Science.gov

Sample records for advance scientific understanding

  1. Socioscientific Issues: A Path Towards Advanced Scientific Literacy and Improved Conceptual Understanding of Socially Controversial Scientific Theories

    NASA Astrophysics Data System (ADS)

    Pinzino, Dean William

    This thesis investigates the use of socioscientific issues (SSI) in the high school science classroom as an introduction to argumentation and socioscientific reasoning, with the goal of improving students' scientific literacy (SL). Current research is reviewed that supports the likelihood of students developing a greater conceptual understanding of scientific theories as well as a deeper understanding of the nature of science (NOS), through participation in informal and formal forms of argumentation in the context of SSI. Significant gains in such understanding may improve a student's ability to recognize the rigor, legitimacy, and veracity of scientific claims and better discern science from pseudoscience. Furthermore, students that participate in significant SSI instruction by negotiating a range of science-related social issues can make significant gains in content knowledge and develop the life-long skills of argumentation and evidence-based reasoning, goals not possible in traditional lecture-based science instruction. SSI-based instruction may therefore help students become responsible citizens. This synthesis also suggests that that the improvements in science literacy and NOS understanding that develop from sustained engagement in SSI-based instruction will better prepare students to examine and scrutinize socially controversial scientific theories (i.e., evolution, global warming, and the Big Bang).

  2. Recent scientific advances in leiomyoma (uterine fibroids) research facilitates better understanding and management.

    PubMed

    Taylor, Darlene K; Holthouser, Kristine; Segars, James H; Leppert, Phyllis C

    2015-01-01

    Uterine leiomyomas (fibroids) are the most prevalent medical problem of the female reproductive tract, but there are few non-surgical treatment options. Although many advances in the understanding of the molecular components of these tumors have occurred over the past five years, an effective pharmaceutical approach remains elusive. Further, there is currently no clinical method to distinguish a benign uterine leiomyoma from a malignant leiomyosarcoma prior to treatment, a pressing need given concerns about the use of the power morcellator for minimally invasive surgery. This paper reviews current studies regarding the molecular biology of uterine fibroids, discusses non-surgical approaches and suggests new cutting-edge therapeutic and diagnostic approaches.

  3. Recent scientific advances in leiomyoma (uterine fibroids) research facilitates better understanding and management.

    PubMed

    Taylor, Darlene K; Holthouser, Kristine; Segars, James H; Leppert, Phyllis C

    2015-01-01

    Uterine leiomyomas (fibroids) are the most prevalent medical problem of the female reproductive tract, but there are few non-surgical treatment options. Although many advances in the understanding of the molecular components of these tumors have occurred over the past five years, an effective pharmaceutical approach remains elusive. Further, there is currently no clinical method to distinguish a benign uterine leiomyoma from a malignant leiomyosarcoma prior to treatment, a pressing need given concerns about the use of the power morcellator for minimally invasive surgery. This paper reviews current studies regarding the molecular biology of uterine fibroids, discusses non-surgical approaches and suggests new cutting-edge therapeutic and diagnostic approaches. PMID:26236472

  4. Recent scientific advances in leiomyoma (uterine fibroids) research facilitates better understanding and management

    PubMed Central

    Taylor, Darlene K.; Holthouser, Kristine; Segars, James H.; Leppert, Phyllis C.

    2015-01-01

    Uterine leiomyomas (fibroids) are the most prevalent medical problem of the female reproductive tract, but there are few non-surgical treatment options. Although many advances in the understanding of the molecular components of these tumors have occurred over the past five years, an effective pharmaceutical approach remains elusive. Further, there is currently no clinical method to distinguish a benign uterine leiomyoma from a malignant leiomyosarcoma prior to treatment, a pressing need given concerns about the use of the power morcellator for minimally invasive surgery. This paper reviews current studies regarding the molecular biology of uterine fibroids, discusses non-surgical approaches and suggests new cutting-edge therapeutic and diagnostic approaches. PMID:26236472

  5. Advancing Scientific Research in Education

    ERIC Educational Resources Information Center

    Towne, Lisa, Ed.; Wise, Lauress L., Ed.; Winters, Tina M., Ed.

    2004-01-01

    Transforming education into an evidence-based field depends in no small part on a strong base of scientific knowledge to inform educational policy and practice. Advancing Scientific Research in Education makes select recommendations for strengthening scientific education research and targets federal agencies, professional associations, and…

  6. Advancing Scientific Research in Education

    ERIC Educational Resources Information Center

    Towne, Lisa, Ed.; Wise, Lauress L., Ed.; Winters, Tina M., Ed.

    2005-01-01

    The title of this report reveals its purpose precisely: to spur actions that will advance scientific research in education. The recommendations for accomplishing this goal, detailed in this report, build on the National Research Council (NRC) report "Scientific Research in Education" (National Research Council, 2002). That report offers an…

  7. Advances in understanding COPD

    PubMed Central

    Anderson, Gary P.

    2016-01-01

    In recent years, thousands of publications on chronic obstructive pulmonary disease (COPD) and its related biology have entered the world literature, reflecting the increasing scientific and medical interest in this devastating condition. This article is a selective review of several important emerging themes that offer the hope of creating new classes of COPD medicines. Whereas basic science is parsing molecular pathways in COPD, its comorbidities, and asthma COPD overlap syndrome (ACOS) with unprecedented sophistication, clinical translation is disappointingly slow. The article therefore also considers solutions to current difficulties that are impeding progress in translating insights from basic science into clinically useful treatments. PMID:27746898

  8. An overview of the interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB): advancing the scientific understanding of freshwater harmful algal blooms.

    PubMed

    Hudnell, H Kenneth; Dortch, Quay; Zenick, Harold

    2008-01-01

    There is growing evidence that the spatial and temporal incidence of harmful algal blooms is increasing, posing potential risks to human health and ecosystem sustainability. Currently there are no US Federal guidelines, Water Quality Criteria and Standards, or regulations concerning the management of harmful algal blooms. Algal blooms in freshwater are predominantly cyanobacteria, some of which produce highly potent cyanotoxins. The US Congress mandated a Scientific Assessment of Freshwater Harmful Algal Blooms in the 2004 reauthorization of the Harmful Algal Blooms and Hypoxia Research and Control Act. To further the scientific understanding of freshwater harmful algal blooms, the US Environmental Protection Agency (EPA) established an interagency committee to organize the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB). A theoretical framework to define scientific issues and a systems approach to implement the assessment and management of cyanobacterial harmful algal blooms were developed as organizing themes for the symposium. Seven major topic areas and 23 subtopics were addressed in Workgroups and platform sessions during the symposium. The primary charge given to platform presenters was to describe the state of the science in the subtopic areas, whereas the Workgroups were charged with identifying research that could be accomplished in the short- and long-term to reduce scientific uncertainties. The proceedings of the symposium, published in this monograph, are intended to inform policy determinations and the mandated Scientific Assessment by describing the scientific knowledge and areas of uncertainty concerning freshwater harmful algal blooms.

  9. Exploiting scientific advances. Philip Russell.

    PubMed

    1992-04-01

    The Children's Vaccine Initiative (CVI) will hopefully accelerate the vaccine development process, make it more efficient, and produce new and better vaccines which will prevent most, if not all, of today's preventable diseases which lead to childhood mortality. The technology exists, but has simply not been exploited. Many exciting approaches to vaccine development never advance beyond the product development stage because, until now, there has been no mechanism for overseeing the entire process from the initial conception of a vaccine in the laboratory to its development by industry and its incorporation into vaccine programs. The CVI, however, has been established to provide such oversight and to coordinate the process. Recently developed technologies which could advance the attainment of CVI goals are the microencapsulation process and the use of live viral or attenuated bacterial vectors, genetically engineered to express desired vaccine antigen structures and induce immunity to specific infectious agents. The scientific obstacles are simply challenges which can be overcome. However, for the CVI to achieve its goals, it requires both adequate public sector resources and the collaboration of private industry. PMID:12321835

  10. Advanced Scientific Computing Research Network Requirements

    SciTech Connect

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  11. Thinking Scientifically: Understanding Measurement and Errors

    ERIC Educational Resources Information Center

    Alagumalai, Sivakumar

    2015-01-01

    Thinking scientifically consists of systematic observation, experiment, measurement, and the testing and modification of research questions. In effect, science is about measurement and the understanding of causation. Measurement is an integral part of science and engineering, and has pertinent implications for the human sciences. No measurement is…

  12. Advanced Aerobots for Scientific Exploration

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Raymond, Carol A.; Matthews, Janet B.; Nicaise, Fabien; Jones, Jack A.

    2010-01-01

    The Picosat and Uninhabited Aerial Vehicle Systems Engineering (PAUSE) project is developing balloon-borne instrumentation systems as aerobots for scientific exploration of remote planets and for diverse terrestrial purposes that can include scientific exploration, mapping, and military surveillance. The underlying concept of balloon-borne gondolas housing outer-space-qualified scientific instruments and associated data-processing and radio-communication equipment is not new. Instead, the novelty lies in numerous design details that, taken together, make a PAUSE aerobot smaller, less expensive, and less massive, relative to prior aerobots developed for similar purposes: Whereas the gondola (including the instrumentation system housed in it) of a typical prior aerobot has a mass of hundreds of kilograms, the mass of the gondola (with instrumentation system) of a PAUSE aerobot is a few kilograms.

  13. 77 FR 62231 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    .../Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing...: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building;...

  14. 76 FR 31945 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown...

  15. Scientific Challenges for Understanding the Quantum Universe

    SciTech Connect

    Khaleel, Mohammad A.

    2009-10-16

    A workshop titled "Scientific Challenges for Understanding the Quantum Universe" was held December 9-11, 2008, at the Kavli Institute for Particle Astrophysics and Cosmology at the Stanford Linear Accelerator Center-National Accelerator Laboratory. The primary purpose of the meeting was to examine how computing at the extreme scale can contribute to meeting forefront scientific challenges in particle physics, particle astrophysics and cosmology. The workshop was organized around five research areas with associated panels. Three of these, "High Energy Theoretical Physics," "Accelerator Simulation," and "Experimental Particle Physics," addressed research of the Office of High Energy Physics’ Energy and Intensity Frontiers, while the"Cosmology and Astrophysics Simulation" and "Astrophysics Data Handling, Archiving, and Mining" panels were associated with the Cosmic Frontier.

  16. Educational interventions to advance children's scientific thinking.

    PubMed

    Klahr, David; Zimmerman, Corinne; Jirout, Jamie

    2011-08-19

    The goal of science education interventions is to nurture, enrich, and sustain children's natural and spontaneous interest in scientific knowledge and procedures. We present taxonomy for classifying different types of research on scientific thinking from the perspective of cognitive development and associated attempts to teach science. We summarize the literature on the early--unschooled--development of scientific thinking, and then focus on recent research on how best to teach science to children from preschool to middle school. We summarize some of the current disagreements in the field of science education and offer some suggestions on ways to continue to advance the science of science instruction.

  17. Laboratory Astrophysics: Enabling Scientific Discovery and Understanding

    NASA Technical Reports Server (NTRS)

    Kirby, K.

    2006-01-01

    NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.

  18. Recent advances in understanding schizophrenia

    PubMed Central

    Haller, Chiara S.; Padmanabhan, Jaya L.; Lizano, Paulo; Torous, John

    2014-01-01

    Schizophrenia is a highly disabling disorder whose causes remain to be better understood, and treatments have to be improved. However, several recent advances have been made in diagnosis, etiopathology, and treatment. Whereas reliability of diagnosis has improved with operational criteria, including Diagnostic and Statistical Manual of Mental Disorders, (DSM) Fifth Edition, validity of the disease boundaries remains unclear because of substantive overlaps with other psychotic disorders. Recent emphasis on dimensional approaches and translational bio-behavioral research domain criteria may eventually help move toward a neuroscience-based definition of schizophrenia. The etiology of schizophrenia is now thought to be multifactorial, with multiple small-effect and fewer large-effect susceptibility genes interacting with several environmental factors. These factors may lead to developmentally mediated alterations in neuroplasticity, manifesting in a cascade of neurotransmitter and circuit dysfunctions and impaired connectivity with an onset around early adolescence. Such etiopathological understanding has motivated a renewed search for novel pharmacological as well as psychotherapeutic targets. Addressing the core features of the illness, such as cognitive deficits and negative symptoms, and developing hypothesis-driven early interventions and preventive strategies are high-priority goals for the field. Schizophrenia is a severe, chronic mental disorder and is among the most disabling disorders in all of medicine. It is estimated by the National Institute of Mental Health (NIMH) that 2.4 million people over the age of 18 in the US suffer from schizophrenia. This illness typically begins in adolescence and derails the formative goals of school, family, and work, leading to considerable suffering and disability and reduced life expectancy by about 20 years. Treatment outcomes are variable, and some people are successfully treated and reintegrated (i.e. go back to work

  19. Recent advances in understanding psoriasis

    PubMed Central

    Eberle, Franziska C.; Brück, Jürgen; Holstein, Julia; Hirahara, Kiyoshi; Ghoreschi, Kamran

    2016-01-01

    T helper (Th) cells producing interleukin (IL)-17, IL-22, and tumor necrosis factor (TNF) form the key T cell population driving psoriasis pathogenesis. They orchestrate the inflammation in the skin that results in the proliferation of keratinocytes and endothelial cells. Besides Th17 cells, other immune cells that are capable of producing IL-17-associated cytokines participate in psoriatic inflammation. Recent advances in psoriasis research improved our understanding of the cellular and molecular players that are involved in Th17 pathology and inflammatory pathways in the skin. The inflammation-driving actions of TNF in psoriasis are already well known and antibodies against TNF are successful in the treatment of Th17-mediated psoriatic skin inflammation. A further key cytokine with potent IL-17-/IL-22-promoting properties is IL-23. Therapeutics directly neutralizing IL-23 or IL-17 itself are now extending the therapeutic spectrum of antipsoriatic agents and further developments are on the way. The enormous progress in psoriasis research allows us to control this Th17-mediated inflammatory skin disease in many patients. PMID:27158469

  20. Recent advances in understanding dengue

    PubMed Central

    Yacoub, Sophie; Mongkolsapaya, Juthathip; Screaton, Gavin

    2016-01-01

    Dengue is an emerging threat to billions of people worldwide. In the last 20 years, the incidence has increased four-fold and this trend appears to be continuing. Caused by one of four viral serotypes, dengue can present as a wide range of clinical phenotypes with the severe end of the spectrum being defined by a syndrome of capillary leak, coagulopathy, and organ impairment. The pathogenesis of severe disease is thought to be in part immune mediated, but the exact mechanisms remain to be defined. The current treatment of dengue relies on supportive measures with no licensed therapeutics available to date. There have been recent advances in our understanding of a number of areas of dengue research, of which the following will be discussed in this review: the drivers behind the global dengue pandemic, viral structure and epitope binding, risk factors for severe disease and its pathogenesis, as well as the findings of recent clinical trials including therapeutics and vaccines. We conclude with current and future dengue control measures and key areas for future research. PMID:26918159

  1. Recent advances in understanding dengue.

    PubMed

    Yacoub, Sophie; Mongkolsapaya, Juthathip; Screaton, Gavin

    2016-01-01

    Dengue is an emerging threat to billions of people worldwide. In the last 20 years, the incidence has increased four-fold and this trend appears to be continuing. Caused by one of four viral serotypes, dengue can present as a wide range of clinical phenotypes with the severe end of the spectrum being defined by a syndrome of capillary leak, coagulopathy, and organ impairment. The pathogenesis of severe disease is thought to be in part immune mediated, but the exact mechanisms remain to be defined. The current treatment of dengue relies on supportive measures with no licensed therapeutics available to date. There have been recent advances in our understanding of a number of areas of dengue research, of which the following will be discussed in this review: the drivers behind the global dengue pandemic, viral structure and epitope binding, risk factors for severe disease and its pathogenesis, as well as the findings of recent clinical trials including therapeutics and vaccines. We conclude with current and future dengue control measures and key areas for future research. PMID:26918159

  2. Recent advances in understanding vitiligo

    PubMed Central

    Manga, Prashiela; Elbuluk, Nada; Orlow, Seth J.

    2016-01-01

    Vitiligo, an acquired depigmentation disorder, manifests as white macules on the skin and can cause significant psychological stress and stigmatization. Recent advances have shed light on key components that drive disease onset and progression as well as therapeutic approaches. Vitiligo can be triggered by stress to the melanin pigment-producing cells of the skin, the melanocytes. The triggers, which range from sunburn to mechanical trauma and chemical exposures, ultimately cause an autoimmune response that targets melanocytes, driving progressive skin depigmentation. The most significant progress in our understanding of disease etiology has been made on three fronts: (1) identifying cellular responses to stress, including antioxidant pathways and the unfolded protein response (UPR), as key players in disease onset, (2) characterizing immune responses that target melanocytes and drive disease progression, and (3) identifying major susceptibility genes. The current model for vitiligo pathogenesis postulates that oxidative stress causes cellular disruptions, including interruption of protein maturation in the endoplasmic reticulum (ER), leading to the activation of the UPR and expression of UPR-regulated chemokines such as interleukin 6 (IL-6) and IL-8. These chemokines recruit immune components to the skin, causing melanocytes to be targeted for destruction. Oxidative stress can further increase melanocyte targeting by promoting antigen presentation. Two key components of the autoimmune response that promote disease progression are the interferon (IFN)-γ/CXCL10 axis and IL-17-mediated responses. Several genome-wide association studies support a role for these pathways, with the antioxidant gene NRF2, UPR gene XBP1, and numerous immune-related genes including class I and class II major histocompatibility genes associated with a risk for developing vitiligo. Novel approaches to promote repigmentation in vitiligo are being investigated and may yield effective, long

  3. Recent advances in understanding vitiligo.

    PubMed

    Manga, Prashiela; Elbuluk, Nada; Orlow, Seth J

    2016-01-01

    Vitiligo, an acquired depigmentation disorder, manifests as white macules on the skin and can cause significant psychological stress and stigmatization. Recent advances have shed light on key components that drive disease onset and progression as well as therapeutic approaches. Vitiligo can be triggered by stress to the melanin pigment-producing cells of the skin, the melanocytes. The triggers, which range from sunburn to mechanical trauma and chemical exposures, ultimately cause an autoimmune response that targets melanocytes, driving progressive skin depigmentation. The most significant progress in our understanding of disease etiology has been made on three fronts: (1) identifying cellular responses to stress, including antioxidant pathways and the unfolded protein response (UPR), as key players in disease onset, (2) characterizing immune responses that target melanocytes and drive disease progression, and (3) identifying major susceptibility genes. The current model for vitiligo pathogenesis postulates that oxidative stress causes cellular disruptions, including interruption of protein maturation in the endoplasmic reticulum (ER), leading to the activation of the UPR and expression of UPR-regulated chemokines such as interleukin 6 (IL-6) and IL-8. These chemokines recruit immune components to the skin, causing melanocytes to be targeted for destruction. Oxidative stress can further increase melanocyte targeting by promoting antigen presentation. Two key components of the autoimmune response that promote disease progression are the interferon (IFN)-γ/CXCL10 axis and IL-17-mediated responses. Several genome-wide association studies support a role for these pathways, with the antioxidant gene NRF2, UPR gene XBP1, and numerous immune-related genes including class I and class II major histocompatibility genes associated with a risk for developing vitiligo. Novel approaches to promote repigmentation in vitiligo are being investigated and may yield effective, long

  4. Recent advances in understanding vitiligo

    PubMed Central

    Manga, Prashiela; Elbuluk, Nada; Orlow, Seth J.

    2016-01-01

    Vitiligo, an acquired depigmentation disorder, manifests as white macules on the skin and can cause significant psychological stress and stigmatization. Recent advances have shed light on key components that drive disease onset and progression as well as therapeutic approaches. Vitiligo can be triggered by stress to the melanin pigment-producing cells of the skin, the melanocytes. The triggers, which range from sunburn to mechanical trauma and chemical exposures, ultimately cause an autoimmune response that targets melanocytes, driving progressive skin depigmentation. The most significant progress in our understanding of disease etiology has been made on three fronts: (1) identifying cellular responses to stress, including antioxidant pathways and the unfolded protein response (UPR), as key players in disease onset, (2) characterizing immune responses that target melanocytes and drive disease progression, and (3) identifying major susceptibility genes. The current model for vitiligo pathogenesis postulates that oxidative stress causes cellular disruptions, including interruption of protein maturation in the endoplasmic reticulum (ER), leading to the activation of the UPR and expression of UPR-regulated chemokines such as interleukin 6 (IL-6) and IL-8. These chemokines recruit immune components to the skin, causing melanocytes to be targeted for destruction. Oxidative stress can further increase melanocyte targeting by promoting antigen presentation. Two key components of the autoimmune response that promote disease progression are the interferon (IFN)-γ/CXCL10 axis and IL-17-mediated responses. Several genome-wide association studies support a role for these pathways, with the antioxidant gene NRF2, UPR gene XBP1, and numerous immune-related genes including class I and class II major histocompatibility genes associated with a risk for developing vitiligo. Novel approaches to promote repigmentation in vitiligo are being investigated and may yield effective, long

  5. Recent advances in understanding vitiligo.

    PubMed

    Manga, Prashiela; Elbuluk, Nada; Orlow, Seth J

    2016-01-01

    Vitiligo, an acquired depigmentation disorder, manifests as white macules on the skin and can cause significant psychological stress and stigmatization. Recent advances have shed light on key components that drive disease onset and progression as well as therapeutic approaches. Vitiligo can be triggered by stress to the melanin pigment-producing cells of the skin, the melanocytes. The triggers, which range from sunburn to mechanical trauma and chemical exposures, ultimately cause an autoimmune response that targets melanocytes, driving progressive skin depigmentation. The most significant progress in our understanding of disease etiology has been made on three fronts: (1) identifying cellular responses to stress, including antioxidant pathways and the unfolded protein response (UPR), as key players in disease onset, (2) characterizing immune responses that target melanocytes and drive disease progression, and (3) identifying major susceptibility genes. The current model for vitiligo pathogenesis postulates that oxidative stress causes cellular disruptions, including interruption of protein maturation in the endoplasmic reticulum (ER), leading to the activation of the UPR and expression of UPR-regulated chemokines such as interleukin 6 (IL-6) and IL-8. These chemokines recruit immune components to the skin, causing melanocytes to be targeted for destruction. Oxidative stress can further increase melanocyte targeting by promoting antigen presentation. Two key components of the autoimmune response that promote disease progression are the interferon (IFN)-γ/CXCL10 axis and IL-17-mediated responses. Several genome-wide association studies support a role for these pathways, with the antioxidant gene NRF2, UPR gene XBP1, and numerous immune-related genes including class I and class II major histocompatibility genes associated with a risk for developing vitiligo. Novel approaches to promote repigmentation in vitiligo are being investigated and may yield effective, long

  6. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  7. Recent advances in understanding apicomplexan parasites

    PubMed Central

    Seeber, Frank; Steinfelder, Svenja

    2016-01-01

    Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts. Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion. Toxoplasma gondii and Theileria sp., besides Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol ( T. gondii and Plasmodium) and how a secreted protein can immortalize the host cell ( Theileria sp.) have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against T. gondii and the liver stages of Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen. PMID:27347391

  8. Recent advances in understanding apicomplexan parasites.

    PubMed

    Seeber, Frank; Steinfelder, Svenja

    2016-01-01

    Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts. Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion. Toxoplasma gondii and Theileria sp., besides Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol ( T. gondii and Plasmodium) and how a secreted protein can immortalize the host cell ( Theileria sp.) have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against T. gondii and the liver stages of Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen. PMID:27347391

  9. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    SciTech Connect

    David Watson

    2005-04-18

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  10. An Experiment in Scientific Program Understanding

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Owen, Karl (Technical Monitor)

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. Results are shown for three intensively studied codes and seven blind test cases; all test cases are state of the art scientific codes. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  11. Increasing Student Understanding of the Scientific Enterprise

    ERIC Educational Resources Information Center

    Baumel, Howard B.; Berger, J. Joel

    1976-01-01

    Described is a method of teaching introductory college biology that utilizes original research papers. Course materials facilitate student understanding of biologists as people and understanding methods used by scientists to uncover new knowledge. (EB)

  12. Approaches for advancing scientific understanding of macrosystems

    USGS Publications Warehouse

    Levy, Ofir; Ball, Becky A.; Bond-Lamberty, Ben; Cheruvelil, Kendra S.; Finley, Andrew O.; Lottig, Noah R.; Surangi W. Punyasena,; Xiao, Jingfeng; Zhou, Jizhong; Buckley, Lauren B.; Filstrup, Christopher T.; Keitt, Tim H.; Kellner, James R.; Knapp, Alan K.; Richardson, Andrew D.; Tcheng, David; Toomey, Michael; Vargas, Rodrigo; Voordeckers, James W.; Wagner, Tyler; Williams, John W.

    2014-01-01

    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them.

  13. Understanding Peer Review of Scientific Research

    ERIC Educational Resources Information Center

    Association of American Universities, 2011

    2011-01-01

    An important factor in the success of America's national research system is that federal funds for university-based research are awarded primarily through peer review, which uses panels of scientific experts, or "peers," to evaluate the quality of grant proposals. In this competitive process, proposals compete for resources based on their…

  14. 78 FR 6087 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of...

  15. 75 FR 9887 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U.S. Department...

  16. 76 FR 9765 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing..., Office of Advanced Scientific Computing Research, SC-21/Germantown Building, U.S. Department of...

  17. 78 FR 41046 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... hereby given that the Advanced Scientific Computing Advisory Committee will be renewed for a two-year... (DOE), on the Advanced Scientific Computing Research Program managed by the Office of...

  18. 75 FR 64720 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    .../Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department...

  19. 76 FR 41234 - Advanced Scientific Computing Advisory Committee Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Advanced Scientific Computing Advisory Committee Charter Renewal AGENCY: Department of Energy, Office of... Administration, notice is hereby given that the Advanced Scientific Computing Advisory Committee will be renewed... concerning the Advanced Scientific Computing program in response only to charges from the Director of...

  20. 78 FR 56871 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U.S. Department...

  1. 77 FR 45345 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    .../Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U.S. Department...

  2. 75 FR 43518 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing Advisory..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of...

  3. 77 FR 12823 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing..., Office of Advanced Scientific Computing Research, SC-21/Germantown Building, U.S. Department of...

  4. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  5. Advances in understanding illness anxiety.

    PubMed

    Harding, Kelli J; Skritskaya, Natalia; Doherty, Emily; Fallon, Brian A

    2008-08-01

    Illness anxiety, also known in its more severe form as hypochondriasis, is a debilitating and chronic condition in which normal bodily symptoms are misinterpreted as signs of serious medical illness. Patients suffer with the fear that they are ill despite reassurance to the contrary and often overuse medical services in the process. This article critically evaluates the recent literature on illness anxiety and related, medically unexplained symptoms, highlighting new and interesting findings in the areas of prevalence, classification/diagnosis, management, and evidence-based treatment and new frontiers in understanding illness anxiety, such as brain imaging, neuroimmunology, and cyberchondria. PMID:18627669

  6. Ninth Grade Students' Understanding of The Nature of Scientific Knowledge

    ERIC Educational Resources Information Center

    Kilic, Kerem; Sungur, Semra; Cakiroglu, Jale; Tekkaya, Ceren

    2005-01-01

    The purpose of this study was to investigate the 9th-grade students' understandings of the nature of scientific knowledge. The study also aimed to investigate the differences in students' understanding of the nature of scientific knowledge by gender, and school types. A total of 575 ninth grade students from four different school types (General…

  7. Public understanding of science is not scientific literacy

    SciTech Connect

    McGowan, A.

    1995-12-31

    The author notes that public understanding of science has, in many quarters, been taken over by the wrong notion of scientific literacy. The need for the scientific community to develop the language that speaks to the public in general is explored. Methodologies to improve communication to the general public and increase their understanding with clearly developed metaphors are examined.

  8. Taming theory with thought experiments: Understanding and scientific progress.

    PubMed

    Stuart, Michael T

    2016-08-01

    I claim that one way thought experiments contribute to scientific progress is by increasing scientific understanding. Understanding does not have a currently accepted characterization in the philosophical literature, but I argue that we already have ways to test for it. For instance, current pedagogical practice often requires that students demonstrate being in either or both of the following two states: 1) Having grasped the meaning of some relevant theory, concept, law or model, 2) Being able to apply that theory, concept, law or model fruitfully to new instances. Three thought experiments are presented which have been important historically in helping us pass these tests, and two others that cause us to fail. Then I use this operationalization of understanding to clarify the relationships between scientific thought experiments, the understanding they produce, and the progress they enable. I conclude that while no specific instance of understanding (thus conceived) is necessary for scientific progress, understanding in general is. PMID:27474183

  9. Advances in understanding pituitary tumors

    PubMed Central

    Renner, Ulrich; Karl Stalla, Günter

    2014-01-01

    Pituitary tumors are common in the general population. Since neuroimaging techniques have improved, pituitary tumors are more often diagnosed incidentally. About 16.7% of the general population show changes in the pituitary gland. Predominantly, pituitary tumors are benign pituitary adenomas. Pituitary carcinomas or aggressive pituitary tumors are extremely rare. They might develop from benign adenomas. New genetic and epigenetic abnormalities help us to understand pituitary tumorigenesis and might lead to therapeutical targeting drugs in the future. Macroadenomas (>1 cm) can lead to visual field disturbances, compression of cranial nerves, hypopituitarism, and infiltration of the cavernous sinuses. The functional status of the pituitary tumor is important. About half to one third of all pituitary tumors are non-functioning pituitary adenomas. The other pituitary tumors show a specific pattern of hormone secretion. About 25% to 41% of all pituitary tumors are prolactinomas, acromegaly with production of growth hormone represents 10% to 15% of adenomas, Cushing's disease with production of adrenocorticotropic hormone accounts for 10%, and other hormonal characteristics are less common. Transsphenoidal resection and total adenomectomy are desirable. Radiosurgery has enriched the surgical treatment options. Surgical treatment is the intervention of choice except for prolactinomas, where pharmaceutical treatment is recommended. Pharmaceutical treatment consists of dopamine agonists such as cabergoline and somatostatin analogues that include octreotide and pasireotide; retinoic acid is of theoretical interest while peroxisome proliferator-activated receptor-gamma-ligands are not clinically useful. In acromegaly, pegvisomant is a further treatment option. Temozolomide should be considered in aggressive pituitary tumors. In general, pharmaceutical options developed recently have extended the repertoire of treatment possibilities of pituitary tumors. PMID:24592317

  10. Advancing Drought Understanding, Monitoring and Prediction

    NASA Technical Reports Server (NTRS)

    Mariotti, Annarita; Schubert, Siegfried D.; Mo, Kingtse; Peters-Lidard, Christa; Wood, Andy; Pulwarty, Roger; Huang, Jin; Barrie, Dan

    2013-01-01

    Having the capacity to monitor droughts in near-real time and providing accurate drought prediction from weeks to seasons in advance can greatly reduce the severity of social and economic damage caused by drought, a leading natural hazard for North America. The congressional mandate to establish the National Integrated Drought Information System (NIDIS; Public Law 109-430) in 2006 was a major impulse to develop, integrate, and provide drought information to meet the challenges posed by this hazard. Significant progress has been made on many fronts. On the research front, efforts by the broad scientific community have resulted in improved understanding of North American droughts and improved monitoring and forecasting tools. We now have a better understanding of the droughts of the twentieth century including the 1930s "Dust Bowl"; we have developed a broader array of tools and datasets that enhance the official North American Drought Monitor based on different methodologies such as state-of-the-art land surface modeling (e.g., the North American Land Data Assimilation System) and remote sensing (e.g., the evaporative stress index) to better characterize the occurrence and severity of drought in its multiple manifestations. In addition, we have new tools for drought prediction [including the new National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2, for operational prediction and an experimental National Multimodel Ensemble] and have explored diverse methodologies including ensemble hydrologic prediction approaches. Broad NIDIS-inspired progress is influencing the development of a Global Drought Information System (GDIS) under the auspices of the World Climate Research Program. Despite these advances, current drought monitoring and forecasting capabilities still fall short of users' needs, especially the need for skillful and reliable drought forecasts at regional and local scales. To tackle this outstanding challenging problem

  11. Maternal immunization: opportunities for scientific advancement.

    PubMed

    Beigi, Richard H; Fortner, Kimberly B; Munoz, Flor M; Roberts, Jeff; Gordon, Jennifer L; Han, Htay Htay; Glenn, Greg; Dormitzer, Philip R; Gu, Xing Xing; Read, Jennifer S; Edwards, Kathryn; Patel, Shital M; Swamy, Geeta K

    2014-12-15

    Maternal immunization is an effective strategy to prevent and/or minimize the severity of infectious diseases in pregnant women and their infants. Based on the success of vaccination programs to prevent maternal and neonatal tetanus, maternal immunization has been well received in the United States and globally as a promising strategy for the prevention of other vaccine-preventable diseases that threaten pregnant women and infants, such as influenza and pertussis. Given the promise for reducing the burden of infectious conditions of perinatal significance through the development of vaccines against relevant pathogens, the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH) sponsored a series of meetings to foster progress toward clinical development of vaccines for use in pregnancy. A multidisciplinary group of stakeholders convened at the NIH in December 2013 to identify potential barriers and opportunities for scientific advancement in maternal immunization. PMID:25425719

  12. Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  13. 75 FR 57742 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building;...

  14. 78 FR 50404 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ] ACTION... Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown...

  15. Using Advanced Scientific Diving Technologies to Assess the Underwater Environment

    SciTech Connect

    Southard, John A.; Williams, Greg D.; Sargeant, Susan L.; Diefenderfer, Heida L.; Blanton, Michael L.

    2003-03-31

    Scientific diving can provide unique information for addressing complex environmental issues in the marine environment and is applied to a variety of increasingly important issues throughout Puget Sound, including habitat degradation, endangered species, biological availability of contaminants, and the effects of overwater structures and shoreline protection features. The Pacific Northwest National Laboratory, Battelle Marine Sciences Laboratory uses trained scientific divers in conjunction with advanced technologies to collect in-situ information best obtained through direct observation and requiring minimal environmental disturbance. For example, advances in underwater communications allow divers to discuss observations and data collection techniques in real time, both with each other and with personnel on the surface. Other examples include the use of Dual frequency IDentification SONar (DIDSON), an underwater camera used to capture digital images of benthic structures, fish, and organisms during low light and high turbidity levels; the use of voice-narrated underwater video; and the development of sediment collection methods yielding one-meter cores. The combination of using trained scientific SCUBA divers and advanced underwater technologies is a key element in addressing multifaceted environmental problems, resulting in a more comprehensive understanding of the underwater environment and more reliable data with which to make resource management decisions.

  16. Dialogic Framing of Scientific Content for Conceptual and Epistemic Understanding

    ERIC Educational Resources Information Center

    Ford, Michael J.; Wargo, Brian M.

    2012-01-01

    This article draws on M. M. Bakhtin's (1981) notion of dialogism to articulate what it means to understand a scientific idea. In science, understanding an idea is both conceptual and epistemic and is exhibited by an ability to use it in explanation and argumentation. Some distillation of these activities implies that dialogic understanding of a…

  17. Scientifically advanced solutions for chestnut ink disease.

    PubMed

    Choupina, Altino Branco; Estevinho, Letícia; Martins, Ivone M

    2014-05-01

    On the north regions of Portugal and Spain, the Castanea sativa Mill. culture is extremely important. The biggest productivity and yield break occurs due to the ink disease, the causal agent being the oomycete Phytophthora cinnamomi. This oomycete is also responsible for the decline of many other plant species in Europe and worldwide. P. cinnamomi and Phytophthora cambivora are considered, by the generality of the authors, as the C. sativa ink disease causal agents. Most Phytophthora species secrete large amounts of elicitins, a group of unique highly conserved proteins that are able to induce hypersensitive response (HR) and enhances plant defense responses in a systemic acquired resistance (SAR) manner against infection by different pathogens. Some other proteins involved in mechanisms of infection by P. cinnamomi were identified by our group: endo-1,3-beta-glucanase (complete cds); exo-glucanase (partial cds) responsible by adhesion, penetration, and colonization of host tissues; glucanase inhibitor protein (GIP) (complete cds) responsible by the suppression of host defense responses; necrosis-inducing Phytophthora protein 1 (NPP1) (partial cds); and transglutaminase (partial cds) which inducts defense responses and disease-like symptoms. In this mini-review, we present some scientifically advanced solutions that can contribute to the resolution of ink disease.

  18. 76 FR 45786 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of Science, Department of Energy... Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown...

  19. 78 FR 64931 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION... Computing Advisory Committee (ASCAC). This meeting replaces the cancelled ASCAC meeting that was to be held... Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of Energy;...

  20. 76 FR 64330 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of...

  1. Advanced Scientific Computing Environment Team new scientific database management task

    SciTech Connect

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future computer'' will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This network computer'' will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of Jvv'' concepts and capabilities to distributed and/or parallel computing environments.

  2. Scientific Literacy: The Role of Goal-Directed Reading and Evaluation in Understanding Scientific Information

    ERIC Educational Resources Information Center

    Britt, M. Anne; Richter, Tobias; Rouet, Jean-François

    2014-01-01

    In this article, we examine the mental processes and representations that are required of laypersons when learning about science issues from texts. We begin by defining scientific literacy as the ability to understand and critically evaluate scientific content in order to achieve one's goals. We then present 3 challenges of learning from…

  3. OPENING REMARKS: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2006-01-01

    Good morning. Welcome to SciDAC 2006 and Denver. I share greetings from the new Undersecretary for Energy, Ray Orbach. Five years ago SciDAC was launched as an experiment in computational science. The goal was to form partnerships among science applications, computer scientists, and applied mathematicians to take advantage of the potential of emerging terascale computers. This experiment has been a resounding success. SciDAC has emerged as a powerful concept for addressing some of the biggest challenges facing our world. As significant as these successes were, I believe there is also significance in the teams that achieved them. In addition to their scientific aims these teams have advanced the overall field of computational science and set the stage for even larger accomplishments as we look ahead to SciDAC-2. I am sure that many of you are expecting to hear about the results of our current solicitation for SciDAC-2. I’m afraid we are not quite ready to make that announcement. Decisions are still being made and we will announce the results later this summer. Nearly 250 unique proposals were received and evaluated, involving literally thousands of researchers, postdocs, and students. These collectively requested more than five times our expected budget. This response is a testament to the success of SciDAC in the community. In SciDAC-2 our budget has been increased to about 70 million for FY 2007 and our partnerships have expanded to include the Environment and National Security missions of the Department. The National Science Foundation has also joined as a partner. These new partnerships are expected to expand the application space of SciDAC, and broaden the impact and visibility of the program. We have, with our recent solicitation, expanded to turbulence, computational biology, and groundwater reactive modeling and simulation. We are currently talking with the Department’s applied energy programs about risk assessment, optimization of complex systems - such

  4. Recent advances in understanding hepatitis C.

    PubMed

    Douam, Florian; Ding, Qiang; Ploss, Alexander

    2016-01-01

    The past decade has seen tremendous progress in understanding hepatitis C virus (HCV) biology and its related disease, hepatitis C. Major advances in characterizing viral replication have led to the development of direct-acting anti-viral therapies that have considerably improved patient treatment outcome and can even cure chronic infection. However, the high cost of these treatments, their low barrier to viral resistance, and their inability to prevent HCV-induced liver cancer, along with the absence of an effective HCV vaccine, all underscore the need for continued efforts to understand the biology of this virus. Moreover, beyond informing therapies, enhanced knowledge of HCV biology is itself extremely valuable for understanding the biology of related viruses, such as dengue virus, which is becoming a growing global health concern. Major advances have been realized over the last few years in HCV biology and pathogenesis, such as the discovery of the envelope glycoprotein E2 core structure, the generation of the first mouse model with inheritable susceptibility to HCV, and the characterization of virus-host interactions that regulate viral replication or innate immunity. Here, we review the recent findings that have significantly advanced our understanding of HCV and highlight the major challenges that remain. PMID:26918166

  5. Recent advances in understanding and managing asthma.

    PubMed

    Loo, Su-Ling; Wark, Peter A B

    2016-01-01

    This review highlights the important articles published in the area of asthma research from January 2015 to July 2016. In basic science, significant advances have been made in understanding the link between the innate immune response and type II acquired immune responses in asthma and the role of the airway epithelium. Novel information continues to emerge with regard to the pathogenesis and heterogeneity of severe asthma. There have been important translational clinical trials in the areas of childhood asthma, treatment of allergy to improve asthma outcomes, and improving drug delivery to optimize the management of asthma. In addition, there are increasing data concerning the application of biological agents to the management of severe asthma. This body of work discusses the most notable advances in the understanding and management of asthma. PMID:27610226

  6. Recent advances in understanding and managing asthma

    PubMed Central

    Loo, Su-Ling; Wark, Peter A.B.

    2016-01-01

    This review highlights the important articles published in the area of asthma research from January 2015 to July 2016. In basic science, significant advances have been made in understanding the link between the innate immune response and type II acquired immune responses in asthma and the role of the airway epithelium. Novel information continues to emerge with regard to the pathogenesis and heterogeneity of severe asthma. There have been important translational clinical trials in the areas of childhood asthma, treatment of allergy to improve asthma outcomes, and improving drug delivery to optimize the management of asthma. In addition, there are increasing data concerning the application of biological agents to the management of severe asthma. This body of work discusses the most notable advances in the understanding and management of asthma. PMID:27610226

  7. Recent advances in understanding and managing asthma

    PubMed Central

    Loo, Su-Ling; Wark, Peter A.B.

    2016-01-01

    This review highlights the important articles published in the area of asthma research from January 2015 to July 2016. In basic science, significant advances have been made in understanding the link between the innate immune response and type II acquired immune responses in asthma and the role of the airway epithelium. Novel information continues to emerge with regard to the pathogenesis and heterogeneity of severe asthma. There have been important translational clinical trials in the areas of childhood asthma, treatment of allergy to improve asthma outcomes, and improving drug delivery to optimize the management of asthma. In addition, there are increasing data concerning the application of biological agents to the management of severe asthma. This body of work discusses the most notable advances in the understanding and management of asthma.

  8. Understanding Scientific Texts: From Structure to Process and General Culture

    ERIC Educational Resources Information Center

    Ensar, Ferhat; Sallabas, Muhammed Eyyüp

    2016-01-01

    In this study, the historical development of experimental research on learning processes from scientific texts has been introduced. Then a detailed analysis of the main contributions of cognitive science has been provided and the theoretical developments that are considered to have had a major role in the comprehension and understanding of…

  9. Understanding the Scientific Enterprise: A Conversation with Alan Leshner

    ERIC Educational Resources Information Center

    Perkins-Gough, Deborah

    2007-01-01

    Understanding the nature of science is even more important than mastering its details, says Alan Leshner, Chief Executive Officer of the American Association for the Advancement of Science, in an interview with Educational Leadership. In this article, Leshner discusses the controversy about teaching evolution, and he asserts that demands to…

  10. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Damevski, Kostadin

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  11. Advances in scientific balloon thermal modeling

    NASA Astrophysics Data System (ADS)

    Bohaboj, T.; Cathey, H.

    The National Aeronautics and Space Administration's Balloon Program Office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the ``Thermal Desktop'' addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical ``proxy models'' for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This paper presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.

  12. Advances in understanding erythropoiesis: evolving perspectives.

    PubMed

    Nandakumar, Satish K; Ulirsch, Jacob C; Sankaran, Vijay G

    2016-04-01

    Red blood cells (RBCs) are generated from haematopoietic stem and progenitor cells (HSPCs) through the step-wise process of differentiation known as erythropoiesis. In this review, we discuss our current understanding of erythropoiesis and highlight recent advances in this field. During embryonic development, erythropoiesis occurs in three distinct waves comprising first, the yolk sac-derived primitive RBCs, followed sequentially by the erythro-myeloid progenitor (EMP) and HSPC-derived definitive RBCs. Recent work has highlighted the complexity and variability that may exist in the hierarchical arrangement of progenitors responsible for erythropoiesis. Using recently defined cell surface markers, it is now possible to enrich for erythroid progenitors and precursors to a much greater extent than has been possible before. While a great deal of knowledge has been gained on erythropoiesis from model organisms, our understanding of this process is currently being refined through human genetic studies. Genes mutated in erythroid disorders can now be identified more rapidly by the use of next-generation sequencing techniques. Genome-wide association studies on erythroid traits in healthy populations have also revealed new modulators of erythropoiesis. All of these recent developments have significant promise not only for increasing our understanding of erythropoiesis, but also for improving our ability to intervene when RBC production is perturbed in disease. PMID:26846448

  13. Advances in understanding damage by salt crystallization.

    PubMed

    Espinosa-Marzal, Rosa M; Scherer, George W

    2010-06-15

    The single most important cause of the deterioration of monuments in the Mediterranean basin, and elsewhere around the world, is the crystallization of salt within the pores of the stone. Considerable advances have been made in recent years in elucidating the fundamental mechanisms responsible for salt damage. As a result, new methods of treatment are being proposed that offer the possibility of attacking the cause of the problem, rather than simply treating the symptoms. In this Account, we review the thermodynamics and kinetics of crystallization, then examine how a range of technological innovations have been applied experimentally to further the current understanding of in-pore crystallization. We close with a discussion of how computer modeling now provides particularly valuable insight, including quantitative estimates of both the interaction forces between the mineral and the crystal and the stresses induced in the material. Analyzing the kinetics and thermodynamics of crystal growth within the pores of a stone requires sensitive tools used in combination. For example, calorimetry quantifies the amount of salt that precipitates in the pores of a stone during cooling, and dilatometric measurements on a companion sample reveal the stress exerted by the salt. Synchrotron X-rays can penetrate the stone and identify the metastable phases that often appear in the first stages of crystallization. Atomic force microscopy and environmental scanning electron microscopy permit study of the nanometric liquid film that typically lies between salt and stone; this film controls the magnitude of the pressure exerted and the kinetics of relaxation of the stress. These experimental advances provide validation for increasingly advanced simulations, using continuum models of reactive transport on a macroscopic scale and molecular dynamics on the atomic scale. Because of the fundamental understanding of the damage mechanisms that is beginning to emerge, it is possible to devise

  14. Simulation methods for advanced scientific computing

    SciTech Connect

    Booth, T.E.; Carlson, J.A.; Forster, R.A.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to create effective new algorithms for solving N-body problems by computer simulation. The authors concentrated on developing advanced classical and quantum Monte Carlo techniques. For simulations of phase transitions in classical systems, they produced a framework generalizing the famous Swendsen-Wang cluster algorithms for Ising and Potts models. For spin-glass-like problems, they demonstrated the effectiveness of an extension of the multicanonical method for the two-dimensional, random bond Ising model. For quantum mechanical systems, they generated a new method to compute the ground-state energy of systems of interacting electrons. They also improved methods to compute excited states when the diffusion quantum Monte Carlo method is used and to compute longer time dynamics when the stationary phase quantum Monte Carlo method is used.

