Becoming a Gerontology Nurse, Being a Gerontology Nurse, Belonging to Gerontology, and Bringing Others to Gerontology. This study concluded that APNs' personal and professional experiences were more influential than educational experiences to become geriatric nurses, and having these personal and professional experiences of being in relationship with older individuals further contributed to their choice of gerontology.

  14. Sarcasm and advanced theory of mind understanding in children and adults with prelingual deafness.

    PubMed

    O'Reilly, Karin; Peterson, Candida C; Wellman, Henry M

    2014-07-01

    Two studies addressed key theoretical debates in theory of mind (ToM) development by comparing (a) deaf native signers (n = 18), (b) deaf late signers (n = 59), and (c) age-matched hearing persons (n = 74) in childhood (Study 1: n = 81) and adulthood (Study 2: n = 70) on tests of first- and second-order false belief and conversational sarcasm. Results showed ToM development to be a life span phenomenon for deaf and hearing people alike. Native and late signers were outperformed by hearing peers on advanced ToM in childhood (M = 9 years), but in adulthood (M = 40 years), native signers had caught up, whereas late signers had not. Findings highlight the extended importance of conversational interaction for ToM growth.

  15. Advances in understanding cis regulation of the plant gene with an emphasis on comparative genomics.

    PubMed

    Burgess, Diane G; Xu, Jie; Freeling, Michael

    2015-10-01

    The plant gene model remains largely an extrapolation from animals, with the cis functional unit, the gene, cast as a dynamic looping structure. Molecular genetics with model plants continues to make advances; highlighted here are quantitative-occupancy results from the Arabidopsis thaliana (Arabidopsis) Phytochrome-Interacting bHLH transcription Factors (PIF) quartet. Compared to this complex snapshot, results from chromatin occupancy and other Encyclopedia of DNA Elements (ENCODE)-like approaches increase our transcription factor-motif cognate library, but regulation cannot by itself be inferred from binding. Complementary published Arabidopsis conserved noncoding sequence lists are compared, evaluated, merged, and released. Comparative genomic approaches have identified a cis modifier of a gene's expression-hypothetically, a transposon-based 'rheostat'-that works in all cells, times and places.

  16. Understanding the impact of deep brain stimulation on ambulatory activity in advanced Parkinson's disease.

    PubMed

    Rochester, Lynn; Chastin, Sebastien Francois Martin; Lord, Sue; Baker, Katherine; Burn, David John

    2012-06-01

    Whilst deep brain stimulation of the subthalamic nucleus (DBS-STN) improves the motor symptoms of Parkinson's disease (PD), its effect on daily activity is unknown. We aimed to quantify changes in ambulatory activity following DBS-STN in advanced PD using novel accelerometry based measures that describe changes to the volume and pattern of walking. Seventeen participants with advanced PD were measured over a 7-day period using an activPAL (™) activity monitor. Data were collected 6 weeks before and 6 months after surgery and included measures that describe the volume and pattern of ambulatory activity (number of steps per day, accumulation, diversity and variability of walking time), alongside standard measures for disease severity, freezing of gait, gait speed, and extended activities of daily living. Activity outcomes were compared pre- and 6 months post-surgery using linear mixed models and correlated with standard outcomes. The results of this study are despite significant improvements in motor symptoms after surgery, the volume of ambulatory activity (total number of steps per day) did not change (P = 0.468). However, significant increases in length and variability of walking bouts emerged, suggesting improvements in diversity and flexibility of walking patterns. Motor severity and extended activities of daily living scores were significantly correlated with walking bout variability but not with volume of walking. Thus, the conclusions are reduction in motor symptom severity after DBS-STN translated into selective improvements in daily activity. Novel measures derived from accelerometry provide a discrete measure of performance and allow closer interpretation of the impact of DBS-STN on real-world activity.

  17. The Scientific Data Management Center

    SciTech Connect

    Shoshani, Arie

    2006-06-30

    With the increasing volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, understanding the science is largely hampered by the lack of comprehensive, end-to-end data management solutions ranging from initial data acquisition to final analysis and visualization. The Scientific Data Management (SDM) Center is bringing a set of advanced data management technologies to DOE scientists in various application domains including astrophysics, climate, fusion, and biology. Equally important, it has established collaborations with these scientists to better understand their science as well as their forthcoming data management and data analytics challenges. The SDM center has provided advanced data management technologies to DOE domain scientists in the areas of storage efficient access, data mining and analysis, and scientific process automation.

  18. Kiss of the Mutant Mouse: How Genetically Altered Mice Advanced Our Understanding of Kisspeptin's Role in Reproductive Physiology

    PubMed Central

    Elias, Carol F.

    2012-01-01

    The kisspeptin system has emerged as one of the most important circuits within the central network governing reproduction. Although kisspeptin physiology has been examined in many species, much of our understanding of this system has come from mice. Recently, the study of several innovative strains of genetically engineered mouse models has revealed intriguing and unexpected insights into the functions of kisspeptin signaling in the hypothalamus. Here, we review the advancements in our knowledge of the central kisspeptin system through the use of mutant mice. PMID:23011921

  19. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  20. The impact of recent advances in genetics in understanding disease mechanisms underlying the long QT syndromes.

    PubMed

    Harmer, Stephen C; Tinker, Andrew

    2016-07-01

    Long QT syndrome refers to a characteristic abnormality of the electrocardiogram and it is associated with a form of ventricular tachycardia known as torsade-de-pointes and sudden arrhythmic death. It can occur as part of a hereditary syndrome or can be acquired usually because of drug administration. Here we review recent genetic, molecular and cellular discoveries and outline how they have furthered our understanding of this disease. Specifically we focus on compound mutations, genome wide association studies of QT interval, modifier genes and the therapeutic implications of this recent work.

  1. Advances in the understanding of the Fanconi anemia tumor suppressor pathway.

    PubMed

    Pickering, Anna; Zhang, Jun; Panneerselvam, Jayabal; Fei, Peiwen

    2013-12-01

    Extremely high cancer incidence in Fanconi anemia (FA) patients has long suggested that the FA signaling pathway is a tumor suppressor pathway. Indeed, our recent findings, for the first time, indicate that the FA pathway plays a significant role in suppressing the development of non-FA human cancer. Also our studies on FA group D2 protein (FANCD2) have, among the first, documented the crosstalks between the FA and Rad6/Rad18 (HHR6) pathways upon DNA damage. In this review, we will discuss how our studies enhance the understanding of the FA tumor suppressor pathway.

  2. Pediatric Cerebellar Tumors: Emerging Imaging Techniques and Advances in Understanding of Genetic Features.

    PubMed

    Choudhri, Asim F; Siddiqui, Adeel; Klimo, Paul

    2016-08-01

    Cerebellar tumors are the most common group of solid tumors in children. MR imaging provides an important role in characterization of these lesions, surgical planning, and postsurgical surveillance. Preoperative imaging can help predict the histologic subtype of tumors, which can provide guidance for surgical planning. Beyond histology, pediatric brain tumors are undergoing new classification schemes based on genetic features. Intraoperative MR imaging has emerged as an important tool in the surgical management of pediatric brain tumors. Effective understanding of the imaging features of pediatric cerebellar tumors can benefit communication with neurosurgeons and neuro-oncologists and can improve patient management.

