Sample records for advance technology solar

  1. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  2. Conceptual definition of a technology development mission for advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, R. P.

    1986-01-01

    An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.

  3. Recent advances in the PV-CSP hybrid solar power technology

    NASA Astrophysics Data System (ADS)

    Ju, Xing; Xu, Chao; Han, Xue; Zhang, Hui; Wei, Gaosheng; Chen, Lin

    2017-06-01

    Photovoltaic - Concentrated Solar Power (PV-CSP) hybrid technology is considered to be an important future research trend in solar energy engineering. The development of the PV-CSP hybrid technology accelerates in recent years with the rapid maturation of photovoltaics (PV) and concentrated solar power (CSP). This paper presents the recent advances on PV-CSP technology, including different technologies based on new dispatch strategies, Organic Rankine Cycles, spectral beam filters and so on. The research status and the hybrid system performance of the recent researches are summarized, aimed to provide an extended recognition on the PV-CSP hybrid technology. The advantages and limitations of the hybrid system are concluded according to the researches reviewed.

  4. The Advanced Technology Solar Telescope mount assembly

    NASA Astrophysics Data System (ADS)

    Warner, Mark; Cho, Myung; Goodrich, Bret; Hansen, Eric; Hubbard, Rob; Lee, Joon Pyo; Wagner, Jeremy

    2006-06-01

    When constructed on the summit of Haleakala on the island of Maui, Hawaii, the Advanced Technology Solar Telescope (ATST) will be the world's largest solar telescope. The ATST is a unique design that utilizes a state-of-the-art off-axis Gregorian optical layout with five reflecting mirrors delivering light to a Nasmyth instrument rotator, and nine reflecting mirrors delivering light to an instrument suite located on a large diameter rotating coude lab. The design of the telescope mount structure, which supports and positions the mirrors and scientific instruments, has presented noteworthy challenges to the ATST engineering staff. Several novel design solutions, as well as adaptations of existing telescope technologies to the ATST application, are presented in this paper. Also shown are plans for the control system and drives of the structure.

  5. Solar sail science mission applications and advancement

    NASA Astrophysics Data System (ADS)

    Macdonald, Malcolm; McInnes, Colin

    2011-12-01

    Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next. Having identified and developed a solar sail application-pull technology development roadmap, this is incorporated into a new vision for solar sailing. The development of new technologies, especially for space applications, is high-risk. The advancement difficulty of low technology readiness level research is typically underestimated due to a lack of recognition of the advancement degree of difficulty scale. Recognising the currently low technology readiness level of traditional solar sailing concepts, along with their high advancement degree of difficulty and a lack of near-term applications a new vision for solar sailing is presented which increases the technology readiness level and reduces the advancement degree of difficulty of solar sailing. Just as the basic principles of solar sailing are not new, they have also been long proven and utilised in spacecraft as a low-risk, high-return limited-capability propulsion system. It is therefore proposed that this significant heritage be used to enable rapid, near-term solar sail future advancement through coupling currently mature solar sail, and other, technologies with current solar sail technology developments. As such the near-term technology readiness level of traditional solar sailing is increased, while simultaneously reducing the advancement degree of difficulty

  6. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  7. Solar synthesis of advanced materials: A solar industrial program initiative

    NASA Astrophysics Data System (ADS)

    Lewandowski, A.

    1992-06-01

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  8. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  9. Advanced Space Robotics and Solar Electric Propulsion: Enabling Technologies for Future Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Tadros, A.

    2017-02-01

    Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.

  10. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  11. Advanced In-Space Propulsion: "Exploring the Solar System"

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2003-01-01

    This viewgraph presentation reviews a number of advanced propulsion technologies for interplanetary spacecraft. The objective of the In Space Propulsion Technology Projects Office is to develop in-space propulsion technologies that can enable and/or benefit near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. The technologies profiled are divided into several categories: High Priority (aerocapture, next generation ion propulsion, solar sails); Medium Priority (advanced chemical propulsion, solar electric propulsion, Hall thrusters); Low Priority (solar thermal propulsion); and High Payoff/High Risk (1 g/sq m solar sails, momentum exchange tethers, and plasma sails).

  12. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  13. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  14. The Advanced Photovoltaic Solar Array (APSA) technology status and performance

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1991-01-01

    In 1985, the Jet Propulsion Laboratory initiated the Advanced Photovoltaic Solar Array (APSA) program. The program objective is to demonstrate a producible array system by the early 1990s with a specific performance of at least 130 W/kG (beginning-of-life) as an intermediate milestone towards the long range goal of 300 W/kG. The APSA performance represents an approximately four-fold improvement over existing rigid array technology and a doubling of the performance of the first generation NASA/OAST SAFE flexible blanket array of the early 1980s.

  15. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  16. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    NASA Technical Reports Server (NTRS)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  17. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  18. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  19. Functional safety for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Bulau, Scott; Williams, Timothy R.

    2012-09-01

    Since inception, the Advanced Technology Solar Telescope (ATST) has planned to implement a facility-wide functional safety system to protect personnel from harm and prevent damage to the facility or environment. The ATST will deploy an integrated safety-related control system (SRCS) to achieve functional safety throughout the facility rather than relying on individual facility subsystems to provide safety functions on an ad hoc basis. The Global Interlock System (GIS) is an independent, distributed, facility-wide, safety-related control system, comprised of commercial off-the-shelf (COTS) programmable controllers that monitor, evaluate, and control hazardous energy and conditions throughout the facility that arise during operation and maintenance. The GIS has been designed to utilize recent advances in technology for functional safety plus revised national and international standards that allow for a distributed architecture using programmable controllers over a local area network instead of traditional hard-wired safety functions, while providing an equivalent or even greater level of safety. Programmable controllers provide an ideal platform for controlling the often complex interrelationships between subsystems in a modern astronomical facility, such as the ATST. A large, complex hard-wired relay control system is no longer needed. This type of system also offers greater flexibility during development and integration in addition to providing for expanded capability into the future. The GIS features fault detection, self-diagnostics, and redundant communications that will lead to decreased maintenance time and increased availability of the facility.

  20. Multiple-etalon systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael

    2003-01-01

    Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these

  1. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)

    2002-01-01

    Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.

  2. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  3. Advanced Solar Panel Designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E. B.

    1995-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 sq cm coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual-junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 sq cm coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg.

  4. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  5. Advanced photovoltaic solar array development

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul

    1989-01-01

    Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.

  6. Advanced solar dynamic space power systems perspectives, requirements and technology needs

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Savino, J. M.; Lacy, D. E.; Migra, R. P.; Juhasz, A. J.; Coles, C. E.

    1986-01-01

    Projected NASA, Civil, Commercial, and Military missions will require space power systems of increased versatility and power levels. The Advanced Solar Dynamic (ASD) Power systems offer the potential for efficient, lightweight, survivable, relatively compact, long-lived space power systems applicable to a wide range of power levels (3 to 300 kWe), and a wide variety of orbits. The successful development of these systems could satisfy the power needs for a wide variety of these projected missions. Thus, the NASA Lewis Research Center has embarked upon an aggressive ASD reserach project under the direction of NASA's Office of Aeronautics and Space Technology (DAST). The project is being implemented through a combination of in-house and contracted efforts. Key elements of this project are missions analysis to determine the power systems requirements, systems analysis to identify the most attractive ASD power systems to meet these requirements, and to guide the technology development efforts, and technology development of key components.

  7. The Advanced Technology Solar Telescope: design and early construction

    NASA Astrophysics Data System (ADS)

    McMullin, Joseph P.; Rimmele, Thomas R.; Keil, Stephen L.; Warner, Mark; Barden, Samuel; Bulau, Scott; Craig, Simon; Goodrich, Bret; Hansen, Eric; Hegwer, Steve; Hubbard, Robert; McBride, William; Shimko, Steve; Wöger, Friedrich; Ditsler, Jennifer

    2012-09-01

    The National Solar Observatory’s (NSO) Advanced Technology Solar Telescope (ATST) is the first large U.S. solar telescope accessible to the worldwide solar physics community to be constructed in more than 30 years. The 4-meter diameter facility will operate over a broad wavelength range (0.35 to 28 μm ), employing adaptive optics systems to achieve diffraction limited imaging and resolve features approximately 20 km on the Sun; the key observational parameters (collecting area, spatial resolution, spectral coverage, polarization accuracy, low scattered light) enable resolution of the theoretically-predicted, fine-scale magnetic features and their dynamics which modulate the radiative output of the sun and drive the release of magnetic energy from the Sun’s atmosphere in the form of flares and coronal mass ejections. In 2010, the ATST received a significant fraction of its funding for construction. In the subsequent two years, the project has hired staff and opened an office on Maui. A number of large industrial contracts have been placed throughout the world to complete the detailed designs and begin constructing the major telescope subsystems. These contracts have included the site development, AandE designs, mirrors, polishing, optic support assemblies, telescope mount and coudé rotator structures, enclosure, thermal and mechanical systems, and high-level software and controls. In addition, design development work on the instrument suite has undergone significant progress; this has included the completion of preliminary design reviews (PDR) for all five facility instruments. Permitting required for physically starting construction on the mountaintop of Haleakalā, Maui has also progressed. This paper will review the ATST goals and specifications, describe each of the major subsystems under construction, and review the contracts and lessons learned during the contracting and early construction phases. Schedules for site construction, key factory testing of

  8. Advancements in solar stills for enhanced flow rate

    NASA Astrophysics Data System (ADS)

    Mishra, Sourav; Dubey, Maneesh; Raghuwanshi, Jitendra; Sharma, Vipin

    2018-05-01

    All over the world there is a scarcity of water and it is difficult to access potable water. Due to this most of the people are affected by diseases that are caused due to drinking of polluted water. There are technologies through which we can purify polluted water but the only problem is these technologies uses electrical energy. Since solar energy is abundant in nature therefore we can use solar as an energy source in solar stills for water distillation. Solar stills can be used in village areas where there is no electricity. It is simple and also economic in construction. This article addresses advancement in solar distillation and usage of nanofluids for enhancement in flow rate.

  9. Solar Sail Propulsion Technology Readiness Level Database

    NASA Technical Reports Server (NTRS)

    Adams, Charles L.

    2004-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 solar sail system design and development hardware demonstration activities over the past 20 months. Able Engineering Company (AEC) of Goleta, CA is leading one team and L Garde, Inc. of Tustin, CA is leading the other team. Component, subsystem and system fabrication and testing has been completed successfully. The goal of these activities is to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by 2006. These activities will culminate in the deployment and testing of 20-meter solar sail system ground demonstration hardware in the 30 meter diameter thermal-vacuum chamber at NASA Glenn Plum Brook in 2005. This paper will describe the features of a computer database system that documents the results of the solar sail development activities to-date. Illustrations of the hardware components and systems, test results, analytical models, relevant space environment definition and current TRL assessment, as stored and manipulated within the database are presented. This database could serve as a central repository for all data related to the advancement of solar sail technology sponsored by the ISPT, providing an up-to-date assessment of the TRL of this technology. Current plans are to eventually make the database available to the Solar Sail community through the Space Transportation Information Network (STIN).

  10. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  11. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  12. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  13. Solar Photovoltaics Technology: The Revolution Begins . . .

    NASA Astrophysics Data System (ADS)

    Kazmerski, Lawrence

    2009-11-01

    The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is at a tipping point in the complex worldwide energy outlook. The emphasis of this presentation is on R&D advances (cell, materials, and module options), with indications of the limitations and strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). The contributions and technological pathways for now and near-term technologies (silicon, III-Vs, and thin films) and status and forecasts for next- generation PV (organics, nanotechnologies, non-conventional junction approaches) are evaluated. Recent advances in concentrators with efficiencies headed toward 50%, new directions for thin films (20% and beyond), and materials/device technology issues are discussed in terms of technology progress. Insights into technical and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy portfolio. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, solar hydrogen. . . ) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. Issues relating to manufacturing are explored-especially with the requirements for the next-generation technologies. This presentation provides insights into how this technology has developed-and where the R&D investments should be made and we can expect to be by this mid-21st century.

  14. Advanced photovoltaic solar array design assessment

    NASA Technical Reports Server (NTRS)

    Stella, Paul; Scott-Monck, John

    1987-01-01

    The Advanced Photovoltaic Solar Array (APSA) program seeks to bring to flight readiness a solar array that effectively doubles the specific power of the Solar Array Flight Experiment/Solar Electric Propulsion (SAFE/SEP) design that was successfully demonstrated during the Shuttle 41-D mission. APSA is a critical intermediate milestone in the effort to demonstrate solar array technologies capable of 300 W/kg and 300 W/square m at beginning of life (BOL). It is not unreasonable to anticipate the development of solar array designs capable of 300 W/kg at BOL for operational power levels approx. greater than 25 kW sub e. It is also quite reasonable to expect that high performance solar arrays capable of providing at least 200 W/kg at end of life for most orbits now being considered by mission planners will be realized in the next decade.

  15. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  16. Photovoltaic solar array technology required for three wide scale generating systems for terrestrial applications: rooftop, solar farm, and satellite

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.

  17. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  18. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1992-01-01

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  19. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Astrophysics Data System (ADS)

    Stella, Paul M.; Kurland, Richard M.

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  20. Advanced reflector materials for solar concentrators

    NASA Astrophysics Data System (ADS)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  1. Recent Advances in Solar Sail Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.

  2. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRAMP)

    DOE Data Explorer

    Andreas, Afshin; Wilcox, Steve

    2016-03-14

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy National Renewable Energy Laboratory (NMREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar powered projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  3. Advanced Solar Cells for Satellite Power Systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  4. Advanced solar cells for satellite power systems

    NASA Astrophysics Data System (ADS)

    Flood, Dennis J.; Weinberg, Irving

    1994-11-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  5. A program for advancing the technology of space concentrators

    NASA Technical Reports Server (NTRS)

    Naujokas, Gerald J.; Savino, Joseph M.

    1989-01-01

    In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long-term goals, approach, planned accomplishments for the future, and the present status of the various program elements.

  6. A program for advancing the technology of space concentrators

    NASA Technical Reports Server (NTRS)

    Naujokas, Gerald J.; Savino, Joseph M.

    1989-01-01

    In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long term goals, approach, planned accomplishments for the future, and the present status of the various program elements.

  7. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  8. Selection and Prioritization of Advanced Propulsion Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Eberle, Bill; Farris, Bob; Johnson, Les; Jones, Jonathan; Kos, Larry; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    The exploration of our solar system will require spacecraft with much greater capability than spacecraft which have been launched in the past. This is particularly true for exploration of the outer planets. Outer planet exploration requires shorter trip times, increased payload mass, and ability to orbit or land on outer planets. Increased capability requires better propulsion systems, including increased specific impulse. Chemical propulsion systems are not capable of delivering the performance required for exploration of the solar system. Future propulsion systems will be applied to a wide variety of missions with a diverse set of mission requirements. Many candidate propulsion technologies have been proposed but NASA resources do not permit development of a] of them. Therefore, we need to rationally select a few propulsion technologies for advancement, for application to future space missions. An effort was initiated to select and prioritize candidate propulsion technologies for development investment. The results of the study identified Aerocapture, 5 - 10 KW Solar Electric Ion, and Nuclear Electric Propulsion as high priority technologies. Solar Sails, 100 Kw Solar Electric Hall Thrusters, Electric Propulsion, and Advanced Chemical were identified as medium priority technologies. Plasma sails, momentum exchange tethers, and low density solar sails were identified as high risk/high payoff technologies.

  9. Advanced solar panel designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E.

    1995-01-01

    This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  10. Simultaneous control of multiple instruments at the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Johansson, Erik M.; Goodrich, Bret

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) is a 4-meter solar observatory under construction at Haleakala, Hawaii. The simultaneous use of multiple instruments is one of the unique capabilities that makes the ATST a premier ground based solar observatory. Control of the instrument suite is accomplished by the Instrument Control System (ICS), a layer of software between the Observatory Control System (OCS) and the instruments. The ICS presents a single narrow interface to the OCS and provides a standard interface for the instruments to be controlled. It is built upon the ATST Common Services Framework (CSF), an infrastructure for the implementation of a distributed control system. The ICS responds to OCS commands and events, coordinating and distributing them to the various instruments while monitoring their progress and reporting the status back to the OCS. The ICS requires no specific knowledge about the instruments. All information about the instruments used in an experiment is passed by the OCS to the ICS, which extracts and forwards the parameters to the appropriate instrument controllers. The instruments participating in an experiment define the active instrument set. A subset of those instruments must complete their observing activities in order for the experiment to be considered complete and are referred to as the must-complete instrument set. In addition, instruments may participate in eavesdrop mode, outside of the control of the ICS. All instrument controllers use the same standard narrow interface, which allows new instruments to be added without having to modify the interface or any existing instrument controllers.

  11. Future mission opportunities and requirements for advanced space photovoltaic energy conversion technology

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The variety of potential future missions under consideration by NASA will impose a broad range of requirements on space solar arrays, and mandates the development of new solar cells which can offer a wide range of capabilities to mission planners. Major advances in performance have recently been achieved at several laboratories in a variety of solar cell types. Many of those recent advances are reviewed, the areas are examined where possible improvements are yet to be made, and the requirements are discussed that must be met by advanced solar cell if they are to be used in space. The solar cells of interest include single and multiple junction cells which are fabricated from single crystal, polycrystalline and amorphous materials. Single crystal cells on foreign substrates, thin film single crystal cells on superstrates, and multiple junction cells which are either mechanically stacked, monolithically grown, or hybrid structures incorporating both techniques are discussed. Advanced concentrator array technology for space applications is described, and the status of thin film, flexible solar array blanket technology is reported.

  12. NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task

    NASA Astrophysics Data System (ADS)

    Kennedy, Cheryl

    2010-03-01

    Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.

  13. Advanced solar panel designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E. B.

    1996-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg. This paper will address the construction details for the GaAs/isogrid and dual-junction GaAs/carbon mesh panel configurations. These are ultimately sized to provide 75 Watts and 119 Watts respectively for smallsats or may be used as modular building blocks for larger systems. GaAs/isogrid and dual-junction GaAs/carbon mesh coupons have been fabricated and tested to successfully demonstrate critical performance parameters and results are also provided here.

  14. NREL Achieves World Record Performance For Thin Film Solar Cell Technology

    Science.gov Websites

    World Record Performance For Thin Film Solar Cell Technology Golden, Colo., May 10, 1996 world record in the performance of an advanced solar cell technology designed to have a major impact on the cost of electricity from the sun. NREL established a new world record "sunlight-to

  15. Advanced photovoltaic power system technology for lunar base applications

    NASA Astrophysics Data System (ADS)

    Brinker, David J.; Flood, Dennis J.

    1992-09-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  16. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  17. Solar Thermoelectricity via Advanced Latent Heat Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less

  18. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  19. Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST)

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Werner, Thomas; Westerhoff, Thomas

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) will be the most powerful solar telescope in the world. It is currently being built by the Association of Universities for Research in Astronomy (AURA) in a height of 3000 m above sea level on the mountain Haleakala of Maui, Hawaii. The primary mirror blank of diameter 4.26 m is made of the extremely low thermal expansion glass ceramic ZERODUR® of SCHOTT AG Advanced Optics. The DKIST primary mirror design is extremely challenging. With a mirror thickness of only 78 to 85 mm it is the smallest thickness ever machined on a mirror of 4.26 m in diameter. Additionally the glassy ZERODUR® casting is one of the largest in size ever produced for a 4 m class ZERODUR® mirror blank. The off axis aspherical mirror surface required sophisticated grinding procedures to achieve the specified geometrical tolerance. The small thickness of about 80 mm required special measures during processing, lifting and transport. Additionally acid etch treatment was applied to the convex back-surface and the conical shaped outer diameter surface to improve the strength of the blank. This paper reports on the challenging tasks and the achievements on the material property and dimensional specification parameter during the production of the 4.26 m ZERODUR® primary mirror blank for AURA.

  20. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  1. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  2. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry T.

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

  3. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented.

  4. Status of Solar Sail Technology Within NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2010-01-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced and they successfully completed functional vacuum testing in NASA Glenn Research Center's (GRC's) Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L Garde, respectively. The sail systems consist of a central structure with four deployable booms that support the sails. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and were scalable to much larger solar sails perhaps as large as 150 m on a side. Computation modeling and analytical simulations were also performed to assess the scalability of the technology to the large sizes required to implement the first generation of missions using solar sails. Life and space environmental effects testing of sail and component materials were also conducted. NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30M investment made in solar sail technology to that point, NASA Marshall Space Flight Center (MSFC) funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon-1 Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare will be flown in the Fall of 2010. This paper will summarize NASA's investment in solar sail technology to-date and discuss future opportunities

  5. Status of solar sail technology within NASA

    NASA Astrophysics Data System (ADS)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2011-12-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails - perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30 M investment made in solar sail technology to that point, NASA Marshall Space Flight Center funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board a Falcon-1 rocket, launched August 2, 2008. As a result of the failure of that rocket, the NanoSail-D was never successfully given the opportunity to achieve orbit. The NanoSail-D flight spare was flown in the Fall of 2010. This review paper summarizes NASA's investment in solar sail technology to date and discusses future opportunities.