  15. Recent advances in understanding antitumor immunity

    PubMed Central

    Munhoz, Rodrigo Ramella; Postow, Michael Andrew

    2016-01-01

    The term “antitumor immunity” refers to innate and adaptive immune responses which lead to tumor control. Turning the immune system into a destructive force against tumors has been achieved in a broad range of human cancers with the use of non-specific immunotherapies, vaccines, adoptive-cell therapy, and, more recently with significant success, through blockade of immune checkpoints. Nevertheless, the efficacy of these approaches is not universal, and tools to identify long-term responders and primarily refractory patients are warranted. In this article, we review recent advances in understanding the complex mechanisms of antitumor immunity and how these developments can be used to address open questions in a setting of growing clinical indications for the use of immunotherapy. PMID:27803807

  16. Recent advances in understanding and managing cholestasis

    PubMed Central

    Wagner, Martin; Trauner, Michael

    2016-01-01

    Cholestatic liver diseases are hereditary or acquired disorders with impaired hepatic excretion and enterohepatic circulation of bile acids and other cholephiles. The distinct pathological mechanisms, particularly for the acquired forms of cholestasis, are not fully revealed, but advances in the understanding of the molecular mechanisms and identification of key regulatory mechanisms of the enterohepatic circulation of bile acids have unraveled common and central mechanisms, which can be pharmacologically targeted. This overview focuses on the central roles of farnesoid X receptor, fibroblast growth factor 19, and apical sodium-dependent bile acid transporter for the enterohepatic circulation of bile acids and their potential as new drug targets for the treatment of cholestatic liver disease. PMID:27134744

  17. Recent advances in understanding multiple myeloma

    PubMed Central

    Dhakal, Binod; Girnius, Saulius; Hari, Parameswaran

    2016-01-01

    There have been major recent advancements in the understanding and management of multiple myeloma. Diagnostic criteria have been revised and former ultra-high-risk smoldering multiple myeloma is now considered multiple myeloma in need of treatment. Understanding clonal progression, evolution, and tides not only has helped elucidate the disease behavior but might help expand therapeutic choices in order to select appropriate treatment for patients. Unprecedented response rates with modern triplet induction therapies containing proteasome inhibitor and immunomodulators have made this approach standard for initial treatment. The US Food and Drug Administration approved four new drugs (two targeted antibodies and two oral agents) in 2015 in relapsed/refractory multiple myeloma and these drugs along with the other already-available drugs have now increased the choices of regimens. Even drugs without single-agent activity, such as panobinostat and elotuzumab, have an important role, especially in the proteasome inhibitor refractory setting. Recent studies done in the context of novel agent induction suggest that high-dose therapy followed by autologous transplant continues to improve response rates and progression-free survival, thus underscoring their role in transplant-eligible patients. Evolving paradigms in the treatment of multiple myeloma include newer promising immune approaches, such as adoptive cellular therapies, vaccines, or antibody-based immune manipulations. Though multiple myeloma is still considered incurable, it is clear that with the improved understanding of disease biology and clonal architecture of relapse combined with the availability of multi-targeted approaches, we are ever closer to a lasting cure or transformation into indolent and long-lasting disease courses or both. PMID:27610224

  18. Recent advances in understanding multiple myeloma

    PubMed Central

    Dhakal, Binod; Girnius, Saulius; Hari, Parameswaran

    2016-01-01

    There have been major recent advancements in the understanding and management of multiple myeloma. Diagnostic criteria have been revised and former ultra-high-risk smoldering multiple myeloma is now considered multiple myeloma in need of treatment. Understanding clonal progression, evolution, and tides not only has helped elucidate the disease behavior but might help expand therapeutic choices in order to select appropriate treatment for patients. Unprecedented response rates with modern triplet induction therapies containing proteasome inhibitor and immunomodulators have made this approach standard for initial treatment. The US Food and Drug Administration approved four new drugs (two targeted antibodies and two oral agents) in 2015 in relapsed/refractory multiple myeloma and these drugs along with the other already-available drugs have now increased the choices of regimens. Even drugs without single-agent activity, such as panobinostat and elotuzumab, have an important role, especially in the proteasome inhibitor refractory setting. Recent studies done in the context of novel agent induction suggest that high-dose therapy followed by autologous transplant continues to improve response rates and progression-free survival, thus underscoring their role in transplant-eligible patients. Evolving paradigms in the treatment of multiple myeloma include newer promising immune approaches, such as adoptive cellular therapies, vaccines, or antibody-based immune manipulations. Though multiple myeloma is still considered incurable, it is clear that with the improved understanding of disease biology and clonal architecture of relapse combined with the availability of multi-targeted approaches, we are ever closer to a lasting cure or transformation into indolent and long-lasting disease courses or both.

  19. Recent advances in understanding multiple myeloma.

    PubMed

    Dhakal, Binod; Girnius, Saulius; Hari, Parameswaran

    2016-01-01

    There have been major recent advancements in the understanding and management of multiple myeloma. Diagnostic criteria have been revised and former ultra-high-risk smoldering multiple myeloma is now considered multiple myeloma in need of treatment. Understanding clonal progression, evolution, and tides not only has helped elucidate the disease behavior but might help expand therapeutic choices in order to select appropriate treatment for patients. Unprecedented response rates with modern triplet induction therapies containing proteasome inhibitor and immunomodulators have made this approach standard for initial treatment. The US Food and Drug Administration approved four new drugs (two targeted antibodies and two oral agents) in 2015 in relapsed/refractory multiple myeloma and these drugs along with the other already-available drugs have now increased the choices of regimens. Even drugs without single-agent activity, such as panobinostat and elotuzumab, have an important role, especially in the proteasome inhibitor refractory setting. Recent studies done in the context of novel agent induction suggest that high-dose therapy followed by autologous transplant continues to improve response rates and progression-free survival, thus underscoring their role in transplant-eligible patients. Evolving paradigms in the treatment of multiple myeloma include newer promising immune approaches, such as adoptive cellular therapies, vaccines, or antibody-based immune manipulations. Though multiple myeloma is still considered incurable, it is clear that with the improved understanding of disease biology and clonal architecture of relapse combined with the availability of multi-targeted approaches, we are ever closer to a lasting cure or transformation into indolent and long-lasting disease courses or both. PMID:27610224

  20. Measurements of student understanding on complex scientific reasoning problems

    NASA Astrophysics Data System (ADS)

    Izumi, Alisa Sau-Lin

    While there has been much discussion of cognitive processes underlying effective scientific teaching, less is known about the response nature of assessments targeting processes of scientific reasoning specific to biology content. This study used multiple-choice (m-c) and short-answer essay student responses to evaluate progress in high-order reasoning skills. In a pilot investigation of student responses on a non-content-based test of scientific thinking, it was found that some students showed a pre-post gain on the m-c test version while showing no gain on a short-answer essay version of the same questions. This result led to a subsequent research project focused on differences between alternate versions of tests of scientific reasoning. Using m-c and written responses from biology tests targeted toward the skills of (1) reasoning with a model and (2) designing controlled experiments, test score frequencies, factor analysis, and regression models were analyzed to explore test format differences. Understanding the format differences in tests is important for the development of practical ways to identify student gains in scientific reasoning. The overall results suggested test format differences. Factor analysis revealed three interpretable factors---m-c format, genetics content, and model-based reasoning. Frequency distributions on the m-c and open explanation portions of the hybrid items revealed that many students answered the m-c portion of an item correctly but gave inadequate explanations. In other instances students answered the m-c portion incorrectly yet demonstrated sufficient explanation or answered the m-c correctly and also provided poor explanations. When trying to fit test score predictors for non-associated student measures---VSAT, MSAT, high school grade point average, or final course grade---the test scores accounted for close to zero percent of the variance. Overall, these results point to the importance of using multiple methods of testing and of

  1. Advances in Understanding and Managing Chronic Urticaria.

    PubMed

    Moolani, Yasmin; Lynde, Charles; Sussman, Gordon

    2016-01-01

    There have been recent advances in the classification and management of chronic urticaria. The new term chronic spontaneous urticaria (CSU) has replaced chronic idiopathic urticaria and chronic autoimmune urticaria. In addition, chronic inducible urticaria (CINDU) has replaced physical urticaria and includes other forms of inducible urticaria, such as cholinergic and aquagenic urticaria. Furthermore, novel research has resulted in a new understanding with guidelines being revised in the past year by both the American Academy of Allergy, Asthma, and Immunology (AAAAI) and the European Academy of Allergy and Clinical Immunology (EAACI)/Global Allergy and Asthma European Network (GA (2)LEN)/European Dermatology Forum (EDF)/World Allergy Organization (WAO). There are some differences in the recommendations, which will be discussed, but the core updates are common to both groups. The basic treatment for chronic urticaria involves second-generation non-sedating non-impairing H 1 antihistamines as first-line treatment. This is followed by up to a 4-fold increase in the licensed dose of these H 1 antihistamines. The major therapeutic advance in recent years has been in third-line treatment with omalizumab, a humanized monoclonal anti-immunoglobulin E (anti-IgE) antibody that prevents binding of IgE to the high-affinity IgE receptor. Several multicenter randomized controlled trials have shown safety and efficacy of omalizumab for CSU. There are also some small studies showing efficacy of omalizumab in CINDU. While there were previously many treatment options which were lacking in strong evidence, we are moving into an era where the treatment algorithm for chronic urticaria is simplified and contains more evidence-based, effective, and less toxic treatment options.

  2. How Students Use Scientific Instruments To Create Understanding: CCD Spectrophotometers

    NASA Astrophysics Data System (ADS)

    Malina, Eric G.; Nakhleh, Mary B.

    2003-06-01

    We investigated how upper-division college students interacted with a CCD spectrophotometer to identify the characteristics of this instrument that influenced students‘ construction of scientific understanding. We specifically wanted to understand the mechanisms by which scientific instruments influence student learning. The ideas of distributed cognition and the theory of affordances were used as a framework to identify the affordances of the CCD spectrophotometer that affected learning. We found the primary affordances of the spectrophotometer were related to the graphical display of data. Students were able to use this feature in order to: (1) interpret their data, (2) discover unexpected results, (3) confirm the validity of their data, (4) make predictions about their solutions, and (5) check for error. We found other affordances that fit into four general areas: time, error, ease of use, and other physical affordances. Overall, we found that experimental designs and objectives influence the affordances that students perceive in instruments. Therefore, instructors must be cognizant of their objectives for instrument use in a laboratory setting and choose instruments and procedures that are consistent with those objectives.

  3. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee Report on Scientific and Technical Information

    SciTech Connect

    Hey, Tony; Agarwal, Deborah; Borgman, Christine; Cartaro, Concetta; Crivelli, Silvia; Van Dam, Kerstin Kleese; Luce, Richard; Arjun, Shankar; Trefethen, Anne; Wade, Alex; Williams, Dean

    2015-09-04

    The Advanced Scientific Computing Advisory Committee (ASCAC) was charged to form a standing subcommittee to review the Department of Energy’s Office of Scientific and Technical Information (OSTI) and to begin by assessing the quality and effectiveness of OSTI’s recent and current products and services and to comment on its mission and future directions in the rapidly changing environment for scientific publication and data. The Committee met with OSTI staff and reviewed available products, services and other materials. This report summaries their initial findings and recommendations.

  4. Sweetened beverages and health: current state of scientific understandings.

    PubMed

    Rippe, James M; Saltzman, Edward

    2013-01-01

    This article summarizes the presentations from the "Sweetened Beverages and Health: Current State of Scientific Understandings" symposium held at the ASN Annual Meeting in Boston, MA on April 23, 2013. The metabolic and health effects of sugar-sweetened beverages were discussed from a variety of points of view by 5 different presenters. Dr. David Allison drew a distinction between conjecture and proof related to sweetened beverages and obesity. Dr. Richard Mattes discussed differences between solid and liquid calories. Dr. Miguel Alonso-Alonso reviewed potential contributions of functional neuroimaging, particularly as they relate to whether sugar is potentially "addictive." Dr. Kimber Stanhope discussed work related to experiments comparing fructose to glucose. Dr. James Rippe presented evidence from randomized controlled trials from his research organization showing no differences among high-fructose corn syrup, sucrose, glucose, or fructose at normal human consumption amounts. PMID:24038246

  5. Recent advances in understanding idiopathic pulmonary fibrosis

    PubMed Central

    Daccord, Cécile; Maher, Toby M.

    2016-01-01

    Despite major research efforts leading to the recent approval of pirfenidone and nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains unchanged. The elaboration of international diagnostic criteria and disease stratification models based on clinical, physiological, radiological, and histopathological features has improved the accuracy of IPF diagnosis and prediction of mortality risk. Nevertheless, given the marked heterogeneity in clinical phenotype and the considerable overlap of IPF with other fibrotic interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis remain unclassifiable. Moreover, currently available tools fail to detect early IPF, predict the highly variable course of the disease, and assess response to antifibrotic drugs. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. These different disease endotypes appear to confer variable susceptibility to the condition, differing risks of rapid progression, and, possibly, altered responses to therapy. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behaviour. The availability of approved antifibrotic therapies together with potential new drugs currently under evaluation also highlights the need for biomarkers able to predict and assess treatment responsiveness, thereby allowing individualised treatment based on risk of progression and drug response. This approach of disease stratification and personalised medicine is already used in the routine management of many cancers and provides a potential road map for guiding clinical care in IPF. PMID:27303645

  6. The Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

    2011-08-01

    In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are

  7. Children's understanding of scientific concepts: A developmental study

    NASA Astrophysics Data System (ADS)

    Bickerton, Gillian Valerie

    Combining theory-oriented inquiry and research that aims to improve instruction is a major goal of neo-Piagetian theory. Within this tradition, Case's (1992) developmental model enables educational researchers to conduct a detailed analysis of the structural and conceptual changes that occur in children's representation of knowledge in different domains at various points in their development. In so doing, it is now possible for educators to first assess children's "entering competence" in a specific subject and then set developmentally realistic instructional goals. Using Case's (1992) model as a theoretical framework, a developmental study was conducted investigating children's understanding of scientific phenomena, specifically buoyancy, at the ages of 6, 8, and 10 years. The main goal was to determine whether or not children's conceptual levels of understanding change systematically with age in a progressive manner consistent with neo-Piagetian stages of development hypothesized by Case. Participants attended one elementary school in a suburban school district near Vancouver, B.C. Sixty children were individually administered a set of five buoyancy tasks that varied in level of difficulty and involved objects of different weights, shapes and sizes. Each student was asked to predict whether an object would float or sink in different liquids and to support their prediction with an explanation. Analyses using the neo-Piagetian approach of articulating the semantic and syntactic nature of children's mental structures were conducted on the students' responses. Shape, size, weight and substance were identified as the semantic components of buoyancy which are syntactically related Using Case's dimensional metric for classifying different levels of conceptual understanding of buoyancy, the results of the study confirmed that children's understanding of buoyancy did progress through the developmental sequence as hypothesized. The structural progression from

  8. 76 FR 17962 - Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... Geological Survey Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater... titled ``Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of the United States''. The report reviews key issues related to freshwater resource data and...

  9. Annotation of Articles from Scientific American and Student Understanding

    ERIC Educational Resources Information Center

    Knapp, John, II

    1976-01-01

    Reports on a study in which high school biology students were divided into two groups: one read "Scientific American" articles and the other group read annotated "Scientific American" articles. Although there was no significant difference between means on an achievement measure of the groups, the author reports that students preferred the…

  10. Recent advances in understanding and treating vasculitis

    PubMed Central

    Koster, Matthew J.; Warrington, Kenneth J.

    2016-01-01

    Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are near universally fatal conditions if untreated. Although effective therapeutic options are available for these diseases, treatment regimens are associated with both short- and long-term adverse effects. The recent identification of effective B-cell-targeted therapy with an anti-CD20 monoclonal antibody has transformed the treatment landscape of AAV. Questions, nevertheless, remain regarding the appropriate timing, dose, frequency, duration, and long-term effects of treatment. The aim of this article is to provide an overview of the current information, recent advances, ongoing clinical trials, and future treatment possibilities in AAV. PMID:27347395

  11. Colistin: understanding and applying recent pharmacokinetic advances.

    PubMed

    Ortwine, Jessica K; Kaye, Keith S; Li, Jian; Pogue, Jason M

    2015-01-01

    Colistin, the most widely used polymyxin antibiotic, was originally introduced in the late 1950s before the establishment of the present-day drug approval process. Originally shelved due to toxicity concerns, colistin, in the form of its inactive prodrug colistin methanesulfonate, has undergone a renaissance in the past 15 years. Unfortunately, this is not because of an improved adverse-effect profile but because colistin is among the only remaining antibiotics with activity against multidrug-resistant gram-negative bacilli. Pharmacokinetic and pharmacodynamic data are limited to guide the appropriate use of colistin; however, important advances have occurred over the past 5 years. Since its reintroduction, published reports regarding colistin have produced discordant results in terms of both efficacy and safety. Because the efficacy and toxicity of colistin are dose dependent, the impact of discordant dosing recommendations cannot be understated. This review highlights the issues leading to differing and often conflicting dosing recommendations, reviews the recent pharmacokinetic advances, and provides recommendations for the optimal use of colistin.

  12. Scientific and technological advancements in inertial fusion energy

    DOE PAGES

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  13. Scientific and technological advancements in inertial fusion energy

    SciTech Connect

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  14. Advances in understanding paternally transmitted Chromosomal Abnormalities

    SciTech Connect

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  15. Scientists and Scientific Thinking: Understanding Scientific Thinking through an Investigation of Scientists Views about Superstitions and Religious Beliefs

    ERIC Educational Resources Information Center

    Coll, Richard K.; Lay, Mark C.; Taylor, Neil

    2008-01-01

    Scientific literacy is explored in this paper which describes two studies that seek to understand a particular feature of the nature of science; namely scientists' habits of mind. The research investigated scientists' views of scientific evidence and how scientists judge evidence claims. The first study is concerned with scientists' views of what…

  16. How the World Gains Understanding of a Planet: Analysis of Scientific Understanding in Earth Sciences and of the Communication of Earth-Scientific Explanation

    NASA Astrophysics Data System (ADS)

    Voute, S.; Kleinhans, M. G.; de Regt, H.

    2010-12-01

    A scientific explanation for a phenomenon is based on relevant theory and initial and background conditions. Scientific understanding, on the other hand, requires intelligibility, which means that a scientist can recognise qualitative characteristic consequences of the theory without doing the actual calculations, and apply it to develop further explanations and predictions. If explanation and understanding are indeed fundamentally different, then it may be possible to convey understanding of earth-scientific phenomena to laymen without the full theoretical background. The aim of this thesis is to analyze how scientists and laymen gain scientific understanding in Earth Sciences, based on the newest insights in the philosophy of science, pedagogy, and science communication. All three disciplines have something to say about how humans learn and understand, even if at very different levels of scientists, students, children or the general public. If different disciplines with different approaches identify and quantify the same theory in the same manner, then there is likely to be something “real” behind the theory. Comparing methodology and learning styles of the different disciplines within the Earth Sciences and by critically analyze earth-scientific exhibitions in different museums may provide insight in the different approaches for earth-scientific explanation and communication. In order to gain earth-scientific understanding, a broad suite of tools is used, such as maps and images, symbols and diagrams, cross-sections and sketches, categorization and classification, modelling, laboratory experiments, (computer) simulations and analogies, remote sensing, and fieldwork. All these tools have a dual nature, containing both theoretical and embodied components. Embodied knowledge is created by doing the actual modelling, intervening in experiments and doing fieldwork. Scientific practice includes discovery and exploration, data collection and analyses, verification

  17. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  18. Recent advances in understanding ichthyosis pathogenesis

    PubMed Central

    Marukian, Nareh V.; Choate, Keith A.

    2016-01-01

    The ichthyoses, also known as disorders of keratinization (DOK), encompass a heterogeneous group of skin diseases linked by the common finding of abnormal barrier function, which initiates a default compensatory pathway of hyperproliferation, resulting in the characteristic clinical manifestation of localized and/or generalized scaling. Additional cutaneous findings frequently seen in ichthyoses include generalized xerosis, erythroderma, palmoplantar keratoderma, hypohydrosis, and recurrent infections. In 2009, the Ichthyosis Consensus Conference established a classification consensus for DOK based on pathophysiology, clinical manifestations, and mode of inheritance. This nomenclature system divides DOK into two main groups: nonsyndromic forms, with clinical findings limited to the skin, and syndromic forms, with involvement of additional organ systems. Advances in next-generation sequencing technology have allowed for more rapid and cost-effective genetic analysis, leading to the identification of novel, rare mutations that cause DOK, many of which represent phenotypic expansion. This review focuses on new findings in syndromic and nonsyndromic ichthyoses, with emphasis on novel genetic discoveries that provide insight into disease pathogenesis. PMID:27408699

  19. Recent advances in understanding ichthyosis pathogenesis.

    PubMed

    Marukian, Nareh V; Choate, Keith A

    2016-01-01

    The ichthyoses, also known as disorders of keratinization (DOK), encompass a heterogeneous group of skin diseases linked by the common finding of abnormal barrier function, which initiates a default compensatory pathway of hyperproliferation, resulting in the characteristic clinical manifestation of localized and/or generalized scaling. Additional cutaneous findings frequently seen in ichthyoses include generalized xerosis, erythroderma, palmoplantar keratoderma, hypohydrosis, and recurrent infections. In 2009, the Ichthyosis Consensus Conference established a classification consensus for DOK based on pathophysiology, clinical manifestations, and mode of inheritance. This nomenclature system divides DOK into two main groups: nonsyndromic forms, with clinical findings limited to the skin, and syndromic forms, with involvement of additional organ systems. Advances in next-generation sequencing technology have allowed for more rapid and cost-effective genetic analysis, leading to the identification of novel, rare mutations that cause DOK, many of which represent phenotypic expansion. This review focuses on new findings in syndromic and nonsyndromic ichthyoses, with emphasis on novel genetic discoveries that provide insight into disease pathogenesis. PMID:27408699

  20. Advances in understanding the leukaemia microenvironment.

    PubMed

    Tabe, Yoko; Konopleva, Marina

    2014-03-01

    Dynamic interactions between leukaemic cells and cells of the bone marrow are a feature of haematological malignancies. Two distinct microenvironmental niches in the bone marrow, the 'osteoblastic (endosteal)' and 'vascular' niches, provide a sanctuary for subpopulations of leukaemic cells to evade chemotherapy-induced death and allow acquisition of drug resistance. Key components of the bone marrow microenvironment as a home for normal haematopoietic stem cells and the leukaemia stem cell niches, and the molecular pathways critical for microenvironment/leukaemia interactions via cytokines, chemokines and adhesion molecules as well as hypoxic conditions, are described in this review. Finally, the genetic abnormalities of leukaemia-associated stroma are discussed. Further understanding of the contribution of the bone marrow niche to the process of leukaemogenesis may provide new targets that allow destruction of leukaemia stem cells without adversely affecting normal stem cell self-renewal.

  1. Advances in understanding hydration of Portland cement

    SciTech Connect

    Scrivener, Karen L.; Juilland, Patrick; Monteiro, Paulo J.M.

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  2. Advances in understanding and treating ADHD

    PubMed Central

    2011-01-01

    Attention deficit hyperactivity disorder (ADHD) is a neurocognitive behavioral developmental disorder most commonly seen in childhood and adolescence, which often extends to the adult years. Relative to a decade ago, there has been extensive research into understanding the factors underlying ADHD, leading to far more treatment options available for both adolescents and adults with this disorder. Novel stimulant formulations have made it possible to tailor treatment to the duration of efficacy required by patients, and to help mitigate the potential for abuse, misuse and diversion. Several new non-stimulant options have also emerged in the past few years. Among these, cognitive behavioral interventions have proven popular in the treatment of adult ADHD, especially within the adult population who cannot or will not use medications, along with the many medication-treated patients who continue to show residual disability. PMID:21658285

  3. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalaacchi, Antonio J.

    1998-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL- FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few shiptracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  4. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalacchi, Antonio J.

    1999-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  5. Recent advances in understanding hepatic drug transport

    PubMed Central

    Stieger, Bruno; Hagenbuch, Bruno

    2016-01-01

    Cells need to strictly control their internal milieu, a function which is performed by the plasma membrane. Selective passage of molecules across the plasma membrane is controlled by transport proteins. As the liver is the central organ for drug metabolism, hepatocytes are equipped with numerous drug transporters expressed at the plasma membrane. Drug disposition includes absorption, distribution, metabolism, and elimination of a drug and hence multiple passages of drugs and their metabolites across membranes. Consequently, understanding the exact mechanisms of drug transporters is essential both in drug development and in drug therapy. While many drug transporters are expressed in hepatocytes, and some of them are well characterized, several transporters have only recently been identified as new drug transporters. Novel powerful tools to deorphanize (drug) transporters are being applied and show promising results. Although a large set of tools are available for studying transport in vitro and in isolated cells, tools for studying transport in living organisms, including humans, are evolving now and rely predominantly on imaging techniques, e.g. positron emission tomography. Imaging is an area which, certainly in the near future, will provide important insights into "transporters at work" in vivo. PMID:27781095

  6. Advances in the understanding of transplant glomerulopathy.

    PubMed

    Husain, Sufia; Sis, Banu

    2013-08-01

    Transplant glomerulopathy is a sign of chronic kidney allograft damage. It has poor survival and no effective therapies. This entity develops as a maladaptive repair/remodeling response to sustained endothelial injury and is characterized by duplication/multilamination of capillary basement membranes. This review provides up-to-date information for transplant glomerulopathy, including new insights into underlying causes and mechanisms, and highlights unmet needs in diagnostics. Transplant glomerulopathy is widely accepted as the principal manifestation of chronic antibody-mediated rejection, mostly with HLA antigen class II antibodies. However, recent data suggest that at least in some patients, there also is an association with hepatitis C virus infection, autoimmunity, and late thrombotic microangiopathy. Furthermore, intragraft molecular studies reveal nonresolving inflammation after sustained endothelial injury as a key mechanism and therapeutic target. Unfortunately, current international criteria rely heavily on light microscopy and miss patients at early stages, when they likely are treatable. Therefore, better tools, such as electron microscopy or molecular probes, are needed to detect patients when kidney injury is in an early active phase. Better understanding of causes and effector mechanisms coupled with early diagnosis can lead to the development of new therapeutics for transplant glomerulopathy and improved kidney outcomes.

  7. Advances in the understanding of conduction disturbances.

    PubMed

    Kulbertus, H E

    1978-09-01

    The interest towards intraventricular conduction defects started some 10 yr after the introduction of the string galvanometer by Einthoven. As early as 1910, it was known that conduction blockade could occur along either branch of the intraventricular conducting pathway. It took some 20 yr to identify properly the electrocardiographic manifestations of right and left bundle branch blocks. A further 30 yr were needed to obtain a sound correlation between these functional disorders and the presence of anatomical lesions. The more recent introduction of the concept of left hemiblocks further improved our understanding of intraventricular conduction defects. The latter concept is based on the hypothesis of the anatomical and functional bifascicularity of the left bundle branch, a hypothesis which cannot be accepted without some reservations. Later developments indicated that left hemiblocks associated with right bundle branch block represent manifestations of bilateral conduction disturbances (incomplete bilateral bundle branch block). Such an association may constitute a forerunner of complete atrioventricular block, or an indicator of the possibility of sudden death. Whether these complications occur frequently or unfrequently in the setting of incomplete bilateral bundle branch block remains an unsettled question. PMID:699953

  8. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires

  9. Science and Creativity: The Importance of Ontology for Scientific Understanding

    ERIC Educational Resources Information Center

    Martin, Lee

    2010-01-01

    The history of science presented by Hisham B. Ghassib (2010) on his article, "Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?," reveals the significance of knowledge generating action throughout human history. Ghassib's (2010) paper explores the embedded nature of scientific practise and in doing so offers…

  10. A Novel Approach to Understanding the Process of Scientific Inquiry

    ERIC Educational Resources Information Center

    Anders, Mark H.

    2007-01-01

    Many of the basic concepts involved in the process of scientific inquiry can be represented by analogy to a simple game called Battleships. The same processes used in this child's game demonstrate what role hypothesis generation and testing play in the search for truth in nature. The analogy can also be extended to demonstrate how scientists…

  11. Media Articles Describing Advances in Scientific Research as a Vehicle for Student Engagement Fostering Climate Literacy

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.

    2014-12-01

    "Records of Global Climate Change" enables students to fulfill the science component of an undergraduate distribution requirement in "Critical Approaches" at IU Bloomington. The course draws students from all disciplines with varying levels of understanding of scientific approaches and often limited familiarity with climate issues. Its discussion sessions seek to foster scientific literacy via an alternating series of assignments focused on a combination of exercises that involve either examination and interpretation of on-line climate data or consideration and assessment of the scientific basis of new discoveries about climate change contained in recently published media articles. The final assignment linked to the discussion sessions requires students to review and summarize the topics discussed during the semester. Their answers provide direct evidence of newly acquired abilities to assimilate and evaluate scientific information on a range of topics related to climate change. In addition, student responses to an end-of-semester survey confirm that the vast majority considers that their knowledge and understanding of climate change was enhanced, and unsolicited comments note that the discussion sessions contributed greatly to this advancement. Many students remarked that the course's emphasis on examination of paleoclimate records helped their comprehension of the unprecedented nature of present-day climate trends. Others reported that their views on the significance of climate change had been transformed, and some commented that they now felt well equipped to engage in discussions about climate change because they were better informed about its scientific basis and facts.

  12. Progress in Understanding Reading: Scientific Foundations and New Frontiers.

    ERIC Educational Resources Information Center

    Stanovich, Keith E.

    The last 25 years have seen tremendous advances in the study of the reading process and reading acquisition. The growing body of knowledge on the reading process and reading acquisition has applications to such important problems as the prevention of reading difficulties and the identification of effective instructional practices. This book…

  13. Scientific opportunities with advanced facilities for neutron scattering

    SciTech Connect

    Lander, G.H.; Emery, V.J.

    1984-01-01

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10/sup 15/ n cm/sup -2/s/sup -1/ steady state source or a 10/sup 17/ n cm/sup -2/s/sup -1/ peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee.

  14. Recent Scientific Advances Towards the Development of Tendon Healing Strategies

    PubMed Central

    Sayegh, Eli T.; Sandy, John D.; Virk, Mandeep S.; Romeo, Anthony A.; Wysocki, Robert W.; Galante, Jorge O.; Trella, Katie J.; Plaas, Anna; Wang, Vincent M.

    2015-01-01

    There exists a range of surgical and non-surgical approaches to the treatment of both acute and chronic tendon injuries. Despite surgical advances in the management of acute tears and increasing treatment options for tendinopathies, strategies frequently are unsuccessful, due to impaired mechanical properties of the treated tendon and/or a deficiency in progenitor cell activities. Hence, there is an urgent need for effective therapeutic strategies to augment intrinsic and/or surgical repair. Such approaches can benefit both tendinopathies and tendon tears which, due to their severity, appear to be irreversible or irreparable. Biologic therapies include the utilization of scaffolds as well as gene, growth factor, and cell delivery. These treatment modalities aim to provide mechanical durability or augment the biologic healing potential of the repaired tissue. Here, we review the emerging concepts and scientific evidence which provide a rationale for tissue engineering and regeneration strategies as well as discuss the clinical translation of recent innovations. PMID:26753125

  15. Advanced Science Students' Understandings on Nature of Science in Finland

    ERIC Educational Resources Information Center

    Sormunen, Kari; Köksal, Mustafa Serdar

    2014-01-01

    Majority of NOS studies comprise of determination or assessment studies conducted with ordinary students. In order to gain further understanding on variation in NOS understandings among the students, there should be different research attempts focusing on unconventional students such as academically advanced students. The purpose of this study is…

  16. Advancing the understanding of autism disease mechanisms through genetics

    PubMed Central

    de la Torre-Ubieta, Luis; Won, Hyejung; Stein, Jason L; Geschwind, Daniel H

    2016-01-01

    Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of rational, targeted molecular therapies. PMID:27050589

  17. (Mis)understanding Science: The Problem with Scientific Breakthroughs.

    PubMed

    Evans, James P

    2016-09-01

    On Saturday morning, February 28, 1953, the mystery of heredity appeared secure. Humans hadn't the faintest idea of how genetic information was transmitted-how the uncanny resemblance between mother and daughter, grandfather and grandson was conveyed across generations. Yet, by that Saturday afternoon, two individuals, James Watson and Francis Crick, had glimpsed the solution to these mysteries. The story of Watson and Crick's great triumph has been told and retold and has rightly entered the pantheon of scientific legend. But Watson and Crick's breakthrough was just that: a rupture and dramatic discontinuity in human knowledge that solved a deep mystery, the likes of which occurs, perhaps, a couple of times each century. And that's the problem. The story is just so good and so irresistible that it has misled generations of scientists about what to expect regarding a life in science. And more damaging, the resulting breakthrough mentality misleads the public, the media, and society's decision-makers about how science really works, all to the detriment of scientific progress and our society's well-being. PMID:27649823

  18. (Mis)understanding Science: The Problem with Scientific Breakthroughs.

    PubMed

    Evans, James P

    2016-09-01

    On Saturday morning, February 28, 1953, the mystery of heredity appeared secure. Humans hadn't the faintest idea of how genetic information was transmitted-how the uncanny resemblance between mother and daughter, grandfather and grandson was conveyed across generations. Yet, by that Saturday afternoon, two individuals, James Watson and Francis Crick, had glimpsed the solution to these mysteries. The story of Watson and Crick's great triumph has been told and retold and has rightly entered the pantheon of scientific legend. But Watson and Crick's breakthrough was just that: a rupture and dramatic discontinuity in human knowledge that solved a deep mystery, the likes of which occurs, perhaps, a couple of times each century. And that's the problem. The story is just so good and so irresistible that it has misled generations of scientists about what to expect regarding a life in science. And more damaging, the resulting breakthrough mentality misleads the public, the media, and society's decision-makers about how science really works, all to the detriment of scientific progress and our society's well-being.

  19. A Versatile Module to Improve Understanding of Scientific Literature through Peer Instruction

    ERIC Educational Resources Information Center

    Jacques-Fricke, Bridget T.; Hubert, Amy; Miller, Sarah

    2009-01-01

    Using primary literature in undergraduate science classes helps teach students both scientific information and process. However, students' lack of understanding of scientific techniques can hinder their understanding of the papers. This article describes a "technique module" that uses peer teaching and active learning to facilitate integration of…

  20. Small Explorer for Advanced Missions - cubesat for scientific mission

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Ivchenko, Nickolay

    2015-04-01

    A class of nanosatellites is defined by the cubesat standard, primarily setting the interface to the launcher, which allows standardizing cubesat preparation and launch, thus making the projects more affordable. The majority of cubesats have been launched are demonstration or educational missions. For scientific and other advanced missions to fully realize the potential offered by the low cost nanosatellites, there are challenges related to limitations of the existing cubesat platforms and to the availability of small yet sufficiently sensitive sensors. The new project SEAM (Small Explorer for Advanced Missions) was selected for realization in frames of FP-7 European program to develop a set of improved critical subsystems and to construct a prototype nanosatellite in the 3U cubesat envelope for electromagnetic measurements in low Earth orbit. The SEAM consortium will develop and demonstrate in flight for the first time the concept of an electromagnetically clean nanosatellite with precision attitude determination, flexible autonomous data acquisition system, high-bandwidth telemetry and an integrated solution for ground control and data handling. As the first demonstration, the satellite is planned to perform the Space Weather (SW) mission using novel miniature electric and magnetic sensors, able to provide science-grade measurements. To enable sensitive magnetic measurements onboard, the sensors must be deployed on booms to bring them away from the spacecraft body. Also other thorough yet efficient procedures will be developed to provide electromagnetic cleanliness (EMC) of the spacecraft. This work is supported by EC Framework 7 funded project 607197.

  1. Gender Differences in Lunar-Related Scientific and Mathematical Understandings

    ERIC Educational Resources Information Center

    Wilhelm, Jennifer

    2009-01-01

    This paper reports an examination on gender differences in lunar phases understanding of 123 students (70 females and 53 males). Middle-level students interacted with the Moon through observations, sketching, journalling, two-dimensional and three-dimensional modelling, and classroom discussions. These lunar lessons were adapted from the Realistic…

  2. Scientific Models Help Students Understand the Water Cycle

    ERIC Educational Resources Information Center

    Forbes, Cory; Vo, Tina; Zangori, Laura; Schwarz, Christina

    2015-01-01

    The water cycle is a large, complex system that encompasses ideas across the K-12 science curriculum. By the time students leave fifth grade, they should understand "that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot" and be able to describe both components and processes…

  3. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  4. Center for Technology for Advanced Scientific Componet Software (TASCS)

    SciTech Connect

    Govindaraju, Madhusudhan

    2010-10-31

    Advanced Scientific Computing Research Computer Science FY 2010Report Center for Technology for Advanced Scientific Component Software: Distributed CCA State University of New York, Binghamton, NY, 13902 Summary The overall objective of Binghamton's involvement is to work on enhancements of the CCA environment, motivated by the applications and research initiatives discussed in the proposal. This year we are working on re-focusing our design and development efforts to develop proof-of-concept implementations that have the potential to significantly impact scientific components. We worked on developing parallel implementations for non-hydrostatic code and worked on a model coupling interface for biogeochemical computations coded in MATLAB. We also worked on the design and implementation modules that will be required for the emerging MapReduce model to be effective for scientific applications. Finally, we focused on optimizing the processing of scientific datasets on multi-core processors. Research Details We worked on the following research projects that we are working on applying to CCA-based scientific applications. 1. Non-Hydrostatic Hydrodynamics: Non-static hydrodynamics are significantly more accurate at modeling internal waves that may be important in lake ecosystems. Non-hydrostatic codes, however, are significantly more computationally expensive, often prohibitively so. We have worked with Chin Wu at the University of Wisconsin to parallelize non-hydrostatic code. We have obtained a speed up of about 26 times maximum. Although this is significant progress, we hope to improve the performance further, such that it becomes a practical alternative to hydrostatic codes. 2. Model-coupling for water-based ecosystems: To answer pressing questions about water resources requires that physical models (hydrodynamics) be coupled with biological and chemical models. Most hydrodynamics codes are written in Fortran, however, while most ecologists work in MATLAB. This

  5. The Pallid Sturgeon: Scientific Investigations Help Understand Recovery Needs

    USGS Publications Warehouse

    DeLonay, Aaron J.

    2010-01-01

    Understanding of the pallid sturgeon (Scaphirhynchus albus) has increased significantly since the species was listed as endangered over two decades ago. Since 2005, scientists at the U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC) have been engaged in an interdisciplinary research program in cooperation with the U.S. Army Corps of Engineers Missouri River Recovery Program, U.S. Fish and Wildlife Service, Nebraska Game and Parks Commission, and numerous other State and Federal cooperators to provide managers and policy makers with the knowledge needed to evaluate recovery options. During that time, the USGS has worked collaboratively with river scientists and managers to develop methods, baseline information, and research approaches that are critical contributions to recovery success. The pallid sturgeon is endangered throughout the Missouri River because of insufficient reproduction and survival of early life stages. Primary management actions on the Missouri River designed to increase reproductive success and survival have focused on flow regime, channel morphology, and propagation. The CERC research strategies have, therefore, been designed to examine the linkages among flow regime, re-engineered channel morphology, and reproductive success and survival. Specific research objectives include the following: (1) understanding reproductive physiology of pallid sturgeon and relations to environmental conditions; (2) determining movement, habitat use, and reproductive behavior of pallid sturgeon; and (3) quantifying availability and dynamics of aquatic habitats needed by pallid sturgeon for all life stages.

  6. Advances in genetics: widening our understanding of prostate cancer

    PubMed Central

    Pine, Angela C.; Fioretti, Flavia F.; Brooke, Greg N.; Bevan, Charlotte L.

    2016-01-01

    Prostate cancer is a leading cause of cancer-related death in Western men. Our understanding of the genetic alterations associated with disease predisposition, development, progression, and therapy response is rapidly improving, at least in part, owing to the development of next-generation sequencing technologies. Large advances have been made in our understanding of the genetics of prostate cancer through the application of whole-exome sequencing, and this review summarises recent advances in this field and discusses how exome sequencing could be used clinically to promote personalised medicine for prostate cancer patients. PMID:27408704

  7. Meaningful Assessment of Learners' Understandings about Scientific Inquiry--The Views about Scientific Inquiry (VASI) Questionnaire

    ERIC Educational Resources Information Center

    Lederman, Judith S.; Lederman, Norman G.; Bartos, Stephen A.; Bartels, Selina L.; Meyer, Allison Antink; Schwartz, Renee S.

    2014-01-01

    Helping students develop informed views about scientific inquiry (SI) has been and continues to be a goal of K-12 science education, as evidenced in various reform documents. Nevertheless, research focusing on understandings of SI has taken a perceptible backseat to that which focuses on the "doing" of inquiry. We contend that this is…

  8. Scientific advances provide opportunities to improve pediatric environmental health

    USGS Publications Warehouse

    Reddy, Michael M.; Reddy, Micaela B.; Reddy, Carol F.

    2004-01-01

    The health consequences of contaminants in the environment, with respect to the health of children and infants, recently have been dramatically brought to public attention by the motion pictures Erin Brockovich and A Civil Action. These productions focused public attention on the potential link between water contaminants and pediatric health, a continuing subject of public concern. As a consequence of the increasing production of new commercial chemicals, many chemicals have appeared in the scientific and public awareness as potential threats to health. These new or novel compounds eventually distribute in the environment and often are termed emerging contaminants. Gitterman and Bearer stated, "Children may serve as unwitting sentinels for society; they are often the youngest exposed to many environmental toxicants and may become the youngest in age to manifest adverse responses." The discipline of pediatric environmental health is still in its adolescence, but it will be increasingly important as new chemicals are generated and as more is learned about the health effects of chemicals already in commerce. Here, we provide an overview of recent advances in biomonitoring and environmental monitoring of environmental contaminants including emerging contaminants. Our purpose in writing this commentary is to make pediatricians aware of the current resources available for learning about pediatric environmental health and of ongoing research initiatives that provide opportunities to improve pediatric environmental health.

  9. Probing Student Understanding of Scientific Thinking in the Context of Introductory Astrophysics

    ERIC Educational Resources Information Center

    Steinberg, Richard N.; Cormier, Sebastien; Fernandez, Adiel

    2009-01-01

    Common forms of testing of student understanding of science content can be misleading about their understanding of the nature of scientific thinking. Observational astronomy integrated with related ideas of force and motion is a rich context to explore the correlation between student content knowledge and student understanding of the scientific…

  10. Advanced I/O for large-scale scientific applications.

    SciTech Connect

    Klasky, Scott; Schwan, Karsten; Oldfield, Ron A.; Lofstead, Gerald F., II

    2010-01-01

    As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be attained while

  11. Understanding Scientific Methodology in the Historical and Experimental Sciences via Language Analysis

    ERIC Educational Resources Information Center

    Dodick, Jeff; Argamon, Shlomo; Chase, Paul

    2009-01-01

    A key focus of current science education reforms involves developing inquiry-based learning materials. However, without an understanding of how working scientists actually "do" science, such learning materials cannot be properly developed. Until now, research on scientific reasoning has focused on cognitive studies of individual scientific fields.…

  12. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations

  13. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  14. Scientific Achievements May Not Reach Everyone: Understanding Disparities in Acute Leukemia.

    PubMed

    Patel, Manali I

    2016-08-01

    Over the past decade, scientific advancements have resulted in improved survival from acute leukemia. Continued advancements are expected given the attention to precision medicine and the resulting growth in development and adoption of risk-stratified, personalized therapies. While precision medicine has great potential to improve acute leukemia outcomes, there remain significant barriers to ensuring equitable access to these technologies and receipt of these prescribed targeted, personalized therapies. Over the past 3 years, studies report persistent outcome disparities among patients from specific racial and ethnic backgrounds, insurance and socioeconomic status, and other socio-demographic factors after a diagnosis of acute leukemia. A few recent studies examine etiologies for acute leukemia disparities and highlight the importance of ensuring access and equitable delivery of scientific advancements. In the context of continued scientific progress, future strategies require thoughtfully considered improvements in the delivery of care that can overcome the current challenges our patients face.

  15. Evolution in action in the classroom: Engaging students in scientific practices to develop a conceptual understanding of natural selection

    NASA Astrophysics Data System (ADS)

    Johnson, Wendy Renae

    Public understanding and acceptance of the theory of evolution in the United States is not commensurate with its acceptance in the scientific community and its role as the central organizing principle of the biological sciences. There are a multitude of factors that affect student understanding of the theory of evolution documented in the literature including the proposition that understanding of evolution is intimately linked to understanding the nature of science. This study describes the development, implementation, and assessment of learning activities that address the process of natural selection and the scientific methodology that illuminates these mechanisms. While pre and post-test scores were higher for students in an Advanced Placement Biology course than students in a general biology course, similar learning gains were observed in both groups. Learning gains were documented in understanding the random nature of mutations and their importance to the process of natural selection, explaining selection as a competitive advantage of one variation over another type and specifically linking this to reproductive success, and in connecting inheritance, variation, and selection to explain the process of natural selection. Acceptance of the scientific validity of the theory of evolution as measured by the Measure of Acceptance of the Theory of Evolution (MATE) Instrument also increased significantly in both groups over the course of the school year. These findings suggest that the sequence of activities implemented in this study promote conceptual change about the nature of science and the process of evolution by natural selection in students.