  3. Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites

    NASA Astrophysics Data System (ADS)

    Saraf, Arun K.; Rawat, Vineeta; Choudhury, Swapnamita; Dasgupta, Sudipta; Das, Josodhir

    2009-12-01

    Stresses building up during an earthquake preparation phase also manifest themselves in the form of a so called increased land surface temperature (LST) leading to a thermal precursor prior to the earthquake event. This phenomenon has now been validated by our observations of short-term thermal anomalies detected by infrared satellite sensors for several recent past earthquakes around the world. The rise in infrared radiance temperature was seen to vary between 5 and 12 °C for different earthquakes. We discuss in this paper different explanations for the generation of such anomalies that have been offered. Emission of gases due to the opening and closure of micropores upon induced stresses and also the participation of ground water have been propounded as a possible cause for generation of thermal anomalies. Seismo-ionosphere coupling, by which gases like radon move to the earth-atmosphere interface and cause air ionization thus bringing about a change in air temperature, relative humidity, etc., has been put forth by some workers. A mechanism of low frequency electromagnetic emission was tested and experimented by scientists with rock masses in stressed conditions as those that exist at tectonic locations. The workers proposed the positive hole pair theory, which received support from several scientific groups. Positive holes (sites of electron deficiency) are activated in stressed rocks from pre-existing yet dormant positive hole pairs (PHPs) and their recombination at rock-air interface leads to a LST rise. A combination of remote sensing detection of rock mechanics behavior with a perception of chemistry and geophysics has been applied to propose the remote sensing rock mechanics theory. Remote sensing detections of such anomalies confirm so far proposed lab theories for such a hotly debated field as earthquake precursor study by providing unbiased observations with consistency in time and space distribution.

  4. An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass

    SciTech Connect

    Ju, Xiaohui; Engelhard, Mark H.; Zhang, Xiao

    2013-01-17

    A deep understanding of biomass recalcitrance has been hampered by the intricate and heterogeneous nature of pretreated biomass substrates obtained from random deconstruction methods. In this study, we established a unique methodology based on chemical pulping principles to create "reference substrates" with intact cellulose fibers and controlled morphological and chemical properties that enable us to investigate the individual effect of xylan, bulk, and surface lignin content on enzymatic hydrolysis. We also developed and demonstrated an X-ray photoelectron spectroscopy (XPS) technique for quantifying surface lignin content on biomass substrates. The results from this study show that, apart from its hindrance effect, xylan can facilitate cellulose fibril swelling and thus create more accessible surface area, which improves enzyme and substrate interactions. Surface lignin has a significant impact on enzyme adsorption kinetics and hydrolysis rate. Advanced understanding of xylan, bulk, and surface lignin effects provides critical information for an effective biomass conversion process.

  5. Advances in the understanding of the pathogenesis and epidemiology of herpes zoster

    PubMed Central

    Gershon, Anne A.; Gershon, Michael D.; Breuer, Judith; Levin, Myron J.; Oaklander, Anne Louise; Griffiths, Paul D.

    2017-01-01

    SUMMARY The primary varicella zoster virus (VZV) infection results in chickenpox (varicella), which is transmitted via the airborne route. VZV is highly infectious, but in the USA the incidence of varicella has been reduced by 76–87% as a result of the varicella vaccine. The virus establishes latency in the dorsal root ganglia during varicella and, when reactivated, travels along the sensory nerve axons to cause shingles (herpes zoster [HZ]). There are over 1 million cases of HZ in the USA each year, with an estimated lifetime attack rate of 30%. The incidence of HZ, which causes significant morbidity, increases with age and reaches approximately 10 cases per 1,000 patient-years by age 80. Cell-mediated immunity (CMI) is known to decline with age as part of immunosenescence, and decreased CMI is associated with reactivation of VZV. This article provides an overview of our emerging understanding of the epidemiology and pathogenesis of varicella and HZ, in addition to exploring the current theories on latency and reactivation. Understanding the risk factors for developing HZ and the complications associated with infection, particularly in older people, is important for prompt diagnosis and management of HZ in primary care, and they are therefore also reviewed. PMID:20510263

  6. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants.

    PubMed

    Wang, Chung-Ju R; Tseng, Ching-Chih

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduced cells, followed by the development of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction pathway found in 400 species of flowering plants. An understanding of the regulation of entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the key gene for entry into meiosis, and increasing evidence has shown that the apomictic pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis during sexual reproduction or for its omission in the apomictic pathway still remains largely unknown. Here we review the current understanding of meiosis initiation and the apomictic pathway and raised several questions that are awaiting further investigation.

  7. Learning from the scientific legacies of W. Brutsaert and J.-Y. Parlange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though the essence of the scientific literature is to be a repository of unaffiliated truths, scientific advancement fundamentally stems from the insights and efforts of individuals. This dichotomy can hide exemplars for young scholars of how to contribute to scientific understanding. This section o...

  8. Recent Advances in Understanding and Mitigating Adipogenic and Metabolic Effects of Antipsychotic Drugs

    PubMed Central

    Gohlke, Julia M.; Dhurandhar, Emily J.; Correll, Christoph U.; Morrato, Elaine H.; Newcomer, John W.; Remington, Gary; Nasrallah, Henry A.; Crystal, Stephen; Nicol, Ginger; Allison, David B.

    2012-01-01

    Although offering many benefits for several psychiatric disorders, antipsychotic drugs (APDs) as a class have a major liability in their tendency to promote adiposity, obesity, and metabolic dysregulation in an already metabolically vulnerable population. The past decade has witnessed substantial research aimed at investigating the mechanisms of these adverse effects and mitigating them. On July 11 and 12, 2011, with support from 2 NIH institutes, leading experts convened to discuss current research findings and to consider future research strategies. Five areas where significant advances are being made emerged from the conference: (1) methodological issues in the study of APD effects; (2) unique characteristics and needs of pediatric patients; (3) genetic components underlying susceptibility to APD-induced metabolic effects; (4) APD effects on weight gain and adiposity in relation to their acute effects on glucose regulation and diabetes risk; and (5) the utility of behavioral, dietary, and pharmacological interventions in mitigating APD-induced metabolic side effects. This paper summarizes the major conclusions and important supporting data from the meeting. PMID:22754543

  9. Recent Advances in Improvement of Forecast Skill and Understanding Climate Processes Using AIRS Version-5 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.

  10. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    SciTech Connect

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel; Trautmann, Christina

    2015-02-01

    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss and with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.

  11. Recent advances in understanding the genetic architecture of type 2 diabetes

    PubMed Central

    Mohlke, Karen L.; Boehnke, Michael

    2015-01-01

    Genome-wide association (GWAS) and sequencing studies are providing new insights into the genetic basis of type 2 diabetes (T2D) and the inter-individual variation in glycemic traits, including levels of glucose, insulin, proinsulin and hemoglobin A1c (HbA1c). At the end of 2011, established loci (P < 5 × 10−8) totaled 55 for T2D and 32 for glycemic traits. Since then, most new loci have been detected by analyzing common [minor allele frequency (MAF)>0.05] variants in increasingly large sample sizes from populations around the world, and in trans-ancestry studies that successfully combine data from diverse populations. Most recently, advances in sequencing have led to the discovery of four loci for T2D or glycemic traits based on low-frequency (0.005 < MAF ≤ 0.05) variants, and additional low-frequency, potentially functional variants have been identified at GWAS loci. Established published loci now total ∼88 for T2D and 83 for one or more glycemic traits, and many additional loci likely remain to be discovered. Future studies will build on these successes by identifying additional loci and by determining the pathogenic effects of the underlying variants and genes. PMID:26160912

  12. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  13. Recent advances in understanding carotenoid-derived signaling molecules in regulating plant growth and development.

    PubMed

    Tian, Li

    2015-01-01

    Carotenoids (C40) are synthesized in plastids and perform numerous important functions in these organelles. In addition, carotenoids can be processed into smaller signaling molecules that regulate various phases of the plant's life cycle. Besides the relatively well-studied phytohormones abscisic acid (ABA) and strigolactones (SLs), additional carotenoid-derived signaling molecules have been discovered and shown to regulate plant growth and development. As a few excellent reviews summarized recent research on ABA and SLs, this mini review will focus on progress made on identification and characterization of the emerging carotenoid-derived signals. Overall, a better understanding of carotenoid-derived signaling molecules has immediate applications in improving plant biomass production which in turn will have far reaching impacts on providing food, feed, and fuel for the growing world population.