  6. A 100 kW-Class Technology Demonstrator for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe; Day, Greg

    2004-01-01

    self-transport of the modules from LEO to GEO, and for on-orbit stationkeeping and repositioning capability during the satellite's lifetime, this technology is also critical in technology development for SSP. The 100 kW-class technology demonstrator will utilize advanced solar power collection and generation technologies, power management and distribution, advanced thermal management, and solar electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100 kW satellite feasible for launch on one existing launch vehicle. Early SSP studies showed that a major percentage of the on-orbit mass for power-beaming satellites was from massive power converters at the solar arrays, at the bus, at the power transmitter, or at combinations of these locations. Higher voltage mays and power management and distribution (PMAD) systems reduce or eliminate the need for many of these massive power converters, and could enable direct-drive of high-voltage solar electric thrusters. Lightweight, highly efficient thermal management systems are a critical technology that must be developed and flown for SSP feasibility. Large amounts of power on satellites imply that large amounts of waste heat will need to be managed. In addition, several of the more innovative lightweight configurations proposed for SSP satellites take advantage of solar concentrators that are intractable without advanced thermal management technologies for the solar arrays. These thermal management systems include efficient interfaces with the WPT systems or other high-power technology experiments, lightweight deployable radiators that can be easily integrated into satellite buses, and efficient reliable thermal distribution systems that can pipe heat from the technology experiments to the radiators. In addition to demonstrating the integration and use of these mission

  7. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  8. The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  9. A Summary fo Solar Sail Technology Developments and Proposed Demonstration Missions

    NASA Technical Reports Server (NTRS)

    Garner, Charles; Diedrich, Benjamin; Leipold, Manfred

    1999-01-01

    NASA's drive to reduce mission costs and accept the risk of incorporating innovative, high payoff technologies into it's missions while simultaneously undertaking ever more difficult missions has sparked a greatly renewed interest in solar sails. From virtually no technology or flight mission studies activity three years ago solar sails are now included in NOAA, NASA, DOD, DLR, ESA and ESTEC technology development programs and technology roadmaps. NASA programs include activities at Langley Research Center, Jet Propulsion Laboratory, Marshall Space Flight Center, Goddard Space Flight Center, and the NASA Institute for Advanced Concepts; NOAA has received funding for a proposed solar sail mission; DLR is designing and fabricating a 20-m laboratory model sail, there are four demonstration missions under study at industry, NASA, DOD and Europe, two new text books on solar sailing were recently published and one new test book is planned. This paper summarizes these on-going developments in solar sails.

  10. Mass properties survey of solar array technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert

    1991-01-01

    An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.

  11. Technology Projections for Solar Dynamic Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.

  12. Solar Power Satellite Development: Advances in Modularity and Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2010-01-01

    Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described

  13. An overview of crystalline silicon solar cell technology: Past, present, and future

    NASA Astrophysics Data System (ADS)

    Sopian, K.; Cheow, S. L.; Zaidi, S. H.

    2017-09-01

    Crystalline silicon (c-Si) solar cell, ever since its inception, has been identified as the only economically and environmentally sustainable renewable resource to replace fossil fuels. Performance c-Si based photovoltaic (PV) technology has been equal to the task. Its price has been reduced by a factor of 250 over last twenty years (from ˜ 76 USD to ˜ 0.3 USD); its market growth is expected to reach 100 GWP by 2020. Unfortunately, it is still 3-4 times higher than carbon-based fuels. With the matured PV manufacturing technology as it exists today, continuing price reduction poses stiff challenges. Alternate manufacturing approaches in combination with thin wafers, low (< 10 x) optical enhancement with Fresnel lenses, band-gap engineering for enhanced optical absorption, and newer, advanced solar cell configurations including partially transparent bifacial and back contact solar cells will be required. This paper will present a detailed, cost-based analysis of advanced solar cell manufacturing technologies aimed at higher (˜ 22 %) efficiency with existing equipment and processes.

  14. Challenges and Approach for Making the Top End Optical Assembly for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Hull, T.

    2012-01-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy

  15. Progress making the top end optical assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Arendt, J.; Bader, S.; Danyo, G.; Heller, C.

    2012-09-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to design and produce the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakal', Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot" at the prime focus of the ATST and so presents special challenges. In this paper, we describe progress in the L-3 technical approach to meeting these challenges, including silicon carbide off-axis mirror design, fabrication, and high accuracy figuring and polishing all within L-3; mirror support design; the design for stray light control; subsystems for opto-mechanical positioning and high accuracy absolute mirror orientation sensing; Lyot stop design; and thermal management of all design elements to remain close to ambient temperature despite the imposed solar irradiance load.

  16. Mission applications for advanced photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.

    1990-01-01

    The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.

  17. Implementing Solar Technologies at Airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  18. Workshop on Advanced Technologies for Planetary Instruments, part 1

    NASA Technical Reports Server (NTRS)

    Appleby, John F. (Editor)

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.

  19. JPL Advanced Thermal Control Technology Roadmap - 2008

    NASA Technical Reports Server (NTRS)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  20. Techno-economic projections for advanced small solar thermal electric power plants to years 1990-2000

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.

    1979-01-01

    Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.

  1. Advance on solar instrumentation in China

    NASA Astrophysics Data System (ADS)

    Yan, Yihua

    2015-08-01

    The solar observing facilities in China are introduced with the emphasis on the development in recent years and future plans for both ground and space-based solar instrumentations. The recent solar instruments are as follows: A new generation Chinese Spectral Radioreliograph (CSRH) has been constructed at Mingantu Observing Station in Zhengxiangbaiqi, inner Mongolia of China since 2013 and is in test observations now. CSRH has two arrays with 40 × 4.5 m and 60 × 2 m parabolic antennas covering 0.4-2 GHz and 2-15 GHz frequency range. CSRH is renamed as MUSER (Mingantu Ultrawide Spectral Radiheliograph) after its accomplishment. A new 1 m vacuum solar telescope (NVST) has been installed in 2010 at Fuxian lake, 60 km away from Kunming, Yunana. At present it is the best seeing place in China. A new telescope called ONSET (Optical and NIR Solar Eruption Tracer) has been established at the same site as NVST in 2011. ONSET has been put into operation since 2013. For future ground-based plans, Chinese Giant Solar Telescope (CGST) with spatial resolution equivalent to 8m and effective area of 5m full-aperture telescope has been proposed and was formally listed into the National Plans of Major Science & Technology Infrastructures in China. The pre-study and site survey for CGST have been pursued. A 1-meter mid-infrared telescope for precise measurement of the solar magnetic field has been funded by NSFC in 2014 as a national major scientific instrument development project. This project will develop the first mid-infrared solar magnetic observation instrument in the world aiming at increasing the precision of the transverse magnetic field measurement by one order of magnitude. For future ground-based plans, we promote the Deep-space Solar Observatory (DSO) with 1-m aperture telescope to be formally funded. The ASO-S (an Advanced Space-based Solar Observatory) has been supported in background phase by Space Science Program as a small mission. Other related space solar

  2. NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric

    Science.gov Websites

    Companies | Energy Systems Integration Facility | NREL NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric Companies NREL Evaluates Advanced Solar Inverter Performance for Hawaiian performance and impacts of today's advanced solar inverters, as well as proprietary feedback to the inverter

  3. Rapid thermal cycling of new technology solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  4. Solar Photovoltaic Technology Basics | NREL

    Science.gov Websites

    For more information about solar photovoltaic energy, visit the following resources: Solar PV Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the

  5. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2014-01-01

    On-orbit measurements of new photovoltaic (PV) technologies for space power are an essential step in the development and qualification of advanced solar cells. NASA Glenn Research Center will fly and measure several solar cells attached to NASA Goddards Robotic Refueling Mission (RRM), expected to be launched in 2014. Industry and government partners have provided advanced PV devices for evaluation of performance and environmental durability. The experiment is completely self-contained, providing its own power and internal data storage. Several new cell technologies including Inverted Metamorphic Multi-junction and four-junction cells will be tested.

  6. Space solar cell technology development - A perspective

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  7. A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Hendrik F.

    The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.

  8. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.

    PubMed

    Kim, Mee Rahn; Ma, Dongling

    2015-01-02

    Among next-generation photovoltaic systems requiring low cost and high efficiency, quantum dot (QD)-based solar cells stand out as a very promising candidate because of the unique and versatile characteristics of QDs. The past decade has already seen rapid conceptual and technological advances on various aspects of QD solar cells, and diverse opportunities, which QDs can offer, predict that there is still ample room for further development and breakthroughs. In this Perspective, we first review the attractive advantages of QDs, such as size-tunable band gaps and multiple exciton generation (MEG), beneficial to solar cell applications. We then analyze major strategies, which have been extensively explored and have largely contributed to the most recent and significant achievements in QD solar cells. Finally, their high potential and challenges are discussed. In particular, QD solar cells are considered to hold immense potential to overcome the theoretical efficiency limit of 31% for single-junction cells.

  9. Microgravity fluid management requirements of advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, Robert P.

    1987-01-01

    The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.

  10. Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-08-01

    First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

  11. Solar Energy Technologies Office Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solar Energy Technologies Office

    The U.S. Department of Energy Solar Energy Technologies Office (SETO) supports early-stage research and development to improve the affordability, reliability, and performance of solar technologies on the grid. The office invests in innovative research efforts that securely integrate more solar energy into the grid, enhance the use and storage of solar energy, and lower solar electricity costs.

  12. Progress in the development of advanced solar reflectors

    NASA Astrophysics Data System (ADS)

    Kennedy, C.; Jorgensen, G.

    1994-01-01

    Solar thermal technologies require large mirrors to provide concentrated sunlight for renewable power generation. Such materials must be inexpensive and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Polymer reflectors are lighter than glass mirrors, offer greater system design flexibility, and have the potential for lower cost. During the past year, collaborative cost-shared research and development between the National Renewable Energy Laboratory (NREL) and industrial partners has identified candidate materials that perform better than the state-of-the-art commercial silvered-polymer reflectors in terms of corrosion degradation and resistance to delamination failure. Additional cooperative efforts will produce new alternative materials with reduced costs due to high speed production line capability. NREL welcomes continued and expanded interest and web coating industry involvement in developing advanced solar reflector materials.

  13. Advancing colloidal quantum dot photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  14. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  15. Solar Concentrator Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  16. Advanced Technology in Small Packages Enables Space Science Research Nanosatellites: Examples from the NASA Miniature X-ray Solar Spectrometer CubeSat

    NASA Astrophysics Data System (ADS)

    Woods, T. N.

    2017-12-01

    Nanosatellites, including the CubeSat class of nanosatellites, are about the size of a shoe box, and the CubeSat modular form factor of a Unit (1U is 10 cm x 10 cm x 10 cm) was originally defined in 1999 as a standardization for students developing nanosatellites. Over the past two decades, the satellite and instrument technologies for nanosatellites have progressed to the sophistication equivalent to the larger satellites, but now available in smaller packages through advanced developments by universities, government labs, and space industries. For example, the Blue Canyon Technologies (BCT) attitude determination and control system (ADCS) has demonstrated 3-axis satellite control from a 0.5-Unit system with 8 arc-second stability using reaction wheels, torque rods, and a star tracker. The first flight demonstration of the BCT ADCS was for the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat. The MinXSS CubeSat mission, which was deployed in May 2016 and had its re-entry in May 2017, provided space weather measurements of the solar soft X-rays (SXR) variability using low-power, miniaturized instruments. The MinXSS solar SXR spectra have been extremely useful for exploring flare energetics and also for validating the broadband SXR measurements from the NOAA GOES X-Ray Sensor (XRS). The technology used in the MinXSS CubeSat and summary of science results from the MinXSS-1 mission will be presented. Web site: http://lasp.colorado.edu/home/minxss/

  17. New Propulsion Technologies For Exploration of the Solar System and Beyond

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Cook, Stephen (Technical Monitor)

    2001-01-01

    In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. The ASTP technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to fission-powered multi-kilowatt systems, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture

  18. Solar concentrator technology development for space based applications, volume 1

    NASA Technical Reports Server (NTRS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.

  19. Solar concentrator technology development for space based applications, volume 2

    NASA Technical Reports Server (NTRS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the

  20. The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle

    NASA Astrophysics Data System (ADS)

    Sai, Li; Wei, Zhou; Xueren, Wang

    2017-03-01

    By analyzing the development status of several typical solar powered unmanned aerial vehicles (UAV) at home and abroad, the key technologies involved in the design and manufacture of solar powered UAV and the technical difficulties need to be solved at present are obtained. It is pointed out that with the improvement of energy system efficiency, advanced aerodynamic configuration design, realization of high applicability flight stability and control system, breakthrough of efficient propulsion system, the application prospect of solar powered UAV will be more extensive.

  1. Advanced Technologies and Instrumentation at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  2. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  3. The impact of solar cell technology on planar solar array performance

    NASA Technical Reports Server (NTRS)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  4. Passive Solar still: Recent advancement in design and related Performance.

    PubMed

    Awasthi, Anuradha; Kumari, Kanchan; Panchal, Hitesh; Sathyamurthy, Ravishankar

    2018-05-31

    Present review paper mainly focuses on different varieties of solar stills and highlights mostly the passive solar still with advanced modifications in the design and development of material, single and multi-effect solar still with augmentation of different materials, energy absorbing, insulators, mechanisms of heat and mass transfer to improve the loss of heat and enhance the productivity of solar still. The cost-benefit analysis along with the progressive advancement for solar stills is the major highlights of this review. To increase the output of solar still nowadays, applications of advance modifications is one of the promising tools, and it is anticipated that shortly more vigor will be added in this area with the modifications in designs of solar stills.

  5. NASA's Advanced Radioisotope Power Conversion Technology Development Status

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre

    2007-01-01

    NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).

  6. Design and Development of the Space Technology 5 (ST5) Solar Arrays

    NASA Technical Reports Server (NTRS)

    Lyons, John; Fatemi, Navid; Gamica, Robert; Sharma, Surya; Senft, Donna; Maybery, Clay

    2005-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Technology 5 (ST5) is designed to flight-test the concept of miniaturized 'small size" satellites and innovative technologies in Earth's magnetosphere. Three satellites will map the intensity and direction of the magnetic fields within the inner magnetosphere. Due to the small area available for the solar arrays, and to meet the mission power requirements, very high-efficiency multijunction solar cells were selected to power the spacecraft built by NASA Goddard Space Flight Center (GSFC). This was done in partnership with the Air Force Research Lab (AFRL) through the Dual-Use Science and Technology (DUS&T) program. Emcore's InGaP/lnGaAs/Ge Advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of 28.0% (one-sun, 28 C), were used to populate the arrays. Each spacecraft employs 8 identical solar panels (total area of about 0.3 square meters), with 15 large-area solar cells per panel. The requirement for power is to support on-orbit average load of 13.5 W at 8.4 V, with plus or minus 5% off pointing. The details of the solar array design, development and qualification considerations, as well as ground electrical performance & shadowing analysis results are presented.

  7. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  8. Solar Energy: Its Technologies and Applications

    DOE R&D Accomplishments Database

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  9. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the

  10. Solar Innovator | Alta Devices

    ScienceCinema

    Mattos, Laila; Le, Minh

    2017-12-09

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  11. Demonstration of the advanced photovoltaic solar array

    NASA Technical Reports Server (NTRS)

    Kurland, R. M.; Stella, P. M.

    1991-01-01

    The Advanced Photovoltaic Solar Array (APSA) design is reviewed. The testing results and performance estimates are summarized. The APSA design represents a critical intermediate milestone for the NASA Office of Aeronautics, Exploration, and Technology (OAET) goal of 300 W/kg at Beginning Of Life (BOL), with specific performance characteristics of 130 W/kg (BOL) and 100 W/kg at End Of Life (EOL) for a 10 year geosynchronous (GEO) 10 kW (BOL) space power system. The APSA wing design is scalable over a power range of 1 to 15 kW and is suitable for a full range of missions including Low Earth Orbit (LEO), orbital transfer from LEO to GEO and interplanetary out to 5 AU.

  12. Solar dynamic systems

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1985-01-01

    The development of the solar dynamic system is discussed. The benefits of the solar dynamic system over pv systems are enumerated. The history of the solar dynamic development is recounted. The purpose and approach of the advanced development are outlined. Critical concentrator technology and critical heat recover technology are examined.

  13. Advanced photovoltaic solar array - Design and performance

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Stella, Paul

    1992-01-01

    This paper reports on the development of an ultralightweight flexible blanket, flatpack, foldout solar array design that can provide 3- to 4-fold improvement on specific power performance of current rigid panel arrays and a factor of two improvement over a first-generation flexible blanket array developed as a forerunner to the Space Station Freedom array. To date a prototype wing has been built with a projected specific power performance of about 138 W/kg at beginning-of-life (BOL) and 93 W/kg end-of-life (EOL) at 12 kW (BOL) for a 10-year geosynchronous (GEO) mission. The prototype wing hardware has been subjected to a series of system-level tests to demonstrate design feasibility. The design of the array is summarized. The major trade studies that led to the selection of the baseline design are discussed. Key system-level and component-level testing are described. Array-level performance projections are presented as a function of existing and advanced solar array component technology for various mission applications.

  14. Concentrating solar power (CSP) power cycle improvements through application of advanced materials

    NASA Astrophysics Data System (ADS)

    Siefert, John A.; Libby, Cara; Shingledecker, John

    2016-05-01

    Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.

  15. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.

    PubMed

    Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu

    2013-08-28

    The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).

  16. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  17. Recent advances of flexible hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Heo, Jin Hyuck; Im, Sang Hyuk

    2017-11-01

    Recently, hybrid perovskite solar cells have attracted great interest because they can be fabricated to low cost, flexible, and highly efficient solar cells. Here, we introduced recent advances of flexible hybrid perovskite solar cells. We introduced research background of flexible perovskite solar cells in introduction part. Then we composed the main body to i) structure and properties of hybrid perovskite solar cells, ii) why flexible hybrid perovskite solar cells are important?, iii) transparent conducting oxide (TCO) based flexible hybrid perovskite solar cells, and iv) TCO-free transparent conducting electrode (TCE) based flexible hybrid perovskite solar cells. Finally, we summarized research outlook of flexible hybrid perovskite solar cells.

  18. NREL Projects Awarded More Than $3 Million to Advance Novel Solar

    Science.gov Websites

    in Grid Operations," evaluating a research solution to better integrate solar power generation funding program, which advances state-of-the-art techniques for predicting solar power generation to Office to advance predictive modeling of solar power as part of its Solar Forecasting 2 funding program

  19. Solar electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macie, T. W.

    1971-01-01

    Achievements in the solar electric propulsion system technology program (SEPST 3) are reported and certain propulsion system-spacecraft interaction problems are discussed. The basic solar electric propulsion system concept and elements are reviewed. Hardware is discussed only briefly, relying on detailed fabrication or assembly descriptions reported elsewhere. Emphasis is placed on recent performance data, which are presented to show the relationship between spacecraft requirements and present technology.

  20. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Michael

    2007-01-01

    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  1. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  2. Technical Assistance for Southwest Solar Technologies Inc. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Ramos, Karina; Brainard, James Robert; McIntyre, Annie

    2012-07-01

    Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwestmore » Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.« less

  3. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    NASA Technical Reports Server (NTRS)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    (slightly over half of the time). This power level mandates large solar arrays, using advanced Space Solar Power technology. A significant amount of the power has to be dissipated as heat, through large radiators. This paper briefly describes the propellant production facility and the requirements for a high power system capability. The Solar Power technologies required for such an endeavor are discussed.

  4. Solar Sail Propulsion: Enabling New Capabilities for Heliophysics

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Young, R.; Alhorn, D.; Heaton, A.; Vansant, T.; Campbell, B.; Pappa, R.; Keats, W.; Liewer, P. C.; Alexander, D.; hide

    2010-01-01

    Solar sails can play a critical role in enabling solar and heliophysics missions. Solar sail technology within NASA is currently at 80% of TRL-6, suitable for an in-flight technology demonstration. It is conceivable that an initial demonstration could carry scientific payloads that, depending on the type of mission, are commensurate with the goals of the three study panels of the 2010 Heliophysics Survey. Follow-on solar sail missions, leveraging advances in solar sail technology to support Heliophysics Survey goals, would then be feasible. This white paper reports on a sampling of missions enabled by solar sails, the current state of the technology, and what funding is required to advance the current state of technology such that solar sails can enable these missions

  5. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  6. Recent results from advanced research on space solar cells at NASA

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  7. Technology assessment of solar energy utilization

    NASA Astrophysics Data System (ADS)

    Jaeger, F.