  16. Understanding the composite practice that forms when classrooms take up the practice of scientific argumentation

    NASA Astrophysics Data System (ADS)

    Kuhn Berland, Leema

    Traditional classroom practices communicate epistemic commitments and goals that might be contrary to those needed for meaningful participation in scientific inquiry practices. In this dissertation, I explore how traditional classroom practices influence students' participation in the practice of scientific argumentation. I address this through a two-pronged approach. First, given that students do not typically engage in collaborative knowledge-building through scientific argumentation, I used the best-practices put forth by relevant research to support teachers in facilitating this practice. Second, I worked with four classes as they enacted a unit designed to foster scientific argumentation. I observed the emergent class discussions and engaged in discourse analysis in which I related the interaction patterns found in non-argumentative class discussions to those that occurred in lessons designed to foster scientific argumentation. Examining the argumentative discussions reveals that each class transformed the practice in different ways. Comparing these interactions to those of the non-argumentative suggests that students used the goals and beliefs that guided their typical classroom practices to interpret the activity structures for and teacher's framings of the new practice of scientific argumentation. In this dissertation, I present a research methodology for understanding the relationship between typical classroom practices and student adaptations of new scientific practices; design strategies for supporting scientific argumentation; and a framework for understanding how and why classroom communities adapt the practice of scientific argumentation.

  17. Korean Students' Perceptions of Scientific Practices and Understanding of Nature of Science

    NASA Astrophysics Data System (ADS)

    Yoon, Sae Yeol; Suh, Jee Kyung; Park, Soonhye

    2014-11-01

    Korean students have shown relatively little interest and confidence in learning science, despite being ranked in the top percentile in international evaluations of academic achievement in science such as the Trends in International Mathematics and Science Study. Although research indicates a positive relationship between student perceptions of science and their science learning, this area has not been sufficiently explored in Korea. Particularly, even though both students' perceptions of scientific practice and their understanding of the nature of science (NOS) are influenced by their science learning experiences at schools, little research examines how this perception, understanding, and experience are related to one another. This study aimed to uncover Korean students' perceptions of school scientific practice through exploring their drawings, writings, and responses to questionnaires. Participants were 500 Korean students in 3rd, 7th, and 10th grades who were asked to complete an open-ended questionnaire. The results indicated that Korean students typically viewed school scientific practices as experimental activities or listening to lecture; and that most participants held an insufficient understanding of the NOS. Overall, no significant relationship emerged between students' perceptions of school scientific practice and their understanding of the NOS. Our findings highlight the need to help both teachers and students understand the potential breadth of school scientific practices, beyond simple 'activity mania.' This study also suggests that teachers must balance implicit and explicit instructional approaches to teaching about the NOS through scientific practices in school science contexts.

  18. Adherence to Scientific Method while Advancing Exposure Science

    EPA Science Inventory

    Paul Lioy was simultaneously a staunch adherent to the scientific method and an innovator of new ways to conduct science, particularly related to human exposure. Current challenges to science and the application of the scientific method are presented as they relate the approaches...

  19. Communication, Interventions, and Scientific Advances in Autism: A Commentary

    PubMed Central

    Llaneza, Danielle C.; DeLuke, Susan V.; Batista, Myra; Crawley, Jacqueline N.; Christodulu, Kristin V.; Frye, Cheryl A.

    2010-01-01

    Autism spectrum disorders (ASD) affect approximately 1 in 150 children across the U.S., and are characterized by abnormal social actions, language difficulties, repetitive or restrictive behaviors, and special interests. ASD include autism (autistic disorder), Asperger syndrome, and Pervasive Developmental Disorder not otherwise specified (PDD-NOS or atypical autism). High-functioning individuals may communicate with moderate-to-high language skills, although difficulties in social skills may result in communication deficits. Low-functioning individuals may have severe deficiencies in language, resulting in poor communication between the individual and others. Behavioral intervention programs have been developed for ASD, and are frequently adjusted to accommodate specific individual needs. Many of these programs are school-based and aim to support the child in the development of their skills, for use outside the classroom with family and friends. Strides are being made in understanding the factors contributing to the development of ASD, particularly the genetic contributions that may underlie these disorders. Mutant mouse models provide powerful research tools to investigate the genetic factors associated with ASD and its co-morbid disorders. In support, the BTBR T+tf/J mouse strain incorporates ASD-like social and communication deficits and high levels of repetitive behaviors. This commentary briefly reviews the reciprocal relationship between observations made during evidence-based behavioral interventions of high- versus low-functioning children with ASD and the accumulating body of research in autism, including animal studies and basic research models. This reciprocity is one of the hallmarks of the scientific method, such that research may inform behavioral treatments, and observations made during treatment may inform subsequent research. PMID:20093134

  20. Advances in the understanding and management of heart transplantation

    PubMed Central

    Singh, Dhssraj

    2015-01-01

    Cardiac transplantation represents one of the great triumphs in modern medicine and remains the cornerstone in the treatment of advanced heart failure. In this review, we contextualize pivotal developments in our understanding and management of cardiac transplant immunology, histopathology, rejection surveillance, drug development and surgery. We also discuss current limitations in their application and the impact of the left ventricular assist devices in bridging this gap. PMID:26097725

  1. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    NASA Astrophysics Data System (ADS)

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-10-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them experiment, science fair, and hypothesis, is used to probe the students' knowledge structures. Students from grades four, five, and eight, as well as first-year college students were tested to reveal their knowledge structures relating to the scientific method. Younger students were found to have a naïve view of the science process with little understanding of how science relates to the real world. However, students' conceptions about the scientific process appear to be malleable, with science fairs a potentially strong influencer. The strength of associations between words is observed to change from grade to grade, with younger students placing science fair near the center of their knowledge structure regarding the scientific method, whereas older students conceptualize the scientific method around experiment.

  2. Advanced Test Reactor National Scientific User Facility Progress

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  3. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    SciTech Connect

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    The development and safety evaluation of a nuclear waste geologic repository require a proper scientific understanding of the site response. Such scientific understanding depends on information from a number of geoscience disciplines, including geology, geophysics, geochemistry, geomechanics and hydrogeology. The information comes in four stages: (1) general regional survey data base, (2) surface-based testing, (3) exploratory shaft testing, and (4) repository construction and evaluation. A discussion is given on the dynamic use of the information through the different stages. We point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure. 2 figs.

  4. Recent advances in understanding of chronic kidney disease

    PubMed Central

    Yamaguchi, Junna; Tanaka, Tetsuhiro; Nangaku, Masaomi

    2015-01-01

    Chronic kidney disease (CKD) is defined as any condition that causes reduced kidney function over a period of time. Fibrosis, tubular atrophy and interstitial inflammation are the hallmark of pathological features in CKD. Regardless of initial insult, CKD has some common pathways leading CKD to end-stage kidney disease, including hypoxia in the tubulointerstitium and proteinuria. Recent advances in genome editing technologies and stem cell research give great insights to understand the pathogenesis of CKD, including identifications of the origins of renal myofibroblasts and tubular epithelial cells upon injury. Environmental factors such as hypoxia, oxidative stress, and epigenetic factors in relation to CKD are also discussed. PMID:26937272

  5. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    SciTech Connect

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  6. a Roadmap to Advance Understanding of the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Schrijver, K.; Kauristie, K.; Aylward, A.; De Nardin, C. M.; Gibson, S. E.; Glover, A.; Gopalswamy, N.; Grande, M.; Hapgood, M. A.; Heynderickx, D.; Jakowski, N.; Kalegaev, V. V.; Lapenta, G.; Linker, J.; Liu, S.; Mandrini, C. H.; Mann, I. R.; Nagatsuma, T.; Nandy, D.; Obara, T.; O'Brien, T. P., III; Onsager, T. G.; Opgenoorth, H. J.; Terkildsen, M. B.; Valladares, C. E.; Vilmer, N.

    2015-12-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. A COSPAR/ILWS team recently completed a roadmap that identifies the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications and costs for society. This presentation provides a summary of the highest-priority recommendations from that roadmap.

  7. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    SciTech Connect

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  8. Advances in understanding mechanisms underpinning lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Aurbach, Doron; McCloskey, Bryan D.; Nazar, Linda F.; Bruce, Peter G.

    2016-09-01

    The rechargeable lithium-air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium-air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium-air batteries.

  9. Recent advances in understanding nuclear size and shape.

    PubMed

    Mukherjee, Richik N; Chen, Pan; Levy, Daniel L

    2016-04-25

    Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells.

  10. Advances in understanding mechanisms underpinning lithium–air batteries

    NASA Astrophysics Data System (ADS)

    Aurbach, Doron; McCloskey, Bryan D.; Nazar, Linda F.; Bruce, Peter G.

    2016-09-01

    The rechargeable lithium–air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium–air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium–air batteries.

  11. Recent advances in understanding nuclear size and shape.

    PubMed

    Mukherjee, Richik N; Chen, Pan; Levy, Daniel L

    2016-04-25

    Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells. PMID:26963026

  12. The real-time learning mechanism of the Scientific Research Associates Advanced Robotic System (SRAARS)

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y.

    1990-01-01

    Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.

  13. Recent Advances in Understanding and Managing Autism Spectrum Disorders.

    PubMed

    Germain, Blair; Eppinger, Melissa A; Mostofsky, Stewart H; DiCicco-Bloom, Emanuel; Maria, Bernard L

    2015-12-01

    Autism spectrum disorder in children is a group of neurodevelopmental disorders characterized by difficulties with social communication and behavior. Growing scientific evidence in addition to clinical practice has led the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) to categorize several disorders into the broader category of autism spectrum disorder. As more is learned about how autism spectrum disorder manifests, progress has been made toward better clinical management including earlier diagnosis, care, and when specific interventions are required. The 2014 Neurobiology of Disease in Children symposium, held in conjunction with the 43rd annual meeting of the Child Neurology Society, aimed to (1) describe the clinical concerns involving diagnosis and treatment, (2) review the current status of understanding in the pathogenesis of autism spectrum disorder, (3) discuss clinical management and therapies for autism spectrum disorder, and (4) define future directions of research. The article summarizes the presentations and includes an edited transcript of question-and-answer sessions.

  14. Final Report for "Center for Technology for Advanced Scientific Component Software"

    SciTech Connect

    Svetlana Shasharina

    2010-12-01

    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  15. 76 FR 16443 - Proposed Information Collection: Strengthening the Scientific Understanding of Climate Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Climate Change Impacts on Freshwater Resources of the United States AGENCY: United States Geological... draft report to Congress titled ``Strengthening the Scientific Understanding of Climate Change Impacts... freshwater resource data and climate change and identifies next steps to improve the Nation's capacity...

  16. Scaffolded Instruction Improves Student Understanding of the Scientific Method & Experimental Design

    ERIC Educational Resources Information Center

    D'Costa, Allison R.; Schlueter, Mark A.

    2013-01-01

    Implementation of a guided-inquiry lab in introductory biology classes, along with scaffolded instruction, improved students' understanding of the scientific method, their ability to design an experiment, and their identification of experimental variables. Pre- and postassessments from experimental versus control sections over three semesters…

  17. Effects of Representation Sequences and Spatial Ability on Students' Scientific Understandings about the Mechanism of Breathing

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Lin, Yu-Fen; Hsu, Ying-Shao

    2013-01-01

    The purpose of this study was to investigate the effects of representation sequences and spatial ability on students' scientific understandings about the mechanism of breathing in human beings. 130 seventh graders were assigned to two groups with different sequential combinations of static and dynamic representations: SD group (i.e., viewing…

  18. Using Scaffolding Strategies to Promote Young Children's Scientific Understandings of Floating and Sinking

    ERIC Educational Resources Information Center

    Hsin, Ching-Ting; Wu, Hsin-Kai

    2011-01-01

    The purposes of this study are to examine young children's explanations of floating and sinking and to investigate how scaffolding strategies provided by a tutor could promote their scientific understandings. Fifteen 4-year-olds and fifteen 5-year-olds from a public kindergarten in northern Taiwan participated in this study. The children were…

  19. The Public Understanding of Scientific Information: Communicating, Interpreting, and Applying the Science of Learning.

    ERIC Educational Resources Information Center

    Norris, Stephen P.; Phillips, Linda M.

    2003-01-01

    Research is conducted in abstract contexts that inhibit practical application. In addition, research results are often uncertain and always circumscribed. Lay people have difficulty interpreting results for use in particular situations. The media could play a significant role in the public understanding of scientific information if it would report…

  20. Articulating Scientific Practice: Understanding Dean Hamer's "Gay Gene" Study as Overlapping Material, Social and Rhetorical Registers

    ERIC Educational Resources Information Center

    Lynch, John A.

    2009-01-01

    Rhetoricians have tried to develop a better understanding of the connection between words and things, but these attempts often employ a logic of representation that undermines a full examination of materiality and the complexity of scientific practice. A logic of articulation offers a viable alternative by focusing attention on the linkages…

  1. Recent scientific advances in the use of radar in scientific hydrology

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1993-01-01

    The data needs in scientific hydrology involve measurements of system states and fluxes. The microwave region is particularly well suited for measuring the system states of soil moisture and snow and the major flux into the earth as rainfall. This paper discusses the unique data needs of hydrology and presents some recent examples from AIRSAR experiments.

  2. The Effects of Science Models on Students' Understanding of Scientific Processes

    NASA Astrophysics Data System (ADS)

    Berglin, Riki Susan

    This action research study investigated how the use of science models affected fifth-grade students' ability to transfer their science curriculum to a deeper understanding of scientific processes. This study implemented a variety of science models into a chemistry unit throughout a 6-week study. The research question addressed was: In what ways do using models to learn and teach science help students transfer classroom knowledge to a deeper understanding of the scientific processes? Qualitative and quantitative data were collected through pre- and post-science interest inventories, observations field notes, student work samples, focus group interviews, and chemistry unit tests. These data collection tools assessed students' attitudes, engagement, and content knowledge throughout their chemistry unit. The results of the data indicate that the model-based instruction program helped with students' engagement in the lessons and understanding of chemistry content. The results also showed that students displayed positive attitudes toward using science models.

  3. Advanced Scientific Computing Environment Team new scientific database management task. Progress report

    SciTech Connect

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future ``computer`` will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This ``network computer`` will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of ``Jvv`` concepts and capabilities to distributed and/or parallel computing environments.

  4. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    SciTech Connect

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  5. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Kostadin, Damevski

    2015-01-25

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  6. Understanding the Dialectical Relations Between Everyday Concepts and Scientific Concepts Within Play-Based Programs

    NASA Astrophysics Data System (ADS)

    Fleer, Marilyn

    2009-03-01

    In recent times there has been an enormous interest in Vygotsky’s writing on conceptual development, particularly his insights on the differences between everyday and scientific thinking. In drawing upon cultural-historical theory, this paper seeks to examine the relations between everyday concepts and scientific concepts within playful contexts, such as preschools, with a view to better understanding how very young children develop conceptual understandings in science. This paper presents an overview of a study which sought to map the transformation and appropriation of scientific concepts within two early childhood settings. Approximately ten weeks of data gathering took place, with video recordings, field notes, photographic documentation, and child and teacher interviews for recording child concept formation within these naturalistic settings. The findings indicate that when teacher programs are more oriented towards concepts rather than materials, children’s play is focused on conceptual connections. Importantly, the study showed that: It was possible to map the multiple and dynamic levels or stratas of thinking that a child or group of children may exhibit within play-based contexts; An analysis of ‘unorganised heaps’ and ‘complexive thinking’ evident in conceptually or materially oriented play-based programs can be determined; the dialectical relations between everyday concepts and scientific concepts in play-based programs can be understood; and greater understanding about the nature of concept formation in situated playful contexts have been possible.

  7. Recent advances in understanding Antarctic subglacial lakes and hydrology.

    PubMed

    Siegert, Martin J; Ross, Neil; Le Brocq, Anne M

    2016-01-28

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from 'active' lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further 'active' subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many 'active' lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface).

  8. Recent advances in understanding Antarctic subglacial lakes and hydrology.

    PubMed

    Siegert, Martin J; Ross, Neil; Le Brocq, Anne M

    2016-01-28

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from 'active' lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further 'active' subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many 'active' lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface). PMID:26667914

  9. Recent advances in understanding Antarctic subglacial lakes and hydrology

    PubMed Central

    Siegert, Martin J.; Ross, Neil; Le Brocq, Anne M.

    2016-01-01

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from ‘active’ lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further ‘active’ subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many ‘active’ lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface). PMID:26667914

  10. Using the Scientific Python ecosystem to advance open radar science

    NASA Astrophysics Data System (ADS)

    Collis, S. M.; Helmus, J.

    2015-12-01

    The choice of a programming language or environment is rarely made with consideration of its benefits and disadvantages. Often it is something inherited from mentor or enforced by an institution. Python, developed as a "hobby" programming project, has seen increased migration of users from more traditional domain specific environments. This presentation charts our own journey in using the scientific python ecosystem, first as users and then as the developers of a community based toolkit for working with weather radar data, the Python ARM Radar Toolkit, Py-ART. We will highlight how a data model driven design approach can extend the usefulness and reusability of code and act as a bridge between amorphous mathematical algorithms and domain specific data. Finally we will showcase how Python and Py-ART can be used on clusters to tackle pleasantly parallel problems like deriving climatologies swiftly, painlessly and most importantly: reproducibly.

  11. Scientific Society Partnerships & Effective Strategies for Advancing Policy Objectives

    NASA Astrophysics Data System (ADS)

    Hammer, P. W.; Greenamoyer, J.

    2012-12-01

    From the perspective of Congress, science is just another interest group that seeks a generous slice of an increasingly shrinking federal budget pie. Traditionally, the science community has not been effective at lobbying for the legislative advances and federal appropriations that enable the R&D enterprise. However, over the last couple decades, science societies have become more strategic in their outreach to Congress and the President. Indeed, many societies have lobbyists on staff, many of whom have a background in science. Yet, while science societies are beginning to be more effective as a political interest group, their members have been much slower to come around to this perspective as an important component of their professional lives. In this talk, we will illustrate how the American Institute of Physics partners with AGU and other science societies to identify joint policy priorities and then reach out to Congress and the President to advance these priorities. The biggest issue is funding for R&D, but science education is increasingly important as is other issues such as publishing policy. We will draw from a number examples, such as the NSF budget, funding for Pu-238, K-12 physical science education policy, and Open Access to illustrate how partnerships work and how scientists can be engaged as powerful political actors in the process.

  12. Fluvial Morphodynamics: advancing understanding using Multibeam Echo Sounders (MBES)

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Best, J. L.

    2012-12-01

    Accurately and reliably determining riverbed morphology is key to understanding linkages between flow fields, sediment transport and bed roughness in a range of aquatic environments, including large fluvial channels. Modern shallow-water multibeam echo sounder (MBES) systems are now allowing us to acquire bathymetric data at unprecedented resolutions that are millimetric in precision and centimetric in accuracy. Such systems, and the morphological resolution they can supply, are capable of revealing the complex three-dimensional patterns in riverbed morphology that are facilitating a holistic examination of system morphodynamics, at the field scale, that was unimaginable just a few years ago. This paper presents a range of MBES acquired examples to demonstrate how the methodological developments in this technology are leading to advances in our substantive understanding of large river systems. This includes examples that show linkages across scales, and in particular the morphodynamics of superimposed bedforms and bars revealed by such high-resolution data, which have broad implications for a range of applications, including flood prediction, engineering design and reconstructing ancient sedimentary environments.

  13. Social understanding: How does it fare with advancing years?

    PubMed

    Sullivan, Susan; Ruffman, Ted

    2004-02-01

    Until recently, theory of mind abilities have received little attention beyond the childhood years. However, pioneering work carried out by Happé, Winner, and Brownell (1998) has opened the doors on a new and exciting area of research that examines theory of mind abilities in later years. Happé et al. reported that theory of mind performance was superior in the elderly. Yet, in direct contrast to these findings, Maylor, Moulson, Muncer, and Taylor (2002) report a decline in theory of mind abilities with advancing years. We used Happé et al.'s task and, like Maylor et al., found a decline in theory of mind abilities in the elderly. Yet this deficit was related to a decline in fluid abilities. We then examined whether deficits in social understanding in the elderly could also be independent of fluid abilities. We used two new tasks; identifying emotions from still photos and identifying emotions and cognitions from video clips. Again we found a decline in social understanding in the elderly, and in this case, the decline was independent of changes in fluid abilities. PMID:15005864

  14. Scientific Understanding: Lacey's `Critical Self-Consciousness' Seen as Echoes of J.D. Bernal

    NASA Astrophysics Data System (ADS)

    Cross, Roger T.

    From a consideration of the nature of scientific understanding and the control of nature Lacey proposes a set of criteria by which the reform of science teaching might be guided. He uses the term critical self-consciousness to describe the development of learner's appreciation of the character of scientific activity, its applications, and the choices citizens face in society. By this latter he means responsible participation, presumably in the debates surrounding the character of scientific activity, its applications, and the choices inherent in these. In this paper I show that Lacey's vision of the schooling of science through the development of critical self-consciousness has been articulated by others at different epochs, and probably from different ideological perspectives. Knowledge of these will help Lacey in his search for an education in science which promotes citizens' participation rather than alienating them from decision-making in society.

  15. Instructional games: Scientific language use, concept understanding, and attitudinal development of middle school learners

    NASA Astrophysics Data System (ADS)

    Mongillo, Geraldine

    The purpose of this qualitative study was to discover the influence of instructional games on middle school learners' use of scientific language, concept understanding, and attitude toward learning science. The rationale for this study stemmed from the lack of research concerning the value of play as an instructional strategy for older learners. Specifically, the study focused on the ways in which 6 average ability 7th grade students demonstrated scientific language and concept use during gameplay. The data were collected for this 6-week study in a southern New Jersey suburban middle school and included audio recordings of the 5 games observed in class, written documents (e.g., student created game questions, self-evaluation forms, pre- and post-assessments, and the final quiz) interviews, and researcher field notes. Data were coded and interpreted borrowing from the framework for scientific literacy developed by Bybee (1997). Based on the findings, the framework was modified to reflect the level of scientific understanding demonstrated by the participants and categorized as: Unacquainted, Nominal, Functional, and Conceptual. Major findings suggested that the participants predominantly achieved the Functional level of scientific literacy (i.e., the ability to adequately and appropriately use scientific language in both written and oral discourse) during games. Further, it was discovered that the participants achieved the Conceptual level of scientific literacy during gameplay. Through games participants were afforded the opportunity to use common, everyday language to explore concepts, promoted through peer collaboration. In games the participants used common language to build understandings that exceeded Nominal or token use of the technical vocabulary and concepts. Additionally, the participants reported through interviews and self-evaluation forms that their attitude (patterns included: Motivation, Interest, Fun, Relief from Boredom, and an Alternate Learning

  16. Advancing the scientific basis of trivalent actinide-lanthanide separations

    SciTech Connect

    Nash, K.L.

    2013-07-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl{sup -}). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  17. Scientific truth or false hope? Understanding Alzheimer's disease from an aging perspective.

    PubMed

    Chen, Ming; Maleski, Jerome J; Sawmiller, Darrell R

    2011-01-01

    In this paper, we argue that the current official definition for Alzheimer's disease is misleading, since it defines senile dementia (SD), a long-known incurable senile/geriatric condition, as a discrete/curable disease. This overly optimistic definition was incepted in the 1970s amid the public's fear of the upcoming SD crisis and desperate hope for a cure. Scientifically, however, it has overturned Alois Alzheimer's age-based concept for disease classification-the essence of modern Geriatric Medicine and the National Institute of Aging. Thus, the current definition for SD, though socially and politically appealing, would be scientifically flawed. As an authoritative study guideline, it has caused profound and far-reaching confusions in research by misleading attention to the presumptive pathogenic/erroneous factors as drug targets for "silver bullets". Such well-intentioned studies would generate numerous data, but render SD a scientific and logical enigma. In this context we discuss: 1) why and how senile conditions including SD differ from discrete diseases by origin, thus also by study paradigm and intervention strategy; 2) why senile conditions may not be explained by abnormal/pathogenic factors, but logically should be explained by "normal" elements in life, perhaps advanced aging plus risk factors; and 3) why the "amyloid-β toxicity" controversy, a simple scientific issue, has lasted for so long. Finally, we ask: can scientific inquiry preserve its integrity and objectivity under social pressure? It appears that these fundamental questions warrant serious attention if the scientific nature of SD is to be eventually understood.

  18. Diagramming Scientific Papers - A New Idea for Understanding/Teaching/Sharing Science

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Fedi, M.

    2014-12-01

    How do we best communicate scientific results? As the number of scientists and scientific papers steadily increases, one of the greatest challenges is effective and efficient sharing of science. The official repository of scientific knowledge is the peer-reviewed journal archive. However, this primary knowledge can be difficult to access and understand by anyone but a relevant specialist. We propose some new ideas for diagramming the content and significance of scientific papers using a simple and intuitive graphical approach. We propose a visual mapping that highlights four fundamental aspects of most scientific papers: Data, Methods/Models, Results/Ideas, and Implications/Importance. Each of these aspects is illustrated within boxed fields which contain one or more labeled elements positioned to reflect novelty (aka originality) and impact relative to the vertical and horizontal axes. The relative position of the boxed fields themselves indicates the relative significance of data, methods, ideas, or implications to the paper. Optional lines between boxed elements indicate the flow and dependence of data/methods/ideas within the paper. As with any graphical depiction, you need to see it to best appreciate it -- this written abstract is only meant as an introduction to the idea.We anticipate that diagramming may prove useful in both communication of scientific ideas among scientists as well as in education and outreach. For example, professors could assign diagramming of papers as a way to help students organize their thoughts about the structure and impact of scientific articles. Students could compare and defend their diagrams as a way to facilitate discussion/debate. Authors could diagram their own work as a way to efficiently summarize the importance and significance of their work. We also imagine that (in the future) automatic diagramming might be used to help summarize or facilitate the discovery of archived work.

  19. Recent advances in the understanding and management of delayed puberty.

    PubMed

    Wei, Christina; Crowne, Elizabeth Clare

    2016-05-01

    Delayed puberty, especially in boys, is a common presentation in paediatrics. Recent advances have improved our understanding of the neuroendocrine, genetic and environmental factors controlling pubertal development, and hence inform the pathophysiology of delayed puberty. The discovery of kisspeptin signalling through its receptor identified neuroendocrine mechanisms controlling the gonadotrophin-releasing hormone (GnRH) pulse generator at the onset of puberty. Genetic mechanisms from single gene mutations to single nucleotide polymorphism associated with delayed puberty are being identified. Environmental factors, including nutritional factors and endocrine disruptors, have also been implicated in changes in secular trends and abnormal timing of puberty. Despite these advances, the key clinical question is to distinguish delayed puberty associated with an underlying pathology or hypogonadism from constitutional delay in growth and puberty, which remains challenging as biochemical tests are not always discriminatory. The diagnostic accuracies of newer investigations, including 36-hour luteinising hormone releasing hormone (LHRH) tests, GnRH-agonist tests, antimullerian hormone and inhibin-B, require further evaluation. Sex hormone replacement remains the main available treatment for delayed puberty, the choice of which is largely dictated by clinical practice and availability of the various sex steroid preparations. Spontaneous reversal of hypogonadism has been reported in boys with idiopathic hypogonadotrophic hypogonadism after a period of sex steroid treatment, highlighting the importance of reassessment at the end of pubertal induction. Novel therapies with a more physiological basis such as gonadotrophins or kisspeptin-agonist are being investigated for the management of hypogonadotrophic hypogonadism. Careful clinical assessment and appreciation of the normal physiology remain the key approach to patients with delayed puberty. PMID:26353794

  20. Climate Solutions based on advanced scientific discoveries of Allatra physics

    NASA Astrophysics Data System (ADS)

    Vershigora, Valery

    2016-05-01

    Global climate change is one of the most important international problems of the 21st century. The overall rapid increase in the dynamics of cataclysms, which have been observed in recent decades, is particularly alarming. Howdo modern scientists predict the occurrence of certain events? In meteorology, unusually powerful cumulonimbus clouds are one of the main conditions for the emergence of a tornado. The former, in their turn, are formed during the invasion of cold air on the overheated land surface. The satellite captures the cloud front, and, based on these pictures, scientists make assumptions about the possibility of occurrence of the respective natural phenomena. In fact, mankind visually observes and draws conclusions about the consequences of the physical phenomena which have already taken place in the invisible world, so the conclusions of scientists are assumptions by their nature, rather than precise knowledge of the causes of theorigin of these phenomena in the physics of microcosm. The latest research in the field of the particle physics and neutrino astrophysics, which was conducted by a working team of scientists of ALLATRA International Public Movement (hereinafter ALLATRA SCIENCE group) allatra-science.org, last accessed 10 April 2016. , offers increased opportunities for advanced fundamental and applied research in climatic engineering.

  1. Recent advances in understanding and diagnosing hepatitis B virus infection.

    PubMed

    Fourati, Slim; Pawlotsky, Jean-Michel

    2016-01-01

    Hepatitis B virus (HBV) infects approximately 240 million individuals worldwide. Recent advances in the virology, immunopathogenesis, and diagnosis of HBV infection are summarized in this review article. The identification of a hepatocyte-specific cellular receptor for HBV, the sodium taurocholate co-transporting polypeptide (NTCP), made it possible to develop reliable cell culture systems and better understand the early steps of the viral lifecycle. Viral and host factors involved in covalently closed circular DNA synthesis, stability, and transcriptional regulation have also been identified and provide potential targets for new drugs. Based on recent evidence showing trained immunity in immune-tolerant patients, the immune tolerance and immune clearance phases have been renamed the non-inflammatory and inflammatory phases, respectively. New diagnostic and monitoring tools are now available, including rapid diagnostic tests for hepatitis B surface antigen (HBsAg) detection, HBsAg quantification assays, anti-HBc antibody quantification assays, an HBV core-related antigen (HBcrAg) quantification test, new HBV DNA detection and quantification assays, and an HBV RNA quantification test. Their clinical utility is under study. Finally, new antiviral and immune modulation approaches are in the preclinical or early clinical developmental stages, with the goal to achieve functional cure or ideally (if possible) eradication of HBV infection.

  2. Recent advances in understanding and diagnosing hepatitis B virus infection

    PubMed Central

    Fourati, Slim; Pawlotsky, Jean-Michel

    2016-01-01

    Hepatitis B virus (HBV) infects approximately 240 million individuals worldwide. Recent advances in the virology, immunopathogenesis, and diagnosis of HBV infection are summarized in this review article. The identification of a hepatocyte-specific cellular receptor for HBV, the sodium taurocholate co-transporting polypeptide (NTCP), made it possible to develop reliable cell culture systems and better understand the early steps of the viral lifecycle. Viral and host factors involved in covalently closed circular DNA synthesis, stability, and transcriptional regulation have also been identified and provide potential targets for new drugs. Based on recent evidence showing trained immunity in immune-tolerant patients, the immune tolerance and immune clearance phases have been renamed the non-inflammatory and inflammatory phases, respectively. New diagnostic and monitoring tools are now available, including rapid diagnostic tests for hepatitis B surface antigen (HBsAg) detection, HBsAg quantification assays, anti-HBc antibody quantification assays, an HBV core-related antigen (HBcrAg) quantification test, new HBV DNA detection and quantification assays, and an HBV RNA quantification test. Their clinical utility is under study. Finally, new antiviral and immune modulation approaches are in the preclinical or early clinical developmental stages, with the goal to achieve functional cure or ideally (if possible) eradication of HBV infection. PMID:27635243

  3. Recent Advances in Understanding Enteric Pathogenic Escherichia coli

    PubMed Central

    Croxen, Matthew A.; Law, Robyn J.; Scholz, Roland; Keeney, Kristie M.; Wlodarska, Marta

    2013-01-01

    SUMMARY Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli. PMID:24092857

  4. Recent advances in understanding and diagnosing hepatitis B virus infection

    PubMed Central

    Fourati, Slim; Pawlotsky, Jean-Michel

    2016-01-01

    Hepatitis B virus (HBV) infects approximately 240 million individuals worldwide. Recent advances in the virology, immunopathogenesis, and diagnosis of HBV infection are summarized in this review article. The identification of a hepatocyte-specific cellular receptor for HBV, the sodium taurocholate co-transporting polypeptide (NTCP), made it possible to develop reliable cell culture systems and better understand the early steps of the viral lifecycle. Viral and host factors involved in covalently closed circular DNA synthesis, stability, and transcriptional regulation have also been identified and provide potential targets for new drugs. Based on recent evidence showing trained immunity in immune-tolerant patients, the immune tolerance and immune clearance phases have been renamed the non-inflammatory and inflammatory phases, respectively. New diagnostic and monitoring tools are now available, including rapid diagnostic tests for hepatitis B surface antigen (HBsAg) detection, HBsAg quantification assays, anti-HBc antibody quantification assays, an HBV core-related antigen (HBcrAg) quantification test, new HBV DNA detection and quantification assays, and an HBV RNA quantification test. Their clinical utility is under study. Finally, new antiviral and immune modulation approaches are in the preclinical or early clinical developmental stages, with the goal to achieve functional cure or ideally (if possible) eradication of HBV infection.

  5. Advances in the understanding of trauma-induced coagulopathy.

    PubMed

    Chang, Ronald; Cardenas, Jessica C; Wade, Charles E; Holcomb, John B

    2016-08-25

    Ten percent of deaths worldwide are due to trauma, and it is the third most common cause of death in the United States. Despite a profound upregulation in procoagulant mechanisms, one-quarter of trauma patients present with laboratory-based evidence of trauma-induced coagulopathy (TIC), which is associated with poorer outcomes including increased mortality. The most common causes of death after trauma are hemorrhage and traumatic brain injury (TBI). The management of TIC has significant implications in both because many hemorrhagic deaths could be preventable, and TIC is associated with progression of intracranial injury after TBI. This review covers the most recent evidence and advances in our understanding of TIC, including the role of platelet dysfunction, endothelial activation, and fibrinolysis. Trauma induces a plethora of biochemical and physiologic changes, and despite numerous studies reporting differences in coagulation parameters between trauma patients and uninjured controls, it is unclear whether some of these differences may be "normal" after trauma. Comparisons between trauma patients with differing outcomes and use of animal studies have shed some light on this issue, but much of the data continue to be correlative with causative links lacking. In particular, there are little data linking the laboratory-based abnormalities with true clinically evident coagulopathic bleeding. For these reasons, TIC continues to be a significant diagnostic and therapeutic challenge. PMID:27381903

  6. Looking up: Recent advances in understanding and treating peritoneal carcinomatosis.

    PubMed

    Lambert, Laura A

    2015-01-01

    Until recently, a diagnosis of peritoneal carcinomatosis was uniformly accompanied by a grim prognosis that was typically measured in weeks to months. Consequently, the management of carcinomatosis revolves largely around palliation of symptoms such as bowel obstruction, nausea, pain, fatigue, and cachexia. A prior lack of effective treatment options created the nihilistic view that currently exists and persists despite improvements in the efficacy of systemic therapy and the evolution of multimodality approaches including surgery and intraperitoneal chemotherapy. This article reviews the evolution and current state of treatment options for patients with peritoneal carcinomatosis. In addition, it highlights recent advances in understanding the molecular biology of carcinomatosis and the focus of current and future clinical trials. Finally, this article provides practical management options for the palliation of common complications of carcinomatosis. It is hoped that the reader will recognize that carcinomatosis is no longer an imminent death sentence and that through continued research and therapeutic innovation, clinicians can make an even greater impact on this form of metastatic cancer.

  7. Recent advances in understanding and diagnosing hepatitis B virus infection.

    PubMed

    Fourati, Slim; Pawlotsky, Jean-Michel

    2016-01-01

    Hepatitis B virus (HBV) infects approximately 240 million individuals worldwide. Recent advances in the virology, immunopathogenesis, and diagnosis of HBV infection are summarized in this review article. The identification of a hepatocyte-specific cellular receptor for HBV, the sodium taurocholate co-transporting polypeptide (NTCP), made it possible to develop reliable cell culture systems and better understand the early steps of the viral lifecycle. Viral and host factors involved in covalently closed circular DNA synthesis, stability, and transcriptional regulation have also been identified and provide potential targets for new drugs. Based on recent evidence showing trained immunity in immune-tolerant patients, the immune tolerance and immune clearance phases have been renamed the non-inflammatory and inflammatory phases, respectively. New diagnostic and monitoring tools are now available, including rapid diagnostic tests for hepatitis B surface antigen (HBsAg) detection, HBsAg quantification assays, anti-HBc antibody quantification assays, an HBV core-related antigen (HBcrAg) quantification test, new HBV DNA detection and quantification assays, and an HBV RNA quantification test. Their clinical utility is under study. Finally, new antiviral and immune modulation approaches are in the preclinical or early clinical developmental stages, with the goal to achieve functional cure or ideally (if possible) eradication of HBV infection. PMID:27635243

  8. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  9. Understanding the estuary: Advances in Chesapeake Bay research

    SciTech Connect

    Lynch, M.P.; Krome, E.C.

    1988-08-01

    The conference proceedings provides a context for assessing the relevance of scientific findings to the long-term efforts to protect and restore the Chesapeake watershed. The conference was primarily oriented towards scientists engaged in research on fundamental estuarine processes in Chesapeake Bay and secondarily oriented to managers with scientific and technical backgrounds.

  10. Acid rain and its environmental effects: Recent scientific advances

    USGS Publications Warehouse

    Burns, Douglas A.; Aherne, Julian; Gay, David A.; Lehmann, Christopher M.B.

    2016-01-01

    The term ‘acid rain’ refers to atmospheric deposition of acidic constituents that impact the earth as rain, snow, particulates, gases, and vapor. Acid rain was first recognized by Ducros (1845) and subsequently described by the English chemist Robert Angus Smith (Smith, 1852) whose pioneering studies linked the sources to industrial emissions and included early observations of deleterious environmental effects (Smith, 1872). Smith's work was largely forgotten until the mid-20th century when observations began to link air pollution to the deposition of atmospheric sulfate (SO42−) and other chemical constituents, first near the metal smelter at Sudbury, Ontario, Canada, and later at locations in Europe, North America, and Australia (Gorham, 1961). Our modern understanding of acid rain as an environmental problem caused largely by regional emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) stems from observations in the 1960s and early 1970s in Sweden by Svante Odén (Odén, 1976), and in North America by Gene Likens and colleagues (Likens and Bormann, 1974). These scientists and many who followed showed the link to emissions from coal-fired power plants and other industrial sources, and documented the environmental effects of acid rain such as the acidification of surface waters and toxic effects on vegetation, fish, and other biota.

  11. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  12. [Technology development as social process: prospects and frontiers of social scientific elucidation of technological advancement].

    PubMed

    Dierkes, M

    1990-05-01

    This article provides an overview of the new developments in social scientific technology research which have changed considerably as a result of public debate and reactions to the importance of advancements in technology. The shift in emphasis, away from the effects of technology to its shaping, is described and certain hypotheses and concepts of advancement in the study of the social conditions underlying technical development processes are presented.

  13. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    NASA Astrophysics Data System (ADS)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in

  14. Mismatches between 'scientific' and 'non-scientific' ways of knowing and their contributions to public understanding of science.

    PubMed

    Mikulak, Anna

    2011-06-01

    As differentiation within scientific disciplines increases, so does differentiation between the sciences and other ways of knowing. This distancing between 'scientific' and 'non-scientific' cultures reflects differences in what are considered valid and reliable approaches to acquiring knowledge and has played a major role in recent science-oriented controversies. Scientists' reluctance to actively engage in science communication, coupled with journalists' reliance on the norms of balance, conflict, and human interest in covering scientific issues, have combined to exacerbate public mistrust of science on issues like the measles-mumps-rubella (MMR) vaccine. The failure of effective communications between scientists and non-scientists has hindered the progress of both effective science and effective policy. In order to better bridge the gap between the 'scientific' and 'non-scientific' cultures, renewed efforts must be made to encourage substantive public engagement, with the ultimate goal of facilitating an open, democratic policy-making process.

  15. Perspective: publication ethics and the emerging scientific workforce: understanding "plagiarism" in a global context.

    PubMed

    Cameron, Carrie; Zhao, Hui; McHugh, Michelle K

    2012-01-01

    English has long been the dominant language of scientific publication, and it is rapidly approaching near-complete hegemony. The majority of the scientists publishing in English-language journals are not native English speakers, however. This imbalance has important implications for training concerning ethics and enforcement of publication standards, particularly with respect to plagiarism. The authors suggest that lack of understanding of what constitutes plagiarism and the use of a linguistic support strategy known as "patchwriting" can lead to inadvertent misuse of source material by nonnative speakers writing in English as well as to unfounded accusations of intentional scientific misconduct on the part of these authors. They propose that a rational and well-informed dialogue about this issue is needed among editors, educators, administrators, and both native-English-speaking and nonnative-English-speaking writers. They offer recommendations for creating environments in which such dialogue and training can occur.

  16. Publication Ethics and the Emerging Scientific Workforce: Understanding ‘Plagiarism’ in a Global Context

    PubMed Central

    Cameron, Carrie; Zhao, Hui; McHugh, Michelle K.

    2013-01-01

    Scientific publication has long been dominated by the English language and is rapidly moving towards near complete hegemony of English, while the majority of the world’s publishing scientists are not native English speakers. This imbalance has important implications for training in and enforcement of publication ethics, particularly with respect to plagiarism. A lack of understanding of what constitutes plagiarism and the use of a linguistic support strategy known as patchwriting can lead to inadvertent misuse of source material by non-native speakers writing in English as well as to unfounded accusations of intentional scientific misconduct on the part of these authors. A rational and well-informed dialogue about this issue is needed among both native English speaking and non-native English speaking writers, editors, educators, and administrators. Recommendations for educating and training are provided. PMID:22104051

  17. Using Scientific Argumentation in a Science Methods Course to Improve Preservice Teachers' Understanding of Climate Change

    NASA Astrophysics Data System (ADS)

    Lambert, J. L.; Bleicher, R. E.; Soden, B. J.

    2014-12-01

    Given that K-12 students have numerous alternative conceptions, it is critical that teachers have an understanding of the fundamental science underlying climate change (Feldman et al., 2010). Many teachers, however, do not demonstrate adequate understanding of these concepts (Daskolia et al., 2006). Argumentation has been identified as a mechanism for conceptual change (Mercer et al., 2004). Even with several educational initiatives promoting and supporting the use of argumentation as an instructional practice, teachers often struggle to implement argumentation in the classroom (Sampson & Blanchard, 2012). To remedy both issues above, we have designed an innovative methods course to provide background in climate change knowledge and argumentation instruction. In our methods course, we utilize Climate Science Investigations (CSI), an online, interactive series of modules and teaching resources funded by a NASA grant to support teachers learning about the basic science concepts underlying climate change. A key assignment is to develop and present an evidence-based scientific argument. The teachers were assigned a typical question and claim of climate skeptics and asked to conduct research on the scientific findings to prepare a counter-argument (rebuttal). This study examined changes in 60 preservice teachers' knowledge and perceptions about climate change after participation in the course. The teachers' understanding of fundamental concepts increased significantly. Their perceptions about climate change became more aligned to those of climate scientists. Findings suggest that scientific argumentation can play an effective role in the preparation of science educators. In addition to reporting findings in more detail, methods course activities, particularly in argumentation, will be shared in our presentation.

  18. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Seah, Lay Hoon

    2016-06-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life cycle of plants, in four grade 4 classrooms (age 10) taught by three teachers constitute the data for this study. Students' written explanations were subjected to a combination of content and linguistic analysis. The linguistic analysis was conducted using selected analytical tools from the systemic functional linguistics framework. A diversity of linguistic resources and meanings were identified from the students' explanations, which reveal the extent to which the students were able to employ linguistic resources to construct written scientific explanations and the challenges involved. Both content and linguistic analyses also illuminate patterns of language use that are significant for realising scientific meanings. Finally, a comparison is made in the use of linguistic resources between the students' explanations and the instructional language to highlight possible links. This comparison reveals that the teachers' expectations of the students' written explanations were seldom reflected in their oral questioning or made explicit during the instruction. The findings of this study suggest that a focus on conceptual development is not sufficient in itself to foster students' ability to construct explanations. Pedagogical implications involving the support needed by primary students to construct scientific explanations are discussed.