  14. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases

    PubMed Central

    Boyapati, Ray K.; Tamborska, Arina; Dorward, David A.; Ho, Gwo-Tzer

    2017-01-01

    Mitochondrial DNA (mtDNA) has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities. PMID:28299196

  15. Recent advances in understanding neuropathic pain: glia, sex differences, and epigenetics

    PubMed Central

    Machelska, Halina; Celik, Melih Ö.

    2016-01-01

    Neuropathic pain results from diseases or trauma affecting the nervous system. This pain can be devastating and is poorly controlled. The pathophysiology is complex, and it is essential to understand the underlying mechanisms in order to identify the relevant targets for therapeutic intervention. In this article, we focus on the recent research investigating neuro-immune communication and epigenetic processes, which gain particular attention in the context of neuropathic pain. Specifically, we analyze the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the modulation of the central nervous system inflammation triggered by neuropathy. Considering epigenetics, we address DNA methylation, histone modifications, and the non-coding RNAs in the regulation of ion channels, G-protein-coupled receptors, and transmitters following neuronal damage. The goal was not only to highlight the emerging concepts but also to discuss controversies, methodological complications, and intriguing opinions. PMID:28105313

  16. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors.

    PubMed

    Liu, Guokui

    2015-03-21

    Photon upconversion in rare earth activated phosphors involves multiple mechanisms of electronic transitions. Stepwise optical excitation, energy transfer, and various nonlinear and collective light-matter interaction processes act together to convert low-energy photons into short-wavelength light emission. Upconversion luminescence from nanomaterials exhibits additional size and surface dependencies. A fundamental understanding of the overall performance of an upconversion system requires basic theories on the spectroscopic properties of solids containing rare earth ions. This review article surveys the recent progress in the theoretical interpretations of the spectroscopic characteristics and luminescence dynamics of photon upconversion in rare earth activated phosphors. The primary aspects of upconversion processes, including energy level splitting, transition probability, line broadening, non-radiative relaxation and energy transfer, are covered with an emphasis on interpreting experimental observations. Theoretical models and methods for analyzing nano-phenomena in upconversion are introduced with detailed discussions on recently reported experimental results.

  17. From endocrine disruptors to nanomaterials: advancing our understanding of environmental health to protect public health.

    PubMed

    Birnbaum, Linda S; Jung, Paul

    2011-05-01

    Environmental health science is the study of the impact of the environment on human health. This paper introduces basic topics in environmental health, including clean air, clean water, and healthful food, as well as a range of current issues and controversies in environmental health. Conceptual shifts in modern toxicology have changed the field. There is a new understanding of the effects of exposure to chemicals at low doses, and in combination, and the impact on human growth and development. Other emerging topics include the role of epigenetics, or changes in genes and gene expression that can be brought about by chemical exposure; environmental justice; and potential effects of engineered nanomaterials and climate change. We review the important implications for public health policy and recommend a broad environmental health research strategy aimed at protecting and improving human health.

  18. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates.

    PubMed

    Meng, Xianzhi; Ragauskas, Arthur Jonas

    2014-06-01

    Cellulose accessibility has been proposed as a key factor in the efficient bio-conversion of lignocellulosic biomass to fermentable sugars. Factors affecting cellulose accessibility can be divided into direct factors that refer to accessible surface area of cellulose, and indirect factors referring to chemical composition such as lignin/hemicellulose content, and biomass structure-relevant factors (i.e. particle size, porosity). An overview of the current pretreatment technologies special focus on the major mode of action to increase cellulose accessibility as well as multiple techniques that could be used to assess the cellulose accessibility are presented in this review. The appropriate determination of cellulose accessibility before and after pretreatment can assist to understand the effectiveness of a particular pretreatment in overcoming lignocellulosic recalcitrance to improve substrate enzymatic digestibility.

  19. Recent advances in understanding the enzymatic reactions of [4+2] cycloaddition and spiroketalization.

    PubMed

    Zheng, Qingfei; Tian, Zhenhua; Liu, Wen

    2016-04-01

    Diels-Alder-like [4+2] cycloaddition and ketalization of dihydroxy ketones are cyclization reactions with different mechanisms that produce characteristic cyclohexene and spiroketal units, respectively. Here, we review newly identified, naturally occurring '[4+2] cycloadditionases' and 'spiroketalases' and reveal several similarities between the two types of enzymes. During catalysis, these enzymes control product stereochemistry or/and enhance the transformation rate. They exhibit convergent evolution of [4+2] cycloaddition or spiroketalization activity, which is likely dependent on interactions of variable protein folds with specialized chemical structures. An understanding of these similarities is expected to allow for establishment of the underlying principles for the application and catalyst design of associated enzymatic reactions in organic chemistry and synthetic biology.

  20. Combining natural and man-made DNA tracers to advance understanding of hydrologic flow pathway evolution

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Walter, M. T.; Lyon, S. W.; Rosqvist, G. N.

    2014-12-01

    Identifying and characterizing the sources, pathways and residence times of water and associated constituents is critical to developing improved understanding of watershed-stream connections and hydrological/ecological/biogeochemical models. To date the most robust information is obtained from integrated studies that combine natural tracers (e.g. isotopes, geochemical tracers) with controlled chemical tracer (e.g., bromide, dyes) or colloidal tracer (e.g., carboxilated microspheres, tagged clay particles, microorganisms) applications. In the presented study we explore how understanding of sources and flow pathways of water derived from natural tracer studies can be improved and expanded in space and time by simultaneously introducing man-made, synthetic DNA-based microtracers. The microtracer used were composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated. Tracer experiments using both natural tracers and the DNA-based microtracers were conducted in the sub-arctic, glacierized Tarfala (21.7 km2) catchment in northern Sweden. Isotopic hydrograph separations revealed that even though storm runoff was dominated by pre-event water the event water (i.e. rainfall) contributions to streamflow increased throughout the summer season as glacial snow cover decreased. This suggests that glaciers are a major source of the rainwater fraction in streamflow. Simultaneous injections of ten unique DNA-based microtracers confirmed this hypothesis and revealed that the transit time of water traveling from the glacier surface to the stream decreased fourfold over the summer season leading to instantaneous rainwater contributions during storm events. These results highlight that integrating simultaneous tracer injections (injecting tracers at multiple places at one time) with traditional tracer methods (sampling multiple times at one place) rather than using either approach in isolation can

  1. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs12

    PubMed Central

    Gabbs, Melissa; Leng, Shan; Devassy, Jessay G; Monirujjaman, Md; Aukema, Harold M

    2015-01-01

    Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n–3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n–3 PUFAs, oxylipins from n–6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites. PMID:26374175

  2. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.

    PubMed

    Li, Jun; Song, Wei; Pan, Guangjin; Zhou, Jun

    2014-07-19

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed.

  3. Understanding Advance Care Planning as a Process of Health Behavior Change

    PubMed Central

    Fried, Terri R.; Bullock, Karen; Iannone, Lynne; O'Leary, John R.