    1985-11-01

    The general objectives and methods of Technology Assessment (TA) are outlined. Typical analysis steps of a TA for solar energy are reviewed: description of the technology and its further development; identification of impact areas; analysis of boundary conditions and definition of scenarios; market penetration of solar technologies; projection of consequences in areas of impact; and assessment of impacts and identification of options for action.

  8. Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering.

    PubMed

    Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-08-28

    Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion.

  9. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  10. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  11. FOCUSing on Innovative Solar Technologies

    ScienceCinema

    Rohlfing, Eric; Holman, Zak, Angel, Roger

    2018-06-22

    Many of ARPA-E’s technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-E’s Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.

  12. Advanced Energy Conversion Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.

    2006-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming

  13. Biomass and Solar Technologies Lauded | News | NREL

    Science.gov Websites

    4 » Biomass and Solar Technologies Lauded News Release: Biomass and Solar Technologies Lauded July security and reduce our reliance on foreign sources of oil." The Enzymatic Hydrolysis of Biomass Cellulose to Sugars technology is expected to allow a wide range of biomass resources to be used to produce

  14. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.

  15. The New Millennium Program: Validating Advanced Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Minning, Charles P.; Luers, Philip

    1999-01-01

    This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument

  16. Evaluation of space station solar array technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The research concerning lightweight solar array assemblies since 1970 is reported. A bibliography of abstracts of documents used for reference during this period is included along with an evaluation of available solar array technology. A list of recommended technology programs is presented.

  17. Advancing solar energy forecasting through the underlying physics

    NASA Astrophysics Data System (ADS)

    Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.

    2017-12-01

    As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.

  18. Some operational aspects of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.

    1988-01-01

    The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station.

  19. Solar Sail Propulsion Technology at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Charles Les

    2007-01-01

    NASA's In-Space Propulsion Technology Program developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an area density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In addition, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. The presentation will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and near-term plans for further development.

  20. A Solar Dynamic Power Option for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    A study was performed to determine the potential performance and related technology requirements of Solar Dynamic power systems for a Space Solar Power satellite. Space Solar Power is a concept where solar energy is collected in orbit and beamed to Earth receiving stations to supplement terrestrial electric power service. Solar Dynamic systems offer the benefits of high solar-to-electric efficiency, long life with minimal performance degradation, and high power scalability. System analyses indicate that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the analyses as a guide, a technology roadmap was -enerated which identifies the component advances necessary to make SD power generation a competitive option for the SSP mission.

  1. Advanced space transportation technologies

    NASA Technical Reports Server (NTRS)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  2. Solar Energy Technologies and the Utilization on Native American Tribal Lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Kathryn

    As an undergraduate researcher, I worked on a new technology called nanofluid-based direct absorption solar collectors (DASC) which is a type of solar water heater that has the potential to be more efficient than traditional solar water heaters. Because of my experience with this type of technology, I decided to look into other types of solar energy technologies which could be used on Native American tribal lands. Some types of solar energy technologies that I wanted to focus on are photovoltaic solar energy systems, passive solar design, and solar water heaters.

  3. NASA Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles

    2007-01-01

    NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within

  4. Alignment and Initial Operation of an Advanced Solar Simulator

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jefferies, Kent S.; Mason, Lee S.

    1996-01-01

    A solar simulator utilizing nine 30-kW xenon arc lamps was built to provide radiant power for testing a solar dynamic space power system in a thermal vacuum environment. The advanced solar simulator achieved the following values specific to the solar dynamic system: (1) a subtense angle of 1 deg; (2) the ability to vary solar simulator intensity up to 1.7 kW/sq m; (3) a beam diameter of 4.8 m; and (4) uniformity of illumination on the order of +/-10%. The flexibility of the solar simulator design allows for other potential uses of the facility.

  5. $6 Million in Awards to Advance Solar Cell Research

    Science.gov Websites

    five companies for high tech research into non-conventional, photovoltaic technologies for creating can have significant cost advantages over conventional technologies. This non-conventional solar , Newbury Park, $498,000 (small business) Project Title: Non-Vacuum Processing of CIGS Solar Cells Project

  6. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    NASA Technical Reports Server (NTRS)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  7. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  8. Promising Results from Three NASA SBIR Solar Array Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael

    2005-01-01

    Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW

  9. Advanced Photovoltaic Solar Array program status

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul M.

    1989-01-01

    The Advanced Photolvoltaic Solar Array (APSA) Program is discussed. The objective of the program is to demonstrate a producible array system by the end of this decade with a beginning-of-life (BOL) specific power of 130 W/kg at 10 kW as an intermediate milestone toward the ultimate goal of 300 W/kg at 25 kW by the year 2000. The near-term goal represents a significant improvement over existing rigid panel flight arrays (25 to 45 W/kg) and the first-generation flexible blanket NASA/OAST SAFE I array of the early 1980s, which was projected to provide about 60 W/kg BOL. The prototype wing hardware is in the last stages of fabrication and integration. The current status of the program is reported. The array configuration and key design details are shown. Projections are shown for future performance enhancements that may be expected through the use of advanced structural components and solar cells.

  10. Overview study of Space Power Technologies for the advanced energetics program. [spacecraft

    NASA Technical Reports Server (NTRS)

    Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.

    1981-01-01

    Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.

  11. Comparison of advanced engines for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Bowyer, J. M.; Gajanana, B. C.

    1980-01-01

    A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.

  12. The NASA Langley building solar project and the supporting Lewis solar technology program

    NASA Technical Reports Server (NTRS)

    Ragsdale, R. G.; Namkoong, D.

    1974-01-01

    The use of solar energy to heat and cool a new office building that is now under construction is reported. Planned for completion in December 1975, the 53,000 square foot, single story building will utilize 15,000 square feet of various types of solar collectors in a test bed to provide nearly all of the heating demand and over half of the air conditioning demand. Drawing on its space-program-developed skills and resources in heat transfer, materials, and systems studies, NASA-Lewis will provide technology support for the Langley building project. A solar energy technology program underway at Lewis includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Based on results obtained in this program, NASA-Lewis will select and procure the solar collectors for the Langley test bed.

  13. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  14. [Advanced Composites Technology Initiatives

    NASA Technical Reports Server (NTRS)

    Julian, Mark R.

    2002-01-01

    This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.

  15. Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology

    NASA Astrophysics Data System (ADS)

    vanKonynenburg, Peter; Marsland, Stephen; McCoy, James

    1987-11-01

    A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.

  16. Latest developments in the Advanced Photovoltaic Solar Array Program

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1990-01-01

    In 1985, the Advanced Photovoltaic Solar Array (APSA) Program was established to demonstrate a producible array system with a specific power greater than 130 W/kg at a 10-kW (BOL) power level. The latest program phase completed fabrication and initial functional testing of a prototype wing representative of a full-scale 5-kW (BOL) wing (except truncated in length to about 1 kW), with weight characteristics that could meet the 130-W/kg (BOL) specific power goal using thin silicon solar cell modules and weight-efficient structural components. The wing configuration and key design details are reviewed, along with results from key component-level and wing-level tests. Projections for future enhancements that may be expected through the use of advanced solar cells and structural components are shown. Performance estimates are given for solar electric propulsion orbital transfer missions through the Van Allen radiation belts. The latest APSA program plans are presented.

  17. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    NASA Technical Reports Server (NTRS)

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  18. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  19. Solar Energy Technologies Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-03-01

    The Solar Energy Technologies Office supports the SunShot Initiative goal to make solar energy technologies cost competitive with conventional energy sources by 2020. Reducing the total installed cost for utility-scale solar electricity by approximately 75% (2010 baseline) to roughly $0.06 per kWh without subsidies will enable rapid, large-scale adoption of solar electricity across the United States. This investment will help re-establish American technological and market leadership in solar energy, reduce environmental impacts of electricity generation, and strengthen U.S. economic competitiveness.

  20. Applications technology satellites advanced mission study

    NASA Technical Reports Server (NTRS)

    Gould, L. M.

    1972-01-01

    Three spacecraft configurations were designed for operation as a high powered synchronous communications satellite. Each spacecraft includes a 1 kw TWT and a 2 kw Klystron power amplifier feeding an antenna with multiple shaped beams. One of the spacecraft is designed to be boosted by a Thor-Delta launch vehicle and raised to synchronous orbit with electric propulsion. The other two are inserted into a elliptical transfer orbit with an Atlas Centaur and injected into final orbit with an apogee kick motor. Advanced technologies employed in the several configurations include tubes with multiple stage collectors radiating directly to space, multiple-contoured beam antennas, high voltage rollout solar cell arrays with integral power conditioning, electric propulsion for orbit raising and on-station attitude control and station-keeping, and liquid metal slip rings.

  1. Advanced Refrigerator/Freezer Technology Development. Technology Assessment

    NASA Technical Reports Server (NTRS)

    Gaseor, Thomas; Hunter, Rick; Hamill, Doris

    1996-01-01

    The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.

  2. Advanced energy systems and technologies - National R and D programme

    NASA Astrophysics Data System (ADS)

    Lund, P. D.

    1992-08-01

    The energy R and D in Finland is accomplished through the energy research programs of the Ministry of Trade and Industry. Today there are some 12 R and D programs in operation covering the various aspects of the energy sector. The NEMO-program deals with advanced new energy technologies and systems. The NEMO-program was launched in 1988 and it ends at the end of 1992. Helsinki University of Technology has been responsible for the coordination and most of the universities, research centers, and companies on new advanced energy technologies have been involved in the realization of NEMO. The objectives of the program have been to assess the potential of new technologies in the Finnish energy supply system, encourage and support businesses, and to create necessary research tradition in Finland. At the beginning in year 1988, several new technologies were included, but as the knowledge has increased, focusing on the most promising fields has taken place. Wind and solar energy show the best promises in respect to business activities and possibilities for utilization in Finland. Energy storage some other advanced technologies such as fuel cells and hydrogen technologies represented in the NEMO-program have an important role, but the commercial applications lie more distant in the future. The NEMO-program has reached its objectives. The international evaluation in fall 1990 gave very positive feedback and the scientific quality of the work was found good. At the same time, the contents was still focused more on commercial applications to support national industries in the field. The descriptions of the ongoing NEMO research projects are included in this report.

  3. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  4. Status of the use of microwave power transmission technology in the solar power satellite

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1985-01-01

    Attention is given to recent advances in the technologies needed to build and transport a Solar Power satellite. Among the areas of NASA sponsored SPS research are: the application of ground-based, electronically steerable arrays to the SPS space-based microwave transmitting antenna; and the application of microwave transmission technology to a low-cost LEO-to-GEO transportation system to build the SPS. A photograph of a thin-film etched circuit rectenna for powering the LEO-to-GEO transportation system is provided.

  5. Seeking the Tricorder: Report on Workshops on Advanced Technologies for Life Detection

    NASA Astrophysics Data System (ADS)

    Reiss-Bubenheim, D.; Boston, P. J.; Partridge, H.; Lindensmith, C.; Nadeau, J. L.

    2017-12-01

    There's great excitement about life prospects on icy fluid-containing moons orbiting our Solar System's gas giant planets, newly discovered planet candidates and continuing long-term interest in possible Mars life. The astrobiology/planetary research communities require advanced technologies to explore and study both Solar System bodies and exoplanets for evidence of life. The Tricorder Workshop, held at Ames Research Center May 19-20, 2017, explored technology topics focused on non-invasive or minimally invasive methods for life detection. The workshop goal was to tease out promising ideas for low TRL concepts for advanced life detection technologies that could be applied to the surface and near-subsurface of Mars and Ocean Worlds (such as Europa and Enceladus) dominated by icy terrain. The workshop technology focus centered on mid-to-far term instrument concepts or other enabling technologies (e.g. robotics, machine learning, etc.) primarily for landed missions, which could detect evidence of extant, extinct and/or "weird" life including the notion of "universal biosignatures". Emphasis was placed on simultaneous and serial sample measurements using a suite of instruments and technological approaches with planetary protection in mind. A follow-on workshop, held July 24 at Caltech, sought to develop a generic flowchart of in situ observations and measurements to provide sufficient information to determine if extant life is present in an environment. The process didn't require participant agreement as to definition of extant life, but instead developed agreement on necessary observations and instruments. The flowchart of measurements was designed to maximize the number of simultaneous observations on a single sample where possible, serializing where necessary, and finally dividing it into parts for the most destructive analyses at the end. Selected concepts from the workshops outlined in this poster provide those technology areas necessary to solicit and develop

  6. Advanced power cycles and configurations for solar towers: Modeling and optimization of the decoupled solar combined cycle concept

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier

    2017-06-01

    CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different

  7. Advanced sensors technology survey

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert

    1992-01-01

    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.

  8. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  9. NASA advanced space photovoltaic technology-status, potential and future mission applications

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  10. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov Websites

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal ) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The original IMM cell was invented by Mark Wanlass of NREL's

  11. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles; Childress, Amy; Hiibel, Sage

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less

  12. Extended Temperature Solar Cell Technology Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  13. Concentrating Solar Power Projects by Technology | Concentrating Solar

    Science.gov Websites

    ) technology from the list below. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block

  14. Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.

  15. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  16. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  17. Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions

    DTIC Science & Technology

    2012-02-01

    Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions by Kendall Bianchi, Jay R. Maddux, Kimberly Sablon-Ramsey...Research Laboratory Adelphi, MD 20783-1197 ARL-TR-5920 February 2012 Survey of Thermoelectric and Solar Technologies as Alternative Energy...Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions 5a

  18. Solar Job Related Training.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Dallas, TX.

    This book contains comprehensive instruction in design, installation, and service procedures for typical solar space heat and domestic hot water systems. The book is comprised of five major sections. Solar Systems: Past and Present presents a brief look at how far solar technology has advanced. Included in this section are descriptions of over…

  19. Solar Technology Options and Resource Assessment | State, Local, and Tribal

    Science.gov Websites

    Governments | NREL Technology Options and Resource Assessment Solar Technology Options and covers solar technology options, how they work, and how to determine whether your location is appropriate

  20. Building Design Guidelines for Solar Energy Technologies

    DOE R&D Accomplishments Database

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  1. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    NASA Technical Reports Server (NTRS)

    Young, Roy M.; Montgomery, Edward E.; Montgomery, Sandy; Adams, Charles L.

    2007-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.

  2. [Advances in microbial solar cells--A review].

    PubMed

    Guo, Xiaoyun; Yu, Changping; Zheng, Tianling

    2015-08-04

    The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.

  3. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  4. Development of advanced space solar dynamic receiver

    NASA Astrophysics Data System (ADS)

    Abe, Yoshiyuki; Tanaka, Kotaro; Nomura, Osami; Kanari, Katsuhiko; Takahashi, Yoshio; Kamimoto, Masayuki

    Work on an advanced solar dynamic receiver is reviewed. The authors first describe the component test of the receiver tube with LiF in metallic containers, which was performed in a closed high-temperature He-Xe loop. They then give the details of the development of composite phase change materials, such as ceramic/molten salts or carbon/molten salts for advanced receiver concepts. As for SiC/LiF composites, the performance test of the receiver component will soon be ready to begin.

  5. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  6. Laser microprocessing technologies for automotive, flexible electronics, and solar energy sectors

    NASA Astrophysics Data System (ADS)

    Nikumb, Suwas; Bathe, Ravi; Knopf, George K.

    2014-10-01

    Laser microprocessing technologies offer an important tool to fulfill the needs of many industrial sectors. In particular, there is growing interest in applications of these processes in the manufacturing areas such as automotive parts fabrication, printable electronics and solar energy panels. The technology is primarily driven by our understanding of the fundamental laser-material interaction, process control strategies and the advancement of significant fabrication experience over the past few years. The wide-ranging operating parameters available with respect to power, pulse width variation, beam quality, higher repetition rates as well as precise control of the energy deposition through programmable pulse shaping technologies, enables pre-defined material removal, selective scribing of individual layer within a stacked multi-layer thin film structure, texturing of material surfaces as well as precise introduction of heat into the material to monitor its characteristic properties are a few examples. In this research, results in the area of laser surface texturing of metals for added hydrodynamic lubricity to reduce friction, processing of ink-jet printed graphene oxide for flexible printed electronic circuit fabrication and scribing of multi-layer thin films for the development of photovoltaic CuInGaSe2 (CIGS) interconnects for solar panel devices will be discussed.

  7. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  8. Advanced space solar dynamic receivers

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Coombs, Murray G.; Lacy, Dovie E.

    1988-01-01

    A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability (to enable power production during the substantial eclipse period which accompanies typical orbits) and are lighter and smaller than state-of-the-art systems, such as the Brayton solar receiver being designed and developed by AiResearch for the NASA Space Station. Two receiver concepts have been developed in detail: a packed bed receiver and a heat pipe receiver. The packed bed receiver is appropriate for a Brayton engine; the heat pipe receiver is applicable for either a Brayton or Stirling engine. The thermal storage for both concepts is provided by the melting and freezing of a salt. Both receiver concepts offer substantial improvements in size and weight compared to baseline receivers.

  9. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  10. Advanced adaptive optics technology development

    NASA Astrophysics Data System (ADS)

    Olivier, Scot S.

    2002-02-01

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  11. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  12. Advanced Technologies to Improve Closure of Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2016-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  13. GaAs CLEFT solar cells for space applications. [CVD thin film growth technology

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.; Mcclelland, R. W.; King, B. D.

    1984-01-01

    Although GaAs solar cells are radiation-resistant and have high conversion efficiencies, there are two major obstacles that such cells must overcome before they can be widely adopted for space applications: GaAs wafers are too expensive and cells made from these wafers are too heavy. The CLEFT process permits the growth of thin single-crystal films on reusable substrates, resulting in a drastic reduction in both cell cost and cell weight. Recent advances in CLEFT technology have made it possible to achieve efficiencies of about 14 percent AM0 for 0.51-sq cm GaAs solar cells 5 microns thick with a 41-mil-thick coverglass. In preliminary experiments efficiencies close to 19 percent AM1 have been obtained for 10-micron-thick cells. It is suggested that the CLEFT technology should yield inexpensive, highly efficient modules with a beginning-of-life specific power close to 1 kW/kg (for a coverglass thickness of 4 mils).

  14. Advanced Technology for Engineering Education

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  15. The advanced photovoltaic solar array program

    NASA Technical Reports Server (NTRS)

    Kurland, R. M.; Stella, Paul M.

    1989-01-01

    The background and development status of an ultralightweight flexible-blanket flatpack, fold-out solar array is presented. It is scheduled for prototype demonstration in late 1989. The Advanced Photovoltaic Solar Array (APSA) design represents a critical intermediate milestone of the goal of 300 W/kg at beginning-of-life (BOL) with specific performance characteristics of 130 W/kg (BOL) and 100 W/kg at end-of-life (EOL) for a 10-year geosynchronous geostationary earth orbit 10-kW (BOL) space power system. The APSA wing design is scalable over a power range of 2 to 15 kW and is suitable for a full range of missions including Low Earth Orbit (LEO), orbital transfer from LEO to geostationary earth orbit and interplanetary flight.

  16. Proceedings of the annual solar thermal technology research and development conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, W.A.

    1989-02-01

    The Annual Solar Thermal Technology Research and Development Conference is being held at the Holiday Inn Crowne Plaza in Arlington, Virgina, Marh 8 and 9, 1989. This year the conference is meeting in conjunction with SOLTECH '89. SOLTECH '89 is a jointly sponsored meeting of the Solar Energy Industries Association, Interstate Solar Coordination Council, Sandia National Laboratories and the Solar Energy Research Institute. This report contains the agenda, extended abstracts and most significant visual aids used by the speakers during the Solar Thermal Technology research and development sessions. The program is divided into three sessions: Solar Electric Technology, Non-Electric Researchmore » and Development and Applications, and Concentrators.« less

  17. Impact of scientific and technological advances.

    PubMed

    Dragan, I F; Dalessandri, D; Johnson, L A; Tucker, A; Walmsley, A D

    2018-03-01

    Advancements in research and technology are transforming our world. The dental profession is changing too, in the light of scientific discoveries that are advancing biological technology-from new biomaterials to unravelling the genetic make-up of the human being. As health professionals, we embrace a model of continuous quality improvement and lifelong learning. Our pedagogical approach to incorporating the plethora of scientific-technological advancements calls for us to shift our paradigm from emphasis on skill acquisition to knowledge application. The 2017 ADEE/ADEA workshop provided a forum to explore and discuss strategies to ensure faculty, students and, ultimately, patients are best positioned to exploit the opportunities that arise from integrating new technological advances and research outcomes. Participants discussed methods of incorporating the impact of new technologies and research findings into the education of our dental students. This report serves as a signpost of the way forward and how to promote incorporation of research and technology advances and lifelong learning into the dental education curriculum. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The NASA Langley building solar project and the supporting Lewis solar technology program

    NASA Technical Reports Server (NTRS)

    Ragsdale, R. G.; Namkoong, D.