  19. Plastic debris and policy: Using current scientific understanding to invoke positive change.

    PubMed

    Rochman, Chelsea M; Cook, Anna-Marie; Koelmans, Albert A

    2016-07-01

    Captain Charles Moore introduced the world to the "Great Pacific Garbage Patch" in the mid-1990s, and images of plastic debris in the oceans began to sweep the media. Since then, there has been increasing interest from scientists, the public, and policy makers regarding plastic debris in the environment. Today, there remains no doubt that plastic debris contaminates aquatic (marine and freshwater) habitats and animals globally. The growing scientific evidence demonstrates widespread contamination from plastic debris, and researchers are beginning to understand the sources, fate, and effects of the material. As new scientific understanding breeds new questions, scientists are working to fill data gaps regarding the fate and effects of plastic debris and the mechanisms that drive these processes. In parallel, policy makers are working to mitigate this contamination. The authors focus on what is known about plastic debris that is relevant to policy by reviewing some of the weight of evidence regarding contamination, fate, and effects of the material. Moreover, they highlight some examples of how science has already been used to inform policy change and mitigation and discuss opportunities for future linkages between science and policy to continue the relationship and contribute to effective solutions for plastic debris. Environ Toxicol Chem 2016;35:1617-1626. © 2016 SETAC. PMID:27331654

  20. Current scientific understanding of the environmental biosafety of transgenic fish and shellfish.

    PubMed

    Kapuscinski, A R

    2005-04-01

    A fluorescent zebrafish was the first genetically engineered animal to be marketed, and biotechnologists are developing many transgenic fish and shellfish. Biosafety science is not sufficiently advanced to be able to draw scientifically reliable and broadly trusted conclusions about the environmental effects of these animals. The science is best developed for identifying hazards posed by environmental spread of a transgenic fish or shellfish and least developed for assessing potential ecological harms of spread. Environmental spread of certain transgenic fish or shellfish could be an indirect route of entry into the human food supply. The management of predicted environmental risks is in its infancy and has thus far focused on the first step of the risk management process, i.e. risk reduction, via a few confinement methods. There is a critical need to improve scientific methods of environmental safety assessment and management and to gather empirical data needed to substantiate biosafety conclusions and to effectively manage transgenic fish and shellfish. Scientists and potentially affected parties should participate in prioritising the knowledge gaps to be addressed.

  1. Postgraduate medical students’ acceptance and understanding of scientific information databases and electronic resources

    PubMed Central

    Azami, Mohammad; Khajouei, Reza; Rakhshani, Safiyeh

    2016-01-01

    Introduction The significance and validity of web-based scientific databases are increasing dramatically in the scientific community. Moreover, a great number of students use these resources without having sufficient and accurate knowledge and understanding. In order for students to use these databases and electronic resources optimally, identifying the factors that affect the understanding and acceptance of these resources seems necessary. The aim of this study was to determine postgraduate medical students’ acceptance and understanding of these resources. Methods This cross-sectional study was conducted on 311 postgraduate medical students from Kerman University of Medical Science (KMU) in 2013. Data were collected using a researcher-made questionnaire, and the data were analyzed using SPSS. In order to design the model (i.e., the interaction between study variables and to determine the relationships between them in an integrated pattern), LISREL version 8.7 and a structural equation model were used. Descriptive statistics and t-tests also were used in data analysis. Results The results showed that the average components of the perception of usefulness, perception of ease of use, attitude towards use, decision to use, using to perform duties, and using to increase knowledge were 4.31, 4.14, 4.24, 16.27, 20.85, and 16.13 respectively. Accordingly, the average of all these indicators was significantly higher than the assumed amount (p < 0.01). Moreover, the results obtained from factor analysis and the structural equation model indicated that the model of the present study fit the data perfectly. Conclusions Based on the findings of this study, the more these databases are considered useful and easy to use, the more they are used. Therefore, designers of databases and electronic resources can design systems that are both useful and easy to learn by considering the components of the research model. PMID:27123213

  2. Future Earth: Advancing Civic Understanding of the Anthropocene

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-08-01

    The Anthropocene, a term first coined in the 1980s by biologist Eugene Stoermer, is a word that encapsulates a powerful idea—that the world is now in the throes of a novel geological epoch, a period of time in which human activity, not natural cycles, dominates many of Earth's chemical, geological, and biological systems. The growing realization of our importance has caused a reanalysis, both scientifically and ethically, of our relationship with the natural world.

  3. Students' Understanding of Advanced Properties of Java Exceptions

    ERIC Educational Resources Information Center

    Rashkovits, Rami; Lavy, Ilana

    2012-01-01

    This study examines how Information Systems Engineering School students on the verge of their graduation understand the mechanism of exception handling. The main contributions of this paper are as follows: we construct a questionnaire aimed at examining students' level of understanding concerning exceptions; we classify and analyse the students'…

  4. Explicitly Targeting Pre-Service Teacher Scientific Reasoning Abilities and Understanding of Nature of Science through an Introductory Science Course

    ERIC Educational Resources Information Center

    Koenig, Kathleen; Schen, Melissa; Bao, Lei

    2012-01-01

    Development of a scientifically literate citizenry has become a national focus and highlights the need for K-12 students to develop a solid foundation of scientific reasoning abilities and an understanding of nature of science, along with appropriate content knowledge. This implies that teachers must also be competent in these areas; but…

  5. Students' Participation in an Interdisciplinary, Socioscientific Issues Based Undergraduate Human Biology Major and Their Understanding of Scientific Inquiry

    ERIC Educational Resources Information Center

    Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.

    2013-01-01

    The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an…

  6. Effect of Two-Tier Diagnostic Tests on Promoting Learners' Conceptual Understanding of Variables in Conducting Scientific Experiments

    ERIC Educational Resources Information Center

    Çil, Emine

    2015-01-01

    Taking a test generally improves the retention of the material tested. This is a phenomenon commonly referred to as testing effect. The present research investigated whether two-tier diagnostic tests promoted student teachers' conceptual understanding of variables in conducting scientific experiments, which is a scientific process skill. In this…

  7. [Scientific advice by the national and European approval authorities concerning advanced therapy medicinal products].

    PubMed

    Jost, Nils; Schüssler-Lenz, Martina; Ziegele, Bettina; Reinhardt, Jens

    2015-11-01

    The aim of scientific advice is to support pharmaceutical developers in regulatory and scientific questions, thus facilitating the development of safe and efficacious new medicinal products. Recent years have shown that the development of advanced therapy medicinal products (ATMPs) in particular needs a high degree of regulatory support. On one hand, this is related to the complexity and heterogeneity of this group of medicinal products and on the other hand due to the fact that mainly academic research institutions and small- and medium-sized enterprises (SMEs) are developing ATMPs. These often have limited regulatory experience and resources. In 2009 the Paul-Ehrlich-Institut (PEI) initiated the Innovation Office as a contact point for applicants developing ATMPs. The mandate of the Innovation Office is to provide support on regulatory questions and to coordinate national scientific advice meetings concerning ATMPs for every phase in drug development and especially with view to the preparation of clinical trial applications. On the European level, the Scientific Advice Working Party (SAWP) of the Committee for Medicinal Products for Human Use (CHMP) of the European Medicinal Agency (EMA) offers scientific advice. This article describes the concepts of national and EMA scientific advice concerning ATMPs and summarizes the experience of the last six years.

  8. [Scientific advice by the national and European approval authorities concerning advanced therapy medicinal products].

    PubMed

    Jost, Nils; Schüssler-Lenz, Martina; Ziegele, Bettina; Reinhardt, Jens

    2015-11-01

    The aim of scientific advice is to support pharmaceutical developers in regulatory and scientific questions, thus facilitating the development of safe and efficacious new medicinal products. Recent years have shown that the development of advanced therapy medicinal products (ATMPs) in particular needs a high degree of regulatory support. On one hand, this is related to the complexity and heterogeneity of this group of medicinal products and on the other hand due to the fact that mainly academic research institutions and small- and medium-sized enterprises (SMEs) are developing ATMPs. These often have limited regulatory experience and resources. In 2009 the Paul-Ehrlich-Institut (PEI) initiated the Innovation Office as a contact point for applicants developing ATMPs. The mandate of the Innovation Office is to provide support on regulatory questions and to coordinate national scientific advice meetings concerning ATMPs for every phase in drug development and especially with view to the preparation of clinical trial applications. On the European level, the Scientific Advice Working Party (SAWP) of the Committee for Medicinal Products for Human Use (CHMP) of the European Medicinal Agency (EMA) offers scientific advice. This article describes the concepts of national and EMA scientific advice concerning ATMPs and summarizes the experience of the last six years. PMID:26369763

  9. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    NASA Astrophysics Data System (ADS)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  10. THE EFFECTS OF NATIONAL SCIENTIFIC STYLE ON THE UNDERSTANDING OF SCIENTIFIC INNOVATION--SPECIAL RELATIVITY, A CASE HISTORY. FINAL REPORT.

    ERIC Educational Resources Information Center

    GOLDBERG, STANLEY

    COMPARED ARE THE RESPONSES TO EINSTEIN'S THEORY OF RELATIVITY IN FOUR COUNTRIES BETWEEN THE YEARS 1905 AND 1911. THE COUNTRIES STUDIED ARE GERMANY, FRANCE, ENGLAND, AND THE UNITED STATES. ON THE BASIS OF THE RESPONSE, NATIONAL SCIENTIFIC STYLES ARE IDENTIFIED, AND THESE STYLES ARE RELATED TO PREVIOUS NATIONAL CHARACTERISTICS OF DOING SCIENCE AND…

  11. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    NASA Astrophysics Data System (ADS)

    Nam, H.; Stoitsov, M.; Nazarewicz, W.; Bulgac, A.; Hagen, G.; Kortelainen, M.; Maris, P.; Pei, J. C.; Roche, K. J.; Schunck, N.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2012-12-01

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. We illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.

  12. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    SciTech Connect

    Nam, H.; Stoitsov, M.; Nazarewicz, W.; Bulgac, A.; Hagen, G.; Kortelainen, M.; Maris, P.; Pei, J. C.; Roche, K. J.; Schunck, N.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2012-12-20

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. Finally, we illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.

  13. Manganese: Recent advances in understanding its transport and neurotoxicity

    SciTech Connect

    Aschner, Michael . E-mail: Michael.Aschner@vanderbilt.edu; Guilarte, Tomas R.; Schneider, Jay S.; Zheng Wei

    2007-06-01

    The present review is based on presentations from the meeting of the Society of Toxicology in San Diego, CA (March 2006). It addresses recent developments in the understanding of the transport of manganese (Mn) into the central nervous system (CNS), as well as brain imaging and neurocognitive studies in non-human primates aimed at improving our understanding of the mechanisms of Mn neurotoxicity. Finally, we discuss potential therapeutic modalities for treating Mn intoxication in humans.

  14. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Sussman, Alan

    2014-10-21

    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  15. Using Scaffolding Strategies to Promote Young Children's Scientific Understandings of Floating and Sinking

    NASA Astrophysics Data System (ADS)

    Hsin, Ching-Ting; Wu, Hsin-Kai

    2011-10-01

    The purposes of this study are to examine young children's explanations of floating and sinking and to investigate how scaffolding strategies provided by a tutor could promote their scientific understandings. Fifteen 4-year-olds and fifteen 5-year-olds from a public kindergarten in northern Taiwan participated in this study. The children were interviewed before and after an instructional intervention to examine their understandings about how the weight, volume, and material of an object are related to sinking and floating. During the intervention, children manipulated objects made of different materials and were assigned to one of the three groups: scaffolding-material (provided with teaching scaffolding and allowed to see the materials of the objects), scaffolding (teaching scaffolding only), and material groups (seeing the materials only). In the first two groups, 16 teaching strategies based on six scaffolding principles were employed. Analyses of interviews showed that before the intervention, the 4-year-olds seemed to have a variety of explanations for sinking and floating and a majority of the 5-year-olds used weight as an explanation for floatation. After the intervention, both 4- and 5-year-olds in the scaffolding-material and scaffolding groups improved their understandings of floating and sinking. Particularly, three out of five 5-years-olds in the scaffolding-material group related the material of an object to its buoyancy and generalized their explanations to the objects made of the same material. The findings suggest that manipulative experiences alone might not be enough for children to further their understandings about floatation and that combining teaching scaffolding with children's perceiving of the materials of objects is more effective. This study provides insight into how to support young children to learn science through effective teaching strategies.

  16. Advances in understanding glycosyltransferases from a structural perspective

    PubMed Central

    Gloster, Tracey M

    2014-01-01

    Glycosyltransferases (GTs), the enzymes that catalyse glycosidic bond formation, create a diverse range of saccharides and glycoconjugates in nature. Understanding GTs at the molecular level, through structural and kinetic studies, is important for gaining insights into their function. In addition, this understanding can help identify those enzymes which are involved in diseases, or that could be engineered to synthesize biologically or medically relevant molecules. This review describes how structural data, obtained in the last 3–4 years, have contributed to our understanding of the mechanisms of action and specificity of GTs. Particular highlights include the structure of a bacterial oligosaccharyltransferase, which provides insights into N-linked glycosylation, the structure of the human O-GlcNAc transferase, and the structure of a bacterial integral membrane protein complex that catalyses the synthesis of cellulose, the most abundant organic molecule in the biosphere. PMID:25240227

  17. The Effects of Scientific Representations on Primary Students' Development of Scientific Discourse and Conceptual Understandings during Cooperative Contemporary Inquiry-Science

    ERIC Educational Resources Information Center

    Gillies, Robyn M.; Nichols, Kim; Khan, Asaduzzaman

    2015-01-01

    Teaching students to use and interpret representations in science is critically important if they are to become scientifically literate and learn how to communicate their understandings and learning in science. This study involved 248 students (119 boys and 129 girls) from 26 grade 6 teachers' classes in nine primary schools in Brisbane,…

  18. A Study on Development of an Instrument to Determine Turkish Kindergarten Students' Understandings of Scientific Concepts and Scientific Inquiry Processes

    ERIC Educational Resources Information Center

    Senocak, Erdal; Samarapungavan, Ala; Aksoy, Pinar; Tosun, Cemal

    2013-01-01

    The aim of this study was to develop a valid and reliable instrument to measure Turkish kindergarten students' understandings of some science concepts and scientific inquiry processes which are grounded in the Turkish Preschool Curriculum. The sample of the study was 371 kindergarten students, 12 Subject Area Experts (SAE), and 7 Turkish…

  19. A Hydrological Perspective to Advance Understanding of the Water Cycle

    NASA Astrophysics Data System (ADS)

    Berghuijs, W.

    2014-12-01

    In principle hydrologists are scientists that study relationships within the water cycle. Yet, current technology makes it tempting for hydrology students to lose their "hydrological perspective" and become instead full-time computer programmers or statisticians. I assert that students should ensure their hydrological perspective thrives, notwithstanding the importance and possibilities of current technology. This perspective is necessary to advance the science of hydrology. As other hydrologists have pondered similar views before, I make no claims of originality here. I just hope that in presenting my perspective on this issue I may spark the interest of other early career hydrologists.

  20. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    SciTech Connect

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems

  1. Understanding the operational environment: implications for advanced visualizations

    NASA Astrophysics Data System (ADS)

    Aleva, Denise; Fitzhugh, Elisabeth; Dixon, Sharon

    2009-05-01

    With the changing character of warfare, information superiority is a high priority. Given the complexity of current and future operating environments, analysts, strategists and planners need a multidimensional understanding of the battlespace. Asymmetric warfare necessitates that our strategists look beyond targets-based operations, where we simply identify and destroy enemy entities. Effects-based operations models the enemy as a system which reacts to our actions. This requires the capability to predict the adversary response to a selected action. Actions may be diplomatic, information, military or economic (DIME). Effects may be political, military, economic, social, information or infrastructure (PMESII). Timing must be explicitly considered and effects dynamically assessed. Visualizations of intelligence information are needed which will promote full understanding of all aspects of adversary strengths and weaknesses by providing the extensive data about adversary forces, organic essentials, infrastructure, leadership, population, and science and technology in an easily accessible and understandable format. This will enhance Effectsbased operations, and therefore, the capability to predict and counter adversary courses of action. This paper outlines a systems engineering approach to designing visualizations which convey the multidimensional information to decision makers. Visualization issues inherent in understanding the multidimensional operational environment will be discussed.

  2. Recent advances in managing and understanding diabetic nephropathy

    PubMed Central

    Tang, Sydney C.W.; Chan, Gary C.W.; Lai, Kar Neng

    2016-01-01

    Diabetic nephropathy is the commonest cause of end-stage renal disease in most developed economies. Current standard of care for diabetic nephropathy embraces stringent blood pressure control via blockade of the renin-angiotensin-aldosterone system and glycemia control. Recent understanding of the pathophysiology of diabetic nephropathy has led to the development of novel therapeutic options. This review article focuses on available data from landmark studies on the main therapeutic approaches and highlights some novel management strategies. PMID:27303648

  3. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  4. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae

    PubMed Central

    Sartor, R. Balfour

    2015-01-01

    Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection. PMID:26097735

  5. A view on advances in spheromak understanding and parameters

    SciTech Connect

    Fernandez, J.C.; Chrien, R.E.; Wysocki, F.J.; Mayo, R.M.; Henins, I.

    1990-01-01

    A spheromak is a toroidally-shaped magnetized plasma configuration in which no material (such as coils or vacuum vessels) links the torus, so that the topology of the spheromak boundary is spherical. In the period since the properties of a nearly force-free ({Delta} {times} {rvec B} {approx} {lambda}{rvec B}) spheromak configuration were described using single-fluid MHD theory, and since the first spheromak was formed at the Univ. of Maryland, remarkable theoretical and experimental advances have been made. This paper highlights some of that work. Some of the latest results from the CTX group at Los Alamos are also presented. These include the observation of suprathermal electrons in CTX, evidence by X-ray bursts with photon energies above 1 MeV.

  6. Advances in Understanding Multiple Stellar Generations in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Piotto, Giampaolo

    2011-10-01

    This is a proposal to use WFC3 for striking new advances in the populations of globular clusters {GC}. Now that recent work {much of it by our own group} has shattered the 50-year-old belief that each GC represents a single event of star-birth, with a single chemical composition, we propose to exploit the superb UV throughput of WFC3 to split main sequences with an unprecedented fineness, and follow them in all evolutionary sequences, up to the horizontal branch {HB}, in a quest to finally solve the long-sought "second parameterâ??. From our vantage point in the midst of these developments, we feel that the present-day situation merits a concentration of efforts on HST UV resources, that, in a few years, will not be available any more. We are therefore proposing to observe two classical second-parameter GC couples {NGC 288/NGC 362 and M3/M13}, and three clusters with extreme HB extensions {NGC2808,M80,M15} in F275W/F336W/F438W bands. The main-sequence study will cast particular light on the question of helium enrichment, whereas the clear separation of the more advanced evolutionary sequences {SGB, RGB, HB} will allow us to identify the evolutionary paths of each individual sub-population. In this way, we shall gather critical information capable of shedding fresh light on the sequence of events that have been responsible for the subsequent formation of the various sub-populations.

  7. Advances in the Understanding of the Pathogenesis of Inflammatory Acne.

    PubMed

    Kircik, Leon H

    2016-01-01

    Acne vulgaris (AV) is the most common skin disorder. It was traditionally thought that AV lesions developed after abnormal desquamation of the keratinocytes that line the sebaceous follicle, leading to hyperkeratinization and microcomedone formation. However, in recent years there has been a paradigm shift with regard to understanding the pathogenesis of AV, and it is now viewed as a primary inflammatory skin disorder. Research has implicated the presence of subclinical inflammation in the normal skin of acne patients, even before microcomedone formation. This article will review the novel concepts that play a role in the new pathogenesis of acne vulgaris.

  8. Recent advances in understanding transfer ions across aqueous interfaces

    SciTech Connect

    Wick, Collin D.; Dang, Liem X.

    2008-06-06

    Understanding the composition of aqueous interfaces, and the mechanism for ion transport across them is of fundamental importance for biological, environmental, and industrial processes. Molecular dynamics simulations, using the potential of mean force technique serves as a technique to map out the free energy profile across interfaces. In some cases, where the free energy of ion transfer is known experimentally between two phases, the potential of mean force technique can allow validation of the simulation results against experiment for this property. In addition, the inclusion of polarizability in the interaction potential can be of paramount importance for understanding interfacial properties and the ion transfer mechanism in interfacial environments. This review discusses some of the recent studies of ion transport across aqueous interfaces, and gives insights on the ion transport mechanism and why certain interfacial behavior is observed. This work was supported by the Office of Basic Energy Sciences of the Department of Energy, in part by the Chemical Sciences program and in part by the Engineering and Geosciences Division. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  9. Advances in understanding the gravity wave spectrum during MAP

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1989-01-01

    Prior to MAP, virtually nothing was known about gravity wave spectra in the atmosphere. The development of observational techniques has played a major role in these studies. Radar and lidar have been particularly important since they can measure atmospheric parameters continuously over large height ranges. Some advances made are: (1) The observed fluctuations and power spectra in the free atmosphere are mostly if not entirely due to a superposition of gravity waves, which can be modeled by the Garrett Munk (GM) model; (2) There is no evidence that 2-D turbulence makes a significant contribution to the observed fluctuations. In any case, the agreement between observations and the GM model shows that the 2DT contribution must be relatively small; (3) Spectra versus vertical wave number are saturated at large wave number, with theory and observations indicating that t approximately equals 3; and (4) Vertical velocity fluctuations and spectra measured near rough terrain are strongly contaminated by mountain waves. But over very flat terrain the spectra are dominated by gravity waves at periods shorter than about 6 hours and apparently by synoptic scale velocities at periods longer than 6 hours. Thus it may be possible to study synoptic scale vertical velocities using radars located in very flat terrain.

  10. Students' Participation in an Interdisciplinary, Socioscientific Issues Based Undergraduate Human Biology Major and Their Understanding of Scientific Inquiry

    NASA Astrophysics Data System (ADS)

    Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.

    2013-06-01

    The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an interdisciplinary, SSI-focused undergraduate human biology major (SSI) and those participating in a traditional biology major (BIO). Forty-five SSI students and 50 BIO students completed an open-ended questionnaire examining their understanding of scientific inquiry. Eight general themes including approximately 60 subthemes emerged from questionnaire responses, and the numbers of students including each subtheme in their responses were statistically compared between groups. A subset of students participated in interviews, which were used to validate and triangulate questionnaire data and probe students' understanding of scientific inquiry in relation to their majors. We found that both groups provided very similar responses, differing significantly in only five subthemes. Results indicated that both groups held generally adequate understandings of inquiry, but also a number of misconceptions. Small differences between groups supported by both questionnaires and interviews suggest that the SSI context contributed to nuanced understandings, such as a more interdisciplinary and problem-centered conception of scientific inquiry. Implications for teaching and research are discussed.

  11. The Biopsychosocial Approach to Chronic Pain: Scientific Advances and Future Directions

    ERIC Educational Resources Information Center

    Gatchel, Robert J.; Peng, Yuan Bo; Peters, Madelon L.; Fuchs, Perry N.; Turk, Dennis C.

    2007-01-01

    The prevalence and cost of chronic pain is a major physical and mental health care problem in the United States today. As a result, there has been a recent explosion of research on chronic pain, with significant advances in better understanding its etiology, assessment, and treatment. The purpose of the present article is to provide a review of…

  12. Recent Advances in Understanding and Managing Tourette Syndrome

    PubMed Central

    Thenganatt, Mary Ann; Jankovic, Joseph

    2016-01-01

    Tourette syndrome (TS) is a neurologic and behavioral disorder consisting of motor and phonic tics with onset in childhood or adolescence. The severity of tics can range from barely perceptible to severely impairing due to social embarrassment, discomfort, self-injury, and interference with daily functioning and school or work performance. In addition to tics, most patients with TS have a variety of behavioral comorbidities, including attention deficit hyperactivity disorder and obsessive-compulsive disorder. Studies evaluating the pathophysiology of tics have pointed towards dysfunction of the cortico-striato-thalamo-cortical circuit, but the mechanism of this hyperkinetic movement disorder is not well understood. Treatment of TS is multidisciplinary, typically involving behavioral therapy, oral medications, and botulinum toxin injections. Deep brain stimulation may be considered for “malignant” TS that is refractory to conventional therapy. In this review, we will highlight recent developments in the understanding and management strategies of TS. PMID:26918185

  13. Recent advances in the understanding and management of rosacea

    PubMed Central

    2014-01-01

    Rosacea is a chronic relapsing inflammatory facial dermatosis. There are several known triggers but the pathogenesis remains unknown. Recent achievements in understanding this disease point to the importance of skin-environmental interactions. This includes physical and chemical factors, but also microbial factors. The impairment of the skin barrier function and the activation of the innate immune defences are major and connected pathways contributing to an ongoing inflammatory response in the affected skin. This becomes modulated by endogenous factors like neurovascular, drugs, and psychological factors. These factors offer new therapeutic targets for rosacea treatment. There is a broader range of anti-inflammatory compounds available with a favourable safety record. Only recently have persistent erythema and flushing been addressed by new drug formulations. PMID:25184040

  14. Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss.

    PubMed

    Barber, Alistair J

    2015-06-01

    Diabetic retinopathy (DR) is one of the most common retinal diseases world-wide. It has a complex pathology that involves the vasculature of the inner retina and breakdown of the blood-retinal barrier. Extensive research has determined that DR is not only a vascular disease but also has a neurodegenerative component and that essentially all types of cells in the retina are affected, leading to chronic loss of visual function. A great deal of work using animal models of DR has established the loss of neurons and pathology of other cell types, including supporting glial cells. There has also been an increased emphasis on measuring retinal function in the models, as well as further validation and extension of the animal studies by clinical and translational research. This article will attempt to summarize the more recent developments in research towards understanding the complexities of retinal neurodegeneration and functional vision loss in DR.

  15. Advances in the understanding of cervical spine deformity.

    PubMed

    Sharan, Alok D; Krystal, Jonathan D; Singla, Amit; Nassr, Ahmad; Kang, James D; Riew, K Daniel

    2015-01-01

    Cervical spine deformities pose substantial challenges for spine surgeons. The anatomy and biomechanics of the cervical spine play an important role in the decision-making process regarding treatment. The etiology of cervical deformities can be congenital, developmental, iatrogenic, degenerative, or inflammatory. Dropped head syndrome has been recently described but is poorly understood. Patients have variable presentations ranging from neck pain to an inability to maintain head position and neural compromise. Radiographic angles are important to monitor the deformity and plan the surgical correction. Treatment is focused on relieving pain, preventing and improving neurologic compromise, and improving overall spinal alignment and balance. The surgical approach and the level of fusion should be individualized on a case-by-case basis. The surgeon can greatly improve a patient's quality of life by understanding the nature of the patient's deformity and fully considering all treatment options. PMID:25745925

  16. Advances in the understanding, management, and prevention of dengue.

    PubMed

    Hermann, Laura L; Gupta, Swati B; Manoff, Susan B; Kalayanarooj, Siripen; Gibbons, Robert V; Coller, Beth-Ann G

    2015-03-01

    Dengue causes more human morbidity globally than any other vector-borne viral disease. Recent research has led to improved epidemiological methods that predict disease burden and factors involved in transmission, a better understanding of immune responses in infection, and enhanced animal models. In addition, a number of control measures, including preventative vaccines, are in clinical trials. However, significant gaps remain, including the need for better surveillance in large parts of the world, methods to predict which individuals will develop severe disease, and immunologic correlates of protection against dengue illness. During the next decade, dengue will likely expand its geographic reach and become an increasing burden on health resources in affected areas. Licensed vaccines and antiviral agents are needed in order to effectively control dengue and limit disease. PMID:25453329

  17. Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete

    SciTech Connect

    Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann; Remec, Igor; Giorla, Alain B; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.

  18. Lost in Translation: The Gap in Scientific Advancements and Clinical Application.

    PubMed

    Fernandez-Moure, Joseph S

    2016-01-01

    The evolution of medicine and medical technology hinges on the successful translation of basic science research from the bench to clinical implementation at the bedside. Out of the increasing need to facilitate the transfer of scientific knowledge to patients, translational research has emerged. Significant leaps in improving global health, such as antibiotics, vaccinations, and cancer therapies, have all seen successes under this paradigm, yet today, it has become increasingly difficult to realize this ideal scenario. As hospital revenue demand increases, and financial support declines, clinician-protected research time has been limited. Researchers, likewise, have been forced to abandon time- and resource-consuming translational research to focus on publication-generating work to maintain funding and professional advancement. Compared to the surge in scientific innovation and new fields of science, realization of transformational scientific findings in device development and materials sciences has significantly lagged behind. Herein, we describe: how the current scientific paradigm struggles in the new health-care landscape; the obstacles met by translational researchers; and solutions, both public and private, to overcoming those obstacles. We must rethink the old dogma of academia and reinvent the traditional pathways of research in order to truly impact the health-care arena and ultimately those that matter most: the patient. PMID:27376058

  19. Lost in Translation: The Gap in Scientific Advancements and Clinical Application

    PubMed Central

    Fernandez-Moure, Joseph S.

    2016-01-01

    The evolution of medicine and medical technology hinges on the successful translation of basic science research from the bench to clinical implementation at the bedside. Out of the increasing need to facilitate the transfer of scientific knowledge to patients, translational research has emerged. Significant leaps in improving global health, such as antibiotics, vaccinations, and cancer therapies, have all seen successes under this paradigm, yet today, it has become increasingly difficult to realize this ideal scenario. As hospital revenue demand increases, and financial support declines, clinician-protected research time has been limited. Researchers, likewise, have been forced to abandon time- and resource-consuming translational research to focus on publication-generating work to maintain funding and professional advancement. Compared to the surge in scientific innovation and new fields of science, realization of transformational scientific findings in device development and materials sciences has significantly lagged behind. Herein, we describe: how the current scientific paradigm struggles in the new health-care landscape; the obstacles met by translational researchers; and solutions, both public and private, to overcoming those obstacles. We must rethink the old dogma of academia and reinvent the traditional pathways of research in order to truly impact the health-care arena and ultimately those that matter most: the patient. PMID:27376058

  20. Lost in Translation: The Gap in Scientific Advancements and Clinical Application.

    PubMed

    Fernandez-Moure, Joseph S

    2016-01-01

    The evolution of medicine and medical technology hinges on the successful translation of basic science research from the bench to clinical implementation at the bedside. Out of the increasing need to facilitate the transfer of scientific knowledge to patients, translational research has emerged. Significant leaps in improving global health, such as antibiotics, vaccinations, and cancer therapies, have all seen successes under this paradigm, yet today, it has become increasingly difficult to realize this ideal scenario. As hospital revenue demand increases, and financial support declines, clinician-protected research time has been limited. Researchers, likewise, have been forced to abandon time- and resource-consuming translational research to focus on publication-generating work to maintain funding and professional advancement. Compared to the surge in scientific innovation and new fields of science, realization of transformational scientific findings in device development and materials sciences has significantly lagged behind. Herein, we describe: how the current scientific paradigm struggles in the new health-care landscape; the obstacles met by translational researchers; and solutions, both public and private, to overcoming those obstacles. We must rethink the old dogma of academia and reinvent the traditional pathways of research in order to truly impact the health-care arena and ultimately those that matter most: the patient.

  1. Recent advances in understanding myelofibrosis and essential thrombocythemia.

    PubMed

    Vainchenker, William; Constantinescu, Stefan N; Plo, Isabelle

    2016-01-01

    The classic BCR-ABL-negative myeloproliferative neoplasms (MPNs), a form of chronic malignant hemopathies, have been classified into polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). ET and PMF are two similar disorders in their pathogenesis, which is marked by a key role of the megakaryocyte (MK) lineage. Whereas ET is characterized by MK proliferation, PMF is also associated with aberrant MK differentiation (myelodysplasia), leading to the release of cytokines in the marrow environment, which causes the development of myelofibrosis. Thus, PMF is associated with both myeloproliferation and different levels of myelodysplastic features. MPNs are mostly driven by mutated genes called MPN drivers, which abnormally activate the cytokine receptor/JAK2 pathway and their downstream effectors. The recent discovery of CALR mutations has closed a gap in our knowledge and has shown that this mutated endoplasmic reticulum chaperone activates the thrombopoietin receptor MPL and JAK2. These genetic studies have shown that there are two main types of MPNs: JAK2V617F-MPNs, including ET, PV, and PMF, and the MPL-/CALR-MPNs, which include only ET and PMF. These MPN driver mutations are associated with additional mutations in genes involved in epigenetics, splicing, and signaling, which can precede or follow the acquisition of MPN driver mutations. They are involved in clonal expansion or phenotypic changes or both, leading to myelofibrosis or leukemic transformation or both. Only a few patients with ET exhibit mutations in non-MPN drivers, whereas the great majority of patients with PMF harbor one or several mutations in these genes. However, the entire pathogenesis of ET and PMF may also depend on other factors, such as the patient's constitutional genetics, the bone marrow microenvironment, the inflammatory response, and age. Recent advances allowed a better stratification of these diseases and new therapeutic approaches with the development

  2. Traditional Chinese medicine formulas for irritable bowel syndrome: from ancient wisdoms to scientific understandings.

    PubMed

    Xiao, Hai-Tao; Zhong, Linda; Tsang, Siu-Wai; Lin, Ze-Si; Bian, Zhao-Xiang

    2015-01-01

    Traditional Chinese Medicine (TCM) serves as the most common alternative therapeutic approach for Western medicine and benefits IBS patients globally. Due to the lack of scientific evidence in the past, TCM formulas were not internationally well recognized as promising IBS remedies. In this review, firstly, we present the etiology and therapy of IBS in terms of traditional Chinese medical theory. Secondly, we summarize the clinical randomized controlled trials (RCTs) of TCM formulas for IBS patients that are available in the literature (from 1998 to September 2013), in which 14 RCTs conducted of high quality were discussed in detail. Of the 14 selected trials, 12 of those concluded that TCM formulas provided superior improvement in the global symptoms of IBS patients over the placebo or conventional medicines. As well, all 14 RCTs suggested that TCM formulas have good safety and tolerability. Last but not least, we explore the pharmacological mechanisms of the anti-IBS TCM formulas available in the literature (from 1994 to September, 2013). Collectively, in combating IBS symptoms, most TCM formulas exert multi-targeting actions including the regulation of neurotransmitters and hormones in the enteric nervous system (ENS), modulation of smooth muscle motility in the gastrointestinal (GI) tract, modulation of the hypothalamic-pituitary-adrenal (HPA) axis, attenuation of intestinal inflammation and restoration of intestinal flora, etc. In conclusion, TCM formulas appear to be promising for IBS treatment. This review provides a useful reference for the public in furthering a better understanding and acceptance of TCM formulas as IBS remedies.

  3. Beyond continuous mathematics and traditional scientific analysis: understanding and mining Wolfram's A New Kind of Science.

    PubMed

    McDowell, J J; Popa, Andrei

    2009-06-01

    In A New Kind of Science, Stephen Wolfram recommends abandoning traditional scientific analysis and the continuous mathematical description that it affords in favor of the study of simple rules. He focuses on a machine known as a cellular automaton as the prototype generator of complex phenomena such as those we see in nature. The simplest cellular automaton consists of a row of cells, each existing in one of two states. The states of the cells are updated from moment to moment by simple rules. Wolfram shows that these machines and their many variations can generate a host of outcomes ranging from very simple to extremely complex. He argues that among these outcomes representations of all the phenomena in the universe will be found, including presumably the behavior of organisms. The output of cellular automata can be mapped to behavior by considering, for example, one of the states of a cell to represent the emission of a behavior. For some cellular automaton rules, these mappings generate cumulative records and inter-response time distributions that are similar to those produced by live organisms. In addition, at least one cellular automaton generates the Herrnstein hyperbola as an emergent outcome. These results suggest that Wolfram's program and its mainstream version, which is known as complexity theory, is worth pursuing as a possible means of understanding and accounting for the behavior of organisms.

  4. Preservice special education teachers' understandings, enactments, views, and plans for scientific inquiry: Issues and hopes

    NASA Astrophysics Data System (ADS)

    Ghosh, Rajlakshmi

    This study examined the understandings, enactments, views, and plans for scientific inquiry held by preservice special education teachers enrolled in a K--8 general science methods course. Sixteen participants from four special education concentration areas---Mild to Moderate Educational Needs, Moderate to Intense Educational Needs, Mild to Moderate Educational Needs with Language Arts and Reading Emphasis, and Early Childhood Intervention---participated in this study. Qualitative data were collected from questionnaires, interviews, teaching videos, lesson plans, planning commentaries, and reflection papers. Data were analyzed using a grounded theory approach (Strauss & Corbin, 1990) and compared against the theoretical view of inquiry as conceptualized by the National Research Council (NRC, 2000). The participants held unique interpretations of inquiry that only partially matched with the theoretical insights provided by the NRC. The participants' previous science learning experiences and experiences in special education played an important role in shaping their conceptualizations of inquiry as learned in the science methods class. The impacts of such unique interpretations are discussed with reference to both science education and special education, and implications for teacher education are provided.

  5. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    PubMed

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  6. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    PubMed Central

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  7. Recent advances in understanding transcription termination by RNA polymerase II

    PubMed Central

    Loya, Travis J.; Reines, Daniel

    2016-01-01

    Transcription termination is a fundamental process in which RNA polymerase ceases RNA chain extension and dissociates from the chromatin template, thereby defining the end of the transcription unit. Our understanding of the biological role and functional importance of termination by RNA polymerase II and the range of processes in which it is involved has grown significantly in recent years. A large set of nucleic acid-binding proteins and enzymes have been identified as part of the termination machinery. A greater appreciation for the coupling of termination to RNA processing and metabolism has been recognized. In addition to serving as an essential step at the end of the transcription cycle, termination is involved in the regulation of a broad range of cellular processes. More recently, a role for termination in pervasive transcription, non-coding RNA regulation, genetic stability, chromatin remodeling, the immune response, and disease has come to the fore. Interesting mechanistic questions remain, but the last several years have resulted in significant insights into termination and an increasing recognition of its biological importance. PMID:27408690

  8. The slit ventricle syndrome: advances based on technology and understanding.

    PubMed

    Rekate, Harold L

    2004-01-01

    Despite many articles on slit ventricle syndrome (SVS) over the last 25 years, accepted terminology regarding the definition of this condition is lacking. Any shunted individual with a severe headache disorder in the context of ventricles that are normal or smaller than normal can be said to suffer from SVS, even though there are at least five forms of the condition. Logical management of SVS requires an understanding of the specific pathogenesis of the problem in individual patients, whether based on monitoring of intracranial pressure (ICP) or observation at the time of shunt failure or symptoms. Overdrainage syndromes, whether intermittent proximal obstruction or low pressure states, are best managed with valve upgrades and the addition of devices that retard siphoning. Increased ICP without ventriculomegaly at the time of shunt failure is best managed by shunting devices that access the cortical subarachnoid space such as lumboperitoneal shunts or shunts involving the cisterna magna. Cranial expansion operations and subtemporal decompression should be limited to patients with craniofacial syndromes.

  9. Recent Advances in Our Understanding of Star Formation

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce

    2013-06-01

    Our understanding of star formation in the cores of molecular clouds has steadily improved over the last decade as new telescopes covering a wide range of wavelengths have become available and as computer simulations have grown in size and complexity to include the most important physical processes during core collapse. Star formation generally appears to be linked to compressive turbulent flows in an environment with strong self-gravity, and to the resulting segmentation and collapse of stream-fed filaments and cores into multiple stellar systems. At the same time, new surveys on galactic scales covering ultraviolet to millimeter wavelengths, and new galaxy-scale simulations, have given an increasingly coherent picture in which the areal-average star formation rate depends mostly on the surface density of molecules, with many of the small-scale details either averaged out or unimportant. How these two frameworks join together is still a mystery that drives considerable research on such topics as the origin of the initial stellar mass function, analytical approximations to star formation rates that are useful at sub-grid levels in cosmological simulations, cluster formation and the fraction of young stars born in bound clusters, and stellar feedback that powers gas heating and motions in the interstellar medium and galactic halo. This review will highlight recent results and future directions in the broad field of star formation research.

  10. Advances in the molecular understanding of gonadotropins-receptors interactions.

    PubMed

    el Tayar, N

    1996-12-20

    The extracellular domain (ECD) of gonadotropin receptors belong to the leucine-rich repeat (LRR) protein superfamily and their transmembrane domain (TMD) is characteristic of the seven alpha-helices G-protein-coupled receptors (GPCR). The availability of the X-ray structures of porcine ribonuclease inhibitor (RI), a LRR protein, and bacteriorhodopsin (bR) allows the construction of 3D models of the ECD and the TMD of gonadotropin receptors, respectively. The predicted models are to a large extent consistent with currently available biochemical and mutational data. The models provide a reliable basis for understanding how the hormone binds and activates its receptor. The ECD, in particular the LRR region, serves as a baseball glove which efficiently catches the large hormone and optimally orient the appropriate parts of it for interaction with the seven-transmembrane-helix domain of the receptor. This in turn is expected to lead to a conformational change to be sensed by the appropriate G-protein complex leading to the stimulation of cAMP synthesis and steroids production.

  11. Advances in Modern Botnet Understanding and the Accurate Enumeration of Infected Hosts

    ERIC Educational Resources Information Center

    Nunnery, Christopher Edward

    2011-01-01

    Botnets remain a potent threat due to evolving modern architectures, inadequate remediation methods, and inaccurate measurement techniques. In response, this research exposes the architectures and operations of two advanced botnets, techniques to enumerate infected hosts, and pursues the scientific refinement of infected-host enumeration data by…

  12. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Report: Exascale Computing Initiative Review

    SciTech Connect

    Reed, Daniel; Berzins, Martin; Pennington, Robert; Sarkar, Vivek; Taylor, Valerie

    2015-08-01

    On November 19, 2014, the Advanced Scientific Computing Advisory Committee (ASCAC) was charged with reviewing the Department of Energy’s conceptual design for the Exascale Computing Initiative (ECI). In particular, this included assessing whether there are significant gaps in the ECI plan or areas that need to be given priority or extra management attention. Given the breadth and depth of previous reviews of the technical challenges inherent in exascale system design and deployment, the subcommittee focused its assessment on organizational and management issues, considering technical issues only as they informed organizational or management priorities and structures. This report presents the observations and recommendations of the subcommittee.

  13. National facility for advanced computational science: A sustainable path to scientific discovery

    SciTech Connect

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  14. Advances in understanding and utilising ELM control in JET

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; de la Luna, E.; Lang, P. T.; Liang, Y.; Alper, B.; Denner, P.; Frigione, D.; Garzotti, L.; Ham, C. J.; Huijsmans, G. T. A.; Jachmich, S.; Kocsis, G.; Lennholm, M.; Lupelli, I.; Rimini, F. G.; Sips, A. C. C.; Contributors, JET

    2016-01-01

    Edge localised mode (ELM) control may be essential to develop ITER scenarios with a reasonable lifetime of divertor components, whilst ELM pacing may be essential to develop stationary ITER scenarios with a tungsten divertor. Resonant magnetic perturbations (RMPs) have mitigated ELMs in high collisionality plasmas in JET. The efficacy of RMPs in mitigating the ELMs is found to depend on plasma shaping, with the change in magnetic boundary achieved when non-axisymmetric fields are applied facilitating access to small ELM regimes. The understanding of ELM pacing by vertical kicks or pellets has also been improved in a range of pedestal conditions in JET ({{T}\\text{ped}}=0.7 -1.3 keV) encompassing the ITER-expected domain ({β\\text{N}}=1.4 -2.4, H 98(y, 2)  =  0.8-1.2, {{f}\\text{GW}}˜ 0.7 ). ELM triggering is reliable provided the perturbation is above a threshold which depends on pedestal parameters. ELM triggering is achieved even in the first 10% of the natural ELM cycle suggesting no inherent maximum frequency. At high normalised pressure, the peeling-ballooning modes are stabilised as predicted by ELITE, necessitating a larger perturbation from either kicks or pellets in order to trigger ELMs. Both kicks and pellets have been used to pace ELMs for tungsten flushing. This has allowed stationary plasma conditions with low gas injection in plasmas where the natural ELM frequency is such that it would normally preclude stationary conditions.

  15. Reef sharks: recent advances in ecological understanding to inform conservation.

    PubMed

    Osgood, G J; Baum, J K

    2015-12-01

    Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions.

  16. Reef sharks: recent advances in ecological understanding to inform conservation.

    PubMed

    Osgood, G J; Baum, J K

    2015-12-01

    Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions. PMID:26709218

  17. Synergy between scientific advancement and technological innovation, illustrated by a mechanism-based model characterizing sodium-glucose cotransporter-2 inhibition.

    PubMed

    Zhang, Liping; Ng, Chee M; List, James F; Pfister, Marc

    2010-09-01

    Advances in experimental medicine and technological innovation during the past century have brought tremendous progress in modern medicine and generated an ever-increasing amount of data from bench and bedside. The desire to extend scientific knowledge motivates effective data integration. Technological innovation makes this possible, which in turn accelerates the advancement in science. This mutually beneficial interaction is illustrated by the development of an expanded mechanism-based model for understanding a novel mechanism, sodium-glucose cotransporter-2 SGLT2 inhibition for potential treatment of type 2 diabetes mellitus.

  18. What I Wish: Three Advancement Professionals Discuss What Their Colleagues Need to Understand about Their Jobs

    ERIC Educational Resources Information Center

    Gurd, Andy; Peirce, Susan; Morris, Sarah

    2012-01-01

    Three advancement professionals discuss what their colleagues need to understand about their jobs. The Ohio State University Alumni Association is currently integrating into the university's advancement office at the behest of the board of trustees, so Andy Gurd is now working more closely with his development and communications colleagues than…

  19. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estellés, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Rosenberg, P.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Woolley, A.

    2015-01-01

    The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under

  20. The Effect of Constructivist Learning Using Scientific Approach on Mathematical Power and Conceptual Understanding of Students Grade IV

    NASA Astrophysics Data System (ADS)

    Kusmaryono, Imam; Suyitno, Hardi

    2016-02-01

    This study used a model of Concurrent Embedded with the aim of: (1) determine the difference between the conceptual understanding and mathematical power of students grade fourth who take the constructivist learning using scientific approach and direct learning, (2) determine the interaction between learning approaches and initial competence on the mathematical power and conceptual of understanding, and (3) describe the mathematical power of students grade fourth. This research was conducted in the fourth grade elementary school early 2015. Data initial competence and mathematical power obtained through tests, and analyzed using statistical tests multivariate and univariate. Statistical analysis of the results showed that: (1) There are differences in the concept of understanding and mathematical power among the students who follow the scientifically-based constructivist learning than students who take the Direct Learning in terms of students initial competency (F = 5.550; p = 0.007 < 0.05), and (2) There is an interaction between the scientific-based constructivist learning approach with an initial competence (high and low) on the ability of concept of understanding and mathematical power (F = 5.259; p =0.033 < 0,05). Observations and in-depth interviews with students, shows that the construction of mathematical power of students have influenced the thinking of students in problem solving and contributes tremendous increase students' math skills. Researcher suggested that the learning of mathematics in schools using scientifically- based constructivist approach to improve the mathematical power of students and conceptual understanding.