    2009-01-01

    Objectives To explore whether models of health behavior change can help to inform interventions for ACP. Design Qualitative cross-sectional study. Setting Community Participants Sixty-three community dwelling persons age ≥ 65 years and 30 caregivers with experience as surrogate decision-makers. Measurements In focus groups conducted separately with older persons and with caregivers, participants were asked to discuss ways they had planned for future declines in health and why they had or had not engaged in such planning. Transcripts were analyzed using grounded theory. Results Four themes illustrated the potential of applying models of health behavior change to improve ACP. 1) Participants demonstrated variable readiness to engage in ACP and could be in different stages of readiness for different components of ACP, including consideration of treatment goals, completion of advance directives, and communication with families and physicians. 2) Participants identified a wide range of benefits of and barriers to ACP. 3) Participants used a variety of processes of change to progress through stages of readiness, and ACP was only one of a broader set of behaviors that participants engaged in to prepare for declines in their health or for death. 4) Experience with healthcare decision-making for loved ones was a strong influence on perceptions of susceptibility and engagement in ACP. Discussion The variability in participants' readiness, barriers and benefits, perceptions of susceptibility, and use of processes to increase readiness_for participating in each component of ACP suggests the utility of tailored, stage-specific interventions based on individualized assessments to improve ACP. PMID:19682120

  4. Advancing the application of systems thinking in health: understanding the dynamics of neonatal mortality in Uganda

    PubMed Central

    2014-01-01

    Background Of the three million newborns that die each year, Uganda ranks fifth highest in neonatal mortality rates, with 43,000 neonatal deaths each year. Despite child survival and safe motherhood programmes towards reducing child mortality, insufficient attention has been given to this critical first month of life. There is urgent need to innovatively employ alternative solutions that take into account the intricate complexities of neonatal health and the health systems. In this paper, we set out to empirically contribute to understanding the causes of the stagnating neonatal mortality by applying a systems thinking approach to explore the dynamics arising from the neonatal health complexity and non-linearity and its interplay with health systems factors, using Uganda as a case study. Methods Literature reviews and interviews were conducted in two divisions of Kampala district with high neonatal mortality rates with mothers at antenatal clinics and at home, village health workers, community leaders, healthcare decision and policy makers, and frontline health workers from both public and private health facilities. Data analysis and brainstorming sessions were used to develop causal loop diagrams (CLDs) depicting the causes of neonatal mortality, which were validated by local and international stakeholders. Results We developed two CLDs for demand and supply side issues, depicting the range of factors associated with neonatal mortality such as maternal health, level of awareness of maternal and newborn health, and availability and quality of health services, among others. Further, the reinforcing and balancing feedback loops that resulted from this complexity were also examined. The potential high leverage points include special gender considerations to ensure that girls receive essential education, thereby increasing maternal literacy rates, improved socioeconomic status enabling mothers to keep healthy and utilise health services, improved supervision, and

  5. ADVANCING THE UNDERSTANDING OF BEHAVIORS ASSOCIATED WITH BACILLE CALMETTE GUÉRIN INFECTION USING MULTIVARIATE ANALYSIS

    PubMed Central

    Rodriguez-Zas, Sandra L.; Nixon, Scott E.; Lawson, Marcus A.; Mccusker, Robert H.; Southey, Bruce R.; O’Connor, Jason C.; Dantzer, Robert; Kelley, Keith W.

    2014-01-01

    Behavioral indicators in the murine Bacille Calmette Guérin (BCG) model of inflammation have been studied individually; however, the variability of the behaviors across BCG levels and the mouse-to-mouse variation within BCG-treatment group are only partially understood. The objectives of this study were: 1) to gain a comprehensive understanding of sickness and depression-like behaviors in a BCG model of inflammation using multivariate approaches, and 2) to explore behavioral differences between BCG-treatment groups and among mice within group. Adult mice were challenged with either 0mg (saline), 5mg or 10mg of BCG (BCG-treatment groups: BCG0, BCG5, or BCG10, respectively) at Day 0 of the experiment. Sickness indicators included body weight changes between Day 0 and Day 2 and between Day 2 and Day 5, and horizontal locomotor activity and vertical activity (rearing) measured at Day 6. Depression-like indicators included duration of immobility in the forced swim test and in the tail suspension test at Day 6 and sucrose consumption in the sucrose preference test at Day 7. The simultaneous consideration of complementary sickness and depression-like indicators enabled a more precise characterization of behavioral changes associated with BCG-treatment and of mouse-to-mouse variation, relative to the analysis of indicators individually. Univariate and multivariate analyses confirmed differences between BCG-treatment groups in weight change early on the trial. Significant differences between BCG-treatment groups in depression-like behaviors were still measurable after Day 5. The potential for multivariate models to account for the correlation between behavioral indicators and to augment the analytical precision relative to univariate models was demonstrated both for sickness and for depression-like indicators. Unsupervised learning approaches revealed the complementary information provided by the sickness and depression-like indicators considered. Supervised learning

  6. Recent advances in understanding the roles of transglutaminase 2 in alcoholic steatohepatitis.

    PubMed

    Tatsukawa, Hideki; Kojima, Soichi

    2010-02-22

    the present review article, we introduce these recent advances in knowledge with regard to the the roles of TG2 in alcoholic steatohepatitis.

  7. Advancements toward a systems level understanding of the human oral microbiome

    PubMed Central

    McLean, Jeffrey S.

    2014-01-01

    Oral microbes represent one of the most well studied microbial communities owing to the fact that they are a fundamental part of human development influencing health and disease, an easily accessible human microbiome, a highly structured and remarkably resilient biofilm as well as a model of bacteria-bacteria and bacteria-host interactions. In the last 80 years since oral plaque was first characterized for its functionally stable physiological properties such as the highly repeatable rapid pH decrease upon carbohydrate addition and subsequent recovery phase, the fundamental approaches to study the oral microbiome have cycled back and forth between community level investigations and characterizing individual model isolates. Since that time, many individual species have been well characterized and the development of the early plaque community, which involves many cell–cell binding interactions, has been carefully described. With high throughput sequencing enabling the enormous diversity of the oral cavity to be realized, a number of new challenges to progress were revealed. The large number of uncultivated oral species, the high interpersonal variability of taxonomic carriage and the possibility of multiple pathways to dysbiosis pose as major hurdles to obtain a systems level understanding from the community to the gene level. It is now possible however to start connecting the insights gained from single species with community wide approaches. This review will discuss some of the recent insights into the oral microbiome at a fundamental level, existing knowledge gaps, as well as challenges that have surfaced and the approaches to address them. PMID:25120956

  8. The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances

    PubMed Central

    Rönnberg, Jerker; Lunner, Thomas; Zekveld, Adriana; Sörqvist, Patrik; Danielsson, Henrik; Lyxell, Björn; Dahlström, Örjan; Signoret, Carine; Stenfelt, Stefan; Pichora-Fuller, M. Kathleen; Rudner, Mary

    2013-01-01

    Working memory is important for online language processing during conversation. We use it to maintain relevant information, to inhibit or ignore irrelevant information, and to attend to conversation selectively. Working memory helps us to keep track of and actively participate in conversation, including taking turns and following the gist. This paper examines the Ease of Language Understanding model (i.e., the ELU model, Rönnberg, 2003; Rönnberg et al., 2008) in light of new behavioral and neural findings concerning the role of working memory capacity (WMC) in uni-modal and bimodal language processing. The new ELU model is a meaning prediction system that depends on phonological and semantic interactions in rapid implicit and slower explicit processing mechanisms that both depend on WMC albeit in different ways. It is based on findings that address the relationship between WMC and (a) early attention processes in listening to speech, (b) signal processing in hearing aids and its effects on short-term memory, (c) inhibition of speech maskers and its effect on episodic long-term memory, (d) the effects of hearing impairment on episodic and semantic long-term memory, and finally, (e) listening effort. New predictions and clinical implications are outlined. Comparisons with other WMC and speech perception models are made. PMID:23874273

  9. Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases

    PubMed Central

    Ghishan, Fayez K.