    1974-01-01

    A solar energy technology program is described that includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Early results from simulator tests indicate that non-selective coatings behave more nearly in accord with predicted performance than do selective coatings. Initial experiments on the decay rate of thermally stratified hot water in a storage tank have been run. Results suggest that where high temperature water is required, excess solar energy collected by a building solar system should be stored overnight in the form of chilled water rather than hot water.

  19. Technology for Bayton-cycle powerplants using solar and nuclear energy

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  20. A sunny future: expert elicitation of China's solar photovoltaic technologies

    NASA Astrophysics Data System (ADS)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.

    2018-03-01

    China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.

  1. Solar Electric Propulsion Technology Development for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie

    2015-01-01

    NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.

  2. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    NASA Technical Reports Server (NTRS)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    1992-01-01

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  3. Assessing Advanced Technology in CENATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallent, Nathan R.; Barker, Kevin J.; Gioiosa, Roberto

    PNNL's Center for Advanced Technology Evaluation (CENATE) is a new U.S. Department of Energy center whose mission is to assess and facilitate access to emerging computing technology. CENATE is assessing a range of advanced technologies, from evolutionary to disruptive. Technologies of interest include the processor socket (homogeneous and accelerated systems), memories (dynamic, static, memory cubes), motherboards, networks (network interface cards and switches), and input/output and storage devices. CENATE is developing a multi-perspective evaluation process based on integrating advanced system instrumentation, performance measurements, and modeling and simulation. We show evaluations of two emerging network technologies: silicon photonics interconnects and the Datamore » Vortex network. CENATE's evaluation also addresses the question of which machine is best for a given workload under certain constraints. We show a performance-power tradeoff analysis of a well-known machine learning application on two systems.« less

  4. Advanced Training Technologies and Learning Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  5. Coating Processes Boost Performance of Solar Cells

    NASA Technical Reports Server (NTRS)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  6. NREL Inks Technology Agreement for High Efficiency Multijunction Solar

    Science.gov Websites

    ) multijunction solar cells. While high-efficiency multijunction solar cells are commonly used for space Devices is excited to now be commercializing IMM solar cells for high-performance space and UAV Cells | News | NREL Inks Technology Agreement for High Efficiency Multijunction Solar Cells

  7. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  8. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  9. Advanced solar receivers for space power

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Coombs, M. G.; Lacy, D. E.

    1988-01-01

    A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability and, when implemented, will be lighter, smaller, and/or more efficient than baseline systems such as the configuration used for the Brayton solar receiver under development by Garrett AiResearch for the NASA Space Station. In addition to the baseline designs, four other receiver concepts were designed and evaluated with respect to Brayton and Stirling engines. These concepts include a higher temperature version of the baseline receiver, a packed bed receiver, a plate-fin receiver, and a heat pipe receiver. The thermal storage for all designs is provided by the melting and freezing of a salt.

  10. Effects of solar photovoltaic technology on the environment in China.

    PubMed

    Qi, Liqiang; Zhang, Yajuan

    2017-10-01

    Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.

  11. Photovoltaics: A Solar Technology for Powering Tomorrow.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    1983-01-01

    Photovoltaics, the technology that converts sunlight directly into electricity, may soon be a reliable power source for the world's poor. The one major challenge is cost reduction. Many topics are discussed, including solar powering the Third World, designing the solar building, investing in the sun, and the future of photovoltaics. (NW)

  12. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is an...

  13. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is an...

  14. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is an...

  15. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is an...

  16. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is an...

  17. Facing technological challenges of Solar Updraft Power Plants

    NASA Astrophysics Data System (ADS)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  18. Development of an Ultraflex-Based Thin Film Solar Array for Space Applications

    NASA Technical Reports Server (NTRS)

    White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.

    2003-01-01

    As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.

  19. From first generation biofuels to advanced solar biofuels.

    PubMed

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.

  20. Development of Non-Tracking Solar Thermal Technology

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Johnston, Bruce; Balkowski, Kevin

    2011-11-01

    The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non-imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200 ° C and can be readily manufactured at a cost between 15 and 18 per square foot.

  1. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    ERIC Educational Resources Information Center

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  2. Plasma chamber testing of advanced photovoltaic solar array coupons

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1994-01-01

    The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.

  3. Benefits of Application of Advanced Technologies for a Neptune Orbiter, Atmospheric Probes and Triton Lander

    NASA Technical Reports Server (NTRS)

    Somers, Alan; Celano, Luigi; Kauffman, Jeffrey; Rogers, Laura; Peterson, Craig

    2005-01-01

    Missions with planned launch dates several years from today pose significant design challenges in properly accounting for technology advances that may occur in the time leading up to actual spacecraft design, build, test and launch. Conceptual mission and spacecraft designs that rely solely on off the shelf technology will result in conservative estimates that may not be attractive or truly representative of the mission as it actually will be designed and built. This past summer, as part of one of NASA s Vision Mission Studies, a group of students at the Laboratory for Spacecraft and Mission Design (LSMD) have developed and analyzed different Neptune mission baselines, and determined the benefits of various assumed technology improvements. The baseline mission uses either a chemical propulsion system or a solar-electric system. Insertion into orbit around Neptune is achieved by means of aerocapture. Neptune s large moon Triton is used as a tour engine. With these technologies a comprehensive Cassini-class investigation of the Neptune system is possible. Technologies under investigation include the aerocapture heat shield and thermal protection system, both chemical and solar electric propulsion systems, spacecraft power, and energy storage systems.

  4. Advanced Air Bag Technology Assessment

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.

    1998-01-01

    As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the

  5. Advanced Cloud Forecasting for Solar Energy Production

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; Parker, M. J.

    2017-12-01

    A power utility must decide days in advance how it will allocate projected loads among its various generating sources. If the latter includes solar plants, the utility must predict how much energy the plants will produce - any shortfall will have to be compensated for by purchasing power as it is needed, when it is more expensive. To avoid this, utilities often err on the side of caution and assume that a relatively small amount of solar energy will be available, and allocate correspondingly more load to coal-fired plants. If solar irradiance can be predicted more accurately, utilities can be more confident that the predicted solar energy will indeed be available when needed, and assign solar plants a larger share of the future load. Solar power production is increasing in the Southeast, but is often hampered by irregular cloud fields, especially during high-pressure periods when rapid afternoon thunderstorm development can occur during what was predicted to be a clear day. We are currently developing an analog forecasting system to predict solar irradiance at the surface at the Savannah River Site in South Carolina, with the goal of improving predictions of available solar energy. Analog forecasting is based on the assumption that similar initial conditions will lead to similar outcomes, and involves the use of an algorithm to look through the weather patterns of the past to identify previous conditions (the analogs) similar to those of today. For our application, we select three predictor variables - sea-level pressure, 700mb geopotential, and 700mb humidity. These fields for the current day are compared to those from past days, and a weighted combination of the differences (defined by a cost function) is used to select the five best analog days. The observed solar irradiance values subsequent to the dates of those analogs are then combined to represent the forecast for the next day. We will explain how we apply the analog process, and compare it to existing

  6. Advanced Solar Observatory (ASO) accommodations requirements study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Results of an accommodations analysis for the Advanced Solar Observatory on Space Station Freedom are reported. Concepts for the High Resolution Telescope Cluster, Pinhole/Occulter Facility, and High Energy Cluster were developed which can be accommodated on Space Station Freedom. It is shown that workable accommodations concepts are possible. Areas of emphasis for the next stage of engineering development are identified.

  7. 2008 Solar Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, S.; Margolis, R.; Barbose, G.

    2010-01-01

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts. Highlights of thismore » report include: (1) The global PV industry has seen impressive growth rates in cell/module production during the past decade, with a 10-year compound annual growth rate (CAGR) of 46% and a 5-year CAGR of 56% through 2008. (2) Thin-film PV technologies have grown faster than crystalline silicon over the past 5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film shipments through 2008. (3) Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 2.4 GW installed in 2007. (4) The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 0.21 GW in 2007. (5) Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 2008. (6) Federal legislation, including the Emergency Economic Stabilization Act of 2008 (EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, February 2009), is providing unprecedented levels of support for the U.S. solar industry. (7) In 2008, global private-sector investment in solar energy technology topped $16 billion, including almost $4 billion invested in the United States. (8) Solar PV market forecasts made in early 2009 anticipate global PV production and demand to increase fourfold between 2008 and 2012, reaching roughly 20 GW of production and demand by

  8. Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.; hide

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.

  9. The NASA Space Solar Cell Advanced Research Program

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1989-01-01

    Two major requirements for space solar cells are high efficiency and survivability in the naturally occurring charged particle space radiation environment. Performance limits for silicon space cells are well understood. Advanced cells using GaAs and InP are under development to provide significantly improved capability for the future.

  10. Modeling of advanced technology vehicles

    DOT National Transportation Integrated Search

    2003-09-01

    The characterization of some types of "advanced technology vehicles" may help to understand policies that are strongly either explicitly or implicitly technology-dependent. Recent models attempt to characterize such technologies in terms of fuel econ...

  11. A 100 kW-Class Technology Demonstrator for Space Solar Power

    NASA Astrophysics Data System (ADS)

    Howell, J.; Carrington, C.; Day, G.

    2004-12-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class free-flying platform suitable for flight demonstration of Space Solar Power (SSP) technology experiments.

  12. Solar Energy: Progress and Promise.

    ERIC Educational Resources Information Center

    Council on Environmental Quality, Washington, DC.

    This report discusses many of the economic and policy questions related to the widespread introduction of solar power, presents recent progress in developing solar technologies and advancing their economic feasibility, and reviews some recommendations that have been made for achieving the early introduction and sustained application of solar…

  13. Operational Leadership and Advancing Technology

    DTIC Science & Technology

    2009-05-04

    FINAL 3. DATES COVERED (From - To) 9 Feb – 4 May 2009 4. TITLE AND SUBTITLE Operational Leadership and Advancing Technology 5a...operational leader must use his authority and leadership skills to get by in from all concerned to maximize technological advances. 15. SUBJECT TERMS...WWI armor, British armor doctrine, German Armor doctrine, operational leadership 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  14. Advanced Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project matures critical technologies required to enable ultra-stable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets.

  15. DOE Solar Energy Technologies Program FY 2005 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  16. Low cost monocrystalline silicon sheet fabrication for solar cells by advanced ingot technology

    NASA Technical Reports Server (NTRS)

    Fiegl, G. F.; Bonora, A. C.

    1980-01-01

    The continuous liquid feed (CLF) Czochralski furnace and the enhanced I.D. slicing technology for the low-cost production of monocrystalline silicon sheets for solar cells are discussed. The incorporation of the CLF system is shown to improve ingot production rate significantly. As demonstrated in actual runs, higher than average solidification rates (75 to 100 mm/hr for 150 mm 1-0-0 crystals) can be achieved, when the system approaches steady-state conditions. The design characteristics of the CLF furnace are detailed, noting that it is capable of precise control of dopant impurity incorporation in the axial direction of the crystal. The crystal add-on cost is computed to be $11.88/sq m, considering a projected 1986 25-slice per cm conversion factor with an 86% crystal growth yield.

  17. Modern prospects of development of branch of solar power

    NASA Astrophysics Data System (ADS)

    Luchkina, Veronika

    2017-10-01

    Advantages of solar energy for modern companies are evident already. Article describes mechanism of the solar electricity generation. Process of production of solar modules with appliance of the modern technologies of sun energy production. The branch of solar energy “green energy” become advanced in Russia and has a stable demand. Classification of investments on the different stages of construction projects of solar power plants and calculation of their economic efficiency. Studying of introduction of these technologies allows to estimate the modern prospects of development of branch of solar power.

  18. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  19. Research and Development Needs for Building-Integrated Solar Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  20. Status of silicon solar cell technology

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1976-01-01

    Major progress in solar cell technology leading to increased efficiency has occurred since 1970. Technical approaches leading to this increased output include surface texturing, improved antireflection coatings, reduced grid pattern area coverage, shallow junctions and back surface fields. The status of these developments and their incorporation into cell production is discussed. Future research and technology trends leading to further efficiency increases and substantial cost reductions are described.

  1. Solar economy and technology update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brotherton, T.K.

    The industry, national, and consumer perspectives on solar power are reviewed. With a 30% increase in dealer/installers, and a 30% attrition rate, about 60% of the participants in the market are ''new kids on the block.'' The installed value of the market was $750 million in 1981. There was a 30% decline in volumes, due to the recession, in 1982. As for the national perspective, solar is labor intensive, and generated a billion dollars worth of jobs. As the DOE has abandoned all but high risk ''core technology'' RandD has faltered some. But desiccant heat pumps, polymer collectors, and parabolicmore » collectors are discussed.« less

  2. Benefits of advanced technology in industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Barna, G. J.; Burns, R. K.

    1979-01-01

    This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.

  3. A review of the salt-gradient solar pond technology

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H.

    1982-01-01

    The state of the salt-gradient solar pond technology is reviewed. Highlights of findings and experiences from existing ponds to data are presented, and the behavior, energy yield, operational features, and economics of solar ponds are examined. It is concluded that salt-gradient solar ponds represent a technically feasible, environmentally benign, and economically attractive energy producing alternative. In order to bring this emerging technology to maturity, however, much research and development effort remains to be undertaken. Specific R&D areas requiring the attention and action of technical workers and decision-makers are discussed, both from the perspectives of smaller, thermally-oriented ponds and larger, electricity generating ponds.

  4. Mars Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Kerslake, Thomas W.; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    NASA missions to Mars, both robotic and human, rely on solar arrays for the primary power system. Mars presents a number of challenges for solar power system operation, including a dusty atmosphere which modifies the spectrum and intensity of the incident solar illumination as a function of time of day, degradation of the array performance by dust deposition, and low temperature operation. The environmental challenges to Mars solar array operation will be discussed and test results of solar cell technology operating under Mars conditions will be presented, along with modeling of solar cell performance under Mars conditions. The design implications for advanced solar arrays for future Mars missions is discussed, and an example case, a Martian polar rover, are analyzed.

  5. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  6. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    This paper discusses both state-of-the-art and advanced development cell and array technology. Present technology includes rigid, roll-out, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is discussed based on both DOD efforts and NASA work. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency thin radiation resistant cells is examined. This includes gallium arsenide/germanium, indium phosphide, and thin film devices such as copper indium disclenide.

  7. The development of an advanced generic solar dynamic heat receiver thermal model

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Kohout, L.

    1988-01-01

    An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.

  8. Advanced solar receiver conceptual design study

    NASA Technical Reports Server (NTRS)

    Kesseli, J. B.; Lacy, D. E.

    1987-01-01

    High temperature solar dynamic Brayton and Stirling receivers are investigated as candidate electrical power generating systems for future LEO missions. These receivers are smaller and more efficient than conventional receivers, and they offer less structural complexity and fewer thermal stress problems. Use of the advanced Direct Absorption Storage Receiver allows many of the problems associated with working with high-volumetric-change phase-change materials to be avoided. A specific mass reduction of about 1/3 with respect to the baseline receiver has been realized.

  9. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  10. Benefits of advanced propulsion technology for the advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Sabatella, J. A.

    1973-01-01

    Future supersonic transports will have to provide improvement in the areas of economics, range, and emissions relative to the present generation of supersonic transports, as well as meeting or improving upon FAR 36 noise goals. This paper covers the promising propulsion systems including variable-cycle engine concepts for long-range supersonic commercial transport application. The benefits of applying advanced propulsion technology to solve the economic and environmental problems are reviewed. The advanced propulsion technologies covered are in the areas of structures, materials, cooling techniques, aerodynamics, variable engine geometry, jet noise suppressors, acoustic treatment, and low-emission burners. The results of applying the advanced propulsion technology are presented in terms of improvement in overall system takeoff gross weight and return on investment.

  11. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  12. 75 FR 60082 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT), National...

  13. 76 FR 2662 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of partially closed meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT...

  14. Advanced-technology space station study: Summary of systems and pacing technologies

    NASA Technical Reports Server (NTRS)

    Butterfield, A. J.; Garn, P. A.; King, C. B.; Queijo, M. J.

    1990-01-01

    The principal system features defined for the Advanced Technology Space Station are summarized and the 21 pacing technologies identified during the course of the study are described. The descriptions of system configurations were extracted from four previous study reports. The technological areas focus on those systems particular to all large spacecraft which generate artificial gravity by rotation. The summary includes a listing of the functions, crew requirements and electrical power demand that led to the studied configuration. The pacing technologies include the benefits of advanced materials, in-orbit assembly requirements, stationkeeping, evaluations of electrical power generation alternates, and life support systems. The descriptions of systems show the potential for synergies and identifies the beneficial interactions that can result from technological advances.

  15. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  16. 77 FR 32570 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee...

  17. 76 FR 29195 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee...

  18. 78 FR 292 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee...

  19. 78 FR 57839 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee...

  20. 76 FR 59659 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee...

  1. 77 FR 3232 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee...

  2. 78 FR 29704 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee...

  3. PowerSat: A technology demonstration of a solar power satellite

    NASA Technical Reports Server (NTRS)

    Sigler, Douglas L. (Editor); Riedman, John; Duracinski, Jon; Edwards, Joe; Brown, Garry; Webb, Ron; Platzke, Mike; Yuan, Xiaolin; Rogers, Pete; Khan, Afsar

    1994-01-01

    PowerSat is a preliminary design strategy for microwave wireless power transfer of solar energy. Solar power satellites convert solar power into microwave energy and use wireless power transmission to transfer the power to the Earth's surface. The PowerSat project will show how new developments in inflatable technology can be used to deploy solar panels and phased array antennas.

  4. Benefits from synergies and advanced technologies for an advanced-technology space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Ferebee, Melvin J., Jr.; Queijo, Manuel J.; Butterfield, Ansel J.

    1991-01-01

    A configuration for a second-generation advanced technology space station has been defined in a series of NASA-sponsored studies. Definitions of subsystems specifically addressed opportunities for beneficial synergistic interactions and those potential synergies and their benefits are identified. One of the more significant synergistic benefits involves the multi-function utilization of water within a large system that generates artificial gravity by rotation. In such a system, water not only provides the necessary crew life support, but also serves as counterrotator mass, as moveable ballast, and as a source for propellant gases. Additionally, the synergistic effects between advanced technology materials, operation at reduced artificial gravity, and lower cabin atmospheric pressure levels show beneficial interactions that can be quantified in terms of reduced mass to orbit.

  5. Advanced solar box and flat plate collector cookers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grupp, M.; Bergler, H.

    Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.

  6. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  7. OUT Success Stories: Solar Hot Water Technology

    DOE R&D Accomplishments Database

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  8. Advanced Education and Technology Business Plan, 2010-13

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    This paper presents the business plan of the Ministry of Advanced Education and Technology for 2010 to 2013. Advanced Education and Technology supports the advanced learning system by providing funding for advanced learning providers, coordinating and approving programs of study at public institutions, licensing and approving programs at private…

  9. Recent advances in plasmonic dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rho, Won-Yeop; Song, Da Hyun; Yang, Hwa-Young; Kim, Ho-Sub; Son, Byung Sung; Suh, Jung Sang; Jun, Bong-Hyun

    2018-02-01

    Dye-sensitized solar cells (DSSCs) are among the best devices in generating electrons from solar light energy due to their high efficiency, low-cost in processing and transparency in building integrated photovoltaics. There are several ways to improve their energy-conversion efficiency, such as increasing light harvesting and electron transport, of which plasmon and 3-dimensional nanostructures are greatly capable. We review recent advances in plasmonic effects which depend on optimizing sizes, shapes, alloy compositions and integration of metal nanoparticles. Different methods to integrate metal nanoparticles into 3-dimensional nanostructures are also discussed. This review presents a guideline for enhancing the energy-conversion efficiency of DSSCs by utilizing metal nanoparticles that are incorporated into 3-dimensional nanostructures.