  1. BOOK REVIEW: New Understanding Physics for Advanced Level

    NASA Astrophysics Data System (ADS)

    Breithaupt, Jim

    2000-09-01

    Breithaupt's new book is big: at 727 pages, it will be a hefty addition to any student's bag. According to the preface, the book is designed to help students achieve the transition from GCSE to A-level and to succeed well at this level. It also aims to cover the requirements of the compulsory parts of all new syllabuses and to cover most of the optional material, too. The book is organized into seven themes along traditional lines: mechanics, materials, fields, waves, electricity, inside the atom, and physics in medicine. Each theme begins with a colourful title page that outlines what the theme is about, lists the applications that students will meet in their reading, identifies prior learning from GCSE and gives a checklist of what students should be able to do once they have finished their reading of the theme. This is all very useful. The text of the book is illustrated with many colourful photographs, pictures and cartoons, but despite this it looks very dense. There are a lot of words on every page in a small font that makes them seem very unfriendly, and although the book claims to be readable I rather doubt that the layout will encourage voluntary reading of the text. Each chapter ends with a useful summary and a selection of short questions that allow students to test their understanding. Each theme has a set of multiple choice and long questions. Some of the questions have an icon referring the student to the accompanying CD (more of this later). There is much up-to-date material in the book. For example, the section on cosmology gives a brief description of the inflationary scenario within the Big Bang model of the origin of the universe, although no mechanism for the inflation is given, which might prove unsatisfying to some students. I do have some reservations about the presentation of some topics within the book: the discussion of relativistic mass, for example, states that `Einstein showed that the mass ... is given by the formula ...' and quotes

  2. Understanding and Affecting Science Teacher Candidates' Scientific Reasoning in Introductory Astrophysics

    ERIC Educational Resources Information Center

    Steinberg, Richard; Cormier, Sebastien

    2013-01-01

    This study reports on a content course for science immersion teacher candidates that emphasized authentic practice of science and thinking scientifically in the context of introductory astrophysics. We explore how 122 science teacher candidates spanning three cohorts did and did not reason scientifically and how this evolved in our program. Our…

  3. Promoting the Understanding of Scientific Reasoning, Mathematical Modeling and Data Analysis: A Course for Astrophysics Majors

    NASA Astrophysics Data System (ADS)

    Robbins, Dennis; Ford, S.

    2014-01-01

    The NSF-supported “AstroCom NYC” program, a collaboration of the City University of New York, American Museum of Natural History (AMNH), and Columbia University has the explicit goal of increasing the participation of underrepresented minorities in astronomy and astrophysics by providing pedagogical mentoring and research experiences to undergraduate students. To supplement AstroCom scholars' undergraduate course work, and as a gateway to summer astrophysics research opportunities, we implemented a course called “Methods of Scientific Research” (MSR). The semester-long MSR course emphasizes the study of data using computers and other digital tools in a laboratory environment that encourages collaborative and active learning. We enroll early physical science majors and deliberately seek to inculcate habits of mind needed for science research, including assigning physical meaning to variables and measurements; engaging in mathematical modeling; quantifying error; eliminating bias; proposing hypotheses; creating predictions; testing predictions. Using laptop computers interfaced with probeware, students collect and analyze data using graphing software. Students study concepts such as motion, temperature, magnetism, electricity, gas pressure, and force with open-ended investigations where large data sets can be readily collected and replicated during a course meeting. Students are guided to examine data for patterns and trends, to make meaning of descriptive statistics such as means, standard deviations, maximum and minimum values, correlation coefficients and root mean square error values, and in general to understand, judge, and describe the studied phenomena based on data. A secondary goal of the course is to familiarize students with the facilities at AMNH, where they will do summer research as part of AstroCom NYC, in an effort to build a sense of belonging and to help them begin to self-identify as a scientist. We will discuss some our activities and

  4. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges

    SciTech Connect

    Lucas, Robert; Ang, James; Bergman, Keren; Borkar, Shekhar; Carlson, William; Carrington, Laura; Chiu, George; Colwell, Robert; Dally, William; Dongarra, Jack; Geist, Al; Haring, Rud; Hittinger, Jeffrey; Hoisie, Adolfy; Klein, Dean Micron; Kogge, Peter; Lethin, Richard; Sarkar, Vivek; Schreiber, Robert; Shalf, John; Sterling, Thomas; Stevens, Rick; Bashor, Jon; Brightwell, Ron; Coteus, Paul; Debenedictus, Erik; Hiller, Jon; Kim, K. H.; Langston, Harper; Murphy, Richard Micron; Webster, Clayton; Wild, Stefan; Grider, Gary; Ross, Rob; Leyffer, Sven; Laros III, James

    2014-02-10

    Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a system that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.

  5. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    ERIC Educational Resources Information Center

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  6. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  7. The Effectiveness of the Brain Based Teaching Approach in Enhancing Scientific Understanding of Newtonian Physics among Form Four Students

    ERIC Educational Resources Information Center

    Saleh, Salmiza

    2012-01-01

    The aim of this study was to assess the effectiveness of Brain Based Teaching Approach in enhancing students' scientific understanding of Newtonian Physics in the context of Form Four Physics instruction. The technique was implemented based on the Brain Based Learning Principles developed by Caine & Caine (1991, 2003). This brain compatible…

  8. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    ERIC Educational Resources Information Center

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific…

  9. Scientific Understanding from Long Term Observations: Insights from the Long Term Ecological Research (LTER) Program

    NASA Astrophysics Data System (ADS)

    Gosz, J.

    2001-12-01

    estuaries below by removing all incoming freshwater. At Toolik Lake, long-term experiments of removing top predators from the good web of lakes showed dramatic alterations of lake populations of small fish and zooplankton. In New Mexico, LTER research on small mammal populations is successfully predicting rodent increases and the potential for increased zoonotic diseases such as Hantavirus and bubonic plague. This ability to forecast based on El Nino prediction is being used to increase scientific awareness and public health awareness through media based communication with the public. In Oregon, the Andrews Forest LTER program has had long, strong links with natural resource policy and management. Basic understanding of forest-stream interactions, characteristics of old-growth forests, roles of woody debris in temperate forest ecosystems, invertebrate biodiversity and ecosystem function have been incorporated in management guidelines, plans and regulations for public and private lands throughout the Pacific Northwest. Other examples of the values of long-term research and monitoring will be presented.

  10. Issues In-Depth: Advancing Understanding of Drug Addiction and Treatment

    ERIC Educational Resources Information Center

    Miller, Roxanne Greitz

    2009-01-01

    While most school districts utilize a drug abuse resistance curriculum, as science teachers, it is our responsibility to understand the science behind drug addiction in order to most effectively educate our students against drug abuse. In the last two decades, increases in scientific technology have permitted significant discoveries surrounding…

  11. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  12. Estimating increases in outpatient dialysis costs resulting from scientific and technological advancement.

    PubMed

    Ozminkowski, R J; Hassol, A; Firkusny, I; Noether, M; Miles, M A; Newmann, J; Sharda, C; Guterman, S; Schmitz, R

    1995-04-01

    The Medicare program's base payment rate for outpatient dialysis services has never been adjusted for the effects of inflation, productivity changes, or scientific and technological advancement on the costs of treating patients with end-stage renal disease. In recognition of this, Congress asked the Prospective Payment Assessment Commission to annually recommend an adjustment to Medicare's base payment rate to dialysis facilities. One component of this adjustment addresses the cost-increasing effects of technological change--the scientific and technological advances (S&TA) component. The S&TA component is intended to encourage dialysis facilities to adopt technologies that, when applied appropriately, enhance the quality of patient care, even though they may also increase costs. We found the appropriate increase to the composite payment rate for Medicare outpatient dialysis services in fiscal year 1995 to vary from 0.18% to 2.18%. These estimates depend on whether one accounts for the lack of previous adjustments to the composite rate. Mathematically, the S&TA adjustment also depends on whether one considers the likelihood of missing some dialysis sessions because of illness or hospitalization. The S&TA estimates also allow for differences in the incremental costs of technological change that are based on the varying advice of experts in the dialysis industry. The major contributors to the cost of technological change in dialysis services are the use of twin-bag disconnect peritoneal dialysis systems, automated peritoneal dialysis cyclers, and the new generation of hemodialysis machines currently on the market. Factors beyond the control of dialysis facility personnel that influence the cost of patient care should be considered when payment rates are set, and those rates should be updated as market conditions change. The S&TA adjustment is one example of how the composite rate payment system for outpatient dialysis services can be modified to provide appropriate

  13. Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks

    SciTech Connect

    Frances M. Marshall

    2008-07-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plans for the NSUF.

  14. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    ERIC Educational Resources Information Center

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-01-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them "experiment," "science fair," and "hypothesis," is used to probe the students' knowledge structures.…

  15. Early Science Education: Exploring Familiar Contexts To Improve the Understanding of Some Basic Scientific Concepts.

    ERIC Educational Resources Information Center

    Martins, Isabel P.; Veiga, Luisa

    2001-01-01

    Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)

  16. Promoting Understanding of, and Teaching about, Scientific Literacy in Primary Schools

    ERIC Educational Resources Information Center

    Evans, Rosemary S.; Rennie, Leonie J.

    2009-01-01

    This research described in this paper firstly explored teachers' ideas about scientific literacy using an interview technique. Secondly, using a longitudinal case study approach, it examined how, following their participation in a professional development program, primary teachers presented opportunities during their science lessons for their…

  17. Exploring Teachers' Informal Formative Assessment Practices and Students' Understanding in the Context of Scientific Inquiry

    ERIC Educational Resources Information Center

    Ruiz-Primo, Maria Araceli; Furtak, Erin Marie

    2007-01-01

    This study explores teachers' informal formative assessment practices in three middle school science classrooms. We present a model for examining these practices based on three components of formative assessment (eliciting, recognizing, and using information) and the three domains linked to scientific inquiry (epistemic frameworks, conceptual…

  18. A Method for Understanding Their Method: Discovering Scientific Inquiry through Biographies of Famous Scientists

    ERIC Educational Resources Information Center

    Fairweather, Elizabeth; Fairweather, Thomas

    2010-01-01

    Mendel and his peas. Goodall and her chimpanzees. Bentley and his snowflakes. Pasteur and his sheep. Not only do these stories intrigue students, but they also demonstrate the trials and tribulations associated with scientific inquiry. Using scientists' biographies piques student interest while providing an added dimension to their understanding…

  19. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  20. Study of Environmental Arctic Change (SEARCH): Scientific Understanding of Arctic Environmental Change to Help Society Understand and Respond to a Rapidly Changing Arctic.

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Myers, B.

    2015-12-01

    The Study of Environmental Arctic Change (SEARCH) is a U.S. program with a mission to provide a foundation of Arctic change science through collaboration with the research community, funding agencies, and other stakeholders. To achieve this mission, SEARCH: Generates and synthesizes research findings and promotes Arctic science and scientific discovery across disciplines and among agencies. Identifies emerging issues in Arctic environmental change. Provides scientific information to Arctic stakeholders, policy-makers, and the public to help them understand and respond to arctic environmental change. Facilitates research activities across local-to-global scales, with an emphasis on addressing needs of decision-makers. Collaborates with national and international science programs integral to SEARCH goals. This poster presentation will present SEARCH activities and plans, highlighting those focused on providing information for decision-makers. http://www.arcus.org/search

  1. The Reproduction of Scientific Understanding about Pendulum Motion in the Public

    ERIC Educational Resources Information Center

    Manabu, Sumida

    2004-01-01

    This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's…

  2. Assessing Pre-Service Science Teachers' Understanding of Scientific Argumentation: What Do They Know about Argumentation after Four Years of College Science?

    ERIC Educational Resources Information Center

    Aydeniz, M.; Ozdilek, Z.

    2015-01-01

    The purpose of this study was to assess pre-service science teachers' understanding of science, scientific argumentation and the difference between scientific argumentation and scientific explanation. A total of 40 pre-service science teachers enrolled in a Turkish university completed a five-question questionnaire. The results showed that the…

  3. A Whole Different Side of Geology: The Science of Reading and Mostly Understanding Scientific Articles for Beginning Geologists

    NASA Astrophysics Data System (ADS)

    Figg, S.

    2014-12-01

    The idea of reading and understanding scientific articles can be daunting to beginning geology students. A student driven question "How do I read a scientific paper?" became the catalyst for a 1-unit special topic course, specifically devoted to the process of reading scientific articles. Five students participated in the course, which focused on research articles pertaining to an upcoming field study in Death Valley. The course was divided into four main portions: locating articles, reading and understand scientific articles, applying of articles in the field, and creating an abstract. Articles were located electronically through the Palomar College library. The first step was to teach students how to navigate databases for the desired material. Part Two was the most challenging and time consuming: the process of reading, analyzing, and comprehending scholarly articles. What made the course interesting was the student driven approach to the articles. Under guidance of an instructor, students worked as a group, navigating two different articles while developing their own strategies to obtain the basic concepts of the article. Each student then had to analyze an additional two articles of their choosing. During this time observations were made on student confidence, methods developed to assist in understanding articles, student challenges and successes. Information gained from the articles was then applied during a five day field course in Death Valley. Each student gave a brief presentation about the two articles read independently, applying them to various settings in the Death Valley region. Upon returning from the trip, students were tasked with contacting an author from one of the papers. The final portion of the special topic course was for students to produce their own abstracts, requiring them to condense a semester's worth of work into a short amount of words. From this 1-unit course, students learned there is no one way to read a scientific article, and

  4. Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda in Education

    ERIC Educational Resources Information Center

    Fischer, Frank; Kollar, Ingo; Ufer, Stefan; Sodian, Beate; Hussmann, Heinrich; Pekrun, Reinhard; Neuhaus, Birgit; Dorner, Birgit; Pankofer, Sabine; Fischer, Martin; Strijbos, Jan-Willem; Heene, Moritz; Eberle, Julia

    2014-01-01

    Scientific reasoning and scientific argumentation are highly valued outcomes of K-12 and higher education. In this article, we first review main topics and key findings of three different strands of research, namely research on the development of scientific reasoning, research on scientific argumentation, and research on approaches to support…

  5. 48 CFR 1552.215-74 - Advanced understanding-uncompensated time.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Advanced understanding-uncompensated time. 1552.215-74 Section 1552.215-74 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions...

  6. 48 CFR 1552.215-74 - Advanced understanding-uncompensated time.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Advanced understanding-uncompensated time. 1552.215-74 Section 1552.215-74 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions...

  7. Advances in the understanding of dairy and cheese flavors: Symposium Introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A symposium titled “Advances in the Understanding of Dairy and Cheese Flavors” was held in September 2013 at the American Chemical Society’s 246th National Meeting in Indianapolis, IN. The symposium, which was sponsored by the Division of Agricultural and Food Chemistry, was to discuss the state of...

  8. Recent Advances in Our Understanding of the Environmental, Epidemiological, Immunological, and Clinical Dimensions of Coccidioidomycosis

    PubMed Central

    Nguyen, Chinh; Barker, Bridget Marie; Hoover, Susan; Nix, David E.; Ampel, Neil M.; Frelinger, Jeffrey A.; Orbach, Marc J.

    2013-01-01

    SUMMARY Coccidioidomycosis is the endemic mycosis caused by the fungal pathogens Coccidioides immitis and C. posadasii. This review is a summary of the recent advances that have been made in the understanding of this pathogen, including its mycology, genetics, and niche in the environment. Updates on the epidemiology of the organism emphasize that it is a continuing, significant problem in areas of endemicity. For a variety of reasons, the number of reported coccidioidal infections has increased dramatically over the past decade. While continual improvements in the fields of organ transplantation and management of autoimmune disorders and patients with HIV have led to dilemmas with concurrent infection with coccidioidomycosis, they have also led to advances in the understanding of the human immune response to infection. There have been some advances in therapeutics with the increased use of newer azoles. Lastly, there is an overview of the ongoing search for a preventative vaccine. PMID:23824371

  9. International space station accomplishments update: Scientific discovery, advancing future exploration, and benefits brought home to earth

    NASA Astrophysics Data System (ADS)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Buckley, Nicole; Johnson-Green, Perry; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore

    2014-10-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of “ocular syndrome” affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new “cold flame” phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28

  10. International Space Station Accomplishments Update: Scientific Discovery, Advancing Future Exploration, and Benefits Brought Home to Earth

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore

    2013-01-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of "ocular syndrome" affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic, and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new "cold flame" phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28 million

  11. Understanding Performance of Parallel Scientific Simulation Codes using Open|SpeedShop

    SciTech Connect

    Ghosh, K K

    2011-11-07

    Conclusions of this presentation are: (1) Open SpeedShop's (OSS) is convenient to use for large, parallel, scientific simulation codes; (2) Large codes benefit from uninstrumented execution; (3) Many experiments can be run in a short time - might need multiple shots e.g. usertime for caller-callee, hwcsamp for HW counters; (4) Decent idea of code's performance is easily obtained; (5) Statistical sampling calls for decent number of samples; and (6) HWC data is very useful for micro-analysis but can be tricky to analyze.

  12. Towards integrated approaches to advance understanding of ecohydrological systems across scales

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Doerthe; Soulsby, Chris

    2016-04-01

    It is increasingly recognised that the processes and connections in our landscapes are influencing the functioning of aquatic ecosystems. Fundamental scientific understanding of the functioning of both aquatic and terrestrial ecosystems is required for an integrated and sustainable management of landscapes and riverscapes to maintain their ecosystem services and biological integrity at multiple scales. This talk will show how the interactions and feedbacks in ecohydrological systems can be quantitatively assessed through a number of novel, integrated approaches. Importantly, this talk will discuss the need to understand the role of vegetation on water partitioning at the terrestrial and aquatic interface. Terrestrial and aquatic ecosystems are interacting at every scale level and cross-scale investigations are extremely useful to gain an integrated understanding of ecohydrological systems. Environmental tracers are valuable tools to understand the functioning of ecohydrological systems at the landscape scale in terms of understand flow paths, sources of water and associated biogeochemical interactions. Extensive empirical studies were conducted at the plot and hillslope scale to understand ecohydrological systems, and in particular, soil-vegetation-water interlinkages. This empirically based understanding was then integrated into spatially distributed, tracer-aided models to understand mixing of water, flows to the stream and water age distribution at the catchment scale. Finally, remote sensing techniques were used to integrate empirically based findings and to extrapolate system understanding to cross-regional scales, specifically in terms of studying hydroclimatic variability, vegetation dynamics and consequent changes of plant water use and water partitioning.

  13. Relations between representational consistency, conceptual understanding of the force concept, and scientific reasoning

    NASA Astrophysics Data System (ADS)

    Nieminen, Pasi; Savinainen, Antti; Viiri, Jouni

    2012-06-01

    Previous physics education research has raised the question of “hidden variables” behind students’ success in learning certain concepts. In the context of the force concept, it has been suggested that students’ reasoning ability is one such variable. Strong positive correlations between students’ preinstruction scores for reasoning ability (measured by Lawson’s Classroom Test of Scientific Reasoning) and their learning of forces [measured by the Force Concept Inventory (FCI)] have been reported in high school and university introductory courses. However, there is no published research concerning the relation between students’ ability to interpret multiple representations consistently (i.e., representational consistency) and their learning of forces. To investigate this, we collected 131 high school students’ pre- and post-test data of the Representational Variant of the Force Concept Inventory (for representational consistency) and the FCI. The students’ Lawson pretest data were also collected. We found that the preinstruction level of students’ representational consistency correlated strongly with student learning gain of forces. The correlation (0.51) was almost equal to the correlation between Lawson prescore and learning gain of forces (0.52). Our results support earlier findings which suggest that scientific reasoning ability is a hidden variable behind the learning of forces. In addition, we suggest that students’ representational consistency may also be such a factor, and that this should be recognized in physics teaching.

  14. Primary healthcare NZ nurses' experiences of advance directives: understanding their potential role.

    PubMed

    Davidson, Raewyn; Banister, Elizabeth; de Vries, Kay

    2013-07-01

    Advance directives are one aspect of advance care planning designed to improve end of life care. The New Zealand Nurses Organisation released their first mission statement in 2010 concerning advance directives suggesting an increase in the use of these. A burgeoning older population, expected to rise over the next few years, places the primary healthcare nurse in a pivotal role to address the challenges in constructing advance directives. While literature supports the role for primary healthcare nurses in promoting advance directives, no research was found on this role in the New Zealand context. This paper presents results of a qualitative study conducted in New Zealand with 13 senior primary healthcare nurses with respect to their knowledge, attitudes, and experiences of advance directives. Results of the analysis revealed a dynamic process involving participants coming to understand their potential role in this area. This process included reflection on personal experience with advance directives; values and ethics related to end of life issues; and professional actions. PMID:24187807

  15. Influence of student-designed experiments with fast plants on their understanding of plants and of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Akey, Ann Kosek

    2000-10-01

    This dissertation investigates the influence of student designed experiments with Fast Plants in an undergraduate agroecology course on the students' conceptual understanding of plant life cycles and on their procedural understanding of scientific experimentation. It also considers students' perspectives on the value of these experiences. Data sources included semi-structured interviews with students and the instructor, a written task, course evaluations, and observations of class meetings. Students came into the course having strong practical experience with plants from their agricultural backgrounds. Students did not always connect aspects of plant biology that they studied in class, particularly respiration and photosynthesis, to plant growth requirements. The instructor was able to bridge the gap between some practical knowledge and textbook knowledge with experiences other than the Fast Plant project. Most students held an incomplete picture of plant reproduction that was complicated by differences between agricultural and scientific vocabulary. There is need for teaching approaches that help students tie together their knowledge of plants into a cohesive framework. Experiences that help students draw on their background knowledge related to plants, and which give students the opportunity to examine and discuss their ideas, may help students make more meaningful connections. The Fast Plant project, a positive experience for most students, was seen by these undergraduate students as being more helpful in learning about scientific experimentation than about plants. The process of designing and carrying out their own experiments gave students insight into experimentation, provoked their curiosity, and resulted in a sense of ownership and accomplishment.

  16. The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

    SciTech Connect

    S. Blaine Grover

    2008-09-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

  17. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    SciTech Connect

    Dan Ogden

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  18. Improving the Quality and Scientific Understanding of Trophic Magnification Factors (TMFs)

    EPA Science Inventory

    This short 1000 word report presents a series of research needs for improving the measurement and understanding of trophic magnification factors (TMFs). TMFs are useful measures of trophic magnification and represent the diet-weighted average biomagnification factor (BMF) of che...

  19. Improving Marking Reliability of Scientific Writing with the Developing Understanding of Assessment for Learning Programme

    ERIC Educational Resources Information Center

    Bird, Fiona L.; Yucel, Robyn

    2013-01-01

    The Developing Understanding of Assessment for Learning (DUAL) programme was developed with the dual aims of improving both the quality and consistency of feedback students receive and the students' ability to use that feedback to improve. DUAL comprises a range of processes (including marking rubrics, sample reports, moderation discussions and…

  20. Fourth Graders Composing Scientific Explanations about the Effects of Pollutants: Writing to Understand

    ERIC Educational Resources Information Center

    Chambliss, Marilyn J.; Christenson, Lea Ann; Parker, Carolyn

    2003-01-01

    Explanation as a genre may support children's reasoning and understanding particularly effectively. In this study, 20 fourth graders were given the task of explaining the effects of a pollutant on an ecosystem to third graders. Before writing, they completed a commercially developed science unit, instruction in reading and writing an explanation,…

  1. Modeling Scientific Processes with Mathematics Equations Enhances Student Qualitative Conceptual Understanding and Quantitative Problem Solving

    ERIC Educational Resources Information Center

    Schuchardt, Anita M.; Schunn, Christian D.

    2016-01-01

    Amid calls for integrating science, technology, engineering, and mathematics (iSTEM) in K-12 education, there is a pressing need to uncover productive methods of integration. Prior research has shown that increasing contextual linkages between science and mathematics is associated with student problem solving and conceptual understanding. However,…

  2. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    ERIC Educational Resources Information Center

    Seah, Lay Hoon

    2016-01-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life…

  3. Using Multiple Representations to Promote Grade 11 Students' Scientific Understanding of the Particle Theory of Matter

    ERIC Educational Resources Information Center

    Adadan, Emine

    2013-01-01

    This study explored two groups of Grade 11 (age 16-17) students' conceptual understandings about aspects of particle theory before, immediately after, and 3 months after instruction with multiple representations (IMR) and instruction with verbal representations (IVR). Data sources included open-ended questionnaires, interviews, and student…

  4. Models and Moves: Focusing on Dimensions of Causal Complexity To Achieve Deeper Scientific Understanding.

    ERIC Educational Resources Information Center

    Perkins, David N.; Grotzer, Tina A.

    This paper presents the results of a research project based on the Understandings of Consequence Project. This study motivated students to engage in inquiry in science classrooms. The complexity of the models is divided into four categories--underlying causality, relational causality, probabilistic causality, and emergent causality--and provides…

  5. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  6. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  7. Representation of knowledge in image understanding. Annual scientific report, 1 May 1983-30 April 1984

    SciTech Connect

    Spinelli, D.N.

    1985-03-01

    The author believes that understanding adaptation and knowledge representation is fundamental to make progress in image understanding by animal brains. He has been studying the anatomical structures and the temporal requirements that lead to adaptation. This report makes a brief excursion into some experiments that have been demonstrated in the past. Also discussed is the enormous complexity of the problem at hand, and it is concluded that only a method that allows the reading out of recognizable visual memories has any chance to make progress in this complex endeavor. Determined were some of the parameters that produce powerful adaptation and have methods that allow memory read-outs. A preliminary conclusion is that image understanding requires a learning principle that takes into account the nature of the information and not just temporal and/or spatial relationships. Animal brains possess extremely effective vision systems. Architectural and functional principles gained by studying them will certainly lead to new ideas for new computer architectures especially in the fields of machine vision, adaptation, and parallel computation.

  8. The Immunologic Complexity of Growing Up with Malaria—Is Scientific Understanding Coming of Age?

    PubMed Central

    2015-01-01

    In the current issue of Clinical and Vaccine Immunology, Mandala et al. report changes in lymphocyte populations in children with uncomplicated malaria, severe malarial anemia, and cerebral malaria compared to controls (W. L. Mandala et al., Clin Vaccine Immunol 23:95–103, 2016, http://dx.doi.org/10.1128/CVI.00564-15). This commentary discusses the importance of understanding both helpful and detrimental aspects of the antimalarial immune response that are critical to malaria vaccine development and considers how these responses may relate to antimalarial vaccine safety and efficacy. PMID:26677199

  9. Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets.

    PubMed

    Timmins, Peter; Desai, Divyakant; Chen, Wei; Wray, Patrick; Brown, Jonathan; Hanley, Sarah

    2016-08-01

    Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed. PMID:27444495

  10. Does attainment of Piaget's formal operational level of cognitive development predict student understanding of scientific models?

    NASA Astrophysics Data System (ADS)

    Lahti, Richard Dennis, II

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer standards. Effective methods of instruction will need to be developed to enable students to achieve these standards. The literature reveals an inconsistent history of success with modeling education. These same studies point to a possible cognitive development component which might explain why some students succeeded and others failed. An environmental science course, rich in modeling experiences, was used to test both the extent to which knowledge of models and modeling could be improved over the course of one semester, and more importantly, to identify if cognitive ability was related to this improvement. In addition, nature of science knowledge, particularly related to theories and theory change, was also examined. Pretest and posttest results on modeling (SUMS) and nature of science (SUSSI), as well as data from the modeling activities themselves, was collected. Cognitive ability was measured (CTSR) as a covariate. Students' gain in six of seven categories of modeling knowledge was at least medium (Cohen's d >.5) and moderately correlated to CTSR for two of seven categories. Nature of science gains were smaller, although more strongly correlated with CTSR. Student success at creating a model was related to CTSR, significantly in three of five sub-categories. These results suggest that explicit, reflective experience with models can increase student knowledge of models and modeling (although higher cognitive ability students may have more success), but successfully creating models may depend more heavily on cognitive ability. This finding in particular has implications in the grade placement of modeling standards and

  11. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    SciTech Connect

    Soelberg, Renae

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at

  12. Understanding patterns of use and scientific opportunities in the emerging global microbial commons.

    PubMed

    Dijkshoorn, Lenie; De Vos, Paul; Dedeurwaerdere, Tom

    2010-01-01

    Rapidly growing global networking has induced and supported an increased interest in the life sciences in such general issues as health, climate change, food security and biodiversity. Therefore, the need to address and share research data and materials in a systematic way emerged almost simultaneously. This movement has been described as the so-called global research commons. Also in microbiology, where the sharing of microbiological materials is a key issue, microbial commons is attracting attention. Microbiology is currently facing great challenges with the advances of high throughput screening and next-generation whole genome sequencing. Furthermore, the exploration and use of microorganisms in agriculture and food production are increasing so as to safeguard global food and feed production. Further to several meetings on the subject, a special issue of Research in Microbiology is dedicated to Microbial Research Commons with a series of reviews elaborating its major pay-offs and needs in basic and applied microbiology. This paper gives an introduction to these articles covering a range of topics. These include the role of public culture collections and biological resource centers and legal aspects in the exchange of materials, microbial classification, an internet-based platform for data-sharing, applications in agriculture and food production, and challenges in metagenomics and extremophile research.

  13. A New Approach in Advance Network Reservation and Provisioning for High-Performance Scientific Data Transfers

    SciTech Connect

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2010-01-28

    Scientific applications already generate many terabytes and even petabytes of data from supercomputer runs and large-scale experiments. The need for transferring data chunks of ever-increasing sizes through the network shows no sign of abating. Hence, we need high-bandwidth high speed networks such as ESnet (Energy Sciences Network). Network reservation systems, i.e. ESnet's OSCARS (On-demand Secure Circuits and Advance Reservation System) establish guaranteed bandwidth of secure virtual circuits at a certain time, for a certain bandwidth and length of time. OSCARS checks network availability and capacity for the specified period of time, and allocates requested bandwidth for that user if it is available. If the requested reservation cannot be granted, no further suggestion is returned back to the user. Further, there is no possibility from the users view-point to make an optimal choice. We report a new algorithm, where the user specifies the total volume that needs to be transferred, a maximum bandwidth that he/she can use, and a desired time period within which the transfer should be done. The algorithm can find alternate allocation possibilities, including earliest time for completion, or shortest transfer duration - leaving the choice to the user. We present a novel approach for path finding in time-dependent networks, and a new polynomial algorithm to find possible reservation options according to given constraints. We have implemented our algorithm for testing and incorporation into a future version of ESnet?s OSCARS. Our approach provides a basis for provisioning end-to-end high performance data transfers over storage and network resources.

  14. How to apply modern scientific and technological advances to the practice of clinical gastroenterology in Vietnam.

    PubMed

    Ha, M V

    1997-06-01

    There are some differences between the spectrum of gastroenterological diseases in Vietnam compared with those of more developed countries. These may be due to different living standards, quality of nutrition, and different infection rates of intestinal parasites and hepatotropic viruses. Gastric carcinoma and hepatocellular carcinoma (HCC) are leading malignancies, while colorectal cancer is less frequent. Bile duct stones often have Ascaris eggs in the centre, and they prevail in incidence over gall-bladder stones. The majority of digestive cancers are detected at a very late stage. The Vietnamese Association of Gastroenterology aims to contribute to the development of modern gastroenterology (GE) in Vietnam, to study and apply recent advances in imaging technology, such as fibre-optic diagnostic and therapeutical endoscopy, ultrasonography, laparoscopic surgery etc. and to do further work in molecular biology. For this purpose, besides our self-reliance, we need, and ask for, support and assistance from the Japanese Society of GE (JSGE), the Asian Pacific Association of GE (APAGE) and the Organisation Mondiale de GE (OMEGE). At the same time, we suggest a choice be made among the different technologies, bearing in mind their cost-effectiveness, and to give preference to measures for the primary prevention and early detection of the diseases. Japanese experience in the early detection of gastric cancer and HCC, and in the Percutaneous Ethanol Injection Therapy (PEIT) for treatment of HCC, are highly appreciated. We recommend also a judicious and scientific combination of traditional medicine and modern technology in the research and the struggle against digestive diseases.

  15. Few believe the world is flat: How embodiment is changing the scientific understanding of cognition.

    PubMed

    Glenberg, Arthur M

    2015-06-01

    Science has changed many of our dearly held and commonsensical (but incorrect) beliefs. For example, few still believe the world is flat, and few still believe the sun orbits the earth. Few still believe humans are unrelated to the rest of the animal kingdom, and soon few will believe human thinking is computer-like. Instead, as with all animals, our thoughts are based on bodily experiences, and our thoughts and behaviors are controlled by bodily and neural systems of perception, action, and emotion interacting with the physical and social environments. We are embodied; nothing more. Embodied cognition is about cognition formatted in sensorimotor experience, and sensorimotor systems make those thoughts dynamic. Even processes that seem abstract, such as language comprehension and goal understanding, are embodied. Thus, embodied cognition is not limited to 1 type of thought or another: It is cognition. PMID:26010024

  16. Few believe the world is flat: How embodiment is changing the scientific understanding of cognition.

    PubMed

    Glenberg, Arthur M

    2015-06-01

    Science has changed many of our dearly held and commonsensical (but incorrect) beliefs. For example, few still believe the world is flat, and few still believe the sun orbits the earth. Few still believe humans are unrelated to the rest of the animal kingdom, and soon few will believe human thinking is computer-like. Instead, as with all animals, our thoughts are based on bodily experiences, and our thoughts and behaviors are controlled by bodily and neural systems of perception, action, and emotion interacting with the physical and social environments. We are embodied; nothing more. Embodied cognition is about cognition formatted in sensorimotor experience, and sensorimotor systems make those thoughts dynamic. Even processes that seem abstract, such as language comprehension and goal understanding, are embodied. Thus, embodied cognition is not limited to 1 type of thought or another: It is cognition.

  17. The Merapi Interactive Project: Offering a Fancy Cross-Disciplinary Scientific Understanding of Merapi Volcano to a Wide Audience.

    NASA Astrophysics Data System (ADS)

    Morin, J.; Kerlow, I.

    2015-12-01

    The Merapi volcano is of great interest to a wide audience as it is one of the most dangerous volcanoes worldwide and a beautiful touristic spot. The scientific literature available on that volcano both in Earth and Social sciences is rich but mostly inaccessible to the public because of the scientific jargon and the restricted database access. Merapi Interactive aims at developing clear information and attractive content about Merapi for a wide audience. The project is being produced by the Art and Media Group at the Earth Observatory of Singapore, and it takes the shape of an e-book. It offers a consistent, comprehensive, and jargon-filtered synthesis of the main volcanic-risk related topics about Merapi: volcanic mechanisms, eruptive history, associated hazards and risks, the way inhabitants and scientists deal with it, and what daily life at Merapi looks like. The project provides a background to better understand volcanoes, and it points out some interactions between scientists and society. We propose two levels of interpretation: one that is understandable by 10-year old kids and above and an expert level with deeper presentations of specific topics. Thus, the Merapi Interactive project intends to provide an engaging and comprehensive interactive book that should interest kids, adults, as well as Earth Sciences undergraduates and academics. Merapi Interactive is scheduled for delivery in mid-2016.

  18. The Harvard case of Xu Xiping: exploitation of the people, scientific advance, or genetic theft?

    PubMed

    Sleeboom, Margaret

    2005-04-01

    A unique history and make-up of a population may make it an attractive research target for population geneticists and pharmaco-genomic investors. The promise of pharmaceutical profits and advances in medical knowledge attracted Harvard researchers and the company Millennium Pharmaceuticals to remote areas in Anhui Province, Central China, leading to international diplomatic disagreements about issues such as the ownership of genetic material and informed consent (IC). This article discusses the role of genomics and genetic sampling in China, the way it is related to population policies (the new eugenics), the national importance of genetic materials and the conflicts it led to between the Chinese government and Harvard University. Here many consider the Xu Xiping case as textbook example of ruthless Western exploitation of development countries, illustrating the cold rationality of science in the process of globalisation. Ten perspectives on this case show that this view is simplistic and contributes little to an understanding of bioethical issues important to the population actually donating the samples. Viewing the Xu Xiping case as the nexus of the intertwinement of international, transnational, national, and local interest groups shows how different interest groups make use of different units of analysis. It also clarifies why the same practice of genetic sampling continues under a different regime, and why the discussion about genetic sampling has shifted from a concern with health care of the poor to an issue of international exploitation, terrorism and development. PMID:16552917

  19. The Harvard case of Xu Xiping: exploitation of the people, scientific advance, or genetic theft?

    PubMed

    Sleeboom, Margaret

    2005-04-01

    A unique history and make-up of a population may make it an attractive research target for population geneticists and pharmaco-genomic investors. The promise of pharmaceutical profits and advances in medical knowledge attracted Harvard researchers and the company Millennium Pharmaceuticals to remote areas in Anhui Province, Central China, leading to international diplomatic disagreements about issues such as the ownership of genetic material and informed consent (IC). This article discusses the role of genomics and genetic sampling in China, the way it is related to population policies (the new eugenics), the national importance of genetic materials and the conflicts it led to between the Chinese government and Harvard University. Here many consider the Xu Xiping case as textbook example of ruthless Western exploitation of development countries, illustrating the cold rationality of science in the process of globalisation. Ten perspectives on this case show that this view is simplistic and contributes little to an understanding of bioethical issues important to the population actually donating the samples. Viewing the Xu Xiping case as the nexus of the intertwinement of international, transnational, national, and local interest groups shows how different interest groups make use of different units of analysis. It also clarifies why the same practice of genetic sampling continues under a different regime, and why the discussion about genetic sampling has shifted from a concern with health care of the poor to an issue of international exploitation, terrorism and development.

  20. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    SciTech Connect

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  1. Just Do It? The Effect of a Science Apprenticeship Program on High School Students' Understanding of the Nature of Science and Scientific Inquiry.

    ERIC Educational Resources Information Center

    Bell, Randy L.; Blair, Lesley M.; Lederman, Norman G.; Crawford, Barbara A.

    Science educators often assume and expect that students who are actively engaged in scientific inquiry should develop more accurate understandings of science and the construction of scientific knowledge. However, this assumption, while intuitive, has not been validated. This paper reports on a study that sought to determine the impact of an 8-week…

  2. Just Do It? Impact of a Science Apprenticeship Program on High School Students' Understandings of the Nature of Science and Scientific Inquiry.

    ERIC Educational Resources Information Center

    Bell, Randy L.; Blair, Lesley M.; Crawford, Barbara A.; Lederman, Norman G.

    2003-01-01

    Explicates the impact of an 8-week science apprenticeship program on a group of high-ability secondary students' understanding of the nature of science and scientific inquiry. Reports that although most students did appear to gain knowledge about the process of scientific inquiry, their conceptions about key aspects of the nature of science…

  3. Understanding the Nature of Scientific Enterprise (NOSE) through a Discourse with Its History: The Influence of an Undergraduate "History of Science" Course

    ERIC Educational Resources Information Center

    Dass, Pradeep M.

    2005-01-01

    An appropriate understanding of the nature of the scientific enterprise (NOSE) is a key element of scientific literacy and can arguably be influenced through an exploration of the history of science. An elective, undergraduate History of Science course was organized in the form of small-group discussion-based inquiries into the history of science…

  4. Understanding

    ERIC Educational Resources Information Center

    Buxkemper, Andra C.; Hartfiel, D. J.

    2003-01-01

    There is no common agreement on the meaning of the word "understand". However, there is agreement on what students should be able to do with material they understand. Bloom et al. discuss kinds of tasks a student should be able to do, provided that the student understands. In a similar way, Biggs and Collis provide a taxonomy intended to evaluate…

  5. An Evaluation of the Attained Development of the Intellectual Skills Needed for "Understanding of the Nature of Scientific Enquiry" by B.S.C.S. Pupils in Israel

    ERIC Educational Resources Information Center

    Jungwirth, E.

    1970-01-01

    Presents the procedures, results, and conclusions of a study designed to determine the development of the intellectual skills needed for understanding of the nature of scientific enquiry by BSCS pupils in Israel. (LC)

  6. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are

  7. Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches

    PubMed Central

    Snyder, Hannah R.; Miyake, Akira; Hankin, Benjamin L.

    2015-01-01

    Executive function (EF) is essential for successfully navigating nearly all of our daily activities. Of critical importance for clinical psychological science, EF impairments are associated with most forms of psychopathology. However, despite the proliferation of research on EF in clinical populations, with notable exceptions clinical and cognitive approaches to EF have remained largely independent, leading to failures to apply theoretical and methodological advances in one field to the other field and hindering progress. First, we review the current state of knowledge of EF impairments associated with psychopathology and limitations to the previous research in light of recent advances in understanding and measuring EF. Next, we offer concrete suggestions for improving EF assessment. Last, we suggest future directions, including integrating modern models of EF with state of the art, hierarchical models of dimensional psychopathology as well as translational implications of EF-informed research on clinical science. PMID:25859234

  8. Exploring learners' beliefs about science reading and scientific epistemic beliefs, and their relations with science text understanding

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying; Chang, Cheng-Chieh; Chen, Li-Ling; Chen, Yi-Chun

    2016-07-01

    The main purpose of this study was to explore learners' beliefs about science reading and scientific epistemic beliefs, and how these beliefs were associating with their understanding of science texts. About 400 10th graders were involved in the development and validation of the Beliefs about Science Reading Inventory (BSRI). To find the effects of reader beliefs and epistemic beliefs, a new group of 65 10th grade students whose reader and epistemic beliefs were assessed by the newly developed BSRI and an existing SEB questionnaire were invited to take part in a science reading task. Students' text understanding in terms of concept gain and text interpretations was collected and analyzed. By the correlation analysis, it was found that when students had stronger beliefs about meaning construction based on personal goals and experiences (i.e. transaction beliefs), they produced more thematic and critical interpretations of the content of the test article. The regression analysis suggested that students SEBs could predict concept gain as a result of reading. Moreover, among all beliefs examined in the study, transaction beliefs stood out as the best predictor of overall science-text understanding.

  9. Probing Preservice Teachers' Understandings of Scientific Knowledge by Using a Vignette in Conjunction with a Paper and Pencil Test

    ERIC Educational Resources Information Center

    Tasar, Mehmet Fatih

    2006-01-01

    The purpose of this study was to examine how prospective middle school science teachers understood and identified types of scientific knowledge in a presented vignette. Also, their definitions and views of the relationships between types of scientific knowledge (i.e. scientific facts, concepts, generalizations, theories, and scientific laws) were…

  10. Advances in understanding itching and scratching: a new era of targeted treatments

    PubMed Central

    Sanders, Kristen M.; Nattkemper, Leigh A.; Yosipovitch, Gil

    2016-01-01

    Chronic itch is a significant health burden with few effective treatments. As such, itch researchers seek to understand the mechanisms behind itch and to find potential targets for treatment. The field of itch research is dynamic, and many advances have been made so far this decade. In particular, major steps forward include the identification of new peripheral and central itch mediators and modulators, the discovery of greater roles for immune cells and glia in itch transmission, and a focus on the brain processing of itching and scratching. Finally, several new therapeutic interventions for itch have shown success in clinical trials. PMID:27610225

  11. Advances in understanding itching and scratching: a new era of targeted treatments

    PubMed Central

    Sanders, Kristen M.; Nattkemper, Leigh A.; Yosipovitch, Gil

    2016-01-01

    Chronic itch is a significant health burden with few effective treatments. As such, itch researchers seek to understand the mechanisms behind itch and to find potential targets for treatment. The field of itch research is dynamic, and many advances have been made so far this decade. In particular, major steps forward include the identification of new peripheral and central itch mediators and modulators, the discovery of greater roles for immune cells and glia in itch transmission, and a focus on the brain processing of itching and scratching. Finally, several new therapeutic interventions for itch have shown success in clinical trials.

  12. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    PubMed Central

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2013-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research. PMID:23730122

  13. Advances in understanding itching and scratching: a new era of targeted treatments.

    PubMed

    Sanders, Kristen M; Nattkemper, Leigh A; Yosipovitch, Gil

    2016-01-01

    Chronic itch is a significant health burden with few effective treatments. As such, itch researchers seek to understand the mechanisms behind itch and to find potential targets for treatment. The field of itch research is dynamic, and many advances have been made so far this decade. In particular, major steps forward include the identification of new peripheral and central itch mediators and modulators, the discovery of greater roles for immune cells and glia in itch transmission, and a focus on the brain processing of itching and scratching. Finally, several new therapeutic interventions for itch have shown success in clinical trials. PMID:27610225

  14. USE OF COUPLED MULTI-ELECTRODE ARRAYS TO ADVANCE THE UNDERSTANDING OF SELECTED CORROSION PHENOMENA

    SciTech Connect

    N.D. Budiansky; F. Bocher; H. Cong; M.F. Hurley; J.R. Scully

    2006-02-23

    The use of multi-coupled electrode arrays in various corrosion applications is discussed with the main goal of advancing the understanding of various corrosion phenomena. Both close packed and far spaced electrode configurations are discussed. Far spaced electrode arrays are optimized for high throughput experiments capable of elucidating the effects of various variables on corrosion properties. For instance the effects of a statistical distribution of flaws on corrosion properties can be examined. Close packed arrays enable unprecedented spatial and temporal information on the behavior of local anodes and cathodes. Interactions between corrosion sites can trigger or inhibit corrosion phenomena and affect corrosion damage evolution.