    2011-01-01

    Chronic inflammatory disorders such as inflammatory bowel diseases (IBDs) affect bone metabolism and are frequently associated with the presence of osteopenia, osteoporosis, and increased risk of fractures. Although several mechanisms may contribute to skeletal abnormalities in IBD patients, inflammation and inflammatory mediators such as TNF, IL-1β, and IL-6 may be the most critical. It is not clear whether the changes in bone metabolism leading to decreased mineral density are the result of decreased bone formation, increased bone resorption, or both, with varying results reported in experimental models of IBD and in pediatric and adult IBD patients. New data, including our own, challenge the conventional views, and contributes to the unraveling of an increasingly complex network of interactions leading to the inflammation-associated bone loss. Since nutritional interventions (dietary calcium and vitamin D supplementation) are of limited efficacy in IBD patients, understanding the pathophysiology of osteopenia and osteoporosis in Crohn's disease and ulcerative colitis is critical for the correct choice of available treatments or the development of new targeted therapies. In this review, we discuss current concepts explaining the effects of inflammation, inflammatory mediators and their signaling effectors on calcium and phosphate homeostasis, osteoblast and osteoclast function, and the potential limitations of vitamin D used as an immunomodulator and anabolic hormone in IBD. PMID:21088237

  10. Scientific Claims versus Scientific Knowledge.

    ERIC Educational Resources Information Center

    Ramsey, John

    1991-01-01

    Provides activities that help students to understand the importance of the scientific method. The activities include the science of fusion and cold fusion; a group activity that analyzes and interprets the events surrounding cold fusion; and an application research project concerning a current science issue. (ZWH)

  11. Advances in Understanding Mating Type Gene Organization in the Mushroom-Forming Fungus Flammulina velutipes

    PubMed Central

    Wang, Wei; Lian, Lingdan; Xu, Ping; Chou, Tiansheng; Mukhtar, Irum; Osakina, Aron; Waqas, Muhammad; Chen, Bingzhi; Liu, Xinrui; Liu, Fang; Xie, Baogui; van Peer, Arend F.

    2016-01-01

    The initiation of sexual development in the important edible and medicinal mushroom Flammulina velutipes is controlled by special genes at two different, independent, mating type (MAT) loci: HD and PR. We expanded our understanding of the F. velutipes mating type system by analyzing the MAT loci from a series of strains. The HD locus of F. velutipes houses homeodomain genes (Hd genes) on two separated locations: sublocus HD-a and HD-b. The HD-b subloci contained strain-specific Hd1/Hd2 gene pairs, and crosses between strains with different HD-b subloci indicated a role in mating. The function of the HD-a sublocus remained undecided. Many, but not all strains contained the same conserved Hd2 gene at the HD-a sublocus. The HD locus usually segregated as a whole, though we did detect one new HD locus with a HD-a sublocus from one parental strain, and a HD-b sublocus from the other. The PR locus of F. velutipes contained pheromone receptor (STE3) and pheromone precursor (Pp) genes at two locations, sublocus PR-a and PR-b. PR-a and PR-b both contained sets of strain-specific STE3 and Pp genes, indicating a role in mating. PR-a and PR-b cosegregated in our experiments. However, the identification of additional strains with identical PR-a, yet different PR-b subloci, demonstrated that PR subloci can recombine within the PR locus. In conclusion, at least three of the four MAT subloci seem to participate in mating, and new HD and PR loci can be generated through intralocus recombination in F. velutipes. PMID:27621376

  12. Recent Advances in Understanding Radiation Belt Dynamics in the Earth's Inner Zone and Slot Region

    NASA Astrophysics Data System (ADS)

    Li, X.

    2015-12-01

    Comprehensive measurements of the inner belt protons from the Relativistic Electron and Proton Telescope (REPT) onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of inner belt protons in terms of their spectrum distribution, spatial distribution, pitch angle distribution, and their different source populations. Concurrent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a highly inclined low Earth orbit, and REPT demonstrated that there exist sub-MeV electrons in the inner belt and their flux level is orders of magnitude higher than the background associated with the inner belt protons, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complicated pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator. Furthermore, it is clearly shown from MagEIS measurements that 10s - 100s keV electrons are commonly seen penetrating into the inner belt region during geomagnetic active times while protons of similar energies are hardly seen there. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.

  13. Understanding what the public know and value about geoheritage sites in order to advance Earth science literacy

    NASA Astrophysics Data System (ADS)

    Vye, E. C.; Rose, W. I.

    2013-12-01

    With its impressive geology and rich cultural history, Michigan's Keweenaw Peninsula is ideally suited for Earth science education and geotourism initiatives, such as a Geopark. Geologic events that have shaped this region can be interpreted in such a way as to engage learners, not only through an intellectual connection to Earth science subject matter, but also through an emotional connection via culture, history, and sense of place. The notion that landscape is special because it is the sum total of all the interacting earth systems, including people as part of the biosphere, can be used to drive these initiatives as they affect one personally. It is speculated that most people in the Keweenaw have a basic understanding of the local cultural history and some understanding of geology. Advanced awareness and understanding of the geological significance of the Keweenaw stands to greatly enrich our community's sense of place and desire to advance further education and geotourism initiatives. It is anticipated that these initiatives will ultimately lead to increased Earth science literacy and understanding and recognition of one's own environs. This will aid in the further development of publications, teaching media, trails info, on-site museums, etc. Although the community has embraced geo-outreach thus far, it is germane to know what people value, what they know of the geology and how they connect to place. Results from semi-structured interviews administered with the aim and focus of determining what places are special to people, why they are special and how they formed will be presented in this paper. The results from this research will be used to direct the creation and continued development of geologic interpretation of our region. It is hoped that this understanding will reveal common misconceptions that can be used to improve interpretive material that not only addresses misconceptions but also connects the immediate past with the deep geologic past of the

  14. Recent Advances in Understanding the Sources of Methylmercury to Coastal Waters

    NASA Astrophysics Data System (ADS)

    Mason, R. P.; Balcom, P.; Chen, C.; Gosnell, K. J.; Jonsson, S.; Mazrui, N.; Ortiz, V.; Seelen, E.; Schartup, A. T.; Sunderland, E. M.

    2015-12-01

    Understanding the sources of methylmercury (MeHg) to the food chain in coastal waters is important given the related health concerns from consumption of seafood containing elevated MeHg. While water column dissolved or particulate MeHg is the best predictor of bioaccumulation into pelagic organisms in coastal waters, there is debate concerning the dominant sources of MeHg to the water column, and how the relative importance of these sources vary with ecosystem characteristics. Potential sources include both external inputs from the watershed and offshore waters and internal sources (net methylation in sediments and the associated flux of MeHg to the water column and/or net MeHg production in the water column). We will report the results from our various studies in estuarine and coastal waters which have examined the distribution and partitioning of sediment and water column MeHg, and its formation and degradation, across a geographic range from Labrador, Canada to the Chesapeake Bay, USA. The ecosystems studied vary from shallow estuarine bays to deeper systems, and from salt wedge to tidally-dynamic systems. Additionally, both pristine and contaminated environments were examined. The studies examined the factors controlling the net production of MeHg in sediments, and in our more recent work, the potential formation of MeHg in the oxic water column of coastal waters. Sediment measurements (core and grab samples) included both solid phase and porewater MeHg and total mercury (HgT) and important ancillary parameters. Water column parameters included dissolved and particulate MeHg and HgT, TSS, nutrients, and DOC. Stable Hg isotope tracer incubations were used to assess the degree of methylation and demethylation in sediments and surface waters. Average suspended particle MeHg ranged from <5 to 120 pmol/g, and was 1-8% of HgT across sites. Mass balance estimates provide insights into the importance of external MeHg sources to coastal waters. We will use the

  15. Renewing a Scientific Society: The American Association for the Advancement of Science from World War II to 1970.

    ERIC Educational Resources Information Center

    Wolfle, Dael

    This book recounts the many challenges and successes achieved by the American Association for the Advancement of Science (AAAS) from World War II to 1970. Included are: (1) the development of the National Science Foundation; (2) Cold War concerns about the loyalty and freedom of scientists; (3) efforts to develop an effective science curriculum…

  16. Antiretroviral drug regimens to prevent mother-to-child transmission of HIV: a review of scientific, program, and policy advances for sub-Saharan Africa.