  10. The Complete Picture: "Standards for Technological Literacy" and "Advancing Excellence in Technological Literacy."

    ERIC Educational Resources Information Center

    Technology Teacher, 2003

    2003-01-01

    Provides an overview of the "Standards for Technological Literacy: Content for the Study of Technology" (STL) and "Advancing Excellence in Technological Literacy: Student Assessment, Professional Development, and Program Standards" (AETL). Shows how the documents work together to advance the technological literacy of technology educators and K-12…

  11. Solar thermoelectricity via advanced latent heat storage: A cost-effective small-scale CSP application

    NASA Astrophysics Data System (ADS)

    Glatzmaier, G. C.; Rea, J.; Olsen, M. L.; Oshman, C.; Hardin, C.; Alleman, J.; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2017-06-01

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and

  12. Solar Thermoelectricity via Advanced Latent Heat Storage: A Cost-Effective Small-Scale CSP Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatzmaier, Greg C.; Rea, J.; Olsen, Michele L.

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales inmore » the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location

  13. Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    1994-01-01

    Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.

  14. Keeping Cool With Solar-Powered Refrigeration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  15. Thin film, concentrator, and multijunction space solar cells: Status and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1991-01-01

    Recent, rapid advances in a variety of solar cell technologies offer the potential for significantly enhancing, or enabling entirely new, mission capabilities. Thin film solar cells are of particular interest. A review is provided of the status of those thin film cell technologies of interest for space applications, and the issues to be resolved before mission planners can consider them. A short summary of recent developments in concentrator and multijunction space solar cell and array technology is given.

  16. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less

  17. Can advanced technology improve future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Snow, D. B.

    1981-01-01

    The short-haul service abandoned by the trunk and local airlines is being picked up by the commuter airlines using small turboprop-powered aircraft. Most of the existing small transport aircraft currently available represent a relatively old technology level. However, several manufacturers have initiated the development of new or improved commuter transport aircraft. These aircraft are relatively conservative in terms of technology. An examination is conducted of advanced technology to identify those technologies that, if developed, would provide the largest improvements for future generations of these aircraft. Attention is given to commuter aircraft operating cost, aerodynamics, structures and materials, propulsion, aircraft systems, and technology integration. It is found that advanced technology can improve future commuter aircraft and that the largest of these improvements will come from the synergistic combination of technological advances in all of the aircraft disciplines. The most important goals are related to improved fuel efficiency and increased aircraft productivity.

  18. Business developments of nonthermal solar technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.A.; Watts, R.L.; Williams, T.A.

    1985-10-01

    Information on the developments of nonthermal solar technologies is presented. The focus is on the success of wind energy conversion systems (WECS) and photovoltaics. Detailed information on the installed generating capacity, market sectors, financing sources, systems costs and warranties of WECS and photovoltaic systems is summarized. (BCS)

  19. Progress of solar technology and potential farm uses

    NASA Astrophysics Data System (ADS)

    Heid, W. G., Jr.; Trotter, W. K.

    1982-09-01

    The efficient use of solar energy on farms for space heating and cooling of livestock buildings, drying crops, and heating farm homes is discussed. Low cost, homemade solar collectors, having multiple uses and a payback of less than 5 years, are the most popular systems. In contrast, most commercially produced systems are still too expensive for agricultural uses, partly because they fail to qualify for tax credits as large as those allowed for residential uses. The solar industry has shown little interest in marketing the low cost technologies specifically developed for agriculture.

  20. PV technology and success of solar electricity in Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dung, T.Q.

    1997-12-31

    Since 1990 the PV Technology and the Solar electricity have been strongly developed in Vietnam. The PV experts of Solarlab have studied and set up an appropriate PV Technology responding to local Market needs. It has not only stood well but has been also transferred to Mali Republic and Lao P.D.R. The PV off grid systems of Solarlab demonstrate good efficiency and low prices. Over 60 solar stations and villages have been built to provide solar lighting for about 3000 families along the country in remote, mountainous areas and islands. 400 families are using stand-alone Solar Home Systems. The Solarmore » electricity has been chosen for Rural Electrification and National Telecommunication Network in remote and mountainous regions. Many International projects in cooperation with FONDEM-France, SELF USA and Governmental PV projects have been realized by Solarlab. The experiences of maintenance, management and finance about PV development in Vietnam are also mentioned.« less

  1. The Determinant of US Consumers Attitudes toward Solar Energy

    ERIC Educational Resources Information Center

    Lu, Chao-Lin

    2016-01-01

    Solar energy provides several significant advantages, such as reduction of the CO[subscript 2] emissions, increase of energy supply diversification, security of energy, and regional/national energy independence. Due to the reduced installation cost and the rapid advances in solar energy technology, the installed capacity of solar power has been…

  2. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  3. Recent progress in Si thin film technology for solar cells

    NASA Astrophysics Data System (ADS)

    Kuwano, Yukinori; Nakano, Shoichi; Tsuda, Shinya

    1991-11-01

    Progress in Si thin film technology 'specifically amorphous Si (a-Si) and polycrystalline Si (poly-Si) thin film' for solar cells is summarized here from fabrication method, material, and structural viewpoints. In addition to a-Si, primary results on poly-Si thin film research are discussed. Various applications for a-Si solar cells are mentioned, and consumer applications and a-Si solar cell photovoltaic systems are introduced. New product developments include see-through solar cells, solar cell roofing tiles, and ultra-light flexible solar cells. As for new systems, air conditioning equipment powered by solar cells is described. Looking to the future, the proposed GENESIS project is discussed.

  4. Advanced Life Support Technologies and Scenarios

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2011-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  5. An overview of DARPA's advanced space technology program

    NASA Astrophysics Data System (ADS)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  6. Solar Water Heater

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.

  7. Forward Technology Solar Cell Experiment First On-Orbit Data

    NASA Technical Reports Server (NTRS)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Warner, J. H.; Lorentzen, J. R.; Messenger, S. R.; Bruninga, R.; hide

    2007-01-01

    This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits

  8. Thin film, concentrator and multijunction space solar cells: Status and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1991-01-01

    Recent, rapid advances in a variety of solar cell technologies offer the potential for significantly enhancing, or enabling entirely new, mission capabilities. Thin film solar cells are of particular interest in that regard. A review is provided of the status of those thin film cell technologies of interest for space applications, and the issues to be resolved before mission planners can consider them. A short summary is also given of recent developments in concentrator and multijunction space solar cell and array technology.

  9. The Role of Solar Technology Programs In Meeting Our Energy Needs

    ERIC Educational Resources Information Center

    Valentine, Ivan E.; Larson, Milton E.

    1978-01-01

    Elements to be included in a solar energy technology training program offered in postsecondary institutions are listed. The article examines various present and future energy sources and describes the solar energy system, stressing the immediate need for training programs for solar energy technicians. (MF)

  10. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  11. Advanced gearbox technology

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Cedoz, R. W.; Salama, E. E.; Wagner, D. A.

    1987-01-01

    An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress.

  12. Concept for Space Technology Advancement

    NASA Astrophysics Data System (ADS)

    Hansen, Jeremiah J.

    2005-02-01

    detection and avoidance, damage control and mitigation, and crew ejection systems. These systems, working together, will greatly increase survivability of crewed systems. Implicit in this varied list of technology and integration is industry risk. Aerospace industry must relearn to accept risk in space technology development in order to advance capability. All of these items wrap up in a total system view that will allow for more advanced, reliable capability in space.

  13. Popular Science Recognizes Innovative Solar Technologies

    Science.gov Websites

    photovoltaic (solar electric) modules to produce standard household current are listed among the magazine's photovoltaic module that produces standard household, or alternating current (AC). Ascension Technology's SunSineTM 300 AC photovoltaic module has a built-in microinverter that eliminates the need for direct

  14. Solar technology assessment project. Volume 6: Photovoltaic technology assessment

    NASA Astrophysics Data System (ADS)

    Backus, C. E.

    1981-04-01

    Industrial production of photovoltaic systems and volume of sales are reviewed. Low cost silicon production techniques are reviewed, including the Czochralski process, heat exchange method, edge defined film fed growth, dentritic web growth, and silicon on ceramic process. Semicrystalline silicon, amorphous silicon, and low cost poly-silicon are discussed as well as advanced materials and concentrator systems. Balance of system components beyond those needed to manufacture the solar panels are included. Nontechnical factors are assessed. The 1986 system cost goals are briefly reviewed.

  15. Advanced solar concentrator mass production, operation, and maintenance cost assessment

    NASA Technical Reports Server (NTRS)

    Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.

    1981-01-01

    The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.

  16. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  17. LYRA, solar uv radiometer on the technology demonstration platform PROBA-2

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hochedez, J.-F.; Schmutz, W.; BenMoussa, A.; Defise, J.-M.; Denis, F.; D'Olieslaeger, M.; Dominique, M.; Haenen, K.; Halain, J.-P.; Koller, S.; Koizumi, S.; Mortet, V.; Rochus, P.; Schühle, U.; Soltani, A.; Theissen, A.

    2017-11-01

    LYRA is a solar radiometer part of the PROBA 2 micro satellite payload. LYRA will monitor the solar irradiance in four soft X-Ray - VUV passbands. They have been chosen for their relevance to Solar Physics, Aeronomy and SpaceWeather: 1/ Lyman Alpha channel, 2/ Herzberg continuum range, 3/ Aluminium filter channel (including He II at 30.4 nm) and 4/ Zirconium filter channel. The radiometric calibration is traceable to synchrotron source standards. The stability will be monitored by on-board calibration sources (LEDs), which allow us to distinguish between potential degradations of the detectors and filters. Additionally, a redundancy strategy maximizes the accuracy and the stability of the measurements. LYRA will benefit from wide bandgap detectors based on diamond: it will be the first space assessment of revolutionary UV detectors. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to visible light) and therefore, make dispensable visible light blocking filters. To correlate the data of this new detector technology, well known technology, such as Si detectors are also embarked. The SWAP EUV imaging telescope will operate next to LYRA on PROBA-2. Together, they will provide a high performance solar monitor for operational space weather nowcasting and research. LYRA demonstrates technologies important for future missions such as the ESA Solar Orbiter.

  18. Surface modification technologies using concentrated solar radiation

    NASA Astrophysics Data System (ADS)

    Pitts, J. Roland; Stanley, J. T.; Tracy, Ed; Fields, C. L.

    Research conducted at the Solar Energy Research Institute (SERI) during the past three years addressed a number of the critical areas and has explored the possibility of using highly concentrated solar radiation to induce beneficial surface transformation. The principal goal is to develop new coatings and processes that improve the performance and lifetime of materials at reduced processing costs. Highly concentrated radiant energy provides a controllable means of delivering large flux densities to solid surfaces, where the resulting thermal energy can cause phase changes, atomic migrations, and chemical reactions on a surface without greatly perturbing the bulk properties; alternatively, the photons may directly interact with species on the surface. These changes may result in improved properties of the materials by making the surface harder, more resistant to corrosion or wear, thermally resistant, or with lower coefficients of friction. In a solar furnace, this flux can be delivered in large quantities over large areas, or it can be tailored to match the demands of a particular process. Furthermore, this occurs without the environmental liability associated with providing power to more conventional light sources. Recent work at SERI has used fluxes in the range from 100 to 250 w/sq cm for inducing such beneficial surface transformations. Significant results have been obtained in the area of phase transformation hardening of steels and melting powders and preapplied coatings to form fully dense, well-bonded coatings on the surface. New directions in coating technology using highly concentrated solar beams to induce chemical vapor deposition processes are described. Application areas that have not been researched in detail but would appear to be good matches to the solar technology are also reviewed.

  19. Characterizing the Radiation Survivability of Space Solar Cell Technologies for Heliospheric Missions

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.

    2016-12-01

    Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.

  20. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  1. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents.

    PubMed

    Dos Santos, Alexsandro Jhones; Costa, Emily Cintia Tossi de Araújo; da Silva, Djalma Ribeiro; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2018-03-01

    Water scarcity is one of the major concerns worldwide. In order to secure this appreciated natural resource, management and development of water treatment technologies are mandatory. One feasible alternative is the consideration of water recycling/reuse at the household scale. Here, the treatment of actual washing machine effluent by electrochemical advanced oxidation processes was considered. Electrochemical oxidation and electro-Fenton technologies can be applied as decentralized small-scale water treatment devices. Therefore, efficient decolorization and total organic abatement have been followed. The results demonstrate the promising performance of solar photoelectro-Fenton process, where complete color and organic removal was attained after 240 min of treatment under optimum conditions by applying a current density of 66.6 mA cm -2 . Thus, electrochemical technologies emerge as promising water-sustainable approaches.

  2. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    NASA Technical Reports Server (NTRS)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  3. Advanced tendencies in development of photovoltaic cells for power engineering

    NASA Astrophysics Data System (ADS)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  4. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Astrophysics Data System (ADS)

    Dinetta, L. C.; Hannon, M. H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  5. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  6. Further advances in autostereoscopic technology at Dimension Technologies Inc.

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1992-06-01

    Dimension Technologies is currently one of three companies offering autostereoscopic displays for sale and one of several which are actively pursuing advances to the technology. We have devised a new autostereoscopic imaging technique which possesses several advantages over previously explored methods. We are currently manufacturing autostereoscopic displays based on this technology, as well as vigorously pursuing research and development toward more advanced displays. During the past year, DTI has made major strides in advancing its LCD based autostereoscopic display technology. DTI has developed a color product -- a stand alone 640 X 480 flat panel LCD based 3-D display capable of accepting input from IBM PC and Apple MAC computers or TV cameras, and capable of changing from 3-D mode to 2-D mode with the flip of a switch. DTI is working on development of a prototype second generation color product that will provide autostereoscopic 3-D while allowing each eye to see the full resolution of the liquid crystal display. And development is also underway on a proof-of-concept display which produces hologram-like look-around images visible from a wide viewing angle, again while allowing the observer to see the full resolution of the display from all locations. Development of a high resolution prototype display of this type has begun.

  7. An Overview Of NASA's Solar Sail Propulsion Project

    NASA Technical Reports Server (NTRS)

    Garbe, Gregory; Montgomery, Edward E., IV

    2003-01-01

    Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.

  8. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne L.

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated

  9. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated

  10. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  11. Implications of advanced vehicle technologies for older drivers.

    PubMed

    Molnar, Lisa J; Eby, David W

    2017-09-01

    Advances are being made in vehicle technologies that may help older adults compensate for some of the declines in abilities associated with aging. These advances hold promise for increasing vehicle safety, reducing injuries, and making the driving task more comfortable. However, important research gaps remain with regard to how various advanced technologies impact the safety of older drivers, as well as older drivers' perceptions about these technologies. This special issue contains seven original contributions that address these issues. Specific topics include the: congruence of design guidelines with the needs and abilities of older drivers, transfer of control between automated and manual driving, use of in-vehicle monitoring technology, motivations for technology use and assigned meanings, technology valuation, and effects on driving behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Solar Sail Propulsion for Interplanetary Cubesats

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Sobey, Alex; Sykes, Kevin

    2015-01-01

    NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. Solar sail technology is rapidly maturing for space propulsion applications within NASA and around the world.

  13. The Virtual Solar-Terrestrial Observatory; access to and use of diverse solar and solar- terrestrial data.

    NASA Astrophysics Data System (ADS)

    Fox, P.; McGuinness, D.; Cinquini, L.; West, P.; Garcia, J.; Zednik, S.; Benedict, J.

    2008-05-01

    This presentation will demonstrate how users and other data providers can utilize the Virtual Solar-Terrestrial Observatory (VSTO) to find, access and use diverse data holdings from the disciplines of solar, solar-terrestrial and space physics. VSTO provides a web portal, web services and a native applications programming interface for various levels of users. Since these access methods are based on semantic web technologies and refer to the VSTO ontology, users also have the option of taking advantage of value added services when accessing and using the data. We present example of both conventional use of VSTO as well as the advanced semantics use. Finally, we present our future directions for VSTO and semantic data frameworks in general.

  14. The Virtual Solar-Terrestrial Observatory; access to and use of diverse solar and solar-terrestrial data

    NASA Astrophysics Data System (ADS)

    Fox, P.

    2007-05-01

    This presentation will demonstrate how users and other data providers can utilize the Virtual Solar-Terrestrial Observatory (VSTO) to find, access and use diverse data holdings from the disciplines of solar, solar-terrestrial and space physics. VSTO provides a web portal, web services and a native applications programming interface for various levels of users. Since these access methods are based on semantic web technologies and refer to the VSTO ontology, users also have the option of taking advantage of value added services when accessing and using the data. We present example of both conventional use of VSTO as well as the advanced semantics use. Finally, we present our future directions for VSTO and semantic data frameworks in general.

  15. Solar to fuels conversion technologies: a perspective.

    PubMed

    Tuller, Harry L

    2017-01-01

    To meet increasing energy needs, while limiting greenhouse gas emissions over the coming decades, power capacity on a large scale will need to be provided from renewable sources, with solar expected to play a central role. While the focus to date has been on electricity generation via photovoltaic (PV) cells, electricity production currently accounts for only about one-third of total primary energy consumption. As a consequence, solar-to-fuel conversion will need to play an increasingly important role and, thereby, satisfy the need to replace high energy density fossil fuels with cleaner alternatives that remain easy to transport and store. The solar refinery concept (Herron et al. in Energy Environ Sci 8:126-157, 2015), in which captured solar radiation provides energy in the form of heat, electricity or photons, used to convert the basic chemical feedstocks CO 2 and H 2 O into fuels, is reviewed as are the key conversion processes based on (1) combined PV and electrolysis, (2) photoelectrochemically driven electrolysis and (3) thermochemical processes, all focused on initially converting H 2 O and CO 2 to H 2 and CO. Recent advances, as well as remaining challenges, associated with solar-to-fuel conversion are discussed, as is the need for an intensive research and development effort to bring such processes to scale.

  16. Ceramic Technology for Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less

  17. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  18. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area.

  19. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area

  20. Advanced interface modelling of n-Si/HNO3 doped graphene solar cells to identify pathways to high efficiency

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Ma, Fa-Jun; Ding, Ke; Zhang, Hao; Jie, Jiansheng; Ho-Baillie, Anita; Bremner, Stephen P.

    2018-03-01

    In graphene/silicon solar cells, it is crucial to understand the transport mechanism of the graphene/silicon interface to further improve power conversion efficiency. Until now, the transport mechanism has been predominantly simplified as an ideal Schottky junction. However, such an ideal Schottky contact is never realised experimentally. According to literature, doped graphene shows the properties of a semiconductor, therefore, it is physically more accurate to model graphene/silicon junction as a Heterojunction. In this work, HNO3-doped graphene/silicon solar cells were fabricated with the power conversion efficiency of 9.45%. Extensive characterization and first-principles calculations were carried out to establish an advanced technology computer-aided design (TCAD) model, where p-doped graphene forms a straddling heterojunction with the n-type silicon. In comparison with the simple Schottky junction models, our TCAD model paves the way for thorough investigation on the sensitivity of solar cell performance to graphene properties like electron affinity. According to the TCAD heterojunction model, the cell performance can be improved up to 22.5% after optimizations of the antireflection coatings and the rear structure, highlighting the great potentials for fabricating high efficiency graphene/silicon solar cells and other optoelectronic devices.

  1. Large solar arrays

    NASA Technical Reports Server (NTRS)

    Crabtree, W. L.

    1980-01-01

    A spectrophotovoltaic converter, a thermophotovoltaic converter, a cassegrainian concentrator, a large silicon cell blanket, and a high flux approach are among the concepts being investigated as part of the multihundred kW solar array program for reducing the cost of photovoltaic energy in space. These concepts involve a range of technology risks, the highest risk being represented by the thermophotovoltaics and spectrophotovoltaics approaches which involve manipulation to of the incoming spectrum to enhance system efficiency. The planar array (solar blanket) has no technology risk and a moderate payback. The primary characteristics, components, and technology concerns of each of these concepts are summarized. An orbital power platform mission in the late 1980's is being used to allow a coherent technology advancement program in order to achieve a ten year life with maintenance at a capital recurring cost of $30/watt based on 1978 dollars.

  2. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  3. Technology Area Roadmap for In Space Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny

    2010-01-01

    This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.

  4. Recyclable organic solar cells on cellulose nanocrystal substrates

    PubMed Central

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M.; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production. PMID:23524333

  5. Recyclable organic solar cells on cellulose nanocrystal substrates.

    PubMed

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P; Moon, Robert J; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.

  6. Science and Technology Facility | Photovoltaic Research | NREL

    Science.gov Websites

    - and back-contact schemes for advanced thin-film PV solar cells. Contact materials include metals Science and Technology Facility Science and Technology Facility Solar cell, thin-film, and Development Laboratory Research in thin-film PV is accomplished in this lab with techniques used for

  7. The ACTS Flight System - Cost-Effective Advanced Communications Technology. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Holmes, W. M., Jr.; Beck, G. A.