  15. Understanding the Behavior of Advanced High-Strength Steels Using Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Pereloma, Elena; Beladi, Hossein; Zhang, Laichang; Timokhina, Ilana

    2012-11-01

    The key evidence for understanding the mechanical behavior of advanced high strength steels was provided by atom probe tomography (APT). Chemical overstabilization of retained austenite (RA) leading to the limited transformation-induced plasticity (TRIP) effect was deemed to be the main factor responsible for the low ductility of nanostructured bainitic steel. Appearance of the yield point on the stress-strain curve of prestrained and bake-hardened transformation-induced plasticity steel is due to the unlocking from weak carbon atmospheres of newly formed during prestraining dislocations.

  16. Applying mass spectrometry based proteomic technology to advance the understanding of multiple myeloma

    PubMed Central

    2010-01-01

    Multiple myeloma (MM) is the second most common hematological malignancy in adults. It is characterized by clonal proliferation of terminally differentiated B lymphocytes and over-production of monoclonal immunoglobulins. Recurrent genomic aberrations have been identified to contribute to the aggressiveness of this cancer. Despite a wealth of knowledge describing the molecular biology of MM as well as significant advances in therapeutics, this disease remains fatal. The identification of biomarkers, especially through the use of mass spectrometry, however, holds great promise to increasing our understanding of this disease. In particular, novel biomarkers will help in the diagnosis, prognosis and therapeutic stratification of MM. To date, results from mass spectrometry studies of MM have provided valuable information with regards to MM diagnosis and response to therapy. In addition, mass spectrometry was employed to study relevant signaling pathways activated in MM. This review will focus on how mass spectrometry has been applied to increase our understanding of MM. PMID:20374647

  17. The Radiation Belt Storm Probes Mission: Advancing Our Understanding of the Earth's Radiation Belts

    NASA Technical Reports Server (NTRS)

    Sibeck, David; Kanekal, Shrikanth; Kessel, Ramona; Fox, Nicola; Mauk, Barry

    2012-01-01

    We describe NASA's Radiation Belt Storm Probe (RBSP) mission, whose primary science objective is to understand, ideally to the point of predictability, the dynamics of relativistic electrons and penetrating ions in the Earth's radiation belts resulting from variable solar activity. The overarching scientific questions addressed include: 1. the physical processes that produce radiation belt enhancement events, 2. the dominant mechanisms for relativistic electron loss, and 3. how the ring current and other geomagnetic processes affect radiation belt behavior. The RBSP mission comprises two spacecraft which will be launched during Fall 2012 into low inclination lapping equatorial orbits. The orbit periods are about 9 hours, with perigee altitudes and apogee radial distances of 600 km and 5.8 RE respectively. During the two-year primary mission, the spacecraft orbits precess once around the Earth and lap each other twice in each local time quadrant. The spacecraft are each equipped with identical comprehensive instrumentation packages to measure, electrons, ions and wave electric and magnetic fields. We provide an overview of the RBSP mission, onboard instrumentation and science prospects and invite scientific collaboration.

  18. Experimental Investigation and Fundamental Understanding of a Slowed UH-60A Rotor at High Advance Ratios

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Yeo, Hyeonsoo; Norman, Thomas R.

    2011-01-01

    This paper describes and analyzes the measurements from a full-scale, slowed RPM, UH-60A rotor tested at the National Full-Scale Aerodynamics Complex 40- by 80- ft wind tunnel up to an advance ratio of 1.0. A comprehensive set of measurements, that includes performance, blade loads, hub loads and pressures/airloads makes this data set unique. The measurements reveal new and rich aeromechanical phenomena that are special to this exotic regime. These include reverse chord dynamic stall, retreating side impulse in pitch-link load, large inboard-outboard elastic twist differential, supersonic flow at low subsonic advancing tip Mach numbers, diminishing rotor forces yet dramatic build up of blade loads, and dramatic blade loads yet benign levels of vibratory hub loads. The objective of this research is the fundamental understanding of these unique aeromechanical phenomena. The intent is to provide useful knowledge for the design of high speed, high efficiency, slowed RPM rotors of the future and a challenging database for advanced analyses validation.

  19. Advances in understanding and treating liver diseases during pregnancy: A review

    PubMed Central

    Kamimura, Kenya; Abe, Hiroyuki; Kawai, Hirokazu; Kamimura, Hiroteru; Kobayashi, Yuji; Nomoto, Minoru; Aoyagi, Yutaka; Terai, Shuji

    2015-01-01

    Liver disease in pregnancy is rare but pregnancy-related liver diseases may cause threat to fetal and maternal survival. It includes pre-eclampsia; eclampsia; haemolysis, elevated liver enzymes, and low platelets syndrome; acute fatty liver of pregnancy; hyperemesis gravidarum; and intrahepatic cholestasis of pregnancy. Recent basic researches have shown the various etiologies involved in this disease entity. With these advances, rapid diagnosis is essential for severe cases since the decision of immediate delivery is important for maternal and fetal survival. The other therapeutic options have also been shown in recent reports based on the clinical trials and cooperation and information sharing between hepatologist and gynecologist is important for timely therapeutic intervention. Therefore, correct understandings of diseases and differential diagnosis from the pre-existing and co-incidental liver diseases during the pregnancy will help to achieve better prognosis. Therefore, here we review and summarized recent advances in understanding the etiologies, clinical courses and management of liver disease in pregnancy. This information will contribute to physicians for diagnosis of disease and optimum management of patients. PMID:25954092

  20. Use It or Lose It: Advances in Our Understanding of Terrestrial Nitrogen Retention and Loss (Invited)

    NASA Astrophysics Data System (ADS)

    Silver, W. L.; Yang, W. H.

    2013-12-01

    Understanding of the terrestrial nitrogen (N) cycle has grown over the last decade to include a variety of pathways that have the potential to either retain N in the ecosystem or result in losses to the atmosphere or groundwater. Early work has described the mechanics of these N transformations, but the relevance of these processes to ecosystem, regional, or global scale N cycling has not been well quantified. In this study, we review advances in our understanding of the terrestrial N cycle, and focus on three pathways with particular relevance to N retention and loss: dissimilatory nitrate and nitrite reduction to ammonium (DNRA), anaerobic ammonium oxidation (annamox), and anaerobic ammonium oxidation coupled to iron reduction (Feammox). We discuss the role of these processes in the microbial N economy (sensu Burgin et al. 2011) of the terrestrial N cycle, the environmental and ecological constraints, and relationships with other key biogeochemical cycles. We also discuss recent advances in analytical approaches that have improved our ability to detect these and related N fluxes in terrestrial ecosystems. Finally, we present a scaling exercise that identifies the potential importance of these pathways for N retention and loss across a range of spatial and temporal scales, and discuss their significance in terms of N limitation to net primary productivity, N leaching to groundwater, and the release of reactive N gases to the atmosphere.

  1. Choroid plexus papillomas: advances in molecular biology and understanding of tumorigenesis.

    PubMed

    Safaee, Michael; Oh, Michael C; Bloch, Orin; Sun, Matthew Z; Kaur, Gurvinder; Auguste, Kurtis I; Tihan, Tarik; Parsa, Andrew T

    2013-03-01

    Choroid plexus papillomas are rare, benign tumors originating from the choroid plexus. Although generally found within the ventricular system, they can arise ectopically in the brain parenchyma or disseminate throughout the neuraxis. We sought to review recent advances in our understanding of the molecular biology and oncogenic pathways associated with this disease. A comprehensive PubMed literature review was conducted to identify manuscripts discussing the clinical, molecular, and genetic features of choroid plexus papillomas. Articles concerning diagnosis, treatment, and long-term patient outcomes were also reviewed. The introduction of atypical choroid plexus papilloma as a distinct entity has increased the need for accurate histopathologic diagnosis. Advances in immunohistochemical staining have improved our ability to differentiate choroid plexus papillomas from other intracranial tumors or metastatic lesions using combinations of key markers and mitotic indices. Recent findings have implicated Notch3 signaling, the transcription factor TWIST1, platelet-derived growth factor receptor, and the tumor necrosis factor-related apoptosis-inducing ligand pathway in choroid plexus papilloma tumorigenesis. A combination of commonly occurring chromosomal duplications and deletions has also been identified. Surgical resection remains the standard of care, although chemotherapy and radiotherapy may be considered for recurrent or metastatic lesions. While generally considered benign, these tumors possess a complex biology that sheds insight into other choroid plexus tumors, particularly malignant choroid plexus carcinomas. Improving our understanding of the molecular biology, genetics, and oncogenic pathways associated with this tumor will allow for the development of targeted therapies and improved outcomes for patients with this disease.

  2. Advanced Telescopes and Observatories and Scientific Instruments and Sensors Capability Roadmaps: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Coulter, Dan; Bankston, Perry

    2005-01-01

    Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  3. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    SciTech Connect

    BPL Global

    2008-09-30

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at

  4. Advancing Scientific Reasoning in Upper Elementary Classrooms: Direct Instruction versus Task Structuring

    ERIC Educational Resources Information Center

    Lazonder, Ard W.; Wiskerke-Drost, Sjanou

    2015-01-01

    Several studies found that direct instruction and task structuring can effectively promote children's ability to design unconfounded experiments. The present study examined whether the impact of these interventions extends to other scientific reasoning skills by comparing the inquiry activities of 55 fifth-graders randomly assigned to one of…

  5. Some recent advances in understanding the mineralogy of Earth's deep mantle.

    PubMed

    Duffy, Thomas S

    2008-11-28

    Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure-temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO3 in the CaIrO3-type (post-perovskite) structure yield insights into the nature of the core-mantle boundary region. Theoretical studies of the behaviour of MgSiO3 liquids under high pressure-temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones). PMID:18826921

  6. Some recent advances in understanding the mineralogy of Earth's deep mantle.

    PubMed

    Duffy, Thomas S

    2008-11-28

    Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure-temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO3 in the CaIrO3-type (post-perovskite) structure yield insights into the nature of the core-mantle boundary region. Theoretical studies of the behaviour of MgSiO3 liquids under high pressure-temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones).

  7. Some recent advances in understanding the mineralogy of Earth's deep mantle

    SciTech Connect

    Duffy, T S

    2008-12-09

    Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure-temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO{sub 3} in the CaIrO{sub 3}-type (post-perovskite) structure yield insights into the nature of the core-mantle boundary region. Theoretical studies of the behaviour of MgSiO3 liquids under high pressure-temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones).

  8. Bridging the Gap between Scientific and Indigenous knowledge to Better Understand Social Impacts of Changing Rainfall Regimes

    NASA Astrophysics Data System (ADS)

    Lynch, A. H.; Joachim, L.; Zhu, X.; Hammer, C.; Harris, M.; Griggs, D.

    2011-12-01

    The Murray-Darling Basin incorporates Australia's three longest rivers and is important for an agricultural industry worth more than $9 billion per annum, a rich biodiversity of habitat and species, and the very life of its traditional owners. The complex and sometimes enigmatic relationships between modes of variability and Australian regional rainfall distribution means that reliable projections of future water availability remain highly uncertain. Persistent drought, with associated heat stress and high fire danger, and episodic flooding rains present further challenges. Indeed, recent extremes likely herald a tipping point for the communities and ecosystems that rely on the river system. The Barmah-Millewa region in the Murray-Darling Basin is the heart of Yorta Yorta Traditional Tribal Lands. The Yorta Yorta continue to assert their inherent rights to country and have shown through oral, documentary and material evidence, that their social, spiritual, economic and cultural links with country have never been broken. Current water policy and practice, highly contested community consultation processes, cross-border governance issues and a changing social landscape create in this region a microcosm for understanding the complex demands of economic, environmental and cultural security along the Murray-Darling Basin as the climate changes. New approaches to bridging the gap between scientific and Indigenous epistemologies have emerged in recent years, including for example ecosystem-based adaptation (Vignola et al. 2009) and the analysis of cultural water flows (Weir 2010). The potential for innovation using these approaches has informed a study that investigates how the deep knowledge of country of the Yorta Yorta people can be combined with state of the art climate science to develop a better understanding of the competing demands on water resources in the Barmah-Millewa region now and in the future. An important dimension of this collaborative work with the Yorta

  9. New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie; S. Curtis Wilkins

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  10. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural

  11. Advances in understanding the molecular basis of the first steps in color vision.

    PubMed

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-11-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. PMID:26187035

  12. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    SciTech Connect

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; Nandhikonda, Premchendar; Smith, Richard D.; Wright, Aaron T.

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosic bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.

  13. Advances in understanding the molecular basis of the first steps in color vision

    PubMed Central

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-01-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis–trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. PMID:26187035

  14. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease.

    PubMed

    Liang, Raymond; Ghaffari, Saghi

    2016-09-01

    Anaemia or decreased blood haemoglobin is the most common blood disorder often characterized by reduced red blood cell (RBC) numbers. RBCs are produced from differentiation and commitment of haematopoietic stem cells to the erythroid lineage by a process called erythropoiesis. Coordination of erythropoietin receptor signalling with several erythroid transcription factors including GATA1 is essential for this process. A number of additional players that are critical for RBC production have been identified in recent years. Major technological advances, such as the development of RNA interference, genetically modified animals, including zebrafish, and imaging flow cytometry have led to these discoveries; the emergence of -omics approaches in combination with the optimization of ex vivo erythroid cultures have also produced a more comprehensive understanding of erythropoiesis. Here we summarize studies describing novel regulators of erythropoiesis that modulate erythroid cell production in the context of human erythroid disorders involving hypoxia, iron regulation, immune-related molecules, and the transcription factor FOXO3. PMID:27442953

  15. [Advances in understanding Drosophila salivary gland polytene chromosome and its applications in genetics teaching].

    PubMed

    Gang, Li; Fanguo, Chen

    2015-06-01

    Drosophila salivary gland polytene chromosome, one of the three classical chromosomes with remarkable characteristics, has been used as an outstanding model for a variety of genetic studies since 1934. The greatest contribution of this model to genetics has been providing extraordinary angle of view in studying interphase chromosome structure and gene expression regulation. Additionally, it has been extensively used to understand some special genetic phenomena, such as dosage compensation and position-effect variegation. In this paper, we briefly review the advances in the study of Drosophila salivary gland chromosome, and try to systematically and effectively introduce this model system into genetics teaching practice in order to steer and inspire students' interest in genetics.

  16. The impact of recent advances in laboratory astrophysics on our understanding of the cosmos.

    PubMed

    Savin, D W; Brickhouse, N S; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibel, E G

    2012-03-01

    An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.

  17. Advances in understanding the molecular basis of the first steps in color vision.

    PubMed

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-11-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation.

  18. Rapid Scientific Response as an Educational Opportunity Integrating Geoscience and Advanced Visualization

    NASA Astrophysics Data System (ADS)

    Oskin, M. E.; Kellogg, L. H.; Team, K.

    2014-12-01

    Natural disasters provide important opportunities to conduct original scientific research. We present the results of a graduate course at the University of California, Davis centered on rapid scientific response to the 24 August magnitude 6.0 South Napa earthquake. Students from both geoscience and computer visualization formed collaborative teams to conduct original research, choosing from diverse research topics including mapping of the surface rupture, both in the field and remotely, production and analysis of three-dimensional scans of offset features, topographic point-cloud differencing, identification and mapping of pre-historic earthquake scarps, analysis of geodetic data for pre-earthquake fault loading rate and modeling of finite fault offset, aftershock distribution, construction and 3D visualization of earth structure and seismic velocity models, shaking intensity from empirical models, and earthquake rupture simulation.

  19. Recent advances in understanding the role of the hypothalamic circuit during aggression

    PubMed Central

    Falkner, Annegret L.; Lin, Dayu

    2014-01-01

    The hypothalamus was first implicated in the classic “fight or flight” response nearly a century ago, and since then, many important strides have been made in understanding both the circuitry and the neural dynamics underlying the generation of these behaviors. In this review, we will focus on the role of the hypothalamus in aggression, paying particular attention to recent advances in the field that have allowed for functional identification of relevant hypothalamic subnuclei. Recent progress in this field has been aided by the development of new techniques for functional manipulation including optogenetics and pharmacogenetics, as well as advances in technology used for chronic in vivo recordings during complex social behaviors. We will examine the role of the hypothalamus through the complimentary lenses of (1) loss of function studies, including pharmacology and pharmacogenetics; (2) gain of function studies, including specific comparisons between results from classic electrical stimulation studies and more recent work using optogenetics; and (3) neural activity, including both immediate early gene and awake-behaving recordings. Lastly, we will outline current approaches to identifying the precise role of the hypothalamus in promoting aggressive motivation and aggressive action. PMID:25309351

  20. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    SciTech Connect

    Hules, J.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  1. Advanced Light Source First-Phase Scientific Program, 1993/1994

    SciTech Connect

    Not Available

    1992-08-01

    This composite document outlines ten different experiments planned for the beamline at the Advanced Light Source. Researchers from various parts of the country have detailed their methods and equipment to be used in experiments in biology and physics. X-ray spectroscopy and microscopy are the common topics to these experiments. (GHH)

  2. UNEDF: Advanced Scientific Computing Transforms the Low-Energy Nuclear Many-Body Problem

    SciTech Connect

    Stoitsov, Mario; Nam, Hai Ah; Nazarewicz, Witold; Bulgac, Aurel; Hagen, Gaute; Kortelainen, E. M.; Pei, Junchen; Roche, K. J.; Schunck, N.; Thompson, I.; Vary, J. P.; Wild, S.

    2011-01-01

    The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper illustrates significant milestones accomplished by UNEDF through integration of the theoretical approaches, advanced numerical algorithms, and leadership class computational resources.

  3. Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas.

    PubMed

    Polkinghorne, Adam; Hanger, Jon; Timms, Peter

    2013-08-30

    The koala (Phascolarctos cinereus) is recognised as a threatened wildlife species in various parts of Australia. A major contributing factor to the decline and long-term viability of affected populations is disease caused by the obligate intracellular bacteria, Chlamydia. Two chlamydial species infect the koala, Chlamydia pecorum and Chlamydia pneumoniae, and have been reported in nearly all mainland koala populations. Chlamydial infections of koalas are associated with ocular infections leading to blindness and genital tract infections linked to infertility, among other serious clinical manifestations. Diagnosis can be based on clinical presentation alone, however, it is complicated by the observation that many koala chlamydial infections occur with no overt signs of clinical disease. Instead, accurate diagnosis requires detailed clinical assessment and confirmatory testing by a range of PCR-based assays. Antibiotic treatment for koala chlamydial infection is possible, however, results on its success are mixed. A more practical solution for the protection of diseased populations is the application of a koala Chlamydia vaccine, with recent trials indicating promising results. Interestingly, molecular epidemiology studies of koala C. pecorum infections and recent comparative genomic analyses of koala C. pneumoniae have revealed potential differences in their origin that will have wider ramifications for our understanding of human chlamydial infections and host adaptation of the chlamydiae. This review summarises changes to the taxonomy of koala chlamydial infections and recent advances in our understanding of the epidemiology, diagnosis, treatment, control and evolution of Chlamydia infections in this iconic wildlife species.

  4. New directions in scientific computing: impact of advances in microprocessor architecture and system design.

    PubMed

    Malyj, W; Smith, R E; Horowitz, J M

    1984-01-01

    The new generation of microcomputers has brought computing power previously restricted to mainframe and supermini computers within the reach of individual scientific laboratories. Microcomputers can now provide computing speeds rivaling mainframes and computational accuracies exceeding those available in most computer centers. Inexpensive memory makes possible the transfer to microcomputers of software packages developed for mainframes and tested by years of experience. Combinations of high level languages and assembler subroutines permit the efficient design of specialized applications programs. Microprocessor architecture is approaching that of superminis, with coprocessors providing major contributions to computing power. The combined result of these developments is a major and perhaps revolutionary increase in the computing power now available to scientists.

  5. Foot-ankle simulators: A tool to advance biomechanical understanding of a complex anatomical structure.

    PubMed

    Natsakis, Tassos; Burg, Josefien; Dereymaeker, Greta; Jonkers, Ilse; Vander Sloten, Jos

    2016-05-01

    In vitro gait simulations have been available to researchers for more than two decades and have become an invaluable tool for understanding fundamental foot-ankle biomechanics. This has been realised through several incremental technological and methodological developments, such as the actuation of muscle tendons, the increase in controlled degrees of freedom and the use of advanced control schemes. Furthermore, in vitro experimentation enabled performing highly repeatable and controllable simulations of gait during simultaneous measurement of several biomechanical signals (e.g. bone kinematics, intra-articular pressure distribution, bone strain). Such signals cannot always be captured in detail using in vivo techniques, and the importance of in vitro experimentation is therefore highlighted. The information provided by in vitro gait simulations enabled researchers to answer numerous clinical questions related to pathology, injury and surgery. In this article, first an overview of the developments in design and methodology of the various foot-ankle simulators is presented. Furthermore, an overview of the conducted studies is outlined and an example of a study aiming at understanding the differences in kinematics of the hindfoot, ankle and subtalar joints after total ankle arthroplasty is presented. Finally, the limitations and future perspectives of in vitro experimentation and in particular of foot-ankle gait simulators are discussed. It is expected that the biofidelic nature of the controllers will be improved in order to make them more subject-specific and to link foot motion to the simulated behaviour of the entire missing body, providing additional information for understanding the complex anatomical structure of the foot. PMID:27160562

  6. Do Scientific Advancements Lean on the Shoulders of Giants? A Bibliometric Investigation of the Ortega Hypothesis

    PubMed Central

    Bornmann, Lutz; de Moya Anegón, Félix; Leydesdorff, Loet

    2010-01-01

    Background In contrast to Newton's well-known aphorism that he had been able “to see further only by standing on the shoulders of giants,” one attributes to the Spanish philosopher Ortega y Gasset the hypothesis saying that top-level research cannot be successful without a mass of medium researchers on which the top rests comparable to an iceberg. Methodology/Principal Findings The Ortega hypothesis predicts that highly-cited papers and medium-cited (or lowly-cited) papers would equally refer to papers with a medium impact. The Newton hypothesis would be supported if the top-level research more frequently cites previously highly-cited work than that medium-level research cites highly-cited work. Our analysis is based on (i) all articles and proceedings papers which were published in 2003 in the life sciences, health sciences, physical sciences, and social sciences, and (ii) all articles and proceeding papers which were cited within these publications. The results show that highly-cited work in all scientific fields more frequently cites previously highly-cited papers than that medium-cited work cites highly-cited work. Conclusions/Significance We demonstrate that papers contributing to the scientific progress in a field lean to a larger extent on previously important contributions than papers contributing little. These findings support the Newton hypothesis and call into question the Ortega hypothesis (given our usage of citation counts as a proxy for impact). PMID:20967252

  7. Advancing understanding of the fluvial export of organic matter through high-resolution profiling of dissolved organic carbon.

    NASA Astrophysics Data System (ADS)

    Waldron, S.; Drew, S.; Gilvear, D.; Murray, H.; Heal, K.

    2012-04-01

    Quantifying the natural variation (complexity) of a system remains an enduring scientific challenge in better understanding controls on surface water quality. This characterisation is needed in order to reveal controlling processes, such as dilution, and also to identify unusual load profiles. In trying to capture that natural variation we still rely largely on concentration time series (and associated export budgets) generated from manual spot sampling, or from samples collected by autosamplers - approaches which are unlikely to provide the high temporal resolution of parameter concentration required. Now however, advances in sensor technology are helping us address this challenge. Here we present detailed dissolved organic carbon (DOC) export profiles from a small upland river (9.4 km sq.), generated since June 2011 by semi-continuous logging of UV-vis absorption (200-750 nm, every 2.5 nm) every 30 minutes. Observed increases in the concentration of the DOC, [DOC], in freshwaters have prompted significant research to understand the cause and consequences of increased export: higher levels of DOC require additional water purification of potable sources; increased aquatic export may represent a reduction in terrestrial C-soil sequestration; changes in light penetration can affect the heterotrophic / autotrophic balance in surface waters and this has consequences for the food web structure; increased aquatic export may also result in increased carbon dioxide evasion. Additionally, C export is often linked to nutrient export: we have observed statistically significant stoichiometric relationships between DOC and soluble reactive phosphorus (SRP) concentrations, thus understanding better this parameters offers insight into export of other nutrient and the source of material from which these dissolved compounds are produced; this may be particulate. Our Scottish study site is interesting because there are multiple processes that can contribute to DOC and other nutrient

  8. Socio-Scientific Discussions as a Way to Improve the Comprehension of Science and the Understanding of the Interrelation between Species and the Environment

    NASA Astrophysics Data System (ADS)

    Castano, Carolina

    2008-11-01

    This article reports on a qualitative and quantitative study that explored whether a constructivist Science learning environment, in which 9 to 10-year old Colombian girls had the opportunity to discuss scientific concepts and socio-scientific dilemmas in groups, improved their understanding of the concepts and the complex relations that exists between species and the environment. Data were collected from two fourth grade groups in a private bilingual school, a treatment and a comparison group. Pre and post tests on the understanding of scientific concepts and the possible consequences of human action on living things, transcriptions of the discussions of dilemmas, and pre and post tests of empathy showed that students who had the opportunity to discuss socio-scientific dilemmas gave better definitions for scientific concepts and made better connections between them, their lives and Nature than students who did not. It is argued that Science learning should occur in constructivist learning environments and go beyond the construction of scientific concepts, to discussions and decision-making related to the social and moral implications of the application of Science in the real world. It is also argued that this type of pedagogical interventions and research on them should be carried out in different sociocultural contexts to confirm their impact on Science learning in diverse conditions.

  9. S2PLOT: a Straightforward Library for Advanced 3-dimensional Scientific Visualisation

    NASA Astrophysics Data System (ADS)

    Barnes, D. G.; Fluke, C. J.

    2008-08-01

    S2PLOT is a user-oriented programming library for generating and exploring 3-dimensional (3-d) scientific plots and diagrams. It provides a lightweight interface---inspired by the simple yet widely-used PGPLOT---to produce hardware-accelerated visualisations of point, line, image and volumetric data. S2PLOT provides C and FORTRAN interfaces, and supports monoscopic, stereoscopic and curved (eg. dome) display devices. PGPLOT-savvy astronomers can usually write their first S2PLOT program in less than ten minutes. In this paper, we introduce the latest S2PLOT version and highlight major new additions to the library, including volume rendering and isosurfacing of astronomical data. We describe a simple extension that enables the embedding of large-area FITS images directly into S2PLOT programs using standard World Coordinate Systems, and we introduce the Python interface to S2PLOT.

  10. Admixed human embryos and stem cells: legislative, ethical and scientific advances.

    PubMed

    Bahadur, G; Iqbal, M; Malik, S; Sanyal, A; Wafa, R; Noble, R

    2008-01-01

    This paper examines the regulatory framework currently governing the creation of animal-human hybrids and chimera embryos in stem cell research, and some of the ethical implications of such research. It discusses the findings of a recent government select committee that considered the topic. It considers the debate around the precise definition of a human embryo, and whether such hybrids therefore fall within the remit of the Human Fertilisation and Embryology Authority. It outlines the advantages of such hybrids, in lessening the need for human egg donors, as well as the moral objections to species boundary violation. It calls for an examination of the scientific benefits of such research to inform debate on the question, and argues for the need to take genuine account of the public's views on this matter.

  11. The Present Conditions of the Advances in Modernizing Scientific and Technical Information Processing in China

    NASA Astrophysics Data System (ADS)

    Chen, Written By Tongbao; Li, Translated By Guohua

    The trends of modernization (computerization) in information activities were outlined in focussing on the national computer-based information retrieval system, which was pushed by the State Science and Technology Commission in the 6th National Five-Year Plan. Secondary, the Plan to be promoted by the Institute of Scientific and Technical Information of China (ISTIC) as a central and integrated information center in China was also described for the 7th National Five-Year Plan on the occasion of the movement to the new ISTIC building. Finally, author's views on information programs to be further stressed were introduced, which include the production of reference and fact databases in Chinese and English, the consolidation of online network, standardization, etc.

  12. New Sensors for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; Joshua E. Daw; Heng Ban; Brandon Fox; Gordon Kohse

    2009-06-01

    A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry.

  13. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    SciTech Connect

    Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..; Easter, Richard C; Elliott, Scott M.; Ghan, Steven J.; Liu, Xiaohong; Lowrie, Robert B.; Lucas, Donald D.; Ma, Po-lun; Sacks, William J.; Shrivastava, Manish; Singh, Balwinder; Tautges, Timothy J.; Taylor, Mark A.; Vertenstein, Mariana; Worley, Patrick H.

    2014-01-15

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  14. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya

    2003-12-19

    /NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will also

  15. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya; M.J. McKelvy; G.H. Wolf; R.W. Carpenter; D.A. Gormley; J.R. Diefenbacher; R. Marzke

    2006-03-01

    significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO2 mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH)2. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO2 mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach has provided a deeper understanding of the key reaction mechanisms than either individual approach can alone. We used ab initio techniques to significantly advance our understanding of atomic-level processes at the solid/solution interface by

  16. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya

    2002-12-19

    /NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will also

  17. Therapeutic Mechanisms of Lithium in Bipolar Disorder: Recent Advances and Current Understanding.

    PubMed

    Malhi, Gin S; Outhred, Tim

    2016-10-01

    Lithium is the most effective and well established treatment for bipolar disorder, and it has a broad array of effects within cellular pathways. However, the specific processes through which therapeutic effects occur and are maintained in bipolar disorder remain unclear. This paper provides a timely update to an authoritative review of pertinent findings that was published in CNS Drugs in 2013. A literature search was conducted using the Scopus database, and was limited by year (from 2012). There has been a resurgence of interest in lithium therapy mechanisms, perhaps driven by technical advancements in recent years that permit the examination of cellular mechanisms underpinning the effects of lithium-along with the reuptake of lithium in clinical practice. Recent research has further cemented glycogen synthase kinase 3β (GSK3β) inhibition as a key mechanism, and the inter-associations between GSK3β-mediated neuroprotective, anti-oxidative and neurotransmission mechanisms have been further elucidated. In addition to highly illustrative cellular research, studies examining higher-order biological systems, such as circadian rhythms, as well as employing innovative animal and human models, have increased our understanding of how lithium-induced changes at the cellular level possibly translate to changes at behavioural and clinical levels. Neural circuitry research is yet to identify clear mechanisms of change in bipolar disorder in response to treatment with lithium, but important structural findings have demonstrated links to the modulation of cellular mechanisms, and peripheral marker and pharmacogenetic studies are showing promising findings that will likely inform the exploration for predictors of lithium treatment response. With a deeper understanding of lithium's therapeutic mechanisms-from the cellular to clinical levels of investigation-comes the opportunity to develop predictive models of lithium treatment response and identify novel drug targets, and

  18. Therapeutic Mechanisms of Lithium in Bipolar Disorder: Recent Advances and Current Understanding.

    PubMed

    Malhi, Gin S; Outhred, Tim

    2016-10-01

    Lithium is the most effective and well established treatment for bipolar disorder, and it has a broad array of effects within cellular pathways. However, the specific processes through which therapeutic effects occur and are maintained in bipolar disorder remain unclear. This paper provides a timely update to an authoritative review of pertinent findings that was published in CNS Drugs in 2013. A literature search was conducted using the Scopus database, and was limited by year (from 2012). There has been a resurgence of interest in lithium therapy mechanisms, perhaps driven by technical advancements in recent years that permit the examination of cellular mechanisms underpinning the effects of lithium-along with the reuptake of lithium in clinical practice. Recent research has further cemented glycogen synthase kinase 3β (GSK3β) inhibition as a key mechanism, and the inter-associations between GSK3β-mediated neuroprotective, anti-oxidative and neurotransmission mechanisms have been further elucidated. In addition to highly illustrative cellular research, studies examining higher-order biological systems, such as circadian rhythms, as well as employing innovative animal and human models, have increased our understanding of how lithium-induced changes at the cellular level possibly translate to changes at behavioural and clinical levels. Neural circuitry research is yet to identify clear mechanisms of change in bipolar disorder in response to treatment with lithium, but important structural findings have demonstrated links to the modulation of cellular mechanisms, and peripheral marker and pharmacogenetic studies are showing promising findings that will likely inform the exploration for predictors of lithium treatment response. With a deeper understanding of lithium's therapeutic mechanisms-from the cellular to clinical levels of investigation-comes the opportunity to develop predictive models of lithium treatment response and identify novel drug targets, and

  19. Advances in understanding societal vulnerability to tsunamis in the United States

    NASA Astrophysics Data System (ADS)

    Wood, N. J.

    2009-12-01

    Loss of life and property damage from future tsunamis can be reduced if officials develop risk-reduction strategies and education programs that address how at-risk populations and communities are specifically vulnerable to tsunamis. Prior to the 2004 Indian Ocean tsunami, information concerning societal vulnerability to tsunamis in the U.S. was largely limited to state-level summaries of the number of residents within one kilometer of the coast. Since 2004, the U.S. Geological Survey has furthered the Nation’s understanding of societal vulnerability to tsunamis with several studies that describe the exposure, sensitivity, and adaptive capacity of at-risk populations in tsunami-hazard zones. Community-level assessments have been completed in Hawaii, Oregon, and Washington to document variations in the number and types of people, businesses, and critical facilities in tsunami-prone areas. A method using midresolution satellite imagery was developed to identify community variations in the amount of developed land in tsunami-prone areas. Factor analysis and geospatial analysis were integrated to model variations in demographic sensitivity to tsunamis. Public workshops have been held to examine community sensitivity, adaptive capacity and post-tsunami recovery. Results demonstrate that social vulnerability to tsunamis varies throughout a community or region and that certain areas are likely to suffer disproportionately due to differences in pre-tsunami socioeconomic conditions and other demographic attributes. This presentation will summarize advances in understanding societal vulnerability in the U.S. to tsunamis since the 2004 Indian Ocean tsunami, as well as discuss opportunities and needs for further work.

  20. Advancements in the mechanistic understanding of the copper-catalyzed azide–alkyne cycloaddition

    PubMed Central

    2013-01-01

    Summary The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I) alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC’s catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I) catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates. PMID:24367437

  1. Advancements in the mechanistic understanding of the copper-catalyzed azide-alkyne cycloaddition.

    PubMed

    Berg, Regina; Straub, Bernd F

    2013-01-01

    The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I) alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC's catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I) catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates. PMID:24367437

  2. Predicting Scientific Understanding of Prospective Elementary Teachers: Role of Gender, Education Level, Courses in Science, and Attitudes toward Science and Mathematics

    ERIC Educational Resources Information Center

    Kumar, David D.; Morris, John D.

    2005-01-01

    A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary…

  3. An Inquiry-Based Practical for a Large, Foundation-Level Undergraduate Laboratory that Enhances Student Understanding of Basic Cellular Concepts and Scientific Experimental Design

    ERIC Educational Resources Information Center

    Bugarcic, A.; Zimbardi, K.; Macaranas, J.; Thorn, P.

    2012-01-01

    Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny,…

  4. [Recent advances in the understanding and treatment of diffuse large B-cell lymphoma].

    PubMed

    Gergely, Lajos; Illés, Árpád

    2016-07-01

    Diffuse large B-cell lymphoma is the most common type of non-Hodgkin's lymphoma. Using the conventional cyclophosphamide adriablastin vincristin prednisolon polychemotherapy about 50% of the patients were cured. The addition of rituximab to the regimen increased the cure rate to 60%. This is a major improvement, however, further advance is still needed to increase the cure rate. The extensive genetic testing performed recently revealed several important pathognomic mutations as potential targets in this disease. Routine diagnosis of patients now includes the use of (18)Fluor-deoxy-glucose positron emission computer tomography, according to the recent Lugano classification system. With all these data we can better predict the prognosis of patients, and we can select candidates for novel targeted therapies as well. Answering these questions, and utilizing novel therapies possibly will further increase the cure rate in the near future. This paper summarizes current diagnostic and therapeutic approaches and describes recent understanding in the mutations and pathognomic changes resulting in the disease. The authors also summarize the data available on experimental therapies possibly entering clinical pratice in the forthcoming years. Orv. Hetil., 2016, 157(31), 1232-1241. PMID:27476519

  5. Understanding Brain Injury and Neurodevelopmental Disabilities in the Preterm Infant: The Evolving Role of Advanced MRI

    PubMed Central

    Mathur, Amit M.; Neil, Jeffrey J.; Inder, Terrie E.

    2010-01-01

    The high incidence of neurodevelopmental disability in premature infants requires continued efforts at understanding the underlying microstructural changes in the brain that cause this perturbation in normal development. Magnetic resonance imaging (MRI) methods offer great potential to fulfill this need. Serial MR imaging and the application of newer analysis techniques such as, diffusion tensor imaging (DTI), volumetric MR analysis, cortical surface analysis, functional connectivity (fcMRI) and diffusion tractography, provide important insights into the trajectory of brain development in the premature infant and the impact of injury on this developmental trajectory. While some of these imaging techniques are currently available in the research setting only, other measures such as DTI and brain metric measures can be used clinically. MR imaging also has enormous potential to be used as a surrogate, short-term outcome measure in clinical studies evaluating new therapeutic interventions of neuroprotection of the developing brain. In this article we review the current status of these advanced MR imaging techniques. PMID:20109973

  6. Recent advances in understanding the role of lamins in health and disease

    PubMed Central

    Reddy, Sita; Comai, Lucio

    2016-01-01

    Lamins are major components of the nuclear lamina, a network of proteins that supports the nuclear envelope in metazoan cells. Over the past decade, biochemical studies have provided support for the view that lamins are not passive bystanders providing mechanical stability to the nucleus but play an active role in the organization of the genome and the function of fundamental nuclear processes. It has also become apparent that lamins are critical for human health, as a large number of mutations identified in the gene that encodes for A-type lamins are associated with tissue-specific and systemic genetic diseases, including the accelerated aging disorder known as Hutchinson-Gilford progeria syndrome. Recent years have witnessed great advances in our understanding of the role of lamins in the nucleus and the functional consequences of disease-associated A-type lamin mutations. Many of these findings have been presented in comprehensive reviews. In this mini-review, we discuss recent breakthroughs in the role of lamins in health and disease and what lies ahead in lamin research. PMID:27803806

  7. Oculopharyngeal muscular dystrophy: recent advances in the understanding of the molecular pathogenic mechanisms and treatment strategies.

    PubMed

    Abu-Baker, Aida; Rouleau, Guy A

    2007-02-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. OPMD is caused by a small expansion of a short polyalanine tract in the poly (A) binding protein nuclear 1 protein (PABPN1). The mechanism by which the polyalanine expansion mutation in PABPN1 causes disease is unclear. PABPN1 is a nuclear multi-functional protein which is involved in pre-mRNA polyadenylation, transcription regulation, and mRNA nucleocytoplasmic transport. The distinct pathological hallmark of OPMD is the presence of filamentous intranuclear inclusions (INIs) in patient's skeletal muscle cells. The exact relationship between mutant PABPN1 intranuclear aggregates and pathology is not clear. OPMD is a unique disease sharing common pathogenic features with other polyalanine disorders, as well as with polyglutamine and dystrophic disorders. This chapter aims to review the rapidly growing body of knowledge concerning OPMD. First, we outline the background of OPMD. Second, we compare OPMD with other trinucleotide repeat disorders. Third, we discuss the recent advances in the understanding of the molecular mechanisms underlying OPMD pathogenesis. Finally, we review recent therapeutic strategies for OPMD.

  8. Recent Advances in Understanding the Role of Nutrition in Human Genome Evolution12

    PubMed Central

    Ye, Kaixiong; Gu, Zhenglong

    2011-01-01

    Dietary transitions in human history have been suggested to play important roles in the evolution of mankind. Genetic variations caused by adaptation to diet during human evolution could have important health consequences in current society. The advance of sequencing technologies and the rapid accumulation of genome information provide an unprecedented opportunity to comprehensively characterize genetic variations in human populations and unravel the genetic basis of human evolution. Series of selection detection methods, based on various theoretical models and exploiting different aspects of selection signatures, have been developed. Their applications at the species and population levels have respectively led to the identification of human specific selection events that distinguish human from nonhuman primates and local adaptation events that contribute to human diversity. Scrutiny of candidate genes has revealed paradigms of adaptations to specific nutritional components and genome-wide selection scans have verified the prevalence of diet-related selection events and provided many more candidates awaiting further investigation. Understanding the role of diet in human evolution is fundamental for the development of evidence-based, genome-informed nutritional practices in the era of personal genomics. PMID:22332091

  9. Advances in the understanding of plaque composition and treatment options: year in review.

    PubMed

    Tomey, Matthew I; Narula, Jagat; Kovacic, Jason C

    2014-04-29

    Atherosclerosis research has classically followed 2 intertwining lines of investigation concerning atherosclerosis as a local process (the "high-risk plaque") and as a systemic disease (the "high-risk patient"). Over time, the weight of attention has swung, like a pendulum, between these 2 related foci. With optimal medical therapy and attention to risk factors firmly established as fundamental aspects of management, in the past year, we have nevertheless perceived a shift in the pendulum toward renewed focus on the local plaque. We contend that this shift results from a convergence of major advances in understanding the biology of plaque progression, novel sophisticated invasive and noninvasive imaging modalities for the in vivo characterization of plaque composition and inflammation, and emerging data and technologies that have renewed interest in locally targeted interventions. Here, we review the dynamic and exciting progress that has occurred over the last 12 months in this arena, while acknowledging future work that remains to be done to refine and validate new imaging modalities and therapies.

  10. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    PubMed Central

    Kim, Tae-Houn; Böhmer, Maik; Hu, Honghong; Nishimura, Noriyuki; Schroeder, Julian I.

    2011-01-01

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms. PMID:20192751

  11. Recent advances in the understanding of the Aspergillus fumigatus cell wall.

    PubMed

    Lee, Mark J; Sheppard, Donald C

    2016-03-01

    Over the past several decades, research on the synthesis and organization of the cell wall polysaccharides of Aspergillus fumigatus has expanded our knowledge of this important fungal structure. Besides protecting the fungus from environmental stresses and maintaining structural integrity of the organism, the cell wall is also the primary site for interaction with host tissues during infection. Cell wall polysaccharides are important ligands for the recognition of fungi by the innate immune system and they can mediate potent immunomodulatory effects. The synthesis of cell wall polysaccharides is a complicated process that requires coordinated regulation of many biosynthetic and metabolic pathways. Continuous synthesis and remodeling of the polysaccharides of the cell wall is essential for the survival of the fungus during development, reproduction, colonization and invasion. As these polysaccharides are absent from the human host, these biosynthetic pathways are attractive targets for antifungal development. In this review, we present recent advances in our understanding of Aspergillus fumigatus cell wall polysaccharides, including the emerging role of cell wall polysaccharides in the host-pathogen interaction.

  12. Advances in the formation, use and understanding of multi-cellular spheroids

    PubMed Central

    Achilli, Toni-Marie; Meyer, Julia; Morgan, Jeffrey R

    2015-01-01

    Introduction Developing in vitro models for studying cell biology and cell physiology is of great importance to the fields of biotechnology, cancer research, drug discovery, toxicity testing, as well as the emerging fields of tissue engineering and regenerative medicine. Traditional two dimensional (2D) methods of mammalian cell culture have several limitations and it is increasingly recognized that cells grown in a three dimensional (3D) environment more closely represent normal cellular function due to the increased cell-to-cell interactions, and by mimicking the in vivo architecture of natural organs and tissues. Areas Covered In this review, we discuss the methods to form 3D multi-cellular spheroids, the advantages and limitations of these methods, and assays used to characterize the function of spheroids. The use of spheroids has led to many advances in basic cell sciences, including understanding cancer cell interactions, creating models for drug discovery and cancer metastasis, and they are being investigated as basic units for engineering tissue constructs. As so, this review will focus on contributions made to each of these fields using spheroid models. Expert Opinion Multi-cellular spheroids are rich in biological content and mimic better the in vivo environment than 2D cell culture. New technologies to form and analyze spheroids are rapidly increasing their adoption and expanding their applications. PMID:22784238

  13. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    DOE PAGES

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; Nandhikonda, Premchendar; Smith, Richard D.; Wright, Aaron T.

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosicmore » bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.« less

  14. Role of Water in Electron-Initiated Processes and Radical Chemistry: Issues and Scientific Advances

    SciTech Connect

    Garrett, Bruce C.; Dixon, David A.; Camaioni, Donald M.; Chipman, Daniel M.; Johnson, Mark A.; Jonah, Charles D.; Kimmel, Greg A.; Miller, John H.; Rescigno, Tom; Rossky, Peter J.; Xantheas, Sotiris S.; Colson, Steve D.; Laufer, Allan H.; Ray, Douglas; Barbara, Paul F.; Bartels, David M.; Bowen, Kit H.; Becker, Kurt H.; Bradforth, Stephen E.; Carmichael, Ian; Coe, James V.; Corrales, L. Rene; Cowin, James P.; Dupuis, Michel; Eisenthal, Kenneth B.; Franz, James A.; Gutowski, Maciej S.; Jordon, Kenneth D.; Kay, Bruce D.; La Verne, Jay A.; Lymar, Sergei V.; Madey, Theodore E.; Mccurdy, C. W.; Meisel, Dan; Mukamel, Shaul; Nilsson, Anders R.; Orlando, Thomas M.; Petrik, Nikolay G.; Pimblott, Simon M.; Rustad, James R.; Schenter, Gregory K.; Singer, Sherwin J.; Tokmakoff, Andrei; Wang, Lai-Sheng; Wittig, Curt; Zwier, Timothy S.

    2005-01-12

    An understanding of electron-initiated processes in aqueous systems and the subsequent radical chemistry these processes induce is significant in such diverse fields as waste remediation and environmental cleanup, radiation processing, nuclear reactors, and medical diagnosis and therapy. We review the state of the art in the physical chemistry and chemical physics of electron-initiated processes in aqueous systems and raise critical research issues and fundamental questions that remain unanswered.

  15. Bulgarian Activities in the Project COSMOS: An Advanced Scientific Repository for Science Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Marchev, D.; Kyurkchieva, D.; Borisov, B.; Radeva, V.