    PubMed

    Chi, Benjamin H; Stringer, Jeffrey S A; Moodley, Dhayendre

    2013-06-01

    Considerable advances have been made in the effort to prevent mother-to-child HIV transmission (PMTCT) in sub-Saharan Africa. Clinical trials have demonstrated the efficacy of antiretroviral regimens to interrupt HIV transmission through the antenatal, intrapartum, and postnatal periods. Scientific discoveries have been rapidly translated into health policy, bolstered by substantial investment in health infrastructure capable of delivering increasingly complex services. A new scientific agenda is also emerging, one that is focused on the challenges of effective and sustainable program implementation. Finally, global campaigns to "virtually eliminate" pediatric HIV and dramatically reduce HIV-related maternal mortality have mobilized new resources and renewed political will. Each of these developments marks a major step in regional PMTCT efforts; their convergence signals a time of rapid progress in the field, characterized by an increased interdependency between clinical research, program implementation, and policy. In this review, we take stock of recent advances across each of these areas, highlighting the challenges--and opportunities--of improving health services for HIV-infected mothers and their children across the region.

  17. The Cuban “Exception”: The Development of an Advanced Scientific System in an Underdeveloped Country

    NASA Astrophysics Data System (ADS)

    Baracca, Angelo

    Science, education, politics, social development and economics are today considered to be highly interdependent. Although none of these factors can exist on their own, they have nevertheless often been considered in isolation from one other, or studies of their interactions have been confined to the consideration of more or less local contexts. When it comes to studying the history of physics in Cuba, however, it is not only inconceivable to separate scientific developments from their social, political, and cultural contexts. But, as this volume shows, the history of physics in Cuba cannot just focus on local contexts since it is closely entangled with global history, from colonialism to the Cold War.

  18. Effects of learning-style environmental and tactal/kinesthetic preferences on the understanding of scientific terms and attitude test scores of fifth-grade students

    NASA Astrophysics Data System (ADS)

    Sullivan, Angela Tirino

    This investigator analyzed the effects of learning-style environmental and tactual/kinesthetic preferences on the understanding of scientific terms and attitude test scores of fifth-grade students. To identify individual preferences, the Learning-Styles Inventory (Dunn, Dunn & Price, 1996) was administered to students who attended a suburban elementary school. Forty-six general education students were given instruction through the gradual establishment of an environmentally- and perceptually-responsive learning-style classroom. Instructional units were divided into three phases of two weeks each. The units of scientific terms were instructed for varied learning-style preferences and were gradually introduced during these instructional phases: Phase 1: Electricity was taught with traditional teaching methods; Phase 2: The Source of Energy was taught with accommodations for sound, light, temperature, design elements; Phase 3: Pollution was taught with accommodations for tactual/kinesthetic modalities. Pre and Post-tests, were administered in each of the three phases to determine scientific term gains. A repeated measures ANOVA and General Linear Model were employed to compare mean gains from phase to phase. Post-hoc comparisons were performed using the Bonferroni method and similar procedures were conducted on the Semantic Differential Scales (Pizzo, 1981). Correlations of relative gain scores during each phase were assessed by means of Pearson-product-moment correlations. Differences in the strengths of correlated correlations were evaluated by means of t-tests for related correlation coefficients. Significant gains were found when students were instructed employing incremental learning-styles strategies. To determine attitudinal changes toward science terms, the Semantic Differential Scale (Pizzo, 1981) was administered three times throughout this study: after Phase 1, traditional teaching; Phases 2 and 3, after learning-styles intervention. Statistically higher

  19. Perspective: adopting an asset bundles model to support and advance minority students' careers in academic medicine and the scientific pipeline.

    PubMed

    Johnson, Japera; Bozeman, Barry

    2012-11-01

    The authors contend that increasing diversity in academic medicine, science, technology, engineering, and mathematics requires the adoption of a systematic approach to retain minority high school and college students as they navigate the scientific pipeline. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity contingencies to offer a conceptual model for targeting the critical areas in which minority students may need additional support to continue toward careers in science. Their proposed asset bundles model is grounded in the central premise that making greater progress in recruiting and retaining minorities likely requires institutions to respond simultaneously to various social cues that signal devaluation of certain identities (e.g., gender, race, socioeconomic status). The authors define "asset bundles" as the specific sets of abilities and resources individuals develop that help them succeed in educational and professional tasks, including but not limited to science and research. The model consists of five asset bundles, each of which is supported in the research literature as a factor relevant to educational achievement and, the authors contend, may lead to improved and sustained diversity: educational endowments, science socialization, network development, family expectations, and material resources. Using this framework, they suggest possible ways of thinking about the task of achieving diversity as well as guideposts for next steps. Finally, they discuss the feasibility of implementing such an approach.

  20. Understanding Readers' Differing Understandings

    ERIC Educational Resources Information Center

    Kucer, Stephen B.

    2015-01-01

    This research examines the characteristics of reader understandings that vary from those stated in the text. Eighty-seven fourth graders orally read complex academic literary and scientific texts, followed by probed retellings. Retold ideas not directly supported by, or reflective of, the texts were identified. These differing understandings…

  1. Purposeful and targeted use of scientists to support in-service teachers' understandings and teaching of scientific inquiry and nature of science

    NASA Astrophysics Data System (ADS)

    White, Kevin

    Efforts have been made to enhance teachers' understanding and teaching of NOS and/or SI by immersing teachers into the field and lab work of scientists through intensive summer institutes. Results have been mixed and the samples have been small. This may be due to several factors: implicit strategies to learn and teach about NOS and/or SI (Schwartz, Lederman, & Crawford, 2004), experiences lasting as little as two weeks (Morrison, Raab, & Ingram, 2009), lack of teacher availability during the school year or summer, intimidation of subject matter or scientists, etc. The challenge remains to see if scientist-teacher collaborations are a meaningful and effective way to enhance teachers' understandings and instruction of NOS and SI. Learning about scientists and their culture while experiencing explicit instruction of NOS has demonstrated improved understandings of NOS (Bianchini & Colburn, 2000). However, Morrison, Raab, and Ingram (2009) identify that there is still a shortage of literature available addressing how teachers' view of NOS and SI may be impacted through interactions with scientists when not involved in authentic research. To this author's knowledge, there is no research available that investigates teachers' instruction of NOS and SI while in the same condition. The purpose of this study was to explore the relationships of in-service teachers' views of scientists, their understandings of NOS and SI, their view of teaching NOS and SI while engaged in a professional development experience that provided participants with a sustained immersion into the culture, beliefs and knowledge of scientists while in a NOS and SI course. Teachers showed substantial changes (pretest to posttest) on all seven aspects of NOS. And, as with NOS, teachers showed substantial improvement on all four aspects of SI investigated. The results of this investigation suggest an approach to teaching nature of science and scientific inquiry that may be an effective, lasting and

  2. Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis

    PubMed Central

    Bouain, Nadia; Doumas, Patrick; Rouached, Hatem

    2016-01-01

    Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density. This typical phenotypic change reflects complex interactions with other nutrients such as iron, and involves the activity of a large spectrum of plant hormones. Although, several key proteins involved in the regulation of root growth under Pi-deficiency have been identified in Arabidopsis, how plants adapt roots system architecture in response to Pi availability remains an open question. In the current post-genomic era, state of the art technologies like high-throughput phenotyping and sequencing platforms,“omics” methods, together with the widespread use of system biology and genome-wide association studies will help to elucidate the genetic architectures of root growth on different Pi regimes. It is clear that the large-scale characterization of molecular systems will improve our understanding of nutrient stress phenotype and biology. Herein, we summarize the recent advances and future directions towards a better understanding of Arabidopsis root developmental programs functional under Pi deficiency. Such a progress is necessary to devise strategies to improve the Pi use efficiency in plants that is an important issue for agriculture. PMID:27499680

  3. Advanced Image Understanding.

    DTIC Science & Technology

    1981-12-01

    Applications to Computer Technology (McGraw-Hill, New York, 1967). . 3. B. Kruse, "System Architecture for Image Analysis," Chapter 7 of Structured ... Computer Vision, edited by S. Tanimoto and A. Klinger (Academic Press, 1980). 107

  4. Proceedings of the 2015 Santa Fe Bone Symposium: Clinical Applications of Scientific Advances in Osteoporosis and Metabolic Bone Disease.