    1984-01-01

    The multibeam communications package (MCP) for the Advanced Communications Technology Satellite (ACTS) to be STS-launched by NASA in 1988 for experimental demonstration of satellite-switched TDMA (at 220 Mbit/sec) and baseband-processor signal routing (at 110 or 27.5 Mbit/sec) is characterized. The developmental history of the ACTS, the program definition, and the spacecraft-bus and MCP parameters are reviewed and illustrated with drawings, block diagrams, and maps of the coverage plan. Advanced features of the MPC include 4.5-dB-noise-figure 30-GHz FET amplifiers and 20-GHz TWTA transmitters which provide either 40-W or 8-W RF output, depending on rain conditions. The technologies being tested in ACTS can give frequency-reuse factors as high as 20, thus greatly expanding the orbit/spectrum resources available for U.S. communications use.

  8. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  9. Solar thermal technology evaluation, fiscal year 1982. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Three primary solar concepts the central receiver, parabolic dish, and parabolic trough are investigated. To a lesser extent, the hemispherical bowl and salt-gradient solar pond are also being studied. Each technology is described.

  10. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  11. New advances in erectile technology

    PubMed Central

    Stein, Marshall J.; Lin, Haocheng

    2014-01-01

    New discoveries and technological advances in medicine are rapid. The role of technology in the treatment of erectile dysfunction (ED) will be widened and more options will be available in the years to come. These erectile technologies include external penile support devices, penile vibrators, low intensity extracorporeal shockwave, tissue engineering, nanotechnology and endovascular technology. Even for matured treatment modalities for ED, such as vacuum erectile devices and penile implants, there is new scientific information and novel technology available to improve their usage and to stimulate new ideas. We anticipate that erectile technologies may revolutionize ED treatment and in the very near future ED may become a curable condition. PMID:24489605

  12. Solar pumped laser technology options for space power transmission

    NASA Technical Reports Server (NTRS)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  13. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a subsequent human-crewed mission. The ion propulsion subsystem must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as an enabling element of an affordable beyond low-earth orbit human-crewed exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, a status on the NASA in-house thruster and power processing is provided, and an update on acquisition for flight provided.

  14. U.S. Light-duty Vehicle Air Conditioning Fuel Use and the Impact of Four Solar/Thermal Control Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, John P; Kekelia, Bidzina; Kreutzer, Cory J

    The U.S. uses 7.6 billion gallons of fuel per year for vehicle air conditioning (A/C), equivalent to 5.7 percent of the total national light-duty vehicle (LDV) fuel use. This equates to 30 gallons/year per vehicle, or 23.5 grams (g) of carbon dioxide (CO2) per mile, for an average U.S. vehicle. A/C is a significant contribution to national fuel use; therefore, technologies that reduce A/C loads may reduce operational costs, A/C fuel use, and CO2 emissions. Since A/C is not operated during standard EPA fuel economy testing protocols, EPA provides off-cycle credits to encourage OEMs to implement advanced A/C technologies thatmore » reduce fuel use in the real world. NREL researchers assessed thermal/solar off-cycle credits available in the U.S. Environmental Protection Agency's (EPA's) Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy. Credits include glazings, solar reflective paint, and passive and active cabin ventilation. Implementing solar control glass reduced CO2 emissions by 2.0 g/mi, and solar reflective paint resulted in a reduction of 0.8 g/mi. Active and passive ventilation strategies only reduced emissions by 0.1 and 0.2 g/mi, respectively. The national-level analysis process is powerful and general; it can be used to determine the impact of a wide range of new vehicle thermal technologies on fuel use, EV range, and CO2 emissions.« less

  15. Advanced Medical Technology and Network Systems Research.

    DTIC Science & Technology

    1999-09-01

    for image-guided therapies . Advanced technologies included in this report are impedance imaging and a palpation training system. 14. SUBJECT...Summary 1 Virtual Clinic for Patients with Chronic Illness Project Planning Document • 2 Telemedicine for Hemodialysis 21 A...imaging systems and’ surgical procedures effort is accomplished in part by establishing the technology requirements for image-guided therapies . Advanced

  16. Advanced Cogeneration Technology Economic Optimization Study (ACTEOS)

    NASA Technical Reports Server (NTRS)

    Nanda, P.; Ansu, Y.; Manuel, E. H., Jr.; Price, W. G., Jr.

    1980-01-01

    The advanced cogeneration technology economic optimization study (ACTEOS) was undertaken to extend the results of the cogeneration technology alternatives study (CTAS). Cost comparisons were made between designs involving advanced cogeneration technologies and designs involving either conventional cogeneration technologies or not involving cogeneration. For the specific equipment cost and fuel price assumptions made, it was found that: (1) coal based cogeneration systems offered appreciable cost savings over the no cogeneration case, while systems using coal derived liquids offered no costs savings; and (2) the advanced cogeneration systems provided somewhat larger cost savings than the conventional systems. Among the issues considered in the study included: (1) temporal variations in steam and electric demands; (2) requirements for reliability/standby capacity; (3) availability of discrete equipment sizes; (4) regional variations in fuel and electricity prices; (5) off design system performance; and (6) separate demand and energy charges for purchased electricity.

  17. Solar Power Generation in Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Elliott, Frederick W.; Piszczor, Michael F.

    2016-01-01

    The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.

  18. Solar buildings program contract summary, calendar year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-06-07

    The mission of the US Department of Energy's Solar Buildings Program is to advance the development and widespread deployment of competitive solar thermal technologies for use in buildings. The long-term goal of the Program is to combine solar energy technologies with energy-efficient construction techniques and create cost-effective buildings that have a zero net need for fossil fuel energy on an annual basis. The Solar Buildings Program conducts research and development on solar technologies that can deliver heat, light, and hot water to residential and commercial buildings. By working closely with manufacturers in both the buildings and solar energy industries andmore » by supporting research at universities and national laboratories, the Solar Buildings Program brings together the diverse players developing reliable and affordable solar technologies for building applications. The National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia National Laboratories (SNL) in Albuquerque, New Mexico, jointly participate in the Solar Buildings Program. These two national laboratories work closely with industry researching new concepts, developing technology improvements, reducing manufacturing costs, monitoring system performance, promoting quality assurance, and identifying potential new markets. In calendar year 1999, the Solar Buildings Program focused primarily on solar hot water system research and development (R and D), US industry manufacturing assistance, and US market assistance. The Program also completed a number of other projects that were begun in earlier years. This Contract Summary describes the Program's contracted activities that were active during 1999.« less

  19. Advanced technology component derating

    NASA Astrophysics Data System (ADS)

    Jennings, Timothy A.

    1992-02-01

    A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.

  20. Brayton advanced heat receiver development program

    NASA Technical Reports Server (NTRS)

    Heidenreich, G. R.; Downing, R. S.; Lacey, Dovie E.

    1989-01-01

    NASA Lewis Research Center is managing an advanced solar dynamic (ASD) space power program. The objective of the ASD program is to develop small and lightweight solar dynamic systems which show significant improvement in efficiency and specific mass over the baseline design derived from the Space Station Freedom technology. The advanced heat receiver development program is a phased program to design, fabricate and test elements of a 7-kWe heat-receiver/thermal-energy-storage subsystem. Receivers for both Brayton and Stirling heat engines are being developed under separate contracts. Phase I, described here, is the current eighteen month effort to design and perform critical technology experiments on innovative concepts designed to reduce mass without compromising thermal efficiency and reliability.

  1. Evaluating the effectiveness of wildlife detection and observation technologies at a solar power tower facility

    USGS Publications Warehouse

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Mike J.; Cryan, Paul

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  2. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility.

    PubMed

    Diehl, Robert H; Valdez, Ernest W; Preston, Todd M; Wellik, Michael J; Cryan, Paul M

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light ("solar flux") in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world's largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  3. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility

    PubMed Central

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Michael J.; Cryan, Paul M.

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife. PMID:27462989

  4. An assessment of advanced technology for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Moore, N.

    1983-01-01

    The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.

  5. Identifying Advanced Technologies for Education's Future.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; Yin, Robert K.

    A study to determine how three advanced technologies might be applied to the needs of special education students helped inspire the development of a new method for identifying such applications. This new method, named the "Hybrid Approach," combines features of the two traditional methods: technology-push and demand-pull. Technology-push involves…

  6. Development testing of the advanced photovoltaic solar array

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Kurland, R. M.

    1991-01-01

    The latest design, fabrication and testing details of a prototype wing are discussed. Estimates of array-level performance are presented as a function of power level and solar cell technology for geosynchronous orbit (GEO) missions and solar electric propulsion missions through the Van Allen radiation belts. Design concepts are discussed that would allow the wing to be self-retractable and restowable. To date all testing has verified the feasibility and mechanical/electrical integrity of the baseline design. The beginning-of-life (BOL) specific power estimate for a nominal 10-kW (BOL) array is about 138 W/kg, with corresponding end-of-life (EOL) performance of about 93 W/kg for a 10-year GEO mission.

  7. Advanced Casting Technology

    DTIC Science & Technology

    1982-08-01

    components with consequent cost and weight benefits but there is traditionally a reluctance by designers to trust castings. The object of the...Specialist Meeting was to present the current state of developments of advanced casting technology, and to bring together designers and materials and...significantly in the near future. The discussion highlighted areas needing further attention, which included: — Designers need to design for casting, not

  8. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  9. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  10. Advanced Stirling Convertor (ASC) Technology Maturation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2015-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center (GRC) with contractor Sunpower Inc. to develop high efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems. Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or Engineering Units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA Engineering Units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F Pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in FY2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical tests at NASA

  11. Advanced Stirling Convertor (ASC) Technology Maturation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  12. Technological advances in radiotherapy for cervical cancer.

    PubMed

    Walsh, Lorraine; Morgia, Marita; Fyles, Anthony; Milosevic, Michael

    2011-09-01

    To discuss the important technological advances that have taken place in the planning and delivery of both external beam radiotherapy and brachytherapy for patients with locally advanced cervical cancer, and the implications for improved clinical outcomes. Technological advances in external beam radiation treatment and brachytherapy for patients with cervical cancer allow more precise targeting of tumour and relative sparing of surrounding normal organs and tissues. Early evidence is emerging to indicate that these advances will translate into improvements in tumour control and reduced side effects. However, there are patient, tumour and treatment-related factors that can detract from these benefits. Foremost among these is complex, unpredictable and sometimes dramatic internal tumour and normal organ motion during treatment. The focus of current research and clinical development is on tracking internal anatomic change in individual patients and adapting treatment plans as required to assure that optimal tumour coverage and normal tissue sparing is maintained at all times. The success of this approach will depend on clear definitions of target volumes, high resolution daily soft tissue imaging, and new software tools for rapid contouring, treatment planning and quality assurance. Radiation treatment of locally advanced cervical cancer is evolving rapidly, driven by advances in technology, towards more individualized patient care that has the potential to substantially improve clinical outcomes.

  13. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  14. Advanced Technological Education Program: 1995 Awards and Activities.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    The Advanced Technological Education (ATE) program promotes exemplary improvement in advanced technological education at the national and regional level through support of curriculum development and program improvement at the undergraduate and secondary school levels, especially for technicians being educated for the high performance workplace of…

  15. Energizing Government Decision-Makers with the Facts on Solar Technology, Policy, and Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Solar Technical Assistance Team (STAT) is a network of solar technology and implementation experts who provide timely, unbiased expertise to assist policymakers and regulators in making informed decisions about solar programs and policies. Government officials can submit requests directly to the STAT for technical assistance. STAT then partners with experts in solar policy, regulation, finance, technology, and other areas to deliver accurate, up-to-date information to state and local decision makers. The STAT responds to requests on a wide range of issues -- including, but not limited to, feed-in tariffs, renewable portfolio standards, rate design, program design, workforce and economicmore » impacts of solar on jurisdictions, and project financing.« less

  16. Optimization of an Advanced Multi-Junction Solar-Cell Design for Space Environments (AM0) Using Nearly Orthogonal Latin Hypercubes

    DTIC Science & Technology

    2017-06-01

    AN ADVANCED MULTI-JUNCTION SOLAR -CELL DESIGN FOR SPACE ENVIRONMENTS (AM0) USING NEARLY ORTHOGONAL LATIN HYPERCUBES by Silvio Pueschel June...ADVANCED MULTI-JUNCTION SOLAR -CELL DESIGN FOR SPACE ENVIRONMENTS (AM0) USING NEARLY ORTHOGONAL LATIN HYPERCUBES 5. FUNDING NUMBERS 6. AUTHOR(S) Silvio...multi-junction solar cells with Silvaco Atlas simulation software. It introduces the nearly orthogonal Latin hypercube (NOLH) design of experiments (DoE

  17. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  18. Evaluation of solar cells and arrays for potential solar power satellite applications

    NASA Technical Reports Server (NTRS)

    Almgren, D. W.; Csigi, K.; Gaudet, A. D.

    1978-01-01

    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.

  19. Health and safety implications of alternative energy technologies. II. Solar

    NASA Astrophysics Data System (ADS)

    Etnier, E. L.; Watson, A. P.

    1981-09-01

    No energy technology is risk free when all aspects of its utilization are taken into account. Every energy technology has some attendant direct and indirect health and safety concerns. Solar technologies examined in this paper are wind, ocean thermal energy gradients, passive, photovoltaic, satellite power systems, low- and high-temperature collectors, and central power stations, as well as tidal power. For many of these technologies, insufficient historical data are available from which to assess the health risks and environmental impacts. However, their similarities to other projects make certain predictions possible. For example, anticipated problems in worker safety in constructing ocean thermal energy conversion systems will be similar to those associated with other large-scale construction projects, like deep-sea oil drilling platforms. Occupational hazards associated with photovoltaic plant operation would be those associated with normal electricity generation, although for workers involved in the actual production of photovoltaic materials, there is some concern for the toxic effects of the materials used, including silicon, cadmium, and gallium arsenide. Satellite power systems have several unique risks. These include the effects of long-term space travel for construction workers, effects on the ozone layer and the attendant risk of skin cancer in the general public, and the as-yet-undetermined effects of long-term, low-level microwave exposure. Hazards may arise from three sources in solar heating and cooling systems: water contamination from corrosion inhibitors, heat transfer fluids, and bactericides; collector over-heating, fires, and “out-gassing” and handling and disposal of system fluids and wastes. Similar concerns exist for solar thermal power systems. Even passive solar systems may increase indoor exposure levels to various air pollutants and toxic substances, eitherdirectly from the solar system itself or indirectly by trapping released

  20. Advanced Education and Technology Business Plan, 2010-13. Highlights

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    The Ministry of Advanced Education and Technology envisions Alberta's prosperity through innovation and lifelong learning. Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. This paper presents the highlights of the business…

  1. The NASA program in Space Energy Conversion Research and Technology

    NASA Astrophysics Data System (ADS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  2. The NASA program in Space Energy Conversion Research and Technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  3. Solar Electric Propulsion Concepts for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  4. Solar Electric Propulsion Concepts for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; McGuire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2015-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  5. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  6. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  7. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  8. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  9. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  10. Policy issues inherent in advanced technology development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most ofmore » the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.« less

  11. Advanced Rainbow Solar Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism

  12. Advanced technology and future earth-orbit transportation systems

    NASA Technical Reports Server (NTRS)

    Henry, B. Z.; Eldred, C. H.

    1977-01-01

    The paper is concerned with the identification and evaluation of technology developments which offer potential for high return on investment when applied to advanced transportation systems. These procedures are applied in a study of winged single-stage-to-orbit (SSTO) vehicles, which are considered feasible by the 1990s. Advanced technology is considered a key element in achieving improved economics, and near term investment in selected technology areas is recommended.

  13. TECHcitement: Advances in Technological Education, 2007

    ERIC Educational Resources Information Center

    Patton, Madeline

    2007-01-01

    This publication presents the following nine articles: (1) ATE [Advanced Technological Education] Readies Technicians for International Competition; (2) Technicians in Demand Worldwide; (3) Accreditation Board for Engineering and Technology Endorses International Protocols for Technicians; (4) Entrepreneurial Educator Creates InnovaBio to Meet…

  14. Advanced Education and Technology Business Plan, 2009-12

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    The Ministry of Advanced Education and Technology consists of the following entities for budget purposes: Department of Advanced Education and Technology, the Access to the Future Fund, Alberta Enterprise Corporation, Alberta Research Council Inc., and iCORE Inc. Achieving the Ministry's goals involves the work and coordination of many…

  15. Advanced Platform Systems Technology study. Volume 3: Supporting data

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The overall study effort proceeded from the identification of 106 technology topics to the selection of 5 for detail trade studies. The technical issues and options were evaluated through the trade process. Finally, individual consideration was given to costs and benefits for the technologies identified for advancement. Eight priority technology items were identified for advancement. Supporting data generated during the trade selection and trade study process were presented. Space platform requirements, trade study and cost benefits analysis, and technology advancement planning are advanced. The structured approach used took advantage of a number of forms developed to ensure that a consistent approach was employed by each of the diverse specialists that participated. These forms were an intrinsic part of the study protocol.

  16. Multijunction Solar Cell Technology for Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  17. Modular High-Energy Systems for Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  18. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  19. NASA Solar Array Demonstrates Commercial Potential

    NASA Technical Reports Server (NTRS)

    Creech, Gray

    2006-01-01

    A state-of-the-art solar-panel array demonstration site at NASA's Dryden Flight Research Center provides a unique opportunity for studying the latest in high-efficiency solar photovoltaic cells. This five-kilowatt solar-array site (see Figure 1) is a technology-transfer and commercialization success for NASA. Among the solar cells at this site are cells of a type that was developed in Dryden Flight Research Center s Environmental Research Aircraft and Sensor Technology (ERAST) program for use in NASA s Helios solar-powered airplane. This cell type, now denoted as A-300, has since been transferred to SunPower Corporation of Sunnyvale, California, enabling mass production of the cells for the commercial market. High efficiency separates these advanced cells from typical previously commercially available solar cells: Whereas typical previously commercially available cells are 12 to 15 percent efficient at converting sunlight to electricity, these advanced cells exhibit efficiencies approaching 23 percent. The increase in efficiency is due largely to the routing of electrical connections behind the cells (see Figure 2). This approach to increasing efficiency originated as a solution to the problem of maximizing the degree of utilization of the limited space available atop the wing of the Helios airplane. In retrospect, the solar cells in use at this site could be used on Helios, but the best cells otherwise commercially available could not be so used, because of their lower efficiencies. Historically, solar cells have been fabricated by use of methods that are common in the semiconductor industry. One of these methods includes the use of photolithography to define the rear electrical-contact features - diffusions, contact openings, and fingers. SunPower uses these methods to produce the advanced cells. To reduce fabrication costs, SunPower continues to explore new methods to define the rear electrical-contact features. The equipment at the demonstration site includes

  20. The NASA Lewis Research Center program in space solar cell research and technology. [efficient silicon solar cell development program

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1979-01-01

    Progress in space solar cell research and technology is reported. An 18 percent-AMO-efficient silicon solar cell, reduction in the radiation damage suffered by silicon solar cells in space, and high efficiency wrap-around contact and thin (50 micrometer) coplanar back contact silicon cells are among the topics discussed. Reduction in the cost of silicon cells for space use, cost effective GaAs solar cells, the feasibility of 30 percent AMO solar energy conversion, and reliable encapsulants for space blankets are also considered.

  1. Solar Stirling system development

    NASA Technical Reports Server (NTRS)

    Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.

    1979-01-01

    A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.

  2. Use of Advanced Solar Cells for Commercial Communication Satellites

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  3. Use of advanced solar cells for commerical communication satellites

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar- and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because of the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from Low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  4. Use of advanced solar cells for commercial communication satellites

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-03-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  5. The other aspect of solar energy utilization. Solar technologies export enhancement: A central European point of view

    NASA Astrophysics Data System (ADS)

    Winter, C. J.; Nitsch, J.; Klaiss, H.; Voigt, C.

    1985-11-01

    It is shown that solar energy utilization can, on a moderate scale, supplement the indigenous energy supply of the Federal Republic of Germany. It can contribute to the prevention of fatal ecological damage, open an attractive export market and, in the long run, prepare ground for North-South compensation, where energy-poor but technology rich countries cooperate with countries of the Third World, which are often rich in raw materials and are situated in the solar belt of the world, for the benefit of the implementation of a solar industry or the production of a marketable synthetic solar energy carrier.

  6. Critical technology areas of an SPS development and the applicability of European technology

    NASA Technical Reports Server (NTRS)

    Kassing, D.; Ruth, J.

    1980-01-01

    Possible system development and implementation scenarios for the hypothetical European part of a cooperative Satellite Power System effort are discussed, and the technology and systems requirements which could be used as an initial guideline for further evaluation studies are characterized. Examples of advanced European space technologies are described including high power microwave amplifiers, antennas, advanced structures, multi-kilowatt solar arrays, attitude and orbit control systems, and electric propulsion.