    2010-09-01

    One of the main purposes of the European educational project COSMOS (co-funded by the European Commission under the program eContentplus), is to create an experimental laboratory for the school of tomorrow in order to improve the education in astronomy by expanding the resources for teaching and learning in schools and universities and by providing more challenging and authentic learning experiences for students. A large educational database was created as a result of the project activities made by 15 partner institutions. The unusual electronic "library" offers to students and teachers unique educational resources: learning scenarios, images, presentations, videos and animations (most of them are impossible to produce in any scientific laboratory). It is freely accessible to anyone, anywhere, anytime. Our poster presents the contribution of the Shumen university (the only partner from Bulgaria) in the project: uploading more than 12000 astronomical images in the COSMOS portal; creation of 45 learning scenarios; holding 5 teaching workshops at different places for more than 100 Bulgarian teachers to use the possibilities of the COSMOS portal (including creation of their own learning scenarios). Our analysis of the questionnaires filled-in by the participating teachers shows the necessity of such projects and workshops.

  16. Advancement of scientific research on Helicobacter pylori in humans: where do we stand?

    PubMed

    Andrabi, S A H; Shamila, H; Masooda, S

    2012-09-01

    Helicobacter pylori (H. pylori) has been associated with humans for millions of years and its association wih gastroduodenal diseases has well been established. Research explosion has added vastly to the current dimensions. The new and unusual pattern of involvement in the form of diffuse duodenal nodular lymphoid hyperplasia (DDNLH) due to specific strain of H. pylorii has been reported from Kashmir recently, which heckles early recognition and treatment and on the other hand, we continue to face challenges so far as the prevention of carcinoma of stomach, a worst sequlae of H. pylori is concerned although population screening and prevention surveys are underway in many countries. Continued scientific work has now unfolded involvement of H.pylori in extragastric diseases like cerebrovascular, cardiovascular, idiopathic thrombocytopenia, sideroblastic anaemia, mental diseases, and collagen vascular disease .Moreover the beneficial effects of H. pylori with respect to allergic diseases and obesity are clear. Problem of drug resistance for eradication of H. pylori has arisen for which novel treatments are tried. Lactobacillus reuteri having ant H.pylori action is one of the promising treatment as is now available in India for usage. The main challenges which remain are prevention of H. pylori related diseases by effective treatment and screening procedures and development of a vaccine which can address all these issues including beneficial aspects of H. pylori. PMID:23136708

  17. Advancing Scientific Reasoning in Upper Elementary Classrooms: Direct Instruction Versus Task Structuring

    NASA Astrophysics Data System (ADS)

    Lazonder, Ard W.; Wiskerke-Drost, Sjanou

    2015-02-01

    Several studies found that direct instruction and task structuring can effectively promote children's ability to design unconfounded experiments. The present study examined whether the impact of these interventions extends to other scientific reasoning skills by comparing the inquiry activities of 55 fifth-graders randomly assigned to one of three conditions. Children in the control condition investigated a four-variable inquiry task without additional support. Performance of this task in the direct instruction condition was preceded by a short training in experimental design, whereas children in the task structuring condition, who did not receive the introductory training, were given a version of the task that addressed the four variables one at a time. Analysis of children's experimentation behavior confirmed that direct instruction and task structuring are equally effective and superior to unguided inquiry. Both interventions also evoked more determinate predictions and valid inferences. These findings demonstrate that the effect of short-term interventions designed to promote unconfounded experimentation extends beyond the control of variables.

  18. The Center for Technology for Advanced Scientific Component Software (TASCS) Lawrence Livermore National Laboratory - Site Status Update

    SciTech Connect

    Epperly, T W

    2008-12-03

    This report summarizes LLNL's progress for the period April through September of 2008 for the Center for Technology for Advanced Scientific Component Software (TASCS) SciDAC. The TASCS project is organized into four major thrust areas: CCA Environment (72%), Component Technology Initiatives (16%), CCA Toolkit (8%), and User and Application Outreach & Support (4%). The percentage of LLNL's effort allocation is shown in parenthesis for each thrust area. Major thrust areas are further broken down into activity areas, LLNL's effort directed to each activity is shown in Figure 1. Enhancements, Core Tools, and Usability are all part of CCA Environment, and Software Quality is part of Component Technology Initiatives. The balance of this report will cover our accomplishments in each of these activity areas.

  19. Managing in the trenches of consumer care: the challenges of understanding and initiating the advance care planning process.

    PubMed

    Baughman, Kristin R; Aultman, Julie; Hazelett, Susan; Palmisano, Barbara; O'Neill, Anne; Ludwick, Ruth; Sanders, Margaret

    2012-01-01

    To better understand how community-based long-term care providers define advance care planning and their role in the process, we conducted 8 focus groups with 62 care managers (social workers and registered nurses) providing care for Ohio's Medicaid waiver program. Care managers shared that most consumers had little understanding of advance care planning. The care managers defined it broadly, including legal documentation, social aspects, medical considerations, ongoing communication, and consumer education. Care managers saw their roles as information providers, healthcare team members, and educators/coaches. Better education, resources, and coordination are needed to ensure that consumer preferences are realized.

  20. Advances in our Understanding of Lava-Dome Eruptions Arising From the Study of Soufriere Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Edmonds, M.

    2006-12-01

    The eruption of Soufrière Hills Volcano, Montserrat, began in July 1995 and is ongoing 11 years later. Over 0.6 km3 andesite lava has been erupted at rates of up to around 10 m3/s; more generally at rates of 1-3 m3/s. The style of eruption has been dominantly effusive: a lava dome has grown and repeatedly collapsed, generating pyroclastic flows and surges. The eruption has been the focus of intense international scientific study; as a result, there have been major advances in understanding how such volcanoes work that can be applied to other volcanoes in similar tectonic settings. The traditional concept of magma chambers containing stored, molten magma is inadequate for Soufrière Hills; instead, both petrological evidence and ground deformation suggests that hot, mafic magma rises from depth and re-melts the silicic, highly crystalline rocks beneath the volcano shortly before eruption. Even during pauses in lava eruption, magma continues to be supplied at depth beneath the volcano. The hot, mafic magma supplies a vapor phase as it degasses, which ascends to the surface and is erupted with the andesite. The vapor is rich in SO2 and HCl gases, the proportions of which vary with the rate and style of eruption. Extensive study at Soufrière Hills and elsewhere has revealed that intense shallow degassing, cooling and crystallization of magma causes development of large rheological gradients and overpressures. After the observation of pulsatory magma effusion and transitions between effusive and explosive styles of eruption, models were developed to describe pressurization, flow rate and escape of gas in the upper few hundred meters of the conduit. A number of large lava dome collapses have offered an opportunity to observe the phenomena associated with the instability of lava domes, volcanic flows and the interaction between these flows and seawater. Large- volume pyroclastic flows have entered the sea and caused hydrovolcanic activity and energetic surges. The rate

  1. Metadata Management on the SCEC PetaSHA Project: Helping Users Describe, Discover, Understand, and Use Simulation Data in a Large-Scale Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Okaya, D.; Deelman, E.; Maechling, P.; Wong-Barnum, M.; Jordan, T. H.; Meyers, D.

    2007-12-01

    distributed computational facilities such as the NSF TeraGrid. Different types of metadata are produced and captured within the scientific workflows. One workflow within PetaSHA ("Earthworks") performs a linear sequence of tasks with workflow and seismological metadata preserved. Downstream scientific codes ingest these metadata produced by upstream codes. The seismological metadata uses attribute-value pairing in plain text; an identified need is to use more advanced handling methods. Another workflow system within PetaSHA ("Cybershake") involves several complex workflows in order to perform statistical analysis of ground shaking due to thousands of hypothetical but plausible earthquakes. Metadata management has been challenging due to its construction around a number of legacy scientific codes. We describe difficulties arising in the scientific workflow due to the lack of this metadata and suggest corrective steps, which in some cases include the cultural shift of domain science programmers coding for metadata.

  2. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    SciTech Connect

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  3. Issues and Advances in Understanding Landslide-Generated Tsunamis: Toward a Unified Model

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Locat, J.; Lee, H. J.; Lynett, P. J.; Parsons, T.; Kayen, R. E.; Hart, P. E.

    2008-12-01

    The physics of tsunamis generated from submarine landslides is highly complex, involving a cross- disciplinary exchange in geophysics. In the 10 years following the devastating Papua New Guinea tsunami, there have been significant advances in understanding landslide-generated tsunamis. However, persistent issues still remain related to submarine landslide dynamics that may be addressed with collection of new marine geologic and geophysical observations. We review critical elements of landslide tsunamis in the hope of developing a unified model that encompasses all stages of the process from triggering to tsunami runup. Because the majority of non-volcanogenic landslides that generate tsunamis are triggered seismically, advances in understanding inertial displacements and changes in strength and rheologic properties in response to strong-ground motion need to be included in a unified model. For example, interaction between compliant marine sediments and multi-direction ground motion results in greater permanent plastic displacements than predicted by traditional rigid-block analysis. When considering the coupling of the overlying water layer in the generation of tsunamis, the post-failure dynamics of landslides is important since the overall rate of seafloor deformation for landslides is less than or comparable to the phase speed of tsunami waves. As such, the rheologic and mechanical behavior of the slide material needs to be well understood. For clayey and silty debris flows, a non-linear (Herschel-Bulkley) and bilinear rheology have recently been developed to explain observed runout distances and deposit thicknesses. An additional complexity to this rheology is the inclusion of hydrate-laden sediment that commonly occurs along continental slopes. Although it has been proposed in the past that gas hydrate dissociation may provide potential failure planes for slide movement, it is unclear how zones of rigid hydrate-bearing sediment surrounded by a more viscoplastic

  4. The NEDICES Study: Recent Advances in the Understanding of the Epidemiology of Essential Tremor

    PubMed Central

    Romero, Juan Pablo; Benito-León, Julián; Bermejo-Pareja, Félix

    2012-01-01

    Background Essential tremor (ET) is the most common tremor disorder. ET has classically been viewed as a benign monosymptomatic condition. Yet over the past 10 years, a growing body of evidence indicates that this is a progressive condition that is clinically heterogeneous, and may be associated with a variety of different features. Large epidemiological studies such as the Neurological Disorders of Central Spain (NEDICES), a longitudinal, population-based survey, have contributed significantly to the changing view of the disease. Our aim is to review some of the main results of NEDICES within the larger framework of the epidemiology of ET. Methods Data for this review were gathered from all our articles published up to October 2011 regarding NEDICES study and “Essential Tremor”. Results We have published 18 articles up to October 2011. The prevalence, incidence, and mortality of ET were analyzed in this cohort. In addition, ET was found to be associated with increased frailty and low morale, as well as with a series of non-motor manifestations, including cognitive deficits, mild cognitive impairment, dementia, depressive symptoms, and hearing impairment. Finally, the link between ET and Parkinson's disease (PD) was formally quantified in the NEDICES study, which demonstrated that the risk of developing incident PD was 4.3 times higher in prevalent ET cases than in age-matched controls without ET. Conclusions This review highlights the contributions of NEDICES towards the advancement of current knowledge of the epidemiology and clinical features of ET, and emphasizes the importance of population-based studies towards the understanding of complex, ageing-related diseases. PMID:23439396

  5. Experimental alluvial fans: Advances in understanding of fan dynamics and processes

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy E.

    2015-09-01

    Alluvial fans are depositional systems that develop because of a disparity between the upstream and downstream sediment transport capacity of a system, usually at the base of mountain fronts as rivers emerge from the constrained mountain area onto the plain. They are dynamic landforms that are prone to abrupt changes on a geomorphological (decades to centuries) time scale, while also being long-term deposition features that preserve sedimentary strata and are sensitive indictors of environmental change. The complexity of interactions between catchment characteristics, climate, tectonics, internal system feedbacks, and environmental processes on field alluvial fans means that it is difficult to isolate individual variables in a field setting; therefore, the controlled conditions afforded by experimental models has provided a novel technique to overcome some of these complexities. The use of experimental models of alluvial fans has a long history and these have been implemented over a range of different research areas utilising various experimental designs. Using this technique, important advances have been made in determining the primary factors influencing fan slope, understanding of avulsion dynamics, identifying autogenic processes driving change on fan systems independent of any change in external conditions, and the mechanics of flow and flood risk on alluvial fans, to name a few. However, experiments cannot be carried out in isolation. Thus, combining the findings from experimental alluvial fans with field research and numerical modelling is important and, likewise, using these techniques to inform experimental design. If this can be achieved, there is potential for future experimental developments to explore key alluvial fan issues such as stratigraphic preservation potential and simulating extra terrestrial fan systems.

  6. Advancing our understanding of plant adaptation to metal polluted environments - new insights from Biscutella laevigata

    NASA Astrophysics Data System (ADS)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Frérot, Hélène; Vollenweider, Pierre

    2016-04-01

    The legacy of industrial pollution alters ecosystems, particularly at post-mining sites where metal trace elements have created toxic conditions that trigger rapid plant adaptation. Apart from the purely scientific merits, in-depth knowledge of the mechanisms underlying plant adaptation to metal contamination is beneficial for the economic and societal sectors because of its application in bioengineering (e.g. phytoremediation or biofortification). An important process is the evolution and/or enhancement of metal tolerance, a trait that has predominantly been studied by applying acute metal stress on species that allocate large quantities of certain metals to their foliage (so-called hyperaccumulators). As the vast majority of vascular plants does not hyperaccumulate metals, more efforts are needed to investigate non-hyperaccumulating species and thereby broaden understanding of biological mechanisms underlying metal tolerance. The pseudometallophyte Biscutella laevigata has shown potential in this respect, but its characteristics are insufficiently understood. We determined the zinc tolerance level and various plant responses to environmentally relevant zinc concentrations in ten metallicolous and non-metallicolous B. laevigata populations. In a two-phase hydroponic experiment, we scored multiple morphological and physiological traits (e.g. biomass, visible stress symptoms, element content in foliage) and assessed phenotypic variability within plant families. The structure of these quantitative traits was compared to that of neutral molecular markers to test, whether natural selection caused population differentiation in zinc tolerance. While all genotypes were tolerant compared to a zinc sensitive reference species, we found congruent trends toward higher tolerance in metallicolous compared to non-metallicolous plants. We identified the most indicative parameters for these differences and find that enhanced zinc tolerance in metallicolous populations is driven by

  7. National Center for Biomedical Ontology: advancing biomedicine through structured organization of scientific knowledge.

    PubMed

    Rubin, Daniel L; Lewis, Suzanna E; Mungall, Chris J; Misra, Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute, Christopher G; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F; Musen, Mark A

    2006-01-01

    The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease. PMID:16901225

  8. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  9. Advancement Information Resources Management: An Information Understanding Profession in Support of Philanthropy.

    ERIC Educational Resources Information Center

    Mayer, Anne E.

    Professional fundraising has given rise to a new information specialist profession. This career path, which has been known as prospect research or advancement research, should be more accurately characterized as information resources management for advancement. With primary emphasis on value-added information processes that involve analysis and…

  10. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    SciTech Connect

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology(http://bioontology.org) is a consortium that comprises leadinginformaticians, biologists, clinicians, and ontologists funded by the NIHRoadmap to develop innovative technology and methods that allowscientists to record, manage, and disseminate biomedical information andknowledge in machine-processable form. The goals of the Center are: (1)to help unify the divergent and isolated efforts in ontology developmentby promoting high quality open-source, standards-based tools to create,manage, and use ontologies, (2) to create new software tools so thatscientists can use ontologies to annotate and analyze biomedical data,(3) to provide a national resource for the ongoing evaluation,integration, and evolution of biomedical ontologies and associated toolsand theories in the context of driving biomedical projects (DBPs), and(4) to disseminate the tools and resources of the Center and to identify,evaluate, and communicate best practices of ontology development to thebiomedical community. The Center is working toward these objectives byproviding tools to develop ontologies and to annotate experimental data,and by developing resources to integrate and relate existing ontologiesas well as by creating repositories of biomedical data that are annotatedusing those ontologies. The Center is providing training workshops inontology design, development, and usage, and is also pursuing research inontology evaluation, quality, and use of ontologies to promote scientificdiscovery. Through the research activities within the Center,collaborations with the DBPs, and interactions with the biomedicalcommunity, our goal is to help scientists to work more effectively in thee-science paradigm, enhancing experiment design, experiment execution,data analysis, information synthesis, hypothesis generation and testing,and understand human disease.

  11. Detection of Explanation Obstacles in Scientific Texts: The Effect of an Understanding Task vs. an Experiment Task

    ERIC Educational Resources Information Center

    Morgado, Júlia; Otero, José; Vaz-Rebelo, Piedade; Sanjosé, Vicente; Caldeira, Helena

    2014-01-01

    The aim of this study is to analyse the effect of tasks on the detection of explanation obstacles when secondary school students read scientific texts. Students were instructed to read short passages under different task conditions, and to ask questions if necessary. Obstacle detection was operationalised in terms of the type of questions asked by…

  12. Deepening Our Understanding of Academic Inbreeding Effects on Research Information Exchange and Scientific Output: New Insights for Academic Based Research

    ERIC Educational Resources Information Center

    Horta, Hugo

    2013-01-01

    This paper analyzes the impact of academic inbreeding in relation to academic research, and proposes a new conceptual framework for its analysis. We find that mobility (or lack of) at the early research career stage is decisive in influencing academic behaviors and scientific productivity. Less mobile academics have more inward oriented…

  13. Scientific Visualisations for Developing Students' Understanding of Concepts in Chemistry: Some Findings and Some Lessons Learned

    ERIC Educational Resources Information Center

    Geelan, David; Mahaffy, Peter; Mukherjee, Michelle

    2014-01-01

    Scientific visualisations such as computer-based animations and simulations are increasingly a feature of high school Science instruction. Visualisations are adopted enthusiastically by teachers and embraced by students, and there is good evidence that they are popular and well received. There is limited evidence, however, of how effective they…

  14. Preschool Pathways to Science (PrePS[TM]): Facilitating Scientific Ways of Thinking, Talking, Doing, and Understanding

    ERIC Educational Resources Information Center

    Gelman, Rochel; Brenneman, Kimberly; Macdonald, Gay; Roman, Moises

    2009-01-01

    To ensure they're meeting state early learning guidelines for science, preschool educators need fun, age-appropriate, and research-based ways to teach young children about scientific concepts. The basis for the PBS KIDS show "Sid the Science Kid," this teaching resource helps children ages 3-5 investigate their everyday world and develop the…

  15. Final Scientific/Technical Report: ADVANCED INTEGRATION OF POWER TAKE-OFF IN VIVACE

    SciTech Connect

    Simiao, Gustavo

    2014-03-21

    Vortex Hydro Energy is commercializing a University of Michigan patented MHK device, the VIVACE converter (Vortex Induced Vibration Aquatic Clean Energy). Unlike water turbines, it does not use propeller blades. Rather, river or ocean currents flow around cylinders causing them to move up and down in Flow Induced Motions (FIM). This kinetic energy of the cylinder is then converted to electricity. Importantly, the VIVACE converter is simpler in design and more cost effective than water turbines. This project accelerated the development of the VIVACE technology. Funding from the DOE enabled VHE to accelerate the development in three ways. One was to increase the efficiency of the hydrodynamics of the system. This aided in maximizing the power output for a wide range of water speeds. The second was to design, build, and test an efficient power take-off (PTO) that converted the most power from the VIVACE cylinders into electricity. This effort was necessary because of the nature of power generated using this technology. Although the PTO uses off-the-shelf components, it is specifically tuned to the specific water flow characteristics. The third way the development was accelerated was by testing the improved Beta 1B prototype over a longer period of time in a river. The greatest benefit from the longer open-water testing-period is a better understand of the power generation characteristics of the system as well as the maintenance lifespan of the device. Renewable energy generation is one of today’s most challenging global dilemmas. The energy crisis requires tapping into every source of energy and developing every technology that can generate energy at a competitive cost within the next 50 years. Development of VIVACE will bolster domestic energy security and mitigate global climate change. There are numerous commercial and military applications for a fully developed system, which could generate clean/renewable energy from small scale (1-5kW) to medium scale (500k

  16. Advances in Frozen Ground Studies and Understanding its Role in the Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Zhang, T.

    2004-05-01

    Significant advances in frozen ground studies have been achieved over the past several decades. Knowledge and information on frozen ground would improve our understanding in local, regional, and global water cycle over the cold regions/cold seasons. Permafrost regions occupy approximately 24 percent of the land area in the Northern Hemisphere. The total volume of the excess ground ice contained in the ice-rich permafrost ranges from about 10,800 to 35,460 cubic kilometers or about 2.7 to 8.8 cm sea-level equivalent. Permafrost limits the amount of subsurface water storage and infiltration that can occur, leading to wet soils and standing surface water, unusual for a region with limited precipitation. Observational evidence indicates that permafrost warming and thawing in the Northern Hemisphere have occurred over the past several decades. Active layer thickness has increased and depth of seasonally frozen ground has decreased significantly in the Russian Arctic and Subarctic. Thickening of the active layer and melting of the excess ground ice may partly contribute to the increase of runoff over the Russian Arctic drainage basin. Increase in active layer thickness may also delay the active layer freeze-up date, possibly leading to the increase in winter river runoff. On average, nearly 50 percent of the land surface in the Northern Hemisphere experiences freeze/thaw cycles that last from a few days to several months with thickness up to several meters. The existence of a thin frozen layer near the surface essentially decouples moisture exchange between the atmosphere and deeper soils. Knowing whether the soil is frozen is important in predicting spring surface runoff and soil moisture reserve in northern United States. Coupling of soil freezing and thawing processes into the hydrological model improves the model prediction on river runoff significantly. The timing, duration, areal extent,frequency, and thickness of the near-surface soil freeze/thaw cycle have

  17. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect

    Saffer, Shelley I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  18. Toward an Understanding of the Environmental and Public Health Impacts of Unconventional Natural Gas Development: A Categorical Assessment of the Peer-Reviewed Scientific Literature, 2009-2015

    PubMed Central

    Hays, Jake; Shonkoff, Seth B. C.

    2016-01-01

    The body of science evaluating the potential impacts of unconventional natural gas development (UNGD) has grown significantly in recent years, although many data gaps remain. Still, a broad empirical understanding of the impacts is beginning to emerge amidst a swell of research. The present categorical assessment provides an overview of the peer-reviewed scientific literature from 2009–2015 as it relates to the potential impacts of UNGD on public health, water quality, and air quality. We have categorized all available original research during this time period in an attempt to understand the weight and direction of the scientific literature. Our results indicate that at least 685 papers have been published in peer-reviewed scientific journals that are relevant to assessing the impacts of UNGD. 84% of public health studies contain findings that indicate public health hazards, elevated risks, or adverse health outcomes; 69% of water quality studies contain findings that indicate potential, positive association, or actual incidence of water contamination; and 87% of air quality studies contain findings that indicate elevated air pollutant emissions and/or atmospheric concentrations. This paper demonstrates that the weight of the findings in the scientific literature indicates hazards and elevated risks to human health as well as possible adverse health outcomes associated with UNGD. There are limitations to this type of assessment and it is only intended to provide a snapshot of the scientific knowledge based on the available literature. However, this work can be used to identify themes that lie in or across studies, to prioritize future research, and to provide an empirical foundation for policy decisions. PMID:27096432

  19. Using Exoplanet Models to Explore NGSS and the Nature of Science and as a Tool for Understanding the Scientific Results from NIRCam/JWST

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; McCarthy, Donald W.; Higgins, Michelle L.; Lebofsky, Nancy R.

    2014-11-01

    Our Solar System is no longer unique. To date, about 1,800 planets are known to orbit over 1,100 other stars and nearly 50% are in multiple-planet systems. Planetary systems seem [to be] fairly common and astronomers are now finding Earth-sized planets in the Goldilocks Zone, suggesting there may be other habitable planets. To this end, characterizing the atmospheric chemistries of such planets is a major science goal of the NIRCam instrument on the James Webb Space Telescope.For NIRCam's E/PO program with the Girl Scouts of the USA, we have produced scale models and associated activities to compare the size, scale, and dynamics of the Solar System with several exoplanet systems. Our models illustrate the techniques used to investigate these systems: radial velocity, transits, direct observations, and gravitational microlensing. By comparing and contrasting these models, we place our Solar System in a more cosmic context and enable discussion of current questions within the scientific community: How do planetary systems form and evolve? Is our present definition of a planet a good definition in the context of other planetary systems? Are there other planets/moons that might harbor life as we know it?These models are appropriate for use in classrooms and conform to the Next Generation Science Standards (NGSS) through the Disciplinary Core Idea: Earth's Place in the Universe and Crosscutting Concepts—Patterns Scale, Portion, and Quantity; and Systems and System Models. NGSS also states that the Nature of Science (NOS) should be an “essential part” of science education. NOS topics include, for example, understanding that scientific investigations use a variety of methods, that scientific knowledge is based on empirical evidence, that scientific explanations are open to revision in light of new evidence, and an understanding the nature of scientific models.

  20. Toward an Understanding of the Environmental and Public Health Impacts of Unconventional Natural Gas Development: A Categorical Assessment of the Peer-Reviewed Scientific Literature, 2009-2015.

    PubMed

    Hays, Jake; Shonkoff, Seth B C

    2016-01-01

    The body of science evaluating the potential impacts of unconventional natural gas development (UNGD) has grown significantly in recent years, although many data gaps remain. Still, a broad empirical understanding of the impacts is beginning to emerge amidst a swell of research. The present categorical assessment provides an overview of the peer-reviewed scientific literature from 2009-2015 as it relates to the potential impacts of UNGD on public health, water quality, and air quality. We have categorized all available original research during this time period in an attempt to understand the weight and direction of the scientific literature. Our results indicate that at least 685 papers have been published in peer-reviewed scientific journals that are relevant to assessing the impacts of UNGD. 84% of public health studies contain findings that indicate public health hazards, elevated risks, or adverse health outcomes; 69% of water quality studies contain findings that indicate potential, positive association, or actual incidence of water contamination; and 87% of air quality studies contain findings that indicate elevated air pollutant emissions and/or atmospheric concentrations. This paper demonstrates that the weight of the findings in the scientific literature indicates hazards and elevated risks to human health as well as possible adverse health outcomes associated with UNGD. There are limitations to this type of assessment and it is only intended to provide a snapshot of the scientific knowledge based on the available literature. However, this work can be used to identify themes that lie in or across studies, to prioritize future research, and to provide an empirical foundation for policy decisions.

  1. Toward an Understanding of the Environmental and Public Health Impacts of Unconventional Natural Gas Development: A Categorical Assessment of the Peer-Reviewed Scientific Literature, 2009-2015.

    PubMed

    Hays, Jake; Shonkoff, Seth B C

    2016-01-01

    The body of science evaluating the potential impacts of unconventional natural gas development (UNGD) has grown significantly in recent years, although many data gaps remain. Still, a broad empirical understanding of the impacts is beginning to emerge amidst a swell of research. The present categorical assessment provides an overview of the peer-reviewed scientific literature from 2009-2015 as it relates to the potential impacts of UNGD on public health, water quality, and air quality. We have categorized all available original research during this time period in an attempt to understand the weight and direction of the scientific literature. Our results indicate that at least 685 papers have been published in peer-reviewed scientific journals that are relevant to assessing the impacts of UNGD. 84% of public health studies contain findings that indicate public health hazards, elevated risks, or adverse health outcomes; 69% of water quality studies contain findings that indicate potential, positive association, or actual incidence of water contamination; and 87% of air quality studies contain findings that indicate elevated air pollutant emissions and/or atmospheric concentrations. This paper demonstrates that the weight of the findings in the scientific literature indicates hazards and elevated risks to human health as well as possible adverse health outcomes associated with UNGD. There are limitations to this type of assessment and it is only intended to provide a snapshot of the scientific knowledge based on the available literature. However, this work can be used to identify themes that lie in or across studies, to prioritize future research, and to provide an empirical foundation for policy decisions. PMID:27096432

  2. Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review.

    PubMed

    McCleskey, T Mark; Buchner, Virginia; Field, R William; Scott, Brian L

    2009-01-01

    In this review we summarize the work conducted over the past decade that has advanced our knowledge of pulmonary diseases associated with exposure to beryllium that has provided a molecular-based understanding of the chemistry, immunopathology, and immunogenetics of beryllium toxicity. Beryllium is a strong and lightweight metal that generates and reflects neutrons, resists corrosion, is transparent to X-rays, and conducts electricity. Beryllium is one of the most toxic elements on the periodic table, eliciting in susceptible humans (a) an allergic immune response known as beryllium sensitization (BeS); (b) acute beryllium disease, an acutely toxic, pneumonitis-like lung condition resulting from exposure to high beryllium concentrations that are rarely seen in modern industry; and (c) chronic beryllium disease (CBD) following either high or very low levels of exposure. Because of its exceptional strength, stability, and heat-absorbing capability, beryllium is used in many important technologies in the modern world. In the early 1940s, beryllium was recognized as posing an occupational hazard in manufacturing and production settings. Although acute beryllium disease is now rare, beryllium is an insidious poison with a latent toxicity and the risk of developing CBD persists. Chronic beryllium disease-a systemic granulomatous lung disorder caused by a specific delayed immune response to beryllium within a few months to several decades after exposure-has been called the "unrecognized epidemic". Although not a disease in itself, BeS, the innate immune response to beryllium identified by an abnormal beryllium lymphocyte proliferation test result, is a population-based predictor of CBD. Genetic susceptibility to CBD is associated with alleles of the major histocompatibility gene, human leukocyte antigen DP (HLA-DP) containing glutamic acid at the 69th position of the beta chain (HLA-DPbeta-E69). Other genes are likely to be involved in the disease process, and research on

  3. Design and fundamental understanding of Minimum Quantity Lubrication (MQL) assisted grinding using advanced nanolubricants

    NASA Astrophysics Data System (ADS)

    Kalita, Parash

    Abrasive grinding is widely used across manufacturing industry for finishing parts and components requiring smooth superficial textures and precise dimensional tolerances and accuracy. Unlike any other machining operations, the complex thermo-mechanical processes during grinding produce excessive friction-induced energy consumption, heat, and intense contact seizures. Lubrication and cooling from grinding fluids is crucial in minimizing the deleterious effects of friction and heat to maximize the output part quality and process efficiency. The conventional flood grinding approach of an uneconomical application of large quantities of chemically active fluids has been found ineffective to provide sufficient lubrication and produces waste streams and pollutants that are hazardous to human health and environment. Application of Minimum Quantity Lubrication (MQL) that cuts the volumetric fluid consumption by 3-4 orders of magnitude have been extensively researched in grinding as a high-productivity and environmentally-sustainable alternative to the conventional flood method. However, the lubrication performance and productivity of MQL technique with current fluids has been critically challenged by the extreme thermo-mechanical conditions of abrasive grinding. In this research, an MQL system based on advanced nanolubricants has been proposed to address the current thermo-mechanical challenges of MQL grinding and improve its productivity. The nanolubricants were composed of inorganic Molybdenum Disulphide nanoparticles (≈ 200 nm) intercalated with organic macromolecules of EP/AW property, dispersed in straight (base) oils---mineral-based paraffin and vegetable-based soybean oil. After feasibility investigations into the grindability of cast iron using MQL with nanolubricants, this research focused on the fundamental understanding of tribological behavior and lubricating mechanisms of nanolubricants as a method to improve the productivity of MQL-assisted surface grinding

  4. Advancing Understanding Using Nonaka's Model of Knowledge Creation and Problem-Based Learning

    ERIC Educational Resources Information Center

    Tee, Meng Yew; Lee, Shuh Shing

    2013-01-01

    Nonaka's model of knowledge creation can provide guidance for designing learning environments and activities. However, Bereiter is critical of the model because it does not address whether understanding is deepened in the process of socialization, externalization, combination and internalization. To address this issue of understanding, this…

  5. An update on recent advances in the understanding of non-neoplastic diseases of the salivary glands.

    PubMed

    Scully, C

    1992-08-01

    The recent advances in the understanding of the non-neoplastic disorders of salivary glands are summarised in this paper. The common infections are discussed and newer aspects of juvenile recurrent parotitis outlined. The benign lympho-epithelial lesion is reviewed in relation to Sjogren's syndrome and the salivary gland pathology seen in relation to infection with human immunodeficiency virus. A range of unusual conditions that may affect the minor salivary glands in particular, and can cause diagnosis dilemmas, is summarised.

  6. Understanding Fluorescence Measurements through a Guided-Inquiry and Discovery Experiment in Advanced Analytical Laboratory

    ERIC Educational Resources Information Center

    Wilczek-Vera, Grazyna; Salin, Eric Dunbar

    2011-01-01

    An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…

  7. Advancing One's Understanding of School Counseling through Publication: The "What" and "How" of Writing an Article

    ERIC Educational Resources Information Center

    Klein, James F.

    2008-01-01

    Writing for publication is a great privilege and one that should be approached deliberately as well as innovatively. As experts in our respective fields, writing for publication is an opportunity to share original thoughts, take positions, and/or report findings as well as simultaneously advance foundational knowledge in our areas. The power and…

  8. Annual Research Review: Impact of Advances in Genetics in Understanding Developmental Psychopathology

    ERIC Educational Resources Information Center

    Addington, Anjene M.; Rapoport, Judith L.

    2012-01-01

    It was hoped that diagnostic guidelines for, and treatment of, child psychiatric disorders in DSM-5 would be informed by the wealth of clinical genetic research related to neurodevelopmental disorders. In spite of remarkable advances in genetic technology, this has not been the case. Candidate gene, genome-wide association, and rare copy number…

  9. How Syntactic Reasoners Can Develop Understanding, Evaluate Conjectures, and Generate Counterexamples in Advanced Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith

    2009-01-01

    This paper presents a case study of a highly successful student whose exploration of an advanced mathematical concept relies predominantly on syntactic reasoning, such as developing formal representations of mathematical ideas and making logical deductions. This student is observed as he learns a new mathematical concept and then completes…

  10. From scientific understanding to operational utility: New concepts and tools for monitoring space weather effects on satellites

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Rodriguez, J. V.; Denig, W. F.; Redmon, R. J.; Blake, J. B.; Mazur, J. E.; Fennell, J. F.; O'Brien, T. P.; Guild, T. B.; Claudepierre, S. G.; Singer, H. J.; Onsager, T. G.; Wilkinson, D. C.

    2013-12-01

    NOAA space weather sensors have monitored the near Earth space radiation environment for more than three decades providing one of the only long-term records of these energetic particles that can disable satellites and pose a threat to astronauts. These data have demonstrated their value for operations for decades, but they are also invaluable for scientific discovery. Here we describe the development of new NOAA tools for assessing radiation impacts to satellites and astronauts working in space. In particular, we discuss the new system implemented for processing and delivering near real time particle radiation data from the POES/MetOp satellites. We also describe the development of new radiation belt indices from the POES/MetOp data that capture significant global changes in the environment needed for operational decision making. Lastly, we investigate the physical processes responsible for dramatic changes of the inner proton belt region and the potential consequences these new belts may have for satellite operations.

  11. Understanding the translation of scientific knowledge about arsenic risk exposure among private well water users in Nova Scotia.

    PubMed

    Chappells, Heather; Campbell, Norma; Drage, John; Fernandez, Conrad V; Parker, Louise; Dummer, Trevor J B

    2015-02-01

    Arsenic is a class I human carcinogen that has been identified as the second most important global health concern in groundwater supplies after contamination by pathogenic organisms. Hydrogeological assessments have shown naturally occurring arsenic to be widespread in groundwater across the northeastern United States and eastern Canada. Knowledge of arsenic risk exposure among private well users in these arsenic endemic areas has not yet been fully explored but research on water quality perceptions indicates a consistent misalignment between public and scientific assessments of environmental risk. This paper evaluates knowledge of arsenic risk exposure among a demographic cross-section of well users residing in 5 areas of Nova Scotia assessed to be at variable risk (high-low) of arsenic occurrence in groundwater based on water sample analysis. An integrated knowledge-to-action (KTA) methodological approach is utilized to comprehensively assess the personal, social and local factors shaping perception of well water contaminant risks and the translation of knowledge into routine water testing behaviors. Analysis of well user survey data (n=420) reveals a high level of confidence in well water quality that is unrelated to the relative risk of arsenic exposure or homeowner adherence to government testing recommendations. Further analysis from the survey and in-depth well user interviews (n=32) finds that well users' assessments of risk are influenced by personal experience, local knowledge, social networks and convenience of infrastructure rather than by formal information channels, which are largely failing to reach their target audiences. Insights from interviews with stakeholders representing government health and environment agencies (n=15) are used to reflect on the institutional barriers that mediate the translation of scientific knowledge into public awareness and stewardship behaviors. The utilization of local knowledge brokers, community-based networks and

  12. How to Generate Understanding of the Scientific Process in Introductory Biology: A Student-Designed Laboratory Exercise on Yeast Fermentation

    ERIC Educational Resources Information Center

    Collins, Linda T.; Bell, Rebekah P.

    2004-01-01

    Heavy faculty teaching loads and limited funds biology teachers designed certain objectives in order to increase the understandability of the subject matter of the laboratory exercises they write. In relation to these objectives an old "cookbook" laboratory exercise on yeast fermentation is introduced which involve students asking questions,…

  13. Using Memes and Memetic Processes to Explain Social and Conceptual Influences on Student Understanding about Complex Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Yoon, Susan

    2008-01-01

    This study investigated seventh grade learners' decision making about genetic engineering concepts and applications. A social network analyses supported by technology tracked changes in student understanding with a focus on social and conceptual influences. Results indicated that several social and conceptual mechanisms potentially affected how…

  14. Understanding the Quality of Data: A Concept Map for "The Thinking behind the Doing" in Scientific Practice

    ERIC Educational Resources Information Center

    Roberts, Ros; Johnson, Philip

    2015-01-01

    Recent school science curriculum developments in many countries emphasise that scientists derive evidence for their claims through different approaches; that such practices are bound up with disciplinary knowledge; and that the quality of data should be appreciated. This position paper presents an understanding of the validity of data as a set of…

  15. Physiology of Penile Erection—A Brief History of the Scientific Understanding up till the Eighties of the 20th Century

    PubMed Central

    2015-01-01

    Abstract Introduction Understanding the physiology of penile erection is important for all who work in the field of sexual medicine. Aim The aim of this study was to highlight and analyze historical aspects of the scientific understanding of penile erection. Methods (i) Review of the chapters on the physiology of erection out of the author's collection of books dealing with male sexual functioning published in the German, French, Dutch, and English language in between 1780 and 1940. (ii) Review of the topic “physiology of penile erection” of relevant chapters of C lassical writings on erectile dysfunction. A n annotated collection of original texts from three millennia, including the study of all relevant references mentioned in these books. Main Outcome Measure The main outcome measure used for the study was the scientific understanding of the physiology of penile erection. Results In Antiquity, Galen considered penile erection as the result the accumulation of air. His ideas so dominated medieval medicine that nearly everyone then alive was a Galenist. The beginning of the Renaissance shows meaningful examples of experimental scientific work on the penis. Da Vinci correctly concluded that erections were caused by blood, and in the 18th century, Von Haller from Switzerland was the first who explained that erections were under the control of the nervous system. In the 19th century, a mindset that emphasized on experimentation determined a new direction, namely experimental physiology. Animal studies clarified that stimulation of the nervi erigentes‐induced small muscle relaxation in the corpora cavernosa. Nearly all were published in the German language. That may be one of the reasons that the existence of the concept of smooth muscle relaxation remained controversial until the first World Congress on Impotence in 1984 in Paris. Conclusions As the Renaissance's innovative research defined neural and vascular physiologic phenomena responsible for penile

  16. Visual representation of scientific information.

    PubMed

    Wong, Bang

    2011-02-15

    Great technological advances have enabled researchers to generate an enormous amount of data. Data analysis is replacing data generation as the rate-limiting step in scientific research. With this wealth of information, we have an opportunity to understand the molecular causes of human diseases. However, the unprecedented scale, resolution, and variety of data pose new analytical challenges. Visual representation of data offers insights that can lead to new understanding, whether the purpose is analysis or communication. This presentation shows how art, design, and traditional illustration can enable scientific discovery. Examples will be drawn from the Broad Institute's Data Visualization Initiative, aimed at establishing processes for creating informative visualization models.

  17. Satellite soil moisture for advancing our understanding of earth system processes and climate change

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; de Jeu, Richard

    2016-06-01

    Soil moisture products obtained from active and passive microwave satellites have reached maturity during the last decade (De Jeu and Dorigo, 2016): On the one hand, research algorithms that were initially applied to sensors designed for other purposes, e.g., for measuring wind speed (e.g. the Advanced Scatterometer (ASCAT)), sea ice, or atmospheric parameters (e.g. the TRMM Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometer - Earth Observing System AMSR-E), have developed into fully operational products. On the other hand, dedicated soil moisture satellite missions were designed and launched by ESA (the Soil Moisture Ocean Salinity (SMOS) mission) and NASA (the Soil Moisture Active Passive (SMAP) mission).

  18. Understanding advanced theory of mind and empathy in high-functioning adults with autism spectrum disorder.

    PubMed

    Mathersul, Danielle; McDonald, Skye; Rushby, Jacqueline A

    2013-01-01

    It has been argued that higher functioning individuals with autism spectrum disorders (ASDs) have specific deficits in advanced but not simple theory of mind (ToM), yet the questionable ecological validity of some tasks reduces the strength of this assumption. The present study employed The Awareness of Social Inference Test (TASIT), which uses video vignettes to assess comprehension of subtle conversational inferences (sarcasm, lies/deception). Given the proposed relationships between advanced ToM and cognitive and affective empathy, these associations were also investigated. As expected, the high-functioning adults with ASDs demonstrated specific deficits in comprehending the beliefs, intentions, and meaning of nonliteral expressions. They also had significantly lower cognitive and affective empathy. Cognitive empathy was related to ToM and group membership whereas affective empathy was only related to group membership. PMID:23799244

  19. Korean preschoolers' advanced inhibitory control and its relation to other executive skills and mental state understanding.

    PubMed

    Oh, Seungmi; Lewis, Charlie

    2008-01-01

    This study assessed executive function and mental state understanding in Korean preschoolers. In Experiment 1, forty 3.5- and 4-year-old Koreans showed ceiling performance on inhibition and switching measures, although their performance on working memory and false belief was comparable to that of Western children. Experiment 2 revealed a similar advantage in a sample of seventy-six 3- and 4-year-old Koreans compared with sixty-four age-matched British children. Korean children younger than 3.5 years of age showed ceiling effects on some inhibition measures despite more stringent protocols and the link between executive function and mental state understanding was not as strong as in the British sample. The results raise key questions about the nature and development of the executive system and its relation to social understanding. PMID:18269510

  20. Bridging Identities and Disciplines: Advances and Challenges in Understanding Multiple Identities

    ERIC Educational Resources Information Center

    Phinney, Jean S.

    2008-01-01

    The chapters in this volume address the need for a better understanding of the development of intersecting identities over age and context. The chapters provide valuable insights into the development of identities, particularly group identities. They highlight common processes across identities, such as the role of contrast and comparison and the…

  1. The Understanding by Design Guide to Advanced Concepts in Creating and Reviewing Units

    ERIC Educational Resources Information Center

    McTighe, Jay; Wiggins, Grant

    2012-01-01

    Regardless of your stage at implementing the design tools and using the improved template for Understanding by Design[R] (UbD), this companion to "The UbD Guide to Creating High-Quality Units" is essential for taking your work to a higher plane. This volume features a set of hands-on modules containing worksheets, models, and self-assessments that…

  2. Gerontology found me: gaining understanding of advanced practice nurses in geriatrics.

    PubMed

    Campbell-Detrixhe, Dia D; Grassley, Jane S; Zeigler, Vicki L

    2013-10-01

    Examining the meanings of the experiences of advanced practice nurses (APNs) who chose to work with older adults and why they continue to work with this population was the focus of this hermeneutic qualitative research study. Twelve geriatric APNs currently practicing in two South Central states were interviewed using an open-ended interview guide. Using Gadamerian hermeneutics, the researchers identified Gerontology Found Me as the significant expression that reflected the fundamental meaning of the experience as a whole. Four themes emerged that further described the meanings of the participants' personal, educational, and professional experiences: Becoming a Gerontology Nurse, Being a Gerontology Nurse, Belonging to Gerontology, and Bringing Others to Gerontology. This study concluded that APNs' personal and professional experiences were more influential than educational experiences to become geriatric nurses, and having these personal and professional experiences of being in relationship with older individuals further contributed to their choice of gerontology.

  3. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice.

    PubMed

    Rubin, Nicole; Harrison, Michael R; Krainock, Michael; Kim, Richard; Lien, Ching-Ling

    2016-10-01

    Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models.

  4. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS)

    PubMed Central

    Teachey, David T.; Seif, Alix E.; Grupp, Stephan A.

    2010-01-01

    Summary Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of T cell dysregulation caused by defective Fas-mediated apoptosis. Patients with ALPS can develop a myriad of clinical manifestations including lymphadenopathy, hepatosplenomegaly, autoimmunity and increased rates of malignancy. ALPS may be more common that originally thought, and testing for ALPS should be considered in patients with unexplained lymphadenopathy, hepatosplenomegaly, and/or autoimmunity. As the pathophysiology of ALPS is better characterized, a number of targeted therapies are in preclinical development and clinical trials with promising early results. This review describes the clinical and laboratory manifestations found in ALPS patients, as well as the molecular basis for the disease and new advances in treatment. PMID:19930184

  5. Challenges and Opportunities for Advancing Ionosphere-Thermosphere Understanding through Remote Sensing from Space (Invited)

    NASA Astrophysics Data System (ADS)

    Meier, R. R.