    PubMed

    Lewiecki, E Michael; Baron, Roland; Bilezikian, John P; Gagel, Robert E; Leonard, Mary B; Leslie, William D; McClung, Michael R; Miller, Paul D

    2016-01-01

    The 2015 Santa Fe Bone Symposium was a venue for healthcare professionals and clinical researchers to present and discuss the clinical relevance of recent advances in the science of skeletal disorders, with a focus on osteoporosis and metabolic bone disease. Symposium topics included new developments in the translation of basic bone science to improved patient care, osteoporosis treatment duration, pediatric bone disease, update of fracture risk assessment, cancer treatment-related bone loss, fracture liaison services, a review of the most significant studies of the past year, and the use of telementoring with Bone Health Extension for Community Healthcare Outcomes, a force multiplier to improve the care of osteoporosis in underserved communities.

  5. Reflective Scientific Sense-Making Dialogue in Two Languages: The Science in the Dialogue and the Dialogue in the Science

    ERIC Educational Resources Information Center

    Ash, Doris

    2004-01-01

    In this paper I focus on the transition from everyday to scientific ways of reasoning, and on the intertwined roles of meaning-making dialogue and science content as they contribute to scientific literacy. I refer to views of science, and how scientific understanding is advanced dialogically, by Hurd (Science Education, 1998, 82, 402-416), Brown…

  6. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    PubMed

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments.

  7. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics

    NASA Astrophysics Data System (ADS)

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; Godsey, Sarah E.; Maxwell, Reed M.; McNamara, James P.; Tague, Christina

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water-related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross-site focus on "critical zone hydrology" has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: "how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?" Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.

  8. Ebola and Marburg haemorrhagic fever viruses: major scientific advances, but a relatively minor public health threat for Africa.

    PubMed

    Leroy, E M; Gonzalez, J-P; Baize, S

    2011-07-01

    Ebola and Marburg viruses are the only members of the Filoviridae family (order Mononegavirales), a group of viruses characterized by a linear, non-segmented, single-strand negative RNA genome. They are among the most virulent pathogens for humans and great apes, causing acute haemorrhagic fever and death within a matter of days. Since their discovery 50 years ago, filoviruses have caused only a few outbreaks, with 2317 clinical cases and 1671 confirmed deaths, which is negligible compared with the devastation caused by malnutrition and other infectious diseases prevalent in Africa (malaria, cholera, AIDS, dengue, tuberculosis …). Yet considerable human and financial resourses have been devoted to research on these viruses during the past two decades, partly because of their potential use as bioweapons. As a result, our understanding of the ecology, host interactions, and control of these viruses has improved considerably.

  9. Scientific developments ISFD3

    USGS Publications Warehouse

    Schropp, M.H.I.; Soong, T.W.

    2006-01-01

    Highlights, trends, and consensus from the 63 papers submitted to the Scientific Developments theme of the Third International Symposium on Flood Defence (ISFD) are presented. Realizing that absolute protection against flooding can never be guaranteed, trends in flood management have shifted: (1) from flood protection to flood-risk management, (2) from reinforcing structural protection to lowering flood levels, and (3) to sustainable management through integrated problem solving. Improved understanding of watershed responses, climate changes, applications of GIS and remote-sensing technologies, and advanced analytical tools appeared to be the driving forces for renewing flood-risk management strategies. Technical competence in integrating analytical tools to form the basin wide management systems are demonstrated by several large, transnation models. However, analyses from social-economic-environmental points of view are found lag in general. ?? 2006 Taylor & Francis Group.

  10. Advancing understanding of the sustainability of lay health advisor (LHA) programs for African-American women in community settings.

    PubMed

    Shelton, Rachel C; Charles, Thana-Ashley; Dunston, Sheba King; Jandorf, Lina; Erwin, Deborah O

    2017-03-23

    Lay health advisor (LHA) programs have made strong contributions towards the elimination of health disparities and are increasingly being implemented to promote health and prevent disease. Developed in collaboration with African-American survivors, the National Witness Project (NWP) is an evidence-based, community-led LHA program that improves cancer screening among African-American women. NWP has been successfully disseminated, replicated, and implemented nationally in over 40 sites in 22 states in diverse community settings, reaching over 15,000 women annually. We sought to advance understanding of barriers and facilitators to the long-term implementation and sustainability of LHA programs in community settings from the viewpoint of the LHAs, as well as the broader impact of the program on African-American communities and LHAs. In the context of a mixed-methods study, in-depth telephone interviews were conducted among 76 African-American LHAs at eight NWP sites at baseline and 12-18 months later, between 2010 and 2013. Qualitative data provides insight into inner and outer contextual factors (e.g., community partnerships, site leadership, funding), implementation processes (e.g., training), as well as characteristics of the intervention (e.g., perceived need and fit in African-American community) and LHAs (e.g., motivations, burnout) that are perceived to impact the continued implementation and sustainability of NWP. Factors at the contextual levels and related to motivations of LHAs are critical to the sustainability of LHA programs. We discuss how findings are used to inform (1) the development of the LHA Sustainability Framework and (2) strategies to support the continued implementation and sustainability of evidence-based LHA interventions in community settings.

  11. Recent advances in bio-logging science: Technologies and methods for understanding animal behaviour and physiology and their environments

    NASA Astrophysics Data System (ADS)

    Evans, K.; Lea, M.-A.; Patterson, T. A.

    2013-04-01

    The deployment of an ever-evolving array of animal-borne telemetry and data logging devices is rapidly increasing our understanding of the movement, behaviour and physiology of a variety species and the complex, and often highly dynamic, environments they use and respond to. The rapid rate at which new technologies, improvements to current technologies and new analytical techniques are being developed has meant that movements, behaviour and physiological processes are being quantified at finer spatial and temporal scales than ever before. The Fourth International Symposium on Bio-logging Science, held on 14-18 March in Hobart, Australia, brought together scientists across multiple disciplines to discuss the latest innovations in technology, applications and analytical techniques in bio-logging science, building on research presented at three previous conferences. Here we present an update on the state of bio-logging research and provide some views on the future of this field of research. Papers were grouped into five theme areas: (i) Southern Ocean ecosystems; (ii) fishery and biodiversity management applications; (iii) from individuals to populations—inferences of population dynamics from individuals; (iv) conservation biology and (v) habitat modelling. Papers reflected wider uptake of newer technologies, with a greater proportion of studies utilising accelerometry and incorporating advances in statistical modelling of behaviour and habitats, especially via state space modelling methods. Environmental data collected by tags at increasing accuracies are now having wider application beyond the bio-logging community, providing important oceanographic data from regions difficult to sample using traditional methodologies. Partnerships between multiple organisations are also now enabling regional assessments of species movements, behaviour and physiology at population scales and will continue to be important for applying bio-logging technologies to species

  12. Turning Crisis into Opportunity: Enhancing Student-Teachers' Understanding of Nature of Science and Scientific Inquiry through a Case Study of the Scientific Research in Severe Acute Respiratory Syndrome

    ERIC Educational Resources Information Center

    Wong, Siu Ling; Hodson, Derek; Kwan, Jenny; Yung, Benny Hin Wai

    2008-01-01

    Interviews with key scientists involved in research on severe acute respiratory syndrome (SARS), together with analysis of media reports and documentaries produced during and after the SARS epidemic, revealed many interesting aspects of nature of science (NOS) and authentic scientific inquiry. This novel insight into practice in the rapidly…

  13. How does teacher education make a difference in our schools? Beginning science teachers' and their students' understanding and use of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Spang, Eliza Jordan