  7. Port of Galveston Solar Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falcioni, Diane; Cuclis, Alex; Freundlich, Alex

    This study on the performance characteristics of existing solar technologies in a maritime environment was funded by an award given to The Port of Galveston (POG) from the U.S. Department of Energy (DOE). The study includes research performed by The Center for Advanced Materials at the University of Houston (UH). The UH researchers examined how solar cell efficiencies and life spans can be improved by examining the performance of a variety of antireflective (AR) coatings mounted on the top of one of the POG’s Cruise Terminals. Supplemental supporting research was performed at the UH laboratories. An educational Kiosk was constructedmore » with a 55” display screen providing information about solar energy, the research work UH performed at POG and real time data from the solar panels located on the roof of the Cruise Terminal. The Houston Advanced Research Center (HARC) managed the project.« less

  8. Advanced composites technology program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1993-01-01

    This paper provides a brief overview of the NASA Advanced Composites Technology (ACT) Program. Critical technology issues that must be addressed and solved to develop composite primary structures for transport aircraft are delineated. The program schedule and milestones are included. Work completed in the first 3 years of the program indicates the potential for achieving composite structures that weigh less and are cost effective relative to conventional aluminum structure. Selected technical accomplishments are noted. Readers who are seeking more in-depth technical information should study the other papers included in these proceedings.

  9. Final Report of the Advanced Coal Technology Work Group

    EPA Pesticide Factsheets

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  10. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  11. Far Ultraviolet Refractive Index of Optical Materials for Solar Blind Channel (SBC) Filters for HST Advanced Camera for Surveys

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC). Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.

  12. Advanced instrumentation for Solar System gravitational physics

    NASA Astrophysics Data System (ADS)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  13. Advanced Receiver tracking of Voyager 2 near solar conjunction

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.; Vilnrotter, V. A.; Wiggins, J. D.

    1988-01-01

    The Advanced Receiver (ARX) was used to track the Voyager 2 spacecraft at low Sun-Earth-Probe (SEP) angles near solar conjunction in December of 1987. The received carrier signal exhibited strong fluctuations in both phase and amplitude. The ARX used spectral estimation and mathematical modeling of the phase and receiver noise processes to set an optimum carrier tracking bandwidth. This minimized the mean square phase error in tracking carrier phase and thus minimized the loss in the telemetry signal-to-noise ratio due to the carrier loop. Recovered symbol SNRs and errors in decoded engineering data for the ARX are compared with those for the current Block 3 telemetry stream. Optimum bandwidths are plotted against SEP angle. Measurements of the power spectral density of the solar phase and amplitude fluctuations are also given.

  14. Summary of Recent Results from NASA's Space Solar Power (SSP) Programs and the Current Capabilities of Microwave WPT Technology

    NASA Technical Reports Server (NTRS)

    McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.

  15. Solar Technologies

    ERIC Educational Resources Information Center

    von Hippel, Frank; Williams, Robert H.

    1975-01-01

    As fossil fuels decrease in availability and environmental concerns increase, soalr energy is becoming a potential major energy source. Already solar energy is used for space heating in homes. Proposals for solar-electric generating systems include land-based or ocean-based collectors and harnessing wind and wave power. Photosynthesis can also…

  16. Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael

    2006-01-01

    The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.

  17. Solar energy water desalination in the United States and Saudi Arabia

    NASA Technical Reports Server (NTRS)

    Luft, W.; William, J.

    1981-01-01

    Five solar energy water desalination systems were designed to deliver 6000 cubic m/day of desalted water from either seawater or brackish water. Two systems will be selected for pilot plant construction. The pilot plants will have capacities in the range of 100 to 400 m/day. Goals of the Project Agreement for Cooperation in the Field of Solar Energy, under the auspices of the United States-Saudi Arabian Joint Commission on Economic Cooperation, are to: (1) cooperate in the field of solar energy technology for the mutual benefit of the two countries, including the development and stimulation of solar industries within the two countries; (2) advance the development of solar energy technology in the two countries; and (3) facilitate the transfer between the two countries of technology developed under this agreement.

  18. Development of advanced Si and GaAs solar cells for interplanetary missions

    NASA Technical Reports Server (NTRS)

    Strobl, G.; Uegele, P.; Kern, R.; Roy, K.; Flores, C.; Campesato, R.; Signorini, C.; Bogus, K.

    1995-01-01

    The deep space and planetary exploration project have been acquiring more and more importance and some of them are now well established both in ESA and NASA programs. This paper presents the possibility to utilize both silicon and gallium arsenide solar cells as spacecraft primary power source for missions far from the Sun, in order to overcome the drawbacks related to the utilisation of radioisotope thermoelectric generators - such as cost, safety and social acceptance. The development of solar cells for low illumination intensity and low temperature (LILT) applications is carried out in Europe by ASE (Germany) and CISE (Italy) in the frame of an ESA programme, aimed to provide the photovoltaic generators for ROSETTA: the cometary material investigation mission scheduled for launch in 2003. The LILT cells development and testing objectives are therefore focused on the following requirements: insolation intensity as low as 0.03 Solar Constant, low temperature down to -150 C and solar flare proton environment. At this stage of development, after the completion of the technology verification tests, it has been demonstrated that suitable technologies are available for the qualification of both silicon and gallium arsenide cells and both candidates have shown conversion efficiencies over 25% at an illumination of 0.03 SC and a temperature of -150 C. In particular, when measured at those LILT conditions, the newly developed 'Hl-ETA/NR-LILT' silicon solar cells have reached a conversion efficiency of 26.3%, that is the highest value ever measured on a single junction solar cell. A large quantity of both 'Hl-ETA/NR-LILT' silicon and 'GaAs/Ge-LILT' solar cells are presently under fabrication and they will be submitted to a qualification test plan, including radiation exposure, in order to verify their applicability with respect to the mission requirements. The availability of two valid options will minimize the risk for the very ambitious scientific project. The paper

  19. Development of advanced Si and GaAs solar cells for interplanetary missions

    NASA Astrophysics Data System (ADS)

    Strobl, G.; Uegele, P.; Kern, R.; Roy, K.; Flores, C.; Campesato, R.; Signorini, C.; Bogus, K.

    1995-10-01

    The deep space and planetary exploration project have been acquiring more and more importance and some of them are now well established both in ESA and NASA programs. This paper presents the possibility to utilize both silicon and gallium arsenide solar cells as spacecraft primary power source for missions far from the Sun, in order to overcome the drawbacks related to the utilisation of radioisotope thermoelectric generators - such as cost, safety and social acceptance. The development of solar cells for low illumination intensity and low temperature (LILT) applications is carried out in Europe by ASE (Germany) and CISE (Italy) in the frame of an ESA programme, aimed to provide the photovoltaic generators for ROSETTA: the cometary material investigation mission scheduled for launch in 2003. The LILT cells development and testing objectives are therefore focused on the following requirements: insolation intensity as low as 0.03 Solar Constant, low temperature down to -150 C and solar flare proton environment. At this stage of development, after the completion of the technology verification tests, it has been demonstrated that suitable technologies are available for the qualification of both silicon and gallium arsenide cells and both candidates have shown conversion efficiencies over 25% at an illumination of 0.03 SC and a temperature of -150 C. In particular, when measured at those LILT conditions, the newly developed 'Hl-ETA/NR-LILT' silicon solar cells have reached a conversion efficiency of 26.3%, that is the highest value ever measured on a single junction solar cell. A large quantity of both 'Hl-ETA/NR-LILT' silicon and 'GaAs/Ge-LILT' solar cells are presently under fabrication and they will be submitted to a qualification test plan, including radiation exposure, in order to verify their applicability with respect to the mission requirements. The availability of two valid options will minimize the risk for the very ambitious scientific project. The paper

  20. A compendium of solar dish/Stirling technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stine, W.B.; Diver, R.B.

    1994-01-01

    This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology --more » the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.« less

  1. Advancing Technologies for Climate Observation

    NASA Technical Reports Server (NTRS)

    Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.

    2014-01-01

    Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques

  2. Assessment of Sensor Technologies for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, Kofi; Ramuhalli, Pradeep; Vlim, R.

    2016-10-01

    Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributesmore » to the design and implementation of AdvRx concepts.« less

  3. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE PAGES

    Sakadjian, B.; Hu, S.; Maryamchik, M.; ...

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  4. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakadjian, B.; Hu, S.; Maryamchik, M.

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  5. Advanced Power Technology Development Activities for Small Satellite Applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew; hide

    2017-01-01

    NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.

  6. 18th Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L. (Compiler)

    2005-01-01

    The 18th Space Photovoltaic Research and Technology (SPRAT XVIII) Conference was held September 16 to 18, 2003, at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. The SPRAT conference, hosted by the Photovoltaic and Space Environments Branch of the NASA Glenn Research Center, brought together representatives of the space photovoltaic community from around the world to share the latest advances in space solar cell technology. This year s conference continued to build on many of the trends shown in SPRAT XVII-the continued advances of thin-film and multijunction solar cell technologies and the new issues required to qualify those types of cells for space applications.

  7. Opening the Solar System: An Advanced Nuclear Spacecraft for Human Exploration

    NASA Technical Reports Server (NTRS)

    Werka, R. O.; Percy, T. K.

    2014-01-01

    Human exploration of the solar system is limited by our technology, not our imagination. We dream of a time when we can freely travel among the planets and truly become a spacefaring people. However, the current state of our technology limits our options for architecting missions to other planets. Instead of sailing the seas of space in the way that we cruise the seas of Earth, our limited propulsion technology requires us to depart Earth on a giant cluster of gas tanks and return in a lifeboat. This inefficient approach to exploration is evident in many of today's leading mission plans for human flights to Mars, asteroids, and other destinations. The cost and complexity of this approach to mission architecting makes it extremely difficult to realize our dreams of exploration beyond Low Earth Orbit (LEO). This does not need to be the case. Researchers at NASA's Marshall Space Flight Center (MSFC) have been investigating the feasibility of a new take on nuclear propulsion with the performance to enable a paradigm shift in human space exploration. During the fall of 2013, engineers at MSFC's Advanced Concepts Office developed a spacecraft concept (pictured below) around this new propulsion technology and redefined the human Mars mission to show its full potential. This spacecraft, which can be launched with a fleet of soon-to-be available SLS launch vehicles, is fueled primarily with hydrogen, and is fully reusable with no staging required. The reusable nature of this design enables a host of alternative mission architectures that more closely resemble an ocean voyage than our current piecemeal approach to exploration.

  8. The "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code” Modules

    NASA Astrophysics Data System (ADS)

    Raouafi, Noureddine; Bernasconi, P. N.; Georgoulis, M. K.

    2010-05-01

    We present two pattern recognition algorithms, the "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code,” that are among the Feature Finding modules of the Solar Dynamic Observatory: 1) Coronal sigmoids visible in X-rays and the EUV are the result of highly twisted magnetic fields. They can occur anywhere on the solar disk and are closely related to solar eruptive activity (e.g., flares, CMEs). Their appearance is typically synonym of imminent solar eruptions, so they can serve as a tool to forecast solar activity. Automatic X-ray sigmoid identification offers an unbiased way of detecting short-to-mid term CME precursors. The "Sigmoid Sniffer” module is capable of automatically detecting sigmoids in full-disk X-ray images and determining their chirality, as well as other characteristics. It uses multiple thresholds to identify persistent bright structures on a full-disk X-ray image of the Sun. We plan to apply the code to X-ray images from Hinode/XRT, as well as on SDO/AIA images. When implemented in a near real-time environment, the Sigmoid Sniffer could allow 3-7 day forecasts of CMEs and their potential to cause major geomagnetic storms. 2)The "Advanced Automated Solar Filament Detection and Characterization Code” aims to identify, classify, and track solar filaments in full-disk Hα images. The code can reliably identify filaments; determine their chirality and other relevant parameters like filament area, length, and average orientation with respect to the equator. It is also capable of tracking the day-by-day evolution of filaments as they traverse the visible disk. The code was tested by analyzing daily Hα images taken at the Big Bear Solar Observatory from mid-2000 to early-2005. It identified and established the chirality of thousands of filaments without human intervention.

  9. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  10. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  11. Advanced solar irradiances applied to satellite and ionospheric operational systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  12. Advanced laptop and small personal computer technology

    NASA Technical Reports Server (NTRS)

    Johnson, Roger L.

    1991-01-01

    Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

  13. Impact of Financial Structure on the Cost of Solar Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendelsohn, M.; Kreycik, C.; Bird, L.

    2012-03-01

    To stimulate investment in renewable energy generation projects, the federal government developed a series of support structures that reduce taxes for eligible investors--the investment tax credit, the production tax credit, and accelerated depreciation. The nature of these tax incentives often requires an outside investor and a complex financial arrangement to allocate risk and reward among the parties. These financial arrangements are generally categorized as 'advanced financial structures.' Among renewable energy technologies, advanced financial structures were first widely deployed by the wind industry and are now being explored by the solar industry to support significant scale-up in project development. This reportmore » describes four of the most prevalent financial structures used by the renewable sector and evaluates the impact of financial structure on energy costs for utility-scale solar projects that use photovoltaic and concentrating solar power technologies.« less

  14. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  15. Solar, Install, Mount, Production, Labor, Equipment Balance of Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, Russell; Al-Haddad, Tristan; Valdes, Francisco

    2015-08-27

    The GTRI led project team in partnership with the DOE, universities, and numerous industry leaders, have advanced the mission of the DOE EERE, the Solar Energy Technologies Program, and the SunShot Initiative by accelerating the research, development, and demonstration of solar PV technologies that provide Extreme Balance of Systems Cost Reductions (BOS-X). The research produced 132 design concepts, resulting in 19 invention disclosures, five patent applications, four 90% pre-commercial designs, and three licensed technologies. Technology practice rights were obtained by an industry partner, and a new solar commercial start-up company was launched in Atlanta as a result of this project.more » Innovations in residential, commercial, and utility scale balance of systems technologies were realized through an unprecedented multi-disciplinary university/industry partnership with over 50 students and 24 faculty members that produced 18 technical publications, a PhD thesis, and two commercially deployed operating prototypes. The technical effectiveness and economic feasibility of the multidisciplinary systems based approach executed by the project team was realized through 1) a comprehensive evaluation of industry, regulatory, and public stakeholder requirements; 2) numerous industry/student/faculty engagements in design studios, technical conferences, and at solar PV installation sites; 3) time and motion studies with domain experts that provided technical data and costs for each phase and component of the solar PV installation processes; 4) extensive wind tunnel and systems engineering modeling; and 5) design, construction, and demonstration of the selected technologies in the field at high profile sites in Atlanta. The SIMPLE BOS project has benefitted the public in the following ways: • Workforce development: The launch of a start-up company to commercialize the DOE funded SIMPLE BoS designs has directly created 9 new jobs in the State of Georgia. As of November

  16. Measurement of high-voltage and radiation-damage limitations to advanced solar array performance

    NASA Technical Reports Server (NTRS)

    Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.

    1991-01-01

    A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.

  17. Advanced structures technology and aircraft safety

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.

    1983-01-01

    NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.

  18. Technological advances in precision medicine and drug development.

    PubMed

    Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina

    New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.

  19. Advanced Technology Lifecycle Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  20. Stimulating Innovation and Accelerating the Development of Complex and Slowly Maturing Technologies Through Advanced Technology Prize Competitions

    DTIC Science & Technology

    2007-06-15

    technology prize competitions have been used since the 18th century to spur innovation and advance the development of complex and slowly maturing disruptive ... technologies The Defense Advanced Research Projects Agency (DARPA) has used advanced technology competitions in 2004 and 2005 to rapidly accelerate the

  1. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  2. 77 FR 59592 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. [[Page 59593

  3. A Public-Private-Acadmic Partnership to Advance Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen

    The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to advance the state-of-the-science of solar power forecasting by designing, developing, building, deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has included cutting edge research, testing in several geographically- and climatologically-diverse high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination of the research results to raise the bar on solar power forecasting technology. The partners include three other national laboratories, six universities, and industry partners. This public-private-academic team has worked in concert to perform use-inspired research to advance solarmore » power forecasting through cutting-edge research to advance both the necessary forecasting technologies and the metrics for evaluating them. The project has culminated in a year-long, full-scale demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their operations. The project focused on providing elements of a value chain, beginning with the weather that causes a deviation from clear sky irradiance and progresses through monitoring and observations, modeling, forecasting, dissemination and communication of the forecasts, interpretation of the forecast, and through decision-making, which produces outcomes that have an economic value. The system has been evaluated using metrics developed specifically for this project, which has provided rich information on model and system performance. Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on observations in the field. The shortest range system, built by Brookhaven National Laboratory (BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time scale with a latency of only a

  4. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  5. Potentials of Advanced Database Technology for Military Information Systems

    DTIC Science & Technology

    2001-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010866 TITLE: Potentials of Advanced Database Technology for Military... Technology for Military Information Systems Sunil Choennia Ben Bruggemanb a National Aerospace Laboratory, NLR, P.O. Box 90502, 1006 BM Amsterdam...application of advanced information tech- nology, including database technology , as underpin- actions X and Y as dangerous or not? ning is

  6. NASA/industry advanced turboprop technology program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemianski, J.A.; Whitlow, J.B. Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, andmore » a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.« less

  7. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  8. Managing the Perception of Advanced Technology Risks in Mission Proposals

    NASA Technical Reports Server (NTRS)

    Bellisario, Sebastian Nickolai

    2012-01-01

    Through my work in the project proposal office I became interested in how technology advancement efforts affect competitive mission proposals. Technology development allows for new instruments and functionality. However, including technology advancement in a mission proposal often increases perceived risk. Risk mitigation has a major impact on the overall evaluation of the proposal and whether the mission is selected. In order to evaluate the different approaches proposals took I compared the proposals claims of heritage and technology advancement to the sponsor feedback provided in the NASA debriefs. I examined a set of Discovery 2010 Mission proposals to draw patterns in how they were evaluated and come up with a set of recommendations for future mission proposals in how they should approach technology advancement to reduce the perceived risk.

  9. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liby, Alan L; Rogers, Hiram

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less

  10. NASA's Parker Solar Probe and Solar Orbiter Missions: Discovering the Secrets of our Star

    NASA Astrophysics Data System (ADS)

    Zurbuchen, T.

    2017-12-01

    This session will explore the importance of the Parker Solar Probe and Solar Orbiter missions to NASA Science, and the preparations for discoveries from these missions. NASA's Parker Solar Probe and Solar Orbiter Missions have complementary missions and will provide unique and unprecedented contributions to heliophysics and astrophysics overall. These inner heliospheric missions will also be part of the Heliophysics System Observatory which includes an increasing amount of innovative new technology and architectures to address science and data in an integrated fashion and advance models through assimilation and system-level tests. During this talk, we will briefly explore how NASA Heliophysics research efforts not only increase our understanding and predictive capability of space weather phenomena, but also provide key insights on fundamental processes important throughout the universe.

  11. Advanced traffic technology test-bed.

    DOT National Transportation Integrated Search

    2004-06-01

    The goal of this project was to create a test-bed to allow the University of California to conduct advanced traffic technology research in a designated, non-public, and controlled setting. Caltrans, with its associated research facilities on UC campu...

  12. 40 CFR 1037.615 - Hybrid vehicles and other advanced technologies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... technologies. 1037.615 Section 1037.615 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Provisions § 1037.615 Hybrid vehicles and other advanced technologies. (a) This section applies for hybrid... credits under 40 CFR part 1036. (b) Generate advanced technology emission credits for hybrid vehicles that...

  13. CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materialsfor low-cost high performance solar concentrators

    NASA Astrophysics Data System (ADS)

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.

    1995-03-01

    The objectives of this project were to develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  14. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  15. Advances in phage display technology for drug discovery.

    PubMed

    Omidfar, Kobra; Daneshpour, Maryam

    2015-06-01

    Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.

  16. Advances in central receivers for concentrating solar applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.

    This paper provides a review of current state-of-the-art commercial central receiver systems and emerging technologies intended to increase the outlet temperature to >700 °C. Research on particle-based, gas-based, and liquid-based receiver designs that can achieve these higher temperatures are discussed. Particle-based technologies include directly irradiated designs (free-falling, obstructed, centrifugal) and enclosed designs (gravity fed, fluidized). New gas-based receivers include micro-channel designs and light-trapping configurations that increase the surface area, heat transfer, and solar absorptance to enable higher fluxes and pressures. Liquid-based receivers and materials that are reviewed include high-temperature halide salts (chlorides and fluorides), carbonate salts, and liquid metals (sodiummore » and lead bismuth). Advantages and challenges associated with each of the technologies and receiver designs are presented.« less

  17. Advances in central receivers for concentrating solar applications

    DOE PAGES

    Ho, Clifford K.