    2013-12-01

    The ionosphere and thermosphere (IT) system was among the first fields explored at the beginning of the space age. Much progress in understanding the system has been made over the ensuing decades, so much so that the vernacular has evolved from 'IT Exploration' to 'Space Weather'. This evolution is largely a consequence of the recognition that space weather can seriously compromise a host of technological systems in space and on the ground. Societal demands for forecasting space weather place extraordinary requirements on both observational capabilities and detailed understanding. Important challenges remain to be addressed in order to approach a level of capability similar to that of tropospheric weather. These include understanding of the IT response to forcing from solar radiation and solar wind, to forcing from lower altitude processes, understanding of the internal processes that constitute the responses, and identification of the causes of long-term climate change. A systematic approach for meeting many of the challenges has been laid out in the Solar and Space Physics 2012 Decadal Survey. Several space missions have been recommended for implementation in the latter part of the decade. However, near term opportunities to lay the foundation for these missions come with the selection by NASA of ICON and GOLD. Their operational periods are expected to overlap with each other as well as with complementary missions from other agencies, such as SSULI, SSUSI, and COSMIC. Remote sensing instrumentation on these missions fulfills a uniquely important role. From low earth orbit, limb imagers deliver altitude profiles of composition, temperature and winds on local and regional scales. Earth disk imagers from a high altitude perspective not only provide context for local observations, but also column measurements of the O/N2 ratio and temperature. The O/N2 ratio has proven to be an exceptionally useful diagnostic of IT dynamics, especially when paired with independent

  6. Advances in understanding the pathogenesis of the red cell volume disorders.

    PubMed

    Badens, Catherine; Guizouarn, Hélène

    2016-09-01

    Genetic defects of erythrocyte transport proteins cause disorders of red blood cell volume that are characterized by abnormal permeability to the cations Na(+) and K(+) and, consequently, by changes in red cell hydration. Clinically, these disorders are associated with chronic haemolytic anaemia of variable severity and significant co-morbidities, such as iron overload. This review provides an overview of recent insights into the molecular basis of this group of rare anaemias involving cation channels and transporters dysfunction. To date, a total of 5 different membrane proteins have been reported to be responsible for volume homeostasis alteration when mutated, 3 of them leading to overhydrated cells (AE1 [also termed SLC4A1], RHAG and GLUT1 [also termed SCL2A1) and 2 others to dehydrated cells (PIEZO1 and the Gardos Channel). These findings are not only of basic scientific interest, but also of direct clinical significance for improving diagnostic procedures and identify potential approaches for novel therapeutic strategies. PMID:27353637

  7. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  8. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications

    PubMed Central

    Yin, Shen; Niswender, Colleen M.

    2014-01-01

    The metabotropic glutamate (mGlu) receptors are a group of Class C Seven Transmembrane Spanning/G Protein Coupled Receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission in both the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, especially the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members. PMID:24793301

  9. Pediatric Cerebellar Tumors: Emerging Imaging Techniques and Advances in Understanding of Genetic Features.

    PubMed

    Choudhri, Asim F; Siddiqui, Adeel; Klimo, Paul

    2016-08-01

    Cerebellar tumors are the most common group of solid tumors in children. MR imaging provides an important role in characterization of these lesions, surgical planning, and postsurgical surveillance. Preoperative imaging can help predict the histologic subtype of tumors, which can provide guidance for surgical planning. Beyond histology, pediatric brain tumors are undergoing new classification schemes based on genetic features. Intraoperative MR imaging has emerged as an important tool in the surgical management of pediatric brain tumors. Effective understanding of the imaging features of pediatric cerebellar tumors can benefit communication with neurosurgeons and neuro-oncologists and can improve patient management.

  10. Recent advances in understanding the molecular basis of group B Streptococcus virulence

    PubMed Central

    Maisey, Heather C.; Doran, Kelly S.; Nizet, Victor

    2009-01-01

    Group B Streptococcus commonly colonises healthy adults without symptoms, yet under certain circumstances displays the ability to invade host tissues, evade immune detection and cause serious invasive disease. Consequently, Group B Streptococcus remains a leading cause of neonatal pneumonia, sepsis and meningitis. Here we review recent information on the bacterial factors and mechanisms that direct host–pathogen interactions involved in the pathogenesis of Group B Streptococcus infection. New research on host signalling and inflammatory responses to Group B Streptococcus infection is summarised. An understanding of the complex interplay between Group B Streptococcus and host provides valuable insight into pathogen evolution and highlights molecular targets for therapeutic intervention. PMID:18803886

  11. Pediatric Cerebellar Tumors: Emerging Imaging Techniques and Advances in Understanding of Genetic Features.

    PubMed

    Choudhri, Asim F; Siddiqui, Adeel; Klimo, Paul

    2016-08-01

    Cerebellar tumors are the most common group of solid tumors in children. MR imaging provides an important role in characterization of these lesions, surgical planning, and postsurgical surveillance. Preoperative imaging can help predict the histologic subtype of tumors, which can provide guidance for surgical planning. Beyond histology, pediatric brain tumors are undergoing new classification schemes based on genetic features. Intraoperative MR imaging has emerged as an important tool in the surgical management of pediatric brain tumors. Effective understanding of the imaging features of pediatric cerebellar tumors can benefit communication with neurosurgeons and neuro-oncologists and can improve patient management. PMID:27423803

  12. Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites

    NASA Astrophysics Data System (ADS)

    Saraf, Arun K.; Rawat, Vineeta; Choudhury, Swapnamita; Dasgupta, Sudipta; Das, Josodhir

    2009-12-01

    Stresses building up during an earthquake preparation phase also manifest themselves in the form of a so called increased land surface temperature (LST) leading to a thermal precursor prior to the earthquake event. This phenomenon has now been validated by our observations of short-term thermal anomalies detected by infrared satellite sensors for several recent past earthquakes around the world. The rise in infrared radiance temperature was seen to vary between 5 and 12 °C for different earthquakes. We discuss in this paper different explanations for the generation of such anomalies that have been offered. Emission of gases due to the opening and closure of micropores upon induced stresses and also the participation of ground water have been propounded as a possible cause for generation of thermal anomalies. Seismo-ionosphere coupling, by which gases like radon move to the earth-atmosphere interface and cause air ionization thus bringing about a change in air temperature, relative humidity, etc., has been put forth by some workers. A mechanism of low frequency electromagnetic emission was tested and experimented by scientists with rock masses in stressed conditions as those that exist at tectonic locations. The workers proposed the positive hole pair theory, which received support from several scientific groups. Positive holes (sites of electron deficiency) are activated in stressed rocks from pre-existing yet dormant positive hole pairs (PHPs) and their recombination at rock-air interface leads to a LST rise. A combination of remote sensing detection of rock mechanics behavior with a perception of chemistry and geophysics has been applied to propose the remote sensing rock mechanics theory. Remote sensing detections of such anomalies confirm so far proposed lab theories for such a hotly debated field as earthquake precursor study by providing unbiased observations with consistency in time and space distribution.

  13. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants.

    PubMed

    Wang, Chung-Ju R; Tseng, Ching-Chih

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduced cells, followed by the development of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction pathway found in 400 species of flowering plants. An understanding of the regulation of entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the key gene for entry into meiosis, and increasing evidence has shown that the apomictic pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis during sexual reproduction or for its omission in the apomictic pathway still remains largely unknown. Here we review the current understanding of meiosis initiation and the apomictic pathway and raised several questions that are awaiting further investigation.

  14. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants.

    PubMed

    Wang, Chung-Ju R; Tseng, Ching-Chih

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduced cells, followed by the development of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction pathway found in 400 species of flowering plants. An understanding of the regulation of entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the key gene for entry into meiosis, and increasing evidence has shown that the apomictic pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis during sexual reproduction or for its omission in the apomictic pathway still remains largely unknown. Here we review the current understanding of meiosis initiation and the apomictic pathway and raised several questions that are awaiting further investigation. PMID:25295051

  15. An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass

    SciTech Connect

    Ju, Xiaohui; Engelhard, Mark H.; Zhang, Xiao

    2013-01-17

    A deep understanding of biomass recalcitrance has been hampered by the intricate and heterogeneous nature of pretreated biomass substrates obtained from random deconstruction methods. In this study, we established a unique methodology based on chemical pulping principles to create "reference substrates" with intact cellulose fibers and controlled morphological and chemical properties that enable us to investigate the individual effect of xylan, bulk, and surface lignin content on enzymatic hydrolysis. We also developed and demonstrated an X-ray photoelectron spectroscopy (XPS) technique for quantifying surface lignin content on biomass substrates. The results from this study show that, apart from its hindrance effect, xylan can facilitate cellulose fibril swelling and thus create more accessible surface area, which improves enzyme and substrate interactions. Surface lignin has a significant impact on enzyme adsorption kinetics and hydrolysis rate. Advanced understanding of xylan, bulk, and surface lignin effects provides critical information for an effective biomass conversion process.

  16. Recent Advances in Understanding and Mitigating Adipogenic and Metabolic Effects of Antipsychotic Drugs

    PubMed Central

    Gohlke, Julia M.; Dhurandhar, Emily J.; Correll, Christoph U.; Morrato, Elaine H.; Newcomer, John W.; Remington, Gary; Nasrallah, Henry A.; Crystal, Stephen; Nicol, Ginger; Allison, David B.

    2012-01-01

    Although offering many benefits for several psychiatric disorders, antipsychotic drugs (APDs) as a class have a major liability in their tendency to promote adiposity, obesity, and metabolic dysregulation in an already metabolically vulnerable population. The past decade has witnessed substantial research aimed at investigating the mechanisms of these adverse effects and mitigating them. On July 11 and 12, 2011, with support from 2 NIH institutes, leading experts convened to discuss current research findings and to consider future research strategies. Five areas where significant advances are being made emerged from the conference: (1) methodological issues in the study of APD effects; (2) unique characteristics and needs of pediatric patients; (3) genetic components underlying susceptibility to APD-induced metabolic effects; (4) APD effects on weight gain and adiposity in relation to their acute effects on glucose regulation and diabetes risk; and (5) the utility of behavioral, dietary, and pharmacological interventions in mitigating APD-induced metabolic side effects. This paper summarizes the major conclusions and important supporting data from the meeting. PMID:22754543

  17. [How far has our understanding of mechanisms of general anesthesia advanced?: preface and comments].

    PubMed

    Yamada, Yoshitsugu

    2011-05-01

    Although the great advance has been made in clinical anesthesia practice, the fundamental mechanisms of anesthetic action still remain to be an unsolved mystery. The early lipid membrane theory based on Meyer and Overton's law was taken over by the proteo-centric view of mechanism. Studies at the molecular and cellular level have shown that anesthetics act on a wide rage of functional proteins, including ligand-gated ion channels (GABA, glycine, NMDA receptors), two pore domain K channels and other ion channels. The effects on the individual channels, however, differ among various types of anesthetics. Elucidating how anesthetics work on the neuronal pathways is important to find the link between the molecular studies and in vivo action of anesthetics. Anesthesia disrupts the linkages between cortical and thalamic neurons and those among the cortical neurons, as well as depression and activation of the arousal and sleep nuclei, respectively. Functional brain imaging has revealed the global effects of general anesthetics on the human brain. Taken together, the disruption of thalamocortical connectivity and the integrative properties of the cerebral cortex might be an essential common feature of anesthetic action. PMID:21626856

  18. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    SciTech Connect

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel; Trautmann, Christina

    2015-02-01

    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss and with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.

  19. Recent Advances in Improvement of Forecast Skill and Understanding Climate Processes Using AIRS Version-5 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.

  20. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors.

    PubMed

    Liu, Guokui

    2015-03-21

    Photon upconversion in rare earth activated phosphors involves multiple mechanisms of electronic transitions. Stepwise optical excitation, energy transfer, and various nonlinear and collective light-matter interaction processes act together to convert low-energy photons into short-wavelength light emission. Upconversion luminescence from nanomaterials exhibits additional size and surface dependencies. A fundamental understanding of the overall performance of an upconversion system requires basic theories on the spectroscopic properties of solids containing rare earth ions. This review article surveys the recent progress in the theoretical interpretations of the spectroscopic characteristics and luminescence dynamics of photon upconversion in rare earth activated phosphors. The primary aspects of upconversion processes, including energy level splitting, transition probability, line broadening, non-radiative relaxation and energy transfer, are covered with an emphasis on interpreting experimental observations. Theoretical models and methods for analyzing nano-phenomena in upconversion are introduced with detailed discussions on recently reported experimental results.

  1. Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease.

    PubMed

    Sohal, Sukhwinder Singh; Ward, Chris; Danial, Wan; Wood-Baker, Richard; Walters, Eugene Haydn

    2013-06-01

    The authors have reviewed the current literature on airway inflammation and remodeling in smoking-related chronic obstructive pulmonary disease (COPD). Detailed data on airway remodeling in COPD are especially sparse and how these changes lead to decline in lung function is not well understood. Small airway fibrosis and obliteration are likely to be the main contributors to physiological airway dysfunction and occur earlier than any subsequent development of emphysema. One potential mechanism contributing to small airway fibrosis/obliteration and change in extracellular matrix is epithelial-mesenchymal transition. When associated with angiogenesis (so-called epithelial-mesenchymal transition type 3) it may well also be the link with the development of cancer, which is closely associated with COPD, predominantly in large airways. The authors have focused on our recent publications in these areas. Further investigations teasing out these mechanisms will help improve our understanding of key airway disease processes in COPD, which may have major therapeutic implications.

  2. Microstructural understanding and critical current optimization of advanced high field superconductors

    SciTech Connect

    Bonney, L.A.; Willis, T.C.; Larbalestier, D.C.

    1993-01-01

    It is of great importance to improve critical current density, J[sub c] in A15 superconductors for high field magnet applications. Most current work to improve J[sub c] in A15 wires concentrates on increasing the overall J[sub c] by increasing the fraction of superconducting phase in the wire, by improving the uniformity of the superconductor cross section along the length of the wire and by adjusting the strainstate of the A15 layer. The goal of the A15 work in this group was to investigate the intrinsic J[sub c] of the A15 layer itself. To do this, a better understanding of factors controlling the intrinsic J[sub c]of the Nb[sub 3]Sn was pursued.

  3. Recent advances in understanding carotenoid-derived signaling molecules in regulating plant growth and development

    PubMed Central

    Tian, Li

    2015-01-01

    Carotenoids (C40) are synthesized in plastids and perform numerous important functions in these organelles. In addition, carotenoids can be processed into smaller signaling molecules that regulate various phases of the plant’s life cycle. Besides the relatively well-studied phytohormones abscisic acid (ABA) and strigolactones (SLs), additional carotenoid-derived signaling molecules have been discovered and shown to regulate plant growth and development. As a few excellent reviews summarized recent research on ABA and SLs, this mini review will focus on progress made on identification and characterization of the emerging carotenoid-derived signals. Overall, a better understanding of carotenoid-derived signaling molecules has immediate applications in improving plant biomass production which in turn will have far reaching impacts on providing food, feed, and fuel for the growing world population. PMID:26442092

  4. Combining natural and man-made DNA tracers to advance understanding of hydrologic flow pathway evolution

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Walter, M. T.; Lyon, S. W.; Rosqvist, G. N.

    2014-12-01

    Identifying and characterizing the sources, pathways and residence times of water and associated constituents is critical to developing improved understanding of watershed-stream connections and hydrological/ecological/biogeochemical models. To date the most robust information is obtained from integrated studies that combine natural tracers (e.g. isotopes, geochemical tracers) with controlled chemical tracer (e.g., bromide, dyes) or colloidal tracer (e.g., carboxilated microspheres, tagged clay particles, microorganisms) applications. In the presented study we explore how understanding of sources and flow pathways of water derived from natural tracer studies can be improved and expanded in space and time by simultaneously introducing man-made, synthetic DNA-based microtracers. The microtracer used were composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated. Tracer experiments using both natural tracers and the DNA-based microtracers were conducted in the sub-arctic, glacierized Tarfala (21.7 km2) catchment in northern Sweden. Isotopic hydrograph separations revealed that even though storm runoff was dominated by pre-event water the event water (i.e. rainfall) contributions to streamflow increased throughout the summer season as glacial snow cover decreased. This suggests that glaciers are a major source of the rainwater fraction in streamflow. Simultaneous injections of ten unique DNA-based microtracers confirmed this hypothesis and revealed that the transit time of water traveling from the glacier surface to the stream decreased fourfold over the summer season leading to instantaneous rainwater contributions during storm events. These results highlight that integrating simultaneous tracer injections (injecting tracers at multiple places at one time) with traditional tracer methods (sampling multiple times at one place) rather than using either approach in isolation can

  5. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs12

    PubMed Central

    Gabbs, Melissa; Leng, Shan; Devassy, Jessay G; Monirujjaman, Md; Aukema, Harold M

    2015-01-01

    Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n–3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n–3 PUFAs, oxylipins from n–6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites. PMID:26374175

  6. AlpArray - an initiative to advance understanding of Alpine geodynamics

    NASA Astrophysics Data System (ADS)

    Hetényi, György; AlpArray Working Group

    2013-04-01

    AlpArray is an initiative to study the greater Alpine area with a large-scale broadband seismological network. The interested parties (currently 57 institutes in 16 countries) plan to combine their existing infrastructures into an all-out transnational effort that includes data acquisition, processing, imaging and interpretation. The experiment will encompass the greater Alpine area from the Black Forest and the Bohemian Massif in the north to the Northern Apennines in the south and from the Pannonian Basin in the east to the French Massif Central in the west. We aim to cover this region with a high-quality broadband seismometer backbone by combining the ca. 220 existing permanent stations with additional 300-340 instruments from mobile pools, all of them to be deployed from 2014-2015 until 2017. In this way, we plan to achieve homogeneous and high resolution coverage (ca. 40 km average station spacing). Furthermore, we also plan to deploy a few densely spaced targeted networks along swaths across - and in regions of - key parts of the Alpine chain on shorter time scales. These efforts on land will be combined with deployments of ca. 40-45 ocean bottom seismometers in the Mediterranean Sea. We also aim to implement the best practice for synchronizing mobile pool operation procedures and data handling: common data centre and data management procedure, free access to data to participants as soon as possible through EIDA. Data will be open to the public 3 years after the experiment ends. The main scientific goal of AlpArray is to investigate the structure and evolution of the lithosphere beneath the Alps. A primary target is the geometry and configuration of subducting slabs and their polarity switch beneath the arc. Numerous regional questions such as seismic hazard will be tackled. Targets will be imaged at several depths (e.g., from near-surface structure down to upper mantle anisotropy), scales (e.g., from local seismicity to mantle transition zone thickness

  7. NOAA's Science On a Sphere Education Program: Application of a Scientific Visualization System to Teach Earth System Science and Improve our Understanding About Creating Effective Visualizations

    NASA Astrophysics Data System (ADS)

    McDougall, C.; McLaughlin, J.

    2008-12-01

    NOAA has developed several programs aimed at facilitating the use of earth system science data and data visualizations by formal and informal educators. One of them, Science On a Sphere, a visualization display tool and system that uses networked LCD projectors to display animated global datasets onto the outside of a suspended, 1.7-meter diameter opaque sphere, enables science centers, museums, and universities to display real-time and current earth system science data. NOAA's Office of Education has provided grants to such education institutions to develop exhibits featuring Science On a Sphere (SOS) and create content for and evaluate audience impact. Currently, 20 public education institutions have permanent Science On a Sphere exhibits and 6 more will be installed soon. These institutions and others that are working to create and evaluate content for this system work collaboratively as a network to improve our collective knowledge about how to create educationally effective visualizations. Network members include other federal agencies, such as, NASA and the Dept. of Energy, and major museums such as Smithsonian and American Museum of Natural History, as well as a variety of mid-sized and small museums and universities. Although the audiences in these institutions vary widely in their scientific awareness and understanding, we find there are misconceptions and lack of familiarity with viewing visualizations that are common among the audiences. Through evaluations performed in these institutions we continue to evolve our understanding of how to create content that is understandable by those with minimal scientific literacy. The findings from our network will be presented including the importance of providing context, real-world connections and imagery to accompany the visualizations and the need for audience orientation before the visualizations are viewed. Additionally, we will review the publicly accessible virtual library housing over 200 datasets for SOS

  8. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells

    PubMed Central

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed. PMID:25037625

  9. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.

    PubMed

    Li, Jun; Song, Wei; Pan, Guangjin; Zhou, Jun

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed.

  10. ADVANCING THE UNDERSTANDING OF BEHAVIORS ASSOCIATED WITH BACILLE CALMETTE GUÉRIN INFECTION USING MULTIVARIATE ANALYSIS

    PubMed Central

    Rodriguez-Zas, Sandra L.; Nixon, Scott E.; Lawson, Marcus A.; Mccusker, Robert H.; Southey, Bruce R.; O’Connor, Jason C.; Dantzer, Robert; Kelley, Keith W.

    2014-01-01

    Behavioral indicators in the murine Bacille Calmette Guérin (BCG) model of inflammation have been studied individually; however, the variability of the behaviors across BCG levels and the mouse-to-mouse variation within BCG-treatment group are only partially understood. The objectives of this study were: 1) to gain a comprehensive understanding of sickness and depression-like behaviors in a BCG model of inflammation using multivariate approaches, and 2) to explore behavioral differences between BCG-treatment groups and among mice within group. Adult mice were challenged with either 0mg (saline), 5mg or 10mg of BCG (BCG-treatment groups: BCG0, BCG5, or BCG10, respectively) at Day 0 of the experiment. Sickness indicators included body weight changes between Day 0 and Day 2 and between Day 2 and Day 5, and horizontal locomotor activity and vertical activity (rearing) measured at Day 6. Depression-like indicators included duration of immobility in the forced swim test and in the tail suspension test at Day 6 and sucrose consumption in the sucrose preference test at Day 7. The simultaneous consideration of complementary sickness and depression-like indicators enabled a more precise characterization of behavioral changes associated with BCG-treatment and of mouse-to-mouse variation, relative to the analysis of indicators individually. Univariate and multivariate analyses confirmed differences between BCG-treatment groups in weight change early on the trial. Significant differences between BCG-treatment groups in depression-like behaviors were still measurable after Day 5. The potential for multivariate models to account for the correlation between behavioral indicators and to augment the analytical precision relative to univariate models was demonstrated both for sickness and for depression-like indicators. Unsupervised learning approaches revealed the complementary information provided by the sickness and depression-like indicators considered. Supervised learning

  11. The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances

    PubMed Central

    Rönnberg, Jerker; Lunner, Thomas; Zekveld, Adriana; Sörqvist, Patrik; Danielsson, Henrik; Lyxell, Björn; Dahlström, Örjan; Signoret, Carine; Stenfelt, Stefan; Pichora-Fuller, M. Kathleen; Rudner, Mary

    2013-01-01

    Working memory is important for online language processing during conversation. We use it to maintain relevant information, to inhibit or ignore irrelevant information, and to attend to conversation selectively. Working memory helps us to keep track of and actively participate in conversation, including taking turns and following the gist. This paper examines the Ease of Language Understanding model (i.e., the ELU model, Rönnberg, 2003; Rönnberg et al., 2008) in light of new behavioral and neural findings concerning the role of working memory capacity (WMC) in uni-modal and bimodal language processing. The new ELU model is a meaning prediction system that depends on phonological and semantic interactions in rapid implicit and slower explicit processing mechanisms that both depend on WMC albeit in different ways. It is based on findings that address the relationship between WMC and (a) early attention processes in listening to speech, (b) signal processing in hearing aids and its effects on short-term memory, (c) inhibition of speech maskers and its effect on episodic long-term memory, (d) the effects of hearing impairment on episodic and semantic long-term memory, and finally, (e) listening effort. New predictions and clinical implications are outlined. Comparisons with other WMC and speech perception models are made. PMID:23874273

  12. Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology.

    PubMed

    Schroeder, Kristin M; Hoeman, Christine M; Becher, Oren J

    2014-01-01

    Diffuse intrinsic pontine glioma (DIPG) is a high-grade glioma that originates in the pons and is seen exclusively in children. Despite numerous efforts to improve treatment, DIPG remains incurable with 90% of children dying within 2 y of diagnosis, making it one of the leading causes of death in children with brain tumors. With the advent of new genomic tools, the genetic landscape of DIPG is slowly being unraveled. The most common genetic alterations include a K27M mutation in H3.3 or H3.1, which are found in up to 78% of DIPGs, whereas p53 mutations are found in up to 77%. Other recently discovered alterations include amplification of components of the receptor tyrosine kinase/Ras/phosphatidylinositol 3-kinase signaling pathway, particularly platelet-derived growth factor receptor A. Recapitulating such alterations, genetically engineered DIPG preclinical models have been developed, and DIPG xenograft models have also been established. Both models have strengths and weaknesses but can help with the prioritization of novel agents for clinical trials for children with DIPG. As we move forward, it is important that we continue to study the complex and unique biology of DIPG and develop improved preclinical models to increase our understanding of DIPG pathogenesis, allowing translation into successful therapies in the not too distant future. PMID:24192697

  13. How Prognostic and Predictive Biomarkers Are Transforming Our Understanding and Management of Advanced Gastric Cancer

    PubMed Central

    Mulder, Karen; Spratlin, Jennifer

    2014-01-01

    Background. Gastric cancer (GC) is the second leading cause of cancer death worldwide. GC is a heterogeneous disease in terms of histology, anatomy, and epidemiology. There is also wide variability in how GC is treated in both the resectable and unresectable settings. Identification of prognostic and predictive biomarkers is critical to help direct and tailor therapy for this deadly disease. Methods. A literature search was done using Medline and MeSH terms for GC and predictive biomarkers and prognostic biomarkers. The search was limited to human subjects and the English language. There was no limit on dates. Published data and unpublished abstracts with clinical relevance were included. Results. Many potential prognostic and predictive biomarkers have been assessed for GC, some of which are becoming practice changing. This review is focused on clinically relevant biomarkers, including EGFR, HER2, various markers of angiogenesis, proto-oncogene MET, and the mammalian target of rapamycin. Conclusion. GC is a deadly and heterogeneous disease for which biomarkers are beginning to change our understanding of prognosis and management. The recognition of predictive biomarkers, such as HER2 and vascular endothelial growth factor, has been an exciting development in the management of GC, validating the use of targeted drugs trastuzumab and ramucirumab. MET is another potential predictive marker that may be targeted in GC with drugs such as rilotumumab, foretinib, and crizotinib. Further identification and validation of prognostic and predictive biomarkers has the potential transform how this deadly disease is managed. PMID:25142842

  14. Some advances towards a better understanding of wave propagation in civil engineering multiwires trands

    NASA Astrophysics Data System (ADS)

    Laguerre, L.; Treyssede, F.

    Steel members of civil engineering structures undergo degradations mainly due to corrosion and mechanical fatigue. In this context, non-destructive inspection techniques using mechanical guided waves have potential to monitor these structures. Even if wave propagation is not yet fully understood in these structures, useful results can be derived for inspection methodology by using wave modeling in cylindrical waveguide, embedded or not. However, further improvement can be expected from the development of wave propagation simulation tools for real-life structures. Indeed, several difficulties arise in the understanding of guided ultrasonic waves in such structures, partly due to the helical geometry and the inter-wire coupling effects. Moreover, these structures are pre-stressed and can be free or embedded in solid material. This paper shows some recent research results at LCPC. A first part deals with experimental results on the guided wave propagation in a commonly used steel member, the seven wire strand (i.e one straight single cylindrical wire surrounded by six helical wires). The second part aims at numerically investigating the propagation of elastic waves in free helical waveguides. A numerical method is chosen based on a semi-analytical finite element technique that relies on a specific non-orthogonal curvilinear coordinate system. This system is shown to be translationally invariant along the helix centerline so that a spatial Fourier transform can be explicitly performed along the axis to reduce the problem to two dimensions. The method can thus readily be used for the analysis of helical structures by considering the special case of no curvature. Results for single straight and helical wires are first computed. A dispersion analysis for a seven wire strand with simplified contact conditions is then performed.

  15. Some advances towards a better understanding of wave propagation in civil engineering multi-wire strands

    NASA Astrophysics Data System (ADS)

    Laguerre, L.; Treyssede, F.

    Steel members of civil engineering structures undergo degradations mainly due to corrosion and mechanical fatigue. In this context, non-destructive inspection techniques using mechanical guided waves have potential to monitor these structures. Even if wave propagation is not yet fully understood in these structures, useful results can be derived for inspection methodology by using wave modeling in cylindrical waveguide, embedded or not. However, further improvement can be expected from the development of wave propagation simulation tools for real-life structures. Indeed, several difficulties arise in the understanding of guided ultrasonic waves in such structures, partly due to the helical geometry and the inter-wire coupling effects. Moreover, these structures are pre-stressed and can be free or embedded in solid material. This paper shows some recent research results at LCPC. A first part deals with experimental results on the guided wave propagation in a commonly used steel member, the seven wire strand (i.e one straight single cylindrical wire surrounded by six helical wires). The second part aims at numerically investigating the propagation of elastic waves in free helical waveguides. A numerical method is chosen based on a semi-analytical finite element technique that relies on a specific non-orthogonal curvilinear coordinate system. This system is shown to be translationally invariant along the helix centerline so that a spatial Fourier transform can be explicitly performed along the axis to reduce the problem to two dimensions. The method can thus readily be used for the analysis of helical structures by considering the special case of no curvature. Results for single straight and helical wires are first computed. A dispersion analysis for a seven wire strand with simplified contact conditions is then performed.

  16. Recent Advances in Understanding Radiation Belt Dynamics in the Earth's Inner Zone and Slot Region

    NASA Astrophysics Data System (ADS)

    Li, X.

    2015-12-01

    Comprehensive measurements of the inner belt protons from the Relativistic Electron and Proton Telescope (REPT) onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of inner belt protons in terms of their spectrum distribution, spatial distribution, pitch angle distribution, and their different source populations. Concurrent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a highly inclined low Earth orbit, and REPT demonstrated that there exist sub-MeV electrons in the inner belt and their flux level is orders of magnitude higher than the background associated with the inner belt protons, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complicated pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator. Furthermore, it is clearly shown from MagEIS measurements that 10s - 100s keV electrons are commonly seen penetrating into the inner belt region during geomagnetic active times while protons of similar energies are hardly seen there. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.

  17. The Scientific Method: Modus Operandi or Supreme Court?

    ERIC Educational Resources Information Center

    Hailman, Jack P.

    1975-01-01

    Presents a schema to replace the generally accepted notion of the scientific method being described as an individual scientist's behavior. The schema is described as the summary process by which scientific understanding of the universe is advanced, how knowledge is created and tested, and how workable models emerge. (EB)

  18. Recent Advances in Understanding the Sources of Methylmercury to Coastal Waters

    NASA Astrophysics Data System (ADS)

    Mason, R. P.; Balcom, P.; Chen, C.; Gosnell, K. J.; Jonsson, S.; Mazrui, N.; Ortiz, V.; Seelen, E.; Schartup, A. T.; Sunderland, E. M.

    2015-12-01

    Understanding the sources of methylmercury (MeHg) to the food chain in coastal waters is important given the related health concerns from consumption of seafood containing elevated MeHg. While water column dissolved or particulate MeHg is the best predictor of bioaccumulation into pelagic organisms in coastal waters, there is debate concerning the dominant sources of MeHg to the water column, and how the relative importance of these sources vary with ecosystem characteristics. Potential sources include both external inputs from the watershed and offshore waters and internal sources (net methylation in sediments and the associated flux of MeHg to the water column and/or net MeHg production in the water column). We will report the results from our various studies in estuarine and coastal waters which have examined the distribution and partitioning of sediment and water column MeHg, and its formation and degradation, across a geographic range from Labrador, Canada to the Chesapeake Bay, USA. The ecosystems studied vary from shallow estuarine bays to deeper systems, and from salt wedge to tidally-dynamic systems. Additionally, both pristine and contaminated environments were examined. The studies examined the factors controlling the net production of MeHg in sediments, and in our more recent work, the potential formation of MeHg in the oxic water column of coastal waters. Sediment measurements (core and grab samples) included both solid phase and porewater MeHg and total mercury (HgT) and important ancillary parameters. Water column parameters included dissolved and particulate MeHg and HgT, TSS, nutrients, and DOC. Stable Hg isotope tracer incubations were used to assess the degree of methylation and demethylation in sediments and surface waters. Average suspended particle MeHg ranged from <5 to 120 pmol/g, and was 1-8% of HgT across sites. Mass balance estimates provide insights into the importance of external MeHg sources to coastal waters. We will use the

  19. Understanding what the public know and value about geoheritage sites in order to advance Earth science literacy

    NASA Astrophysics Data System (ADS)

    Vye, E. C.; Rose, W. I.

    2013-12-01

    With its impressive geology and rich cultural history, Michigan's Keweenaw Peninsula is ideally suited for Earth science education and geotourism initiatives, such as a Geopark. Geologic events that have shaped this region can be interpreted in such a way as to engage learners, not only through an intellectual connection to Earth science subject matter, but also through an emotional connection via culture, history, and sense of place. The notion that landscape is special because it is the sum total of all the interacting earth systems, including people as part of the biosphere, can be used to drive these initiatives as they affect one personally. It is speculated that most people in the Keweenaw have a basic understanding of the local cultural history and some understanding of geology. Advanced awareness and understanding of the geological significance of the Keweenaw stands to greatly enrich our community's sense of place and desire to advance further education and geotourism initiatives. It is anticipated that these initiatives will ultimately lead to increased Earth science literacy and understanding and recognition of one's own environs. This will aid in the further development of publications, teaching media, trails info, on-site museums, etc. Although the community has embraced geo-outreach thus far, it is germane to know what people value, what they know of the geology and how they connect to place. Results from semi-structured interviews administered with the aim and focus of determining what places are special to people, why they are special and how they formed will be presented in this paper. The results from this research will be used to direct the creation and continued development of geologic interpretation of our region. It is hoped that this understanding will reveal common misconceptions that can be used to improve interpretive material that not only addresses misconceptions but also connects the immediate past with the deep geologic past of the

  20. Learning from the scientific legacies of W. Brutsaert and J.-Y. Parlange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though the essence of the scientific literature is to be a repository of unaffiliated truths, scientific advancement fundamentally stems from the insights and efforts of individuals. This dichotomy can hide exemplars for young scholars of how to contribute to scientific understanding. This section o...

  1. Understanding Readers' Differing Understandings

    ERIC Educational Resources Information Center

    Kucer, Stephen B.

    2015-01-01

    This research examines the characteristics of reader understandings that vary from those stated in the text. Eighty-seven fourth graders orally read complex academic literary and scientific texts, followed by probed retellings. Retold ideas not directly supported by, or reflective of, the texts were identified. These differing understandings…

  2. Advancing Our Understanding of the Link between Statistical Learning and Language Acquisition: The Need for Longitudinal Data

    PubMed Central

    Arciuli, Joanne; Torkildsen, Janne von Koss

    2012-01-01

    Mastery of language can be a struggle for some children. Amongst those that succeed in achieving this feat there is variability in proficiency. Cognitive scientists remain intrigued by this variation. A now substantial body of research suggests that language acquisition is underpinned by a child’s capacity for statistical learning (SL). Moreover, a growing body of research has demonstrated that variability in SL is associated with variability in language proficiency. Yet, there is a striking lack of longitudinal data. To date, there has been no comprehensive investigation of whether a capacity for SL in young children is, in fact, associated with language proficiency in subsequent years. Here we review key studies that have led to the need for this longitudinal research. Advancing the language acquisition debate via longitudinal research has the potential to transform our understanding of typical development as well as disorders such as autism, specific language impairment, and dyslexia. PMID:22969746

  3. Recent advances in the understanding of endometriosis: the role of inflammatory mediators in disease pathogenesis and treatment

    PubMed Central

    Nothnick, Warren; Alali, Zahraa

    2016-01-01

    In this review, we focus on recent advancements in our understanding of the roles of inflammatory mediators in endometriosis pathophysiology and the potential for improved therapies based upon targeting these pathways. We review the association between endometriosis and inflammation and the initial promise of anti-tumor necrosis factor therapies based upon experimental evidence, and how and why these studies have not translated to the clinic. We then discuss emerging data on the role of inter-relationship among macrophage migration inhibitory factor, prostaglandin E 2, and estrogen receptor-beta, and the potential utility of targeting these factors in endometriosis treatment. In doing so, we highlight the strengths and discuss the current research on identification of novel, anti-inflammatory-based therapy and the necessity to expand experimental endpoints to include clinically relevant measures when assessing the efficacy of potential new therapies for endometriosis. PMID:26949527

  4. Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia.

    PubMed

    Fujiwara, Ryoichi; Maruo, Yoshihiro; Chen, Shujuan; Tukey, Robert H

    2015-11-15

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepatic tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. PMID:26342858

  5. Advancing Our Understanding of the Link between Statistical Learning and Language Acquisition: The Need for Longitudinal Data.

    PubMed

    Arciuli, Joanne; Torkildsen, Janne von Koss

    2012-01-01

    Mastery of language can be a struggle for some children. Amongst those that succeed in achieving this feat there is variability in proficiency. Cognitive scientists remain intrigued by this variation. A now substantial body of research suggests that language acquisition is underpinned by a child's capacity for statistical learning (SL). Moreover, a growing body of research has demonstrated that variability in SL is associated with variability in language proficiency. Yet, there is a striking lack of longitudinal data. To date, there has been no comprehensive investigation of whether a capacity for SL in young children is, in fact, associated with language proficiency in subsequent years. Here we review key studies that have led to the need for this longitudinal research. Advancing the language acquisition debate via longitudinal research has the potential to transform our understanding of typical development as well as disorders such as autism, specific language impairment, and dyslexia.

  6. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  7. Advance the Harmonious Development of Higher Education Institutions under the Guidance of the Scientific Concept of Development

    ERIC Educational Resources Information Center

    Lan, Jiang-qiao

    2006-01-01

    To build up and carry out the scientific concept of development will have a major and directive significance in solving the problems and conflicts of the development of higher education institutions (HEIs). This paper is based on drawing up the development strategy of a university, and brings up the idea of grasping the strategic opportunity,…

  8. Speaking Scientific

    ERIC Educational Resources Information Center

    Mason, Peter

    1971-01-01

    Suggests changes for science curricula which will improve the understanding...of the scientific language in which the ideas of science and technology are expressed," including increasing the students' facility with numbers, and in the future, an interdisciplinary course demonstrating the approach of physical, biological and behavioral scientists,…

  9. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    PubMed

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.

  10. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    PubMed

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed. PMID:27310182

  11. Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis.

    PubMed

    Bouain, Nadia; Doumas, Patrick; Rouached, Hatem

    2016-08-01

    Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density. This typical phenotypic change reflects complex interactions with other nutrients such as iron, and involves the activity of a large spectrum of plant hormones. Although, several key proteins involved in the regulation of root growth under Pi-deficiency have been identified in Arabidopsis, how plants adapt roots system architecture in response to Pi availability remains an open question. In the current post-genomic era, state of the art technologies like high-throughput phenotyping and sequencing platforms,"omics" methods, together with the widespread use of system biology and genome-wide association studies will help to elucidate the genetic architectures of root growth on different Pi regimes. It is clear that the large-scale characterization of molecular systems will improve our understanding of nutrient stress phenotype and biology. Herein, we summarize the recent advances and future directions towards a better understanding of Arabidopsis root developmental programs functional under Pi deficiency. Such a progress is necessary to devise strategies to improve the Pi use efficiency in plants that is an important issue for agriculture. PMID:27499680

  12. Scientific Claims versus Scientific Knowledge.

    ERIC Educational Resources Information Center

    Ramsey, John

    1991-01-01

    Provides activities that help students to understand the importance of the scientific method. The activities include the science of fusion and cold fusion; a group activity that analyzes and interprets the events surrounding cold fusion; and an application research project concerning a current science issue. (ZWH)

  13. Renewing a Scientific Society: The American Association for the Advancement of Science from World War II to 1970.

    ERIC Educational Resources Information Center

    Wolfle, Dael

    This book recounts the many challenges and successes achieved by the American Association for the Advancement of Science (AAAS) from World War II to 1970. Included are: (1) the development of the National Science Foundation; (2) Cold War concerns about the loyalty and freedom of scientists; (3) efforts to develop an effective science curriculum…

  14. Understanding the Racial and Ethnic Differences in Cost and Mortality Among Advanced Stage Prostate Cancer Patients (STROBE).

    PubMed

    Chhatre, Sumedha; Bruce Malkowicz, Stanley; Sanford Schwartz, J; Jayadevappa, Ravishankar

    2015-08-01

    The aims of the study were to understand the racial/ethnic differences in cost of care and mortality in Medicare elderly with advanced stage prostate cancer.This retrospective, observational study used SEER-Medicare data. Cohort consisted of 10,509 men aged 66 or older and diagnosed with advanced-stage prostate cancer between 2001and 2004. The cohort was followed retrospectively up to 2009. Racial/ethnic variation in cost was analyzed using 2 part-models and quantile regression. Step-wise GLM log-link and Cox regression was used to study the association between race/ethnicity and cost and mortality. Propensity score approach was used to minimize selection bias.Pattern of cost and mortality varies between racial/ethnic groups. Compared with other racial/ethnic groups, non-Hispanic white patients had higher unadjusted costs in treatment and follow-up phases. Quintile regression results indicated that in treatment phase, Hispanics had higher costs in the 95th quantile and non-Hispanic blacks had lower cost in the 95th quantile, compared with non-Hispanic white men. In terminal phase non-Hispanic blacks and Hispanics had higher cost. After controlling for treatment, all-cause and prostate cancer-specific mortality was not significant for non-Hispanic black men, compared with non-Hispanic white men. However, for Asians, mortality remained significantly lower compared with non-Hispanic white men.In conclusion, relationship between race/ethnicity, cost of care, and mortality is intricate. For non-Hispanic black men, disparity in mortality can be attributed to treatment differences. To reduce racial/ethnic disparities in prostate cancer care and outcomes, tailored policies to address underuse, overuse, and misuse of treatment and health services are necessary. PMID:26266389

  15. The Cuban “Exception”: The Development of an Advanced Scientific System in an Underdeveloped Country

    NASA Astrophysics Data System (ADS)

    Baracca, Angelo

    Science, education, politics, social development and economics are today considered to be highly interdependent. Although none of these factors can exist on their own, they have nevertheless often been considered in isolation from one other, or studies of their interactions have been confined to the consideration of more or less local contexts. When it comes to studying the history of physics in Cuba, however, it is not only inconceivable to separate scientific developments from their social, political, and cultural contexts. But, as this volume shows, the history of physics in Cuba cannot just focus on local contexts since it is closely entangled with global history, from colonialism to the Cold War.

  16. Perspective: adopting an asset bundles model to support and advance minority students' careers in academic medicine and the scientific pipeline.

    PubMed

    Johnson, Japera; Bozeman, Barry

    2012-11-01

    The authors contend that increasing diversity in academic medicine, science, technology, engineering, and mathematics requires the adoption of a systematic approach to retain minority high school and college students as they navigate the scientific pipeline. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity contingencies to offer a conceptual model for targeting the critical areas in which minority students may need additional support to continue toward careers in science. Their proposed asset bundles model is grounded in the central premise that making greater progress in recruiting and retaining minorities likely requires institutions to respond simultaneously to various social cues that signal devaluation of certain identities (e.g., gender, race, socioeconomic status). The authors define "asset bundles" as the specific sets of abilities and resources individuals develop that help them succeed in educational and professional tasks, including but not limited to science and research. The model consists of five asset bundles, each of which is supported in the research literature as a factor relevant to educational achievement and, the authors contend, may lead to improved and sustained diversity: educational endowments, science socialization, network development, family expectations, and material resources. Using this framework, they suggest possible ways of thinking about the task of achieving diversity as well as guideposts for next steps. Finally, they discuss the feasibility of implementing such an approach. PMID:23018329

  17. Perspective: adopting an asset bundles model to support and advance minority students' careers in academic medicine and the scientific pipeline.

    PubMed

    Johnson, Japera; Bozeman, Barry

    2012-11-01

    The authors contend that increasing diversity in academic medicine, science, technology, engineering, and mathematics requires the adoption of a systematic approach to retain minority high school and college students as they navigate the scientific pipeline. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity contingencies to offer a conceptual model for targeting the critical areas in which minority students may need additional support to continue toward careers in science. Their proposed asset bundles model is grounded in the central premise that making greater progress in recruiting and retaining minorities likely requires institutions to respond simultaneously to various social cues that signal devaluation of certain identities (e.g., gender, race, socioeconomic status). The authors define "asset bundles" as the specific sets of abilities and resources individuals develop that help them succeed in educational and professional tasks, including but not limited to science and research. The model consists of five asset bundles, each of which is supported in the research literature as a factor relevant to educational achievement and, the authors contend, may lead to improved and sustained diversity: educational endowments, science socialization, network development, family expectations, and material resources. Using this framework, they suggest possible ways of thinking about the task of achieving diversity as well as guideposts for next steps. Finally, they discuss the feasibility of implementing such an approach.

  18. Perspective: Adopting an Asset Bundle Model to Support and Advance Minority Students’ Careers in Academic Medicine and the Scientific Pipeline

    PubMed Central

    Johnson, Japera; Bozeman, Barry

    2012-01-01

    The authors contend that increasing diversity in the scientific pipeline (e.g., academic medicine, science, technology, engineering and mathematics) requires a systematic approach to retain minority high school and college students. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity contingencies to offer a conceptual model for targeting the critical areas in which minority students may need additional support in order to continue toward a career in science. Their proposed asset bundles model is grounded in the central premise that making greater progress in recruiting and retaining minorities likely requires institutions to respond simultaneously to various social cues that signal devaluation of certain identities (e.g., gender, race, or socioeconomic status). The authors define “asset bundles” as the specific sets of abilities and resources individuals develop that help them succeed in educational and professional tasks, including but not limited to science and research. The model consists of five asset bundles, each of which is supported in the research literature as a factor relevant to educational achievement and, the authors contend, may lead to improved and sustained diversity: educational endowments, science socialization, network development, family expectations, and material resources. Using this framework, they suggest possible ways of thinking about the task of achieving diversity as well as guideposts for next steps. Finally, they discuss the feasibility of implementing such an approach. PMID:23018329

  19. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    PubMed

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments.

  20. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    PubMed

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments. PMID:27542556