    The effects of teacher education on teaching practice have often been questioned. Some believe that the most important aspects of teaching are learned on-the-job, often by trial-and-error, while others argue that teacher education programs can help lay important foundations of teacher knowledge upon which pre-service teachers can build during their professional careers. This study examines the practices of six beginning science teachers---and their student's learning outcomes---in relation to the teacher education programs they experienced. In this mixed-methods study, three of six participating science teacher attended a teacher education program that emphasized the development of pedagogical content knowledge associated with making science accessible to all their students, while three other teachers---chosen from the same schools---did not. By using teacher interviews, classroom observations and student pre- and post-assessments, the researcher investigated the relationships between: teacher education and teacher knowledge, teacher knowledge and teacher practices, and teacher practices and student understanding. The study first examined student learning gains of the two groups of teachers. Then, using a theoretically based coding scheme, the researcher coded and compared teacher practices among the six teachers. Finally, the study analyzed and identified the links between the teacher education program attended by three of the teachers and their teaching practices. I found that the students of the 3 teachers from the "MTEP" program, which was distinctive in its preparation of science teachers with strong pedagogical content knowledge, had significantly larger gains in achievement than those of the other beginning teachers. I also found that these teachers engaged more in practices that supported students' abilities to think and inquire scientifically. Finally, I was able to trace their practices back to the design of the teacher education program. This study

  14. The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to Scientific Progress?

    SciTech Connect

    Wojick, D E; Warnick, W L; Carroll, B C; Crowe, J

    2006-06-01

    With the United States federal government spending billions annually for research and development, ways to increase the productivity of that research can have a significant return on investment. The process by which science knowledge is spread is called diffusion. It is therefore important to better understand and measure the benefits of this diffusion of knowledge. In particular, it is important to understand whether advances in Internet searching can speed up the diffusion of scientific knowledge and accelerate scientific progress despite the fact that the vast majority of scientific information resources continue to be held in deep web databases that many search engines cannot fully access. To address the complexity of the search issue, the term global discovery is used for the act of searching across heterogeneous environments and distant communities. This article discusses these issues and describes research being conducted by the Office of Scientific and Technical Information (OSTI).

  15. Progress report on understanding AFIS seed coat nep levels in pre-opened slivers on the Advanced Fiber Information System (AFIS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Advanced Fiber Information System (AFIS) is utilized in this segment of the research project to study how seed coat neps are measured. A patent search was conducted, and studied to assist with the understanding of the AFIS measurement of this impurity in raw cotton. The older AFIS 2 is primari...

  16. State Institution "National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" - research activities and scientific advance in 2014.

    PubMed

    Bazyka, D; Sushko, V; Chumak, A; Buzunov, V; Talko, V; Yanovich, L

    2015-12-01

    Research activities and scientific advance achieved in 2014 at the State Institution "National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" (NRCRM) concerning medical problems of the Chornobyl disaster, radiation medicine, radiobiology, radiation hygiene and epidemiology in collaboration with the WHO network of medical preparedness and assistance in radiation accidents are outlined in the annual report.Epidemiological cohort studies found increased incidence (1990-2012 gg.) of thyroid cancer in victims of Chernobyl accident (liquidators - in 4.6 times, evacuated - in 4.0 times, residents of contaminated areas - in 1.3 times) and increased incidence of breast cancer in female workers of 1986-1987. (in the 1994-2012 biennium. SIR = 160,0%, 95% CI: 142,4-177,6). Retrospective studies of thyroid cancer ("case control") in cohorts and 152 thousand of liquidators were continued together with the US National Cancer Institute. Radiation risks of multiple myeloma and chronic lymphocytic leukemia were found.Molecular effects of remote period after radiation exposure include changes in gene expression TERF1, TERF2, CCND1, telomere length, the protein expression of cyclin D1, histone gamma H2AX. An association of molecular changes with cognitive deficits were defined. Genetic polymorphisms of rs2981582 gene FGFR2, rs12443621 gene TNRC9, rs3817198 gene LSP1, rs3803662 gene TNRC9, rs889312 gene MAP3K1 and their association with breast can cer were studied; the expression by tumor cells of estrogen and progesterone receptor, antigens of c kit, cytoker atins 5/6, TP53 and ki67, amplification status of the gene Her2 / neu, mutation status of the genes BRCA1 (muta tions 185delAG and 5382insC) and BRCA2 (mutation 6174delT) were studied. The possibility of persistence of radi ation modified hidden chromosomal instability in consecutive generations of human somatic cells was proven.The status of reproductive function and peculiarities

  17. It Ain't (Just) the Heat, It's the Humanity: Increasing Public Understanding of Scientific Consensus and Its Role in Climate Literacy

    NASA Astrophysics Data System (ADS)

    Jacobs, P.; Cook, J.; Nuccitelli, D.

    2014-12-01

    An overwhelming scientific consensus exists on the issue of anthropogenic climate change. Unfortunately, public perception of expert agreement remains low- only around 1 in 10 Americans correctly estimates the actual level of consensus on the topic. Moreover, several recent studies have demonstrated the pivotal role that perceived consensus plays in the public's acceptance of key scientific facts about environmental problems, as well as their willingness to support policy to address them. This "consensus gap", between the high level of scientific agreement vs. the public's perception of it, has led to calls for increased consensus messaging. However this call has been challenged by a number of different groups: climate "skeptics" in denial about the existence and validity of the consensus; some social science researchers and journalists who believe that such messages will be ineffective or counterproductive; and even some scientists and science advocates who downplay the value of consensus in science generally. All of these concerns can be addressed by effectively communicating the role of consensus within science to the public, as well as the conditions under which consensus is likely to be correct. Here, we demonstrate that the scientific consensus on anthropogenic climate change satisfies these conditions, and discuss past examples of purported consensus that failed or succeeded to satisfy them as well. We conclude by discussing the way in which scientific consensus is interpreted by the public, and how consensus messaging can improve climate literacy.

  18. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  19. An Historical Perspective on How Advances in Microscopic Imaging Contributed to Understanding the Leishmania Spp. and Trypanosoma cruzi Host-Parasite Relationship

    PubMed Central

    Florentino, P. T. V.; Real, F.; Bonfim-Melo, A.; Orikaza, C. M.; Ferreira, E. R.; Pessoa, C. C.; Lima, B. R.; Sasso, G. R. S.; Mortara, R. A.

    2014-01-01

    The literature has identified complex aspects of intracellular host-parasite relationships, which require systematic, nonreductionist approaches and spatial/temporal information. Increasing and integrating temporal and spatial dimensions in host cell imaging have contributed to elucidating several conceptual gaps in the biology of intracellular parasites. To access and investigate complex and emergent dynamic events, it is mandatory to follow them in the context of living cells and organs, constructing scientific images with integrated high quality spatiotemporal data. This review discusses examples of how advances in microscopy have challenged established conceptual models of the intracellular life cycles of Leishmania spp. and Trypanosoma cruzi protozoan parasites. PMID:24877115

  20. The Marine Biological Laboratory (Woods Hole) and the scientific advancement of women in the early 20th century: the example of Mary Jane Hogue (1883-1962).

    PubMed

    Zottoli, Steven J; Seyfarth, Ernst-August

    2015-01-01

    The Marine Biological Laboratory (MBL) in Woods Hole, MA provided opportunities for women to conduct research in the late 19th and early 20th century at a time when many barriers existed to their pursuit of a scientific career. One woman who benefited from the welcoming environment at the MBL was Mary Jane Hogue. Her remarkable career as an experimental biologist spanned over 55 years. Hogue was born into a Quaker family in 1883 and received her undergraduate degree from Goucher College. She went to Germany to obtain an advanced degree, and her research at the University of Würzburg with Theodor Boveri resulted in her Ph.D. (1909). Although her research interests included experimental embryology, and the use of tissue culture to study a variety of cell types, she is considered foremost a protozoologist. Her extraordinary demonstration of chromidia (multiple fission) in the life history of a new species of Flabellula associated with diseased oyster beds is as important as it is ignored. We discuss Hogue's career path and her science to highlight the importance of an informal network of teachers, research advisors, and other women scientists at the MBL all of whom contributed to her success as a woman scientist.