    2017-04-09

    This paper provides a review of current state-of-the-art commercial central receiver systems and emerging technologies intended to increase the outlet temperature to >700 °C. Research on particle-based, gas-based, and liquid-based receiver designs that can achieve these higher temperatures are discussed. Particle-based technologies include directly irradiated designs (free-falling, obstructed, centrifugal) and enclosed designs (gravity fed, fluidized). New gas-based receivers include micro-channel designs and light-trapping configurations that increase the surface area, heat transfer, and solar absorptance to enable higher fluxes and pressures. Liquid-based receivers and materials that are reviewed include high-temperature halide salts (chlorides and fluorides), carbonate salts, and liquid metals (sodiummore » and lead bismuth). Advantages and challenges associated with each of the technologies and receiver designs are presented.« less

  18. Elderly people's interaction with advanced technology.

    PubMed

    Blažun, Helena; Vošner, Janez; Kokol, Peter; Saranto, Kaija; Rissanen, Sari

    2014-01-01

    Aging of population is an inevitable process by which the number of elderly people is increasing. Rapid development of information and communication technology (ICT) is changing basic needs of elderly people; therefore society should ensure opportunities for elderly to learn and use ICT in a way to manage their daily life activities and in this way enable them participation in the information and knowledge society. The purpose of the study was to find out whether elderly are acquainted with the advanced technology and to what extent they use it or they desire to use it. Within the single point study we interviewed 100 randomly selected elderly people from different geographical regions in Slovenia. Results showed the differences in the use of advanced technology by Slovenian regions; therefore in the future activities should be focused on organizing promotional and demonstrational activities including ICT courses to increase elderly's motivation for ICT interaction.

  19. Selective solar absorber emittance measurement at elevated temperature

    NASA Astrophysics Data System (ADS)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  20. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  1. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  2. NASA's Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1983-01-01

    NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.

  3. Technological advances for studying human behavior

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, Renate J.

    1990-01-01

    Technological advances for studying human behavior are noted in viewgraph form. It is asserted that performance-aiding systems are proliferating without a fundamental understanding of how they would interact with the humans who must control them. Two views of automation research, the hardware view and the human-centered view, are listed. Other viewgraphs give information on vital elements for human-centered research, a continuum of the research process, available technologies, new technologies for persistent problems, a sample research infrastructure, the need for metrics, and examples of data-link technology.

  4. Redox storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1980-01-01

    The NASA Redox energy storage system is described. The system is based on soluble aqueous iron and chromium chloride redox couples. The needed technology advances in the two elements (electrodes and membranes) that are key to its technological feasibility have been achieved and system development has begun. The design, construction, and test of a 1 kilowatt system integrated with a solar photovoltaic array is discussed.

  5. Application of advanced technologies to small, short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

    1978-01-01

    The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

  6. Advances in induction-heated plasma torch technology

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  7. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  8. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  9. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  10. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  11. Advanced technology commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Walker, T. H.; Johnson, R. W.

    1991-01-01

    Boeing's program for Advanced Technology Composite Aircraft Structure (ATCAS) has focused on the manufacturing and performance issues associated with a wide body commercial transport fuselage. The primary goal of ATCAS is to demonstrate cost and weight savings over a 1995 aluminum benchmark. A 31 foot section of fuselage directly behind the wing to body intersection was selected for study purposes. This paper summarizes ATCAS contract plans and review progress to date. The six year ATCAS program will study technical issues for crown, side, and keel areas of the fuselage. All structural details in these areas will be included in design studies that incorporate a design build team (DBT) approach. Manufacturing technologies will be developed for concepts deemed by the DBT to have the greatest potential for cost and weight savings. Assembly issues for large, stiff, quadrant panels will receive special attention. Supporting technologies and mechanical tests will concentrate on the major issues identified for fuselage. These include damage tolerance, pressure containment, splices, load redistribution, post-buckled structure, and durability/life. Progress to date includes DBT selection of baseline fuselage concepts; cost and weight comparisons for crown panel designs; initial panel fabrication for manufacturing and structural mechanics research; and toughened material studies related to keel panels. Initial ATCAS studies have shown that NASA's Advanced Composite Technology program goals for cost and weight savings are attainable for composite fuselage.

  12. Evaluation of High-Power Solar Electric Propulsion using Advanced Ion, Hall, MPD, and PIT Thrusters for Lunar and Mars Cargo Missions

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    2006-01-01

    This paper presents the results of mission analyses that expose the advantages and disadvantages of high-power (MWe-class) Solar Electric Propulsion (SEP) for Lunar and Mars Cargo missions that would support human exploration of the Moon and Mars. In these analyses, we consider SEP systems using advanced Ion thrusters (the Xenon [Xe] propellant Herakles), Hall thrusters (the Bismuth [Bi] propellant Very High Isp Thruster with Anode Layer [VHITAL], magnetoplasmadynamic (MPD) thrusters (the Lithium [Li] propellant Advanced Lithium-Fed, Applied-field Lorentz Force Accelerator (ALFA2), and pulsed inductive thruster (PIT) (the Ammonia [NH3] propellant Nuclear-PIT [NuPIT]). The analyses include comparison of the advanced-technology propulsion systems (VHITAL, ALFA2, and NuPIT) relative to state-of-theart Ion (Herakles) propulsion systems and quantify the unique benefits of the various technology options such as high power-per-thruster (and/or high power-per-thruster packaging volume), high specific impulse (Isp), high-efficiency, and tankage mass (e.g., low tankage mass due to the high density of bismuth propellant). This work is based on similar analyses for Nuclear Electric Propulsion (NEP) systems.

  13. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.

  14. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  15. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.

  16. National Coalition of Advanced Technology Centers Proposal to the Nation.

    ERIC Educational Resources Information Center

    National Coalition of Advanced Technology Centers, Waco, TX.

    In 1988, nine institutions operating advanced technology centers (ATC's) to provide workers with up-to-date technical skills formed the National Coalition of Advanced Technology Centers (NCATC). The center was established to increase awareness of ATC's, serve as a forum for the discussion and demonstration of new and underused technologies,…

  17. TECHcitement: Advances in Technological Education.

    ERIC Educational Resources Information Center

    American Association of Community Colleges, Washington, DC.

    This publication includes seven articles. "ATE Grants Generate Life-Changing Experiences" discusses the National Science Foundation's (NSF) Advanced Technological Education (ATE) grants, which provide seed money and other support that community college educators use to enhance technical training and improve math and science instruction. "Phone…

  18. Schedule Risks Due to Delays in Advanced Technology Development

    NASA Technical Reports Server (NTRS)

    Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

    2008-01-01

    This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

  19. Thermal evaluation of advanced solar dynamic heat receiver performance

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1989-01-01

    The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.

  20. GOES SXI Monthly Project Status Report Lockheed Martin Advanced Technology Center Month of October 2004

    NASA Technical Reports Server (NTRS)

    Morrison, Mons D.

    2004-01-01

    The Lockheed Martin Missiles and Space Advanced Technology Center (LMATC) is developing three Solar X-ray Imager (SXI) instruments. Two are being built for flights on the National Oceanic and Atmospheric Administration's (NOAA) Geostationary Operational Environmental Satellites (GOES) N and O, and one will be a flight spare. The SXI development is being managed by the NASA Goddard Space Flight Center. The SXI will image the full sun at wavelengths between approximately 6 and 60 A with a detector having 5 arcsec pixels. The launch of the first SXI will be on GOES N and the second SXI is to be launched on on GOES O or P.

  1. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.

    PubMed

    Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin

    2015-10-01

    High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.

  2. NREL and CSIRO Validating Advanced Microgrid Control Solution | Energy

    Science.gov Websites

    Organisation NREL and CSIRO Validating Advanced Microgrid Control Solution Australia's Commonwealth Scientific microgrid control solution. This technology helps hybrid microgrids to automatically recognize when solar

  3. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    NASA Technical Reports Server (NTRS)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  4. Advanced helmet tracking technology developments for naval aviation

    NASA Astrophysics Data System (ADS)

    Brindle, James H.

    1996-06-01

    There is a critical need across the Services to improve the effectiveness of aircrew within the crewstation by capitalizing on the natural psycho-motor skills of the pilot through the use of a variety of helmet-mounted visual display and control techniques. This has resulted in considerable interest and significant ongoing research and development efforts on the part of the Navy, as well as the Army and the Air Force, in the technology building blocks associated with this area, such as advanced head position sensing or head tracking technologies, helmet- mounted display optics and electronics, and advanced night vision or image intensification technologies.

  5. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation

  6. Advanced life support technology development for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Voecks, Gerald E.; Seshan, P. K.

    1990-01-01

    An overview is presented of NASA's advanced life support technology development strategy for the Space Exploration Initiative. Three basic life support technology areas are discussed in detail: air revitalization, water reclamation, and solid waste management. It is projected that regenerative life support systems will become increasingly more complex as system closure is maximized. Advanced life support technology development will utilize three complementary elements, including the Research and Technology Program, the Regenerative Life Support Program, and the Technology Testbed Validations.

  7. Application of Advanced Technology to Undergraduate Medical Education. Memorandum.

    ERIC Educational Resources Information Center

    Farquhar, J. A.; And Others

    Advanced technology will have a great effect on medical education because it can speed up medical education and boost the quality of instruction without straining the capacity of medical schools to expand or driving costs to unreasonable levels. Six examples of an application of advanced technology to medical education are described in this…

  8. Advanced Education and Technology Business Plan, 2008-11

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    The Ministry of Advanced Education and Technology's 2008-11 business plan identifies how it plans to work over the next three years to enhance advanced learning opportunities and innovation for all Albertans. Alberta's advanced learning system is composed of public board-governed institutions, the apprenticeship and industry training system,…

  9. Research and technology, 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Three broad goals were presented by NASA as a guide to meet the challenges of the future: to advance scientific knowledge of the planet Earth, the solar system, and the universe; to expand human presence beyond the Earth into the solar system; and to strengthen aeronautics research and technology. Near-term and new-generation space transportation and propulsion systems are being analyzed that will assure the nation access to and presence in space. Other key advanced studies include large astronomical observatories, space platforms, scientific and commercial payloads, and systems to enhance operations in Earth orbit. Longer-range studies include systems that would allow humans to explore the Moon and Mars during the next century. Research programs, both to support the many space missions studied or managed by the Center and to advance scientific knowledge in selected areas, involve work in the areas of atmospheric science, earth science, space science (including astrophysics and solar, magnetospheric, and atomic physics), and low-gravity science. Programs and experiment design for flights on the Space Station, free-flying satellites, and the Space Shuttle are being planned. To maintain a leadership position in technology, continued advances in liquid and solid propellant engines, materials and processes; electronic, structural, and thermal investigations; and environmental control are required. Progress during the fiscal year 1987 is discussed.

  10. Advanced manufacturing: Technology and international competitiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforcemore » requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.« less

  11. Space Station Engineering and Technology Development. Proceedings of the Panel on Solar Thermodynamics Research and Technology Development, July 31, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.

  12. Solar power satellite system definition study, volume 4, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.

  13. JPL Advanced Thermal Control Technology Roadmap - 2012

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  14. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  15. Gas chromatography: Possible application of advanced instrumentation developed for solar system exploration to space station cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1985-01-01

    Gas chromatography (GC) technology was developed for flight experiments in solar system exploration. The GC is a powerful analytical technique with simple devices separating individual components from complex mixtures to make very sensitive quantitative and qualitative measurements. It monitors samples containing mixtures of fixed gases and volatile organic molecules. The GC was used on the Viking mission in support of life detection experiments and on the Pioneer Venus Large Probe to determine the composition of the venusian atmosphere. A flight GC is under development to study the progress and extent of STS astronaut denitrogenation prior to extravehicular activity. Advanced flight GC concepts and systems for future solar system exploration are also studied. Studies include miniature ionization detectors and associated control systems capable of detecting from ppb up to 100% concentration levels. Further miniaturization is investigated using photolithography and controlled chemical etching in silicon wafers. Novel concepts such as ion mobility drift spectroscopy and multiplex gas chromatography are also developed for future flight experiments. These powerful analytical concepts and associated hardware are ideal for the monitoring of cabin atmospheres containing potentially dangerous volatile compounds.

  16. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam Schaut

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system conceptmore » development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural

  17. Responding to Industry Demands: Advanced Technology Centers.

    ERIC Educational Resources Information Center

    Smith, Elizabeth Brient

    1991-01-01

    Discusses characteristics identified by the Center for Occupational Research and Development as indicative of fully functioning advanced technology centers, including the provision of training and retraining in such areas as design, manufacturing, materials science, and electro-optics; technology transfer; demonstration sites; needs assessment;…

  18. MentorLinks: Advancing Technological Education, 2008-2010

    ERIC Educational Resources Information Center

    Hause, Ellen M., Ed.

    2010-01-01

    MentorLinks, part of the Advancing Technological Education program supported by the National Science Foundation and administered by the American Association of Community Colleges (AACC), provides technical assistance and networking opportunities to improve community college programs that prepare technicians in the science, technology, engineering,…

  19. [Technological advances and hospital-at-home care].

    PubMed

    Tibaldi, Vittoria; Aimonino Ricauda, Nicoletta; Rocco, Maurizio; Bertone, Paola; Fanton, Giordano; Isaia, Giancarlo

    2013-05-01

    Advances in the miniaturization and portability of diagnostic technologies, information technologies, remote monitoring, and long-distance care have increased the viability of home-based care, even for patients with serious conditions. Telemedicine and teleradiology projects are active at the Hospital at Home Service of Torino.

  20. Advanced subsystems development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1978-01-01

    The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.

  1. DOE Solar Energy Technologies Program FY 2005 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutula, Raymond A.

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  2. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  3. Advances in point-of-care technologies for molecular diagnostics.

    PubMed

    Zarei, Mohammad

    2017-12-15

    Advances in miniaturization, nanotechnology, and microfluidics, along with developments in cloud-connected point-of-care (POC) diagnostics technologies are pushing the frontiers of POC devices toward low-cost, user-friendly, and enhanced sensitivity molecular-level diagnostics. The combination of various bio-sensing platforms within smartphone-integrated electronic readers provides accurate on-site and on-time diagnostics based on various types of chemical and biological targets. Further, 3D printing technology shows a huge potential toward fabrication and improving the performance of POC devices. Integration of skin-like flexible sensors with wireless communication technology creates a unique opportunity for continuous, real-time monitoring of patients for both preventative healthcare and during disease outbreaks. Here, we review recent developments and advances in POC technologies and describe how these advances enhance the performance of POC platforms. Also, this review describes challenges, directions, and future trends on application of emerging technologies in POC diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Corrosion science, corrosion engineering, and advanced technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latanision, R.M.

    1995-04-01

    Professor R.M. Latanision was the 1994 recipient of the Willis Rodney Whitney Award sponsored by NACE International. The present work is taken from his award lecture at CORROSION/94 held in March 1994 in Baltimore, MD. Latanision discussed the interplay between corrosion science and corrosion engineering in advancing technology. His lecture focused on supercritical water oxidation and other technologies that have been under study in the H.H. Uhlig Corrosion Laboratory and in which the chemical properties of new materials and traditional materials have proven integral to the development of contemporary or advanced engineering systems.

  5. Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.

  6. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  7. Promises of advanced technology realized at Martin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanekamp, R.

    1996-09-01

    The 2,488-MW Martin station is a gas/oil-fired facility that embodies today`s demand for flexible operations, technological advances, and reduced production costs. Martin station first rose up from the Everglades in the early 1980s, with the construction of two 814-MW oil-fired steam plants, Units 1 and 2. Natural-gas-firing capability was added to the balanced-draft, natural-circulation boilers in 1986, increasing the station`s fuel flexibility. Martin then leaped into the headlines in the early 1990s when it added combined-cycle (CC) Units 3 and 4. With this 860-MW expansion, FP and L boldly became the fleet leader for the advanced, 2350F-class 7FA gas turbines.more » Further pushing he technology envelope, the CC includes a three-pressure reheat steam system that raises net plant efficiency for Units 3 and 4 to 54%, on a lower-heating-value (LHV) basis. Incorporating the reheat cycle required significant redesign of the gas-turbine/heat-recovery steam generator (HRSG) train, in order to maintain a rapid startup capability without exceeding metallurgical limits. Perhaps even more important than the technological achievements, Martin stands out from the crowd for its people power, which ensured that the promises of advanced technology actually came to fruition. This station`s aggressive, empowered O and M team shows that you can pioneer technology, reduce operating costs, and deliver high availability--all at the same time.« less

  8. Research and technology, fiscal year 1982

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.

  9. Thin-Film Solar Cells on Polymer Substrates for Space Power

    NASA Technical Reports Server (NTRS)

    Hepps, A. F.; McNatt, Jeremiah; Morel, D. L.; Ferckides, C. S.; Jin, M. H.; Orbey, N.; Cushman, M.; Birkmire, R. W.; Shafarman, W. N.; Newton, R.

    2004-01-01

    Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. Solar cells based on thin-film materials offer the promise of much higher MSP and much lower cost. However, for many space applications, a 20% or greater AM0 efficiency (eta) may be required. The leading thin-film materials, amorphous Si, CuInSe, and CdTe have seen significant advances in efficiency over the last decade but will not achieve the required efficiency in the near future. Several new technologies are herein described to maximize both device eta and MSP. We will discuss these technologies in the context of space exploration and commercialization. One novel approach involves the use of very lightweight polyimide substrates. We describe efforts to enable this advance including materials processing and device fabrication and characterization. Another approach involves stacking two cells on top of each other. These tandem devices more effectively utilize solar radiation by passing through non-absorbed longer wavelength light to a narrow-bandgap bottom cell material. Modeling of current devices in tandem format indicates that AM0 efficiencies near 20% can be achieved with potential for 25% in the near future. Several important technical issues need to be resolved to realize the benefits of lightweight technologies for solar arrays, such as: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. Recent advances will be stressed.

  10. Advanced Technology Development for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-01-01

    A high-efficiency Stirling Radioisotope generator (SRG) for use on potential NASA space missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center. GRC is also developing advanced technology for Stirling converters, aimed at substantially improving the specific power and efficiency of the converter.The status and results to date will be discussed in this paper.

  11. Advanced solar energy conversion. [solar pumped gas lasers

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  12. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  13. Advances in solar radio astronomy

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1982-01-01

    The status of the observations and interpretations of the sun's radio emission covering the entire radio spectrum from millimeter wavelengths to hectometer and kilometer wavelengths is reviewed. Emphasis is given to the progress made in solar radio physics as a result of recent advances in plasma and radiation theory. It is noted that the capability now exists of observing the sun with a spatial resolution of approximately a second of arc and a temporal resolution of about a millisecond at centimeter wavelengths and of obtaining fast multifrequency two-dimensional pictures of the sun at meter and decameter wavelengths. A summary is given of the properties of nonflaring active regions at millimeter, centimeter, and meter-decameter wavelengths. The properties of centimeter wave bursts are discussed in connection with the high spatial resolution observations. The observations of the preflare build-up of an active region are reviewed. High spatial resolution observations (a few seconds of arc to approximately 1 arcsec) are discussed, with particular attention given to the one- and two-dimensional maps of centimeter-wavelength burst sources.

  14. One Micron Laser Technology Advancements at GSFC

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  15. Research Technology

    NASA Image and Video Library

    2002-08-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  16. The advance of technology and the scientific commons.

    PubMed

    Nelson, Richard R

    2003-08-15

    The advance of technology proceeds through an evolutionary process, with many different new departures in competition with each other and with prevailing practice, and with ex-post selection determining the winners and losers. In modern times what gives power to the process is the strong base of scientific and technological understanding and technique that guides the efforts of those seeking to advance the technology. Most of that base is part of a commons open to all who have expertise in a field. The proprietary aspects of technology traditionally have comprised a small topping on the commons. But recently parts of the commons have become privatized. While the justification for the policies and actions that have spurred privatization of the commons is that this will spur technological progress, the argument here is that the result can be just the opposite.

  17. Lectures on Advanced Technologies

    DTIC Science & Technology

    1987-01-01

    we are now building, such real - time information will greatly change strategies, tactics, and weapon systems ; it will drive the development of a family...in real - time (approximately seven seconds), process a satellite image. The system was recently demonstrated at White Sands Missile Range. This system ... time and talents by coming to Annapolis and participating in our Advanced Technologies Seminar program. Arthur E. Bock Professor Emeritus Naval Systems

  18. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  19. AGT (Advanced Gas Turbine) technology project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated

  20. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.